

electronics

SEPTEMBER • 1949

POTTED SUBASSEMBLIES CoverChemical, mechanical and electronic engineers cooperated at Melpar, Inc. to produce these plug-in units comprisingcomplete circuits used in complex multi-tube equipment (see p 104)
WHY DOES IT TAKE SO LONG? By W. C. White 66Reasons for delays in converting an idea to a new product, and suggestions for cutting development time and costs
WOR TV-FM DESIGN FOR THE FUTURE, by F. J. Bingley 70Latest big broadcasting plant is engineered for efficient multi-service operation
HOW VOA COMBATS JAMMING, by George Q. Herrick 82Predistorter and peak limiter accentuate speech high-frequency consonants for greatest intelligibility
PHOTOCELLS MEASURE AND CONTROL GAS, by William H. Schaeffer 85Staining of fabric tape by hydrogen sulfide is measured by differential photometer
CITIZENS RADIO WAVEMETERS, by William B. Lurie 88Construction details of two coaxial-type wavemeters for 460 to 470 mc
CONVERTERS FOR UHF TELEVISION RECEPTION, by D. K. Reynolds and M. B. Adams 92Several different local oscillator and mixer circuits for the new allocations
INSTANTANEOUS DEVIATION CONTROL, by Marion R. Winkler 97Novel circuit places a limit on the frequency excursions caused by phase modulator
METAL DETECTOR FOR THE LUMBER INDUSTRY, by Curtiss R. Schafer 100
A 16 -penny nail in a board will actuate the circuit
POTTED SUBASSEMBLIES FOR SUBMINIATURE EQUIPMENT, by W. G. Tuller 104Design and construction procedures for potting amplifier and oscillator subassemblies
FIELD TEST OF UHF TELEVISION, by Joseph Fisher 106Field strength measurements using special mobile equipment for 500 -mc region
CHOKE-INPUT FILTER CHART, by Reuben Lee 112Gives optimum values of L and C, resulting ripple, and values of four transients for nine different rectifiers

BUSINESS BRIEFS	60	ELECTRON ART	120	NEW BOOKS
CROSStalk	65	NEW PRODUCTS	124	bACKTALK
TUBES AT WORK	116	NEWS OF THE INDUSTRY	128	INDEX TO ADVERTISERS

oo:'^LD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, A. A. McKenzie, Associote Editors; William P. O'Brien, James D. Fahnestock, Assistant Editors; Hal Adams Burleson, Ann Mastropolo, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Consulting Editor
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Directory Manager; D. H. Miller, R. H. Denmead, Jr, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chïcago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Bernard H. Butler, London, England

Contents Copyright 1949, by McGraw-Hill Publishing Company, Inc. All Rights Reserved. MeGRAWIHILL PUBLISHING COMPANY, INCORPORATED, JAMES H. McGRAW (1860-1948), founder P- PUBLICATION OFFICE, $99-129$ North Broadway, Albany 1, N. Y., U. S. A. EDITORIAL AND EXECUTIVE OFFICES, 330 West 42nd St., New York 18, N. Y., U. S. A.-Member A. B. P. Member A. B. C.
James H. McGraw, Jr., President; Curtis W. McGraw, Vice-President and Treasurer; Eugene Duffield, Senior Vice-President, Publications Division; Nelson Bond, VicePresident and-Director of Advertising; J. E. Blackidurn, Jr., Vice-President and DIrector of Circulation; James A. Gerardi, Secretary; Dexter Keezer, Director Economic DLECTRONICS, Sentember, 1949, Vol. 22; No. 9 , Pubbished monthly, with an additional issue in June, price 75 c a cony for U . S . and possessions, and Canada: $\$ 1.50$ for ELECTRONICS, Sedtember, 1949, Vol. 22; No. 9, Published monthly, with an additional issue in uney price che a copy for

 4; Andeles 14 ; 738 .9 Oiver Building. Pittshurgh 22. ELECTRONICS is indexed regutarly in The Engineering Index.

To insure dependable circuits in your product, specify the capacitors that perform reliably under extremes of temperature and climate -

These fixed mica dielectric receiving capacitors maintain their reputation for dependable operation under all conditions by passing rigid tests before leaving the factory. Tests include temperature so efficient and capacitance drift, humidity, life, insulation resistance, etc. In addition these tiny condensers are sealed for salt water immersion. All tests are run at double their working voltage.

SO ALWAY

Specify Pretested Capacitors by El-Menco . . .

THEYGIVEEXACTING PERFORMANCE UNDER CRITICAVCONDITIONS

CM 15 MINIATURE CAPACITOR
Actual Size $9 / 32^{\prime \prime} \times 1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$
For Television, Radio and other Electronic Applications
2 - 420 mmf . cap. at $500 \mathrm{v} \mathrm{DC}_{\mathrm{w}}$
2 - 525 mmf . cap. at 300 vDCw
Temp. Co-efficient ± 50 parts per million per degree C for most capacity values. 6 -dot color coded.

Foreign Radio and Electronic Manufacturers communicate direct with our Export Dept. at Willimantic, f-qu, f-e infr
ARCO ELECTRONICS, INC., 135 Liberty St., New Yofk, N. Y. Sole agent for jobbers and distrib:

AND NOW

THE MINIATURE STANDARD CELL

E.M.F.

TEMPERATURE COEFFICIENT DIMENSIONS
WEIGHT
MOUNTING
1.01859 VOLTS ABS $\pm 100 \mu \vee$ AT $20^{\circ} \mathrm{C}$ $40 \mu \mathrm{~V}$ PER ${ }^{\circ} \mathrm{C}$ APPROX. $3 \frac{7}{8}^{\prime \prime} \times \frac{7.7}{8} \times \frac{7}{8} \quad 9.8 \times 2.2 \times 2.2 \mathrm{~cm}$ OVERALL $2 \frac{3}{2} \mathrm{oz} \quad 70 \mathrm{gm}$

MOLDED CASE-WITH PANEL AND CHASSIS FIXING HOLES Our other ypes of Standard Cells will interest you. Write for literature.

* you may remit to us by your own dollar check

Nature hasn't done it-but Fansteel Metallurgy does Fastell ELECTRICALCONTACTS

For Heavy Duty Services

Fansteel Metallurgy does what? It combines in a single FASTELL contact, the high melting points, low arc erosion, non-welding properties of tungsten or molybdenum, with the high conductivity and low contact surface resistance of silver or copper. By Fansteel's exclusive techniques these metals are not alloyed, not merely bonded, but actually integrated in correct proportion for the particular heavy duty service.
With correct FASTELL contacts your product is assured against premature failure due to arcing; against overheating or undue volfage drop due to contact surface resistance. You will find a great improvement in conductivity, freedom from welding, sticking, pitting or arc erosion. Long, dependable service life, with economy.
Fansteel engineers will gladly assist users in any contact problem. Contact assembly methods will be developed for any particular application. Arrangements may be made to have the complete assembly work done by Fansteel. Fansteel Metallurgical Corporation, North Chicago, Illinois.

PRODUCTS \& SERVICES INCLUDE: ELECTRICAL CONTACTS SELENIUM RECTIFIERS METALS:TANTALUM,TUNGSTEN MOLYBDENUM, COLUMBIUM COPPER BASE ALLOYS cecietance WELDING OIALS

Crowded chassis are

on resistors too.

The smaller you make your electrical or electronic instruments and equipment, the bigger your problems grow. But when you specify miniature IRC resistors you conserve space without sacrificing efficiency, and miniaturization creates no bottlenecks.

Because of our years of experience in the manufacture of resistors, IRC long ago foresaw the trend to miniaturization-and prepared for it. With the widest line of resistor types in the industry, we are able now to supply miniature components for most resistor applications.

THIN AS WAFER and no bigger than a nickel, IRC Type HB Fingertip Control features a quiet element, simplified construction and a unique rotating cover and contactor which perrait ready resistance adjustment. It entirely eliminates the shaft, bushing and bulky knob of conventional-type controls. Fcur point switch of similar design is also available. Fully described in IRC Catalog Bulletin A-I.

When you are cramped for standard resistors in a hurry, IRC's Industrial Service Plan gives you the speedy service you need. For small orders of standard resistors for experimental work, pilot runs, maintenance, simply call your local IRC Distributor. We'll gladly send you his name and address.

INTERNATIONAL RESISTANCE COMPANY 403 N. BROAD ST., PHILA. 8, PA.

Send me additional data on the items checked below:

\square BTR Resistors \square Fingertip Controls
\square Flat FRW Resistors \square MPM Resistors
\square Name and oddress of local IRC Distributor

Deposfled Corbon Precistors HF and High Voltage Resistors Insulaled Chakes
NAME.
\qquad
\qquad
\qquad

The STABILINE Demonstrator, above left, was designed by our engineers to enable you to prove to yourself that - regardless of line or load variations - standard $1 / 4$ KVA STABILINE Type IE's, taken from stock at our distributors', perform as advertised. It works like this: The Demonstrator provides variable input voltage to the STABILINE Type IE51002 (right). It also acts as a variable load. The left meter on the Demonstrator shows input voltage, variable from 95 to 135 volts, applied to the STABILINE. The right meter indicates load variations, in amperes, variable from 0 to 2.1 amps . The middle meter shows that the output of the STABILINE remains constant - regardless of line or load variations.
Make this test yourself. Write for the name and address of the Superior Electric distributor in your area. He'll show you how - and you can make this test yourself - the Instantaneous Electronic STABILINE (Type IE) corrects line and/or load variations instantly, efficiently and dependably.

IE51002R

We've packed plenty of performance into the well-organized, skillfully-constructed 1/4 KVA STABILINE Type IE51002R. It's a standard model - for quick, easy, convenient rack-mounting. It possesses all the superior inherent characteristics found in all STABILINE IE's.

here's a nea stabiline type ie

STABILINE Type IE51002R is specially designed for use when your requirements call for a standard-rack-mounting voltage regulator. It's compact - measures $19^{\prime \prime}$ wide by $51 / 4^{\prime \prime}$ high by $131 / 8^{\prime \prime}$ deep - gives you the same dependable and maintenance-free service you get from all Superior Electric STABILINES.

STABILNE VOLTAGE REGULATOR TYPE IE						
RATINGS						
Type	Input Voltage Range	Output Voltage Range	Frequency in Cycles	Load Range in Amperes	Load Power Factor Range	Rated Output KVA
IE51002	95.135	110-120	$60 \pm 10 \%$	0-2.1	+.5 to - . 9	. 25
IE51002R	95.135	110.120	$60 \pm 10 \%$	0-2.1	+. 5 to - .9	. 25
IE51005	95.135	110-120	$60 \pm 10 \%$	0-4.3	+ .5 to - . 9	. 5
IE5101	95.135	110-120	$60 \pm 10 \%$	0-8.5	+.5 to - . 9	1.0
IE5105	95-135	110.120	$60 \pm 10 \%$	0-43.5	+. 5 to-. 9	5.0
IE5202	195-255	220-249	$60 \pm 10 \%$	0-11.0	+.5 to-. 9	2.5
IEL51005	95.135	110-120	$50 \pm 10 \%$	0-4.3	+.5 to-.9	. 5
IEL52005	195-255	220-240	$50 \pm 10 \%$	0-2.1	+ +.5 to- -.9	. 5
IEL5101	95.135	110-120	$50 \pm 10 \%$	0.8 .5	+.5 to-. 9	1.0
IEL5201	195-255	220-240	$50 \pm 10 \%$	0-4.3	+.5 to-. 9	1.0

Only in STABILINE Type IE's will you find the following characteristics to meet your need for dependable, conservatively rated automatic voltage regulation: Completely electronic operation - Waveform distortion never exceeding 3% - Stabilization of ± 0.1 of 1% of preset value - Regulation of ± 0.15 of 1% for any load current change from zero to full load, or any load power factor change from 0.5 lagging to 0.9 leading.

THE SUPERIOR ELECTRIC co. BRISTOL, CONNECTICUT:
 POWERSTAT VARIABLE TRANSFORMERS • VOLTBOX A-C POWER SUPPLY - STABILINE VA

Federal Noark NTPS Panelboard, made by the Federal Electric Products Company, Newark 5, N. J.

Showing the sure-contact spring in switch assembly.

These are the three cur-rent-carryiag parts.

O
nce in a while Revere recommends that a customer switch to a metal that costs more per pound, because its use will make the finished part more efficient or less costly. On the other hand, sometimes economy can be achieved by specifying a nonpremium metal. It all depends upon the nature of the finished part, the fabrication methods, and the conditions of use. Take this Federal Noark Type NTPS panelboard, a combination fuse block and circuit switch. The contact fingers in this originally were to be made of a special spring alloy carrying a premium of about 13ϕ per pound. The question was asked, naturally enough, if this was absolutely necessary. Federal and the Revere Technical Advisory Service collaborated closely, and it was decided that electrolytic copper should be perfectly satisfactory if supplied in the proper temper, hardness and grain size. Samples as recommended by the

Revere Technical Advisory Service were tested rigidly, and were found to perform perfectly. Revere is proud of this example of constructive collaboration with a customer, especially since the panelboard is meant for heavy-duty light and power control, handling 30 amperes. Operation is exceptionally fast, due to a powerful spring-actuated make and break, which reduces or eliminates arcing. There are only three current carrying parts, each heavy and rugged for trouble-free service. ... Revere will be glad to cooperate with you in a mutual search for the non-ferrous metal that will be most economical in your product.

REVERE

 Founded by Paul Revere in 1801 230 Park Avenue, New York 17, New YorkMills: Baltimore, Md.; Chicagn Tu
Mich.; Los Angeles and D
New Bedford,
ales Off-
Distr:

WORLD'S FINEST

CORED SOLDER

 (6)
TECHNICAL ADVANTAGES

 multicore solder- Three separate cores of flux eliminate possibility cf no flux in a portion of the wire, which may cecur in single cored solder. Guaranteed continuity of the flux stream prevents "dry"
isints, i.e. those having high electrical resistance.
- Although there are three cores of fluxin Multicore. the total percentage of flux to solder is less than many single cored solders
- Very rapid melting results from the multiple provides thinner walls of solder than are found in same gauge single cored solder.
- Multicore's unique properties make perfect coints possible on difficult metals and alloys, even if oxidised.
- Ability to tin rapidly produces perfect Gints coverage per pound

ERSIN FLUX

- Ersin Flux is exclusive to Multicore and will not be found in any other solder. white rosin, homogeneously activated.
- Ersin Flux has a vigorous fluxing action and possesses the non-corrosive and protective features of the original rosin.
- Soldered joints made with Ersin Flux do not longed exposure to any degree of humidity. It has been tested under climatic conditions ran. ging from the Arctic to the Tropics.
- Ersin Flux reduces the surface tension of molten solder, causing it to wet metals rapidy.increasing speed of operacion wrion prosulcane

Free from objectionable odor Non-toxic in use.

Leaves nothing but pure rosin on the work after soldering, and may be used. wherever plain rosin is specifled. Com plies with all pertinen Federal Specifications

584 Al
Address U.S.A. and Canadian inquiries to

BRITISH INDUSTRIES ©ORP•

315, Broadway, Dew York 7, N.T.
Inquiries regarding other territories to:

MULTICORESOLDERS LTD. Mellier House, Albemarle Street, London, W.I, Eggland

You don't get "Lost in the Shuffle" when you Come to INDIANA for PERMANENT MAGNETS

INDIANA, the nation's largest producer of permanent magnets, assures the fastest customer service by having all departments and facilities combined at one location. Prompt engineering recommendations always reflect the latest in research. Orders are entered, executed, and shipped as one responsibility. Thus, INDIANA does business man-to-man, and buyers like it.

YOU SAVE VALUABLE TIME

That's why - whether your job is standard or "special"; whether you want design suggestions or quick quotations; whether you're placing orders
or checking delivery - you can look to INDIANA for on-the-spot service and genuine personal interest.

YOU PROFIT MANY WAYS

When you deal with INDIANA, it's like adding the finest facilities as a department in your own organizationpattern making; casting; sintering; heat treating; finishing; magnetizing-plus technical knowledge with experience and foresight. You get helpful aid in designing to cut costs . . . uniform high energy for every application . . . magnets that are right. It pays to call in INDIANA. Do it now!

A request on your business letterbead will bring you INDIANA'S 32-page Permanent Magnet Design Manual. Please ask for Book 4E-99.

Every INDIANA Permanent Magnet is designed and produced in this modern plant at Valparaiso, where INDIANA has been located for more than 40 years.

INDIANA's wide variety of magnot alloys permits precise solection for all uses. CAST
Alnico I, II, III,
IV, V, VI, XII
Cobalt
Cunico
Indalloy
SINTERED
Alnico II, IV, V Indalloy
Vectolite
ductile
Cunico
Cunife I, II
Silmanal
FORMED
Chrome
Cobalt
Tungsten

ADVENTURES IN ELECTRONIC DESILN

Centralab Announces the NEW MODEL 2 RADIOHM CONTROL!

OTHER MODEL 2 RADIOHM CONTROLS

Left: switch type-with taps. Right: switch type--twin.

ALL MODEL 2 CONTROLS ARE 15/" IN DIAMETER - RATED AT $1 / 2$ WATT.

Here they are! Centralab's Model 2 Radiohm Controls. Designed by skilled Centralab engineers, these new quality controls are used in television, radio, sound, motion picture and other electronic equipment. Precision-built with a special composition resistance material securely bonded to a high quality phenolic base, they give you lower noise level longer life. Yes - examine the new CRL Model 2 Radiohms and see why it will pay you to use these finer controls in the equipment you manufacture. See how Model 2's
clinched terminals insure firm, positive connections. See how Model 2's complete line of 3 basic switches (5, 8 and 1 amp.) gives you 24 switch combinations for real flexibility in application and design. See how Model 2's tap positions at $371 / 2$, 50 and $621 / 2$ percent of rotation simplify wiring problems. Yes - check all of the outstanding advanlages of Centralab's fine new Model 2 Radiohm Controls and you'll agree they're the right controls for you. For complete information, see your Centralab representative or write direct.

Centralab reports to

SEPTEMBER,
1949
Exploded view

$$
\begin{aligned}
& \text { Shows } \\
& \text { Centralabis } \\
& \text { New } \\
& \text { Radio }
\end{aligned}
$$

$$
\begin{aligned}
& \text { epode } \text { Shy } \\
& \text { Snows } \\
& \text { centralab's }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Centralab's } \\
& \text { Model } 2 \text { Radiohm } \\
& \text { Today's }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ode } 2 \text { Radio' } \\
& \text { is Today } \\
& \text { Finest contr }
\end{aligned}
$$

CRL's Model 2 Radiohm is the Control for You!

1. Switch - with positive detent in both on and off positions. Terminals - with surfaces clevated to eliminate danger of shorting to cover legs ...1/8" hole diameter for simplified wiring... hot tin dipped for easy soldering mechanical lock to prevent loosening in soldering operations. 2. Cadmium plated steel cover complete .y shields resistor. 3. Insulator's high dielectric strength permits breakdown test at 1000 volts R. M. S. Dust and dirt can't get in. 4. Stop, of cup design, provides superio switch shielding gives you excellent torque strength without distortion. 5. High grade laminated phenolic shoo maintains high insulation resistance (under humidity conditions.)
2. Contact Spring gives you double wiping contacts on both resistor and center terminal ring . . is accurately formed to maintain uniform pressures and minimize noise.
3. Electro tin-plated terminals provide soldering ease. Tightly crimped, terminals give you direct contact to resistor. . . assure
constant contact under humidity and soldering conditions. 8. Resistor is made of special resistance material bonded to high quality phenolic for smooth operation, low noise level, outstanding humidity characteristics. 9. Cadmium -tit
 - good shelf life without oxidation. Adequately lubri
 10. Laminated phenolic base maintains high insulation resistance (under humidity conditions.) 11. Cadmium-plated steel ground plate assures positive grounded cover
4. Cadmium -plated steel bushing is accurately finished and fit to shaft for smooth rotation.
5. Retaining ring.
6. Shaft. Unlimited variations available to meet your
```
.)
```


IPentode Couplate consists of plate lead and grid resistors, plate bypass and coupling capacitors. Minimum soldered connections speed production

2
This is the new CRL Vertical antegrator Network used in TV sets. Variations of this Centralab Network are available on special order.

3
In its Lever Switch, Centralat antes a
cycles cycles. He
give new

Electronic Industry

4
Model " 1 " Radiohm control - plain and switch types - is no larger than a dime. Especially designed for miniature applications. Centralab's TC (Temperature Compensating) Tubular Hi-Kaps, left, are the most stable capacitors available. With TC Hi-Kaps. there's practically no variation due to aging or changes in temperature or humidity. For applications where temperature compensation is unimportant, use Tubular BC Hi-Kaps, right.

6For by-pass or coupling applications, check Centralab's original line of ceramic disc Hi-Kaps. Disc Hi-Kaps are smaller than a dime!

7Hi-Vo-Kaps are filter and by-pass capacitors combining high voltage, small size and variety of terminal connections to fit most TV needs.

8CRL's new Tubular Trimmers come in 3 basic types, 3 capacity ranges. Tinnerman locknut and adjusting screw available on special request.

entralab's development of a revolutionary, new Slide Switch gives you improved and FM ion to coils reduced lead inductances for increased efficiency ion to coils, reduced CRL Slide Switches are rugged and dependable.

10
Great step forward in switching is CRL's New Rotary Coil and Cam Index Switch. Its coil spring gives you smoother action, longer life,

IMPORTANT BULLETINS FOR YOUR IECHNICAL LIBRARY! MTX

Choose From This List!

Centralab Printed Electronic Circuits

973 - AMPEC - three-tube P. E. C. amplifier.
42-6-Couplate - P. E. C. interstage coupling plate.
999 - Pentode Couplate - specialized P. E. C. coupling
42-9 - Filpec - Printed Electronic Circuit filter.

Centralab Capacifors

42-3 - BC Tubular Hi-Kaps - capacitors for use wherz temperature compensation is unimportant.
42-4 - BC DIsC HI-Kaps - miniature ceramic BC capacitors.
42-10 - HI-Vo-Kaps - high voltage capacitors for TV appl; cation.
695 - Ceramic Trimmers - CRL trimmer catalog.
981 - HI.Vo-Kaps - capacitors for TV application. For jobbers.
42-18 - TC CAPACITORS - temperature compensating capacitors.
814 - Capacitors - high-voltage capacitors,
975 - FT HI-Kaps - feed-thru capacitors.

Centralab Switches

953 - Slide Switch - applies to AM and FM switching circuits.
970 - Lever Switch - shows indexing combinations.
995 - Rotary Switch - schematic application diagrams.
722 - Switch Catalog - facts on CRL's complete line of switches.

Centralab Controls

42-7 - Model "1" Radiohm - world's smallest commercially produced control.
697 - Variable Resistors - full facts on CRL Variable Resistors.

Centralab Ceramics

720 - Ceramic Catalog - CRL's steatite and ceramic products.

General

26 - General Catalog - Combines Centralab's line of products for jobber, ham, experimenter, serviceman or

Look to CENTRALAB in 1949! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Certralab's sales and engineering service work with you. For complere information on all CRL products, get in tcuch with your Centralab Representative. Or write direct.

CENTRALAB							203
Division of Globe-Union Inc. 203							
900 East Keefe Averue, Milwaukee, Wisconsin							
Yes-I would like to have the CRL bulletins, checked below, for my technical library!							
$\square 973$	$\square 42.9$	$\square 42.18$	$\square 953$	\square 42-10	$\square 722$		
$\square 42.6$	\square 42-3	$\square 695$	[814	$\square 970$	$\square 42.7$	[26
$\square 999$	\square 42-4	$\square 981$	$\square 975$	$\square 995$	$\square 697$		
Name.							

- Since late in 1947 Anaconda ATV* 225 Shielded Lead-In Lines** have been in operation in various sections of the United States.

Comparative results are now conclusive. ATV 225 means no more weather interference, no more moisture, or dirt troubles, no "snow," no "ghosts," no reradiation from nearby installations, auto, truck or airplane ignition.

In a word, pictures are clear and clean as never before. And because service call-backs are negligible, (instead of ruinous) there's more time for selling sets. And there's lots of replacement business on out-ofdate, unshielded lead-in lines . . . with scientific, timetested ATV 225. It's now generally available. Order today.

Specifically, ATV 225 offers:

1. High impedance-matches receiver input circuit.
2. Extremely high signal to noise ratio.
3. Low attenuation-full signal strength.
4. Stable performance and long life under all weather conditions.
5. Fire resistant-meets Underwriters' requirements.
6. Operates in conduit without change in electrical properties.

AMACONDA
from mine to corsenmer
$\stackrel{3}{3}$

ANACONDA WIRE \& CABLE COMPANY
25 BROADWAY, NEW YORK 4, N. Y.

DRIVER-HARRIS

Yout deppendancer

Wire and Ribbon

Resistor and Radio Alloys

FOR RESISTANCE

There are Driver-Harris Alloys for every electrical resistance requirement. Most widely used are:
...Nichrome* and Nichrome* V, for winding large value resistors where overall size is limited, but dependability is a must.
. . . Manganin, for fixed stability and constant resistance under normally variable operating conditions; examples being precision bobbins, potentiometers, National Bureau of Standards type resistance standards. ... Advance*, most frequently specified for precision resistors in electric meters and laboratory testing devices, because in its finer sizes it has a temperature coefficient of only $\pm .00002 /{ }^{\circ} \mathrm{C}$.
. . . Karma*, high ohmage, 800 ohms $/ \mathrm{cmf}$ at $20^{\circ} \mathrm{C}$., makes possible extremely small resistors. Especially suitable for service in resistors requiring negligible temperature coefficient of resistance. Thermal e.m.f. against copper only .002 millivolts $/{ }^{\circ} \mathrm{C}$. between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. Where mechanical strength is important, larger dinmeter Karma wire can be used for a given resistance per foot.

Plus a total of more than 80 electrical heat and corrosion-resistant alloys which singly, or in combination fill any electrical resistance specifications.

FOR RADIO

Always abreast of the latest developments in radio metallurgy, DriverHarris has been headquarters for Radio Alloys since the earliest days of the industry. In greatest demand are:

Nickel and Nichrome*, for plate strip. Thin but rigid, they take a tightly adhering heat radiation coat.

Gridnic* Alloys, having a very low electron emission - especially suitable in tubes where back-emission is involved.
. . . Cathode Sleeve Material: special melted Nickel Alloys to meet any emission requirements.
Other widely accepted D-H Alloys, meeting or exceeding most radio specifications are: Nilvar", \#42 Alloy, \#52 Alloy, and Nickel "A". "D". "E". "Z".

For efficiency and dependabilify -

 Specify Electrical Resistance and Radio Alloys by -
Driver-Harris

 COMPANYHARRISON - NEW JERSEY
ANCHES: Chicago - Detroit - Cleveland Los Angeles San Francisco Seattle The B. GREENING WIRE COMPANY, LYD., Hamilton, Ontario, Canada

- Trade Mark.Reg. U. S. Pat. Off.

Designed for Application MU METAL SHIELDS

The James Millen Mfg. Co. Inc. has for many years specialized in the production of magnetic metal cathode ray tube shields for the entire electronics industry, supplying magnetic metal shields to manufacturing companies, laboratories and research organizations. Stock shields are immediately available for all of the more popular sizes and types of cathode ray tubes as well as bezels for $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ size tubes.

Many production problems, however, make desirable special shields designed in conjunction with the specialized requirement of the basic apparatus. Herewith, are illustrated a number of such custom built shields. Our custom design and fabrication department is at the service of our customers for the development and manufacture of magnetic metal shields of either nicoloi or mumetal for such specialized applications.

Millen magnetic metal shields are illustrated and described in the new printing of our Laboratory Equipment catalogue, a copy of which will be mailed upon request.

JAMES MILLEN $\left\{^{\frac{N^{2}}{2}}\right\}$ MFG. CO., INC.
 Main ofrice
 AND FACTORY
 MALDEN, MASSACHUSETTS, U.S.A.

Why JAN?

For many years the manufacture of transformers was controlled by individual manufacturer's ingenuity and ability together with his customer's desires and requirements. Inevitably there were as many different constructions and variations: for any one type of transformer as there were manufacturers and customers. Each design duplicated the function of another and yet, no two were physically interchangeable.

This became most obvious at the beginning of the last war for each branch of the government services had its own specification for com-ponents-transformers as well as all other electronic components.

Development of new equipment, production on existing designs, and replacement of parts for existing equipment all presented their own problems when it came to duplication and interchange of supplies. Standardization was imperative!

How JAN?

Therefore, the Standards Agency was established by the Armed Forces to correlate manufacturing procedures and devise one best design for a particular job-satisfactory to all military arms, readily available and always interchangeable.
Transformers created a much greater problem than other components due to the many styles and variations in existence, nevertheless standard specifications for the various components, including transformers, were devised by the Standards Agency thru study, development and constant testing.

Thru extensive research in new products and methods, we, at Kenyon, are able to produce high quality transformers, in accordance with the JAN Specification for transformers, namely JAN-T-27.

If you have any questions on JAN Transformers, do not hesitate to call upon Kenyon's engineering staff.

Now - KENYON gives you the complete story on JAN. Since the inception of Joint Army and Navy specifications, KENYON has built JAN-type transformers for leading manufacturers throughout the country.
For more than 20 years, the KENYON "K" has been a sign of skillful engineering, progressive design and sound construction.
Consult our engineering staff today on your JAN problems - at no obligation to you. Call or write now for a representative.

ALNICO 5 DG

VERSION OF PROVEN MAGNET NOW OFFERS GREATER AVAILABLE ENERGY THAN EVER BEFORE

Now-the G-E Alnico 5 DG permanent magnet offers manufacturers greater available energy than ever before! Results of the continuing program of G. E. research and development-a change in the manufacturing process which aligns the crystal struicture of the magnet in the direction of magneti-zation-has been incorporated in the product of Alnico 5 DG .

AVAILABLE IN CAST FORM, ALNICO 5 DG NOW OFFERS MANUFACTURERS THESE ADDITIONAL ADVANTAGES:

Available from production, cast Alnico 5 DG is ready to provide manufacturers of radio speakers, magnetic separators, meters, instruments, and other industrial products with the greatest external energy and residual induction of any permanent magnetic material known to us today.

OUSEMNING MProvinanis

Hysteresis and energy curves for Alnico 5 DG.

Here is the Alnico 5 DG compared with Alnico 5. Note the directional grain structure that imparts a greater energy potential. Note the reduction of size in Alnico 5 DG.

Hysteresis and energy curves for Alnico 7.

ALNICO 7

Here is a new permanent magnet specificaily developed by G. E. for applications where a high demagnetization force is present. In such applications as motors, generators, and variable air gap devices, new Alnico 7 shows a higher coercive force than any other grade of Alnico.
For more information on these magnets or others in the G-E permanent magnet line, please write on your company letterhead to Section 14-9, Chemical Department, General Electric Company, Pittsfield, Mass.

PURITY IN POWER CONVERSION

Developed after five years of research, the Bradley Vacuum Process insures low cost selenium rectifiers with uniformity of rating. Power conversion is predictable, accurate and efficient. Improved product performance is assured.
The Bradley Vacuum Process removes impurities from the selenium and simultaneously prevents contamination during manufacture. Every production operation is precisely controlled - no hidden variables that necessitate exhaustive post-production in.
spection for uncertainties. Bradley Selenium Rectifiers perform according to rating.
Bradley makes selenium rectifiers to meet practically every power conversion need. A complete line of copper oxide rectifiers is also available. Our engineers will be glad to work with you on the selection or development of the right rectifier for your application. We can move fast on special requirements.

The ML-5668 is "custom-made" to the requirements of R. F. Heating service. For this purpose it is superior in every respect-mechanical and electrical-to the 892 type, which heretofore has been the only tube available for these sockets. Like the ML-5666, (water-cooled version of the ML-5667), its design reflects the result of Machlett's analysis of the operating conditions electron tubes must satisfy to give satisfactory industrial service.

Replacement of tube 892 by the ML- 5668 will assure you betterand lower cost-tube performance.

ML-5606

This tube is designed to supercede type 892 in R. F. Heating equipments and directly replaces it without equipment modifications. The ML-5606 incorporates all of the features of the ML5668 except that it is provided with a standard type 892 anode to fit existing 892 sockets.

Machlett has developed a complete line of improved tubes for a wide range of power applications. These tubes and full details regarding their advantages in industrial service over standard communication types may be obtained from the Graybar Electric Company. If you are contemplating the use of electronic heating or merely replacing tubes in present equipment, we suggest you contact your nearest Graybar office.

MACHLETT LABORATORIES, INC. Springdale, Conn.

HERE'S WHY THE ML-5668

 WILL GIVE YOU SUFERIOR LOWER-COST PERFORMANCE- Speciaily processed heavy-wall anode. Increased plate dissipation cepabilityno hot-spoting or anode puncture due to transient overloads.
- Completely new and ruggedizad electroble structure. Minimizes passibility of inter-element shorts resu ting from rough handling or vibration.
- Kö̃ar seals. Insure stress-frge, sturdier metal-glass seals. Danger of hreakage reduced over $\mathbf{7 5 \%}$. More stable internal stractures.
- Machlett high voltage, high tomperature exhaust. Cleanest possilife internal parts-your assuranceagairst tube gesesiness and flash-arcing, wh.ch lead to early tube failure.
- Improved filament design dinanating tro shblesome guides and tensi on springs. Bulanced magnetic stress comtributes to uniform evaporation and lenger filament life.

extremely low in cost . . . abundantly high in advantages

- VERY HICH BREAKING STRENGTH - WILL NOT STRETCH OR SHRINK - WILL NOT ROT
- RESSTSS OILS, CORROSIVE FUMES AND MOST ACIDS
- GOOD MOISTURE RESISTANCE
and is the lowest cost coroage ON THE MARKET COMBINING ALL THESE ADVANTGGES

MIRAGLAS* CORDS are made by plying fine, strong, flexible fiberglas (filaments of glass) into twines ranging in size from $.014^{\prime \prime}$ to $.154^{\prime \prime}$ in diameter and available either treated or unfreated. Treatments: oil, neoprene or wax.
*Woven of fiberglas

Manufacturers of electrical apparatus and appliances, repair and maintenance departments and rewind shops will find MIRAGLAS* CORDS ideal wherever a low-cost high quality binder twine or high strength tension member is required for . . .
banding field and armature coils... wrapping string bands on small armatures ...protecting front of commutator V-ring... reset strings... tying slot insulation . . . binding on V-ring extension ... filling in winding coils. . . lashing ends of coils in large motors and generators - and when wax-treated for assembling and tying wire harnesses.

For MIRAGLAS* CORDS as for all other ELECTRICAL INSULATIONS you can depend upon MITCHELL. rAND "Electrical Insulation Headquarters" since 1889.

The CYCLO-TROL* Register is the latest addition to the wellknown line of Cyclotron Impulse Registers. The same principle of operation which has gained for these registers such wide use and recognition is applied in this new unit to provide accurate control over a wide range of mechanical cycles.
The CYCLO-TROL Register has two calibrated dials which can be instantly set by means of shaft thumbscrews to any number from 0 to 10,000 . When pulsed by an external circuit, the CYCLO-TROL continues to register until the preset number of counts is reached. At this point, CYCLO-TROL's output circuit is completed and a contact is made to external circuit, thus actuating, as desired, operation under control.
The CYCLO-TROL can be reset to original setting by merely pressing the button on top of register. By this simple step, repeat cycles of control can be secured as many times as desired.

SPECIFICATIONS AND SPECIAL FEATURES

Counting Rate: 60 impulses per second maximum Power Source: 115 volts A.C. Power Supplied to Impulse Contact: Outpuf Circuit: 110 valts D.C.- self-contained Dimensions: Weight: 50 volts D.C. (direct or to auxiliary relay) $7^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ high	5 pounds (approx.)

APPLICATIONS OF CYCLO-TROL REGISTER

The CYCLO-TROL Register is made available because of insistent demand from users of other types of Cyclotron Specialties Registers. Here are only a few of the many applications of this new unit-
\star Counting problems involving positive, accurate control
over any number of revolutions or cycles up to 10,000 .
\star Electrical circuits may be opened or closed at any
predetermined number of counts.
\star Ideal for coil winding machines. The exact num-
ber of turns can be preset and machine stopped at
exact point, making possible any number of identical
coils. Operator needn't watch counter. . his attention
can be concentrated on winding.

Made by the Manufacturers of these famous Impulse Registers

momaco., antomint

(Model 901) PORTABLE TEST INSTRU. MENTS available in DC, Model 901and AC, Model 904, single and multiple ranges of wide coverage. Excellent scale readability and shielding. Accuracy within $1 / 2$ of 1%.

SENSITIVE RELAYS a line of sensitive relays including the Model 705 which provides positive control at levels as low as $1 / 2$ microampere. Non-chattering magnetic contacts handle up to 10 watts at 120 volts.

IWSTRUMEITS

TO SPEED AND SIMPLIFY ELECTRONIC PRODUCTION AND MAINTENANCE

Hustrated are but a few of the many specialized instruments available from WESTON . . . all designed to simplify and speed-up electrical and electronic installations, production testing, and maintenance. For details, see your local representative, or write Weston Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark 5, New Jersey.

WISTON

b ATBANY - ATLANTA - BOSTON - BUFFALO - CHARLOTTE - CHICAGO ALINCINNATI - CLEVELAND • DALLAS • DENVER IOS ANGELES IACKSONVILLE - KNOXVILLE - LITTLE ROCK O ORLEANS • NEW YORK JACKSONV - MINNEAPOLIS - NEWARK - NEW OREARGH R ROCHESTER MERIDEN - MINNEAPLPHIA - PHOENIX • PITTSBURGHE TULSA ORLANDO - PHL . SEATTLE • ST. LOUIS • STD., POWERLITE DEVICES, ITD. SAN FRANCISCO - SEATIE ELECTRIC CO., LTD., POWERLITE DEVICES, LTD.

(Model 785) INDUSTRIAL CIRCUIT TESTER a versatile, portable tester for laboratory or maintenance needs, where an ultra-sensitive instrument is required. Provides 27 AC and DC voltage, AC and DC current, and resistance ranges. (DC sensitivity 20,000 ohms per volt.)

(Model 779, Type 1) SUPER-SENSITIVE ANALYZER small, light, compact, 26 range Volt-Ohm-Milliammeter with 5 DC voltage ranges, sensifivity of 1000 or 20,000 ohms per volf. AC temperature compensated. Self-contained power supply. Ideal for many production and test requirements.

(Model 622) ULTRA-SENSITIVE INSTRUMENTS portable DC and AC Therma instruments for precision measurement of potentials and minute currents involving electronics, thermo-couples or laboratory research.

(Model 798) MULTI-PURPOSE TUBECHECKER offering provision for testing Receiving Tubes - Voltage Regulator Tubes-Light Duty Thyratron Tubes such as 2A4-6D4-884-885-2051. Scale is calibrated "Good-Bad" as well as in mutual conductance range.

PANEL and SWITCHBOARD INSTRU. MENTS a complete line of instruments in all types, sizes and ranges required for switchboard and panel needs ... including DC, AC power frequencies and radio frequency, rectifier types and D.B. meters.

(Model 697) VOLT-OHM MILLIAMMETER one of a line of pocket-size meters, Model 697 combines a selection of AC and DC voltage, DC current, and resistance ranges. Ideal for maintenance testing and many inspection requirements.

(Model 769) ELECTRONIC ANALYZER incorporating a conventional Volt-Ohm-Milliammeter with self-contained power source-a high-impedance electronic Volt-Ohmmeter using 115 volt, 60 cycle power-a stable, probe-type, Vacuum Tube Voltmeter, for use to $\mathbf{3 0 0}$ megacycles.

WINDING HORIZONTAL SWEEP COILS FOR TELEVISION RECEIVERS

FOUR COILS WOUND AT ONCE ON UNIVERSAL NO. 84 MACHINE

The tremendous interest in television all over the country has created a large and attractive market for producers of component parts for TV receiving sets.

For complete assurance of high quality and production in coils for television sets, manufacturers are using Universal Coil Winders.

One of the most difficult coils to wind is the so-called horizontal sweep or fly-back transformer coil (Fig. 1). This can best be wound on the No. 84 Universal Coil Winder (Fig. 2), which makes it possible to wind one to four coils at once for each of the three sections.

The following technical data was prepared by our engineers and

Fig. 1. Horizontal Sweep Coil.
is intended as basic information when producing the horizontal sweep coil on the No. 84 machine.

Another component coil for television is the focus coil, which is wound on the No. 102 machine.

Detailed information on recommended winding practice for both these coils is contained in Getting the Most from Coil Winding copies of which we will be glad to send you. Ask for GMCW-L.

Fig. 2. No. 84 Coil Winder.

NO. 84 MACHINE SET-UP FOR TELEVISION HORIZONTAL SWEEP TRANSFORMERS

FIRST SECTION

Wire 375 turns of No. 28 single nylon and enamel covered wire (. 0156 in. O.D.)

Cam 5/8 in. single throw.
Winding speed 750 rpm .
Wind $11 / 2$, using gearing 48 or 72 with any intermediate gear to mesh.

Wire guides .018 in . center slot.
Tension medium spring in fourth hole from top.

Pressure two weights on traverse frame cord.

Wind four coils at a time.
SECOND SECTION
Wire 1,000 turns No. 33 single nylon and enamel covered wire (. 0099 in. O.D.)

Cam $1 / 2$ in. single throw.
Winding Speed 750 rpm.
Wind $2 / 3$, using gearing $119-80$ with any intermediate gear to mesh.

Guides .018 in. center slot.
Tension sixth hole from top.
Pressure two weights on traverse frame cord.

Wind four coils at a time.

THIRD SECTION

Wire 1,000 turns No. 38 single silk and enamel covered wire (. 0065 in. O.D.)

Cam 3/32 in. single throw.
Winding speed 400 rpm .
Wind $1 / 7$ th using gears $120-40-$ $88-38$. (With this compound gearing, use any small gear on the spindle shaft on the inside of the 120 -tooth gear. The second and third gears will go on the intermediate stud with the 40-tooth gear on the outside and the 88-
tooth gear on the inside. The 38tooth gear will be on the clutch shaft, and should mesh with the 88-tooth gear.)

Wire guides .008 in. center slot.
Tensions light spring in about the third hole from the top.

Pressure one pressure weight on the traverse frame cord.

Wind one to four coils at a time.

COIL WINDING DEMONSTRATION ROOM

We have in our coil winding demonstration room the following complete line of coil winding machines: 84, 96, 98, 102, 103, 104 and 105.

We invite anyone who is interested to visit our demonstration room and view these machines in operation.

UNIVERSAL WINDING COMPANY

FOR WINDING COILS IN QUANTITY ACCURATELY AUTOMATICALLY USE UNIVERSAL WINDING MACHINES

Abstract

1At low operating voltages the cathode-ray tube will respond to a high-speed transient signal, but-only at high voltages is the light output sufficient to SEE and RECORD it. Du Mont high-voltage Oscillography shows you the difference with these actual (unretouched) oscillograms, and here's how it's done:

... with DU MONT HIGH-VOLTAGE CATHODE-RAY TUBES

Type 5RP-A is an intensifier-type, highvoltage cathode-ray tube featuring multiple accelerating electrodes for use with accelerating potentials up to 25,000 volts, without serious loss in deflection sensitivity. Writing rates in excess of 280 inches per microsec-
ond have been recorded with this tube.
Type 5XP- has operating characteristics identical with those of the Type 5RP-A except for increased deflection sensitivity in one direction, provided by specially designed
deflection plates. Especially suited for use with wide-band amplifiers. Types 5RP-A and 5XP- alike are capable of sufficient light output to allow projected oscillograms. Type 5XP. is interchangeable with Type 5RP.A ex. cept for slightly greater overall length.

... with these HIGH-VOLTAGE CATHODE-RAY INSTRUMENTS

Type 280-A is a high-voltage oscillograph for precision measurement of time. Originally designed to measure the composite television signal, it has found applications in many other fields. Time intervals of .025 microsecond can be measured, using time base variable from 1 to 15,000 microseconds. Calibrated delay circuit accurately delays sweep from 4 to 1,000 microseconds. Video-amplifier circuits provide uniform response up to 10 megacycles. Internal power supply provides accelerating potential up to 14,000 volts to a Type 5XP- tube.
Type 281-A is a basic cathode-ray indicator utilizing Type 5RP.A tube. Provision made for either capacitive or direct-coupling to all deflection plates. Displays single tran-
sient writing speeds up to 210 inches per microsecond. Internal power supply provides overall accelerating potential of 8.000 volts; external power supply can be used for higher voltages. The Type 286-A Power Supply is especially designed for use with the Type 281-A indicator, supplying overall accelerating potenial of 29,000 volts.
Type 250-AH is a high-voltage version of the versatile Type 250.A. High-voltage Type 5RP-A tube replaces Type 5CP-A. Provision is made for external high-voltage power supply. Type $250 \cdot \mathrm{AH}$ is capable of recording writing speeds ten times those recorded by the Type 250-A. Using Type 263-B Power Supply, accelerating potentials as high as 13.000 volts may be applied. Sufficient light
output 10 project oscillograms up to 30 feet with Type 2542 Projection Lens.

Type 248-A oscillograph is a favorite for high-frequency research. Self-contained, it offers a medium-voltage oscillograph for investigating pulses containing high-frequency components. Vertical amplifiers uniform in response within 30% from 20 cycles to 5 megacycles per second.

With addition of Type 263-B Power Supply. the Type 248-A becomes a high-voltage oscillograph for observation and photography of transients of short duration and extremely low repetition rates. Accelerating potentials up to 14,000 volts may be applied to a Type 5RP-A tube.

... with these HIGH-VOLTAGE POWER SUPPLIES

Type 286-A is a regulated rectified R-F type high-voltage power supply with adjustable output from 18,000 to 25,000 volts. Designed for use with Type 281-A indicator or
wherever additional high voltage is required. Meter indicates output voltage.

Type 263-B is also a rectified R-F high-
voltage power supply delivering from 6,000 to 12,000 volts. Designed for use with oscillographs employing 5RP-A or 5XP- tubes. Light in weight. Meter indicates output voltage.

- For further details and prices, just address . . .

FILTERED BY FILTRON

filtered by filtron North American Aviation F:86 Jet

filtereo by filtron Norsh American Aviation FJ-1 Jel

FILTERED By filliron
North Americon Aviation B-45 Jel

FILTERED BY FILTROM Fairchild C.119A Packe:

FILIERED BY FILTRON Baeing B. 50 Superfotiress

FILTERS FOR

28 VDC, $120 \mathrm{VDC}, 60$ cycle 400 cycle and 1200 cycle

RADIO NOISE FILTERS FOR:
Electric Motors Electric Generators Electronic Controls Electronic Equipment Fluorescent Lights Oil Burners Signal Systems Business Machines Electric Appliances Electronic Signs Electronic Heating Equipment

Shiclded Spherical-Seot Terminot filtron - designed for continuous high attenuation from 150 ke to well above 200 mc
military equipment fion size 1% " $\times 1 / \%^{\prime \prime} \times 7 /{ }^{\prime \prime}$

*This letter was distributed with a brochure on the popular Gates BF-3D, 3KW FM transmitter.

Commercially proven... the Eimac 4-1000A is an outstanding high-power tetrode. Its rugged construction and stability of performance enable the country's leading transmitter manufacturers to enthusiastically expound the tubes' advantages in their key socket positions.

Consider the Eimac 4-1000A tetrode for your high-power equipment . . . frequency limits are well into the vhf. Complete data is available, please write direct.

Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco, California

Get the full significance of the static and dynamic (1000 cycle) magnetization characteristics of this new alloy. Examine the dynamic curve particularly - as this indicates how the material acts under actual operating conditions.

Note these facts:

1. Magnctic saturation is achieved with only the slightest change in magnetizing current. 2. The extremely low magnetizing current makes it possible to build smaller magnetic amplifiers of extreme reliability.
2. The knees of the saturation curve are sharp, even at higher frequencies.
3. The most important fact: all Permeron cores have identical magnetization charac-
teristics. The dynamic characteristic of each core is checked by a "Vectormeter," specially developed for this purpose. This consistency allows designers to predict amplifier performance accurately and positively.

Permeron Cores are available now

 in widths of 20 mm . and 30 mm ., in any specified inside and outside diameters. Cores are delivered heat treated and insulated. They are always furnished in housings designed to protect the magnetie material against deformation.Take Another Look at l'ermeron - and continue to look to I-T-E to bring you better equipment and better designs . . . first!
*Formerly known as "Permanite"

For Additional Information write - I-T-E Rectifier Division or consult your local I-T-E Representative

ITE
)

 to lead in developing and manufacturing this versatile circuit element.

Federal has cooperated with a host of engineers and designers in the development of a complete line of Selenium Rectifiers, ranging from tiny Miniatures to huge Stacks. There is a Federal Selenium Rectifier which will meet practically any power conversion need.

Wherever used, Federal Selenium Rectifiers bring important advantages of dependable power handling. . . instant starting . . . silent, efficient operation . . . long service life.

These typical applications may suggest a new use in your own product. A Federal Selenium Rectifier could be the solution to your own power conversion problem. Bring any question to Federal-America's oldest and largest manufacturer of Selenium Rectifiers. Direct your inquiries to Department E-313.

JUST OFF THE PRESS!

Federal's new Miniature Selenium Rectifier Handbook... 48 pages of valuable design data. Available for 25 cents (coin only) from-

DO HUNDREDS OF POWER CONVERSION JOBS

more efficiently and economically than ever before!

In television. . . radio ... amplifiers and... intercommunication systems.

In fans. . . sewing machines . . . electric shavers . . . electronic organs... motion picture projectors . . . photoelectric cells.

In machine tool controls . . . magnetic chucks... relay control systems . . . dial switching systems.

In Battery Chargers for Industrial Trucks....au-

tomobiles . . . telephone
exchanges . . . and in Battery Eliminators.

In Power Supplies for Industrial and Laboratory Use . . . Cathodic Protection . . . Electroplating.

In High Power Communication ... Broadcast Transmitters... Ievision Transmitters.

And In Many Specialized Electrical and Electronic Applications.

Federal

The advantages and true economies of Karp custom-built cabinets, boxes, or housings over stock items are these:

- Your own exclusive design distinguishes and "styles" your product . . . gives it more market value.
- Flexibility of construction details speeds and simplifies your final assembly -saving you time and money.
- Our vast stock of dies can save you special die costs.
- Our 70,000 square feet of modern plant, with hundreds of craftsmen, means ample capacity for many types of work-simple or elaborate-at one time.
- Plant is fully equipped with every mechanical facility that aids economical production.
- Finishing is done in dustproof paint shop, with latest water-washed spray booths and gas-fired ovens mechanically and electronically controlled.
- We make no stock items or products of our own. Our plant, time and effort are 100% for our customers' work.
- Our engineering staff can help solve any possible design and production problems.
- It's results that count-and we give you the results you want.

Write for illustrated data book describing our facilities and showing the wide range of sheet metal fabrication we do.

CABINETS • BOXES • CHASSIS • HOUSINGS • ENCLOSURES

KARP METAL PRODUCTS CO., INC.

215 63rd STREET, BROOKLYN 20, NEW YORK
Custom Craptrmen in Sheet Allal

-

Marine Radio Housing

-

Cabinet

the new RCA-5819 Multiplier Photofube for scintillation counters

RCA-5819 is a new Multiplier Phototube of the head-on type intended for use in scintillation counters for the detection and measurement of nuclear particle radiation, and in other applications involving low-level, large-area light sources. It has high sensitivity to blue-rich light and negligible sensitivity to infra-red radiation.

An outstanding feature of the RCA-5819 is its semitransparent photocathode which has a diameter of $11 / 2$ inches and an area of 1.8 square inches. This relatively large cathode area permits very efficient collection of light from large-area light sources, such as are encountered in scintillation counters. The spectral sensitivity characteristic of the RCA-5819 peaks at about 4800 angstroms and cuts off at about 3100 and 6500 angstroms. It covers a region in which many organic and inorganic phosphors respond efficiently to radioactive emanations. By proper choice of phosphor, alpha particles, beta particles, gamma rays, X-rays, or neutrons can be detected.

Utilizing 10 electrostatically focused dynode stages, the RCA-5819 operated at 90 volts per stage is capable
of multiplying feeble currents produced at the cathode under weak illumination by an average value of 400,000 times.

RCA pioneered in the development of multiplier phototubes. In addition to the 5819, four other types are available, as listed in the accompanying table of characteristics. For further information on any of these types write RCA, Commercial Engineering, Section 42IR, Harrison, N. J.

the fountainhead of modern tube development is rca

RADIO CORPORATION OF AMERICA

AMERICAN PHILLIPS SCREWS

. . . bring Profits into
 •. bring Profits into Sharper Focus

$01 ?$

...both in Production and

1 S Sales of Photo Equipment

SHARP FOCUS ON COST-CONTROL:
Lights, cameras, and other tools of the glamorizing trade are liberally studded with that modern quality-mark the universal crossed recess of American Phillips Screws Makers of this costly photographic equipment can't afford rejects or reinishing . . . and they can't afford slow, old-fashioned assembly with slotted screws. They find ... as so many cost-conscious manufacturers in all lines have found ... that American Phillips Screws always cost least to use. For time-savings alone run as high as 50% !
SHARP FOCUS ON SALES: American Phillips Screws have built up a huge and faithful public who know that the universal crossed recess means quality throughout ... and that the product is put together to stay. These assurances, added to their definite decorative value, make American Phillips Screws a feature to be profitably promoted in any selling effort. Care to have us show you how? Just write:

AMERICAN SCREW COMPANY, PROVIDENCE 1, RHODE ISLAND

Chicago It: $\mathbf{5 8 9}$ E. Illinols St.
Detroit 2: 502 Stephenson Buliding

AMERICAN IITMT ALL METALS: Steel, Brass, Bronze, Stainless Steel, Aluminum, Monel, Everdur (silicon bronze)

Hi.Q general purpose ceramic capacitors have proven superior to mica and paper condensers of corresponding values. Thev are available in ratings of 5 mmf to $33,000 \mathrm{mmf}$. Hi-Q disc capacitors are high dielectric by-pass, blocking or coupling capacitors designed for use where their physical shape is more adaptable than tubular units.
 rest of the industry's big names are among the more than 200 users of Hi-Q Components. They know from experience that they can depend upon $\mathrm{Hi}-\mathrm{Q}$ for fine quality and strict adherance to ratings and tolerances /. . that Hi-Q contributes to the performance and long life of any electronic circuit.

Our engineers are always available to work with you in the development and production of capacitors, trimmers, resistors and choke coils to meet your specific needs. Write, wire or phone whenever you have a question concerning them.

BETTER WAYS
UN

MINIATURIZATION your product better. Prouble.free purformemers
business mation the smatlet betier.
your production cossible sparlest BiG VALUE coming foct

JOBBERS-ADDRESS: ROOM 1332
101 Park Ave., New York, N. Y.

What's your problem?

Fine Wire?

Molybdenum?

Problem 1

The firm of al loys \& al uminum were in urgent need of fine aluminum and aluminum alloy wire for a delicate production job. Fine Wire Headquarters assured them that it was no problem at all. The order was placed, the Fine Wire delivered, and it performed to the complete satisfaction of all concerned.

Problem 2

Mr. Hi Hott needed molybdenum sheets for forming into parts. High hot strength and good ductility were required. North American Philips supplied him with Elmet Molybdenum sheets that met his specifications exactly.

Problem 3

Mr. N. O. Emission, II, required plated grid wires. He solved his problem with a call to Fine Wire Headquarters. We shipped him some gold plated tungsten and molybdenum wires. Result: no secondary emission.

the answer

WHY not call Fine Wire Headquarters when you have a question about fine wire? We can't do the impossible, but we can do lots of things that can bring you the right fine wire for the job.

So-when you have a problem on Fine Wire, Tungsten or Molybdenum - wire, phone or write to North American Philips, makers of NORELCO Fine Wires, and ELMET Tungsten and Molybdenum products.

NORTH AMERICAN PHILIPS COMPANY, INC.
Factory and Main Sales Office: Lewiston, Maine
Export Representative • Philips Export Corporation • 100 East 42 nd Street, New York 17, N. Y.

Pine Equipment Demands Conplate Protection -

Ritter X-RAY chose HEINEMANN

 MAGNETIC CIRCUIT BREAKERS BECAUSE OF POSITIVE,QUIEK ACTION

Pitter Co., Inc. of Rochester, in listing the poinls of superiority of their stoskproof X-Ray Unit, has this to say:
"A circuit breaker of the quick-acting type is placed in the cirsuit to protect the tube and transformer. It is set at the factory and requires no adjusting. Therefore it is impossible to overtax or strain the vital elements electrically."

By "quick-acting" łype, Ritter means the HEINEMANN Magneric Circuit Breaker which, because it is magnefic, interrupts the current INSTANTANEOUSLY if a short occurs. NO HEAT is genercted-there-

FITTR MCDEL "B" SHOCKPROOF XFAY UNIT. All electrical and hightens $3 n$ temmirals are concealed and itsu atad th the pronsformer and Xray head. Instantaneaus action of speainl'y lesgned ircuit breaker insu-3s safit against uncontrolled cveloads. fore the breaker will carry 100% of rated capacity.

Wouldn't it be worth your while to find out more about the HEINEMANN Circuia Breakers? Write now to the address below, and state the type of equipment you make.

Special Purpose Type Fully Magnetic HEINEMANN
Circuit Breaker

New Yeoman transformer

 gives you ADC qualityat Low Cost

Designed to meet the needs of engineers, experimenters and amateurs who demand high quality at low cost, the new ADC Yeoman line provides many of the well-known performance standards of the Quality Plus and Industrial series, also several items not previously offered. This has been accomplished primarily by improved production engineering methods, standardization of parts and a simplified type of construction.

The ADC Yeoman line includes:

- Output Transformers with carefully balanced windings offering unusually low distortion over a wide frequency range.
- Interstage Transformers with balanced humbucking features providing equal push-pull grid voltages at high audio frequencies for inverse feedback circuits.
- Power Transformers limited to $55^{\circ} \mathrm{C}$. temperature rise and especially quiet in operation.
- Replacement Units for Audio and TV circuits, miniatures, filament transformers, reactors, and many others.
ADC intites your critical appraisal of this new Yeoman line.

Yeoman Series

- Send for the new ADC catalog which you will find convenient to use in selecting almost any transformer you may need.

Special requirements not covered by the catalog will receive prompt attention.

ADO
thudic DEVELOPMENT CO.
2847 13th Avenue South, Minneapolis 7, Minn.

BELL TELEPHONE LABORATORIES EXPLORING and inventing, devising AND PERFECTING, FOR CONTINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE.

SUPERFICIALLY, they may LOOK alike. But men like yourself don't judge performance by looks. You want to know how well they're made. And, equally important, who makes them.
The Cornell-Dubilier name on a capacitor does more than identify the product's maker. It identifies the capacitor as a product of 40 years' specialized capacitor experience, and a product which is world famous.
You are safe in joining the leading engineers who specify $C-D$.

C-D PAPER CAPACITORS

Typical of the line of C-D capacitors is the complete listing of capacitors made in accordance with joint Army and Navy specification JAN.C.25. These are completely covered in Cornell-Dubilier catalog \#400 which is now available.

Cornell-Dubilier engineers will welcome the opportunity of assisting you with your capacitor problems.

Cornell-Dubilier Electric Corporation, Dept. KI-9, South Plainfield, New Jersey. Other plants in New Bedford, Brookline and Worcester, Mass.; Providence, Rhode Island; Indianapolis, Ind., and subsidiary, The Radiart Corp., Cleveland, Ohio.

Conivill pupinip
 * CAPACITORS * VIBRATORS
 * ANTENNAS
 * Converters

In oddition to providing all necessary signal sources, the new Simpson Genescope includes a high sensitivity oscilloscope of unique odvanced design, complete in every detail. Sensitivity 25 millivolts per inch. Wide band response to 3 megacycles or more. Equipped with a high frequency crystal probe for signal tracing. AM and FM oscillator sections provided with lorge, easy to read dials with $20-1$ vernier control and 1002 division logging scole. Revolutionary, Ingenious, Exclusive output terminatian provides for various receiver impedonces, either direct or through an isolating condenser.

Step ottenuator for control of output

Size: $22^{\prime \prime} \times 14^{\prime \prime} \times 71 / 2^{\prime \prime}$. Weight 45 lbs. Shipping Weight 54 lbs.
DEALER'S NET PRICE complete with Test Leads and Operator's Manual $\$ 375.00$

CHECK THESE RANGES AND YOU WILL SEE HOW MUCH THE

 SIMPSON GENESCOPE CAN DO FOR YOU
RANGES

FREQUENCY MODULATED OSCILLATOR Band A-2.120 megacycles
Band B $-140-260$ megacysles
Sweep width varioble from zero to 15 megacycles
Sweep rate 60 cycles per second Specially designed frequency sweep motor Continuously variable attenuator Crystal calibrator-5 megacycles $\pm .05 \%$ Audio Oscillator 400 sycles

AMPLITUDE MODULATED osCILLATOR
Band A-3.2-16 megacycles Band B-i5-75 megacycles Band C-75-250 megacycles 30% modulation of 400 cycles or unmodulated
Continuously variable attenuator
Visual method of beat frequency indication

Modern FM and TV development and servicing requires the use of test equipment made to exacting standards. With this in mind Simpson offers you the Genescope with the assurance that everything possible has been done to make it the most accurate, flexible and convenient instrument available. The Genescope will render many years of uninterrupted service and always produce arcurate results.

SIMPSON ELECTRIC COMPANY
in Conada: Bach-Simpson, LId, Iondon, Ont

ample

 kiln capacity
safeguards AISiMag quality and

helps keep deliveries on schedule

Now: Ligherevolutap from GENERAL ELECTRIC

 SELENIUM STALKS

 SELENIUM STALKS
 using new 18 -volt ($D-C$) cells

New process for depositing selenium gives rectifier stacks greater uniformity, higher efficiency and longer useful life.

Here's real news for rectifier users. G.E.'s new 18 -volt selenium cells, made by a special evaporation process which deposits selenium on the aluminum base with greater uniformity than otherwise possible, give you these advantages:

GREATER OUTPUT-With 50% more output than the standard 12 -volt cells, the new design can be used for any application except those few which demand 24 -hour, year-around service.

HIGHER EFFICIENCY-Not only is the initial efficiency higher, but more uniform coating keeps it high during the life of the stack.

SAVING IN SPACE-About one-quarter less space is required for the same output.

LOWER COST-Depending on the voltage across the stack, the 18 -volt cells can save 25% in cost compared to standard 12 volt cells.

Selenium stacks are available in several standard sizes. Output in d-c voltage ranges from 18 to 126; applied a-c voltage; from 26 to 161. Bulletin GEA-5258 will give you detailed information. Send for it foday!

STYLED for READABILITY BUILT FOR RELIABILITY

This brand-new line of 2%-inch thin panel instruments has streamlined features which will give your panels a "new look." Arc lines have been eliminated,

GENERAL (f) ELECTRIC

leaving only the upright scale divisions. New tapered pointer helps eye focus only on the reading. All but essential markings are masked by attractive case.
Internal mechanism is designed for extra reliability. High coercive Alnico magnet assures proper alignment, even under severe operating conditions. Large air gap reduces danger of stickiness caused by foreign particles. A variety of types and ratings in round or square cases are available for use in radio, television or testing equipment. Get complete details from Bulletin GEC-368.

DESIGNED FOR
 YOUR REQUIREMENTS

General Electric pulse transformers for radar and associated applications are designed to perform dependably in extremes of operating conditions. Many ratings in current production are of a special nature-designed to keep pace with rapidly changing requirements of the industry. However, for certain applications, they can be built to the specifications of electronic equipment manufacturers. Types available include interstage transformers, blocking oscillator transformers, charging chokes, current transformers, and pulse thyratron grid transformers. For a listing of available designs and ratings, send for bulletin GEC-481.

THEY'RE SMALL but they can take it

Cast-glass bushings with sealed-in nickel-steel hardware can be readily welded, soldered, or brazed directly to the apparatus, thus eliminating gaskets and providing a better seal. Small, compact structure often makes possible reduction of over-all size and weight of equipment. Practically unaffected by weathering, micro-organisms, and thermal shock, they're particularly well suited for use in electronic equipment and in installations where operating conditions are severe. Available in ratings up to 8.6 kv and for currents to 1200 amperes. Check Bul. GEA-5093.

RELY ON THESE FOR STABILITY

Fixed paper-dielectric capacitors are manufactured in accordance with joint Army-Navy specification JAN-C-25. They're constructed with thin Kraft paper, oill or Pyranol* impregnated, for stable characteristics and high dielectric strength. Plates are aluminum foil; special bushing construction provides for short internal leads, prevents possible grounds and short circuits. Cases have permanent hermetic seal.

Case style CP 63 (shown above) is rated $0.1-0.1$ muf and 1000 volts. Other ratings range from .01 muf to 15 muf and from 100 to 12,500 volts. Write for detailed description and operating data in bulletin GEA-4357A.
*Reg. U.S. Pat. Off.

DOES A BIG JOB
 in close quarters

G.E.'s midget soldering iron can do a big job with only one-fourth the wattage usually used. This handy 6 -volt, 25 -watt iron is only 8 inches long with $1 / 8^{\prime \prime}$ or $1 / 4^{\prime \prime}$ tips and weighs but $13 / \frac{1}{4}$ ounces. Designed for close-quarter, pinpoint precision soldering, the "midget" offers you all these advantages: low cost soldering; "finger-tip" operation; quick, continuous heat; easy renewal; long life; low maintenance. A real aid in designing radios, instruments, meters, electric appliances, and many other products requiring precision soldering. Available from stock. Check bulletin GEA-4519.

Minimize Control

 Size! REDUCE COST! MIIH THESEMEM ALLED RELATS
The Allied PO and POY relays, replacing the DO and DOY relays, save space, save cost. These advantages will have special appeal for engineers in electronic, aircraft and other industries requiring medium power, all-purpose relays.

POY RELAY

A semi-sensitive, dual coil relay for operation in vacuum tube or other limited power circuits. Same contact rating and arrangement as PO.

DIMENSIONS:

Same as PO.

COIL RATING:

Up to 110 volts D.C. at 600 milliwatts. Not supplied for A.C.

MOUNTINGS:

Standard, \#6-32 tapped holes. Not supplied with stop nuts.
The PO \& POY relays are adaptations of the well-known general purpose Allied BO relay, and like all other Allied relays may be obtained hermetically sealed.
Every part in these precisionbuilt relays is designed to deliver thoroughly dependable service with extra long life. For complete information and operating characteristics of the new PO and POY and other precision-built Allied Relays, write us for latest Allied catalog.

Collins $51 \mathrm{~J}-1 \quad 0.5$ to $\mathbf{3 0 . 5} \mathrm{me}$ radio receiver.
Normally furnished for rack mounting.

An ideal radio instrument for laboratory frequency measuring

The new Collins $51 \mathrm{~J}-1$ communications receiver is a double conversion superheterodyne of such extreme accuracy and stability that it is admirably suited for use in the laboratory as a dependable secondary frequency standard.

The $51 \mathrm{~J}-1$ is permeability tuned throughout. It is continuously tunable over a frequency range of 0.5 to 30.5 megacycles. This range is divided into 30 bands of $1,000 \mathrm{kc}$ each. The tuning mechanism is based on a decade system in which the megacycle figure is set by means of a band switch. The 100 kc figure is indicated on the slide rule dial and the kilocycle figure on the circular dial. Under normal operating conditions and with a 10 -minute warmup, the dial reading is within 2 kc of the receiver's exact frequency throughout the frequency range. Dial accuracy is improved by means of a crystal calibrator and dial correc-
tor which are included.
Frequency over the temperature range $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ does not vary from the frequency at $20^{\circ} \mathrm{C}$ by more than 30 parts per million plus 1 kc ; thus the frequency stability is within 2 kc at the highest operating frequency. Frequency does not vary more than 100 cycles from the frequency at 115 line volts when this voltage is varied through the range 105 to 125 . Changes in atmospheric pressure from sea level to 10,000 feet altitude, relative humidity from 10 to 90%, and mild shock, do not vary the frequency of the $51 \mathrm{~J}-1$ by more than 500 cps .

This new time and labor saving instrument is also an excellent all around communications receiver of advanced design, with outstanding operating characteristics. We will be glad to give you more complete information on request.

COLLINS RADIO COMPANY, Cedar Rapids, Iowa
11 W. 42nd SI.
NEW YORK 18
2700 West Olive Ave. BURBANK
M \& W Tower
DALLAS 1
Talbot Bldg.
DAYTON 2

extreme precision, instant response in remote indication and control

Geared motor-driven INDUCTION GENERATORS: Small 2-phase servo motor in combination with a compact gear-reducer and a low residual induction generator. Motor has high torque/inertia ratio and develops maximum torque at stall. Gear-reducer permits a maximum torque output of 25 oz . in. and is available in ratios from 5:1 to 75,000:1.

SYNCHRONOUS MOTORS: for instrumentation and other applications where variable loads must be kept in exact synchronism with a constant or variable frequency source. Synchronous power output up to $1 / 100 \mathrm{H} . \mathrm{P}$.

CIRCUTROL UNITS: rotary electromagnetic devices for use as control components in electronic circuits and related equipment. Single and polyphase rotor and stator windings are available in several frame sizes. Deviation from sine accuracy of resolver shown is $\pm 0.3 \%$ of maximum output.

INDUCTION MOTORS: miniature -phase motors of the squirrel cage type. Designed specifically to provide fast response to applied control signals and maximum torque at zero r.p.m. Unit shown weighs 6.1 oz and has stalled torque of 2.5 oz . in.

SYNCHRONOUS DIFFERENTIAL UNITS: electro-mechanical error detectors with mechanical output for use in position or speed control servo systems. These torqueproducing half-speed synchroscopes are composed of two variable frequency synchronous motors and a smoothly operating system of differential gearing.
Output: Speed $=\frac{N_{i}-N_{2}}{2}$: Torque up to 1.0 oz . in.

TELETORQUE UNITS: precision synchros for transmitting angular movements to remote points. Accurate within $\pm 1^{\circ}$. May be actuated by mechanisms that produce only $4 \mathrm{gm} . \mathrm{cm}$. (. $056 \mathrm{oz} . \mathrm{in}$.$) of torque.$

ADDITIONAL SPECIAL PURPOSE AC UNITS BY KOLLSMAN

With the recent addition of new units to Kollsman's already widely diversified line, the electronics engineer will find the solution to an even greater varicty of instrumentation and control problems. These lightweight, compact units offer the high degree of accuracy and positive action essential in dealing with exact quantities. They are the product of Kollsman's long experience in precision instrumentation and aircraft control - and of considerable work done in this field by Kollsman for special naval and military application. Most units are available at various voltages and frequencies. For complete information, address: Kollsman Instrument Division, Square D Company, 80-64 45th Avenue, Elmhurst, N. Y.

KOLLSMAN INSTRUMENT DIVISION
 GQURRE D CDMPANY

Here's the Solution to HIGH TEMPERATURE INSULATING PROBLEMS!

$00^{\frac{i t}{i} 1}$

Close woven fibraus glass yarn immune to high heat, resistant to abrasion, flexible, non-hygroscopic.

-it's
 TURBO

 fibROUSGIASSTUENGSuper-impregnated with the superior insulating varnish for minimum porosity, high dielectric strength, full flexibility.

AVAILABLE IN FOUR GRADES

SINGIE SATURATED
1200 V. (ASTM)
TRIPLE STRENGTH
3500 V. (ASTM)
DOUBLE DIPPED MAGNETO GRADE
2000 V. (ASTM)
7000 V. (ASTM)

TURBO Fibrous Glass Tubing is fabricated of close woven fibrous glas; yarn and thoroughly impregnated with a special TURBO insulatirg varnish. The natural insulating property of glass is thus reinfored by the varnish coating to yield a nearly ideal dielectric that is impervious to moisture and other deteriorating influences. This tubing offers unusual advantage where severe conditions of heat limit the ase of ordinary insulations or where maximum dielectric strength must be effected with minimum bulk. Complete mechanical and electricel specifications will be furnished promptly on request.

WRITE FOR FREE SPECIMEN BOARD
The TURBO Specimen Board contains samples of all the Jopular types and sizes of TURBO tubing. Simply add-ess request on your company letterhead and it will be forwarded promptly without obligation.

WILLIAM BRAND \& COMPANY

276 FOURTH AVE., NEW YORK 10, N. Y. 325 W. HURON ST., CHICAGO IO, ILL.

COLORS - SIZES TO .085" IN BLACK, YEIIOW, GREEN, BROWN, BLUE. LARGER SIZES BLACK AND YELIOW ONLY EXCEPT ÓN SPECIAL ORDER.

WORTHWHILE EXTRAS

We've learned over the years that "extra" precautions pay big dividends for our customers in the planning and production of parts from Laminated and Molded INSUROK. For example:

Richardson suggestions have led many cus. tomers to alter their original designs and/or materials specifications and thus obtain plastic parts better suited to the job at hand, at lower costs.

And Richardson production experience has, in many cases, pointed the way to substantial savings and advantages for customers.

These and other Richardson "extras" are not
specified on customers' purchase orders, but you get all of them . . every time. Why? Simply because we've found that these extras make friends for us, and hold friends over the years.

If you now use, or contemplate using plastics, we sincerely believe you want and need considerate and experienced handling of your requirements. And we invite you to look, with confidence, to The Richardson Company for your needs in plastics.
Why not send us specifications today? Learn without obligation how Richardson would handle your next need for plastics.

INSUROK is a registered trade-mark of

The Richardson Company

The RICHARDSON COMPANY
 general offices: lockland. ohio founded in 1058

Sales Headquarters: MELROSE PARK, ILLINOIS

[^0]
A 100\% INCREASE IN THE Cl-502-A's rated current capacity at reduced voltages 0.2 amp average with 180 v on the anode!

"THIS COMPACT METAL THYRATRON WILL REPLACE GLASS TYPE 2050 IN YOUR CIRCUIT; YET IT'S ONLY HALF THE SILE . . AND SELF-SHIELDING!"

Continuous G-E improvement in design and production makes it possible to rate the GL-502-A thyratron, for lowvoltage operation, at twice its former average current capacity, or .2 amp maximum.
Here is performance sure to be welcomed by the electronic designer. No change in size is involved; the GL-502-A (only $21 / 16$ inches high when seated) continues to take up minimum space. Also, the tube's self-shielding characteristic, a feature of metal-envelope types, remains an important aid in simplifying circuit and panel design.

Much electronic control equipment is being built to operate at voltages at or near low power-supply potentials. The new, higher-rated current capacity of the GL-502-A under these conditions, gives the designer "more tube to work with." Glass Type 2050-twice the size of the GL-502-A - can be replaced by the smaller thyratron with no loss in tube performance, yet with a pronounced saving in space occupied.

Investigate this great little metal thyratron now... while your new control circuit is in the planning stage! You'll save in space, gain in economy and efficiency. Get the complete story from your nearby G-E electronics office. Or wire or write Electronics Department, General Electric Co., Schenectady 5, New York.

general fota electric

FIRST AND GREATEST NAMEIN ELECTRONICS

FIXED RESISTORS

Bradleyunits will carry 100% load for 1,000 hours . . . at 70C ambient temperature with a resistance change of less than 5%. In standard R.M.A. values from 10 ohms
to 22 megohms, except
1-watt unit available from
2.7 ohms to 22 megohms.

ADJUSTABLE RESISTORS

Type J Bradloyometers are rated at 2 watts with a big safety factor. The solid-molded resistor unit is not affected by heat, cold, moisture, or wear. Can be furnished with line switch. Available in single, dual, and triple-unit designs.

For circuits that require resistors of unsurpassed quality ... Skecify Allen-Bradley

BRADLEYUNITS are available in $1 / 2,1$, and 2-watt ratings. They have high mechanical strength and permanent electrical characteristics.

The leads are differentially tempered to prevent sharp bends near the resistor. The leads are easily formed to fit any spot.

All Bradleyunits are packed in convenient honeycomb cartons that keep the leads straight. Send for Allen-Bradley resistor chart.

TYPE J BRADLEYOMETERS have solidmolded resistor elements. They are thick rings, molded to provide any resistance-rotation curve. After molding, heat, cold, moisture, and hard use do not affect the resistor.

The resistor is molded as a single unit with insulation, terminals, face plate, and treaded bushing in ONE piece. There are no rivets, nor welded or soldered connections.

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis.

HEW-hp-ACGESORIS INCREASE Scope OF YOUR-hp-YOHMEIER

-hp- 452 A Capacitive Voltage Divider
For -hp-400A, 400C and 410A Voltmeters. Safely measure power, supersonic and dielectric heating voltages to 25 kv . Accuracy $\pm 3 \%$. Frequency range, 25 cps to 20 mc . Division ratio $1,000: 1$. Input capacity $15 \mu \mu$ f. Price $\$ 75.00$.

-hp- 453A Capacitive Voltage Divider
For -hp-410A Voltmeter. Increases range so transmitter voltages can be measured quickly, easily. Accuracy $\pm 1 \%$. Division ratio, $100: 1$. Input capacity approx. $2 \mu \mu \mathrm{f}$. Max. voltage $2,000 \mathrm{v}$. For frequencies 10 kc and above. Price $\$ 20.00$.

-hp- 454A Capacitive Voltage Divider

For -hp. 400C Voltmeters. Safely measure power, audio, supersonic and rf voltages. Accuracy $\pm 3 \%$. Division ratio, 100:1. Input impedance 50 megohms, resistive shunted with $2.75 \mu \mu \mathrm{f}$ capacity. Max. voltage, 1,500 v. Price $\$ 20.00$.

-hp- 455 A Probe Coaxial "T" Connector

For -hp-410A Voltmeter. Measures voltages between center conductor and sheath of 50 ohm transmission line. Maximum standing wave ratio 1 to 1.1 at $500 \mathrm{mc} ; 1$ to 1.2 at 1,000 me. Male and female Type " N " fittings. Price S35.00.
-hp- 470A-470F Shunt Resistors
For $-b p$ - 400 A or 400 C Voltmeters, to measure currents as small as $1 \mu a$ full scale. Accuracy, $\pm 1 \%$ to 100 kc , $\pm 5 \%$ to 2 mc Max power dissipation 1 watt

Instrument	Value	Price
-hp-470A	0.18	\$7.50
-hp-470B	1.08	6.00
-bp-470C	10.08	6.00
-hp. 470 D	100,	6.00
-hb-470E	600Ω	6.00
-bp-470F	1,000	6.00

-hp- 459A DC Resistive Voltage Multiplier
For -hp-410A Voltmeter. Gives maximum safety and convenience for measuring high voltages as in television receivers, etc. Accuracy $\pm 5 \%$. Multiplication ratio 100:1. Input impedance 12.000 megohms. Max. voltage 30 kv . Max. current drain 2.5 microamperes. Price $\$ 20.00$.

Extend the usefulness of your present -hpvoltmeters with these new precision-built -hp-accessories. Save time and work. Simplify tedious jobs. Make fast, accurate measurements far beyond the original range of your instruments.

-hp- 458 A Probe Coaxial "N" Connector

For -hp- 410A Voltmeter. Measures volts at open end of 50 ohm transmission line. (No terminating resistor). Lises female Type " N " fitting. Price \$17.50.

Write for details or see your -hp-Representative.
HEWLETT-PACKARD CO. 1935A PAGE MILL ROAD. PALO ALTO, CALIFORNIA

Export Agents: Frazar \& Hansen, Ltd.
301 Clay Street, San Francisco 11, California, U.S.A.

LOW POWER
 SINGLE SIDEBAND RADIO SYSTEM

The Standord DS9 Transmitter and RX9 Receiver at last make it possible to plan the shorter H.F. radio links to give the higher reliability, better quality and increased number of channels which characterize the Single Sideband System.

Type DS9 Single Sideband Radio Transmitter Frequency Range 4-22 Mc/s. Power Output 300 watts. Two independent sidebands with reduced carrier. Total sideband width adequate for 3 telephone channels, many teleprinter channels or various combinations of telephone and teleprinter. Sideband generating equipment built into transmitter. Compact design and rugged construction with maximum accessibility from the front only.

Type RX9 Single Sideband Radio Receiver Frequency range 4- $25 \mathrm{Mc} / \mathrm{s}$. Independent sideband single sideband and double sideband reception. Crystal selectivity combined with sideband acceptance matching DS9 transmitter. Precision automatic frequency control. Full front accessibility using withdrawable and tilting units for maximum ease of servicing.

DESIGNED and BUILT by

Standard

Standard Telephones and Cables Limited RADIO DIVISION

Yes, Central makes those tiny precision screws for micro-phones-and in step with modern trends-also creates special mounting screws for attaching speaker and tube assemblies to plywood in television sets. These typify the versatility and wide range of fasteners available at Central. Whether your assembly requires small standard fasteners, "specials," or heavier duty items-Central has them or can produce them fast. Two hi-speed plants... one east, one midwest... eagerly await an invitation to help you meet and beat your production schedules.

PaUCDELIVERIES...

STANDARDS FROM STOCK

 SPECIALS TO ORDER

WRITE FOR COMPLETE LITERATURE
Representatives and Distributors Throughout the U.S.A. and Canada

Paterson, N. J., U.S.A.
telegrams: wux Paterson, N. J.
CABLE ADDRESS: Pyromidusa

BUSINESS BRIEFS

By W. W. MacDONALD

Reading Field Reports, we get the impression that there will be a rash of redesigned and new products in our field this fall. Another sign of increased competition?

East-Coast Radar air-raid warning system recently set up for training purposes will use a lot of equipment. Manufacturers will find very little business in this particular project, however. Our Washington office tells us the equipment is practically all surplus.

Once Again we point out for those who may be interested that government agencies are asking manufacturers to bid on electronic apparatus that these same agencies placed on the surplus market not so long ago. The manufacturers are busy scouring the surplus market for the gear, hoping to avoid tooling up for its remanufacture.

Looking at the situation one way, you might say that the agencies lacked foresight and should have held on to the stuff. Looking at it another, it seems possible that no one could have anticipated so early a need for the equipment. Either way, the agencies are always up against it politically.

Complaint of one reader of advertisements is that many manufacturers offer component parts meeting Army-Navy-Airforce specifications but few have them in stock. It takes weeks or months to obtain a supply.

Preoccupation with mass production of components needed for commercial applications is normal for American business, so we can understand why manufacturers are reluctant to stock parts needed in smaller quantity for military gear despite the greater profit margin involved.

The solution to the problem is not apparent to us. We would be interested in hearing from anyone who thinks he has the answer.

Audio Trick reported by a California correspondent involves ask-
ing victims to recite a simple jingle into the microphone of a tape recorder while what they say is being played back to them via headphones after a ten-second delay. Nobody, but nobody, has so far recited through to the end without getting all balled up.
The object of the experiment, we must admit, is obscure to us. But some psychologist or medicineman may think of a practical application, and if someone does we'd like to hear about it.

Auto Radios in metropolitan New York City total $1,440,000$, or 72 percent of the total number of cars licensed in the area, according to WOR's research department.

Electric Blowers ordinarily installed in cabinets to keep chassis cool have been very popular around Glenn Martin's Baltimore plant this summer. During a visit to the company's Electronics Section we saw quite a few of them up on benches cooling the worker rather than the work.

Several Patents covering a novel facsimile system with which nothing has been done are owned by a reader who thinks he has something with commercial possibilities, particularly for interoffice work. Proof that the system will work is available, but further development would have to be done before a production prototype could be built.

To manufacturers interested in investigating the subject further we will be glad to forward a list of patent numbers.

A West-Coast Firm equipped with electronic computers has just set itself up in the highly specialized business of turning out answers to highly complex aathematical problems for industry in general.

SMPE Members were poled recently to see what they wanted to read about most in the Journal of the Society of Motion Picture Engineers. Television easily

Why a Fusite Terminal Where a Diamond Ought To Be?

A Fusite Terminal would look much more natural performing its vital function in the hermetic sealing of your electrical product. But since it's every bit as valuable for 1000 other products that should be fusion sealed, we aren't playing favorites.

The smooth uniform interfusion of steel and inorganic glass that is a Fusite Terminal is as beautiful as a flawless diamond to any design engineer. In its own way, it's as rugged as the diamond used

TERMINALS
PROTELT PRODUCT pertormance
ERMET
THE FUSITE CORPORATION
CARTHAGE AT HANNAFORD, NORWOOD, CINCINNATI 12, OHIO

When you've stretched your budget to the limit to buy the best equipment and still can't be sure of uniformly good recordings...

DON'T TAKE YOUR EQUIPMENT APART...

The Presto label on a disc means uniform high quality of mechanical and chemical properties .. always.

RECORDING CORPORATION

showed up in first place among 27 topics. Color came second and sound third.

A Lot Of People are saying: "How sad, television has pushed f-m into the background." Now that tele receiver makers are beginning to put $\mathrm{f}-\mathrm{m}$ tuners into many of their sets as an added sales feature (it is cheaper than putting shortwave into a d-c set) the tables may be turned.

At least many more people will soon be able to tune in f-m programs on their television sets. Whether they do so, in view of the picture interest, remains to be seen.

Writes a maker of test equipment: "The elaborate setup down at the Glenn L. Martin plant, mentioned on p 63 of your July issue, is not at all unusual for aircraft companies, according to our records. You may also be interested in the fact that during the first quarter of 1949 we checked up on sales over $\$ 250$ and found that we had sold test equipment to 484 separate industries, schools or branches of the government. Only 29 were made to people in the radio and television receiver manufacturing group. The largest group of customers numerically was in the educational institution category, which chalked up 95 orders."

An Editors' Note pointing out the probable future importance of magnetic amplifiers, on p 124 of our September 1947 issue, induced Press Wirless' K. A. Young to learn German so that he could read about early work in the original. We think the effort will pay off and Young evidently thinks so too for he is now writing a book on the subject for those who do not have the time to become bilingual.

Thumbnail Picture of Italian radio-receiver production looks like this: Some 40 firms, employing 25 ,000 people, turned out about 400,000 sets valued at 10 billion lire ($\$ 17,875,000$) in 1948. Exports, valued at 930 million lire ($\$ 1,662$, 375), went chiefly to Egypt, Belgium, Sweden, Argentina, France,
the Low Countries and Turkey,
Production could readily be doubled if markets could be found but prices (25 times pre-war level) make the competitive going rough.

Radio Announcers earned an average of $\$ 7,100$ in New York City during 1947.

Television Antennas represent one of the toughest design jobs ever faced by radio engineers. They must be efficient over an almost impossible frequency range, provide high orders of gain and directivity and minimize trans-mission-line loss. Compromise seems to be the only key consistent with consumer requirements, but we somehow have gotten the impression that it has been carried too far by too many people.

We're angling for a story stating fundamental requirements and suggesting possible approaches, by a leading antenna authority. If we get it this yarn alone ought to be worth the price of admission to our pages.

Subscriber Harry Schwartz of Montreal tells us that he and his partner have induced the local telephone company to include a heading for electronic engineers in the local classified book.

Wire Tapping by a visiting team interested in knowing whether a righthanded or lefthanded pitcher is warming up can't happen at Brooklyn's Ebbets Field. HoseMcCann has installed a no-partyline sound-powered telephone system similar to those used on many ships between the home-team dugout and bullpen, according to Bob Kuhn, who was one of the few men in the city to attend a recent GiantDodger game on legitimate business.

Hams employed by the William V. Stancil Company, building magnetic recorders out in North Hollywood, total six.

Personal: If any of you boys with boats in Long Island Sound hear the "Dolphin" (WC2600) on the ship-to-ship bands, or portablemarine W2TY on 75 phone give us a shout.

Serociuse Relays by SICMA

SERIES 4
SPDT GENERAL PURTOSE SEXSITIVE D. C. RELAY. Inexnensive Balanced armature for vibration resistance on aircraft at $\overline{50}$ milliwatt adjustnent. Sensitive enough for V-T operated relay circuits; can be set to operate down to 10 milliwatts. Irecision adjustments for pull-on and drop-out. 2 amp. notuinal contact rating. Coil resistance up to 14,000 ohms.

SERIES 5
SIDT VERY SENSITIVE D. C. RELAY. Balanced armature and magnetic efficiency resist aircraft vibration on inputs as low as 5 milliwatts. Withstands 500 g shock without caamage. Precision adjustments. 2 amp. nominal contact rating. Coil resistance up to 16,000 ohms. Special adaptations: Built-in rectifier, two-coil differentia operation, constant voltage ternperature compensation.

SERIES 41

SPDT SENSITIVE RELAY AC-DC-KEYING. Unusual characteristics at low cost. Same D. C. sensitivity as Series 4 but less flexibility of adjustinent. Available with long life snd bounce-free contacts, it is suited to high speed counting and keying. Mechanical life exceeds 10° operations. Good for plate circuits needing moderate precision and vibration immunity. Contact ratings up to 5 smps. Coil resistance to 14,000 ohms. A. C. sensitivity exceeds 0.1 V.A. at 60 cps . Serviceable on frequencies from $16-400 \mathrm{cps}$. Protects delicate thermostat or instrument contacts.

SERIES 6
MULTICIRCUIT POIARIZED SENSITIVE RELAY. Single or double (differential) windings. Resistance up to 25000 ohms total. Contacts up to HPDT, 5 amp . nominal rating. Balanced armature for strong vibration resistance. FOIRM X-Three Position or Null Secking. For automatic positioning or 2-Way process control. Sensitivity (depending on (contact complexity) from 10 to 100 milliwatts. FORM Y-Biased (Spring Return), Use as an ordinary sensitive relay if a complex contact combination is needed. Combines function of pilot relay and contactor. Sensitivity same as Form X. Responds only to one polarity. FORM 2 - Latching (permanent, Magnetic). Replaces vibration resistance is required. Sensitivity from 100 to 250 milliwatts.

SERIES 7

SPIDT SENSITIVE HIGII SPEED POLARIZED RELAY. Single or multiple windings up to 14,000 ohms (single). Balanced armature Nominal contact rating 2 amps. For repeating telegraphic signals a Nominal contact rating 2 amps. For repeating telegraphic signals at Mechanical life exceeds 10° operations. FORMS X Y and Z (see Type 6 above) a vailable in Series 7. Sensitivities from less than 1 to 10 milliwatts depending on form and requirements. Form X is useful as the detecting element in positioning bridge circuits.

VARIETY OF ENCLOSURES
Some of the standard enclosures (including hermetically sealed) in which most Sigmo relays,are available.

MALLORY

sets the pace in carbon controls with the revolutionary Mallory Midgetrol.

NEW TELEVISION TYPES

Resistance stahility specially provides for critical applications in television circuits. Insulated shafts are knurled for ease in aojustment. Shaft and current carry ing parts provide 2000 -volt insu ation.

NEW SMALL SIZE

The small size of ${ }^{15} / /^{\prime \prime}$ diameter saves preciot s space, can be specified where a $1 / s^{\prime \prime}$ diameter control crdinarily would be required

NEW FLAT SHAFT

It makes possible a standardization of products which means faster production schedules and faster deliveries.

NEW TWO-POINT SHAFT SUSPENSION

Double bearing suspension of the new flat shaft eliminates shafi wobble. Assures smooth, even contact pressure on the resistance element. Improves the quality of the control mechanically and electrically.

NEW RESISTANCE ELEMENT

Resistance element is automatically machine-coated and electronically selected to eliminate any chance of human error.

NEW CONSTRUCTION

Use of phenolic material eliminates metal-to-metal contact, thue there's no chance for mechanical noise.

NEW CONTACT ASSEMBLY

The contact assembly is made of a special Mallory contact alloy. New contact design makes the Mallory Midgetrol the quietest, smoothest control by laboratory tests.

NEW TYPE END TERMINALS

End terminals are hot tinned-can be formed bent, or twisted many times without breaking. Terminal holes are large enough to easily and quickly secure all leads.

NEW SWITCH

Designed and manufactured by Mallory under the highest Designed and manufactured by Mallory under the bighest
quality standards. This new switeh is built for a long, troublequality standards. This new switch is built for a

It's the little Volume Control with BIG Advantages

Are you planning for smallness, and yet want to deliver big results? Well, here's an all-new revolutionary volume control that lives up to Mallory's name.

It's rugged. It can take it. It gives longer life and it is the quietest by actual tests. Yes, the Mallory Midgetrol has designing ways... and more and more designers have fallen in love with its nine big features.

Mallory Midgetrol is the crowning result of years of work to pack all the dependability, all the toughness and all the precision work that has made Mallory famous into SMALLER space.

We earnestly suggest you study the many extra features offered by the Mallory Midgetrol which are listed in the box here. They, in total, prove again that the Midgetrol is worthy of joining the big Mallory line of volume controls of every type for every use.

You Expect More And Get More From Mallory

Precision Electronic Parts - Switches, Controls, Resistors

MALLORY

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

- ANGLO ANGLE . . . As anticipated, our quarrel with the British television standards (this column, May issue) has touched off a friendly spark or two from the editors of Wireless World, who take us to task in their July issue. The points of controversy between us were, among many others, discussed at length last month in Zurich at the first meeting of the C.C.I.R.'s Study Group 11, a body set up to explore the possibility of international agreement on television standards. We attended this meeting as technical adviser to the U. S. Delegation, and learned much. On the theory that a report on this meeting would be more constructive than continued editorial discussion, we refer readers, including our colleagues of Wireless World, to our next issue, which will contain a full account of the Zurich meeting and what lies ahead.
- DEFINITIONS . . . Several professional groups are mulling over the old question of what "electronics" means. Time was when this was a simple matter: electron tubes make use of free electrons traveling in a vacuous or gas-filled space; electronics is the science and technology of electron tubes and associated apparatus. And that was that.

But along came the transistor, and with it a new appraisal of the semiconductor as an element in electronics. According to the old definition, a transistor, a thermistor, a barrier layer photocell, selenium and silicon rectifiers, are not electronic at all. But they are small-current devices which perform functions identical to, or closely related to, those of electron tubes.

A proposal made by one definition committee (which shall be nameless for the moment because its work is still in the preliminary stages) makes a lot of sense to us. This group proposes to define electronic conduction as including electron flow in a gas, a vacuum, or in a semiconductor. An "electron device" would be one in which conduction takes place through a vacuum, gas or a semiconductor. An electron tube
would be such a device, in which the conduction takes place within a gas-tight envelope.
This all-inclusive definition puts the semiconductor devices where they belong. Moreover, it's based on a sound physical doctrine. Controlled electron flow in a gas requires attention to the same rhysical principles as controlled electron flow in a semiconductor. The lack of knowledge of the latter process is as profound as its inherent complexity is evident. But, in time, these questions will be answered. Quite possibly the control of electrons in a gas or vacuum will fall out as a special case of the general description of the domains of the solid state.

- EARLIER . . . In April we took note of the work of Otto Schade in testing lenses with a photoelectric scanner. We were soon reminded that Dr. Schade was not the first to use this method. Several months earlier, William Herriott had published in the JOSA a description of his photoelectric lens bench. So our praise is now directed in two directions. Having seen the Herriott bench in operation recently, we are more impressed than ever. We hope they've heard about it, by now, in Rochester, New York.
- BASIS . . . It is abundantly clear that the FCC has taken seriously its responsibility for proper planning of the future of television broadcasting. The statement of "proposed rule making", which will go before hearing a few days after this issue is published, is evidently an all-out attempt to avoid the mistakes made when sound broadcasting was first set up in 1925. The proposals have received careful scrutiny by many organizations, public and private, partial and impartial, who have filed notice of their intention to appear before the hearing. The issues are complex, the opinions diverse and strongly held. The decisions made will set the course, for good or evil, for a long time. We do not envy the Commissioners their task or their responsibility; we can only wish them Godspeed.

This GE type FH-11 split-anode magnetron was available com. mercially in 1930 but nobody wanted it

WHY DOES IT TAKE SO LONG?

Abstract

Engineering executives ask this question today more than ever as high overhead charges accumulate month after month on an electronic development project. Here are the answers, with historical backing and practical sugges- tions for speeding recovery of development costs

By W, C. WHITE
Electronics Engineer
Geucral Electric Research Laboratory
Schenectady, N. Y.

SOMEONE has said that life nowadays consists of a series of hectic rushes interspersed by exasperating waits. The latter often seem to predominate from the viewpoint of the executive interested in a technical development. The engineer in charge is also frequently exasperated by the length of time it takes to develop, design, manufacture and make a business of some new product. Usually the high cost of such a process is a cause of even greater mental anguish. This high cost is in turn due partly to the fact that time is money, particularly in these times when overhead charges are high and accumulate month after month regardless of the rate of progress of the project.

In the field of electronics, the time from idea to production is a very pertine..t problem because progress and obsolescence are such pronounced factors. New developments often crowd one another, leaving all too few years during which the cost of the initial development may be recovered. Finally, after a development has been completed and one has the benefit of hindsight, it is often very difficult to explain and justify, even to one-
self, the reasons why so much time was consumed in arriving at the goal. A few historical examples will show how long it took in the past to develop familiar products.

Let's first take a look at the development of the high-vacuum tube, which is the basis of our industry.

The Triode . . . 1883 to 1913
Starting with the Edison Effect in 1883, Edison was granted a patent in 1884 on a diode voltage

SEVEN REASONS FOR DELAYS

An engineer instinctively hangs onto a development until he understands everything about it

Overlooked defects in design don't show up until the product is in the field
Trial users are unsympathetic to new ideas

Final product is not sufficiently visualized during design
Routine business conferences and personal interruptions encourage natural manana inclinations
General weariness and disgust with project after run of hard luck
Natural opposition of production personnel to new products
regulator ${ }^{1}$, Fleming used a diode as a radio detector in 1905, deForest brought out his audion in 1907 and the high-vacuum tube came in 1913.

It was not until World War I, however, that high-vacuum triodes were widely used and, of course, not until the advent of broadcasting in 1921 did they really reach the public. Thus, from Edison's discovery to World War I, use represented a lapse of over 30 years. It should be noted, however, that after 1912 when organized research became active in the development of the high-vacuum triode, progress was relatively rapid.

This development of the highvoltage triode, which has been taken as an illustration, involved a number of accomplishments that were necessary before the final result could be achieved.

Induction Heating. . . 1919 to 1939

One example involving the application of electron tubes is the development of high-frequency induction heating. In 1919, as a result of transmitting tube developments for World War I, fairly suitable tuhes were available for commercial

- Taken in 1928, this picture shows a laboratory test of the FH-11 oscillating magnetron being used as a voice-modulated microwave transmitter at 400 mc . The art was not ready for such a development, and many years had to pass before a radio
transmitter operating at this frequency was greatly desired, This tube, incidentally, was described by the author in a threepage feature article in the first issue of ELECTRONICS (p 34, April 1930)
high-frequency induction heating. As a matter of fact, the writer built a high-frequency furnace unit in 1919. This was used regularly for laboratory melting of special alloys in a vacuum or controlled atmosphere. Many of the unique advantages of high-frequency induction heating were known at that time and yet it was not until about 20 years later that this application really became a business.

What can be done to shorten this period of incubation? This leads to the question of what are the causes of delays in a new development and its commercialization.

General Considerations

Many delays in development are largely psychological and only certain of them are susceptible to much near-future improvement.

The beginnings of a new development can usually be traced to someone's idea and the decision by the same or another person to do something about this idea. Of course, the first questions that arise are:
(1) Is there a profitable market for the product?
(2) Is the time propitious for the venture?
(3) What is the probable development cost and can it be recovered?
(4) Is the organization involved capable of doing the development plus manufacture and commercialization?
These are all of primary importance, of course, and much could be written on each of them. However, we will assume the answer to each has been in the affirmative and thus get on to our subject of delays.

Earlier in this article, the speeding up of high-voltage triode development through organized research was mentioned. This is an extremely important factor and should be considered under the broad heading of collective genius. Collective genius is a name for the idea that many human traits and abilities are necessary to complete a development successfully; so many, in fact, that it is practically impossible to accomplish the result with one or two individuals.
For a successful development, there must be enough individuals possessing the necessary abilities in the group to supply all the basic requirements. This general idea is fundamental and not new to modern organized industrial research, but
it was brought out very interestingly in an article published a few years ago. ${ }^{2}$ I would recommend that this article be read by everyone interested in advanced development.

Back of every successful development there is usually a dominant personality. This of itself does not insure a speedy and successful result, although it is one of the important factors necessary to success.

Delay No. 1—Engineering Instinct

The engineer in charge of the development is sometimes more interested in the technical how and why of the development than in speeding it to a practical completion in order to minimize outgo and to hasten the beginnings of income. Many scientists and some engineers have this feeling, but fortunately most of them keep it well under control. To others the idea of manufacturing and placing on the market some new product on which all of the technical problems are not thoroughly understood or charted is abhorrent. Certainly there must be sufficient knowledge to avoid pitfalls. On the other hand, if commercialization is postponed until all the science and engineering in-
volved are thoroughly understood, then probably a competitor will be the first one to make a business out of the development.

Delay No. 2-Overlooked Defects

All of us are familiar with products which when first commercialized show up some important defect or difficulty. To avoid this one must learn as early as possible in a development what are its key problems. Frequently the problems that at first were worried about the most do not materialize; instead, other difficulties or defects that were not suspected turn out to present the chief difficulties. This leads to the need for getting a few of the products out into the field just as soon as possible. There is no better way of uncovering defects than this procedure.

Delay No. 3-Attitude of Trial Users

In a field trial or early use, success or failure usually hinges on the attitude of the individual utilizing the trial installation. If he looks with suspicion on any new thing, it is sometimes better to look for a better location. On the other hand, a trial user who has enthusiasm, patience and tolerance is to be treasured as he is often the all-important factor in a quick and successful technical development.

Delay No. 4-Not Looking Ahead

In the vast majority of cases, the human mind seems to be incapable of clearly foreseeing or sensing two steps ahead on any problem. It is a common experience to design some fairly simple piece of new electronic equipment, giving thorough attention to what are apparently all the problems involved. When the first sample is delivered and sometimes even before a test is made, the designer finds to his dismay that, as soon as it is seen in being, one or more undesirable features are immediately apparent. In other cases, the initial test uncovers what seems like some perfectly obvious undesirable characteristic or defects and the designer wonders how he could have been so stupid as not to foresee this particular feature. Probably this factor is high in importance of the many that can cause costly and lengthy delays. There is nothing
new in the discovery of this problem, and the use of mock-ups is sometimes employed to minimize this difficulty. However, it remains a severe psychological problem, the complete cure for which is none too apparent.

Delay No. 5-Interruptions

The mañana problem is as old as human nature, but it appears to have taken on many new and insidious forms in the past few years. There are thoroughly legitimate aspects to this factor. They are staff conferences, monthly reports, visits of VIP's and that yearly bugaboo, the budget. These are just a few to serve as examples. At least one comes up nearly every week in the life of a development engineer.

Probably more time consuming are the semi-personal or personal factors. Here the scope and variety are legion. One plans to take home some technical book, report or data so as to study it in peace and quiet. However: It is March 14 and the income tax return is due. Again upon arriving at home you are reminded that you promised to visit the Henry Doodles that night to see the Kodachrome slides of their trip to Florida. The reader can add to this list almost endlessly. Such interruptions invade even the office and laboratory with such things as weddings, storms, accidents and illness in the family. This is bad enough in one's own particular case, but remember that these same problems apply to each individual of the many connected with the job, from messenger boy to shop superintendent. During all the delays from these causes, salaries and overhead go merrily on.

Delay No. 6-General Disgust

From time to time during a difficult development when there has been an unusually long run of hard luck, it is suggested that it is time to stop fooling around with makeshift apparatus and do a really good job with the proper equipment. This tendency must be watched carefully as frequently it originates from weariness and disgust with the project rather than a real need. We all know that some of the outstanding developments in our science have been done with haywire
apparatus built on breadboards.

Delay No. 7-Opposition to New Things

Unless the product under development solves some pressing current problem, it is usually very difficult to commercialize it. It is so much easier to keep on in the same manner rather than introduce the new or improved products that always involve risk, trouble and added effort. Furthermore, changes upset smooth factory operation which in times of pressing production problems is an all-important factor. The argument is sometimes advanced that an existing product should not be replaced by a new one until the cost of development of the present design has been recovered.

Timing New Developments

From an executive viewpoint, it is necessary to call a halt somewhere in the introduction of new ideas during any given period. In general, an organization simply does not have the manpower to handle more than a limited number of new ideas or developments at one time.

There are two particular times in the business cycle when it is difficult to promote an idea for a new development from research through to commercial form. The first is when business is good and the second when business is dull. This is not a facetious remark, but rather points out another psychological fact.

Good and Bad Times

In times of business prosperity, money for research and development is usually available and there is plenty of optimism. It is true that manhours are difficult to find for development purposes but probably the greatest difficulty is that managers are primarily interested in getting out present models on schedule and of proper quality They cannot be expected to be particularly interested in a new product that is going to take many manhours to promote and sell and probably involve added problems in installation and engineering and customer complaints.
On the other hand, in periods of poor business conditions, money is hard to obtain for research, engineering and development, and pessi-
mism is usually rife. But there is one big favorable factor and that is that at such times managers are keenly on the lookout for a new or better product to catch a larger share of the limited available business or open up a new field. There are also manhours usually available on the part of engineers and commercial men to promote a new product.

The answer to this timing problem is obvious. The basic research and advanced technical development work can and should be done in good times. Thus a good foundation is laid so that the final design and promotion may later be done with a minimum of time and expense when economy rules but new products are much to be desired. Industrial electronics grew up during such periods. Much of the basic research work on various new tubes and the circuits involved was done during the boom years of the late 20 's whereas some of the most encouraging beginnings of commercial applications occurred during the depression years of the early and middle 30's.

During the next few years, it will be interesting to watch the extent to which some recently announced electronic research accomplishments come into profitable use. Examples of this are the traveling-wave tube, ceramic tubes ${ }^{4}$ and the transistor ${ }^{5}$. In following such developments, it must be kept in mind that sometimes it is their by-products that turn out to be important rather than the form in which the initial development took place.

Expediting Procedures

It is essential that satisfactory operating samples of the device be available, as well as necessary associated items. One can never tell when conditions for getting approval of a new device will suddenly become favorable. The ability to follow up some suggestion promptly and actively when enthusiasm is fresh and high is a very important factor.

Complete information on a device, particularly as regards its operation, advantages, limitations and unusual characteristics, is essential. Again, everything should be done to make the initial trials or tests

Built and successfully demonstrated by the author in 1919, this high-frequency induction heating unit was 20 years ahead of its time. Commercial acceptance did not come until about 1939 when industry realized its potentialities for surface hardening
favorable as otherwise doubts are substituted for high hopes.

No opportunity should be lost to tell as many people as possible about the device and demonstrate it to them. All the good ideas are not under one hat. In our field, there is probably no better way of telling the world than an article in Electronics. The more propositions entertained for a new device, the more likely a successful one will be found.

The initial applications chosen to be followed up actively should, if possible, be relatively simple ones. There will be enough complications and unforeseen problems without introducing extra or unnecessary ones.

It is often easier to introduce some radically new idea as an added feature of an existing product rather than attempt to force it through as an entirely new device. It is less upsetting to the factory and involves less commercial risk.

Conclusion

Radio engineers are born pioneers. They are always on the lookout for something new and very often will decide to incorporate a new thing in a product even before the engineer promoting the device feels it is ready to use. This adventuresome spirit in radio is un-
doubtedly a characteristic of a new art, but it is probably not so pronounced today as it was a number of years ago.

On the other hand, introduction of a new tube or application in the industrial field may meet with quite a different reception. There the attitude is more often to question the proposal on the basis of too high cost, fear of unreliability, unsatisfactory tube life and the many other factors involved. In other words, conservatism is a much more powerful factor than the pioneering spirit. Fortunately, this too has changed during the past few years and even now there is a tendency in some cases to think of doing it electronically first.

Two or three years may seem like a long time to realize a dream on even a simple idea, but a century ago the dreamer was lucky if he lived long enough to see it in successful use. Much progress has been made.

References

(1) U. S. Patent 307,031, Oct. 21.1884. (2) K. K. Palmer, How Collective Genius Contributes to Industrial Progress, General Electric Reriew, p 254, May 1941 . (3) Wideband Microwave Amplifier Tube, Electronics, p 90 . November 1946. (4) R. J. Bondley, Metal-ceramic Brazed Seals, Filectronics, p 97, July 1947.
(5) J. Fardeen and W. FL. Brattain. The Transistor, A Semi-conductor Triode, Letter to the Editor of Physical Review,
p 230 , July 15,1948 .

WOR ${ }_{\text {fin }}^{\text {fin }}$

Design for

Engineered for maximum flexibility and operating economy, New York's newest vhf television transmitter overlooks the city from the New Jersey Palisades. Its 810 -foot tower includes an f-m antenna. Microwave stl's, coaxial cable and high-quality telephone lines link studios and remote pickup points

THE completion of the WOR-TV television transmitter plant will interest radio engineers because of its several unique features. The latest of the New York stations to broadcast a television program from its own facilities, it has had the advantage of time and experience in planning an effective installation.

Although this article deals primarily with television equipment, the apparatus and its use have been carefully integrated into the whole field of radio entertainment. Television is the newest and most compelling of the radio mediums, but $a-m$ and $f-m$ will continue to serve for a long time. For that reason, the f-m transmitting facilities have been combined, from the operational standpoint, with those of television. Existing a-m facilities, requiring different terrain, are adequate, and satisfactorily located elsewhere (in Carteret, near Rahway, N. J.).

The facilities described in this article comprise television studios, which are located in New York City at 20 W .67 th St., and f-m and television broadcasting facilities installed in North Bergen, New Jersey. The television studio facilities are not yet completed, so that only a brief description of them is given. The television transmitter facilities, however, are now completed, and include a television
transmitter, a source of auxiliary or emergency picture signal for that transmitter, and suitable microwave and other terminal equipment to enable television pictures to be brought to the transmitter. The $\mathrm{f}-\mathrm{m}$ facilities include an $\mathrm{f}-\mathrm{m}$ transmitter and suitable auxiliary equipment. All of these transmitter facilities are housed in a specially designed building. Adjacent to the building is the transmitter tower, which carries both the f-m and television antennas.

Choosing a Location

The proper siting of a radio transmitter is the most important decision a radio engineer can make for he must usually live with his decision a long time. Compromises among the factors of propagation, cost, or availability of a satisfactory site must always be made. However, in spite of the impossibility of obtaining CAA permission to erect a tower at the most favored spot in Fort Lee, New Jersey, the present approved North Bergen location is considered a satisfactory compromise, with the propagation factor weighing somewhat more favorably in the balance here.

The decision to locate the transmitter in New Jersey rather than in New York was predicated upon economic as well as engineering considerations. In the first place,
although the states of New Jersey and New York are major political subdivisions, the populations are homogeneous. Nominal residents of either state are often employed in the other. So far as the whole geographical region is concerned, it is essentially one market area.

Because of their relative convenience to studios and talent, the New York skyscrapers were first used to support the high antennas needed for television. Only two vhf stations (both of them f-m broadcasters) have, until the advent of WOR-TV, exploited the natural elevation furnished by the Palisades, the rocky western bank of the Hudson River. This high ridge commands both the eastern shore of the Hudson, the flat land of Long Island and also the area to the west towards Pennsylvania. Immediately to the west are the Jersey Meadows, a low swampy region abounding in a-m stations.

It is well known that the ghosts that plague television reception in some locations are caused by signal reflections from obstacles, the reflected signal being weaker and delayed in time by the somewhat longer path it has traveled. The most troublesome interference by ghosts occurs when the receiving location is shielded in some way from the direct, or desired, ray. By locating the WOR-TV antenna well

the Future

By F. J. BINGLEY

Chief Television Engineer Bamberger Broadcasting Co., Inc. New York, New York
away from the tall buildings of New York City, it is expected that there will be few locations at which the direct signal is not obtained with very much greater signal strength than reflected signals.

The 5,000 and 500 -microvolt contours computed according to FCC formulas in application for construction permit are shown by solid lines in Fig. 1. An estimate of population served is also indicated.

The layout of the site is shown in Fig. 2. The transmitter building and the adjoining garage are modern one-story construction of brick, covering 5,000 square feet. Besides the transmitter cubicle space, equipment racks, and the control room, there are washroom, a dining space and kitchen, and an office. At the rear of the building are the utility room housing the ventilating and cooling equipment, and a wellequipped shop. The garage has space for three large remote pickup trucks.

The outdoor substation, surrounded by a wire fence, contains two banks of three 50 -kva transformers, each bank connected to a different feeder. Power comes in at 440 volts and is stepped down to $120 / 208$-volt 3 -phase 4 -wire circuits. In the event of a power failure on the line in use, the load is automatically and instantaneously switched to the transformer bank

WOR-TV-FM tower in North Bergen, N. J. overlooks New York City

Transmitter control is centered at console in foreground. Television transmitters at left and f-m at right. Turntables and cueing desk just show at left and camera control and mixer desks at right
that is fed from the alternate substation.

An important feature of the electrical installation is the ground system. An expanded-metal copper mat covers the ground beneath the tower. Tied in with this is a system of 20 radials extending from the tower base to the edge of the property, A main girdling system of $250-\mathrm{mcm}$ bare copper cable extends the full perimeter of the property. All metal columns, conduits, equipment grounds, and even the window frames of the building are tied into this system.

The most striking feature of the external plant is the tower itself, visible for many miles in any direction. The fabricated portion rises 760 feet above the ground and is surmounted by a 50 -foot pole supporting the $\mathrm{f}-\mathrm{m}$ and television radiators. It weighs about 420 tons.

At the base, the legs of the quadrupod are spread out 96 feet apart on a side, narrowing at the top to 5 feet. Each leg is secured by eight steel bolts, each one 13 feet long and weighing 800 pounds. Steelreinforced concrete bases are imbedded in the solid granite ledge that shows above ground.
The tower has been designed to withstand winds of 120 miles an hour. The maximum average wind velocity recorded in this area for a five-minute interval was 81 miles an hour during the hurricane of 1944. It is estimated that a wind of 35
miles an hour causes a sway at the top of only 7 inches.

By virtue of the antenna construction and the fact that the tower is tied into the extensive grounding system, the structure will probably tend to equalize opposing charges between the earth and the atmosphere. Although this condition constitutes no assurance that the tower will never suffer a severe lightning stroke, the chances of damage are minimized. Other features of the tower installation, such as the microwave relay station at the 555 -foot level are discussed in detail below.

WOR-TV bears the curious distinction of being not the first, but the seventh and last of the New York VHF television transmitters allowed by present FCC allocations. There are many reasons for this situation, but the editors of ELECTRONICS are concerned mainly with the fact that here is a carefully designed installation that should profit from the mistakes as well as the good points of every comparable station that has already gone into regular operation. Of equal importance is the fact that after WOR-TV engineers decided what they needed, they had the relatively unlimited financial resources with which to back up their engineering de-cisions.-THE EDITORS

The top of the tower supports a one-bay circular antenna for WORFM and above this, a six-bay, superturnstile antenna that is used for both television sight and sound from WOR-TV on Channel 9.

The f-m antenna is the doughnut, a special form of the folded dipole. The extreme ends of the folded dipole are joined by an adjustable capacitor that is factory tuned for the desired frequency. The center point of the larger ring, and one end of the lower ring are grounded, thus affording lightning protection.

A matching section is used between the $3 \frac{1}{8}$-inch line and the antenna. This type of antenna has a power gain of 0.79 referred to a half-wave dipole. The effective radiated power of 3.4 kw at 950 feet is attained with a transmitter output to the transmission line of 5.7 kw. The calculated coverage is shown by dashed lines in the contour map (Fig. 1).
Each bay of the six-bay superturnstile antenna for television consists of four bat wing radiators mounted at 90 -degree intervals about the supporting pole. These radiators are formed from seamless steel tubing and are attached at their top and bottom ends to the supporting pole.

The method of feeding the eastwest pairs is shown in Fig. 3. The north-south pairs are similarly fed, but at 90 -degree phase displacement. The horizontal pattern from

Audio equipment, video monitors, sync generator and associated equipment form the outer wall of the shielded room to the transmitter operator's right
this antenna is essentially circular deviating little more than plus or minus 0.5 db . For channel 9 , the power gain over a half-wave dipole is 6.78 . Combined sound and picture carriers from a diplexer unit near the television transmitter are fed through two $3 \frac{1}{8}$ inch copper coaxial lines up the south-west leg of the tower to the matching unit and junction for the antenna feed harness.
An interesting and important feature of the antenna installations is the means of keeping the radiating structures free of ice. This protection is essential not only because the ice may affect the characteristics of the antenna, but because the radiators are less rugged than the supporting structure. An accumulation of ice presents a greater wind surface as well as a greater weight.

The f-m ring antenna has heated capacitor plates and partially heated arms dissipating about 240 watts in all. If normal voltage is insufficient to melt ice, the voltage can be raised on the Calrod units until the power is approximately doubled, with no damage to the equipment.

A differently shaped 250 -watt heating unit is built into the vertical portion (next to the mast) of each element of the six-bay turnstile. The whole assembly dissipates six kilowatts. It is possible to connect the individual units in parallel, series-parallel, or series, for different degrees of heat. There are two

One of the coaxial cable terminal racks (leit) and monitoring equipmeni (right) are located in the hallway outside shielded room
controls for the heaters; an automatic thermostatic control and a manual control that shorts out the thermostat.

Icing, or the formation of hard rime, takes place over a very narrow temperature range near 32 F . It is caused by the deposition of supercooled water droplets on an obstacle.

On this account, a thermostatically controlled heater is usually set to operate between the limits of 27 and 32 F . When the air is colder than 27 F , there is little danger of icing. Rime, or frost feathers, is another source of trouble. This phenomenon is caused by a cloud of supercooled droplets (of a different

FIG. 1-Service areas for WOR-TV (solid lines) and WOR-FM (dashed lines). Note that the contours for tv and f-m are not directly comparable

FIG. 2-Ground plan of the North Bergen property showing relation of the tower, transmitter building and power substation
character from an icing cloud) that freeze when they hit an obstacle and build out into the wind. Although lighter in weight, their wind resistance is likely to become greater than that of the icing deposition. Rime forms at temperatures from 32 to as low as minus 50 F , but the amount decreases as the temperature drops. Probably the manual control of the antenna heating will be seldom used to cope with any riming conditions.

As an additional aid to discourage the buildup of ice or rime, the antenna has been covered with three layers of special paint to give it a smooth surface.

Ground Plan of the Station

The layout of equipment and facilities within the station is shown in Fig. 4. Operating activities center at the transmitter control desk in the center of the operating room. The operator on duty normally faces the transmitters. Easily accessible are the turntables, to his left; the camera control and mixer desks (television sight and sound) to his right. Ordinarily, the television program is originated elsewhere and sent to the transmitter via television master control located at the main television studios at 67th Street in New York City. Similarly, f-m programs are routed through WOR-FM master control at 1440 Broadway. Emergency and testing operations only will require the use of the auxiliary equipment at the transmitter.

All television camera and slide projection equipment is effectively isolated in the shielded room to the right of the operator. The synchronizing, testing, monitoring, and all the audio equipment is at least partially shielded. Ceiling, walls and floor of the room are covered with fine copper screening heavily tinned so that the individual strands are joined one to another. This shielding, together with that afforded by the metal cabinets and doors on the operating-room side, cuts down direct radiation from the transmitters, the antennas, and also from the several a-m broadcasting stations in the vicinity

During construction of the tower, an intercommunication system employed between the hoisting engi-
neer and the top construction level picked up strong signals from these local a-m stations until the equipment and line were adequately shielded. Without proper shielding, a great many of the high-impedance, low-signal circuits, particularly in the camera equipment, would undoubtedly pick up strong signals.

Monitoring and testing equipment, along with telephone terminals, is in the broad hallway to one side and behind the transmitter cubicles. The utility room contains cooling and heating facilities for the building as well as high-and-low-pressure air for the transmitters, and cooling water for some of the tubes.

A well-appointed shop contains everything from hammers to lathes, from communications receivers to square-wave generator. Drawers and cabinets of spare parts line one wall.

The Television Transmitters

The type TT-6-D comprises a 5 kw picture transmitter and a 2.5 kw aural transmitter in adjacent cubicles at the operator's left. This is standard equipment. The picture transmitter employs low-level plate modulation, five push-pull stages ending in a pair of 9 C 24 tubes that employ forced air and water cooling. No high-level sideband filter is required because all but the standard vestigial sideband signal is eliminated by the amplifier bandpass tuning.

When once adjusted it is the work of a few minutes to check the tuning of the amplifier stages, starting with the final and working back to the first stage. Crystal monitors are provided in each r-f amplifier stage, and there is a built-in sweep oscillator, as well as marker oscillators for use with an external oscilloscope, to give a visual indication of proper tuning.

The f-m sound transmitter employs the Phasitron circuit for phase-initiated frequency modulation. The carrier frequency is thus directly controlled by a crystal. Output of the transmitter comes from a pair of type 5513 forced air cooled tubes.

In practice, these transmitters will operate very much under their

Coaxial cable hangers compensate different coefficients of expansion of steel tower and copper line. Upper clamps cre merely lined with asbestos compound. Lower copper-lined clamps grip coax. Downward thrust is taken by springs. Ground is carried by the copper braid from lower clamp to tower
maximum power ratings. Television stations are licensed for a maximum of 50 kilowatts effective radiated picture carrier power at an antenna height of 500 feet, and 25 to 75 kw sound power on the same basis.

Since the effective height of the WOR-TV antenna is 975 feet above average terrain the effective radiated power has been restricted by FCC to 9 KW . To obtain this the operating power of the transmitter must be reduced to 2.04 KW . This computation includes a 35-percent loss in the transmission line and a power gain of 6.78 for the antenna. For similar legal reasons, the sound transmitter will operate at about 2.5 kw to give 11
kw erp at 975 feet (this includes a loss of 875 watts in the transmission line).

The f-m transmitter for WORFM operating at 98.7 mc (channel 254) and installed to the operator's right is standard commercial equipment. Styled the type BT-4-B, it comprises a Phasitron modulator, 250 -watt amplifier, and $3-\mathrm{kw}$, followed by a $10-\mathrm{kw}$ amplifier. Final tubes in this rig are a pair of forced-air cooled 5518's.

The output of each transmitter is converted to single-ended connection by means of a balun. Output from the WOR-FM transmitter is taken directly out of the building and up the tower through $3 \frac{1}{8}$-inch

Engineers making final tests af the six-bay superturnstile artenna just prior to hoisting it into place. Man at left reads meter indicating standing waves on slotted-line section. Signal gene-ator on table (righti
coaxial line and fed into the singlebay circular antenna through a quarter-wave matching section.

Output from the picture and sound transmitters feeds into a diplexer or bridge circuit of which the two sets of radiators appear as resistive elements. The visual transmitter is fed across one diagonal of the bridge and the aural transmitter across the other. From the diplexer unit two $3 \frac{1}{8}$-inch lines ran out and up the tower, one to the east-west elements and the other to the north-south elements. An additional quarterwave length of line is introduced in the north-south feed to obtain the desired quadrature effect between the sets of elements.
Provision is made for gassing the external lines with either dry nitrogen or dry air. The f-m line and the television pair each has its own compressor that draws room air
through a silica gel filter. The machine automatically cycles so as to dry out the silica gel and discharge its moisture before another cycle of pumping into the line. Ordinarily, this equipment is adequate to handle routine pressurizing which need be very little more than atmospheric to prevent breathing of moist air.

In the event of trouble, compressed nitrogen from tanks can be introduced instead. The lines inside the building operate without pressure since the temperature of the air inside the building near the equipment tends to be higher than the dew point.

Dummy Load

The picture carrier output r-f line to the diplexer is so arranged that by loosening and swinging a 90 degree elbow this output can be fed instead into a dummy load in order

FIG. 3-Detail of the East-West feeder system to the television superturnstile. The North-South feeders are identical
to measure the r-f power generated by the transmitter. A water-cooled resistor of 51.5 ohms terminates the line in its characteristic impedance. Water flows around the resistor and is heated according to the power that the resistor dissipates. In practice, when the water flow is adjusted to 3.8 gallons per minute, the temperature difference directly indicates kilowatts of power dissipated.

Transmitter Controls

One of the fantastic aspects of television is its tremendous appetite for personnel. Covering a ball game in the good old days, an announcer and an engineer might arrive a half hour before the game time with a bagful of audio equipment. Television is certainly not this simple, and in order to avoid inordinate personnel costs, television equipment and its layout must be engi-

TRANSMITTER CONTROL ROOM
OFFICE

Distilled water cooler, water pumps and cubicle cooling fans in the utility room. Flow control equipment and safety interlocks are mounted on wall at the rear
operator will tend to catch incipient faults such as antenna icing and moisture in the coaxial lines by abnormal deflection of the reflectometer needles.

An automatic power cutoff operates if the line or antenna arcs over. The reason for the shutoff is indicated to the operator by a lighted pilot.

An interesting feature of the picture, sound and f-m power controls is that power can be turned on from the console but not turned off. Since the great problem in broadcasting is keeping the station on the air rather than taking it off, this arrangement makes good operating sense. Once the transmitter is on the air, accidental contact with the control buttons can not knock it off.

In front of the operator is the program control panel. As in the first panel, television functions are to the left and f-m to the right, corresponding to placement of the respective transmitters. Repeater meters that indicate percentage of tv sound and f-m modulation are placed on each side of the vu meter that is used primarily for television sound. The overmodulation lamps show when a preset level is being
exceeded by the transmitter.
The four sets of vertical six-key monitor switches allow the operator to make a rapid check of overall performance for video (the picture is viewed on a large screen and the waveform on a smaller tube to to the left of the operator) and both sound and f-m transmitters. The interlocking switches have separate level controls beneath the hinged covers on which the designations appears. This feature allows the operator to equalize levels for monitor scopes and speakers. Normally an off-the-air monitor is viewed. When trouble develops, the operator checks back through various outputs and inputs until the source of the disturbance is localized.

Regular and auxiliary (or emergency) inputs are arranged to give the transmitter operator some flexibility without burdening him with control-room duties. A rotary switch is provided for input either from incoming line from master control in New York, or the output of the mixer desk at North Bergen. There are two telephone toggles for $t v$ sound and $f-m$. The switch at the extreme right allows a selection
of any three combinations that may be patched into the console for special events. The gain controls associated with these switches appear immediately below. The picture line fader is not a usual control but has been included here to increase flexibility.
Three other controls also of prime importance for the picture signal appear at the lower left. The sync stretcher permits adjustment in the sync amplitude relative to the picture. It might need adjustment, for example, when a remote program is put on the air following a local program, although ordinarily this will have been taken care of at master control. The peak power control sets the power output at synchronizing peaks so that the modulation envelope can be made to conform to FCC specifications. The r-f gain control adjusts the screen voltage in the first r-f stage and serves to raise or lower power output when the correct modulating conditions have been established.

There is a monitor speaker in the control room for each transmitter as shown in Fig. 5, with ather monitor speakers mounted elsewhere in the building. It has been suggested
that those attempting to monitor two different audio programs may be in danger of developing a new form of schizophrenia or split personality. However, the practice of dual listening is not unknown in the radio art. An operator is usually unaware of or only passively interested in specific program content. But if noise develops or if the program is cut off he notices immediately. For example, an operator dozing on his own living room couch will probably spring to his feet if his wife suddenly switches off the radio midprogram!

Video Equipment

Facing the man at the video control desks are three type TA-153-A terminal facilities racks for incoming video signals. Each unit comprises a 12 -inch picture monitor and two 5 -inch waveform screens for both line and frame signal monitoring. Besides containing a sync stretcher, each unit has a special patch and switch panel in order to increase the flexibility of the equipment and facilitate its use at various points in the system.

The type TA-137-A picture distribution equipment contains a four-channel studio mixing line amplifier that is controlled by the switching unit in the mixer desk. The patch panel gives flexibility for special events or testing.

A single sync generator (type TA-107) is deemed sufficient for operation at the transmitter for testing and emergency operations.

All the above equipment, each unit in its own metal cabinet, forms the wall of the shielded room facing out on the transmitter control room. Within the shielded room, also enclosed in metal cabinets, are the iconoscope camera used with both the slide projector and the film projector, and the associated electronic equipment. This equipment, together with shading and other controls, is operated from the camera control desk. Six spare rack cabinets stand empty for future expansion.

Tower Control House

Some details of the microwave relay equipment have not yet been worked out. The tentative plan is to provide a 2 -kilomegacycle and
two 7 -kme links for remote pickups at North Bergen. The receiving dishes will be located on the tower and coaxial lines will feed the signal to the shielded room for monitoring and despatching to master control at the New York studios.

The control house itself is located at the 555 -foot level of the tower, or 795 feet above sea level. It houses an electric winch and 600 feet of steel hoisting cable, serves as control point for the antenna heater thermostat control, and contains the microwave receivers and associate equipment. In addition,
there is a 300 -pound capacity block and tackle to aid in moving gear about the inside of the structure.

Although it is not expected that personnel will be stationed regularly at this point, the stairway up the tower is brought up to this level, with a vertical steel ladder going from here to the top of the tower. There is a steel grating around the house and a fence so that personnel can safely inspect the outside of the enclosure or set up experimental equipment in that area.

Above the roof of the control

FIG. 6-Simplified diagram of the coaxial cable circuits between studios and transmitter

FIG. 7-Facilities are provided for carrying one remote while setting up for another simultaneously. Switching is done at studios and desired program fed back to transmitter

FIG. 8-Video signal switching and check points at the transmitter plant

Dummy load used for testing transmitters. Metered water flows over a power-dissipat-
ing resistor. Temperature difference of water between input and output shows power
house is another steel grating surrounded by a fence. This upper area is used for mounting the microwave dish antennas. A hinged trap door is provided for lowering equipment, and there is a 2 by 6 foot trap door in the house, near the winch and motor, to allow hauling equipment up to this level by power.

The house itself is 10 by 10 feet and has 8 feet headroom inside. The walls are RPM V-beam 22-gage siding with a half-inch lining of insulation. The proper closing and weatherproofing of this building is extremely important if it is reliably to perform its function of sheltering microwave circuit equipment. Temperature effects, either heat or cold as well as the effect of humidity, will be accentuated by the winds that will be considerably higher in velocity than those on the ground.

The exact placement of the microwave antenna dishes will not be settled until experience has shown both what is possible and exactly what the circuit problems will involve. In the early stages, manually adjustable dishes will be employed. The ultimate arrangement will involve antennas that can be remotely oriented both in azimuth and direction controlled from within the main transmitter building. These antennas in plastic radomes will shoot through the steel tower members in the desired direction. Experiments so far made indicate that at 2 kmc there will probably be no great difficulty in picking up remote transmitters with a receiving dish located inside the

FIG. 9-Control areas in the studios. Program control rooms (A) are located at approximately studio floor level. Camera control and equipment (B) are located on floor above looking out over studios
tower. Whether or not this can also be done at 7 kmc has not been determined.

Wire facilities for WOR-TV and WOR-FM are of three types: subscriber's line for regular telephone conversations, high-quality audio program lines, and broadband video circuits for video signals. All of these facilities are leased from the Telephone Co.

There are two video circuits provided to convey signal from master control to the transmitter. In addition a third video circuit is being provided to convey signals from North Bergen to the studios in New York. This latter circuit will also be furnished by the Telephone Co., but will probably consist of a microwave link.

Regular telephone service is handled through the WOR PBX board at 1440 Broadway. Between 40 and 50 extensions will serve television operations, most of these lines being used at the studios and offices at 67 th Street.

For f-m programming, there are two lines, one for regular service and a spare, between the 1440 Broadway studios and North

Bergen via the Lincoln Tunnel. These lines are substantially flat from 40 to 15,000 cycles. A similar pair of program lines for television sound is provided between the 67 th St. studios and the transmitter.

The two coaxial cable circuits are outlined in Fig. 6. They have a response essentially flat up to 4 mc .

Progress of a Program

Although it is intended to receive remote pickup signals at the transmitter, best operating practice dictates that they be returned to the studio for switching, both back to the transmitter and onto the network. It is therefore necessary to provide return circuits as shown in the tentative diagram of Fig. 7. This is the purpose of the third video circuit mentioned above.

The progress of an incoming video signal from the coaxial line through the numerous switching and check points to the transmitter is shown in Fig. 8.

Studios

The studios at 67 th Street are still under construction at this writing. They have been arranged to
complete the overall plan for flexibility and economical operation. The control rooms outlined in Fig. 9 look out into studios that are about 45 by 60 feet. Equipment is kept to a minimum in the control rooms by eliminating camera control units from this area. They are centralized as described below. However, adequate monitoring is provided, the aim being to have not only one monitor available for each camera associated with the studio, but also one monitor for each additional picture source that might be used in a given program presentation. This is accomplished by having a director's console with seven monitors, which should give adequate flexibility in this respect, and avoid the confusion of continual switching of monitors.

The camera technical control is centralized on the second floor along with other programming functions that do not require a view of the studios. By means of good intercommunication and camera switching systems, the flexibility of equipment is enhanced and more than the normal four camera chains per studio can be employed.

How VOA

Master control jack field and program amplifiers at VOA, New York

By GEORGE Q..HERRICK

International Broadcasting Division
Department of State
New York, N. Y.

THE problems of international broadcasting are very different from those of commercial a-m broadcasting as practised in North America. Coverage is dependent, as it is in any service, upon field strength, signal-to-noise ratio, and interference. The selective fading

FIG. 1-Schematic circuit diagram of the audio peak clipping amplifier

Combats Jamming

Abstract

Successful international broadcasting by the Voice of America depends upon many factors including choice of radio frequency, location of transmitters, and efficient modulation. The predistorter and peak limiter described accentuate speech intelligibility when multiple use of frequencies causes jamming

Abstract

that is characteristic of skywave signals upon which international broadcasting depends sets a low maximum for signal quality. Particularly when it is desired to transmit speech with a maximum of intelligibility, wide departures from standards of broadcast music quality can be tolerated. The criterion for desirable transmission becomes one of efficiency, or optimum use of modulating power.

Speech Characteristics

Studies of speech characteristics indicate that most of the energy is carried in the lower frequency vowel sounds. Intelligibility of speech in almost all modern languages, however, resides in the higher frequency consonant sounds. These paradoxical factors have been reconciled in the design of an audio peak-clipping amplifier employed for broadcasting speech at the highest possible percentage of modulation and minimum distortion.

There are available a number of
devices and circuits for limiting percentage of modulation that are satisfactory for standard broadcast or communications operations. When considered from the point of view of voice intelligibility they are inadequate. The lower frequency vowel sounds carry energy and are also impact vowels that act as the triggering pulses in the control circuit of automatic gain-control devices. Overmodulation transients are not automatically avoided with simple limiting or compressor circuits because all of the first peak is not limited. Time is required for gain reduction to occur. Moreover, in terms of intelligibility, it can be shown that although the average percentage of modulation of the transmitter is increased, the resulting signal loses in intelligibility.

The gain reduction of a limiting amplifier is initiated by peaks of the impressed signal caused by the low-frequency vowel sounds. Because the device requires a finite time to come into and go out of

Front panel view of the audio peak clipping amplifier
operation, not only does the peak of the action sound pass through the transmitter at full amplitude, but the compressor device is left in a low-gain state for the following consonants. As a direct result, the gain into the transmitter must be kept at sufficiently low level as not to cause overmodulation on peaks, and the consonants are, so to speak, doubly penalized by such a system.
In addition, the high frequency of occurrence of the impact vowels tends to keep the limiter, when operating with normally used gain restoration time constants, in a continuous state of gain reduction.

Advantages of Clipping

The desirability of the clipping technique becomes apparent when it is realized that all usual limiting action involves finite time intervals, both for the attack and release, whereas clipping acts instantaneously. There is a consequent deterioration in intelligibility when limiting even though there may be an increase in the overall transmitted energy, whereas, with clipping there is an improvement in the intelligibility and an increase in the overall transmitted energy.

The equipment used at Voice of America increases both the intelligibility of the transmission and the average percentage of modulation (without danger of overmodulation) by a combination of two techniques. The audio signal is first predistorted and the resultant signal is then clipped.

Because of the greater amplitude of the low-frequency vowel sounds, most of the clipping takes place in that region and the consonant sounds are not normally affected. As a result, there is now a greater
relative amplitude of consonant than vowel sounds. Pre-emphasis of the higher frequencies, from 2 to 7 kc , again increases the relative amplitude of the consonants.

The four filters incorporated in the clipping amplifier are essential to its optimum operation. The first shown in Fig. 1 is the R-C network comprising R_{1}, C_{1}, and C_{2}. The effect of this network is to cause the lowfrequency end to droop 8 db at 50 cycles. This characteristic not only improves the intelligibility, but also eliminates considerable distortion owing to clipping at these very low frequencies.
The second network, Z_{1}, is a tuned m-derived low-pass filter that cuts off sharply above 7,000 cycles. This circuit restricts the bandwidth of the radiated signal and eliminates adjacent-channel interference. The suppression of the higher-order frequencies before clipping eliminates potential high-order harmonic generation that might arise from clipping.

FIG. 2-Gain characteristic of the amplifier. At 1,000 cycles for 50 db the noise is 67 db below a milliwatt

Filter Z_{2} is used for pre-emphasis of the frequencies between 2,000 and 7,000 cycles, peaking at 4,800 cycles. The overall resultant curve shown in Fig. 2 is complementary to the average energy curves for voice and music.

A fourth filter, following the clipper section, uses an R-C balanced phase shift filter to suppress high-order harmonics and transients that might otherwise cause interference on adjacent channels. An R-C filter was used in order to avoid the resonant transient effects inherent in the L-C type.

Point of Clipping

The point of clipping is arbitrarily defined as the point reached when a $10-\mathrm{db}$ increase at the input to the device results in not less than a $9-\mathrm{db}$ increase in the output, and beyond which the peak voltage output does not increase by more than approximately 10 percent regardless of increased signal input. The clipping action has been set at a predetermined point, up to which the amplifier is essentially linear with little distortion. For instance, using a 400 -cycle tone, there is less than 1.25 -percent distortion at 5 db below the point of clipping and less than 6 percent at the point of clipping. In application, this amount of distortion can be tolerated because of the distortion developed by the short-wave transmission paths and that inherent in many receivers. It should be noted, further, that the distortion curve shown in Fig. 3 is

FIG. 3-Output and distortion curves of the clipping amplifier
for single-tone sine-wave signals and therefore does not truly reflect the aural distortion experienced under actual conditions using complex program material, as can be proved by listening to one of the broadcasts.

It should also be noted that the input-output curve shown in Fig. 3 is based on measurements of rms amplitude and therefore in no way reflects the true peak clipping characteristics of the unit. Oscilloscope indications must be employed to show the comparison with rms readings.

In operation, three controls are used: the input, output and the mechanically interlocked clipping control. With a single tone of 1,000 cycles applied to the input of the clipping amplifier, the input control is varied until a deflection of 100 is indicated on the vu meter. With the output connected to the transmitter input, the output control is increased until the desired percentage of modulation (normally about 85 percent) is obtained. Under operating conditions with program input, an oscilloscope is required for determining the percentage of modulation. The usual modulation monitor reads rms values and hence any reading made while clipping will be high compared to the true peak percentage of modulation.

Adjustment and Operation

With normal program, the input control is again readjusted until peaks cause a meter deflection of 100. Ordinarily, 9 db of clipping is used. Beyond this point harmonic distortion becomes increasingly apparent. The 12 - or $15-\mathrm{db}$ switches are used only during periods of severe interference.

The equipment has been designed by International Broadcasting Division engineers of the State Department and manufactured by Langevin Mfg. Corp.

Bibliography

L. J. Sivian, Speech Power and its Measurement, B.S.T.J., 8, 1929.
W. B. Snow, Audible Frequency Ranges of Music, Speech and Noise, B.S.T.J., 10 , 1931.
J. C. R. Licklider, Effects of Amplitude Distortion upon the Intelligibility of Speech, J. Acous. Soc. Am., Oct. 1946. M. H. Dean, The Theory and Design of Speech Clipping Circuits, Tele-Tech, May 1947.
H. Fletcher, "Speech and Hearing," D. Van Nostrand.

PHOTOCELLS

Measure and Control Gas

A metered flow of gas passes through chemically sensitized fabric tape which turns brown in the presence of hydrogen sulfide. The degree of stain is measured by a differential photometer consisting of two photovoltaic cells in a bridge circuit

By WILLIAM H. SCHAEFFER

NOXIOUS QUALITIES of hydrogen sulfide in many phases of chemical technology, its corrosive action in gas storage and distribution systems, the corrosive character of its products of combustion, its contamination of furnace charges in metallurgical operations and other objectionable characteristics of this common constituent of both manufactured and natural gas have long been recognized. In the atmosphere its toxic effect is well known and is the subject of legislation defining the maximum permissible concentration for continuous exposure of the worker.

Despite the technical and hygienic significance of the control of hydrogen sulfide, no method for the automatic periodic measurement of its concentration in the ranges of interest was available prior to the advent of the photoelectric cell. Because of the very low concentration involved, of the order of a few parts per million or a few tenths of a grain of $\mathrm{H}_{2} \mathrm{~S}$ per 100 cubic feet, the more common methods of gas analysis based on the measurement of thermal conductivity, specific heat, heat of combustion, electrolytic conductivity of aqueous solutions of the gas, or other non-specific property cannot readily be employed.

Although lead acetate has been employed for many years in the detection of hydrogen sulfide by visual
means, the conditions under which the test is normally made are conducive neither to sensitivity nor reproducibility. Credit for defining the conditions under which high sensitivity and accuracy can be attained, and for establishing the basic features of design of the automatic recording and controlling
analyzer here described, is due D. V. Moses and his associates at E. I. du Pont de Nemours \& Co.* The generous cooperation of this company is gratefully acknowledged.

Gas from a suitable sampling line is fed continuously into the analyzer

* U. S. Patent 2,232,622.

Installation of the analyzer in the metering room of a gas and coke producing company
and is there brought to a predetermined temperature and humidity. A metered flow of gas is then passed through a restricted area of a sensitized white fabric tape previously impregnated with lead acetate, glycerin and acetic acid. In its passage through the tape the hydrogen sulfide reacts stoichiometrically with the lead acetate, forming the characteristic brown lead-sulfide stain.

The area of the tape subjected to the flow of gas is illuminated with light of appropriate spectral quality and the relative reflectance, compared to a similar area of tape not exposed to the gas flow, is measured by a differential photometer consisting of two photovoltaic cells in a bridge-type circuit feeding into an automatic continuous-balance recorder of the null type. As the gas flow continues the lead-sulfide stain deepens, the reflectance decreases, and the recorder indicates the progress of the change. A schematic diagram of the apparatus is shown in Fig. 1.

At the conclusion of a preselected test period the photometer is automatically disconnected from the recorder whose indication remains at the position corresponding to the reflectance of the tape at the end of the test period. At the conclusion of a preselected cycling period an explosionproof motor releases the tape, advances it sufficiently to expose a new section, rewinds the used section, and reclamps it, all within approximately one second.
The recorder is automatically reconnected to the photometer, returns to zero indication, and the succeeding test period begins.

This cycle is repeated, resulting in a chart record consisting of a series of peaks or plateaus whose height is a measure of the total amount of hydrogen sulfide reaching the tape in the preceding test period. A typical record is illustrated in Fig. 2.

Means are provided for varying the test period and for repeating the entire measuring cycle as frequently as may be required. For gas of extremely low hydrogen sulfide concentration, of the order of 0.1 part per million or approximately 0.005 grain per hundred cubic feet, the test period may be
continued for as long as two hours. For gas of moderate or relatively high concentration the test may be limited to as little as one minute or less.

The basic calibration, Fig. 3, of the analyzer relates reflectance or recorder readings to the absolute amount of hydrogen sulfide required to produce a stain of the corresponding reflectance. This relationship is similar to that between transmittance and concentration in conventional colorimetric analysis with transmission photometers. From the basic calibration, working calibrations for any given rate of gas flow and for any selected test period may be readily computed.

Gas Train Details

Gas entering the equipment passes first through a preliminary humidifier, after which a portion is allowed to escape through a spill bottle, thus establishing a constantpressure head on the remainder of the gas train. The gas then proceeds successively through a trap, a stainless-steel needle valve and a flowmeter. From the flowmeter, the gas passes through a secondary humidifier and trap, thermostatically controlled at 35 C , and is then fed into an annular compartment surrounding the tape exposure cell which is also thermostatically controlled.

The secondary humidifier contains a saturated solution of ammonium nitrate over excess crystals
of the salt and is thus capable of imparting a fixed water-vapor tension to the gas. The relative humidity is thereby controlled at approximately 60 percent. From the annular compartment, the gas passes through small orifices into the tape exposure cell, then through the tape which is tightly clamped above the cell, and then to exhaust.

Photometer Details

Two Mazda 1493 6.5-volt microscope illuminator lamps are employed, one for illuminating the test area and the other for illuminating the reference area of the tape. The lamps are series connected to assure that small current fluctuations will affect both lamps equally, thus maintaining proper balance in the bridge-type photocell circuit.

To avoid gross changes in lamp currents, the lamps are energized from a twelve-volt constant-voltage transformer designed for 115 -volt 60 -cycle frequency-regulated circuits. Provision for other circuits can be made when required. A variable resistor in series with the two lamps affords means for operating the lamps well below their rated voltage, normally at about 4.5 volts. The photometer lamps are stabilized by operation at 4.5 volts for 48 hours before installation.

The measuring and reference photocells are of annular shape and are placed in the thermostatted chamber, immediately below and facing the impregnated tape. Light

FIG. 1-Schematic diagram of hydrogen sulfide analyzer. The sensitized fabric tape passes through one chamber unchanged but turns brown in the one at right
beams from the two photometer. lamps are filtered to isolate a spectral band corresponding to the absorption band of the lead sulfide and are then focused so as to pass through the openings in the annular photocells, diverging sharply beyond the cells to illuminate the exposed tape areas.

The light beams are diffusely reflected by the tape and are intercepted by the measuring and reference cells which are connected in the balanced bridge circuit shown in Fig. 4. Circuit parameters are so chosen that linearity in the currentillumination relationship is maintained.

Referring to Fig. 4, voltages derived from the loading circuits of the reference and measuring photocells are connected in opposition through the converter of the con-tinuous-balance recorder. Any inequality in these voltages causes the recorder balancing mechanism to drive the slidewire in the appropriate direction until balance is restored. The system is initially balanced, with fresh tape in position above the reference and measuring cells, by manipulation of the zero adjustor until the recorder indicates a reading of 5 on its 100 division chart.

The zero adjustor permits balance to be achieved irrespective of inequality in sensitivity of the two photocells and of possible asymmetry in the optical system. Since the balance position, either in set-
ting the zero or in indicating a measurement, is a function only of the ratio of the voltages, the accuracy of the analyzer is affected neither by the small lamp current changes which persist despite the use of the voltage-regulating transformer, nor by chance variation in the absolute reflectance of the tape from roll to roll.

The use of an isolated spectral band for the reflectance measurement not only increases the sensitivity of the analyzer but contributes also to permanence of calibration irrespective of color temperature changes in the lamps.

A chart reading of 5 for the photometer zero is chosen in order to permit automatic indication of any unusual condition which might disturb the initial setting. In the normal course of operation the recorder returns to the zero position of 5 (± 1 division representing random variation in reflectance from spot to spot on the tape) at the beginning of each test. The development of any condition affecting the zero balance is indicated on the succeeding test cycles by departure of the zero from its normal setting. As long as the zero remains on scale it is possible to calculate new reflectance values corresponding to the new zero position, thus permitting accurate evaluation of data obtained even before normal operating conditions are restored.

Because of the exponential rela-

FIG. 2-Portion of a typicai hydrogen sulfide analyzer record covering several hours showing a 10 -minute test period in each 15 -minute cycling period

FIG. 3-Basic calibration of the analyzer

FIG. 4-Slide-wire photometer bridge circuit
tionship between the absolute amount of hydrogen sulfide passed through a given area of the tape and the relative reflectance of that area, the lower portion of the reflectance range becomes exceedingly crowded and cannot be used to advantage. For this reason the relative reflectance covered by the recorder scale (5 to 100) has been limited to the range from 100 percent down to 34.5 percent. Other ranges can be provided by changing the 20 -ohm resistor at the lower end of the recorder slidewire to the appropriate value.

Ranges

By changing the timer settings and the rate of gas flow, full-scale deflection of the recorder may be made to correspond to any chosen concentration of hydrogen sulfide between 2 and 500 parts per million. On the lower range a concentration of 0.04 part per million produces a deflection of 5 divisions on the recorder scale.

By appropriate modification of the basic design, concentrations as high as 25 percent of hydrogen sulfide can be readily handled. Equipment for use in the higher ranges is individually designed to meet the specified requirements for each installation.

CITIZENS RADIO

THe gradual push toward more widespread use of the frequencies above 300 megacycles by the general public, and by non-commercial and non-research organizations such as radio amateurs and owners of Citizens Radio Service equipment, has created a need for some means of checking transmitted frequency in this range.

Perhaps the simplest method is by means of a Lecher line, but this is subject to the limitations of maximum accuracy obtainable, susceptibility to external influence, maximum sensitivity, and fineness of tuning. For example, the AN/ APT-5 radar jammer (recently available as surplus equipment) was furnished with a simple paral-lel-line wavemeter, calibrated directly in centimeters. By careful adjustment, this wavemeter should indicate the half-wavelength being monitored to $\pm 0.2 \mathrm{~cm}$, yielding a limiting accuracy at 50 cm (600 mc) of $\pm 0.4 \mathrm{~cm}$, or ± 0.8 percent. The pilot-light indicator on this wavemeter requires only about 50 milliwatts for a reasonable indication. This type of device, however, can be thrown far off calibration by proximity effects and poor contacts on the slider. In fact, one commercial manufacturer of a similar instrument rates it at 2 -percent accuracy.
Cavity frequency meters (more correctly, wavelength meters) should be inherently free from external influences, being entirely shielded. They may be made and calibrated as accurately as machine tools and temperature effects will allow and may be made as fine in tuning as machined screw threads can be fashioned.

Basic Design

Consider first a section of airdielectric coaxial line, as shown in Fig. 1. For the physical constants

Final coaxial-type wavemeter for the Citizens Band

Preliminary model of the wavemeter
shown, this section will have a characteristic impedance Z_{0} equal to 138 $\log _{10}(b / a)$. If this line is completely shorted at one end, and power is coupled in at that end, the cavity so formed will have a reactance X at any frequency f given by the relationship

$$
X=Z_{0} \tan (2 \pi l / \lambda)=Z_{0} \tan (2 \pi f l / c)
$$

If, now, a capacitance C is added across the open end from the center to the outer conductor, such that $X_{c}=-1 / 2 \pi f C=-Z_{\iota} \tan (2 \pi f l / c)$, the line will be tuned to resonance. If the capacitor is made variable, the whole instrument, when calibrated, comprises a wavemeter.
To improve the shielding, the open end of the line is usually closed by adding an end plate or disk, after
which the simple calculation for unloaded resonant wavelength must be considered approximate, since the radial electric field near the end of the center conductor is distorted by the end disk. Further, the capacitance between the end disk and the center rod itself becomes a pertinent part of the loading or tuning capacitance. If the center rod is made larger in diameter, and its separation from the end disk made variable, this variable capacitance may be made to alter the resonant frequency of the unit, which now may be considered to be a loaded coaxial $\mathrm{TE}_{м}$-mode cavity, with variable capacitance loading.

The amount of loading capacitance may be calculated as described above, from the equation

Two coaxial-type wavemeters are described in detail for guidance of experimenters developing equipment for the band from 460 to 470 mc . Accuracy may be made adequate for use with class B gear or, by greater construction precision, with class A transmitters

$$
\begin{gathered}
\left|\frac{1}{2 \pi f C}\right|=\left|Z_{0} \tan (2 \pi f l / c)\right|, \\
C=\frac{1}{2 \pi f Z_{0} \tan (2 \pi f l / c)}
\end{gathered}
$$

Assuming that all of this capacitance will be provided between the center rod and the end disk, the approximate equation $C=0.2235 \mathrm{~A} / \mathrm{d}$ for parallel-plate capacitors may be applied, giving
$\mathrm{d}=0.2235 A \times 2 \pi f Z_{0} \tan$
$2 \pi f l / c=0.447 \pi A f Z . \tan 2 \pi f l / c$ where A is area of one plate in square inches and d is plate separation in inches.

Thus, all of the factors necessary for design of a simple cavity wavemeter may be calculated, with the exception of the effect of distortion of the field near the end plate. The coupling loop, for example, must not be too large, or the variable reactance of the cavity, while tuning, will be strongly reflected into the circuit being calibrated. This may cause detuning of the oscillator, or pulling, or cavity heating on a high-powered circuit.

A large loop will project out of the high-current high-magneticfield end of the cavity, into the region where the radial electric field should be appreciable. Since a conductor cannot tolerate an electric field gradient along its length, the field must be distorted, and so one more error in the basic cavity calculation is introduced.

If the loop is too small, on the other hand, then it will not be able to cut enough lines of flux in the cavity to couple the cavity into the external circuit. This will result in too low an apparent Q, evidencing itself in extremely broad tuning, and a consequently inaccurate indication of resonance. A compromise must be effected on the undercoupled side, to prevent overcoupling,

[^1]pulling, and a large error in the prediction of the range of operation.

Practical Design

In the 460-470 megacycle region, a quarter-wavelength is about 6.5 inches, and so an inside cavity length of about four inches was tried in the first experimental model. The length must be shorter than a quarter-wavelength so that it may be tuned to resonance by the addition of the loading capacitance.

For the cylinder, stock brass tubing 2^{3}-inch O.D., 2-9/16-inch I. D. was used. The center rod was a piece of 1 -inch brass rod, with the end facing the plunger tapered to one inch. The characteristic impedance was calculated to be about 43 ohms. End pieces were machined from $3 \frac{1}{2}$-inch diameter brass rod, and the variable capacitance was provided by threading a $1 \frac{1}{1}$-inch diameter rod into one end piece, at 48 threads per inch.

Power was coupled into the cavity by a coupling loop placed in a radial plane at the low-voltage-highcurrent end of the cavity. In addition, a fixed capacitance of about 3 micromicrofarads (Erie type NPOK) was soldered across as shown in Fig. 2.

Calibration was accomplished by loosely coupling the cavity as a shunt on the line from an oscillator to an antenna, and monitoring the radiated power with a broad-tuned radiated power meter and a Lavoie microwave frequency meter. A section of RG-21/U cable was used as an attenuator after the oscillator, to minimize pulling effect on the unstabilized BC-645 oscillator. The arrangement is shown in Fig. 3.

The cavity impedance was actually reflected, through the r-f transformer action of the coupling loop, back to the main line where it appeared as a shunt reactance.

Standard r-f cable (RG-8/U) was used throughout, except for the section of high-attenuation cable mentioned. Standard type N fittings (UG-21/U, UG-58/U, UG$29 / \mathrm{U}$ and UG-107/U) were used.

No difficulty was experienced in determining the position corresponding to cavity resonance; a distinct dip in radiated power was observed. Care must be taken to avoid spurious responses, if other frequencies are present in addition to the fundamental. The curve of Fig. 4 shows the calibration of this first model. The tuning sensitivity near 465 mc is about 90 degrees plunger rotation for one megacycle, or about four megacycles per turn.

Second Model

On the basis of this rough model, a second cavity was built, as shown in Fig 5. Stock brass tubing of 1.75 -inch O.D., 0.083 -inch wall thickness was used as the cylinder. The center rod was machined down to 0.415 -inch diameter, from $0.875-$ inch brass rod, leaving a $\frac{1}{4}$-inch portion at full diameter as a fixed capacitance plate.

All pieces were silver plated before assembly. After plating, the characteristic impedance was expected to be near 80 ohms, 77 ohms being the figure generally quoted as the impedance for optimum Q.

End pieces were machined from 2-inch O.D. brass disks $\frac{3}{8}$-inch

FIG. 1-Basic concept of coaxial line used to develop wavemeter
thick; the variable capacitance was provided by threading a $\frac{7}{8}$-inch diameter rod into one end piece, at 64 threads per inch.

Calibration was again accomplished by recording resonant frequency versus angular rotation of this plunger, instead of longitudinal displacement. A scribe mark was placed on the external portion of the plunger and the outer face of the end disk was marked off every 30 degrees, thereby providing a dial on which to read plunger rotation and, therefore, displacement.

Calculations from the formulas are as follows: $l=5$ inches $=12.7$ $\mathrm{cm} ; A=0.6$ square inches, $Z_{\circ}=80$ ohms. Then $1 / C=502 f$ tan 2.66 $\times 10^{-3} f$.
In the region of $460-470$ megacycles, a change of 10 mc should require a shift of 0.0096 inch, while one turn of the plunger at 64 threads per inch advances it 0.0156 inch. One turn, then, should be about 16 megacycles, at a center

FIG. 2-Mechanical drawing of first model of cavity wavemeter

frequency of 465 mc , or about 13 me at 475,11 at 485 , or 9.4 at 495 megacycles. Actual tuning as measured on the first cavity of these dimensions was 9 mc per turn at 465 megacycles, indicating that the effective capacitive effect of the field distortion at the highvoltage end was about $0.45 \mu \mu \mathrm{f}$, sufficient to shift the resonant frequency 30 megacycles.

Accuracy

Since the tuning sensitivity was 9 mc per turn, or per 360 degrees, the accuracy of scale reading should be better than ± 5 degrees, or $\pm 0.13 \mathrm{mc}$, or ± 0.028 percent. Even allowing for ± 10 degrees backlash in threads, $\pm .08$ percent at any one temperature should be assured.

The question of temperature, however, is of major concern. Making all parts of brass, an expansion coefficient of about 18 parts per million per degree Centigrade may

FIG. 4-Calibration curve of first model constructed

FIG. 3-Block diagram of setup for calibration and schematic circuit of cables to wavemeter
pe expected (1.000018). Since the fundamental resonant wavelength is proportional to the physical length of the cavity (unloaded), the resonant frequency will lower 0.0018 percent per degree rise in temperature.

In the 5 -inch long $460-470 \mathrm{mc}$ cavity, the unloaded resonant frequency is 590 mc , and will therefore shift $590 \times 18 \times 10^{-9}$, or 10.62 kc per degree C. However, the spacing between the center rod and the plunger will increase in proportion, 0.0018 percent of 0.1292 inch, or 2.32×10^{-6} inch per degree C.

A tuning sensitivity of 9 mc per 15.6×10^{-3} inch has been observed, corresponding to 1.33 kc for $2.32 \times$ 10^{-8}, giving an overall frequency shift of 9.29 kc per degree C. Over a range of 50 to 90 F , or about \pm 10 C , a frequency uncertainty of $\pm 0.093 \mathrm{mc}$, or ± 0.02 percent is introduced, bringing the total to near 0.1 percent.

Using low-expansion coefficient material, a saving of only 0.002 percent per degree C may be realized, while backlash effects in worn or poorly machined threads can produce forty times this effect. Even so, an amateur machinist should be able to manufacture a cavity wavemeter which, after calibration, should meet the class B FCC tolerance of ± 0.4 percent for Citizens Radio Service equipment.

Increased Sensitivity

An interesting design improvement is the substitution of a fixed capacitor for a portion of the loading capacitance. It has been calculated that $1.406 \mu \mu \mathrm{f}$ is required at 470 mc , of which $0.45 \mu \mu \mathrm{f}$ is supplied in stray and fringing capacitance, leaving 0.956 to work with. If $0.5 \mu \mu \mathrm{f}$ of fixed capacitance is added in the form of a small ceramic capacitor, such as an Erie Ceramicon, type N330K, soldered directly across from the flared end of the center rod to the brass cylinder near the end plate containing the tuning screw (see Fig. 2), then distances d_{1} in Table I are applicable, instead of d. These have been calculated assuming $0.45+$ 0.5 or $0.95 \mu \mu \mathrm{f}$ of fixed capacitance, plus $0.456 \mu \mu \mathrm{f}$ of variable capacitance at 470 megacycles.

The tuning sensitivity near 465

FIG. 5-Complete mechanical details of final wavemeter. All parts were silver plated before final assembly

FIG. 6-Frequency calibration with a fixed capacitor forming a portion of the loading capacitance
mc has now been changed from 9 me per turn (0.0156 inch) to about 2 mc per turn, and the error caused by ± 15 degree plunger uncertainty has been reduced to $\pm 87 \mathrm{kc}$, or ± 0.0187 percent. Furthermore, use of a negative temperature coefficient capacitor of $0.5 \mu \mu \mathrm{f}$ will provide some correction for thermal expansion of the cavity. The change of a $0.5 \mu \mu \mathrm{f} 330 \mathrm{~K}$ capacitor in one degree C is $165 \times 10^{-6} \mu \mu$; the sensitivity to a capacitance shift is 10 mc per $0.156 \mu \mu \mathrm{f}$, or 10.57 kc for $165 \times 10^{-0} \mu \mu \mathrm{f}$, very closely balancing the 9 to 10 kc calculated.

Another attempt at temperature compensation may be made by making certain portions of the cavity of material of thermal expansion
coefficient different from that of brass. The center rod, for example, may be made in two pieces, one of brass, (of expansion coefficient about 18×10^{-9} per degree C), and one of steel (of expansion coefficient about 12×10^{-8} per deg. C.

Theoretically, by careful adjustment of the length of the steel section, the natural overall negative temperature coefficient of frequency may be exactly balanced, but actually this is not practicable. Furthermore, the effects of soldering, whether low-temperature or high-temperature, are such as to make the exact expansion coefficients unpredictable. Also, the mathematics of the capacitanceloading calculation shows that such

Table I-Calculated Values

f in mc	$\tan _{10^{-3}}{ }_{f}^{66} \times$	$\begin{gathered} 502 f \\ \left(\times 10^{22}\right) \end{gathered}$	$\begin{gathered} 1 / C \\ \left(\times 10^{12}\right) \end{gathered}$	C in $\mu \mu \mathrm{f}$	d in inches	d^{1}
450	2.55	0.2259	0.576	1.735	0.0771	0.171
460	2.77	0.2309	0.640	1.563	0.0858	0.219
470	3.105	0.2359	0.711	1.406	0.0954	0.294
480	3.312	0.2410	0.798	1.254	0.107	0.441
490	3.664	0.2460	0.901	1.110	0.1209	0.839
500	4.087	0.2510	1.026	0.975	0.1375	

a correction would only be effective over a narrow temperature range. In practice, it is wise to calibrate a cavity wavemeter at several temperatures.

Alternative Design

The last variable source of error may be eliminated by using a highgrade micrometer movement for the plunger, careful machining of the threads, or the use of two threaded pieces as a differential thread for the plunger movement, making one 26 and one 28 threads per inch, and making one left-handed and one right-handed. In large threads of this type, a tighter fit is allowable, and turning one turn on each will provide a net plunger movement, axially, of 0.03846 minus 0.03571 or 0.00275 inch, as compared with 0.01563 inch per turn on 64 turns per inch. This complicates calibration somewhat, but the improvement of accuracy by a factor of five would be highly desirable, and would bring the percentage error below 0.01 percent, suitable for use with class A Citizens Band equipment, required to be within ± 0.02 percent.

Converters for UHF

IMMINENT POSSIBILITY of commercial television operation in the uhf band of 475 to 890 mc has made it highly desirable to investigate the problems of receiver circuit design peculiar to this region of the spectrum.

- Within this awkward frequency range, conventional lumped constant circuits tend to become impractical, and likewise waveguides and cavity resonators tend to be unwieldy because of their large physical dimensions. A compromise must therefore be sought in which lumped elements are replaced in part by distributed circuits such as transmission lines or butterfly circuits.

One of the most important choices to be made in uhf converter design is that of an appropriate intermediate frequency. This choice will influence the image response, response to spurious signals, local oscillator radiation, tuning range required of the local oscillator, performance obtainable in the i-f amplifier, and receiver noise figure.

I-F Problem

Table I illustrates the effects of a wide range of intermediate frequencies on various of the above factors. For the tuning range of 475 to 890 mc , local oscillator tuning ranges and image ranges are listed corresponding to four different intermediate frequencies.

The material described in this paper is derived from work performed at the Stanford Research Institute under the sponsorship of John H. Poole, Long Beach, California.

By D. K. REYNOLDS and M. B. ADAMS
Stanford Research Institute
Stanford, Culifornia

Fixed-tuned converter being tested in conjunction with a standard television receiver. Vernier tuning of the local oscillator is provided

Image rejection is calculated for the case of a typical single tuned mixer input circuit with $10-\mathrm{mc}$ bandwidth between $3-\mathrm{db}$ points, tuned to 500 mc .

The values tabulated represent the ratio of impedance of the tuned circuit at resonance to the impedance at the image frequency, and do not take into account the mismatch arising from the frequency dependent source impedance of a typical antenna. Estimates of the best noise figures currently obtainable for the various i-f values are based on measurements made on low noise i-f strips by the Radia-

Table I—Effect of Choice of I-F on Converter Design

I-F Value in mc	Local Osc Tuning Range in mc	Local Osc Tuning Ratio	Image Range in mc	Ratio of Signal to Image	Estimated Best Noise Figure for I-F Amp
25.75	502-911	1.82	527.75-936.75	20.6 db	1.35 db
55.25 (Ch. 2)	421-830	1.97	365.75-779.75	28.0 db	2.1 db
175.25 (Ch. 7)	301-710	2.36	125.75-5.34.75	43.6 db	5.5 db
205.25 (Ch. 12)	271-680	2.51	65.75-474.75	48.6 db	6 db

tion Laboratory, M.I.T. ${ }^{1}$, and do not include the noise figure of the mixer.

The first intermediate frequency listed is the existing standard for vhf television, and therefore implies the use of single conversion (one i-f) in the receiver. In this case the local oscillator must be higher in frequency than a received signal if the existing standards on the shape of the i-f pass band are to be preserved. It is evident from the table that image rejection is very poor, and high local oscillator radiation can be expected. Furthermore, most of the image range lies within the band tuned by the mixer.

While the local oscillator tuning ratio is only 1.82 to 1 , the upper frequency limit of 911 mc precludes the use of any but a very few expensive tube types now existent. Improvement of the image rejection and reduction of local oscillator radiation could be accomplished only by means of complex input tuning networks which would materially increase the cost of the con-

TELEVISION RECEPTION

Arrangements of front ends described include semi-butterfly oscillator, tap-switch oscillator and cylinder oscillator. Crystal mixers for low noise employ a rolled-up line, a parallel line and a coaxial cavity

FIG. 1-A semi-butterlly oscillator is shown at A, a tap-switch oscillator at B and a cylinder oscillator at C
verter, and require great tracking accuracy between the local oscillator and mixer tuning.

A frequency in the order of 200 mc appears to offer a reasonable compromise between noise figure and image rejection. While this choice requires a local oscillator tuning ratio of 2.5 to 1 , such ratios are readily obtainable with circuits of the butterfly and cylinder type, as shown in Fig. 1.

Considerations of circuit economy point toward the selection of one of the vhf television channels as the i-f for a uhf receiver, to obtain the high i-f required for good
image rejection. The last three frequencies listed in Table I correspond to existing vhf channels 2 , 7 , and 12 , and the choice of channel 12 appears to be optimum.

Restriction of the tuning range may effect considerable simplification in the converter, and materially reduce the production cost. Accordingly, local oscillator and mixer circuits corresponding to three different degrees of coverage will be described. These are complete coverage of the 475 to $890-\mathrm{mc}$ band, coverage of the lower 200 mc of the band, and essentially fixedfrequency conversion.

For complete coverage of the 475 to $890-\mathrm{mc}$ band with an i-f of 205 me , the local oscillator tuning range is 271 to 680 mc , or 2.51 to 1 . This tuning range is readily obtainable with the butterfly and cylinder oscillator circuits, both of which have been developed considerably in recent years. ${ }^{2}$

Local Oscillators

A cylinder oscillator designed for the above tuning range is shown in Fig. 1C, with the associated circuit diagram in Fig. 2. The fre-quency-determining element consists of a metal block of $15 \times 1 \overline{8}$ inch cross section, $2 \frac{1}{2}$ inches long. A $1^{\frac{1}{4}}$-inch diameter hole is bored longitudinally through the block, and a longitudinal slot is milled through one of the sides.

A type 6F4 acorn triode is mounted across the slot, the plate capacitively coupled to one side, and the grid connected directly to the other. The block behaves essentially as a single-turn coil, resonating with the tube capacitance plus the capacitance of the longitudinal slot.

Tuning is accomplished by means of a rotor consisting of a longitudinally slotted hollow metal cylinder, fitted concentrically within the hole in the block. The rotor varies the capacitance across the slit, and also effects a small

FIG. 2-Circuit of the cylinder oscillator

FIG. 3-Tap-switch oscillator circuits similar to that shown in Fig. 1B

FIG. 4- \bar{A} rolled-up line mixer is shown at A and a semi-butterfly mixer at B

FIG. 5-A coaxial form of mixer is shown at A and a parallel-line mixer at B
change in the inductance of the block.

The tuning range obtained with the oscillator of Fig. IC using a gap between cylinder and block of 0.015 inch was 300 to 640 mc (2.14:1), and with a gap of 0.004 inch it was 184 to 670 mc (3.64:1). From these data it may be concluded that a slight reduction in the diameter and a spacing of about 0.006 to 0.008 inch will give the desired tuning range.

Figure 1A shows an oscillator of the semi-butterfly type, adapted specifically for use with the 6 F 4 .

The circuit is made up of a slotted cylindrical stator, and a rotor consisting of a solid half-cylinder. End plates are connected to the stator and, in conjunction with the end faces of the rotor, provide capacitive loading across the stator slot at one end of the tuning range. At the other end of the tuning range, the capacitive loading is at a minimum, while the rotor acts to reduce the inductance of the stator cylinder. The 6 F 4 tube is mounted across the stator slot in the same manner as for the cylinder oscillator.

The oscillator of Fig. 1A tuned the range of 350 to 750 mc (2.14 to 1). While this is not sufficient for use with a $205-\mathrm{mc}$ i-f, a number of small modifications to the design would undoubtedly produce the desired range.

When a high intermediate frequency such as 205 mc is used, the local oscillator for a converter tuning the lower 200 mc of the band becomes a much simpler device than the previously described cylinder circuits. Figure 1B illustrates a typical band-switching oscillator which covers a frequency range from 255 to 470 mc in seven steps. It utilizes a vernier tuning capacitor to tune the oscillator within each of the seven bands, and thus, in connection with a 205 mc i-f will give coverage of the uhf band from 460 to 675 mc .

Two alternative circuits which can be used in such an arrangement are given in Fig. 3. The circuit of Fig. 3A has the advantage that temperature compensation can be adjusted separately for each switch position.

Mixers

The selection of a tuned circuit suitable for use as a mixer is a fairly difficult problem if the entire 475 to $890-\mathrm{mc}$ band is to be covered. A crystal mixer has been chosen because of the lower noise figure at these frequencies.

Figure 4A shows a typical mixer designed to tune 475 to 890 mc . This circuit is essentially a rolled-up parallel-strip transmission line with a half-cylindrical brass slug rotating in the center to vary both the inductance and capacitance of the line. ${ }^{3}$ A diagrammatic sketch with some of the important dimensions is shown in Fig. 6. Such a circuit is particularly well suited for use with a balanced transmission line input, but can also be used with unbalanced inputs.

Another mixer circuit with wide tuning range is shown in Fig. 4B. This circuit is essentially a form of butterfly or cylinder and covers the frequency range of 270 to 850 mc when loaded with a 1 N 21 crystal as illustrated. The wide tuning range is a result of the variation of both capacitance and inductance achieved by the semi-cylindrical
rotor section. The high-frequency end of the range is reached when the rotor is completely outside of the stator end plates.

A straightforward approach to the problem of a mixer tunable over a portion of the uhf band is the parallel-line circuit illustrated in Fig. 5B. Here the crystal is tapped across the line near the shorted end and tuning is accomplished by means of a movable short. The frequency range of the model shown is 370 to 600 mc but a greater range is doubtless possible with this form of circuit.

A coaxial form of mixer has been constructed to investigate the possibility of tuning such a device by means of a section of line of variable length. Figure 5A shows one such circuit which has a restricted tuning range but is otherwise quite satisfactory. The coaxial mixer operates on the premise that the impedance of a 1 N 21 crystal has a resistive component in the vicinity of 50 ohms and hence the coaxial line input can be connected directly to the crystal.

In order that the mixer will be tuned, it is necessary to connect reactance across the crystal in such a manner that the impedance of the mixer is purely resistive at the desired frequency and is largely reactive at other frequencies. This result is accomplished by shunting the crystal with a short-circuited stub line which has a low value of inductive reactance at the operating frequency. Resonance is achieved by connecting another length of line across the crystal, so arranged that it presents an equal capacitive reactance.

The capacitive stub is an opencircuited line with a movable polystyrene cylinder between inner and outer conductor which varies both the effective length and characteristic impedance of the line. Such an arrangement is theoretically capable of giving an appreciable tuning range and consequently might be satisfactory as the mixer for a converter covering the lower 200 mc of the band.

A fixed-tuned, parallel-line mixer is sketched in Fig. 7. This mixer has been designed to be fabricated at low cost for use in a single-channel converter. A ceramic trimmer
capacitor is used to select the exact resonant frequency, 530 mc in the model shown here. The crystal bypass capacitor is built into the circuit and is approximately $10 \mu \mu \mathrm{f}$. The capacitance of the bypass was chosen as a compromise between that necessary to provide a low impedance at the signal frequency and that which could be tolerated from the standpoint of input circuit bandwidth in the i-f amplifier.

Fixed-Tuned Converter

A simple, essentially single-channel converter has been developed for use in the field testing of an experimental uhf television station. This converter uses the parallel-line crystal mixer illustrated in Fig. 7 and a local oscillator consisting of a 955 acorn triode in a parallel-line circuit. The local oscillator is tunable over a small range by means of a two-plate variable capacitor. The intermediate frequency used is
nominally 207 mc , corresponding to the center of vhf television channel 12.

Since a loss of from 6 to 8 db is suffered in a crystal mixer, it is important that the uhf converter incorporate an i-f amplifier with sufficient gain to overcome this loss. The amplifier described here accomplishes this successfully and provides performance at uhf which equals or exceeds that generally obtainable in a standard vhf television receiver. The circuit chosen for the i-f amplifier is the cascode, developed at the MIT Radiation Laboratory for use in low-noise radar i-f strips. ${ }^{1}$

The amplifier consists of two triodes connected in cascode, the output from the crystal mixer being connected through an autotransformer to the grid of the first stage, a triode-connected 6AK5. The complete circuit is shown in Fig. 8. The output from the plate of the

FIG. 6-Mechanical details of the rolled-up line

FIG. 7-Simple fixed-tuned mixer for 530 mc

6AK5 is coupled to the cathode of the second i-f stage, a $6 J 4$ connected in a grounded-grid circuit.
The output tuned circuit of the 6 J 4 consists of a single-turn hairpin loop, coupled closely to a second hairpin loop in the output circuit. Coils of this type were found necessary to achieve the desired degree of coupling and at the same time provide a reasonably balanced output circuit.

Tuning of the i-f amplifier to its center frequency of 207 mc is accomplished with slug-tuned coils in the input and interstage circuits, and by small ceramic variable capacitors in the output circuit, as may be seen from Fig. 9, which is a bottom view of the i-f amplifier subchassis. The overall voltage gain was measured to be 7.7, a quite reasonable figure in view of the fact that there is a considerable voltage stepdown in the output circuit, necessitated by the impedance transformation between the 6J4 plate circuit and the 300 -ohm balanced output.

The width of the pass band of the i-f amplifier is approximately 17 mc between $3-\mathrm{db}$ points. Inasmuch as the mixer bandwidth is approximately the same, the converter may be tuned over this range merely by varying the local oscillator frequency. In the experimental applications for which the converter is designed, this degree of flexibility is an advantage, but in converters

FIG. 9-Bottom view of $205-\mathrm{mc}$ i-f amplifier. Chassis is approximately 2 inches wide and $43 / 4$ inches long
for use in areas where more than one or two stations may be broadcasting, a somewhat narrower bandwidth would be desirable.

Local oscillator injection is obtained by tapping a short length of RG-58/U coaxial line across the oscilllator circuit and capacitively coupling the center conductor to the mixer at the far end. The capacitance necessary is quite small and consists of about $\frac{1}{4}$ inch of the center conductor spaced $\frac{1}{8}$ inch from the mixer circuit. Rectified crystal current is metered, and is adjusted to approximately 0.5 milliampere.

A standard A / N coaxial connector is provided for the uhf antenna input in anticipation that 50 ohm coaxial line will be used between antenna and converter. The coaxial input is coupled to the

FIG. 8-Complete circuit of a converter with output on channel 12
parallel-line mixer by a simple balance-to-unbalance transformer made from a short length of RG58/U line.

In conjunction with a Meissner Model 24TV television receiver the noise figure of the combination was found to be 11 db approximately. The sensitivity is 190 microvolts for 40 volts peak-to-peak at the crt grid when maximum receiver gain is used. The image response is 42 db down from signal. Local oscillator radiation is 56 millivolts across a 50 -ohm resistance connected to the antenna terminals of the converter. The bandwidth is essentially that of the tv receiver alone.

The noise figure of the combination was obtained by adding a three stage i-f amplifier with a bandwidth of 7 mc to the television receiver so that the noise level of the system could be measured by a barretter bridge connected into the last i-f stage. With the noise power initially measured, the amount of c-w signal at 530 mc required to double the power in the i-f was measured. This value of r-f signal was then compared with the theoretical amount based on the value of source resistance and the overall bandwidth to obtain the noise figure.

References

(1) H. Wallman, A. B. Macnee and C. P. Gadsden, A Low-Noise Amplifier, Proc. ${ }_{I R E}{ }^{2}$ 36, p 700 , June 1948.
(2) E. Karplus, Wide Range Tuned Circuits and Oscillators for High Frequencies, Proc. MRE, p 426, July 1945 . (3) Everett, Tuned Circuits for UHF and SHF Bands, Communications, p 19, June 1946 .

Instantaneous Deviation Control

Abstract

Audio signal of an f-m transmitter is differentiated, clipped and integrated so that the output wave is identical to the input except for slope limiting. Transmitter frequency deviations are held to definite limits determined by the maximum allowable slope

AFEW YEARS ago the performance of a radio communications system depended primarily on two factors, the power of the transmitter and the sensitivity of the receiver.

Interference between stations or systems was no serious trouble because their operating frequencies were sufficiently separated with unused channels which acted as guard bands. As more services acquired frequency assignments, the number of guard bands decreased. The spectrum is now crowded and greater use of radio communication will be curtailed and limited unless greater use is made of available channels.

Concentrated attention has been given to control receiver images and spurious response, receiver radiation and transmitter harmonics. The selectivity of receivers has been greatly improved. The engineering art has reached a point where, today, alternate channels can be used successfully with adjacent channels serving as guard bands. It must be concluded, therefore, that half the available channel space is being wasted.

Phase-modulation transmitters are particularly vulnerable to over modulation. Without control, loud voices, sharp voices, transients, or noise pulses produce wide excursions of the transmitter frequency, extending the deviation into the adjacent channel and even into the alternate channel. For operation on the desired channel, this means loss of intelligibility and a decrease in the signal to noise ratio as the transmitter deviates beyond the pass band of the receiver. Adja-

By MARIOA R. WINKLER
Research Engineer Motorola Inc. Chicago, Illinois

cent channel operation will not be possible until the frequency deviation of all transmitters is kept within their assigned channel.

Principle of Operation

In attempting to control the frequency deviation of a phase-modulation transmitter, it is of ten customary to use conventional amplitude compressors. These devices are not instantaneous. The attack time is slow and the device remains paralyzed after a transient. Even if the audio amplitude is controlled the frequency deviation of the transmitter is not controlled because the frequency deviation of a phase-modulated transmitter is a
function of both the frequency and the amplitude of the audio wave.

The desired answer to the problem of controlling frequency deviation would be a device which would virtually place a barrier or limit on the frequency excursions caused by the phase modulator. It is difficult to place such a barrier on the frequency after the radio waves have passed through the phase modulator. However, if an audio wave is synthetically produced, which would graphically look like the frequency deviations produced by the modulator, then barriers could be introduced which would hold the amplitude to certain prescribed limits.

After the audio wave has passed through the amplitude limiting barriers it might be restored by a reversible process to its original form and delivered to the phase modulator.

The manner in which this can be

FIG. 1--Basic circuits illustrating the fundamental principle
done is illustrated in Fig. 1. This circuit provides instantaneous deviation control (IDC). The synthesized wave is produced by a differentiation circuit. This differentiator is a simple device consisting of only a resistor and a capacitor.

As shown in both the first graph and the second column of illustrated wave forms, the differentiated voltage is proportional to both the input voltage and the frequency; more precisely it is proportional to the slope or steepness of the input wave. Since the differentiator is a gain losing device it is usually de-

FIG. 2-Sine waves with various degrees of clipping, before and after integrating
sirable to use an amplifier to raise the signal to a suitable level for clipping. This also provides electronic isolation, with zero loading of the differentiator and a more suitable source impedance for the clipper.

The clipper may be a pair of biased diodes, also shown in Fig. 1, which become conducting when the instantaneous peak value of the differentiated wave exceeds the bias. One diode will clip positive peaks and the other the negative peaks. This is shown in the illustrated wave forms of clipped voltage.

After the wave has been operated on by the clipper, the differentiation process can be reversed by passing the wave through an integrator circuit. This is also a simple device consisting again of a resistor and a capacitor as shown in Fig. 1. The second graph shows the response of the integrator circuit to be inversely proportional to the frequency.

The output wave is now identical with the input wave except for the slope limiting. The transmitter
frequency deviations will be held to very definite limits as dictated by the maximum allowable slope. The third graph indicates the overall fidelity of the instantaneous deviation control circuit to be flat over a wide band. The usable bandwidth will depend on accepted tolerances and the frequencies that need to be controlled.

The distortion caused by IDC is quite small. This is illustrated in the output voltage wave form shown in Fig. 1. Distortion is introduced only into those wave fronts which have a slope that exceed a predetermined amount. These distortions in general consist of higher order harmonics which fortunately are eliminated by the integrator to a point where they are readily tolerated.

The distortion introduced in a sine wave can best be understood from a graphical study as shown in Fig. 2. A moderate amount of clipping produces trapezoidal waves with curved sides. After integrat-
ing, the curved sides become the rounded extreme of the alternating current and the flat top becomes the straight line sides of the same current. The rounded portion is identical with the rounded part of the original sine wave before being applied to the differentiator. From a geometric standpoint the only distortion introduced has been over that part of the sine wave which had too great a slope.

Obviously the greatest distortion that can possibly exist would occur when the clipper produces square waves. The output from the integrator would then be a triangular wave having only odd harmonics. The third harmonic would be $1 / 9$ th of the fundamental, the fifth harmonic $1 / 25$ th of the fundamental and other harmonics trivial.

The distortion introduced by IDC into voice frequencies does not lend itself quite so well to such a simple analysis. Many voice frequencies are quite peaked and jagged and can pass through the IDC circuit

FIG. 3-Fixed station instantaneous deviation control circuit

FIG. 4-Circuit of a mobile IDC unit
without having their intelligence content seriously altered yet the transmitter frequency deviation may be reduced by a large margin. The voice level between syllables is usually lower and experiences little or no clipping. It is therefore possible to provide greater deviation for the lower voice levels or greater overall average deviations without exceeding the desired or authorized deviation limits.

Commercial Equipment

In making a practical application of IDC to a transmitter there are a number of considerations which may dictate the final design.
Size, cost, power drain, the fidelity desired and the range of offending frequencies will affect the choice of components and circuits. The type of differentiator, clipper, or integrator may vary considerably from the one illustrated in Fig. 1.

Figure 3 is the circuit diagram of a fixed station IDC unit. Differentiation is accomplished by the capacitor C_{1} and the resistor R_{1}. The clipper circuit differs from that previously described.

The combined diodes are fed a constant direct current. Normally half this current goes through each diode. Any small signal variation, positive or negative, applied to the cathode of the input diode, will normally cause the same variation at the cathode of the output diode. The diodes therefore serve to conduct the variations from input to output. However, if large variations of signal are applied at the input, the first diode will become nonconducting on positive peaks and the second will become nonconducting on negative peaks.

Integration is accomplished by the capacitor C_{2} and the resistor R_{2}. The clipping level, or the deviation, is adjusted by a potentiometer regulating the diode current. The volume level is adjusted at the input where no interaction exists between it and deviation. A resistor shunting C_{1} affords some bass compensation. The output is pushpull.
Figure 4 is the circuit diagram of a unit useful for mobile application because of its low cost, small space requirements and low power drain.

This unit is designed to accommodate a carbon microphone in the input and deliver a balanced or pushpull output for the grids of the phase modulator tubes. No amplification is used within the circuit and clipping is performed with germanium crystal diodes. Differentiation is performed with the $C_{3}-R_{1}$ and $C_{3}-R_{2}$ circuits; integration with the $C_{0}-R_{2}$ and $C_{1}-R_{4}$ circuits.

Performance

When the action of an IDC circuit is observed on an oscilloscope connected to the discriminator of a good f-m receiver, the voice wave seems to strike an invisible barrier even when subjected to 20 or 30 db overload. The barrier remains fixed even when subjected to sudden bursts of signal or transients. There is no attack time or paralysis, it is instantaneous. This makes close talking possible thereby reduc-
ing background noise. It tolerates a wide range of audio level.

The control prevents transmitters on nearby channels from spilling over into the pass band of system receivers. But more important is the fact that it holds the system transmitted frequency within the associated receiver bandpass response, permitting a higher average modulation level. This results in an increased signal-to-noise ratio and improved reception in fringe area operation.

Adjacent channel operation in the mobile field is now a requirement and it is axiomatic that deviation control is necessary. Since IDC is quite simple, economical, and fool proof, it is destined to see wide application.

Acknowledgement is due John Hultquist who was the first to try the idea, and others who have contributed the commercial developments.

Metal Detector for

Features include a new bridge coil arrangement, designed to provide more uniform sensitivity to objects embedded in logs and lying at various angles in the logs. Complete circuit diagrams with values and pickup coil winding data are included

By CURTIS R. SCHAFER
Chief Electronios Engineer Aviation Engineering Corporation Ozone Park, New York

THE PROBLEM of detecting unseen metal fragments in logs is becoming increasingly important to the operators of small saw mills. In many areas of this country and Europe, farmers are harvesting second and third growth timber, which may and often does contain spikes, horseshoes, fragments of wagon tires, steel fence posts, sections of fence, knives and other metal objects. Even unexploded artillery shells have been found in logs from forest areas in the West. ${ }^{1}$ When a rotary saw strikes something of this nature, the flying teeth are a real hazard to personnel.

Even the constant expectation of
the saw hitting something is responsible for much nervous fumbling when feeding the saw, and this is an accident-producing factor in itself. Much timber which is actually free of metal objects is going to waste simply because the mill operator does not dare to process $\log s$ which are questionable.

Available Techniques

There are three basic and separate approaches to this problem. All make use of variations in the pattern of a magnetic or electromagnetic field: the first, by the variation in the self or mutual inductance of a coil system; the second, by detecting variations in the earth's magnetic field with a flux gate, cathode ray, or inductor compass; the third, by variations in the absorption or reflection of radio waves generated by a local oscil-

FIG. 1-Top view of two mutual inductance coils arranged in the regular way for use with the Felici mutual inductance bridge

FIG. 2-Improved metal detection coil system which detects nails driven radially into a \log as well as axially oriented objects
lator and radiated by a local antenna system.

The operation of the radio method raises many difficulties. The radiation resistance of the antenna will depend upon the dielectric properties of the \log, which in turn are determined by the moisture and mineral content of the wood. Also, the distance between the antenna and the surface of the log must be kept constant. The $300-\mathrm{mc}$ radiation from the AN/PRS mine detector, for example, penetrates only a few inches of damp wood, and the instrument is sensitive only to relatively large pieces of metal. ${ }^{2}$

So far, any magnetic compass methods have not shown adequate sensitivity and stability.

Early electromagnetic methods used the Hay, Owen or Maxwell bridges to detect the increase in the self inductance of a coil when a magnetic metal was brought near, or the decrease in self inductance in the case of a non-magnetic metal. ${ }^{3}$ In these systems, if the size of the metal piece is relatively small with regard to the radius of the coil, and if its distance from the coil is relatively great with respect to the radius of the coil, the variation in the self inductance of the coil is inversely proportional to the sixth power of the distance between the coil and the metal. A single coil may also be used in the resonant circuit of an oscillator; in this case the presence of metal within the field of the coil will be indicated by a change in the frequency of the oscillations, and may be detected by a frequency meter. The danger in the use of any single-coil method

the Lumber Industry

The photograph shows a typical metal detector setup with the coils mounted to inspect the logs on their way to the saw
lies in the fact that for any specific frequency there is a certain size for magnetic objects at which the increase in self inductance due to the permeability of the material is exactly balanced by the decrease in self inductance due to the eddy-current losses, and no change in self inductance results. Again, there are certain conditions under which a magnetic object may act normally at a specified distance from the coil, but behave like a non-magnetic object at another distance, depending upon the way in which the electromagnetic field is intersected. ${ }^{\text {. }}$

Two-Coil Systems

Systems using two coils, or two pairs of coils, arranged so that their mutual inductance is zero in the absence of any metal in the field, have consistently shown the best sensitivity and stability. One of these systems was selected for the metal detector described in this
paper. The Felici balance (or Hughes balance), the Campbell mutual inductance bridge, and the Carey-Foster bridge are all suitable for this purpose. ${ }^{5,5}$ The Felici balance has the advantage of both electrical and mechanical symmetry, so that any variations in the coils themselves due to changes in ambient temperature and humidity are usually balanced out. The theoretical concepts involved are well treated in a paper by Leslie F. Curtis. ${ }^{\top}$

The first and most important design step was the determination of the operating frequency. Previous designs have been based upon frequencies all the way from 60 cycles per second to several hundred megacycles. A popular army mine detector was operated at 1 kc , so that the unbalance signal denoting the presence of a mine would be audible in a pair of telephone receivers. In order to get valid
preliminary design data, frequencies between 60 cps and 300 mc were tried, with the variations occurring in discrete steps of approximately one octave each. Coil systems, oscillators and detectors were constructed in accordance with the frequency used in each test. For magnetic metals it was found that general sensitivity is proportional to frequency; that is, the higher the frequency the higher the sensitivity. However, for nonmagnetic metals and water the sensitivity is proportional to the square of the frequency.

With the requirements of the lumber industry in mind (moisture content of green logs may run to 80 percent), a rather low frequency becomes the logical choice. Sixty cps and 180 cps were judged undesirable from the point of view of interference from power lines and motor fields at the fundamental and third harmonic respectively. Audio
frequencies did not have to be considered from the standpoint of requiring an audible unbalance signal, so 120 cps was selected. A stable generator of this frequency is easily derived from the 60 -cycle supply line. This frequency is low enough so shielding of coils in the bridge system is unnecessary. The small amount of capacitive coupling is balanced out with a small variable capacitor which requires adjustment only at the time the in. stallation is made.

Various coil arrangements were tried next. The Felici bridge, with two identical pairs of coaxial coils, shows its greatest sensitivity to a nail whose axis lies parallel to the coil axes, and its lowest sensitivity to a nail whose axis is at right angles to the coil axes. This is illustrated in Fig. 1. Unfortunately most nails that are driven into trees are in the position shown at B, and the coil arrangements that have been used previously are at a disadvantage. This ratio of maximum to minimum sensitivity, according to the relative position of the nail, varies with the coupling coefficient of the pairs of coils used and the coupling coefficient between the nail and the coil nearest to it, but generally lies between a ratio of 8 to 1 and 10 to 1.

Four-Coil System

The four-coil arrangement shown in Fig. 2 was originated to overcome these variations in sensitivity; sensitivity is at a maximum both for nails whose axis is parallel to the coil axes and for those whose axis is at right angles to the coil axes. A deviation of 45 degrees from either position produces only a 20 -percent decrease in sensitivity, and this is easily taken care of in the design of the detector. Each metal particle is detected twice as it goes through. In the interest of stability it was decided not to resonate the bridge coils; very little would have been gained by doing so anyway, for the Q of these coils at 120 cps is only slightly greater than unity.

The physical arrangement of the coils is such that the coefficient of coupling is zero in the absence of any metal in their fields. A piece of metal entering the effective area

Since space conservation is of no importance at lumber mills, no cowding of components was felt necessary, as may be seen from the above photograph of the metal detector oscillator chassis and power supply

FIG. 3-Schematic diagram of 120-cps oscillator used to drive pickup coils
distorts the field in its vicinity, and an unbalance current flows in the detector coils, is amplified, rectified, and operates a sequence of relays which actuate warning devices.

To derive the maximum voltage from a slightly distorted field requires a great many turns. The two detector coils consist of 700 turns of No. 30 copper wire, Formvar insulated, layer-wound in tinch deep grooves in a 24 -inch square wooden form which has previously been impregnated with Bakelite varnish and baked at a low temperature to give it dimensional stability. (Molded Mycalex coil forms will be used for future models.) The two generator coils are wound on identical forms, but have 160 turns of No. 16 copper wire. One thickness of 0.005 -inch Kraft paper is laid in between layers in both the detector and generator coils.

The 120 -cycle generator of Fig. 3 is basically a full-wave rectifier whose power comes from the $60-$
cycle line through a Variac. The ripple frequency is fed into the series resonant circuit formed by C_{1} and L_{1}, and feeds the push-pull grids of the 807 tubes with a $120-$ cycle voltage having excellent waveform. Forty watts of power is delivered to the bridge coils from this generator, although only about ten watts is actually radiated in the form of an electromagnetic field. The plate power supply and battery bias are conventional. The output is taken from two British-type coaxial connectors. Only JAN-approved resistors and oil-filled capacitors are used. The $8-\mu \mathrm{f}$ capacitor across this output absorbs any transients or harmonics which may originate in the 807 tubes. The 100 -ohm potentiometer in the cathodes of the 807 tubes is set for minimum second harmonic output.

Null Detector

A schematic of the amplifier and detector is shown in Fig. 4. The

Metal detector chassis, power supply and meter which is used to zero the instrument and to give an indication for extremely small metallic objects where the relay would not normally be operated

FIG. 4-Schemaiic diagram of metal detector amplifier and null detector
input transformer is a well-shielded (both magnetically and electrostatically) line-to-grid unit. The 1603 was selected as an input tube becanse it was found to inject a lower 120 -cycle hum component into its output than any other types which were tried. The parallel resonant circuit following this stage has a $45-\mathrm{db}$ rejection ratio to 60 -cycle intererence. As the heaters of all amplifier tubes are regulated by a small Sola transformer, and the plate and screen supply for the 1603 is stabilized with the two 874 regulator tubes, no inverse feedback was found necessary except that in the minor loop between the 6 J 5 plates, whi hactually is effective only in stabilizing the gain of the second 6.5.

A feedback loop that might have incladed the parallel resonant circuit at $L_{1}-C_{1}$ would have been undesirable because of the phase shift introduced by this circuit. A 9percent change in overall gain is
the maximum that results from a power line voltage variation of 100 to 125 volts.

It was decided to operate the first relay on a semi-power basis to insure positive operation, hence the use of a 6A3 and 6X5. Overall voltage gain to the 6A3 grid is 80 db with the gain control at maximum.

As this metal detector is to be used in lumber camps, where space is not at a premium, no consideration was given to the size or weight of any component. Rather, each item was selected with the idea that the equipment would require service only once a year with this service consisting mostly of tube replacements and the cleaning of relay contacts. Relay $R E_{1}$ is of the plate circuit type; $R E_{2}$ is energized by 115 volts, 60 cycles, and its contacts are designed to handle current for a large bell and warning light.

The 0-1 ma meter is useful in zeroing the bridge coil system, and
also to give an indication of ve y small pieces of metal which no:mally would not actuate the relay. As the detector is usually set up, a piece of metal the size of a 16 penny nail is required to trip the relays, but the presence of a thin finishing nail or wire brad an inch long will give an easily visible deflection on the meter.

Special Problems

In order to keep the coil system free from components whose values might be altered by changes in temperature or humidity, no variable self or mutual inductances are used. Instead, the generator and detector coils are accurately matched when they are wound, and the final mutual inductance balance is achieved by a slight adjustment of the rigid mounting that holds the coils in place on the frame of the log carrier. In spite of these precautions, some rebalancing is required every day or two that the detector is in operation. This is accomplished by sliding a thin soft iron wire in or out of the field of one of the detector coils. This method of trimming a mutual inductance bridge has been known for many years, and no credit is claimed for its use here.

This detector may be operated bry inexperienced personnel. It requires very little maintenance, and will give a rapid and positive warning of the presence of any metal objects large enough to damage a saw. Its operation is not affected by normal outdoor ranges of temperature and humidity, nor by relatively large variations in power supply voltage.

References

(1) Finding Shells in Lumber, ElecTRONICS, p 150, Jan. 1948
(2) Andre Violet, Mine Detector and Mine Disposal in France, Flec. Comm. mine Disposal 1948
p (3) I. G. Easton, "Impedance Bridses Assernbled from Laboratory Parts", Gen eral Radio Company, 1943.
(4) W. C. Broekhuysen, A Practical Metal Detector, Electronics, p 17, April 1938.
(5) R. F. Field, The Measurement of Mutual Inductance, Gen. Radio $E x p$., Jan 1937.
(6) S. S. West, Land Mine Locators, Elec, Eng., p 69, March 1946.
(7) L. F. Curtis, Detectors for Buried Metalic Bodies, Proc. of the $N E C$, 11 S. 4 , 1946.
(S) Grumel and Morel, The Problem of Land De-Mining, Ann. Radioelectricite, 1 160 . (vet. 1945.
(9) C., A. Heiland. "Geophysical Exploration", Prentice-Hall Book Company (10) J. A. Stratton, "Electromagnetic Theory", McGraw-Hill Book Co, Inc.
New York, 1941 .

Potted Subassemblies for

Capsulation of amplifier and oscillator subassemblies in casting resin permits up to 500 tubes per cubic foot of space for computers, telemetering setups and other complex multitube equipment. Design and construction procedures for potting are fully covered

Steps in potting a three-tube strain gage amplifier. Left-casting-resin chassis with imbedded silver-clad beryllium-copper wires serving as stiffeners, tie points, plug prongs and lead wires. Center-assembled chassis with built-in limiter and voltag gain of 20,000 , adjusted in production so all units have same gain within 1 percent. Right-complete plug-in unit as potted in casting resin. Other examples of potted plug-in units are shown in color on the front cover of this issue

Top-conventional construction of 14 -tube wide-band i-f and video amplifier with afe and agc, for input frequency of 100 mc . Center-first step in miniaturization, using potted subassemblies but retaining the chassis and a conventional low-noise preamplifier. Bottom-final miniaturized assembly complete with preamplifier, with each unit plugging into its neighbor to eliminate the chassis. Mosi of the subassemblies are coated with silver shielding paint

DESIGN PROBLEMS of complex multi-tube equipment are simplified by using as few tubes as possible because the principal limiting factors are heating, circuit interaction, and density. In normal practice the use of a minimum number of tubes involves using carefully selected tubes and parts, with sacrifice of interchangeability. If cost factors warrant, these practices are tolerable in subminiaturized assemblies, providing the assemblies are potted to avoid component replacement, and providing no use is made of tube characteristics which change with age.

The use of the potted subassembly makes possible the design of a complete functional circuit as a subassembly. So long as each subassembly is completely interchangeable with others of the same type, internal differences are quite tolerable. This means, for example, that amplifiers may be built and adjusted to a known gain for use in a circuit. The matching of tubes with components makes possible a much more efficient use of both tubes and components in circuits. This can result in less heating, fewer circuits to interact with one another, and lower density.

The power supply forms a large proportion of the size and weight of all large equipment. Time and effort spent on improving the efficiency and decreasing the weight of power supplies probably pays bigger dividends than any other point. In this connection the use of high-temperature (200 C hotspot) transformers and inductors will save almost 50 percent in the weight and volume of these units.

Since most subminiature tubes require but 100 volts plate supply, the conventional series regulator is extremely inefficient and bulky. The use of thyratron regulated supplies with miniature thyratrons as recti-

Subminiature Equipment

By W: G. TULLER
Melpar, Inc.
Alexandria, Virginia

fiers has been found to increase the efficiency of the 100 -volt regulated power supply circuit in Fig. 1 by almost 50 percent, with a correspondingly large decrease in size and heating.

When printed circuits are used for miniaturization, it is always necessary to solder in tubes. It is usually necessary to solder in capacitors, and if accuracy is required, it is usually necessary to solder in resistors. It is practical to print wire and some inductors, however, and to use printed subassemblies whenever they are available commercially in the desired combinations of R and C.

Conventional circuit construction uses multitudes of terminal boards, terminal lugs, and other holding and mounting devices. These all add space and weight, and contribute little or nothing to the electrical performance of a circuit. A construction eliminating them, therefore, is a worthwhile advance.

Potted circuit technique or capsulation is such a construction. It permits selective assembly and use of nonweatherproof components, since the potting compound weatherproofs the entire assembly. This enables the use of smaller components, stripped of their weatherproof containers. All holding means except one plug and socket are eliminated.

Potted construction makes it possible to replace and design subassemblies on a unit basis, rather than as a miscellaneous collection of parts. It is further possible to modernize equipment from time to time by modernizing the individual subassemblies, only keeping them interchangeable electrically and mechanically with their predecessors.

It has been found essential to consider the design of a potted circuit as a unit. It is not practical to design a piece of equipment and then ship it to a chemist for potting.

FIG. 1-Example of miniature thyratron regulated power supply circuit used with potted subassemblies to decrease size, weight and heating. Thorough shielding is necessary to avoid radiated noise from thyratrons. All $0.0015-\mu f$ capacitors are ceramic feed-through units to prevent conducted noise

Each component must be selected for its compatibility with the potting compound. Those components which are not suitable for direct potting must be given a suitable pre-treatment, and the whole mechanical design must be considered integral with the potting process.

Components must be selected which will withstand the high ambient temperatures (105-115 C) concomitant to the operation of large miniaturized equipment. Tubes must be protected from shock by a resilient coating before mounting in the equipment. Many small points, too numerous to mention here, must be watched with care if a useful product is to result. A close liaison among chemists, mechanical designers, and electronic engineers has been found absolutely essential to insure good results.

A standardized form factor is useful in the production design of any complex assembly of subunits. Since most subminiature units are plug-in, a convenient socket to use is the standard nine-pin miniature tube socket. Typical units are one inch wide by either one or one and one-half inches deep, by three inches high. The wires forming the plug at the base of the unit are molded in place during the casting operation. A tapped reinforced hole at the top of the unit provides means for removing it from its socket. Units constructed in this way include strain gage amplifiers.
video amplifiers, pulse generators, sawtooth generators, flip-flop multivibrators and bridge drive oscillators.

Potting Materials

No single plastic has been found suitable for all jobs. The NBS casting resin, while superb electrically, lacks temperature range. Five very different resins, each compounded to give good results for a specific type of operation, are currently being used. In general the polyesters are most versatile, although as a class they leave much to be desired and must be compounded to achieve satisfactory results.

Assemblies of the units described make possible the construction of equipment having a density (including power supply) of between 200 and 500 tubes per cubic foot. Shielding, where necessary, is provided by silver paint over the plastic. Internal temperature of the equipment is high, but careful construction can minimize the presence of hot spots.
Acknowledgement is due several individuals, co-workers at Melpar, Inc. for specific contributions. Notable are R. E. Cunningham, Chief Chemist, and J. L. Kiser, Production Engineer, and G. O. Glaze. Much of the work on this equipment has been supported by the Electronics Division of the Bureau of Ships under Navy Department Contract No. NObsr-39174.

Field Test of UHF TELEVISION

Report on field strength and picture quality at 60 locations in and near Washington, D. C. confirms need for high power to secure adequate service over 20 -mile radius. Data obtained from NBC experimental picture transmissions on 505.25 mc

THE PURPOSE of uhf television tests described in this paper was to study field coverage, multipath transmission, gain of various types of receiving antennas, and the reception of uhf signals when the receiving antenna is shaded from the transmitter by hills or buildings.

The tests utilized the standard black-and-white television signal transmitted by the experimental NBC station operating in the frequency band from 504 to 510 mc (picture carrier, 505.25 mc) with an effective radiated power of 3.6 kw.

Tests were conducted starting October, 1948, at sixty locations in the vicinity of Washington, D. C., at distances from the transmitter ranging from one and a half to twenty-three

By JOSEPH FISHER

Project Engineer, Research Division Philco Corporation, Pliladelphia, Pa.
miles. The test locations were selected to provide the wide variety of receiving conditions typical of a large city and its adjacent communities. The field strength was measured and the television picture was analyzed at all test locations for degradation of picture quality due to multipath transmission, extraneous signals and receiver noise.

Receiving Equipment

Three antennas were used: a half-wave dipole, a Yagi array (folded dipole with two directors and one reflector) and an eight-element stacked array with screen reflector.

The antennas were adjusted to be resonant at 507 mc . The radiation resistance of the Yagi and of the eight-element array was approximately 90 ohms, while that of the half-wave dipole was 72 -ohms. The Yagi antenna had a measured voltage gain, relative to a half-wave dipole, of 1.98 and a front-to-back voltage response ratio of approximately 10. The eight-element array had a voltage gain of 4.36 and a front-to-back ratio in excess of 20 . Any of these antennas could be mounted on the top of a wooden pole twenty feet in length carried on a station wagon. The pole was so mounted that, when raised, the center of the antenna was approximately 23 feet above the ground. The lead-in consisted of 30 feet of RG-71/U coaxial cable (attenuation of a 30 -foot length at 500 mc equal

FIG. 1-Circuit diagram of the cavity-tuned $500-\mathrm{mc}$ uhf television converter. The output is fed into a standard television receiver with 300 -ohm balanced line

FIG. 2--Schematic diagram of special vtrm and manual gain control circuits

Photograph of the mobile receiving station used. The 8 -element array is shown in place 23 feet above ground
to about 3.0 db). The characteristic impedance of $\mathrm{RG}-71 / \mathrm{U}$ cable (93 ohms) provided a good impedance match to the antennas used.

The converter was designed to produce an intermediate frequency of 54 to 60 mc (channel 2) from the 504 to $510-\mathrm{mc}$ r-f signals. The converter (Fig. 1) includes a fixedtuned coaxial cavity, a 1N21-C crystal mixer, a 6F4 local oscillator operating at 450 mc , and a singletube 6AK5 i-f amplifier with a center frequency of 57 mc and a bandwith of 6 mc . The output of the converter is fed into the antenna terminals of a Philco model 48-1001 television receiver by means of a seven-inch length of $300-\mathrm{ohm}$ balanced transmission line. The power supply of the 48-1001 was altered for vibrator operation from storage batteries. Meters were provided in the equipment to measure the 450 me oscillator plate current, the 1N21-C crystal current, the afc voltage of the television receiver, and the field strength.

Calibration of Field Strength

To read field strength, a vacuumtube voltmeter, (Fig. 2), consisting of a 6AL5 diode, a 250,000 -ohm load resistor, and a 25 -microampere d-c meter, was connected across the $26-\mathrm{mc}$ i-f output of the receiver. The load resistor and meter were by-

Interior view of the mobile setup used in the Washington field strength measurements. The four meters mounted below the receiver read $450-\mathrm{mc}$ local oscillator injection current and plate current, the receiver afc voltage and the field strength
passed with a $0.1-\mu \mathrm{f}$ capacitor, giving the circuit a long time constant, and allowing the capacitor to be charged by means of the diode to the peak value of i-f carrier during the time the sync pulses are transmitted. The indication of field intensity therefore did not depend on the percentage modulation of the television station at the time readings were being taken, but only on the peak value of carrier during the time sync information was transmitted. As indicated in Fig. 2, a calibrated manual gain control was used to vary the gain of the television receiver by applying a variable bias to the r-f and first two picture i-f tubes. The receiver was designed to operate with a composite video signal level of two volts peak-to-peak across the video detector load resistor, which corresponded to a reading of 20 microamperes on the vacuum-tube voltmeter when receiving an 85 -percent modulated television picture. The reading of 20 microamperes was established as standard output for the field measurements.

The receiver was calibrated in the following manner: The converter was connected to the receiver and an unmodulated sound carrier at a frequency of 509.75 mc was applied to the input of the converter from a signal generator. The frequency of
the $450-\mathrm{mc}$ oscillator in the converter was then adjusted to produce zero afc volts. This insured that the signal output of the converter was at a frequency of 59.75 mc (channel 2 sound carrier). The 450 -me oscillator injection was adjusted to produce 0.5 ma of crystal current. Various levels of unmodulated picture carrier at a frequency of 505.25 mc were applied from the signal generator and the variable bias control setting was noted for standard output (20 microamperes). From these data a curve was plotted of dial setting versus microvolts input.

The following method was used to determine the noise figure of the receiver. The receiver was fed from a signal generator having an internal resistance of 93 ohms. A thermocouple meter connected across the final video amplifier plate load was used as an indicating device. Unmodulated carrier from the signal generator was applied to the receiver input and increased in amount until the noise power output stopped increasing, care being taken to insure that the second detector and the amplifiers were operating at normal signal levels. Sine wave modulation was then applied to the signal generator and the percent modulation required to double the reading of the output meter
observed and recorded.
The carrier open-circuit voltage from the 93 -ohm generator was 67.2 microvolts and the necessary modulation was 10 percent. Hence the noise voltage was 6.72 microvolts, or 8.8 db greater than the theoretical noise of 2.44 microvolts across 93 ohms at 4 -mc bandwidth.

Performance of Receiving Antennas

Any of the three antennas could be used to measure the field strength at locations where signal is being received from only one direction, a different calibration figure being required for each antenna to relate measured receiver microvolts to field intensity.

There are some locations, however, in which the situation is complicated by signals arriving at the receiving point from several different directions, some of which are unusable because of excessive delay. In locations of this sort a nondirectional antenna may deliver more power to the receiver than a much larger directional antenna. In some of these cases, the signal from the nondirectional antenna is perfectly satisfactory, but in other cases it is contaminated by intolerable ghost images.

Whether a particular indirect path signal is useful or detrimental depends on whether it lies within a certain area surrounding the re-
ceiving location. The boundary of this area is approximately a parabola, opening towards the transmitter and crossing the continuation of the direct line from transmitter to receiver at a point approximately 125 feet behind the receiver. The delineation of this boundary is based on the fact that video signal contributed by any scattering object within it will be delayed no more than about $\frac{1}{4} \mu \mathrm{sec}$, corresponding to approximately two picture elements displacement of information or about $\frac{1}{32}$ inch on a ten-inch cathode-ray tube. Scattering objects outside of this boundary may cause either loss of resolution or distinct ghosts.

This boundary crosses the perpendicular to the direct line, erected at the receiving point, at a distance of about 250 feet and the area enclosed by the parabola continues to widen gradually as a function of distance towards the transmitter, as shown in Fig. 3.

A nondirectional antenna can receive signals from many scattering objects simultaneously, and if these objects lie principally in the useful area, a net gain in performance is contributed by the scattered signal. If on the other hand, a large proportion of the scattered signal is of the detrimental type, originating from outside of the boundary, then a nondirectional antenna, even though it
delivers large power to the receiver, cannot be used. While a highly directional antenna cannot utilize scattered signals over a wide angle and therefore may not deliver the expected increase in power in such cases, yet the signal delivered by directional antennas as a rule has higher resolution and less ghost images than that from nondirectional antennas. It should be emphasized that these remarks pertain to only a small minority of field locations. In the vast majority, the directional antennas are superior in performance by an amount dependent upon their gain.

It can be seen that the field strength in microvolts per meter inferred from several antenmas having different directivity will have different values. The field strength measured by a simple dipole will generally be larger because scattered signals are included. It is for this reason that the term "effective field strength" has been used in this report, different fractions of the received signal being effective with each type of antenna.
In the course of these tests very few locations were found in which the array failed to realize considerable gain over a dipole.
The open-circuit voltage across the terminals of a half-wave dipole resonant at 55 mc (television channel 2) is approximately twice the

The $500-\mathrm{mc}$ converter used in making the uhf measurements. The coaxial input cavity is mounted next to the oscillator

The three types of receiving antennas used in the Washington, D. C. uhf television field strength measurements are shown above. They are the half-wave dipole, a 4 -element Yagi and an 8-element array

FIG. 3-Plan view of receiver vicinity showing areas of useful and detrimental scattering
field intensity in microvolts per meter. However, the open-circuit voltage across the terminals of a half-wave dipole resonant at 500 mc is approximately one-fifth the field intensity in microvolts per meter. For the same field intensity, at these frequencies, the ratio of voltages across the resonant half-wave dipoles will be approximately ten to one. Thus even over flat terrain either much higher transmitter power or high-gain receiving antennas are required for coverage on 500 mc comparable to that at 55 mc .

At 36 of the test locations two or more antennas were tried. At 32 of these locations the use of high-gain receiving antennas gave an increase in signal voltage applied to the receiver. There were four test locations where the use of an eightelement receiving array did not increase the signal voltage applied to the input. At one of these locations the Yagi antenna gave a gain over the dipole but the array produced a lower signal than the Yagi.

General Propagation Effects

The field strength in microvolts per meter at all locations plotted against distance between receiving and transmitter antennas is shown in Fig. 4. The theoretical curve for propagation over flat earth shows the received signal strengths to be much lower than that of the theoretical curve. The theoretical curve does not take into account the irregularities of the terrain between the transmitter and receiver, the ground contour at the point of reflection, and the phase relationship of the various signals arriving by multipath transmission. In addition, the shadowing effect of obstructions such as buildings and hills increases with frequency.

This is demonstrated by the re-
ception at test location $1,4,707$ Windom Place which is only 2.4 miles from the transmitter. The ground contour of Fig. 5A, which does not show trees and buildings, places this location at a shadowed point, not line-of-sight. The field intensity with the array antenna was $E_{i}=1,306$ microvolts per meter and, with a converter having a noise figure of 8.8 db above thermal noise, the reception was marginal. In comparison, the channel 4 television transmitter in Washington with its antenna located on the same tower as the 500me transmitting antenna, produced a noise-free picture at location 1. The power output of the channel 4 station was of course greater (approximately 5.7 to 1) but this alone does not account for the low field strength at this location.

As other investigators have reported, the decrease in received signals is caused by the increased shadowing effect at 500 mc when the receiving antenna is located behind a hill or building. Locations 10 and 12 are also shown on this same contour diagram (Fig. 5A), as they fell within a degree or two of the radial joining the transmitter and location 1. The field strength measured at location 10 , Wriley Road, north of Massachusetts Avenue, 3.45 miles from the transmitter which was also a shadowed point (not line of sight), is low, producing a marginal picture. The effective field intensity, again with the
array antenna, is $E_{f}=4,200$ microvolts per meter at location 12 (the junction of routes 190 and 191, near Campbells Corner, 8.9 miles from the transmitter) on the same radial, in line of sight, and at a distance from the transmitter four times that of location 1 . This signal resulted in a picture of excellent quality.

Figure 5B shows ground contours from the transmitter to locations 46,33 and 16 , all along approximately the same radial. The field strength of $E_{t}=3,150$ microvolts per meter, resulted in a good quality picture at location 16 (Georgetown Preparatory School campus, near route 240 , eight miles from the transmitter) the most distant of all three points. The ground contour for two miles in the direction of the transmitter from this location was relatively low and sloping upward to the receiving location which was within line of sight.

The reception at location 46, field strength E_{f} (Yagi antenna) = 4,530 microvolts per meter, (Connecticut Avenue and Northampton, near Chevy Chase Circle, 3.15 miles from the transmitter, line of sight) produced a good quality picture.

The picture quality at location 33, field strength $E_{\text {, (}}$ (array antenna) $=2,860$ microvolts per meter, (6721 Fairfax Road, Bethesda, Maryland, 4.75 miles from the transmitter and line of sight) was good.

At locations 35 and 20, both on

FIG. 4-Curve showing theoretical field strength (assuming flat earth) and typical measured values

FIG. 5-Ground contours for radials containing typical measuring locations. It may be seen that the fieid strength at any location is highly affected by the existence of obstructions between transmitter and receiver
the same radial, the transmission paths were in the clear. The field strength at location 20 (University of Maryland campus, 7.2 miles from the transmitter, and line of sight) was $E_{f}(\mathrm{Yagi})=8,300 \mathrm{microvolts}$ per meter. The ground contour for approximately one-half a mile in front of the receiving antenna was relatively low and flat. The field strength at location $35,(1,343$ Perry Place, N. W., 1.4 miles from the transmitter), was E_{f} (array antenna) $=2,430$ microvolts per meter and produced a good picture. The relatively low field strength at a location so close to the transmitter was caused by houses in front of and above the receiving antenna.

At locations 8 and 21 the paths were also in the clear, but on different radials, and approximately the same distance from the transmitter. The field strength at location 21 (the drill field at Fort McNair, 4.6 miles from the transmitter), was E_{f} $(\mathrm{Yagi})=29,600$ microvolts per meter, producing an excellent picture. It is significant that the ground profile for $3 \frac{1}{2}$ miles in front of the receiving antenna was very low and flat. The field strength at location 8, (Lee Blvd and Filmore

Street, Arlington, Virginia, 3.95 miles from the transmitter) was E_{f} (Yagi) $=713$ microvolts per meter, producing a noisy picture. There was a row of houses approximately thirty feet high and one hundred feet in front of the receiving antenna which caused a shadowing effect.

Reflecting Surfaces

Tests were made at location 5 , which is approximately 500 feet from the United States Capitol Building and 3.37 miles from the transmitter. With the eight-element antenna array oriented toward the transmitter, an excellent picture was obtained, the field strength measuring $E_{f}=4,200$ microvolts per meter. The array was then turned 100 degrees clockwise to use the reflected signal from the Capitol Building and a good picture was obtained except for a slight leading ghost due to the directly transmitted signal.

At location 53, (23rd and Constitution Avenue), with the antenna array oriented toward the transmitter an excellent quality picture was obtained and the field strength was measured to be $E_{t}=147,000$.

The antenna was then turned 180 degrees and the reflected signal from the Lincoln Memorial produced a field intensity $E_{t}=18,500$ microvolts per meter. The picture definition was marred to some extent by a number of closelyspaced following echoes, an effect which did not appear in the signal reflected from the dome of the Capitol Building. There was a prominent leading ghost, displaced three-eights of an inch to the left, caused by direct pickup from the back lobe of the antenna array. The front-to-back gain ratio of the antenna array was great enough so that the receiver was synchronized from the reflected signal.

In tests made at location 55 (16th and H Streets, N. W., 1.95 miles from the transmitter) the receiving antenna was surrounded by buildings, and all received signals were obtained by multipath transmission. The Yagi antenna was slowly rotated through 360 degrees and all positions gave high field strength readings; but a good quality of picture, not marred by multipath transmission, was obtained only over a 30 -degree range, in the direction of the transmitter.

The shadowing effect caused by obstructions such as hills, buildings and trees, at 500 mc , is greater than at the lower frequency television channels. Reception at the higher frequency will be improved by increased transmitter power, but of perhaps equal importance is the elevation of the transmitting antenna above obstructions and average terrain.

The use of high-gain receiving antennas to build up the signal voltage applied to the input circuit is highly desirable in many locations, and our investigations showed that at 90 percent of the locations where such antennas were tried, there was a definite gain in signal applied to the receiver input with a consequent improvement of signal-tonoise ratio.

Multipath transmission is present at 500 mc but, even when using a half-wave dipole, seemed less than that experienced on the lower channels. The possibility of multipath signals degrading a picture is decreased by the use of high-gain directional receiving antennas, which were found to be generally desirable to provide a clean signal in locations where multipath reception was severe.

When the receiving antenna is shaded from the transmitter by hills and buildings it is sometimes possible to use a reflecting object such as a building as a signal source. However, the reflected signal suffers a definite attenuation due to scattering and absorption at the reflecting surface, and the general construction of the reflecting structure at times gives rise to a number of closely-spaced following ghosts which lower the overall
definition of the picture.
Man-made noise, such as that from automobile ignition systems, affects picture quality a great deal less at 500 mc than at the lower frequency television channels. Therefore, when receiving in city locations, less received power is necessary to overcome man-made noise and provide reliable reception than is required on the low channels. Throughout these tests the limiting noise was receiver noise and not man-made interference.

There were many city locations in which an open-circuit voltage of 500 microvolts at the receiver end of the feed line provided a fair picture. Twice this value, or approximately 1,000 microvolts open-circuit voltage at the receiver end of the feed line, produced a good quality picture. This level of signal (1,000 microvolts open-circuit voltage out of 93 ohms) would require a field strength of 6,500 microvolts per meter when using a half-wave resonant dipole. If a high-gain receiving antenna were used the required field intensity in microvolts per meter would be reduced, in most locations, by the ratio of the voltage gain of the directional receiving antenna compared to a single halfwave dipole. In a few locations the usual types of high-gain antennas do not deliver their nominal gain, and it is felt that this matter should be further investigated. There is some indication that, in shadowed areas, vertical directivity is to be preferred to horizontal directivity as a means of obtaining antenna gain. Some of the scattered signals arriving from widely different directions in the horizontal plane contribute usefully to the output.

Table I-Field Strength vs Picture Quality

	Good to Excellent Picture Quality	Marginal Picture Quality	Poor to Unusable Picture Quality
Measured Open Circuit Voltage at Receiver End of Feed Line (Microvolts)	1,000 or over	300 to 1,000	Under 300
Field Strength Using a Halfwave Dipole and allowing for 3 db Feedine Loss (Microvolts per meter)	6,500 or over	2,000 to	

FIG. 6-Curve showing the relationship between the percent of receiving loca. tions and the measured field intensity in db below theoretical for smooth earth

Since receiver noise limits quality of performance more than does man-made interference, converters should be designed with the best possible signal-to-noise ratio.

An evaluation of the picture quality in terms of receiver noise as noted by the observers is given in Table I.

Conclusions

The measured field strengths were generally lower than that calculated on the basis of smooth earth. The deviation of received field strength from the calculated value is plotted versus percentage of stations affected, in Fig. 6. While no complete theory of terrain effects exists at the present time, all indications are that these effects rapidly diminish as the transmitting antenna height is increased.

While the transmitter power required to give a predetermined percentage of coverage cannot be estimated reliably without involving matters such as population distribution which are beyond the province of this investigation, some facts bearing on coverage can be derived immediately from the above data. For example, to produce a field of 3,000 microvolts per meter in at least 55 percent of the receiving locations twenty miles from the transmitter with a dipole and reflector with a gain of 4 db for a receiving antenna, the transmitter effective radiated power must be 125 kw .

Bibliography

G. H. Brown, J. Epstein, and D. W. Peterson, Comparative Propagation Measurements; Television Transmitters at $67.25,288,510$ and 910 Megacycles, $R C A$ Rev., June 1948.
G. H. Brown, Field Test of Ultra-High-Frequency Television in the Washington Area, RCA Rev., Dec. 1948.

Choke-Input Filter Chart

For given bleeder current, chart gives optimum values of L and C, resulting output ripple and resonant frequency, and magnitudes of four significant transients for nine combinations of single-phase and polyphase rectifier circuits with various power input frequencies

PREvIOUS charts for chokeinput filters give the ratio of choke reactance to capacitor reactance or the $L C$ produet needed to attenuate the ripple to the required level, but individual values of L and C are not thereby determined. Where regulation is important, L and C must have definite values to avoid capacitance effect, or the tendency for the d -c voltage to rise at light loads.
For the circuit of Fig. 1 it can be shown that

$$
\begin{equation*}
R_{1}=\left(X_{L}-X_{C}\right) / P_{A} \tag{1}
\end{equation*}
$$

where R_{1} is maximum bleeder resistance to prevent voltage rise, X_{L} is choke reactance at fundamental ripple frequency, X_{c} is capacitor reactance at fundamental ripple frequency and P_{A} is peak amplitude of fundamental ripple frequency in the rectifier output, which depends on the type of rectifier.

Attenuation in this filter can be expressed by

$$
\begin{equation*}
\frac{P_{A}}{P_{R}}=\frac{X_{L}-X_{C}}{X_{C}} \tag{2}
\end{equation*}
$$

where P_{R} is the peak ripple amplitude in the load. Combining Eq. 1 and 2 gives $X_{r}=R_{1} P_{\mathrm{R}}$, and therefore

$$
\begin{equation*}
C=\frac{1}{\omega R_{1} P_{R}}=\frac{1}{R_{1}}\left(\frac{1}{\omega P_{R}}\right) \tag{3}
\end{equation*}
$$

Description of Chart

For a given rectifier, filter capacitance C thus depends only on the bleeder resistance and percent ripple. Once capacitance is fixed, the minimum inductance is also fixed; these are the values plotted on the chart.

Abscissa values of the righthand scale are bleeder conductance in milliamperes per volt; and of the left-hand scale, filter capacitance in microfarads. Ordinates of the lower vertical

FIG. 1-Basic choke-input filter circuit. and curves illustrating four transient conditions affecting circuit design
scale are inductance in henrys. Lines representing various amounts of ripple in the load are plotted in the first quadrant, labeled both in db and percent ripple. In the second quadrant, lines are drawn representing different types of rectifiers and supply line frequencies. A similar set of lines is shown in the fourth quadrant.

Two orthogonal sets of lines are drawn in the third quadrant. Those sloping downward to the right represent resonant frequency of the filter L and C and also load resistance R_{L}. The other set of lines is labeled $\sqrt{L / C}$, which may be regarded as the filter impedance. It can be shown that the transient properties of the filter are dependent upon the ratio of $\sqrt{L / C}$ to R_{L}.

Ripple is plotted in two ways. Percent values are rms ripple voltage in the load divided by d-c voltage output E_{d-c}, according to the IRE standard definition; db values are equal to $20 \log _{10}$
(rms ripple)/0.707 E_{d-c}. Instruments for measuring hum normally read the db value, which is the noise-to-signal ratio for 100 percent modulation of E_{d-c}, expressed in -db . It is 3 db less ripple than would be obtained by 20 times the logarithm of the percent ripple expressed as a fraction. This distinction should be borne in mind if an attempt is made to correlate the two methods of plotting ripple.

Use of Chart

In using the chart, it is well to start with bleeder resistance, or milliamperes bleeder current per volt E_{d-c} and draw an ordinate to intersect the desired value of load ripple, trace horizontally to the type of rectifier, and read the value of C. Now return to bleeder resistance and trace downward to the type of rectifier, and read the value of L. More detailed step-by-step instructions are given under the chart.
The L scale requires a correction to compensate for the fact that ripple is not exactly a linear function of L, but rather of $X_{L}-X_{c}$. The curves in the lower part of quadrant IV give the amount of correction to be added when the correction is greater than 1 percent.

Bleeder current given is the minimum necessary for continuous current from the rectifier. Steady-state peak ripple current is read directly on the same scale.

The third quadrant has a series of lines labeled f_{r}, and the intersection of L and C thereon indicates the resonant frequency of the filter. It should be no higher than the value given in the small table in quadrant IV in order to avoid excessive ripple in polyphase rectifiers due to

Continued on page 114

CINCH TERMINAL STRIPS

Another CINCH first!

Eighteen years ago Cinch Engineers developed an idea... gave the Radio Industry its first terminal strips for practicable production.

The Industry's acceptance and use of Cinch terminal strip design established Cinch as the standard over the years.

Today, the exacting quality requirements of Television demand terminal strips - made by Cinch-assemblies insuring necessary higher quality in insulation, tooling, fabrication, plating, vacuum waxing and workmanship. Lug types include: tear drop, T-slot, wrap around, (as illustrated) and many other modifications in standard spaced $3 / 8^{\prime \prime}, 15 / 32^{\prime \prime}$ and $1 / 2^{\prime \prime}$ strips $3 / 8^{\prime \prime}$ wide; other bakelite strip, panel, board and block assemblies available.

Choke-Input Filter Chart

supply-line phase unbalance.
If the supply voltage is suddenly impressed, or if the load varies suddenly, the filter is subject to transients. The bottom
scales of quadrant III give the magnitudes of the four transients indicated on the curves in Fig. 1.

Additional data on the use of
this chart for swinging-choke and shunt-tuned choke applications and for two-stage chokeinput filters is given in the Electron Art department.

1. Assume suitable value of bleeder resistance or bleeder current I_{1} in ma per volt of E_{d-c}. This is also steadystate peak ripple current in ma.
2. Trace upward on desired bleeder ordinate to intersect desired value of load ripple, and from here trace horizontally to the left to diagonal line for rectifier and supply frequency used. Directly under read value of C.
3. Trace downward on same desired bleeder ordinate to intersect diagonal line below for rectifier and supply frequency, and read value of L.
4. From desired ripple value, determine correction for L on graph at lower right, and add indicated correction to value of L.
5. Using corrected value of L and next standard value of C, find intersection in third quadrant and read maximum resonant frequency f_{r}.
6. Using same values of L and C as in 5 , read value of ratio $\sqrt{L / C}$.
7. Under intersection of $\sqrt{L / \bar{C}}$ with load resistance R_{L} read values of the four transients.

Example (shown dotted) :
Three-phase full-wave 60 -cycle rectifier; $E_{d-c}=3,000 \mathrm{v} ; I_{2}=1 \mathrm{amp} ; I_{1}=$ 96 ma ; load ripple $=-50 \mathrm{db}$

Solution:
Bleeder $\mathrm{ma} /$ yolt $=0.032$
$C=4.5 \mu \mathrm{f}$ (use $5 \mu \mathrm{f}$)
Scale value of $L=0.78 \mathrm{~h}$; corrected value $=0.82 \mathrm{~h}$

Resonant frequency $=75$ cycles
Load resistance $R_{L}=3,000$ ohms
$i_{m}=7 I_{2}=7 \mathrm{amp} ; \Delta \boldsymbol{E}_{S}=79 \%$: $\Delta \boldsymbol{E}_{D}$
$=19 \% \Delta E_{R}=15 \%$

After Six Years on the Shelf -These Mallory Capacitors Met Every Specification!

The proved long shelf life of Mallory Capacitors is a plus value to the man responsible for Inventory

Yours for the asking! Everything you want to know about Mallory FP capacitors-types, sizes, electrical characteristics-even data on test measurements and mounting hardware!
'When you buy capacitors it's a relief to know that, should your production progragn change, the stock on hand may be held without becoming useless through deterioration. Mallory Capacitors have proved on many occasions that they can take long periods of storage without loss of efficiency.

We recently tested capacitors for several customers* who had shelved them for up to six years. All proved ready to use without re-aging. None took more than seven minutes to reach the leakage limit of new units. All characteristics were within the limits of new-unit inspection.

Such quality is added protection for the man who specifies Mallory Capacitors. Such quality is invariably built into Mallory Approved Precision Products.
*Numes on raquesz
buy mallory assured quality at regular price levels

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

SERVING INDUSTRY WITH

Capacitors	Rectifiers
Contacts	Switches
Controls	Vibrators

Resistance Welding Materials

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Photoelectric Bus Washer 116
Coin-Operated Slave Television 116
Voice-Controlled Intercom System 118
Veneering Machine 136
Vacuum Capacitor Voltage Dividers 140
Control Wood Press. 146
Washing Clothes with Sound Waves 150
High-Speed Rotation Counter. 152
Television in Industry 154

Photoelectric Bus Washer

Cleaning of the outside of a bus in two minutes is being done by electronic equipment. The bus is driven between two guide rails that are spanned by the light beam of a photoelectric system. This enables the driver to ascertain when he is in the correct position for the washer to be operated. The position is not very critical since the washing machine is suspended from the roof and is free to align itself as it descends and embraces the bus.

The washing machine consists of a horizontally suspended rectangular trough, the inner surface of which is open. Shafting driven by motors extends all round this framework. The shafting carries a series of rubber fabric flaps which when rotated act as mops to swab
the surface of the coachwork.
The trough is suspended from the garage roof and can be raised or lowered electrically. Beneath the flaps a horizontal water pipe is fitted from which water at gentle pressure can be sprayed through a number of fine holes.

When the framework is lowered over a bus, water first flows over the surface of the coachwork, followed by the revolving flaps which effectively loosen all mud and dirt. The framework after being lowered to the ground is raised again, during which operation the water spray gives a final wash.

When the bus is driven in, the light beam is interrupted and a red lamp signal shows up at the end of the garage. The driver then proceeds slowly until he is just free of

Both sides of the bus are embraced simultaneously by the trough while being washed
the beam and the pilot lamp goes nut.

The bus is then in the correct position for the washing machine to operate. Since the ground is often practically under water, the alternative use of contacts operated by the wheels of the chassis would offer some difficulty.

Four 1-hp, 3-phase motors are used to drive the flaps and a $\frac{1}{-1}$-hp motor to operate the raising and lowering winch. Each traverse of the bus occupies about 35 seconds. A bus can be completed and cleaned every two minutes.

The Essex bus-washing machine is marketed by Messrs. Strathstone Ltd. of London and produced to the design of the chief engineer of the Eastern National Omnibus Co. of Chelmsford, Essex, England.

Coin-Operated Slave Television

Whether soda fountain coin-operated television will be practical or impractical will be determined by an experimental installation in a luncheonette in Hoboken, New Jersey. The sylstem uses a master television receiver, located at some convenient place in the building, and a series of slave units, one mounted at each booth so that the screen can easily be viewed by the occupants.

The installation was made as an experiment, using General Electric equipment. The slave sets consist essentially of the standard GE model 810 chassis with the front ends, i-f amplifiers and audio discriminators removed. The master station is a standard receiver with the addition of a cathode-follower output tube fed from the grid of the picture tube.

The picture tubes in the slave units are mounted vertically, to conserve space, and the viewers actually see a reflected image from a slanting mirror. This method of viewing, of course, required the reversing of the picture tube image. This was accomplished by rotating the deflection yoke 180 degrees and reversing the vertical sweep electrically. The master set will power

与TLDERIMTMUP

"We lave been using a soldering paste plainly narked "Non-Corrosive," yet evidence of corrosion shows on the finished work. Why is this?

There are a great many conventional soldering pastes on the market which are labeled "Absolutely Non-Corrosive." Whether the manufacturer in such cases is misrepresenting his product through ignorance or tleliberate intent is, perlaps, a question for debate. Seemingly, there is no "law" that imposes any limitations on the "marking" of soldering paste containers. In fifty years of manufacturing solder and soldering fluxes, Kester has found that all pastes contain zinc chloride or amonium chloride emulsified with petrolatum. Properly mixed, this makes an excellent soldering flux, the residue of which is definitely CORRO\$IVE AND CONDUCTIVE.

For certain practical purposes, soldering fluxes mas be divided into two classes, corrosive and non-corrosive. Of the second, or non-corrdsive class, rosin occupies the entire field; all other fluxes, in spite of many extravagant claims to the contrary, are corrosive.

If corrosive or electrical loss is a vital factor, then there is no recourse except strict adherence to flux of the rosin type. Kester Solder Company manufactures over 50 external soldering fluxes, including a very fine soldering paste; however, no flux manufact red by Kester Solder Company is branded as NON-CORROSIVE until it has been thoroughly tested both in the laborator and in the field. YOU CAN DEPEND ON KESTER

If you are in doubt about the corrosive qualities of the flux you are now using, send a sample assembly, or soldered parts, to the Kester Solder Company. An accelerated humidity test as outlined in ArmyNavy Aeronautical Specifications will be made, and you will be informed of the results. The test itself requires 72 hours, and since facilities are naturally limited, please allow plenty of time for making your tests. Of course, there is no charge.
"Soldering Tips" will be pleased to answer all inquiries pertaining to solder, soldering fluxes, and soldering technique. Merely address "Soldering Tips," Kester Solder Co., 4204 Wrightwood Ave., Chicago 39, I11.

NOW AYAILABLE . . . The New Manual _"Solder and Soldering Technique'!

Send for this complete analysis of the properties of soft solder alloys and soldering fluxes. . . a comprehensive reference book that you will want to retain. It's yours for the asking . . . request it NOW!
$\binom{$ Did you know that Kester makes over }{100.000 sizes and types of flux-core solder? }

For over fifty years Kester has been concerned with producing solder for every phase of industrial work. Take advantage of this experience by consulting Kester's Technical Department on all soldering problems. There is no obligation.
free- Technical Solder Manual Available on Request
Send for Kester's new solder manual,
"SOLDER and Soldering Technique."

KESTER SOLDER COMPANY

4204 Wrightwood Avenue • Chicago 39, Illinois

Soda fountain customers witness coin-operated television for the first time in Hoboken, New Jersey
up to 20 slave units at distances up to 2,000 feet.

This experimental installation has already suggested several desirable alterations of the original system. It is planned that future slave sets will use a new transformerless chassis and the audio discriminator will be retained at the slave position, permitting the combined audio and video to be fed through one cable instead of the two now used. The planned future slave will have two output tubes, a video amplifier, necessary for isolation, and a cathode follower fed from the plate of the first video amplifier.

Voice-Controlled Intercom System

By John R. Cooney
Waldo Theatre Corp. Walduboro, Maine

The Problem of designing an intercommunicating system which does not require manual operation of a talk-listen switch is a rather interesting one, and can be approached in various ways. The system to be described represents a fairly straightforward development which has proved highly satisfactory after prolonged use under typical industrial operating conditions.

The installation and operation is exactly similar to that of the usual simple master-substation system, where the substations consist of simple p-m loudspeakers, except that the caller at the master station is not required to operate a talklisten switch, the switching being accomplished electronically by the sound of his voice.

As in the case of the ordinary type of system, a remote station may be placed in any kind of location, and answered at almost any distance from the loudspeaker. The master station is expected to be installed in a relatively quiet situation, such as an executive's office, but the requirements for its successful operation are not critical.

After a given substation has been connected by operation of the usual selector switch, sounds originating

FIG. 1-Complete schematic diagram of automatic intercom system. Tubes in top row comprise outgoing amplifier: bottom row is incoming amplifier (normally on)
at the substation are heard normally over the master loudspeaker. However instead of operating a talk-listen switch when he wishes to reply, the home operator has only to speak (above a certain low threshold level) and the system is

FIG. 2-Simplified block diagram of voicecontrolled intercommunication system
instantaneously switched to the outgoing condition, returning to normal immediately after he stops talking.

Although the operator at the master station is expected to be within a few feet of his microphone (a normal situation if he is operating the selector switch anyway), the threshold adjustment can actually be set, in a quiet location, so that he can carry on a conversation as much as 30 feet away from it.

The principle involved in this system is simple, but the actual development of a workable circuit presented many problems, because of the necessity of precise timing of the sequence of events.

Circuit Details

The circuit details appear in Fig. 1 and the principle of operation is illustrated in Fig. 2 in simplified form.

The system consists roughly of three sections: an out-going amplifier, incoming amplifier, and a control section. The amplifying sections are conventional, except that
(Continued on p 132)

O
ver 100,000 satisfied users attest to the real worth of this indispensable data book. Now it has been revised and enlarged from 322 to 640 pages... jampacked with the kind of reference data you need to have on hand.

Over 653 charts and diagrams and 207 tables give quick answers to the problems that come up in practical radio, television and electronic work. The handy subject index makes it easy to find the exact information you require.

Federal Telephone and Radio Corporation寀至

Publication Department-67 Broad Sireet, New York 4, N. Y.

BIGGER!

 BETTER!
More Indispensable than Ever!

THIS FAMOUS DATA BOOK beLong in your reference library!

- Over 100\% more material.
- 640 pages packed with useful data.
- Contains material never before available in such detailed, complete, convenient form.
- Over 111 ,000 copies of 1 st and 2 nd editions in use to date.
- Adopted as a supplementary text by more than 150 colleges.
- Compiled by the physicists and electronic specialists of the Federal Telecommunication Laboratories, Inc. and the International Telephone and Telegraph Corporation.

[^2]
THE ELECTRON ART

Edited by JOHN MARKUS

Magnetic Fluid Uses 120
Pholoelectric Librarian 122
Measurement of Intense Low-Voltage X-Rays 166
Television Receiver Focus Compensation 170
Additional Uses for Rectifier Filter Chart 174

Magnetic Fluid Uses

Recent studies of the iron-oil mixtures used in the electromagnetic fluid clutch developed by the Na tional Bureau of Standards reveal that magnetic fluids can be employed to good advantage in hydraulic systems, shock absorbers, and dash pots, to form casting molds and as variable electrical resistors. The basic property on which all these applications depend is that the viscosity of a magnetic fluid is directly related to the strength of the applied magnetic field. The fluid may be changed from a liquid to a nearly solid state and back again at will.

An electrical resistor adapted to remote control can be made by immersing two electrodes in a magnetic fluid. When the fluid is in an unmagnetized condition, the resistance between the two electrodes will be extremely high because of the very loose contact among the conductive iron particles that are randomly distributed in the nonconductive oil. In the presence of a.
magnetic field, however, the iron particles apparently form chains along the lines of magnetic flux and draw into close physical contact. The flux density will determine the massiveness of the chain and, thus, the conductivity of the mixture. When the system is de-energized, the conductance does not drop back to its former very low level. This property of magnetic fluid resistors is attributed to the coherer effect that has been previously investigated by Branly, Marconi, and others.

Electromagnetic fluids are also being investigated for use in molding operations. A fluid is placed in a pot surrounded by a currentcarrying coil, a model of the part to be cast is placed in the fluid, and the coil is then energized so that the fluid will solidify around the model. When the model is removed, a detailed impression remains outlined in the solidified magnetic fluid. Molding compound can then be poured into the mold and

Test setup for demonstrating solidification of magnetic fluid by a steady magnetic field. With coll deenergized at left, fluid flows into pan under pipe. When direct current is sent through coil, flow is cut off instantly and even tluid in air below pipe has hardened

Demonstration of use of magnetic tluid as universal positioning device for heavy camera. Fluid in nonferrous metal cup solidifies around camera support rod when coil surrounding cup is energized with d-c. Current is interrugted with switch in foreground whenever camera needs repositioning
allowed to harden. After the coil current is turned off the molded replica can easily be removed from the liquid. In any application of this kind, the boiling point of the magnetic fluid must of course be higher than the temperature of the molten casting material.

C 'omposition of Fluid

The success or failure of any device utilizing magnetic fluid will depend to a considerable extent on the particular components in the iron-oil mixture, the choice of suspension fluid and iron powder in large measure being determined by the application for which the mixture is intended. The iron powder is one component of the mixture not generally varied from one application to another. In order to achieve maximum magnetic efficiency the iron powder must have high permeability; to minimize wear and abrasion on moving parts the particles should have smooth, continuous exteriors; and the iron powder must be chemically stable, resisting oxidation in the suspension fluid. A great many powders have been tried, including pure iron, alloys, oxides, and ferrites. The powder which has proven most universally successful is a carbonyl iron in the form of particles about 8 microns in diameter.

The choice of a suspension fluid is not so simple. Some of the fac-

FM SIGNAL GENERATOIE

Type 202-IS $\boldsymbol{\sigma 4 - 2 1 6 m e . ~}$

Additional coverage from 0.1-25 me. with accessory UNIVERTER Type 203-B

Designed to meet the exacting requirements set forth by leading FM and television engineers throughout the country, the 202-B FM Signal Generator has found widespread acceptance as the essential laboratory instrument for receiver development and research wark.

Frequency coverage from 54 to 216 megacycles is provided in two ranges, 54 to 108 megacycles and 108 to 216 megacycles. A fronl panel moduIation meter having three deviation scales, 0-24 kilocycles, 0280 kilocycles and $0-240$ kilocycles, permits accurate modulation settings to be made.

Alihough fundamentally an FM instrument, amplifude modulation from zero to 50%, with meter calibrations at 30% and 50%, has been incorporaled. This AM feature offers increased versatility and provides a means by which simultaneous frequency and amplitude modulation may be oblained through the use of an external audio oscillator.

The internal AF oscillator has eight modulation frequencies ranging from 50 eycles to 15 kilocycles, any one of which may be conveniently selected by
a rolary type switch for either amplitude or frequency modulation.
The calibrated piston pype attenuator has a voltage range of from 0.1 microvalt to 0.2 voll and is standardized by means of a front panel output manitor meter.
The outpul impedance of the instrument, at the lerminals of the R.F. output cable, is $\mathbf{2 6 . 5}$ ohms.

AVAILABLE AS AN ACCESSORY

is the 203-B Univerter, a unity gain frequency converter which, in combination with the 202-B instrument, provides the additional coverage of commonly used intermediate and radio frequencies.
R.F. Range: 0.4 mc . to $\mathbf{2 5 m c}$.
R.F. Increment Dial: $\pm 250 \mathrm{kc}$ in 10 kc . increments.
R.F. Output: 0.1 microvalt to 0.1 volt. Also approximately 2 volts maximum (un calibrated).

UNIVERTER
Type 203-B

For further information write for Catalog F
tors which must be considered are chemical stability, flammability, vapor pressure, and viscosity. One type of fluid that is remarkably stable in the presence of iron powder is a silicone liquid that has a viscosity of around 50 centistokes at 25 degrees Centigrade. It is excellent with respect to nonflammability and vapor pressure, and this versatile fluid will serve satisfactorily in nearly all but extremely high temperature applications. When it is necessary to operate a magnetic fluid device at elevated temperatures, special compounds such as fluorinated and chlorinated fluids can be used, but special precautions must be taken with the seals since the vapors from these fluids are quite toxic.

Photoelectric Librarian

A PHOTOELECTRIC bibliography compiling machine developed by Engineering Research Associates, Inc., St. Paul, Minn., for the U. S. Department of Commerce and the U. S. Department of Agriculture, stores vast amounts of scientific information in its system and automatically delivers a microfilm record of all items on any selected subject.

Known as the Rapid Selector, the device was developed from principles originated before the war by Dr. Vannevar Bush, then at MIT. The prototype machine is now being tested for performance at the Agriculture Department library.

The Rapid Selector uses standard $35-\mathrm{mm}$ motion picture films, on each reel of which can be stored 72,000 abstracts. This is equivalent to the contents of almost 500,000 conventional library cards since each abstract may have up to six subject classifications. Running time is 6.7 minutes per reel.

When the information is microfilmed, a predetermined code pattern, consisting of black and white squares representing up to six seven-digit numbers, is simultaneously printed on the film as shown in Fig. 1. To obtain everything the selector possesses on a particular subject, the operator places an interrogating punched card in the
mechanism. A photo electric system then scans the film at a rate of more than 60,000 subjects a minute, automatically selects the desired frames, and copies them on a separate film through the use of highspeed repeating photoflash techniques. Selection is based on matching of transparent squares on the film with those on the master key card.

This development is of inestimable value in research where all references in a particular field must be thoroughly checked before undertaking new work. Depending on the subject matter and the extensiveness of previous researches, a conventional hunt for references varies from days to weeks. In contrast, it would take the Rapid Selector only about fifteen minutes to review all the entries that have appeared in the last thirty years in Chemical Abstracts, assuming they had first been transferred to
microfilm and properly coded with light patterns for use in the machine. The selector can potentially be coded for ten million different subjects.

Before the machine could be put into operation a number of troublesome details had to be worked out. For example, as long as the abstracts selected by the machine for photographing were spaced a few inches apart, the machine photographed them at full speed. However, if the frames to be photographed were too close together, the mechanism could not move an additional frame of unexposed film into position quickly enough to photograph the second frame. The difficulty was solved by including a second photoelectric scanner that anticipates the approach of any frame which is too close to be photographed at high speed. The device slows down the whole machine
(continued on page 158)

Microfilm Rapid Selector as developed and constructed by Engineering Research Associates, Inc., St. Paul, under the supervision of Ralph R. Shaw (left), librarian of the Department of Agriculture. Film on reels is scanned by phototube system while running through optical system at 300 feet per minute. The twelve phototubes used are in the bright metal housing set at 45 degrees under right-hand film reel

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Chopper Vibrator

Airpax Products Co., 1024 Greenmount Ave., Baltimore, Md., has available a chopper vibrator with an operating coil of 2 to 40 volts a-c, and a frequency range of 0 to 450 cycles. Power handling capacity is 0 to 30 watts, and noise level is less than 1 mv . Simplest application is the amplification of minute d-c potentials such as the output of a thermocouple. Acting as a selfdriven vibrator, the unit can generate its own control signal or provide a signal for another chopper.

It can be used to convert small d-c values to a-c, and can then rectify the amplified signal to produce d-c again whose polarity and level vary directly as the source.

All-Record Pickup

The Astatic Corp., Conneaut, Ohio, Model CLD phonograph pickup uses the LQD double-needle cartridge and plays the three types of recordings at 8 -gram needle

pressure. Output voltages are 1.2 at 1,000 cycles with a $78-\mathrm{rpm}$ record and 0.9 with a 331 -rpm record.

Mobile Radiotelephone

Federal Telephone and Radio Corp., 100 Kingsland Road, Clifton,

N. J. The FT-145-10 mobile radiotelephone unit has a power output of 10 watts at any frequency in the 152 to $162-\mathrm{mc}$ band. It features modulation limiting as an integral part of its design, special vibrationproof r-f coils and a novel neon squelch circuit. The unit draws 7.3 amperes standby and 23.9 amperes transmit.

Highly-Sensitive C-R Tube

allen B. Dumont laboratories, Inc., 1000 Main Ave., Clifton, N. J. Type 5XP multiple-intensifier cath-ode-ray tube features a highly sensitive vertical-deflection system.

Potentials as low as 24 to 36 volts peak-to-peak are sufficient for one inch of vertical deflection on the screen. Because of the new deflec-tion-plate design, the greater sensitivity of the tube is achieved with a plate-to-plate capacitance of only $1.7 \mu \mu \mathrm{f}$.

Keyboard Oscillator

Weinschel Engineering Co., 123 William St., New York 7, N. Y. Model $150-\mathrm{AO}-1 / 100 \mathrm{k}$ is an improved and redesigned key-

board oscillator covering a range from 0.3 cycle to 100 kc with decades of pushbuttons. Frequency accuracy for the lower ranges up to 10,000 cycles is 0.1 percent plus 0.1 cycle. If there is no abnormal change in room temperature, frequency drift after a short warmup period is less than 0.02 percent per hour.

Midget Antenna Relay

Advance Electric \& Relay Co., 1260 W. 2nd St., Los Angeles 26, Calif., has announced a new midget 300 -ohm antenna relay. It is silicone glass-insulated on the arma-

ture and stationary contact assemblies. Coil data: a-c coils, consuming approximately 4 volt-amperes, available up to 220 volts; d-c coils, consuming 1 to 2 watts, available up to 110 volts. Overall dimensions are $15 / 16 \times 1 \frac{7}{8} \times 1_{16}^{9}$ inches.

Polar and Rectilinear Recorder

Sound Apparatus Co., Stirling, N. J. Model PFR Polinear Recorder offers a means of recording complete characteristics of electroacoustic and electronic devices in one instrument. The combined

taKE THIS New RAYTHEON Aircraft and Mobile AMPLIFIER TUBE USABLE TO 160mc. For Example:

RAYTHEON Tough Service Tubes are engineered and manufactured to meet commercial aircraft, industrial and military service conditions where a single tube failure might lead
to loss of life or heavy property loss. Tens of thousands of these Raytheon Tough Service Tubes are on the job, putting on a daily demonstration of reliability and stamina.

Over 300 Raythean Special Purpase Tube distributors are ready ta serve you. Application infarmation on these tubes is available at Newton, Chicago and Los Angeles.

ASK US if you don't find iust the tube you need in the above chart. Raytheon engineers stand ready to develop
additional types for your tough service applications.

RAYTHEON MANUFACTURING COMPANY
SPECIAL TUBE SECTION. Newton 58. Meteshweeth

features of polar and rectilinear movement permit the recording of angular patterns, frequency response characteristics and other measurements. The instrument can record d-c or a-c voltages, selectable by the operator.

Noise and Interference Locator

Tobe Deutschmann Corp., Norwood, Mass. Model 248 portable locator is used for identifying the source of radio noise and television interference. It provides four-band coverage from 200 kc to 18 mc , plus

spot checks at 50 and 150 mc . Interference intensity is indicated in headphones and on a dual-scale meter having 0 to 100 and decibel graduations.

Magnetic Tape Splicer

Prestoseal Mfg. Corp., 38-01 Queens Blvd., Long Island City, N. Y. The MT-1 Presto-Splicer permits splicing of 4 -inch magnetic

recording tape without scraping, cementing, use of adhesives or loss of tape material. A plastic weld is obtained by a combination of electrically produced heat and precise pressure applied within an accurately controlled time cycle. The equipment is self-timing, operates on $115-\mathrm{v} 50$ or 60 -cycle a-c, with automatic line-voltage compensation. Each splice takes from 4 to 5 seconds with 5 seconds required after splice to permit tape to cool off.

Vacumm Control Accessory

Skaneateles Mfg. Co., Inc., 122 Dickerson St., Syracuse, N. Y. The new adjustable leak for control of vacuum or pressure source is based on the Bachman pulsed leak principle and is continuously adjustable over the range from completely closed to completely open. Operating on 110 v a-c it may be used

alone to give a desired vacuum by balancing leak rate against pump rate, or with Skanascope vacuum relay monitor to maintain the desired degree of vacuum regardless of varying conditions within the vacuum system.

Thickness Gage

Tracerlab Inc., 55 Oliver St., Boston 10. Mass., has announced the
type SM-2 industrial recording thickness gage. The essential components of the gage are a source of beta radiation from Strontium90 and a radiation detector. The sheet material to be measured is interposed between source and detector and part of the radiation is absorbed by the sheet material in proportion to its weight per unit

area. Weight per unit area or thickness is read on a calibrated recorder. No physical contact is made with the material being measured, causing no marking of delicate surfaces.

Subminiature Plug-In Amplifiers

The Walkirt Co., 5808 Marilyn Ave., Culver City, Calif., announces a series of plug-in amplifiers designed for use in computers and

similar service. Amplification is substantially flat from 20 cps into the ultrasonic range. Voltage gains of 10,100 and 1,000 are available.

Tele Antenna Rotator

The Radiart Corp., 3571 W. 62nd St., Cleveland, Ohio, has developed the Tele-Rotor which rotates the antenna to the point affording clearest reception and simultaneously indicates the position of the (Continued on p 178)

Hook-up wire jacketed with heat-resistant du Pont NYLon PLastic approved for temperatures to $90^{\circ} \mathrm{C}$.

Small diameter, light weight, and flexibility among the many extra advantages of nylon heatresistant jackets

The first thermoplastic-insulated wire to receive Underwriters' approval for use in electrical appliances at temperatures to $90^{\circ} \mathrm{C}$. is now being made by covering the wire with a jacket of Du Pont nylon plastic.

Only a thin coating of lightweight nylon is needed to provide this added heat-resistance, instead of the heavy asbestos jacket formerly used. Thus this wire has the advantages of light weight, small diameter, and flexibility.

And in addition to raising the heatresistance of the primary insulation, nylon provides improved resistance to
oils, chemicals, and abrasion . . . plus extra smoothness for easier pulling.

To help you make better products
Today, manufacturers of electrical wire are finding that a jacket of nylon reduces deformation under load at elevated temperatures, and they are using this property to help meet the increasing demand for heat-resistant wiring. Nylon can help you make many electrical products better. This Du Pont plastic can be extruded over bare wire or over primary insulation. It can be molded into thin sections and intricate shapes, and around metal inserts.
How can you take advantage of its unusual properties? To see how other manufacturers are using nylon profitably, and for valuable information on molḍing and extrusion of nylon, write for free booklets.
E. I. du Pont de Nemours \& Co. (Inc.), Plastics Department.

MAIN SALES OFFICES: 350 Fifth Avenue, New York 1, N. Y.; 7 So. Dearborn Street, Chicago 3, Illinois; 845 E. 60th Street, Los Angeles 1, California.

NEWS OF THE INDUSTRY

Edited by WILLIAM P. O'BRIEN

IRE West Coast Convention

The 1949 West Coast Convention of the IRE is being held in conjunction with the Fifth Annual Pacific Electronic Exhibit sponsored by the WCEMA, at the Civic Center, San Francisco, Calif., from August 30 to September 2. A tentative program of technical sessions is as follows:

Tuesday, Aug. 30

10:00 A.M.--Session I
An Application of Frequency Selective Negative Feedback, by J. Edwards and T. J. Parker of U. S. Navy Electronics Lab, San Dlego, Calif.
The Constant-Voltage Audio Distribution System, by V. Salmon of Stanford Research Institute, Stanford, Calif.
Outlook for Miniature Electronics, by C. Brunetti of Stanford Research Institute, Stanford, Calif.
I:30 P.M.-Session II-Vacuum 'I'ubes
High Current High Voltage Gas Discharge Tube, by W. R. Baker, Q. A. Kerns, J. Reidel and R. F. Edwards of Radiation Lab, U. of California, Berkeley, Calif. High-Voltage Industrial Rectifier Tubes, Design Considerations for High-Power Applications, by M. H. Brown of Machlett Labs, Inc, Los Angeles, Calif.
The Effects of Contact Potential Difference on Electron Tube Characteristics, by G. D. O'Neill of Sylvania Electric ProdThe Transverse, Curi.
The Transverse Current Amplifier, by
L. M. Field of Stanford U., Stanford, Calif 7:30 P.M.-Session III—Circuitry I
Graphical Analysis of Tuned Coupled Circuits, by A. E. Harrison and N. W Mather of tI. of Washingion, Seattle Wash.
Design of Wide-Band Feedback Pulse Amplifiers, by D. A. Watkins of Los Alamos Scientific Lab, Los Alamos, N. M. Some Developments in UHF Power Osillator Circuits, by D. H. Preist of Eitel ccullough, Inc., San Bruno, Calif.
Front End Design in UHF Television keceivers, by D. K. Reynolds and M. B Adams of Stanford Research Institute,

Wednesday, lug. 31

19:101 A.M.-Session IV-Instrumentation Multi-Channel Recording of Physical Prenomena, by L. P. Robinson and R. L Sink of Consolidated Fingineering Corp. 'asadena, Calif

Frequency Control With Synthetic Crustals, by C. E. Green of U. S. Navy Electronies lab, San Dlego, Calif.
The Measurement of Non-Linear Distortion, by A.P.G. Peterson of General Radio ('o., Cambridge, Mass.

U'se of Doppler Radar As Test Kange Instrumentation for Missiles, by E. R. Toporeck or Naval Ordmancł Test Niation, Inyokern, Callf.
3:00 A.MI-Session V-Control Systems Combination Open-Cycle Closed-Cycle Systems, by .I. R. Monre of North American Aviation, lnc., Los Angeles, Calif. Application of an Electro-Mechanical Feedback System to a Recording Manometer, by L. G. Walters of U. of California, los Angeles, Calif.

COSMIC RAY PROJECT

The equipment above, installed in a trailer, was recently aken by University of California scientists to a mountain top in the high Sierra for investigation of the behavior of cosmic rays under controlled conditions. It counts and identifies negative and positive mesotrons in the cosmic radiation. Cloud chambers in another trailer were used to measure momentum and mass of particles

Criteria Relating Steady-State Response to Transient Response of Closed-Loop Systems, by IRobert M. Osborn of Aerophysics Lab, North American Aviation, Inc., Downey, Calif.
184-Inch Cyclotron Fulse Tining Fquipment by W. R. Aiken and D. A. Mack of U, of California Radiation Lab, Rerkeley, Calif.
7:30 P.M.-Session V1—Mirruwive 'rechniques and Applications
Use of the Phase Front Plotter to Olserve Propagation, by H. Iams of Hughes Aircraft Co., Culver City, Calif.
Near Zone Field Studies of Quasi-Optical Antennas, by W. G. Sterns of U. ot California, Berkeley, Calif.
Absorbing Surfaces, by $L_{\text {. }}$. E. Swaris of U. S. Navy Electronics Jab, San Diego,

Radio Circuits for Telephone and Teleision Service, A Progress Report, by D. I. Cone of The Pacific Tel \& Tel, Sai Francisco, Calif

Mhursduy, Sept. 1

9:30 A.M.-Session VII-Circuitry II Unification of Basic Filter Viewpoints on the Complex Frequency Plane, by D. I Trautman, Jr. of Stanford U., Stanford Calif.
Steady State and Transient Response Obtained hy means of a Two-Dimensional Potential Analogy, by H. A. Rosen of California Institute of Technology, Pasadena, Calif.
Analysis and Design of Trigger Circuits $1,{ }^{\prime} \mathrm{T}$. H. Meisling and D . Ir. Brown of T. of California. Berkeley, Calif.

Diode fhase-Discriminators, by R. H bishington of Rand Corp., Santa Monica Calif.
SYMPOSIUM-Airborne Antennas
1:30 P.M.-Session VIII—Theoretical Problems
Frequency Analysis of Variable Net works, by L. A. Zadeh of Columbia U. New York, N. Y
The Fxternal Field Produced in a Slot in an Infinite Circular Cylinder, by S. Silver and W. K. Saunders of U. of Cali. formia, Berkeley, Calif.
Slot Radiators, by N. A. Begovich of Hughes Aircraft Co., Culver City, Calif. Microwave Guiding by Single Corrugated Surfaces, by F. J. Zucker and W. Rotman of Electronics Research Labs, USAF, Cambridge Field Station, CamSYMPOSITTM

Color TV Committee Formed

The National Bureau of Standards recently organized a committee for the purpose of surveying the present status and future prospects of color television. Among other things this committee is concerned with problems of general policy in the radio communications field.

Membership of the color television committee is as follows:
E. U. Condon of the National Bureau of Standards, chairman; Newbern Smith of NBS, vice-chairman; Stuart L. Bailey of Washington, D. C.; W. L. Everitt of the University of Illinois; and Donald G. Fink, editor of Electronics.

The general scope of the committee's study will embrace (1) the necessary bandwidth for suitable color pictures; (2) prospective development of color television transmitting and receiving equipment: (3) radio propagation factors in the 174 to $216-\mathrm{mc}$ and the 470 to

tu

LAVOIE LA-239A VIDEO OSCILLOSCOPE Gives Quantitative Data (Amplitude and Time) In ONE Instrument.

SINE WAVES OBSERVABLE
10 cycles to 5 megacyles per second

TRANSIENTS OBSERVABLE

Mimimum rise fime- 0.08 microsecond (10% to 90%)
Maximum square-pulse duration
5,000 microseconds
SIGNAL INPUT IMPEDANCE
Oscilloscope alone- $\mathbf{3 0 0 , 0 0 0}$ ohms paralleled by 30 mmf .
Oscilloscope with probe- 3 megohms paralleled by 12 mmf .
SYNCHRONIZING INPUT IMPEDANCE
Oscilloscope alone- 300,000 ohms paralleled by 30 mmf .
Oscilloscope with probe- 3 megohms paralleled by 12 mmf .
SIGNAL INPUT VOLTAGE AND SENSITIVITY, NOMINAL FOR
IMAGE OF STANDARD AMPLITUDE O. 6 INCH
Oscilloscope alone- 0.1 to 100 volts, peak
With probe-Ten times voltage with oscilloscope alone with maximum limit of 450 volts, peak.

SWEEP TIME

0.5 to 50,000 microseconds per inch, continuous.

SWEEP CIRCUIT
Start-stop, each sweep independent of preceding.
SYNCHRONIZING MEANS AND VOLTAGE
Internal-Leading or lagging edge of pulse. Signal under observation or trigger generator.
Exfernal-Without probe-土 0.5 to ± 150 volts, peak.
With probe-土 5 to ± 450 volts, peak.

- Write for quotation and any additional information

LavrieLaboraturies

RADIO ENGINEERS AND MANUFACTURERS MORGANVILIE. N.J.

CALIBRATING VOLTAGE
An internally generated square wave of approximately 150 cycles per second, adjustable from 0.1 to 1 volt peak-topeak and applied directly to the input of the signal amplifiers, which follow the multiplier. A 75 volt square wave for calibrating vertical plate deflections, etc.

IIMING MARKERS

Synchronized with sweep and available at intervals of $0.2,1,10,100$ or 500 microseconds.

TRIGGER PULSE OUTPUT

± 25 volts, 4 microsecond pulses, occurring at 300,800 , 2,000 or $5,000 \mathrm{pps}$. and with rise time of $1 / 2$ microsecond

SWEEP DELAY AND EXPANSION

Any portion of sweeps nominally over 10 microseconds may be delayed and expanded about 10 times for detailed examination of signal.
MEASURING SCALE
30×40 divisions, illuminated, optically produced, free from parallax and visible only when wanted, with any desired brightness.
EXTERNAL CONNECTIONS AVAILABLE
To vertical plate of cathode-ray fube. (Maximum peak voltage, 450)
Through 100,000 micromicrofarads with sensitivity of approximately 110 volts per inch defiection.
To horixonfal ampllfier. (Maximum peak voltage, 450)
Through potentiometer allowing sensitivity to be varied from approximately 8 to 200 volts per inch deflection. Band width 10 to 10,000 cycles.
TO CATHODE OF CATHODE-RAY TUBE (Z AXIS)
Through 10,000 micromicrofarads. Internal timing markers cannot be used simultaneously.
CATHODE-RAY TUBE-3JPI
POWER SUPPLY
Volts $115-50$ to 1,600 cycles per second.

Specialists in the Development and Manufacture of UHF Equipment

$890-\mathrm{mc}$ bands affecting basic technical principles of frequency allocation for color television service; and (4) adaptability of present receivers to color use, or to receive in black-and-white a program being transmitted in color.

New JTAC Officers

Three recent appointments to office in the Joint Technical Advisory Committee were made by the boards of directors of IRE and RMA. The officers for the term July 1, 1949 to June 30,1950 are as follows:

Donald G. Fink, editor of Electronics, chairman; John V. L. Hogan of Radio Inventions Inc., vice-chairman; and Laurence G. Cumming, technical secretary of the IRE, reappointed secretary.

Formed jointly by the IRE and RMA in May 1948, JTAC reviews and evaluates technical and engineering information relating to electronics in order to advise government bodies and other professional groups. It has issued two reports on the use of uhf for television in connection with recent FCC hearings.

MEETINGS

Aug. 29-Sept. 1: National Conference of Associated Police Communications Officers, Hotel New Yorker, New York City.
Aug. 30-Sept. 1: Fifth Annual Pacific Electronic Exhibit sponsored by the WCEMA and the 1949 IRE western regional convention, Civic Center, San Francisco, Calif.
Sept. 12-16: Instrument Society of America National Conference and Exhibit, Municipal Auditorium, St. Louis, Mo.
Sept. 15-16: Sixth joint Can-adian-U. S. industrial conference of RMA Board of Directors, Greenbrier Hotel, White Sulphur Springs, West Va.
Sept. 26-28: National Electronics Conference, Edgewater Beach Hotel, Chicago, Ill.
Sept. 27-29; Twenty-sixth Annual Session of the Communications Section, Association of American Railroads, Wentworth Hotel, Portsmouth, N. H.

SEpt. 28-Oct. 8: 16th National Radio Exhibition (Radiolympia), Olympia Exhibition

Hall, London, England.
Oct. 10-14: ASTM 1949 West Coast Meeting, Fairmount Hotel, San Francisco, Calif.
Oct. 10-14: SMPE 66th Semiannual Convention, Holly-wood-Roosevelt Hotel, Hollywood, Calif.
Oct. 12-15: Ninety-Sixth Convention of The Electrochemical Society, LaSalle Hotel, Chicago, IIl.
Oct. 17-21: Annual Meeting of the Society for Non-Destructive Testing, Public Auditorium, Cleveland, Ohio.
Oct. 31-Nov. 2: Second annual Conference on Electronic Instrumentation in Nucleonics and Medicine, Hotel Commodore, New York City.
Oct. 31-Nov. 2: 1949 Radio Fall Meeting of IRE and RMA engineering department, Hotel Syracuse, Syracuse, N. Y.
Oct. 31-Nov. 2: Fall Meeting of the URSI and IRE, National Academy of Sciences and State Dept. Bldg., Washington, D. C.
Nov. 14-18: 23rd NEMA Annual Meeting, Haddon Hall Hotel, Atlantic City, N. J.

Surgery Taught Via Television

Televised operations have recently become standard training procedure at Guy's Hospital in London, thus enabling medical students to
view advanced surgery without clustering around the operating table in the theatre.

The installation incorporates a

General view of the operating theatre in Guy's Hospital, London, shows the unobtru.
sive character of the television camera installation (upper left). The camera is attached to the lamp over the operating table and both are moved on an overhead track
C.P.S. Emitron camera fixed directly above the operating table, horizontally, with a mirror set at an angle of 45 degrees reflecting into the camera's lens the scene below. The camera is remotely controlled for lens selection and focussing. The area scanned depends upon the particular lens in use, there being a choice of life-size, three-toone reduction, or three-fold magnification of an area five by six inches.

A microphone located alongside the camera picks up the surgeon's running commentary. Camera and microphone are linked with remote receivers (in lecture rooms) by closed transmission circuits.

The hospital intends to prepare a repertoire of 30 or 40 standard operations, and then invite parties of surgeons from hospitals throughout England to come and watch the operations being televised. A film

Magnavox uses Sylvania $1 N 34$ Germanium Diodes in all TV receivers for

The Magnavox Company's famous Embassy Television Se* - like all other models in the company's line of TV receivers-incorporates a Sylvania IN34.

Magnavox selected Sylvania 1N34's for use as video detectors in its television sets because, according to Mr. Antony Wright, Chief Engineer, "Their compact size, dependability and electrical characteristics are ideal for application to television signal detection. There is no doubt that they play their part along with the other quality products with which they are combined and which, as a whole, serve to produce high quality pictures." That's just one more of the outstanding jobs that Sylvania Germanium Diodes are doing! Why not plan to put these compact, heaterless components to work in your products?

Stupakoff

NEGATIVE TEMPERATURE COEFFICIENT

APPLICATIONS
Measurement and Control

- Temperature	/ High and Low Frequency
\checkmark Pressure	\checkmark Direct Current
」 Flow	\checkmark Time Control
$\sqrt{ }$ Temperature Compensation	, Expanding, compressing, and limiting output in Audio Amplifiers

- And there are many other applications.

Made to exacting standards and specifications, Stupakoff Negative Temperature Coefficient Resistors are supplied complete with terminals in the form of rods, tubes and simple shapes, including discs, bars and washers. Sizes currently available in rods are $.010^{\prime \prime}$ to $.500^{\prime \prime}$ diameter. Tubes are from $.020^{\prime \prime}$ to $.500^{\prime \prime}$ O.D., with I.D. up to 75% of O.D.

Characteristics of the resistor material are as follows:

1. Specific Resistivities available:
$10-7500$ ohm cm ${ }^{3}$
2. Resistance VS Temperature-Resistance decreases approximately 30% for each $10^{\circ} \mathrm{C}$ temperature increase. (see curve)
3. Mechanical properties-

Modulus of Rupture $18000-20000$ \#/in ${ }^{2}$ Compressive Strength 75000 \#/in2 Tensile Strength $8000-10000$ \#/in2
4. Absorption-less than 0.1%
5. Stability-Good
6. Reproducibility-
a. Resistance: $\pm 5 \%$
b. Temperature characteristics: $\pm .5^{\circ}$ from $-60^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$

Righ-Typical Resistance-Temperature Characteristic Stupakoff Negative Temperature Coofficient Resistor Material.

STUPAKOFF CERAMIC \& MANUFACTURING COMPANY

Latrobe, Penna.

low-frequency response is intentionally made very poor.

The out-going power amplifier V_{1} is normally inoperable because its grid is held by the plate of V_{0} down to the vicinity of -75 volts. Signals originating at the remote station then appear at the grid of V_{3} and are heard over the home loudspeaker. The separate input transformer (or a separate winding on the output transformer of V_{1} is necessary, rather than connecting the input of V, directly to the plate

FIG. 3-Front and rear views of typical master station
of V_{1}, to prevent plate-supply disturbances from appearing at this high-gain input.

Sounds at the microphone are amplified, and any above a certain level (determined by the setting of the threshold control) are able to overcome the cut-off bias of V_{1}. The output of this high $-\mu$ triode is then rectified and instantly cuts off triode V_{2}, so that V_{1} is quickly returned to operability, at a rate determined by $R C$. This time constant must be short enough so that the beginning of words is accurately reproduced, yet long enough to avoid a disagreeable thump at the receiving end.

Slightly before V, becomes operable (because there are no large time-constants to slow it up) the grid of V_{5} (normally cut off) is driven positive, and the incoming amplifier completely and silently blanked. It is desirable that the

NO OTHER manufacturer of electric connectors offers as many varied and diversified type series of quality electric connectors as Cannon Electric . .

No other manufacturer of electric connectors has designed, engineered and built as many different special connectors for special applications...

Connectors for aircraft, radio, radar, guided missiles, microphones, power, instruments, controls, television, public address systems, geophysical equipment, telephone, industrial controls, and general electrical and electronic applications.

28 REPRESENTATIVES OFFICES LOCATED IN PRINCIPAL CITIES 400 DISTRIBUTORS OF CONNECTORS FOR SOUND EQUIPMENT

SINCE 1915

Cannon Electric Development Company Division of Cannon Manufacturing Corporation 3209 Humboldt St., Los Angeles 31, Calif. Canadian Factory, Toronto, Ontario

Do you have This IIelpful Helipot Dữitial Ciltalog?

blanking operation be complete and as silent as possible, as well as instantaneous; therefore the rather complicated arrangement shown is used.

The plate of V_{s} is pulled to ground, making this tube inoperable as an amplifier, and at the same time the direct-coupled grid of V; is restrained from going any further negative than ground, so that no click is apparent.
When the sound at the microphone ceases, the negative charge leaks off C_{2}, V_{1} is then instantly blanked, and the clamping of $V_{\bar{\top}}$ released shortly thereafter. (As all coupling time-constants are very small, the effect of the heavy overload on V_{s} caused by the outgoing signal has been dissipated by the time V_{τ} returns to operability, so that no disturbances are heard over the loudspeaker.)

Operation

It is obvious that ordinarily sounds issuing from the home loudspeaker would be able to affect the home microphone as well as desired sounds (This would not cause howling as in an ordinary system, but a form of slow motor-boating as the system is periodically switched from one condition to the other). Therefore part of the output of V_{T} is rectified (V_{s}) and applied in series with the normal d-c threshold bias to the grid of V_{4}. As this additional bias is always proportional to the amplitude of sound issuing from the loudspeaker, such sound can never be loud enough to take control of the system. This mechanism is aided by the slight acoustical lag before sound from the loudspeaker can reach the microphone.

In cases of loud ambient sound at the remote station, the home station operator has merely to talk slightly louder than the sound issuing at the moment from his loudspeaker to gain instant control at any time. However, it is found that most conversations are necessarily conducted with comparative quiet obtaining at both ends, so that the home loudspeaker is generally practically silent when the home operator wishes to talk.

For example, a machine tool op-

"WANT TO KNOW WHY

IPM SOLD ON

sorensen?"

"Voltage regulators - even electronic regulators - are not all equally accurate! And I know ACCURACY is important! The Sorensen electronic voltage regulator gives me the kind of accuracy I want.
"But I don't want to buy accuracy and costly maintenance at the same time. The Sorensen Regulator is a strong rugged instrument designed to give accuracy at no sacrifice to low-cost-of-maintenance.
"Furthermore I like my instruments simple - well designed - because I know that a complex instrument loaded with added components can mean
 poor basic design - and inferior performance. The Sorensen Electronic Voltage Regulator is a beauty for simplicity."

"That's why I'm sold on S D EISET"

Get highly stabilized $D C$ regulation with
the NOBATRON and B-NOBATRON.

STANDARD AC SPECIFICATIONS

Model in VA Capacity		$\begin{array}{r} 150 \\ 500 \\ \hline \end{array}$	$\begin{gathered} 250 \\ .1000 \\ \hline \end{gathered}$	$\begin{aligned} & 2000 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{array}{r} 5000 \\ 10000 \\ 15000 \\ \hline \end{array}$
Regulation Accuracy		$\pm 0.1 \%$ against line or load			
Marmonic Distortion	Basic	5\% max.	5\% max.	5\% mox.	5\% max.
	5	3\% max.	2\% max.	3\% max.	3\% max.
Input Voltage		95-130 VAC; also available for 90-260 VAC single phase 50-60 cycies			
Output Voltage		Adjustable between 110-120; 220-240 in 230 VAC models			
Load Range		0 to full load			
P.F. Range		Down to 0.7 P.F: all 5 models temperature compensated			
NOTE: REGULATORS CAN BE HERMETICALLY SEALED					

The ORIGINAL SORENSEN CIRCUIT is easily adopted to meet your special requirements. SORENSEN engineers are always available to solve any unusual problem not handled by the STANDARD SORENSEN LINE. JAN requirements can be met by all models.

Write
for defailed "Sorensen Regufafor. Performance Chart"*

You get better service from Leach Relays because thousands of types of relays for thousands of applications have been proved-in-use for over 30 years.

Leach Relays are designed with an exceptionally high factor of safety for extra dependability. Simplicity of designs makes installation quick, easy and inexpensive. Get all the facts and make your own comparisons. Leach Relays' outstanding performance, reliability, sturdiness and economy have been proved-in-use.

Highest standards of engineering, materials and workmanship assure long, safe, efficient, trouble-free service.

FOR BETTER CONTROLS THROUGH BETTER RELAYS - CONTACT LEACH

S91SAVALONBOULEVARD. औLOSANGELESB, CALIF.
Representatives in Principal Cities of U.S. and Canada
erator at the remote end will always have to shut down his machine, or come closer in order to be able to hear above the din. The talker at the home station can also adjust his incoming volume control to give a level satisfactory for any particular conversation, although this is not usually necessary.

The microphone may be located very close to the home loudspeaker, even in the same cabinet if desired. However, better results are possible if they are separated by a few feet.
(A convenient arrangement which has been suggested would be to combine a small microphone with the selector pushbuttons in a compact unit for the desk, while the rest of the equipment could be installed in some out-of-the-way location nearby.)

The system described above was used for a prolonged period in a shipyard, the master station being located in the main office, with substations in a boat-shed, mill buildings, machine shop, blacksmith shop, and an outdoor location; and operation proved completely reliable and highly satisfactory under all circumstances.

In the interests of simplicity, unnecessary details, such as distribution switching and provision for initiating calls from the remote stations have been omitted from the schematic diagram.

Veneering Machine

By S. M. Milanowski

Los Angeles, Calif.
To Permit the edge-gluing of thin wood strips or veneers with greater speed and efficiency, a new electronic veneering machine has been developed for Anacortes Veneer, Inc., at Anacortes, Washington.

It is powered by a radio-frequency generator, and makes use of the Mann-Russell parallel bonding principle to heat-cure resin-coated wood surfaces at relatively low pressures without discrepancies in the alignment of the mated components. The latter comprise strips of wood ranging up to 10 feet in length, covered with heat-reactive adhesives such as phenol and urea formaldehyde resins.

As indicated in Fig. 1A, veneers are initially coated and loaded on

The Arnold Engineering Company

 offers to the trade a complete line of Magnetic Materials
PERMANENT MAGNET MATERIALS

- Cast Magnets, AInico I, II, III, IV, Y, VI, XII, X-900
- Sintered Magnets, Alnico II, IV, V, VI, X-900, Remalloy*
- Vicalloy* - Remalloy* (Comol)
- Cunico - Cunife - Cast Cobalt Magnet Steel

HIGH PERMEABILITY MATERIALS

- Deltamax Toroidal Cores - Supermalloy* Toroidal Cores
- Powdered Molybdenum Permalloy* Toroidal Cores • Permendur*
*Manufactured under licensing arrangements with WESTERN EIECTRIC COMPANY

Write for information relating to any of these Magnetic Materials

The Arnold Engineering Company

> SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORATION 147 EAST ONTARIO STREET, CHICAGO 11 , ILLINOIS

Many units, such as timers, transmitters, vending mechanisms, and similar devices require the adoption of small open gear trains for intermittent duty.
Beaver Gear Works is equipped to make these trains to any degree of accuracy required. Beaver Gear engineers, knowing what is expected, and qualified to assist in details of fine-pitch gear applications, can advise you as to what will work best under various design.
Consult us on your gear problems.

1021 PARMELE STREET, ROCKFORD, ILLINOIS

If the Specific Dry Battery You Need Is NOT Listed in This Free Manual... BURGESS ENGINEERS WILL DESIGN A NEW BATTERY TO MEET YOUR SPECIFICATIONS

It's all part of the Burgess Service! This complete Engineering Manual lists hundreds of battery types developed by Burgess Engineers to meet new require ments. If the specific battery you need is not among them, the complete Burgess facilities, design, production, and engineering will be placed at your dis posal to build the battery you need in any quantity -large or small!
Write for ENGINEERING MANUAL and CHECK SHEET
No obligation. By return mail you will receive the FREE Engineering Manual listing the complete line of Burgess Batteries together with specifications; also the Burgess "Check Sheet" on which you may outline your requirements in the event that the battery you need has not already been developed. Address:

BURGESS

FIG. 1-Setup for r-f wood veneering machine
a layup table from which they are fed by friction conveyor belts through an electrostatic field created by a dead plate and two electrodes. Vertical spring pressure is exerted by the electrodes to maintain the horizontal alignment of veneer edges as curing action takes place, after which the veneered materials are passed through discharge friction belts to a conveyor belt for cutting to predetermined lengths with a clipper.

The fundamental arrangement of conveyor belts is indicated schematically in Fig. 1B. There are two upper belts for each lower belt and the former are actuated a few inches on either side of the lower conveyor. The upper belts exert spring pressure to maintain alignment by bending the veneers slightly before the latter are electronically adhered. In the discharge belt units, operational speeds are reduced to prevent crowding and vertical pressures are relatively slight.

Figure 1C shows how electrodes are positioned a few inches from one another at a twenty-degree angle to the conveyor system. The aforementioned dead plate is directly below these electrodes, and each glue line in its forward travel passes progressively through the r-f field so that the energy of the latter will be concentrated between alternating positive and negative plates.

Both the electrodes and the dead plate are made of corrugated aluminum for over-and-under threading action as veneers are passed through and aligned in the electrostatic field. Such corrugated platens

ERIE TRIMMERS

easy assembly dependable performance reasonable cost

These Erie Resistor Trimmers are compactly designed for easy installation on the assembly line and give the design engineer wide latitude in chassislayout. They have a rugged stability that spells long life and dependable performance.

Erie Trimmers have the quality that indicates their use on the highest priced sets, with a price tag that permits their adoption for the most competitive FM and TV numbers. Specifications are given below. Samples will be sent to interested manufacturers on request.

Forecast: Less TV "'Snow'’ with New Plastic Tape

Loose antenna lead-ins were causing "snow" streaks across TV receiver screens until installation men began using "SCOTCH" No. 33 Electrical Tape. Now, this amazing new tape provides all-weather insulation protection for a fraction of the usual cost.

Why not let "SCOTCH" Electrical Tapes save you time and money on your next insulating job? Just write Dept. E9 for a booklet describing the more than thirty tapes designed to solve practically any insulating problem. No obligation.

Quick Facts About "SCOTCH" No. 33 Electrical Tape

- THIN CALIPER - only . 007 inch thick, takes less room in junction boxes, and fittings.
- hIGH DIELECTRIC STRENGTH-over 7,000 volts.
- TOUGH-plastic backing is abrasion resistant, unaffected by water, acids, oils, alkalies, alcohols, exposure to sun, rain, snow, ice.
- STRETCHY - conforms snugly to uneven surfaces.
- TIP-for perfect high-heat insulation try "SCOTCH" Electrical Tape No. 27. Glass-backed, Thermo-setting Adhesive.

[^3]have a special advantage in that their troughs can be readily cleaned when sizeable quantities of squeezed-out resinous adhesives accumulate therein.

Production data indicate that a three to four percent ratio of waste materials is being eliminated through use of the machine in place of previous taping techniques, and that the machine operates as rapidly as heated-drum veneering units without demonstrating the latter type's inherent splicing difficulties.

The machine is being used primarily for the production of clear face stock, but should be readily adaptable to the production of core stock from waste wood materials.

Vacuum Capacitor Voltage Dividers

By E. F. Kiernan
U. S. Navesearch Division \(\begin{gathered}Electronics Laboratory
San Diego, California\end{gathered}\)

The vacuum-tube voltmeter has been applied extensively to the measurement of potential differences in the research laboratory, in radio servicing and in the field of electronics generally. The popularity of this instrument is due primarily to its high input impedance which allows measurements to be made with a minimum of disturbance to the circuit. High input impedance is achieved by the use of diode vacuum tubes of small interelectrode capacitance and restricted physical dimensions which allow the tubes to be contained in compact probes.

While small physical dimensions facilitate measurements in tight places, they impose limits on the maximum voltage which can be applied. The upper voltage limit gen-

FIG. 1-Vacuum capacitor valtage dividers can be used to extend the range of vacuum-tube voltmeters, and similar indicating devices, without destroying their high-impedance characteristics

Fully in keeping with the trend towards larger, direct-viewing tubes originally pioneered by Dr. Allen B. Du Mont-ar_d also the lower price range for higher grade TV offerings.
Type 16FP4 is a 16 -inch magnetic focus and deflection television picture tube designed to give high brilliance and sharp definition. Electron gun design utilizes a bent electrode structure to be used with a single external magnet for the elimination of ion spot blemishes. The exclusive Du Mont screen depositing technique assures the longest pleasurable usage.

CHECK LIST OF 16 FP4 ADVANTAGES..
\checkmark All glass! No mounting problems.

- A mass-produced standard TV fube for maximum value at minimum cost.
Overall length of only $201 / 4$ inches.
\checkmark Deflection angle: 62°.
\checkmark Maximum diameter: $161 / 8$ inch $\pm 1 / 8$ inch.
\checkmark Bent-gun ion trap requirirg but a single magnet.
Accelerating potential: Maximum 16 KV : (Design Center Value).
\checkmark New type small shell duodecal 5-pin instead of 7 -pin base, for use with economical half-socket.
\checkmark Ideal compromise between large picture size and moderate fube cost.
- Detailed Specifications on request. Let us quote on quantity requirements.
(1) allem b. ou mont lagoratories, ine

WHY WOR-TV CHOOSES FAIRCHILD

The month of September sees another great landmark in the advance of television. WOR-TV goes on the air. Taking its cue from over a dozen years of operating Fairchild equipment at WOR, key station of the Mutual Broadcasting System, WOR-TV, one of the most modern installations, again selects Fairchild.

They know, as do many of the AM, FM and TV stations in the United States and abroad, that Fairchild recording and playback equipment is professional equipment. They know that a $14: 25$ transcribed show, spinning on Fairchild Synchronous Turntables will sign at exactly 14:25 on the nose. Not 14:29 or 14:2 1. Exactly 14:25!

TRANSGRIPTION TURNTABLE

On the right is shown a unit familiar to WOR-TV, to recording studios, radio stations and film companies.

- Direct to senter gear drive.
- Instant speed change during operation.
- No slippage coupling.
- Highest signal to noise.
- No tattletale wow or flutter.
- Lip Synchronous.
- Removable front access panel.
- Adjustable feet for levelling.
- Knee and toe space for operator.
- Increased operating efficiency.
- Reduced operating costs.

CUING AMPLIFIER

Unit 635 was selected by WORTV to be installed inside the Turntable cabinets. It is a compact 2 stage push-pull power amplifier. It supplies a local audio signal to a loudspeaker or to a number of headsets in order to monitor or cue a disk. It bridges across any low impedance line. Specifications:

$$
\pm 11 / 2 \mathrm{db}, 70-75,000 \mathrm{cps}
$$

Gain Control. Tone Control.
Three watts output to a loudspeaker.

PREAMPLIFIER-EQUALIZER

Unit 622 obviates the expensive multiplicity of equalizers literally forced upon the owner of sound equipment by the ever increasing number and types of pickups. Operates independent of source impedance; provides equalized line level output from the turntable; Fairchild Unit 622 is in use with all modern pickups in professional services. Vertical; lateral; standard and microgroove pickups-high impedance and low impedance-ONE EQUALIZER FOR ALL. WOR-TV uses it.

Write for complete details and descriptions.

154TH ST. AND 7TH AVE.
WHITESTONE, L. I., N. V.
erally does not exceed 300 volts rms, and in many instruments is much lower.

The problem of extending the range of a vacuum-tube voltmeter, while at the same time preserving its high-impedance characteristics has not received a great deal of attention. This writer has found that the recent appearance on the market of a variety of compact vacuum capacitors provides components which can be assembled into voltage dividers which will not only extend the a-c ranges of a vacuumtube voltmeter up into the kilovolts but will also increase the input impedance as well.

The vacuum capacitor voltage di-

Photograph of a vacuum capacitor voltage divider. The values of the capacitors shown are 5 and $500 \mu \mu \mathrm{f}$ with 17,500 -volt ratings-Official Photograph U. S. Navy
vider may be used in conjunction with a variety of indicators including the electrometer, the cathoderay oscilloscope, the vacuum-tube voltmeter and the electrostatic voltmeter. In conjunction with an electrostatic voltmeter, it can be used for d-c measurements ${ }^{1}$.

Typical Divider

Although dividers may be fabricated by assembling a series of standard transmitting vacuum tubes, using the interelectrode capacitances in various combinations, the vacuum capacitor is much more adaptable. These capacitors may be obtained in values ranging from 1 to $1,000-\mu \mu \mathrm{f}$ or more; and in ratings of from 10 to 30,000 volts or higher.

The dividers consist of two sections in series. The voltage division

"Get out of the woods"
 with the Sangamo

*The Service Proved Molded Paper Tubular

The Sangamo Path finder. Type 30 Molded Tubular. The better, trouble-free, thoroughly serviceproved plastic paper tubular capacitor.

Introduced by Sangamo in 1946 as the first tubular paper capacitor to be molded in a thermo-setting plastic, the Type 30 is thoroughly service-proved!
Used extensively by television manufacturers-preferred by service men -the Type 30 offers these proven advantages . . . Especially designed flexible leads that resist breakage and can't pull out! . . . No wax to run when heat is applied. . . Element is never damaged in fabrication (less heat and pressure is used in molding the thermo-setting plastic case) - this means greater dependability - no "hot spots."

Try these stable, rugged, long-lived paper tubulars - you'll like them! Write for these Sangamo Capacitor Catalogs: Button Catalog No. 830, Mica Catalog No. 831, Paper Catalog No. 832, Electrolytic Catalog No. 825.

because the shape is elliptical

When space is at a premium, the elliptical (hence, stronger) shape of STRIPOHM Resistors gives high unit-space rating and extra strength to withstand electrical and mechanical strain.

These vitreous enameled wire-wound resistors have low mounting brackets . . . strategically arranged terminals permitting multiple stacking for further saving of space . . . no sharp edges. Ratings from 30 to 75 watts . . . 0.45 to 66,000 ohms.

Write for Bulletin 23. WARD LEONARD ELECTRIC COMPANY, 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.

WARD LEONARD ELEGIRIG GOMPANY
 - Berult-Inginered Controb

resistors - rheostats - relays - control devices
across the divider is proportional to the reactance of the sections. For instance a $5-\mu \mu \mathrm{f}$ section in series with a $100-\mu \mu \mathrm{f}$ section would divide the applied voltage in the ratio of twenty to one. If 100 volts were applied across the divider there would be a reactive drop of 95.239 volts across the $5-\mu \mu \mathrm{f}$ section and a drop of 4.761 volts across the $100-\mu \mu \mathrm{f}$ section, neglecting the shunt capacitance of a probe.

In practice, representative probe capacitance will vary between 3 and $9-\mu \mu \mathrm{f}$, depending on the type of diode used. In low-ratio dividers this shunt capacitance connot be neglected.

In Fig. 1, suppose X_{1} is the reactance of a $5-\mu \mu \mathrm{f}$ capacitor, X_{2} is the reactance of a $50-\mu \mu \mathrm{f}$ capacitor and X_{3} is the shunt capacitance of a probe, say $6-\mu \mu \mathrm{f}$. If the reactance of X_{1} is given the value of 1 , then the relative reactance of the other section will be

$$
\frac{1}{\frac{C_{2}+C_{3}}{C_{1}}}=0.0893
$$

The total reactance across the divider, relative to the $5-\mu \mu \mathrm{f} \mathrm{sec}$ tion, would be $1+0.0893$, or 1.0893 . The percentage drop across X_{2} of any voltage E applied across the divider would be $0.0893 / 1.0893 \times$ 100 or 8.2 percent. In other words, if E equals 100 volts, e would be 8.2 volts.

Since the leakage resistance of

Vacuum capacitor voltage divider using tube plate-to-filament capacitance in series with four $50-\mu \mu \mathrm{f}$ vacuum capacitors connected in parallel-Official Photograph U. S. Navy

Its practical cost astonishes users almost

The nominal composition of commercially pure wrought Nickel is: Nickel* 99.4% Copper 0.1 Iron . 0.15 Manganese.................. .0 .2 Silicon0.05 Carbon 0.1 *Including cobalt PHYSICAL CONSTANTS Specific Gravity....................... 8.89 Density, lb. per cu. in................ 0.321 Melting Point. $\left\{\begin{array}{l}2615-2635^{\circ} \mathrm{F} . \\ 1435-1445^{\circ} \mathrm{C} .\end{array}\right.$ Specific Heat at ($80-212^{\circ}$ F.) 0.130 Heat Expansion Coefficient at ($80-212^{\circ} \mathrm{F}$.) , per ${ }^{\circ}$ F. 0.0000072 Thermal Conductivity at ($80-212^{\circ} \mathrm{F}$.) , Btu/sq. ft./hr. $/{ }^{\circ} \mathrm{F} . / \mathrm{in}420$ Electrical Resistivity at $32^{\circ} \mathrm{F}$., ohms/cir. mil. ft. . Temperature Coefficient of Electrical Resistivity per ${ }^{\circ} \mathrm{F} \ldots \ldots \ldots . .0 .0022-0.0028$ Modulus of Elasticity in tension, psi 30,000,000 in torsion, psi. 11,000,000 Poisson's Ratio 0.31

MECHANICAL PROPERTIES

The following figures for Standard Cold Rolled Sheet are typical, though the figures will vary for different forms and tempers.
Tensile Strength $55,000-80,000 \mathrm{psi}$ Yield Strength (2% offset)
$15,000 \cdot 45,000 \mathrm{psi}$
Elongation in 2 in................. $50-35 \%$
Rockwell B Hardness $.40 \cdot 70$

AVAILABLE FORMS

Wire Bar Plate Pipe
Rod Angles Sheet Strip Seamless and Welded Tubing Sand and Precision Castings Clad-Steel Plate and Strip Welding Rods

as much as its distinctive characteristics

It is a strange and interesting metal, Pure Nickel. A kin of both the base metals and the precious metals. Among all the elements, no other metal possesses its unique combination of so many differ. ent and uncommon properties.

- It is highly resistant to corrosives that destroy many other metals-alkalies, many acids, salts, organic compounds, fumes.
- It has mechanical properties like those of structural steel.
- Yet it is so ductile that it can be worked into the most intricate and delicate shapes that are practical in metal.
- It protects the purity of sensitive foods, beverages and pharmaceuticals against contamination.
- It often provides a faster rate of heat transfer than metals with equal heat conductivity.
- Its special electronic properties make it a standard metal for electronic uses.
- It offers rare electrical and magnetostrictive characteristics that often give theoretical ideas a birth of practical value.
- It can be exposed to temperatures ranging into yellow heat and even hotter in the absence of sulphur.
- At sub-zero temperatures its strength increases without change in ductility and toughness.
- It is a standard metal for the cladding of steel, and as a base for gold, palladium and silver-clad products.

And one of the most valuable of all its features is the fact that Pure Nickel is a practical metal at a practical price.

Does it stimulate an idea of how you may find an easy answer to a difficult problem?

Our booklet, "Inco Nickel Alloys for Electronic Uses" gives the important facts you want. It's yours for the asking.

The International Nickel Company, Inc.

See us at Booth 102, September 12 to 16 4TH NATIONAL INSTRUMENT EXHIBIT
Municipal Auditorium • St. Louis, Missouri

67 Wall Street, New York 5, N. Y.

A NEW MINIATURE POWER TRANSFORMERFOR USE IN AIRBORNE \& PORTABLE EQUIPMENT

Illustration shows relative size of HORNET and conven. tional transformers of comparable capacity.

FEATURING

SMALLER SIZE

than any previous design, through the use of newly developed class H insulating materials, and design techniques. As shown above, HORNET transformers are only about onefourth the size of similarly rated conventional transformers.

GREATER POWER OUTPUT

because of improved design and construction. HORNET transformers operate with unimpaired efficiency at high temperatures, and are suitable for operation at ambient temperatures as high as 150 deg. C. High output plus smaller size and lighter weight make these units ideal for use in airborne and portable equipment.

MEETS JAN SPECIFICATIONS

HORNET transformers are designed and built to meet requirements of current JAN T-27, and equivalent specifications.

Write for descriptive bulletin
of sizes and specifications

NEM YORK TRANSFORMER CO. INC. ALPHA, NEW JERSEY

vacuum capacitors can be maintained well up in the megohm region, the effective load presented to a source of potential by a vacuum capacitor voltage divider is purely reactive from the low commercial frequencies well up into the megacycles.

The use of these dividers is not restricted to sinusoidal waveforms since pulse voltages may be divided without alteration of the pulse shape. ${ }^{2}$ In applications involving very high voltages it is not necessary to locate the indicator adjacent to the divider; standard concentric cables may be used with remote indicators. If it is desirable to adjust the division ratio to some exact value, variable vacuum capacitors make such an adjustment simple.

Although, to the best of this writer's knowledge, there are no commercial vacuum capacitor voltage dividers on the market at the present time, this situation will probably be remedied in the near future. An especially designed unit wherein the two sections, one adjustable in capacitance, are enclosed in one envelope could be made very compact.

References

(1) A Meter for High Voltage Measurement, R. S. I., 10, Oct. 1946.
(2) $100_{1} 000^{\prime}$ Volt Pulses Measured With Capacitance Voltage Divider, G.E. Kiev. May 1948.

Control Wood Press

FOUR MEN now do a job that formerly required the full-time services of twenty employees at Pallet Manufacturing Co. of Lebanon, Oregon.

Purpose of the press is to assemble wood conveyor palletseach of which comprises a 2×4 wood beam with a length of 48 inches, on which two-block assemblies with overall dimensions of $7 \times 4 \times 2 \frac{3}{4}$ inches each are adhered at one center and two end locations. Assemblies of this type would ordinarily be produced by brush-coating the requisite wood surfaces with cold-setting adhesives, and stacking the wood components one over the other for a period of about 12 hours (or until the adhesives produced an adequate sequence of

FREQUENCY MEASUREMENTS UP TO 3,000 MC WITH ACCURACY OF ± 25 PARTS PER MILLION

- Between 100 and several thousand megacycles, the present accuracy of heterodyne frequency meters ranges between 0.01 and 0.1 per cent. Continually increasing importance of frequencies within this range call for increased accuracy of measurements.
A reference standard and precise interpolation offer the simplest, most inexpensive and most direct method of increasing the accuracy of heterodyne frequency meters.

The Type 1110-A Interpolating Frequency Standard is composed of two units: a frequency standard variable over a range of 1000 to $1010 \mathrm{kc}(1 / \mathrm{c})$, and a multivibrator unit for frequencies of 1 Mc and 100 kc . The frequency standard consists of a temperature-controlled 950 kc crystal oscillator, a highly-stable $50-60 \mathrm{kc}$ bridge-type variable-frequency L-C oscillator, a modulator and a filter for selecting the sum of the two frequencies at the final output.

When the 100 kc multivibrator is used, the 100 th harmonic has a range of 1% as the standard frequency is changed over the full range of the dial, covering 10.0 to 10.1 Mc . The multivibrator harmonics give complete frequency coverage from 100 Mc upward for the 1 Mc unit, and from 10 Mc upward for the 100 kc unit.

FEATURES

ACCURACY OF MEASUREMENT: over-all accuracy is ± 25 parts per million using oscillator dial directly. If oscillator is carefully trimmed in terms of the crystal, the over-all accuracy is limited principally by the error of the crystal, or about ± 10 parts per million at room temperatures.
SIMPLE TO CHECK ABSOLUTE ACCURACY: harmonics of multivibrators fall at all WWV standard frequencies. With suitable receiver the absolute accuracy, including that of the 950-kc crystal, may be checked readily.
zero beat adjustments: no need for wide-band circuits or wide-band interpolating methods.
The Type 1110-A Interpolating Frequency Standard can be used for frequency measurements with high-frequency receivers provided the receiver calibrations can identify frequencies if separated by as little as 1 per cent.

TYPE 1110-A INTERPOLATING FREQUENCY STANDARD
 $\$ 725.00$

An EASY and ACCURATE Way to Mensure Audio Frequency Voltages

- Designed for the measurement of AC Voltages from . 001 Volt to 100 Volts over a frequency range of 10 to 150,000 cycles. Accuracy of readings is $\pm 2 \%$ at any point on the scale. Very stable calibra-tion-unaffected by changes in line voltage, tubes or circuit constants. - Range switching in decade steps-easy to use-only ONE scale to read. Output jack and output control provided so that Voltmeter can be used as a high-gain (70 DB) high-fidelity amplifier. - Accessories available to extend readings up to 10,000 Volts and down to 10 microvolts. - Precision Shunt Resistors convert Model 300 Voltmeter to very sensitive direct-reading milliammeter. Write for complete data.

[^4]
BMLMTVINR (9) LABORATORIRS, me. BOONTON N. J. •U.S.A

In addition to the Model 300 Voltmeter, Ballantine Laboratories also manufacture Battery Operaled Electronic Voltmeters, R. F. Electronic Voltmeters, Peak to Peak Electronic Voltmeters, and the following accessories-Decade Amplifiers, Multipliers, Precision Shunt Resistors, elc.

Electronic controls for wood gluing press are tested at the Los Angeles plant of Industrial Elecironic Engineers
bonds). With the electronic press equipment, 18 different wood surfaces can be automatically coated with heat-setting resins, clamped between the press platens with an overall pressure of 150 psi , and cured with high-frequency heatso that three complete assemblies can be simultaneously ejected from the machine, ready for shipment, every six seconds
Three men load the three press hoppers with raw wood materials while a fourth man stacks the ejected assemblies for shipment. It is estimated that resultant production has lowered manufacturing costs by at least $\$ 15$ per hour.

Mechanical components of the assembly press are actuated at pre-cision-timed intervals by means of sense elements, comprising limit switches and potentiometers. The latter are wired to a master terminal board and energized by means of telephone-type relays actuated by a pair of vacuum tubes, whose output is adjusted by means of switches and dials on a control panel.

Tubes in the control system comprise a 6SN7 and a 2050 thyratron. Nine 833-A power triodes provide high-frequency heat for the three pairs of press platens.

Impulses from the tube controls are limited for an adequate margin of safety by the sense elements, and when the time comes for each predetermined operation of the assembly press an appropriate circuit

An 8 stage capacitor-rectifier multiplier. This unit is used in the "Racetrack" Synchrontron of the University of Michigan
Standard and Special furnished for all types of capacity applications -

Write for your copy of our catallog on your company letterhead

Our Engineers will be pleased to discuss your capacitor problems

1375 NORTH BRANCM STREET C CHICAOO 22, ILBINOIS Manufacturers of Plasticons, Hi-Volt Power Supplies and Pulse Forming Networks

Again Kinney Vacuum Pumps Improve a Product!

At Canadian General Electric Campany, Ltd., Kinney High Vacuum Pumps produce low absolute pressures that help increase the dielectric strength of capacitors by many thousands of volts. Each capacitor, before final filling and sealing, is subjected to a "vacuum cleaning" that removes harmful air and water - two serious deterents to efficient capacitor operation. Thus, Kinney Pumps make small capacitors perform like big ones.

Scores of other production and processing operations employ Kinney High Vacuum Pumps with equally profitable results. Dehydration, Distillation, evaporation, and many other basic production methods gain new speed and economy - plus noteworthy improvements in product quality - with low absolute pressures. There's a Kinney Pump for every need: eight single stage and two compound models . . . capacities from 13 to 702 cu . ft. per min. . . for low absolute pressures to .5 micron. Write for Bulletin V-45.

KINNEY MANUFACTURING COMPANY
3565 WASHINGION ST., BOSTON 30, MASS.
NEW YORK • CHICAGO * CLEVElAND • PHILADELPHIA • LOS ANGELES • SAN FRANCISCO FOREIGN REPRESENTATIVES
GENERAL ENGINEERING CO. (RADCLIFFE) LTD.
Ratation Works, Bury Road,
HORROCKS, ROXBURGH PTY., LTD
W. S. THO IAAS \& TAYLOR PTY., LTD. NOVELECTEIC, LTD. Johannesburg. Union of South Africa Zurich, Switzerland

[^5]is actuated by a contactor so that three-phase power flows from the factory line to motors controlling the machine's operational components for a suitable period of time.

Signal lights are arranged on the control panel so that operating personnel will be immediately informed if any mechanical or control unit should fail to function properly, but the equipment has been in constant operation for several months without requiting repairs of any type.

Washing Clothes with Sonnd Waves

A Pair of Australian inventors have recently announced the development of a device which employs sound waves to enhance the time-honored art of clothes washing. The ap-

Electrosonic clothes washer produces sound waves in wash tub which vibrate clothes to shake dirt particles loose
paratus, shown in the accompanying photograph, is immersed in the wash tub along with the clothes to be washed. The 100 -cycle sound waves produced by the device cause the clothes to oscillate back and forth a few thousandths of an inch, and this vibration shakes the dirt particles loose and holds them in suspension in the water. The entire cleansing process takes less than

*Reg. U. S. Pat. Off.

The CIEVELAND CONIAINERGA

PLANTS AND SALES OFFICES al Plymouth, Wisc., Chicogo, Detroit, Ogdensburg, N.Y, Jomesburg, N. J.

Cosmalite coil forms are also used in transformers of Zenith's table radios, such os the new Super-Sensitive "Major" FM receiver, above.

CANADA
METROPOLITAN
NEW YORK
MEW ENGLAND

WM. T. BARRON, EIGHTH LINE, RR \& OAKVILLE, ONTARIO
r. t. murray, 614 Centrat ave., east orange, n.j. E. P. PACK AND ASSOCIATES, 968 FARMINGTON AVE. WEST MARTFORD, CONN.

five minutes in most cases.
The transducer is contained in a metal cylinder about 8 inches in diameter and 16 inches long. The power unit is an electromagnet which has no moving parts and therefore does not deteriorate with prolonged use. This electromagnet vibrates a circular diaphragm $7 \frac{\pi}{2}$ inches in diameter which imparts the wave motion to the water when immersed.

In use, the clothes are packed around the machine and the tub filled with enough hot water to cover the clothes. The usual amount of flake or powdered soap is then added, and the vibrator goes to work.

For safety, the machine is operated with a step-down transformer which drops line voltages to about 32 volts. The inventors claim that this voltage makes the machine absolutely safe to use. The unit is being manufactured by a firm registered in Melbourne, Australia, in the names of the inventors, J. E. Excell and H. J. Jones. Special models have been prepared for export.

High-Speed Rotation Counter

Highly accurate and convenient high-speed rotation counting is made possible by a recently developed tachometer shown in the photograph. The device, a product of the General Electric Company, consists of a high-frequency pulse generator which produces pulses in accordance with the speed of the rotation being measured, an electronic counting circuit, and a pair of speed-indicating units, one for local and one for remote indication.

The instrument has the advantage that readings are taken every second and rotational velocity is indicated directly in revolutions per minute usually with an accuracy of better than 1 revolution per minute.

In counting high-rotational speeds, a magnetic pulse generator is used which fits on the periphery of a drum that is attached to the shaft of the machine being tested. The drum is magnetized, one side containing 150 magnetic poles and the other side 1,500 . When rotated,

THIS high-power version of Goodmans famous 12" T.2. is available as a Bass Unit for multi-speaker systems or general Public Address use. The last word in reliability, design and performance.

S.SWHIIE FIEXIBLE SHAFTS

"It's really quite simple-as you can see from the illustration above. No matter where a variable element is located in relation to its control, you can couple the two with an S.S.White flexible shaft. And since the shafts are expressly designed for remote control, they are as smooth and sensitive in operation as a direct connection.
'"The ability of S.S.White flexible shafts to operate around turns is mighty important when it comes to designing electronic equipment. Their use permits the ele ments to be located where they best meet wiring, assembly, servicing and circuit requirements and allows the dials to be grouped on the panel for more convenient operation."

For details,

The rotational speed of the turbine is being indicated in the electronic pulse counter. The pulse pickup is mounted on the shaft at the right
the drum generates electrical impulses in the magnetic pickup, and these pulses are carried to the electronic circuit where they are counted at speeds up to 50,000 per second. The indicators do the necessary calculation and interpolation, and flash on an opal glass screen the speed of revolution in rpm. The numbers change once every second in accordance with speed changes.

Other Uses

The pulse generator mentioned above is quite unique in counting revolutionary speeds because it has two speed ranges, one when the pickup is brought close to the $150-$ pole drum, and one when it sees the 1,500 -pole side. Any device capable of producing pulses of the proper amplitude and polarity could be used in conjunction with this counting and indicating system. For instance, the shaft of the machine to be tested could be marked and viewed by a phototube.

Television in Industry

Increased efficiency and safety in boiler operation have been made possible through the use of a special television system installed at the American Gas and Electric Service Corporation in Detroit. The system enables the control room operator to check boiler pilot burner flame conditions by actual observation without the necessity of having an observer present on the firing floor.

As illustrated by the accompanying photographs, the television camera views the pilot burner flames of a group of furnace ports through a

Reduce Assembly Operations!

SPRAGUE High-K Ceramic Capacitors
 HERLEC

- Sprague-Herlec high-K ceramic capacitors for bypass and coupling applications offer the designer of television and F-M receivers savings in both chassis space and in component and wiring costs.
- Disc Types 29C and 36C capacitors are extremely small round wafer-shaped units. Mounted across miniature tube sockets with extremely short leads, they result in improved v -h-f bypassing. Both single and dual capacitors are available on one disc.
- Bulplate Type 34C multiple capacitors are rectangular wafers with as many as five capacitor sections. One rugged, ceramic Bulplate may combine into a single, compact integral
assembly all the capacitors and related wiring in one or more stages of electronic circuits. In combination with miniature resistors, Bulplates make more stable and reliable network assemblies than do completely printed R-C circuits. Closer electrical tolerances are more economically obtained and circuits may operate at a higher power level.
- All Sprague-Herlec ceramic capacitors are protected by a tough, moisture-resistant insulating coating.
- A constant and reliable supply of capacitors is assured by operation of two manufacturing plants in two widely separated locations.
- Write for Engineering Bulletin 601A today!

THE HERLEC CORPORATION•MILWAUKEE 3, WISCONSIN (Wholly owned Sprague Subsidiary)

backbone of STEEL

LORD BONDED-RUBBER Products
Solve Some of Industry's Toughest

Rubber, bonded to metal by the LORD Process, gives the imaginative engineer what amounts to a new material with which to work"rubber with a backbone of steel," Other metals, such as brass and dural, are also used to meet special conditions.

The characteristics of rubber, natural and synthetic,-its effective vibration control, its flexibility, its high coefficient of friction, its resistance to abrasion,-these qualities may be employed to fullest advantage because of the inseparable bond between the rubber and the substantial base to which it is attached.

Valve seats, motor mounts, idler wheels, diaphragms, pirn adapters, torsion joints, bearing seals, are a few of the successful applications which have been made and are suggestive of opportunities for improvement of other products. The Lord Bonded-Rubber Process combines the rigidity and strength of metal with the resiliency of rubber in a permanent bond that withstands strains and stresses of torsion, compression, or other distortion.

The greatest storehouse of practical experience in product improvement. through the application of rubber bonded-to-metal, is at your service. Consult the Lord representative in your territory, or write.

LORD MANUFACTURING COMPANY, ERIE, PA. Canodian Representative: Railway \& Power Engineering Corp. Lid.

Six glowing dises represent six different flames as viewed by a remotely located camera on the furnace floor
system of mirrors. Thus as many as six flames may be observed simultaneously. The monitor, or receiver, is built into the control panel where six glowing discs indicate to the operator that all pilot burners are lighted and the main burners can be turned on with safety.

The television system used bears the name Utiliscope and is a product of the Diamond Power Specialty Corporation of Detroit, Michigan. The pictures are sent over a video line instead of by radio waves, thereby eliminating the costly feature of television.

Among the other applications of this type of television system suggested by the producers are, the observation of radioactive material from behind barriers, breakdown testing, watching traffic in vehicular tunnels, reproducing readings from electric meters and liquid level or temperature gages located in remote or inaccessible places.

One television camera may be used to monitor as many as six flames through the use of the mirror system pictured above

Triplett Model 630
.330
Dealer Net
In the relatively short time since Model 630 was introduced to the trade it has steadily risen to the top in sales. The reason is obvious. Here is a Volt-Ohm.Mil-Ammeter that does more... has proven components . . and will give a lifetime of satisfaction. All the engineering skill and facilities of the industries' largest manufacturer of Volt-Ohm-MilAmmeters joined forces to make it outstanding in every way. Look over all the features and you too will buy Model 630.

NOTE THESE SENSATIONAL IMPROVEMENTS:

\star Individual Scales with separated spacing are easy to read.
\star Large 5 $1 / 2$ Inch Meter In Special Molded Case Under Panel.
\star Resistance Scale Markings from . 2 Ohms to 100 Megohms-Zero Ohms Control Flush With Panel.
\star Only One Switch - Has Extra Large Knob $21 / 2^{\prime \prime}$ Long - Easy To Turn-Flush With Panel Surface.
\star Enclosed New Molded Selector Switch and insulated resistor housing in unit construction.
\star All Resistors Are Precision Film or Wire Wound Types For Permanent Accuracy.
\star Batteries Easily Replaced-Balanced Double-Contact Grip. Spiral Spring - Battery for Ohms test due to low drain insures shelf-life usage.

TECH DATA

D.C. VOLTS: $0.3-12-60-300-1200-6000$ at $20,000 \mathrm{Ohms} /$ Volt A.C. VOLTS: $0 \cdot 3 \cdot 12 \cdot 60 \cdot 300 \cdot 1200 \cdot 6000$ at $5,000 \mathrm{Ohms} / \mathrm{Volt}$ D.C. MICROAMPERES $0-60$ at 250 Millivolts D.C. AMPERES 0.12 at 250 Millivolts
D.C. MILLIAMPERES 0.1.2-12-120, at 250 Millivolts OHMS : $0.1000 \cdot 10,000$; (4.4 Ohms and 44 Ohms center scale) MEGOHMS : $0-1 \cdot 100(4400-440,000$ at center scale) DECIBELS: -30 to $+4,+16,+30,+44,+56,+70$ OUTPUT: Condenser in series with A.C. Volt ranges High voltage Probes available, extra; also plug-in shunts for other current measurements to suit special needs.

Laboratory Standard Model 630-A-All scales on this model are hand drawn and hand stepped, used with mirror for extreme accuracies, beyond the average servicing needs of the model 630 .
Triplett Model 630-A Dealer Net $8 \mathbf{8 7 . 5 0}$
VomA Jr.-A NEW VOLT-OHM-MIL-AMMETER Handy "PDCKET-SIZE LABORATORY" By Triplett
VOMA Jr. MODEL $666 \cdot \mathrm{R}$ has many of the design features of the popular Model 630:

1. Switch and controls flush with panel.
2. Enclosed molded selector switch.
3. Exclusive Unit construction-resistor housing integral with switch.
4. Resistors Precision wire wound and permanent film type.
5. Resistance Measurements to 3 Megohms.
6. Batteries with spiral spring contacts, easily replaced.

VOMIA IT. MODEL GBARR... \$24.50
U.S.A. Dealer Net Price

Note: Model 666.HH The Original Pocket-Size Lab-still a fatorite with many. U.S.A. Dealer Net $\$ 22.00$.
triplett electrical instrument company - bluffton, OHIO, U.S.A.

TECII DATA

D.C. VOLTS: 0-10-50-250-1000-5000, at 1000 Ohme! D.C.
Volt
A.C. A.C. VOLTS: 0-10-50-250-1000-5000, at 1000 Ohme/ tolt
D.C. MILLIAMPERES: 0-10-100, at 250 Millivolte
D.C. AMPERES: $0-1$, at 250 Millivolts

OHMS: $0-3000-300,000 \ldots(20-2000$ at center acale) MEGOHMS: $0.3 \ldots . . .(20,000$ ohms center scale)

Drecisionfirst...ta Last

ETM

Equipment for Strain Recording

11 llustrated is a complete 12 -channel portable laboratory for precision strain determination from static strain to a frequency of 5000 cycles per second, using resistance gages that are attached by cement to the points of strain.

In the field or in the laboratory... on a high-speed locomotive or in the air... HATHAWAY strain recording equipment is ideal for the recording of STATIC AND DYNAMIC STRAIN in structural members and machines in operation.

Complete with all necessary balancing controls and monitoring instruments, precision calibrating device, power supply equipment and oscillator, and type S8-B Oscillograph.

TYPE MRC-15 12-element Strain Gage Control Unit. Fully described in Technical Bulletin SP 195 G

Type 58-B 12-to 48-element Oscillograph Fully described in Technical Bulletin SP 165 G

THE ELECTRON ART
(continued from p 122)
sufficiently to enable the unexposed film to be moved in time to make the photograph. After the second picture is taken the machine resumes its normal speed.

Photoelectric Systems

The main hit detector is an assembly of four gas-type phototubes, each of which scans one-quarter of the projected code area after screening by the interrogating card, together with vacuum-tube circuits which recognize simultaneous blackout of all four phototubes and furnish an actuating pulse to the flashtube and recopying camera circuits.

FIG. 1-Arrangement of abstract and code areas on master film, and method of assigning code numbers to squares to accommodate $10,000,000$ different subjects

The hit detector operates in conjunction with the framing-mark detector. In order that the abstract may be properly framed, it is necessary that the flashtube and recopying camera be actuated by the uni-formly-placed framing mark rather than the hit itself. Hence, the occurrence of a hit merely arms a storage system, which is subsequently triggered by the next succeeding framing mark to produce an actuating pulse.
Each phototube in the hit detector watches one-fourth of the projected code area, and must, therefore, distinguish between blackout and one to four basic light units. The original plan called for

You would expect the same care and workmanship that goes into all Crucible specialty steels to be found in Crucible Permanent Alnico Magnets. Over the years, users of Crucible Magnets have found that this is true - that from Crucible they get a better magnet with higher gap flux per unit weight.

A high stylist in stecls, Crucible has maintained for half a century the position of leader in the specialty steel field. This leadership continues, because Crucible has developed an unsurpassed staff of metallurgists and production specialists.

If you have a problem that permanent magnets can solve, tell us the application you have in mind. We'll be glad to help you. cricible steel compiny of america, Chyysler Building, New York 17, N. Y.

RRUCBIE

One look at the Turner Model 87 and you sense immediately here's a microphone masterpiece. Every detail of its attractive gunmetal case and polished chrome screen reflects the precision and care behind its manufacture. The Turner Model 87 is a single ribbon velocity type microphone with the Figure 8 Polar Pickup pattern so desirable in highest quality recording, public address and studio broadcast work.

List price $\mathbf{\$ 4 7 . 5 0}$

POLAR PICKUP PATTERN

The figure 8 pattern illustrated by the diagram shows the attenuation of sound arriving from sources at 90° from front or rear of microphone.

Write for Bulletin giving complete details
TURNER
The shorter way of saying "Sound Microphone Performance"

```
the TIIRNER company
    905 17th Street N.E., Cedar Rapids, Iowa IN CANADA:
Canadian Marconi Co., Ltd.
Montreal, P. Q., and Branches EXPORT:
Ad. Auriema, Inc.
89 Broad Street, New York 3, N. Y.
```


Sample of coded master $35 . \mathrm{mm}$ film. Wide dashes in middle are for frame sync, and first vertical row of squares to the right is for line sync to identify the horizontal rows to be paired in searching for a blackout. Each pair of rows is a subject code num. ber, hence six pairs permit coding each abstract under up to six different subject headings
a single phototube for the whole area, but tests showed that the requirement of distinguishing between blackout and one to fifteen light units rendered unduly severe the problems of stray light, partial transmission of light through nominally black code areas, diffraction of light rays by dust particles on the lenses, and frequency limitations of the gas phototubes.
As finally constructed, each photoelectric circuit produces a signal of 3 to 4.5 volts for one unit of incident light. This swing is sufficient for direct interpretation of the blackout signal by means of clipping circuits, which produce outputs only when the signal is under 3 volts. The frequency response of the circuit is adequate for film speeds from 20 to 500 ft per \min.

Anticipation of Hits

The two anticipatory hit detectors are identical to the main hit detector up to the point of interpretation and use of the blackout signals.

The interpretation circuits for the anticipatory hit detectors maintain a continuous watch on the time interval between consecutive hits. Whenever this time interval is less than the $1 / 30$ th of a second required for the recopying camera to

KAY ANNOUNCES:

THE MEGA-NODE, SR.

The noise figure may be read directly from the panel meter calibrated in linear db. THE MEGA-NODE SR is a calibrated random noise generator useful in determining the noise figure (db above ideal) of receivers or amplifiers in the UHF and microwave frequency ranges. The voltage standing wave ratio at the coaxial output connector has been kept very low over the entire frequency range. No tuning or adjustment is necessary when used within specified frequency range. Corrections at upper frequency made necessary by noise diode transit time supplied with each instrument. MEGA-NODE SR. frequency range $100-3000 \mathrm{mc}$. The widely used MEGANODE operates between 1 and 220 mc .

MEGA-NODE SR. SPECIFICATIONS

Frequency Range: 100 to 3000 mc
Output Impedance: 50 ohms unbalanced Noise Figure Range: 0 to 20 db
Voltage Supplies: $D C$ Regulated

VSWR: 2 db over Frequency Range
Overload Protection: Automatic cut-off after limited period at high output-Panel reset

Price: $\$ 895.00$ F.O.B. Factory.

THE MEGA-PIX

THE MEGA-PIX generates accurate picture and sound carriers in each of the twelve television channels. Picture and sound carriers are substantially equal in amplitude and are simultaneously front panel switch. Sound carriers are frequency modulated by are individually selected by a Frequency deviation is adjustable by front panel control. Picture carrier can be modulated by RMA video signal either from external generator or from a receiver tuned to a transmitter Malated by tion depth odjustable by front panel control. Picture modulation double side band. An electronically regulated power supply is included to minimize effects from line voltage changes.

SPECIFICATIONS

Picture Carriers: Frequency accurate to 0.01%
Picture-Sound Carrier Senaration: $4.5 \mathrm{mc} . \pm 500 \mathrm{cps}$
RF Output Impedance: 72 ohms
RF Output Level: At least 30,000 microvalts into open circuit.
Video Signal Required: 2 valts peak-to-peak, black negative, into 72 ohms
Sound Deviation: Adjustable, 0 to $25 \mathrm{kc}, 200 \mathrm{cps}$ tone
Price: $\$ 990.00$ F.O.B. Factory
Write for further informotion. Prices 10% higher outside U. S. A. and Canada.
KAY ELECTRIC COMPANY
25 MAPLE AVENUE
PINE BROOK, N. J.
Manufacturers of: Mega-Sweep; Mega-Match; Mega-Pulser; Megalyzer Jr.; Sona-Graph; Sonalator and other instruments.
advance, a pulse is generated which commands an abrupt slowdown of the film drive from the normal speed of 300 feet per minute (180 frames per second) to a low speed of 50 feet per minute (30 frames per second). During the short interval in which low speed is maintained (about a second) and for a brief period thereafter, the critical time interval for slowdown is automatically increased somewhat, to avoid the possibility that two hits

Phototube assembly with cover removed. Center row of four type 921 gas phototubes reacts when code dots on interrogating card correspond to those for an abstract on the film. Other two rows of phototubes anticipate hits for either direction of film travel and slow down film whenever abstracts to be recopied are too close
which pass the anticipatory detector at a spacing slightly greater than $1 / 30$ th per second may, owing to acceleration of the film, arrive at the main hit detector with less than this required spacing.

A separate framing mark is displayed at each end of the code area. The one which is effective in any case is the mark nearest the trailing edge of the code area.

Amplidyne Drive System

The two film reels are separately driven by individual amplidynemotor systems. The direction and speed of the drive and the tension in the film are maintained very precisely and flexibly by two speedsensing generators and a tensionsensing rocker arm.

Each amplidyne is actuated by a

These Stackpole Specialties SIMPLIFY DESIGN and CONSTRUCTION
 TINY "GA" CAPACITORS ... that cost no more than "gimmicks"
 These sturdy little capacitors cost no more than flimsy, twisted wire "gimmicks," are non-inductive and assure greater stability, higher \mathbf{Q}, better insulation resistance and higher breakdown voltage. Standard capacities include.5-$.68-1.0-1.5-2.2-3.3$ and 4.7 mmfd . types.
 INEXPENSIVE SUPPORTS FOR WINDINGS

 WRITE FOR CATALOG RC7
 Stackpole fixed and variable resistorsIron cores for practically any need - In-
 Handy Stackpole molded Bakelite coil forms expensive line and take less space and require one-third fewer slide switches. soldéred connections. Standard forms are available for universal, solenoid, tapped universal and multiple windings. Molded iron center sections can also be provided.

 DEPENDABLE, LOW COST

 DEPENDABLE, LOW COST SLIDE SWITCHES SLIDE SWITCHES
 for 3 ampere, 125V. A. C. use
 The new Stackpole Type SS-26 Switch is just the thing for electrical appliances and equipment of all sorts! Construction is exceptionally durable and the switches are readily adaptable to various mounting arrangements. Underwriters approved and conservatively rated for 3 amperes at 125 volts A.C. (or 1 ampere at 125 volts D.C.).
 The Stackpole Min-Single-pole single-throw and single-pole surance of prompt, dependable service double-throw types available.
 Electronic Components Division

4MOSINEE doesn't count its success in terms of big volume records. More important to us is the aid that MOSINEE "paperologists" and facilities provide our customers.

If you have a problem involving paper . . . if you require specific technical characteristics such as high tensile or tear strength, accurate caliper, density, liquid repellency or absorbency, good dielectric strength, specified pH for maximum-minimum acidity or alkalinity . . . and above all, if you want to be sure of dependable uniformity . . . it will pay you to specify "MOSINEE." For consultation with MOSINEE technicians, without obligation to you, please write Dept. E.
d-c amplifier whose input represents the algebraic summation of the following signals: (1) An externally supplied reference voltage, which determines the speed of the drive by its magnitude and the direction of the drive by its polarity; (2) a voltage from the associated speed-sensing generator, which is belt-driven from an idler riding on the film to generate a voltage proportional to the film velocity; and (3) an error signal, derived from a potentiometer coupled to the spring-loaded tension rocker, which is proportional to the displacement of the rocker from its normal equilibrium position. The tension error signal is fed in opposite polarity to both amplidyne amplifiers, and constitutes the only link between the two reel drives to keep them in step and maintain constant film tension.

Reversal of the film direction calls simply for a reversal in polarity of the controlling reference voltage. The abrupt reduction in speed required for closely-spaced hits is achieved merely by a proportional sharp reduction in the reference voltage, under control of a relay operated from the anticipatory hit detector and its interpreting circuits.

Flashtube Circuit

Light for recopying selected items is supplied by the discharge of a $0.1-\mu \mathrm{f}$ capacitor charged to 2,000 volts and discharged through a GE type FT-108 flashtube. Triggering is accomplished by a metallic yoke around one end of the glass envelope, coupled to the output of a high-voltage triggering transformer. The primary of the transformer is energized by a capacitor discharge through a low-voltage thyratron upon receipt of a command pulse from the main hit detector.

Recopying Film Drive

The high-speed film-advance mechanism of the recopying camera is based on a quick-acting dual electromagnetic clutch, the plate of which is keyed directly to the filmdriving sprocket. The action of the control circuit transfers the clutch plate from a fixed clutch surface to a constant-speed rotating clutch surface for a sufficient time

In Laboratory Research ...Testing... Standardization AND PRODUCTION OF

Plastics, Liquids, Metals, Instruments, Chemicals, Etc.

Bowser refrigeration units, producing temperatures as low as minus- 150° f., are designed to meet the rigid requirements of modern industry in testing, processing and laboratory procedure. They are the result of many years of research and development . . . and are available in a number of standard models. Experienced Bowser engineers will design special units to meet specific requirements.

1. LABORATORY UNITS ... for the user who requires varying conditions of temperature, altitude and relative humidity. A typical application ... complete testing of aircraft instruments under various conditions of flight.
2. RELATIVE HUMIDITY UNITS . . . for the user whose products are not affecled by low temperature or high altitude, but by mois ture only. A typical application . . . testing for the moisture content of paper as it is being processed.
3. INDUSTRIAL UNITS . . . for the user whose requirements do not call for conditions of
high altitude or relative humidity, but low temperatures only. A typical application... the expansion fitfing of bushings.
4. UTILITY UNITS . . . for the user who does not require the accuracy of our Laboratory Units. A typical application ... production line spot checking of radio components.
5. ALTITUDE - VACUUM UNITS . . . for the user whose products or testing requirements are not affected by temperature or humidity, but who is primarily interested in noting the effect of varying atmospheric pressures. A typical application . . . testing and proving the advantages or limits of vacuum packaging, as well as standard aircraft testing.

A Complete Line of PRODCOTION TEST EQUPMENTI for TV Manufacturers

Tel-Instrument has designed and provided the production test equipment for many of the major TV manufacturers. A complete line of instruments designed to be unusually critical in the testing of TV receivers is available. They are, the result of the wide practical experience of Tel-Instrument engineers plus a complete understanding of the production problems of TV manufacturing.

TYPE 2120
R.F.PICTURE SIGNAL GENERATOR

Provides picture and sound carrier. Modulated by standard R.M.A. composite picture signal. Sound carrier stability suitable for testing Inter Carrier type receivers. Internal 400 cycle FM and External audio with 75 microsecond preemphasis. Output max. O.1v p-p across 75 ohm line. Available channels 2-13.

Crystal controlled MULTI - FREQUENCY GENERATOR

A 10 frequency, 400 cps. modulated crystal controlled oscillator, ideal for production line adjustment of stagger tuned I.F. amplifiers. Available with crystals ranging from 4.5 to 40 MC . Output frequency accurate to 0.20%. Immediate push button selection of frequency. Output attenuator range .5 V to 500 microvolts. Self sontained regulated power supply.

TYPE 1200 12 CHANNEL

R.F. SWEEP GENERLTOR

Intended for precise adjustment of R.F. head oscillator :oils and R.F. band pass circuits. Pulse type markers at picture and sound carrier frequencies extend to zero signal reference base line. Accuracy of markers 0.02% of carrier frequency. 12 to 15 MC . sweep on all channels. Max. I.V peak output across c 75 ohm line. Provisions for balansed input receivers. Instant sele:tion by push bution.

I.F. WOBBULATOR

A two band sweefing generator covering the range of 4.5 to 500 MC. Capable of a sand width of approximately $\pm 3.5 \%$ on either band. Five pulse type crystal generated markers to specified frequencies available for each band. Accuracy of narkers $.05 \%$. Zero signal refererce base line, with markers extending to base line. I.V output max. into 75 ohms. A saw sweep avai able for 'X' axis of scope.

Write for Defailed Engineering Data Sheets.

interval to produce a one-frame advance of the sprocket, after which the plate is returned to the fixed surface.

The control circuit automatically performs this function following receipt of a command pulse from the main hit detector. The basis of the circuit is a self-returning or one-shot multivibrator driving a pair of 6 V 6 output tubes in pushpull fashion. The two clutch coils are the plate loads for the output tubes. The multivibrator return time constant governs the active interval of the clutch and hence the amount of advance of the film.

The major difficulties encountered with electronic components thus far stem from electron tube variability. In particular, the type 921 phototubes were found to vary widely in sensitivity. A selection process is necessary in order to obtain a properly matched set, as about 78 percent of the tubes tested proved unsuitable. Serious difficulty was also encountered with the type 12AX7 tubes used as cathode-followers immediately following the phototubes; about 75 percent of the tubes which were received for this installation were so far short of the published emission and transconductance ratings as to be unusable.

The basic features of the machine are unpatented and in the public domain. Original drawings of mechanical details for the Selector are available for inspection at the Office of Technical Services in Washington. A report describing the Rapid Selector in detail and accompanied by illustrations (PB $97535, \$ 2.50$ per copy) is available from the Office of Technical Services, U. S. Department of Commerce, Washington $25, \mathrm{D} . \mathrm{C}$.

Measurement of Intense Low-Voltage X-Rays

Measurement of intense x-rays generated by voltages below 50 kilovolts has always been a problem. In recent years the situation has become acute because of two tube developments, a contact therapy tube in which the ray-producing target is placed against the skin or even inserted into the body cavities, and a beryllium-window tube yield-

Experimental arrangement used at National Bureau of Standards to expose a nylon thimble chamber to x-rays from a beryl-lium-window x-ray tube mounted behind a solenoid shutter control which admits definite amounts of radiation to the thimble ionization chamber
ing 10,000 times the output of an ordinary x-ray tube. In the first of these, the radiation in the tissues is very intense near the target and it is therefore essential to accurately measure and control the dosage. The second type is used primarily for skin therapy, biological research, and for some industrial purposes where high output is useful.

Studies of the measuring problem by the National Bureau of Standards have had two principal directions: first, designing and constructing improved performance standards and, second, obtaining data to permit the approximate correction of standard dosage meter readings for very soft x-rays.

Ionization Chambers

The problem of devising a small free-air standard ionization chamber turned out to be not too difficult for radiation intensities up to 1,000 roentgens per minute. However, in the use of such a chamber, absorption of the very soft radiation between the diaphragming and measuring point may be very large and this loss must be known with an accuracy equal to that desired in the final measurement. A large series of such air absorption coefficients has been determined using a beryllium-window x-ray tube with voltages ranging from 10 to 200 kv in small increments. Since the coefficient of air absorption varies

4-Way Protection for Long electrical life

Give electrical apparatus the benefit of Tuffernell 4-Way Protection:

1. High dielectric strength
2. Long life at Class B operating temperatures
3. Excellent resistance to moisture, oil, acids and alkali
4. High bonding strength

These qualities are characteristic of the new Tuffernell Thermosetting Varnishes. For example, Tuffernell B-161 is already a favorite with many users. It provides the extra protection needed for dependable operation under conditions where ordinary varnishes break down.

A good illustration is the growing use of Tuffernell for mine electrical equipment. Below ground, and above, the service is unusually severe. Many progressive mine operators now use Tuffernell exclusively when rebuilding apparatus.

Such proof of performance is assurance of dependability for your equipment, too. For data on the complete Tuffernell line, call your nearby Westinghouse office. Ask for Bulletins 65-120 and 65-130. Or write Westinghouse Electric Corporation, Dept. 39, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J.06433

TUFFERNELL INSULATING VARNISHES - for every electrical need

because you TRY before you buy ... with a PRODUCTION SAMPLE!
\star For many years, The Gramer Company has engaged in the successful design and quantity production of Gracoil Transformers and Windings, making countless thousands for big name manufacturers in American industry. Such success is due in part to Gracoil's "production sample" method of testing in advance for physical and electrical correctness. No guesswork. Try it.
the production sample is your guarantee of dependable performance!

FULLY ENCLOSED

THE GRAMER COMPANY

Electrical Coils and Transformers
2734 N. PULASKI ROAD
CHICAGO 39, ILL., U.S.A.
ESTABLISHED IN 1935

MICRDPTT
 PRECISION TEN-TURN POTENTIOMETER

I- You get permanent accurcey because the sesistance wire is locked in place. It is precision positioned and moulded integrally with the housing.
2. You get permanently accurate settings, mooth oction and low uniform torque provided by the double thread lead screw guiding the moving contoct.
3. You get precise positioning of the moving contoct because of the two bearings supporting the rotor assembly.

1. You get sood igid terminols becouse they are moulded integrally with the housing.
T. Terminals soldered to ends of re-- sistance element before moulding. Entire resistance circuit is on integral part of the housing.
2. You get occurate setting and resetting due to onti-backlash spring in contact guide.
3. You get a fine resolution because of the $431 / g^{\prime \prime}$ length of resistance wire in the spirol element.
4. You get a resistance output directly proportional to shaft rotation within $\pm 0.1 \%$ of the total resistance. Every potentiometer is automatic. olly machine tested for limearity ot 101 points.

Units for immediote shipments
1,000 to 30,000 ohm range.
Special resistance values made to order.
wAIrE TODAT FOA GNOINERING INFORMAYION

"ANYTHING - ANYWHERE"

for a single charge!
RAILWAY EXPRESS provides dependable, uniform shipping facilities through 23,000 offices from coast to coast. Here's fast, complete service, by rail or air, designed to meet your every shipping need-for a single, allinclusive charge!

For really economical, "anything - anywhere" shipping, specify RAILWAY EXPRESS.

"Let's look ahead" is the watchword of the 60,000 Railway Express employes They work and plan together to serve you and your community by meeting your exact shipping and distribution requirements.

NATION-WIDE
rapidly with the wavelength distribution in the x-ray beam, the results are critically dependent upon the waveform of the voltage used to produce the x-rays. At the Bureau a constant-potential excitation has been used in order to obtain a describable radiation quality.

For radiation intensities above 1,000 roentgens per minute, the simple standard could not be used in the normal way. The principal problem was to measure all of the ions produced in the chamber. Be-

This nylon thimble chamber with a capacity of 250 roentgens is one form of ionization chamber used in the measurement of intense low-voltage x-rays. The wall of this chamber is made of nylon only 0.005 inch thick
cause of the very high concentration of ions along the beam, a substantial fraction of the ions is lost by recombination. At the highest usable electric fields in the chamber (4,000 volts per cm) the losses range from 1 percent at 10 ,000 roentgens per minute to 10 percent at $300,000 \mathrm{r}$ per min with a normal beam of about 8 mm diameter. Reducing the beam diameter to 0.5 mm permits 100 percent of the ions to be pulled away and measured at field strengths of only 500 volts per cm .

A successful standard embodying this modification has now been constructed for calibrations in the range of 5 to 50 kv . Accurate calibrations have now been made with this standard, for all the commercially available dosage meters, even though the standard was not originally intended for use at such low energies. When properly calibrated, these ionization chambers can be used safely with soft radiations if the intensities are not too great and if the voltage waveform during calibration and subsequent use are the same.

Thimble Chambers

Inherent limitations of the thimble chambers have been discovered for the measurement of high-in-
if your product

calls for COIL WINDINGS call for Coto-Coil

Abstract

Coto-Coil engineers are here to help you solve your coil problems. Whatever your requirements, CotoCoil quality always assures the "best for the least".

BOBBINS

> ACETATE INTERLEAVE (Coalesced)
> PAPER INTERLEAVE
> COTTON INTERWEAVE
> TAPED FORM WOUND

UNIVERSAL SINGLE OR

 MULTI-PIE CROSS WOUND

COTO-COIL CO., INC.
COH: SPECIALISTS SINCE 1917
65 Pavillion Avenue, Providence 5, R. 1.

NEW TIMING MOTOR DEVELOPMENTS

NEW SLOW SPEED SYNCHRONOUS MOTOR

The new 4400 Series is an unusually compact slow speed motor with all reduction gearing completely enclosed in a single gear cup. Especially well-suited for use in chart drives, controls, instruments, timers and other applications requiring reliability and low cost.

Features slow rotor speed - 450 rpm; output speeds -1 and 2 revolutions per day, 1 per week; torque - 20 ounce inches at all speeds; measures only $2-1 / 8^{\prime \prime} \times 2-1 / 2^{\prime \prime} \times 1-7 / 16^{\prime \prime}$; mountable in any position; 1- or 2-way internal frictions for manual resetting; U. L. approved.

MEMO

D.C. MOTOR FOR TIMING APPLICATIONS

This redesigned 9200 Series D.C. motor, low voltage, permanent magnet type, is intended primarily for timing applications.
Lubricated for life; totally enclosed; size $2-1 / 8^{\prime \prime} \times 2-7 / 16^{\prime \prime} \times 1-13 / 32^{\prime \prime}$; weight approximately 6 ounces. Wide range of output speeds available. Current drain 62 milliamps, no load, $72^{\circ} \mathrm{F}$; standard voltages 6 to 30 . Can be made to ArmyNavy specifications.
Timing accuracy affected by voltage, temperature and load variations; cannot be held closer than 10% under optimum conditions.

TO DESIGNERS:
Complete Engineering Bulletin on performance characteristics available.

> NAY ONT:

MANUFACTURING COMPANY, INC. TORRINGTON
 HARNESS TIME TO

Both of these motors are now in produc-

FIG. 1-Curves for determining the ratio of $\mathrm{p}-\mathrm{m}$ to $\mathrm{e}-\mathrm{m}$ magnetic field for combination focus compensation of television receivers
ent makes) has become popular. Some manufacturers are even considering a device employing only a permanent magnet with a steel sleeve and steel end plates, focus adjustment being attained by varying the length of the air gap between the sleeve and one end plate.

When choosing the proper type of focus device, many factors must be considered, among the more important of which are original cost, power consumption, heat dissipation and compensation for voltage variation. This latter item becomes most important when little or no voltage stabilization is provided by the set. Ordinary household voltages may easily vary plus or minus 10 percent, and a great deal less variation may cause either a very unpleasant picture or the necessity for frequent refocussing. Consequently, each type of focus device should be examined in the light of this requirement.

Analysis

Focus compensation is best analyzed by examining the deflection to which a single electron or a beam of electrons is subjected when passing through the focussing device under given conditions of field strength and accelerating voltage. If this deflection remains constant when the applied voltage to the receiver varies, the picture will remain in focus; if not, it will de-focus. It

Listen for the wonds "Transoribed by AMPEX affer the grat shows in maio

Here's why... the new series 300

AMMPEXX
 MAGNETIC TAPE RECORDER
 answers industry need!

Lesigned by ergineers who had your engineering needs in mind!

Console Model 300* $\$ 1,573.75$
Portable Model 300 \$1,594.41
Rack Mounted \$1,491.75
F. O. B. Factory, San Carlos, Calif.

* You can depend on Ampex

Read what Frank Marx, Vice President in charge of Engineering, American Broadcasting Company, says: "For the past two years A.B.C. has successfully used magnetic tape for rebroadcast purposes... A.B.C. recorded on AMPEX in Chicago .. 17 hours per day. For 2618 hours of playback time, the air time lost was less than 3 minutes: a truly remarkable record."

* Original program qualify preserved

Use of independent reproduction facilities allows instantaneous monitoring and makes possible the most stringent comparisons ketween recordings and originals.

SPECIFICATIONS

FREQUENCY RESPONSE:

At $15^{\prime \prime} \pm 2 \mathrm{db} .50-15,000$ cycles At $7.5^{\prime \prime} \pm 2 \mathrm{db} .50-7 ; 500$ cycles
FLUTTER AND WOW: At 15 inches per second, well under 0.1% r.m.s., measuring all flutter components from 0 to 300 cycles, using a tone of 3000 cycles. At 7.5 inches, under 2%.

SIGNAL-TO-NOISE RATIO: The overall unweighted system noise is 70 db . below tape saturation, and over 60 db . below 3% total harmonic distortion at 400 cycles.
STARTING TIME: Instantaneous (When starting in the Normal Play mode of operation, the tape is up to full speed in less than .1 second.)

Manufactured by Ampex Electric Corporation, San Carlos, Calif. distributed by

IF IT'S SPECIAL SEE PROGRESSIVE

ENLARGED VIEW

KEEP YOUR COSTS DOWN

Progressive specializes in manufacturing special heads, threads and finishes on any metal or alioy adapted to cold upset. Please write for catalog showing many Progressive specials. Catalog includes purchasing and engineering helps.

The progressive manufacturing co.

50 NORWOOD ST.
TORRINGTON, CONNECTICUT

SILASTIC* INSULATED WIRE AND CABLE
Now Available for High Temperature High Voltage Applications

photo courtesy the okonite compan
Silastic* is extruded over wire and cable ranging from No. 18 to 500,000 circular mils in size to provide insulation having moximum resistonce to heat azone and weathering

Silastic* has been chosen to insulate the new line of heat-stable "Okotherm" wire and cable made by the Okonite Company of Passaic, N. J. Silastic* insulation maintains its high dielectric strength even after continuous long time exposure to temperatures as high as $200^{\circ} \mathrm{C}$. $\left(400^{\circ} \mathrm{F}\right.$.) Its dielectric loss factor is low compared with that of organic rubbers.
Silastic* insulation is practically unaffected by corona or ozone. A severe corona resistance test of Silastic 181 for example, was discontinued after more than 4000 hours without breakdown. The best orgonic rubber insulating materials break down under this same test in 50 to 150 hours.
Silastic* insulated wires and cables withstand severe outdoor weathering without deterioration because of exceptional water repellency, low moisture absorption, resistance to oxidation and flexibility at low temperatures. Serviceable operating temperatures range from -80° to $+400^{\circ} \mathrm{F}$.
These properties plus good resistance to a variety of chemicals and hot oil are now available to you in Silastic* insulated wire and cable. Among the many high temperature applications for Silastic* insulated wire or cable are: power plant wiring and lead wire for electric ovens, furnaces and motors.
Other applications include wiring for high intensity floodlights and street lights, and as high voltage ignition and neon sign cable. Our specifications for Silastic* insulated wire and cable are given in pamphlet No. G 6 N 9 .

trademark dow corning corporation

DOW CORNING CORPORATION MIDLAND, MICHIGAN
Atlanta - Chicago - Cleveland • Dallaः Los Angeles : New York Canada: Fiberglos Canada, L!d., Toront In England: Albright and Wilson, Lid., London
may be readily demonstrated that

$$
\begin{equation*}
D=K H / \sqrt{E} \tag{1}
\end{equation*}
$$

where D is the deflection of electron beam passing through the focus device and subject to action of field strength H and accelerating voltage E^{\prime}, H is the magnetic field strength produced by the focus device, E is the applied voltage to the receiver, and K is the constant of proportionality including that relating E to E^{\prime}.

Field Strength

The field strength H produced by an electromagnetic focus device will be directly proportional to the direct current I flowing through its windings. This in turn (disregarding circuit nonlinearities) will be directly proportional to the applied voltage to the receiver, or $H=C_{1} E$. Hence, for this case $D=K_{1} \vee E$. This relation is shown by the appropriate curve of Fig. 1A.

The field strength H produced by a permanent-magnet focus device will be constant with respect to impressed voltage variations. For this case $D=K_{2} / \sqrt{ }$. This relation is also shown in Fig. 1A. Obviously, neither of these relations present a desirable condition and both will result in picture defocusing upon relatively slight variation in impressed voltage.

Combined Field Strength

The field strength H produced by a combination $\mathrm{p}-\mathrm{m}$ and e-m unit will consist of the summation of two factors, one of which is constant with respect to E and the other of which varies directly with E, or,

$$
\begin{equation*}
H=A+B E \tag{2}
\end{equation*}
$$

Referring to Eq. 1, for D to remain a constant the following relation must hold:

$$
\begin{equation*}
A+B E=C \sqrt{E} \tag{3}
\end{equation*}
$$

Since A, B and C are constants, this equality is not maintained over all values of E; in fact, the equality exists at a maximum of only two values of E, one of which may be imaginary. The right-hand side of Eq. 3 is shown plotted in Fig. 1B. The left-hand side of Eq. 3 is the expression for a straight line of slope B and vertical ordinate intercept A. By proper choice of the constants A and B this line may be

Mark of Progress ... in Electrical Products

Of Vital Interest to the Electrical Industry... Vickers Magnetic Amplifiers

Vickers Electric Division, Vickers Inc., offers complete, extensive Research, Engineering and Development facilities which are available to the industry for technical problems and applications of Vickers products relative to specific requirements.

> MAGNETIC AMPLIFIERS - STATIC VOLTAGE REGULATORS STATIC MOTOR SPEED CONTROLS • POWER SATURABLE REACTORS - RECTIFIERS • PHOTOELECTRIC CELLS SERVOMECHANISMS • MAGNETIC FLUID CLUTCHES SPECIAL MOTORS AND GENERATORS • TRANSFORMERS CONTROLLED POWER RECTIFIERS FOR ELECTRO-CHEMICAL PROCESSES

Request Magnetic Amplifier Bulletin VT- 2000
VICKERS ELECTRIC DIVISION
1815 LOCUST ST., ST. LOUIS 3, MISSOURI
Manufacturers of Electrical Products * A Unit of the Sperry Corporation

Present 3 clean-cut Advantages

1. EXTREME UNIFORMITY

2. SUPERIOR STAKING QUALITIES . . . ends will roll without splitting.

3. BETTER FOR MOLDED PARTS

. . closed end keeps compound out.
If you use pins for vacuum tubes, adapters, fluorescent lamps, plugs, or electrical equipment of any kind, the chances are you'll save time, money and rejections by using these supersmooth, seamless, patented Radio Pins. They are available in a wide variety of styles and sizes, with staking end either closed or open. For a quotation, simply send a sketch, sample or description and state the quantity you need.

Radio or Radar Equipment?

In addition to Radio Pins, we produce large quantities of top caps, base shells and adapter shells for vacuum tubes; also a wide variety of other metal products including deep drawn shells and cups, blanks and stampings, ferrules, grommets, washers, vents, fasten-ers-and, for almost every manufacturing requirement, the world's largest assortment of eyelets. *itio

THE AMERICAN BRASS COMPANY

Waterbury Brass Goods Branch

General Offices: Waterbury 88, Connecticnt Subsidiary of Anaconda Copper Mining Company
In Canada: Anaconda American Brass Ltd., New Toronto, Omb.
placed anywhere on the graph that is desired. The closest approximation to the condition of Eq. 3 over a voltage range on either side of the mean impressed voltage E_{0} is attained by making the straight line $A+B E$ tangent to the curve $C \vee E$ at the point $\left[E_{0}, f\left(E_{0}\right)\right]$. This line is also shown in Fig. 1B.

Now, the mean value of field strength H_{o} produced by the combination $\mathrm{p}-\mathrm{m}$ and e-m focus device with a mean value of impressed voltage E_{0} applied to the receiver is (from Eq. 2)

$$
\begin{equation*}
H_{o}=A+B E_{0} \tag{4}
\end{equation*}
$$

From Fig. 1B it is seen that B is equal to the slope of the curve $C \vee E$ at the point E_{0}.

$$
\begin{array}{r}
\frac{d(C \sqrt{E})}{d E}=\frac{C}{2 \sqrt{E}} \\
B=\frac{C}{2 \sqrt{E_{o}}} \text { and } B E_{o}=\frac{C \sqrt{E_{o}}}{2} \tag{5}
\end{array}
$$

Since the two curves of Fig. 1B intersect at the point E_{0}, this point is a solution of Eq. 3 and we may write

$$
\begin{equation*}
A+B E_{o}=C \sqrt{E_{o}} \tag{6}
\end{equation*}
$$

Substituting Eq. 5 into Eq. 6 we get

$$
\begin{equation*}
A=\frac{C \sqrt{E_{0}}}{2}=B E_{o} \tag{7}
\end{equation*}
$$

Referring back to Eq. 4, the above relation indicates that the best possible focus compensation with voltage variation is supplied by a combination p-m and e-m focus device so designed that the permanent magnet supplies 50 percent of the focussing magnetic field when nominal voltage is applied to the receiver.

Additional Uses for Rectifier Filter Chart

By Reuben Lee
Advisory Engineer
Westinghouse Electric Corp. Ballimore, Ma.

The Choke-Input filter chart given in the Reference Sheet for this issue can be applied to swinging chokes, shunt-tuned chokes and twostage filters by making certain corrections as set forth here.

Swinging Choke

If the choke in the filter swings to S times the full-load value in henrys, the regulation is improved

THE ELECTRON ART
(continued)
considerably without affecting the full-load ripple. The chart may still be used for this case with certain corrections. At least this is true for the single-phase full-wave rectifier, which is where the swinging choke is used most commonly. The swinging choke requires less bleeder current for a given number of henrys at full load, but capacitance C is not appreciably affected.

Since use of the chart starts with bleeder current, it is necessary to multiply the capacitance obtained from the chart by the ratio S, but to it must be added nearly the same percentage the chart gives in the curve of corrections for L.

The value of L obtained by projecting the bleeder current downwards is the maximum or swinging value. It must be divided by S to obtain the full-load value. Transient conditions may be approximated closely by using the full amount of capacitance in the filter and the full-load value of henrys in the choke. Peak ripple current is dependent on the full-load value of henrys and is therefore S times the bleeder current.

Shunt-tuned Choke

If the filter choke is paralleltuned to the fundamental ripple frequency, the ripple and regulation are less than they would be with an untuned choke. The inductance of the choke is held as constant as is practicable from bleeder load to full load, so that approximately the same ripple is obtained at all loads. With practicable tolerances on choke inductance and tuning capacitance, the choke impedance is effectively increased 3 to 1 , hence $R_{1}=$ $\left(3 X_{L}-X_{C}\right) / P_{A}$, and the ratio (P_{A} / P_{R} is equal to $\left(3 X_{t}-X_{c}\right) / X_{c}$. Combining gives $X_{C}=P_{r} R_{1}$, and the chart can be used directly for capacitance C. The values of inductance, however, must be divided by 3 in order to obtain the actual henrys in the choke. This lower value of henrys and the capacitance C across the load determine transient conditions as shown by the third quadrant of the chart. Peak ripple current is limited by tuning capacitance.

Two-Stage Filters

In a two-stage filter of the chokeinput type, the most economical use

ELECTRONIC

From amplifiers to electronic repeaters... from diversity converters to complete receiver assemblies, test instruments and

into components or complete assemblies, designed and fabricated to withstand the toughest assignments and carrying the
B \& W trade-mark, recognized the world over for excellence. FREQUENCY MULTIPLIER

Write for the latest B \& W Catalog to: Dept. EL-99

SPECIFY MINES
Electrical Connectors
Molded as integral "one piece" Neoprene rubber units to cables or cords (see illustration) they're shatter proof-waterproof and wear resistant. You owe yourself a working acquaintanceship with MINES outstanding electrical connector line. Write NOW for full details.
SEE OUR CATALOG IN SWEETS '48-49

WHEN ONLY THE BEST WILL DO

 FILE FOR PRODUCT DESIGNERS No. 330M Male Connector| MINES EQUPTHITH C |
| :---: |
| - MINES s \% |

SPECIALISTS IN ELECTRONIC GEARS

3 great new TITONES meet changing pickup needs!

NOW a full line of Titone's amazing ceramic pick ups-made by famous Sonotone? All with these great basic features: Full frequency (response from 50 to 10,000 cycles.) Bell-like supertone makes new or old players thriling. Climate-proof, moistureproof, fungus-proof! Lightest pressure saves needle wear, revives worn records filaments to fall. NO pre-amplifiers. Performs perfectly for years!

Call your Jobber or write to SONOTONE, Box 5, Elmsford, N. Y.
of material occurs when both stages of the filter are alike. The chart can be used for such filters if it is recognized that the ripple is that on the load side of the first choke. The ripple across the load is not twice this amount in negative db.

For example, if the filter consisted of two stages both equal to that in the example given in the Reference Sheet, the ripple would not be -100 db , but some lower figure, because of the fact that the rectifier output is less than 100 percent ripple. In the case of the three-phase full-wave rectifier this is 4.2 percent rms , or -25 db on the usual ratio of hum to maximum signal. Hence the net hum across the load, if two sections like that in the example were used, would be $-50 \mathrm{db}-25 \mathrm{db}=-75 \mathrm{db}$. The following table gives the amount of ripple reduction which must be applied to each of the three kinds of rectifiers shown on the chart in order to arrive at the ripple across the load with a two-stage filter having like sections.

Type of Rectifier	db	rms
Single-Phase Full-Wave	3.5	0.47
Three-Phase Half-Wave	12	0.18
Three-Phase Full-Wave	25	0.04

Instead of subtracting db , the chart value in percent may be divided by that given in this table, for the second stage.

The regulation in a two-stage filter, as far as capacitance effect is concerned, depends upon the inductance of the first choke as in a single-stage filter. Therefore the chart applies directly to the inductance and capacitance of the first stage. The peak ripple current likewise depends upon the inductance of the first choke, regardless of the location of the bleeder resistor.

Transients are more complicated, due to the fact that the two stages interact under transient conditions. The various transient properties of voltage and current obtained from the chart apply approximately to a two-stage filter; that is, the L and C of one stage roughly determine them. Considerable refinement must be used to obtain more accurate answers.

Really Smooth-Outstandingly Quiet-Fully Dependable

P Perhaps you've noticed how frequently Shallcross attenuators now appear in the finest audio or communications equipment? Or how often they are chosen for replacement purposes?

There's a reason! Improved design, materials and production techniques have resulted in a line that sets new, higher standards of attenuation performance for practically every audio and communications use.

Shallcross Attenuation Engineering Bulletin 4 gladly sent on request.

Shallcross Manufacturing Co. Dept.E-g 9 Collingdale, Pa.

RESISTORS - INSTRUMENTS - SWITCHES - ATTENUATORS

\$3.19 Air Express cost helped this wildcatter strike it rich!

When a pump valve goes while drilling for oil, it's costly. Idle men and equipment make profits evaporate. It happened to a wildcatter at 4. P.M. Phoned 800 miles away for parts-delivered 11 p.M. that night by Air Express. 12 lbs. cost only \$3.19. (Regular use of Air Express keeps any business moving.)

$\$ 3.19$ was complete cost. Air Express charges include speedy pick-up and delivery service. Receipt for shipment, too. Makes the world's fastest shipping service exceptionally convenient.

Air Express goes on all Scheduled Airline flights. Frequent schedules -coast-to-coast overnight deliveries. Direct by air to $\mathbf{1 3 0 0}$ cities, fastest air-rail to 22.000 off-airline offices.

Facts on Iow Air Express rates
Special dies (28 lbs.) go .500 miles for $\$ 1.30$.
$6-1 \mathrm{lb}$. carton of vacuum tubes goes 900 miles for $\$ 2.10$.
(Same day delivery if you ship early.)
Oniy Air Express gives you all these advantages: Special pick-up and delivery at no extra cost. You get a receipt for every shipment and delivery is proved by signature of consignee. One-carrier responsibility. Assured protection, too-valuation coverage up to $\$ 50$ without extra charge. Practically no limitation on size or weight. For fast shipping action, phone Air Express Division, Railway Express Agency. And action, "Ahene Air Express Division, Ra,

AIR EXPRESS, A SERVICE OF RAILWAY EXPRESS AGENCY AND THE scheduled AIRLINES of the u.s.

antenna by lights on a remote control unit. It features 375-degree rotation in either direction at 1 rpm, positive electrical stop at the end of the rotation, cast aluminum frame that will take 150 -p, und load and up to $1 \frac{1}{2}$-inch diameter mast, and corrosion-resistant components. Power consumption is 20 watts.

Tape Eraser

AMplifier Corp. of America, 398-7 Broadway, New York 13, N. Y. The Magnerasor provides complete and instantaneous erasure of normal and overloaded signal from all types

of recorded tape, and lowers residual noise level as much as 3 to 6 db below that of unused tape. The unit operates on a line voltage of 100 to 130 volts, 25 to 60 cycles.

Three-Way Air Meter

Anemostat Corp. of America, 10 E 39th St., New York 16, N. Y. The Anemotherm, a new three-way air meter, gives air velocity, air temperature and static pressure readings at the turn of a knob. It measures air velocity from 10 to 5,000 feet per minute; air temperature, from ± 30 to $\pm 155 \mathrm{~F}$; static pressure from 0.05 to 10 positive

Slash Fastening Costs

on nut and bolt assemblies with

PALNUT self-locking NUTS

- Low in cost
- Vibration-proof
- Speedy assembly with hand or power drivers
- Small space
- Light weight
- Many types for various needs

On most light assemblies, α single PALNUT replaces common nut and washers. You reduce material and labor costs-cut assembly time-save space and weight, while gaining the security of PALNUT double-locking action. Send details of fastening problem, for samples of PALNUTS. Ask for literature on entire line.

32 Element TV Beam

 POWER GAIN 127 OVER DIPOLETV, FM, and special, multi-element beams, 8 to 32 elements, peaked on channel, or on your frequency.

Folder with all prices, weights, etc. on request.

W. F. HOISINGTON

U. H. F. RESONATOR CO. GUION ROAD

RYE, N. Y.

Just as the trapeze artist, flying through the air high above the crowds. must have complete confidence in his partner, so the manufacturer of television and cathode ray gun structures must have confidence in his suppliers.
The thousands upon thousands of Disc Cathode Assemblies being made to order in the Electronics Division of Superior Tube Company is our proof of this confidence. By rigidly holding to close tolerances, by continuous laboratory control of material, Superior puts maximum performance into each Disc Cathode Assembly. Through the use of Superior Disc Cathodes you can be sure of more uniform cut-off characteristics in your television tubes.

The disc carhode by Superior consists of a tubular nickel shank, a ceramic insulator and an emitting cap welded to the shank. Through the use of integral beads (embosses) on the tubing, the ceramic is held firmly in place and cannot move during processing. In addition to the plain ceramic insulators illustrated, a grooved type is also available.

Prints on every type of Superior Disc Cathodes ,re read\}-write today for your copies.
For Electronic products for export, contact DriverHarris Company, Harrison, N. J. - Harrison 6-4800
See our tubing display booth \#2527 at the 31 st

and 0.05 to 4 negative. The unit is useful for adjusting and testing equipment used for heating, ventilating and air conditioning.

Subminiature Tubes

Sylvania Electric Products Inc., 500 Fifth Ave., New York 18, N. Y., announces four types of subminiature tubes for portable batteryoperated radio receivers. The group includes a 1AD5 sharp cutoff r-f pentode; 1E8 pentagrid converter: 1 T 6 diode pentode; and 1AC5 output pentode. Filaments are rated

at 1.25 v and 40 ma d-c. Plate voltage ranges from 30 to 67.5 volts, and plate currents, from 0.30 ma to 2.0 ma .

Waterproof Electrical Coupling

Roybyn Inc., 718 West Wilson Ave., Glendale 3, Calif. The 1600 Series is a quick-disconnect electrical coupling for all-weather and submarine applications. The coup-

lings are provided either with pres-sure-tight cable seals or are threaded for attachment to conduit, bulkheads or panels. Series 1600 has wide applications including the electronics field, geophysical uses, and telephone and coaxial cables.

Small Centrifugal Blower

Fairchild Camera and Instrument Corp., 88-06 Van Wyck Blvd.,

Jamaica 1, N. Y. Model 805J is a small centrifugal blower designed for electronic tube cooling and for ventilating small enclosed areas. Performance data are as follows: voltage, 115, 60-cycles a-c; current, 0.150 amp ; speed, $3,599 \mathrm{rpm}$; input, 15 watts, power factor, 85 percent; capacitor required, 0.5 $\mu \mathrm{f}, 300$ volts a-c. Weight is 24 ounces.

Gamma Detector Tube

Sylvania Electric Products Inc., 500 Fifth Ave., New York 18, N. Y. The new GG306 gamma-ray detection tube's compactness and high sensitivity make it suitable for use by the medical profession. Chief features are as follows:

It is self quenching; operates at 960 volts; has an average Geiger threshold of 900 volts; provides

AIRCRAFT
 RADIO
 CORPORATION

 -Compact
-Portable
-900-2100 megacycles, single band

- Directly calibrated, single dial frequency control
- Directly calibrated attenuator, 0 to $\mathbf{- 1 2 0 ~ d b m}$
CW or AM pulse modulation
- Internal pulse generator with controls for width, delay, and rate. Provision for external pulsing
- Controls planned and grouped for ease of operation
- Weight: 42 lbs. Easily portable-ideal for airborne installations
- Immediate delivery

Write for specifications - investigate the advantages of this outstanding new instrument.

Built to
Navy Specifications for research and production testing

Elinco does not manufacture, or carry in stock, low-cost moss-production motors. Every order is special, engineered and produced to the customer's own exact specifications. We produce only special, high-precision instruments demanding the highest engineering ability, and manufactured with the skill and care that the name Elinco has meant for years.

ELECTRIC INDICATOR CO.

Parker ave.
STAMFORD, CONN.

810 counts per minute from 5 micrograms of radium filtered through $\frac{1}{8}$ in. of lead 12 inches from the end; has a maximum recovery time of 800 microseconds; a maximum dead time of 100 microseconds; is suitable for an input circuit impedance of 5 megohms; and has an ambient temperature rating of +40 to -70 C .

Lab Capacitors

Condenser Products Co., 1375
North Branch St., Chicago 22, Ill. Laboratory-grade capacitors have lower dielectric absorption, low dissipation factor, constant Q and capacitance, high insulation resistance and negative temperature co-

efficient. Typical uses are in electronic computers, differential analyzers and bridge standards. A complete data sheet may be had by a request on company letterhead.

Miniature Terminals

Chicago Transformer Division, Essex Wire Corp., 3501 W. Addison St., Chicago 18, Ill. Now available is a new miniature terminal construction for use in hermetically sealing transformers to meet JAN-T-27

FOR EVERY NEED

QUARTZ CRYSTALS

FROM Electronics Park, General Electric offers a complete line of Quartz Crystal Units, including:
\star The G-E Metal Shell (Hermetically Sealed) Series-for use where long life, under severe atmospheric conditions, is essential.
\star G-E Plastic Cases - to withstand atmospheric conditions less severe than those encountered by metal tube types.
\star G-E Thermocell*Units for Precise Frequency Control - Exclusively G-E,Thermocell units are of metal vacuum-tube type constructiontruly hermetically sealed.

Write for complete information and brochure "G-E QuartzCrystals": General Electric Company, Specialty Division, Electronics Park. Syracuse, New York.
*Reg. U. S. l'at. Uli

Dano has complete facilities for manufacturing a wide variety of coil windings to exact specifications. Whether you require an untreated coil or one that is vacuum impregnated with wax or varnish, no coil problem is too difficult for Dano.

NO COIL PROBLEM is TOO DIFFICULT FOR DANO

POLARAD LABORATORY Equipment for ifudic - Iateratory - manufacturer

20 MC VIDEO AMPLIFIER

- Flat frequency response from 100 cp to $20 \mathrm{mc} \pm 1.5 \mathrm{db}$.
- Uniform time delay of .02 microseconds.
- Gain of 50 db .
- Frequency compensated high impedance attenuator calibrated in 10 db steps from 0-50.
- Fine attenuator covers a 10 db range.
- Phase Linear with frequency over entire band.

This unit is designed for use as an oscilloscope deflection amplifier for the measurement and viewing of pulses of extremely ment and viewing of pulses and contains short duration and rise a low Capacity Probe.

> Inaut Impedance; Probe-12 mmf + Indut I mpedance; Probe- $12 \mathrm{mmf}+$
470.000 ohms; Jack $-30 \mathrm{mmf}+470,000$ ohms: Output Impedance 18 mmf 470.000 ohms each side push pull: Max. input Volts 500 peak to peak
with with probe: Max, Output voits
volts peak to peak (push pull): Power: 115 volts $50 / 60 \mathrm{cps} \mathrm{AC}$ Line; Size $191 / 4^{\prime \prime} \times 22^{\prime \prime} \times 143 / 4^{\prime \prime}$.

ALSO TRANSFORMERS MADE TO ORDER

9 FERRY STREET
NEW YORK 7, N. Y.

[^6]
instantaneous

 recordings from D. C. to 100 cps!
accurate

recordings of voltages, pressures, strains, vibrations and countless other phenomena!

permanent

ink on paper recordings by Brush Oscillographs make their use almost unlimited!

A.C.orD.C.

signals can be measured. Whenever desired, recordings may be stopped for notations on chart-paper!

INVESTIGATE Brush measuring devices before you buy . . . they affer more for your maney. Why nat have a Brush field engineer coll? At no obligation, of course. Just call or write, today, you will find it worth a few seconds' time!

DEYELOPMENT CO.
3405 Perkins Avenue - Cleveland 14, Ohio, U. S. A. MAGNETIC RECOROING DIVISION - ACOUSTIC PROOUCTS DIYISION INDUSTRIAL INSTRUMENTS DIVISION - CRYSTAL DIVISION

and other stringent specifications. Shown in the illustration are ten terminals mounted in a $1 \frac{3}{4}$-in case cover. They can be used with transformer designs requiring high potential tests of up to 1,000 volts.

Speed-Controlled D-C Motor

Bendix Aviation Corp., Red Bank, N. J., recently introduced a new speed-controlled d-c motor designed for special airborne recording equipment. The continuous duty motor has an input of 28 volts d-c

and is rated at 0.018 horsepower. Normal speed is $3,600 \mathrm{rpm}$. Performance curves and other technical data will be furnished on request.

Control Amplifier

Manning, Maxwell \& Moore, Inc., 11 Elias St., Bridgeport 2, Conn. Type 141 Microsen control amplifier

is specifically designed to meet stringent aircraft ambient conditions. It includes a highly sensitive electromechanical d-c amplifier as an input circuit and a power output stage to drive a two-phase 400 -cycle servo motor.

Comparator Test Head

General Electric Co., Schenectady 5, N. Y. Designed particularly for use on large specimens such as fergings, machine tool beds, and other parts which cannot be inserted in the test coil, the new test head has greatly extended the usefulness of the metals comparator. The contact face consists of a

ring separated from a concentric core by an air gap, thereby forming a radial magnetic path across which the test piece is placed. Three inches long, it can be supplied in various face diameters depending upon the application.

Tele Distributing System

Electro Engineering \& Mfg. Co., 627 West Alexandrine, Detroit 1, Mich. The TVD-8 television distribution system operates up to 8 receivers from one antenna. It is used for dealer showrooms and is also useful in small apartment houses and wherever a good antenna can be installed in a location

Unidirectional Microphone. The "Monoplex" is the ONLY Super-Cardioid Crystal Microphone made. As such, it is undoubtedly the finest of all crystal microphones. (A comparative test will prove this statement convincingly.) The "Monoplex" employs the same type of acoustic \$3975 phase-shifting network used in the highest cost Shure Broadcast Microphones. Has "Metal Seal" crystal-will withstand adverse climatic conditions. Can be used in those applications where severe background noise would make conventional microphones practically useless!

Licensed under patents of Brush Development Company. Shure patents pending.
SHURE BROTHERS, Inc.
Microphones and Acoustic Devices
225 West Huron Street, Chicago 10, Illinois - Cable Address: SHUREMICRO

Reliability, convenience, dependability . . . those are the "unseen" qualities built into Amphenol RF Cables and Connectors.

And it's those "extras" . . . combined with a tough, highly resistant vinyl outer jacket and a continuously solid and extremely uniform cable dielectric... that give lasting performance with minimum loss and interference.
Whatever the requirements-whether for one small part, or a million complete assemblies - nowhere are results more apparent . . . more economical . . . more important than in the use of Amphenol RF Cables and Connectors.

Components and complete assemblies

Amphenol Connectors and Cables are designed in many types of construction. Thus, where connectors are to be permanent, Amphenol is ready to supply complete light-weight assemblies or harnesses with molded connections and RF Connectors, eliminating separate costly parts.

Rugged, compact, providing unsurpassed performance, each component in the assembly gives uninterrupted service and positive protection against all weather.

Catalog D-1 is a ready reference to the regular
line of Amphenol RF cables and Connectors.
Vrite on business letterbead t

1830 SO. 54 TH AVENUE
CHICAGO 5O, ILIINOIS
providing 5,000 to $10,000-\mu \mathrm{v}$ signal strength. The unit uses eight 6J6 tubes in a circuit arranged to provide balanced 300 -ohm input and output facilities, and operates from a 115 -volt 60 -cycle supply line.

TV Marker Generator

General Electric Co., Syracuse, N. Y. Type ST-5A marker generator is designed for television maintenance and development work where an accurate source of markers is required to mark specific frequency allocations on a tuned cir-

cuit response curve when presented on an oscilloscope. From one to five markers may be used simultaneously, at the same time permitting complete freedom of the positioning of markers in the 20 to $50-\mathrm{mc}$ range.

Television Transformers

Merit Coil \& Transformer Corp., 4427 N. Clark St., Chicago 40, III. The Mounting J blocking oscillator television replacement transformers are used in types A-4000 vertical and A-4002 horizontal. Turns ratio for the former primary to secondary is 1 to 4.2 ; for the latter, 2 to 1. Other specifications for both are:

All Sizes in

Square and Rectangular Tubes
Leading manufacturers rely on the quality and exactness of PARAMOUNT paper tubes for coil forms and other uses. Here you have the advantage of long, specialized experience in producing the exact shapes and sizes for a great many applications. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination. Wound on automatic machines. Tolerances plus or minus . 002^{*}. Made to your specifications or engineered for YOU.

PARAMOUNT PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.
Manufacturers of Paper Tubing for the Electrical Industry

in BRUSHES

for high current density minimum wear low contact drop low electrical noise self-lubrication
in CONTACTS
for low resistance non-welding character
GRAPHALLOY works where others won't Specify GRAPHAlLOY with confidence.
*A special silver-impregnated grephite

GRAPHITE METALIIZING CORPORATION
 TOS5 nepparany nvenue, rowises 3, naw yoak

1

GC CERAMIC CARTRIDGE

First major engineering stride in phonograph pickup cartridges employing ceramic elements since Astatic pioneered in this type unit last year. The GC is the first cartridge of its kind with replaceable needle. Takes the special new Astatic "Type G" needle-with either one or three-mil tip radius, precious metal or sapphire -which slips from its rubber chuck with a quarter turn sideways. Resistance of the ceramic element to high temperatures and humidity is not the only additional advantage of this new development. Output has been increased over that of any ceramic cartridge available. Its light weight and low minimum needle pressure make it ideal for a great variety of modern applications.

2

CQ CRYSTAL CARTRIDGE

An entirely new Astatic design, featuring miniature size and five-gram weight. Model CQ-J fits standard $1 / 2^{\prime \prime}$ mounting and RCA 45 RPM record changers. Model CQ-lJ fits RMA No. 2 Specifications for top mounting . $453^{\prime \prime}$ mounting centers. Needle pressure five grams. Output 0.7 volts at 1.000 c.p.s. Employs one-mil tip radius, Q-33 needle. Cast aluminum housing.

3 LQD Double-Needle Crystal Cartridge

The LQD Cartridge-for 45, 33-1/3 and 78 RPM Records-quickly became the first chaice of 'many of the nation's largest users, on the basis of comparative listening tests, and is, today, the PROVED TOP PERFORMER for turnover type pickups. Outstanding for excellence of irequency response, particularly at low frequencies. A gentle pry with penknife removes ONE needle for replacement without disturbing the other needle, without removing cartridge from tone arm Gentle pressure snaps new needle into place. Available with or without needle guards. Stamped aluminum housing.

mounting center, $1 \quad 15 / 16$ in.; height, $1 \frac{3}{4}$ in.; width $25 / 16$ in.; depth, $1 \frac{1}{2} \mathrm{in}$.

Proportional Counter

Nuclear Measurements Corp., 3339 Central Ave., Indianapolis 5, Indiana. Model PC-1 Alpha-BetaGamma proportional counter is designed for biological tracers, chemical assay and industrial sampling. It features a built-in automatic timer adjustable up to 56 minutes.

The alpha plateau extends from about 1,100 to $1,400 \mathrm{v}$, and the beta plateau from about 1,700 to $2,000 \mathrm{v}$. Tilt of either is less than 2.0 percent per 100 v average. Sample table will accommodate $1 \frac{1}{2}-\mathrm{in}$. diameter samples up to $3 / 16$ in. thick. A scale of 512 with a resettable 6 -digit counter counts up to 500,000 counts per minute.

Core Solder

Kester Solder Co., 4201 Wrightwood Ave., Chicago 39, Ill., announces the Resin-Five core solder. Non-corrosive and non-conductive, it is used to solder such metals as zinc, brass, nickel-plate, copper and ferrous alloys. It is supplied in

the usual diameters of 0.092 and 0.062 inch on 1,5 and 20 -pound spools.

Reversing Contactor

Struthers-Dunn, Inc., 150 N. 13th St., Philadelphia 7, Pa. Type

175KXX contactor comprises two 3 -pole solenoids for forward and reverse operation mounted on a common frame and mechanically interlocked to prevent simultaneous closure. Designed particularly for service in the control of single horsepower motors, the use of the contactor is completely described in bulletin 7100 .

A-F Bridging Unit

Audio Instrument Co., 1947 Broadway, New York 23, N. Y. Model 100 Bridger provides means for bridging a vtvm, distortion meter or oscilloscope across any part of an audio-frequency circuit through a well-shielded cable, yet

without imposing any of the load of the meters or cable on the circuit. Input impedance is 100 meg ohms in parallel with $6 \mu \mu \mathrm{f}$ when using 3 -ft shielded input cable. Output impedance is 200 ohms with one side grounded.

Lightweight Magnetic Cores

General Ceramics \& Steatite Corp., Keasbey, N. J. Ferramics,

$A-B$ and G radiation survey meters

Model 356

Model 263B

Model 247A

Alpha survey meter

This self-contained portable instrument measures alpha radiation by means of an air ionization chamber and vacuum tube amplifier circuit which operates an indicating meter. The ionization chamber is located at the bottom and covered by a delicate nylon film approximately . 0002 inches thick. A wire screen serves to protect the film.

Beta and gamma survey meter

A portable Geiger-Mueller Counter for extreme sensitivity, capable of detecting individual ionizing particles. The instrument has three full scale ranges of 20.0-2.0-0.2 milliroentgens per hour measured with gamma radiation from radium.

Gamma survey meter

A compact portable instrument designed to cover four ranges of gamma radiation intensities, 2.5-25-2500 milliroentgens ($1 / 1000 \mathrm{r}$) per hour. The most sensitive range approximates that of a Geiger instrument and is inherently more stable. The ionization chamber and meter are hermetically sealed, and the case is watertight. Die castings have been used wherever possible for unusual rugged construction.

[^7]

ONCl ${ }_{\text {rea }}$ makes the volionmyst
 For high input resistance . . . accurate readings despite line

 voltage changes . . . full overload meter protection . . . stability under all conditions of operation . . . buy an RCA VoltOhmyst!Type 195-A Standard VoltOhmyst: The "work horse', of electronic meters. Measures ac and dc voltages to 1000 volts, resistance to 1000 megohms , in six ranges. Reads db at all audio frequencies. Has zero-center scale for discriminator alignment. $10-$ megohm dc input resistance insures good accuracy. WG-263 accessory Crystal Probe permits ac voltage measurements to 100 Mc .
Type WV-95A Master VoltOhmyst: Truly the "master" electronic multimeter, this versatile instrument measures ac and de voltages to 1000 volts, dc current from 1 mic roamp. to 10 amps ., resistance from 0.1 ohm to 1000 megohms, and capacitance from 4 uf to $1000 \mu \mathrm{f}$. Pointer may be zero-centered for discriminator alignment. WG-275 Diode Probe accessory available to extend ac voltage measurements to 250 Mc .
Type WV-65A Battery Voltonmyst: The completely portable instrument that
works anywhere. Batteries last up to 10 months. Measures ac and dc voltages to 1000 volts, resistance to 1000 megohms, and direct current to 10 amps . WG-263 accessory Crystal Probe permits ac voltage measurements to 100 Mc .
Type WV-75A Advanced VoltOhmyst: A versatile instrument for TV and IHF measurements. Reads flat to 250 Mc . Measures peak-to-peak voltages. Measures ac and dc voltages to 1000 volts, resistance to 1000 megohms. Complete with diode probe.

Ask about the new High-Voltage Probes WG-284 and WG-288 to extend the de voltage range of these instruments to 30,000 volts.

Get further details on the RCA VoltOhmyst of your choice from your RCA Distributor, or write RCA. Comnercial Engineering, Sectior. 55 IX, Harrison, New Jersey.
*Trade Mark 'VoltOhnvsr' Reg. U. S. Par. Office
a nonmetallic substance possessing ferromagnetic properties, is extremely light in weight and is said to out-perform powdered iron, volume for volume, in core applications. The material is of uniform structure and will not decompose at elevated temperatures. Readers are invited to request bulletin No. 1.

Scaling Unit

Nuclear Instrument \& Chemical Corp., 223-233 W. Erie St., Chicago 10, Ill. Model L-163 Radioisotope Analyst is especially designed for the analysis of radioactivity. It includes a complete automatic scaler plus the Q-Gas counter. Designed

for precise work, with low-activity, low energy samples, the unit is suited for medical, chemical and physical research work.

High-Fidelity Amplifiers

Audio Development Co., 2833-13th Ave. South, Minneapolis, Minn. Type 71 high-fidelity amplifiers are designed for use by broadcasting studios and installations where bridging or line inputs are required. Power output is 8 watts with nominal distortion of not more than 2 percent at any frequency between 50 and $12,000 \mathrm{cps}$. Response is flat within 0.5 db over the same range. Hum level is over

JOHNSON Offers-

 COAX TINE....GREATER MECHANICAL STRENGTH
No Brazing - No Cracking - No Distortion! Solder Joint Stronger Than Tubing Itsell!

This is the type of copper tubing join which has proved most successful in other applications for many years!

There is less distortion, better allaround contact-a joint that is stronger than the tubing itself!

JOHNSON hard temper, 70 ohm, and 51.5 ohm, flange type line is supplied in 20 foot lengths. Special high conductivity copper is used in both outer and inner conductors and rigid tolerances are maintained to insure precision mechanical assembly, low loss and low standing wave ratio.

The 70 ohm line is intended primarily for AM and has grade L-4 or better steatite beads. The 51.5 ohm line was designed primarily for high frequencies, has grade L-5 or better steatite and meets RMA standards for FM line. Both are fitted with flange couplings at the factory, which greatly simplifies field installation.

In addition, JOHNSON manufactures a complete line of elbows, fittings, gas equipment and hardware for the above as well as semi-flexible, soft temper line in continuous lengths up to 1200 feet in $5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}$ and $7 / 8^{\prime \prime}$. No expansion joints nor elbows are needed for the latter because of its flexibility.

The $5 / 16^{\prime \prime}$ line is especially recommended for phase sampling and other low power applications.
Whatever your co-dx requirements may be, JOHNSON - the oldest manufacturer of concentric line in the field - can meet them to your utmost satisfaction.

HOW DO YOU KNOW YOU'RE FIRING ON TOP DEAD CENTER?

CAN YOU SHOW THIS -A PERFECT PRES-SURE-TIME CURVE? FIND OUT INSTANTLY WITH

THE SYNCRO-MARKER PRESSUREGRAPH

Close is never close enough. If your firing is off it means trouble-broken pirton fings, crankshafts, other damage. The Pressuregraph can tell you why, glve vou a

The Pressuregraph provides oscillograph pictures showing relation of pressures to engine shaft rolation top dead center) or indications in degrees of rotation or relatea pressures to time immisecondas. Can also be applicd to hydraulic, ge
Ahove llustration shows dieal Diespl engine performance, Ignition was about s degres after top dehd center. The peak pressure occurred 13 degrees after top dead center: therefore the angular positlon of the crank ls more favorable for efficlently converting pressure thrust into mechanical rotation. The small markers on the curve are 5 degree indications while the larger markers are top dead center.

WRITE TODAY FOR COPY OF "ELECTRONIC METHODS FOR MEASUREMENT OF PRESSURE AND DISPLACEMENTS."

ELECTRO PRODUCTS LABORATORIES, INC.

549 W. Randolph St.
Chicago 6, III.
Phone STate 2-7443

Stable D. C. Amplification ... and at moderate cost

The Microsen D. C. Amplifier-based upon the Microsen Balance principle-has proved its high stability, fast response, isolated input and versatility.

There are Voltage, Current and Potentiometer Type Amplifiers, Direct Current Converters, Direct Current Transformers and specially engineered types for particular requirements.

In the Microsen D. C. Amplifier, line voltage variation of 15% cause output changes of less than $.5 \%$. Time constant from .OOI to .2 seconds. Drift less than 5 Microvolts a day. No mechanical rectifiers or choppers. Standard tubes. Not affected by temperature variations.

Write for descriptive Bulletin 143-E.

MMICROSEN D. C. AMPLIFIER
 A Product of
 MANNING, MAXWELL \& MOORE, ING. BRIDGEPORT 2, CONNEGTICUT

Makers of 'Microsen' Electrical and 'American' Industrial Instruments, 'Hancock' Valves, 'Asheroft' Gauges, 'Consolidated' Safety and Relief Valves. Builders of 'Shaw-Box' Cranes, 'Budgit' and 'Load Lifter Hoists and other lifting specialties.

78 db below full output. Gain control range is 38 db for bridging or 50 db for line applications.

Sweep Generator

General Electric Co., Syracuse, N. Y. Type ST-4A electronic sweep generator uses a variable permeability type sweep and has no moving components. Frequency is continuously variable from 4 to 110 mc

and from 170 to 220 mc with a linear sweep width of from 500 kc to greater than 15 mc . High output voltage is available over the entire range.

Twin-Line Connectors

Products Engineering Co., 4753 North Broadway, Chicago 40, Ill. The twin-line connectors illustrated are small, polystyrene blocks drilled

to hold stripped ribbon leads, with a small set screw to maintain contacts. They accommodate standard 300 -ohm line and require no splicing, soldering or taping.

Power Converter

The Radiart Corp., 3571 W .62 nd St., Cleveland, Ohio, announces a new Vipower line for d-c to a-c power conversion, available to furnish 110 -volt, 60 -cycle a-c current from $6,12,32$ or 110 -volt d-c sources. Various models will handle power requirements ranging from

How to install, maintain and service electronic control equipment

See this book 10 DAYS FREE

Wlectrical and
Celectronic technicians will find this book a guide to the practical application of industrial electronic control. Designed to bring you today's best methods and practices in the field, it covers everything of importance to the man on the job-from the very simplest electrical circuit, to the more complicated circuits of electronic motor control and welding control. Step-by-step, it covers the use and adaptation of tools and instruments for electronic equipment trouble shooting and the installation maintenance and servicing of specific types of equipment.

JUST PUBLISHED!

Maintenance Manual of ELECTRONIC CONTROL

Edited by ROBERT E. MILLER
Weller Manufacturitg Co., Easton, Pa. Formerly IndusDistrict Manarer Electronics

304 pages, illustrated, $\$ 4.50$
The handbook is a complete reproduction of a series of articles written for Electrical Construction and Maintenance by expert design and application engineers. It involves

Covers equipment like this:

- electronic relay: and timing relays
- photoelectric relaya
- electronic motor control
- electronic resistancewelding control
elecronic tempera
- sealed-ignition reeti
fiers no mathematics and is amply supplemented by check charts and illustrative ma. terial. The book includes data on instruments and meters, with special treatment given to the cathode-ray oscilloscope - cara and precautions in its use and how it can be adapted for special purposes.
Send no money. Mail coupon today!
McGraw-Hill Book Co., Inc.,
McGraw-Hill Book Co., Inc.,
330 W. 42nd St., New York 18
330 W. 42nd St., New York 18
Send me Miller's MAINTFNANCE MANUAL OF
Send me Miller's MAINTFNANCE MANUAL OF
ELECTRONIC CONTROL for 10 days examina
ELECTRONIC CONTROL for 10 days examina
plus few cents for delivery, or return book postpaid.
plus few cents for delivery, or return book postpaid.
(We pay for delivery if you remit with this coupon
(We pay for delivery if you remit with this coupon
same return privilege.)
same return privilege.)
Name
Name
Address
Address
City
City
Zone.....State...........
Zone.....State...........
Company
Company
Position L-9-49
Position L-9-49
Books sent on approval in U. S. and Canada only.
Books sent on approval in U. S. and Canada only.

| Modal | Reads | Totalizes | Accuracy |
| :--- | :--- | :--- | :--- | :--- |
| S-100 | $1 / 5 \mathrm{sec}$. | 6000 sec. | $\pm .1 \mathrm{sec}$. |
| S-60 | $1 / 5 \mathrm{sec}$. | 60 min. | $\pm .1 \mathrm{sec}$. |
| SM-60 | $1 / 100 \mathrm{~min}$. | 60 min. | $\pm .002 \mathrm{~min}$. |
| S-10 | $1 / 10 \mathrm{sec}$. | 1000 sec. | $\pm .02 \mathrm{sec}$. |
| S-6 | $1 / 1000 \mathrm{~min}$. | 10 min. | $\pm .0002 \mathrm{~min}$. |
| S-1 | $1 / 100 \mathrm{sec}$. | 60 sec. | $\pm .01 \mathrm{sec}$. |
| MST | $1 / 1000 \mathrm{sec}$. | .360 sec. | $\pm .001 \mathrm{sec}$. |
| MST- 500 | $1 / 1000 \mathrm{sec}$. | 30 sec. | $\pm .002 \mathrm{sec}$. |

WRITE FOR BULLETIN 153

also Standard Chrono-Tachometers
Standard Custom-built Laboratory Test and Distribution panels

ruE Standard Electric Time Co.

97 Logan Street

Springfield, Mass.

50 to 350 watts. A variable frequency vibrator control allows for setting frequency to prevent wavelike picture distortion in tv set reception.

D-C Power Supply

Radio Corp. of America, Camden, N. J. The WP-23A regulated power supply furnishes a d-c voltage continuously adjustable from 0 to 300 volts and virtually constant. The unit delivers 60 ma over an output voltage range from 0 to 60 volts; 80

ma from 60 to 120 volts; and 120 ma from 120 to 300 volts. Regulation is better than 1 percent from no load to full load above 30 volts output. Ripple voltage is less than 8 rms millivolts. An auxiliary unregulated output of 5 amp at 6.3 v is also available.

Industrial Thyratron

General Electric Co., Schenectady, N. Y. A new thyratron tube for industrial applications, type GL5544, requires no snubber circuit for most motor control applications. Filament voltage is 2.5 v ; current, 12 amp ; peak anode voltage forward

New CTC Ceramic Coil Form Is Ideal For Many Sub-Miniature Component Applications

Standing less than $5 / 8^{\prime \prime}$ high when mounted, and with a form diameter of only $3 / 16^{\prime \prime}$, CTC's new LST ceramic coil form fits easily into small spaces and hard-to-reach locations. In addition, its coil body of silicone impregnated ceramic (grade L-5, JAN-1-10) offers the advantage of extremely high resistance to moisture and fungi, and has well developed dielectric properties.
Mounting bushings and ring-type, adjustable terminals are of brass. Bushings are cadmium plated and terminals are silver plated. The powdered iron slug is adjustable. Accommodating solenoid or pie type windings, the LST is supplied as a coil form, or wound to specifications. Depending on the type of winding, inductance changes of approximately $2: 1$ can be expected.
You'll find the LST and many other Guaranteed Components fully described in CTC's new Catalog \#300. This big illustrated booklet is packed with helpful information. Send for it today.

Only $\$ 975$

Never before o value like this $31 / 2 \mathrm{KW}$ bomborder or high frequency induction heoter . . . for soving time and money in surface hardening, brazing, soldering, onnealing and mony other heot treating operations. Is

Portoble . . . mounted on four rubber coasters. Width 141/2"; depth 27"; height $421 / 22^{\prime \prime}$; weight 300 \#.

Operotes from 220 volt line. Complete wifh foot switch and one heoting coil mode to customer's requirements. Send samples of work wanted. We will advise time crcle required for your particulor job. Cost, complete, only $\$ 975$. Immediate delivery.
Scientafic Electric Electranic Heaters ore mode in the following ronges of power: 1.23 -5 71_{2}. 10.12 $1 / 2$ - 15 -18-25-40-60-80100250 KW .

Division of
" S " CORRUGATLD DUENCHED GAP CO. 105. 119 Monroe St., Gortield, N. J.

IN THE PROFESSION, AN HONORED NAME

ENGINEERED FOR THE HIGHEST POSSIBLE PERFORMANCE REGARDLESS OFCOST

This superbtwo-unit Altec Lansing combination was designed in accordance with a single directive: "They are to be the finest. No component, no circuit, is to be chosen with price in mind. They must be able to realize the full resources of the finest AM and FM programs; they must be capable of receiving and delivering these resources undisturbed to the finest loudspeaker in the world,
the Altec Lansing 604B Duplex." The AM section is an improved tuned radio frequency circuit recognized as the best for high quality reception. The distortion-free circuits of the FM section re-create all of the life-like reproduction possible with FM. The A-323C Amplifier transmits to the loudspeaker the signal delivered by the tuner, changed only in power level. This two-unit com-
bination is available with special accessories to permit rack mounting for professional monitoring. Phonograph and television inputs and required switching are provided.

Technical folder describing ALC-101 Twner and A-323C Amplificr sent on request. Write Altec Lansing Corporation, 1161 North Vine Street, Hollywood 38, Calif., 161 Sixth Avenue, New York 13, N. Y.

WHEN IT'S A

Precision Bobbin

```
YOU
DON'T
NEED
INSULATION STRIPS ....
```

Precision gives you built-in insulation-other direct advantages: stronger magnetic fields, closer windings, more room for larger gauge, or more wire of the same gauge on the same size coil base.

Precision Bobbins are heat treated for greater strength and less weight -have swaged tube ends-and entire Bobbin impregnated for better electrical characteristics. Impregnation also permits attachment of ferminal lugs to flanges for acceptance with underwriters requirements.

Precision Bobbins make a lighter, stronger coil-at a definite economy and are available in any shape, any size, round, square, rectangular; in dielectric Kraft, Fish Paper, Cellulose Acetate or combinations.

WRITE FOR SAMPLE TODAY

WRITE FOR SAMPLE TODAY

PRECISION PAPAR TUBE CO.

Chicago 47. 111. Plant No. 2, 79 Chapel St., Hartford, Conn.

rectangular
 the pilot to navigate to the ILS and line himself up on the localizer. Also suitable for installation in any location where a low powered homing facility is required. Can be used to locate fan markers and other important reference points.

This transmitter is built for maximum accessibility. A feature of the equipment is simplified tuning, only two controls being required to tune the transmitter to the crystal frequency. Entire unit mounted on ball bearing wheels; can be rolled out of its cabinet on self-contained tracks. May be serviced from the front while in operation.

A separate antenna tuning unit is supplied with the transmitter. It is contained in a totally enclosed aluminum housing; designed for mounting on any vertical surface. Includes an antenna tuning control and a current meter on the front panel. 25 feet of Transmission line is supplied to connect the tuning unit to the transmitter.

Write for our New bulletin on the TL-40C
Address Dept. E.S. 8

and inverse is $1,500 \mathrm{v}$; peak cathode current, 40 amp ; average cathode current, 3.2 amp ; current averaging time, 15 seconds; ambient temperature range, minus 55 to plus 70 C .

Test Oscilloscope

Electronic Instrument Co., Inc., 276 Newport St., Brooklyn 12, N. Y. Model 400, a new 5-inch oscilloscope, is available both as a kit and a fully wired and tested instrument. Designed for a-m, f-m and tv work,

it has a horizontal sweep circuit of 15 to $30,000 \mathrm{cps}$. Frequency response of horizontal and vertical amplifiers is 50 cycles to 50 kc . It has an input impedance of 1 meg ohm and $50 \mu \mu \mathrm{f}$, and a deflection sensitivity of 0.30 volt per inch full gain.

Fixed Resistors

Stackpole Carbon Co., St. Mary's, Pa. New 2-watt molded carbon composition resistors are available in a complete range from 10 to 100,000 ohms and in standard tolerances of $\pm 5,10$, or 20 percent as required. Designed to meet JAN specifications they are fully in-

Newly developed direct-reading instrument simplifies measurements of wow and flutter in speed of phonograph turntables, wire recorders, motion picture projectors and similar recording or reproducing mechanisms. It is the only meter in existence giving direct steady indication of meter pointer on scale.

The Furst Model 115-R "Wow-Meter" is suitable for both laborotory and production application and eliminates complex test set-ups.
A switch on the front of the panel permits selection of low frequency cut-off and corresponding meter damping for use on slow speed turntables.

Frequency Response: $1 / 2$ to 120 cycles or 10 to 120 cycles Inquiries Invited on our line of Regulated Power Supplies

How to read with

your eyes open for business

Read the ads! Every issue of this magazine contains ads that offer valuable services and useful products by which your business may be run more profitably.

The time it takes to read all the ads is time well spent. One ad alone can pay off - by informing you of new developments and new sources of supply, by helping you do a more efficient job. For example, you may locate one machine that will cut your production costs, or step up your output. Or you may discover that the equipment you've been waiting for is now available.

This magazine displays more ideas and merchandise than a trade exposition. Make every issue your buyer's guide. Read the ads as well as the articles. That's reading with your eyes open for business.

. . ALWAYS A PERFECT CHOICE!
Yes, JOHNSON insulators oller you a wide choice of style and size . . . advanced practical design . . . mass production economy. Proportions are logical; molding is clean cut and accurate. Hardware is high grade nickel plated brass with milled (not stamped) nuts.

THRU-PANEL INSULATORS AND BUSHINGS

High breakdown voltage rating of Johnson THRU-PANEL insulator ($135-40$) is due to long leakage paths. Extrusion of the steatite base passes thru mounting hole preventing internal flashover. Flat mounting surfaces with cushion washers eliminate breakage. Compression construction contributes to high mechanical strength. Available also with banana jack terminal.
Johnson lead-in bushings (135-54) cover an extremely large range of sizes and ratings, are compact and suitable for many applications.

STAND-OFF AND CONE INSULATORS

Johnson STAND-OFF insulators (135-20) feature steatite insulation and heavy breakage resistant bases for surface mounting. Johnson 500 series (135-501) is likewise steatite for better high frequency insulation. Threads are tapped directly into the ceramic. They're furnished complete with machine screws, brass and cushion washers.

See Your Johnson Jobber -

or write for catalog.

NEW PRODUCTS
(continued)
sulated and highly moisture resistant. The new resistors are $11 / 16$ in. long by 0.312 in. in diameter.

Klystron Power Supply

Furst Electronics, 12 S. Jefferson St., Chicago 6, Ill. Model 910 klystron power supply delivers all voltages and currents for the operation of a high-power klystron. It con-

sists essentially of a beam supply, reflector supply, control electrode supply and filament supply. The first three units, delivering d-c power, are well regulated; the fourth, delivering a-c power, is not regulated.

Pilot Lamp Socket

Cole-Hersee Co., 20 Old Colony Ave., Boston 27, Mass., are now manufacturing sockets for the new GE 10 -watt 115 -volt double contact

bayonet base pilot lamp. The new lamp, type 10 C 7 DC replaces the type 7 C 7 and the 10 C 7 candelabra screw base lamps.

H-F Millivolt Meter

Millivac Instruments, P. O. Box 3027, New Haven, Conn. The MV18A vtvm, applicable for tv, f-m and radar, measures r-f voltages down to a single millivolt from 1 to

Cancel Out Objectionable Record Scratch

Let Your Ears Enjoy the Clear, Clean Highs and the Overtones They Love to Hear With the SOMEESET NOISE SUPPRESSOR Pre-Amplifier

This complete unit includes

- Two stage pre-amplifier with adjustable equalization for magnetic or crystal pick-ups.
- Three tube Dynamic Noise Suppressor that reduces record scratch to the vanishing point at low levels, but reproduces essential overtones at all levels.
- Built in power supply to operate from 115 volt AC line.

You Haven't Really Enjoyed Your Favorite Records Till You've Heard Them Thru the SOMERSET.

Write for booklet ES giving full explanation and specifications.

> SOMERSET
> Laboratories Inc.
> 1701 Palisade Avenue, Union City, N. J.
 cuts up to four lines
of letters from $3 / 64^{\prime \prime}$ to $1^{\prime \prime}$ on curved or flat surfaces whether made of metal, plastics or wood . . . operates by merely tracing master copy - anyone can do an expert job. Special attachments and engineering service available for production work. Just the thing for radio, electronic apparatus and instrument manufacturers. Write today for Bulletin E8!

For qualify engraving on

- Panels

- Dials
- Lenses
- Name Plates
- Scales
- Instruments
. also does routing, profiling and three dimensional modeling.

INSTRUMENT CO.

AIRBORNE RADIO

FOR ALL CLASSES OF AIRCRAFT

Aircraft Radio Corporation

BOONTON, NEW JERSEY

The new S.S.WHITE 80X HIGH VOLTAGE RESISTOR

(1/2 Actual Size)
4 watts - 100 to 100,000 megohms

Developed for use as potential dividers in high voltage electro. static generators, S.S.White 80X Resistors have many characteris-tics-particularly negative temperature and voltage coefficientswhich make them suitable for other high voltage applications.

They are constructed of a mix. ture of conducting material and
binder made by a process which assures adequate mechanical strength and durability. This material is non-hygroscopic and. therefore. moisture-resistant. The resistors are also coated with General Electric Dri-film which further protects them against humidity and also stabilizes the resistors.

WRITE FOR BULLETIN 4906

It gives complete information on S.S. White resistors. A free copy and price list will be sent on request.

S.S.WHITE THE S. S. WIUTE DENIAI MFG. Co. FBy $1 / 5$

- OEPT R. R. 10 EAST 40 Ih ST., NEW YORK 16, N. Y.
LEXIBIE SHAFTS AND ACCESSORIES MOLDED PLASTICS PRODUCIS-MOLOED RESISTORS
One of Americis AAAA Industrial Enterprises

The Tektronix Type 511-AD Oscilloscope has been the choice of the leaders in television research as well as in TV transmitter and receiver design, production and maintenance.

CHECK ITS FEATURES

We are confident that you, too, will find utility and usefulness in the Type 511-AD normally expected only from instruments considerably higher in price.

HEAT RESISTANT WIRES FOR EVERY APPLICATION

Do your new circuit designs call for heat resistance wire that's tough and ruggedwire that can take it day after day through countless hours of operation? Then check Lewis Asbestos Covered Wire before you specify. Regardless of what your wire problem is-dropping excessive voltages-filament dropping resistor in the line-high current conductors, it doesn't matter, just

TOUGH

and

RUGGED

heating units

Let Lewis Build The Wire For You

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers. FOR A TRIAL ORDER OR A CARLOAD consult

200 mc flat within 10 percent. The unit can also be used with a calibration chart for frequencies as high as $2,500 \mathrm{mc}$, with 10 mv being the lowest readable voltage.

Literature

Tube Price Sheet. Eitel-McCullough, Inc., San Bruno, Calif., has issued a new sheet for catalog insertion giving technical data, drawings and prices on a line of transmitting tubes, rectifiers, vacuum capacitors, heat-dissipating connectors, diffusion pumps, airsystem sockets and vacuum switches.

Transmitter Mica Capacitors. Cornell Dubilier Electric Corp., South Plainfield, N. J. A single-sheet bulletin covers the Faradon NF transmitting mica capacitors with universal mounting. Rating, dimensions, outstanding features, description and uses are outlined.

Aluminum Cable Manual. Reynolds Metals Co., Customers Service Dept., 2500 So. Third St., Louisville 1, Ky. The new manual on steel-reinforced aluminum cable includes full technical data, a comprehensive collection of sagtension charts, staking tables and stringing-sag tables, with explanatory material on line design and line erection. Formal requests for the manual will be filled.

Transformer Catalogs. Chicago Transformer Division, Essex Wire Corp., 3501 W. Addison St., Chicago 18, IIl. A revised and expanded catalog of new equipment

COILS

- Bobbin
- Paper Insulated
- Cotton-Interwoven
- Primary-Secondary
-

Send us your specifications or sample coils for quotation. We welcome inquiries for large or small quantities.

Our winding experience plus modern equipment assures you of quality workmanship at fair prices.

Transformers made to order.

THE COIL-O-MATIC CO.
470 Aflantic Ave. Boston 10, Mass.

DUMONT therwite PAPER GAPAGITORS

FROM 50 MMF. TO 2 MFD. FROM 100 VOLTS TO 600 VOLTS

MOISTURE PROOF
$65^{\circ} \cdot 85^{\circ} \cdot 100^{\circ}$ C.SEAL
FOR DEPENDABILITY ALWAYS SPECIFY DUMONT

1)
0°

to quote or counsel on molded plastics

Your Watertown man is an expert in plastics, backed by 34 years of experience with every type of plastic, every type of molding method. Calling him in to quote or consult on any part, product or idea involving molded plastic won't cost you a cent . . . will give you the benefit of our design and engineering skill, as well as our laboratory - second to none in the industry - in develop. ing and producing the job to your satisfaction and your customers'.

If you have a custom molded plastics job on the fire, phone your nearest Watertown man today . . . or phone or write us directly. Here are the Watertown men NEW YORK-H. A. Rankow, 175 Fifth Ave. CHICAGO - National Insulations Company, 2808 W. Lake St. W. Glaescher J. P. Greener R. C. Forquhar G. W. J. Bonnamy J. R. Kallaher J. P. Bonnamy Chisogo

DETROIT - J. P. Groener from Chicana Blda
CLEVELAND - Carl F. Linn, 866 hanna Broadway
MILWAUKEE-Roger L. MINow, National Vulcanized Fibre Co SEATTLE - John W. Wine. South

1927 First Ave., Soult , National Vulcanized fibre Co SAN FRANCISCO - G. W. Harmasen,

273 . Foventh Avo. LOS ANGELES - Frod M. Foley, NoN.
the watertown manufacturing co. 777 ECHO LAKE RD., WATERTOWN, CONN.

200 MC BAND WIDTH AMPLIFIERS

MODEL 202 WIDE BAND CHAIN AMPLIFIER
Band width - 100 KC to 200 MC. Gain - 20 db . Response - $\pm 1.5 \mathrm{db}$. Impedance - 200 ohms. Standing wave ratio - Less than 1.5 db .
By employing a traveling wave circuit - a new principle of amplification - the SKL Model 202 Wide-Band Chain Amplifier achieves a very wide bandwidth at a low impedance. Two stages of six GAK5 tubes are coupled into two delay lines of 200 ohms impedance thus making possible use of existing coaxial cables. The flat transmission characteristic makes the Model 202 ideally suited for use as a pre-amplifier for signal generators, vacuum tube voltmeters, sweep generators, mercury and crystal delay lines. Its extremely fast rise time makes this unique amplifier invaluable in oscillography, nuclear instrumentation and television testing.

Makers of: Wide-Band Chain Amplifiers, Temperature Controls,
Variable Electronic Filters
SKL SPENCER-KENNEDY LABORATORIES, INC. 187 MASSACHUSETTS AVE., CAMBRIDGE 39, MASS.

MICROSECOND TIMING! THE NEW 16 mc IIITRVIAL IIMER

(COUNTER CHRONOGRAPH)

* Extremely High Accuracy - 1.6 Megacycle erystal oscit lator time base.
* Direct Indicotion of Intervals up to one second - recycling of the counter can be observed of recorded for longer intervals.
* High Resolution measures ineervals in meps of 0.625 microsecond.
* Retains Indication of Measurament until reset.
\star Easy to Actuate - positive pulkes from common or separote sources can be used.
...measures and records time intervals with a resolution of 1/1,600,000 seconds

This instrument determines and indicates directly the elapsed time between electrical "Start" ond "Stop" signals derived from the beginning and ending of a time interval to be measured. A $1,600,000$ c.p.s. crystal oscillator is used os the time base. The instrument, which is completely self contained, counts the number of cycles from this lime base which occurs during the time interval measured. Price $\$ 925.00$

High Speed Electronic Counters and Precision Internal Timers for All Applications - Address Inauiries to Dept. 6G

Proportional Unit-Two proportional and one standard AGASTAT combination.
PROPORTIONAL AGASTAT - Provides time delay proportional to any power failure time up to 15 minutes. Custom built to specification.

Complete data on request.
transformers has 16 pages of tables and illustrations presenting a complete line of audio and power transformers and reactors. Also available is a four-page illustrated folder covering a catalog line of hermetically sealed transformers.

Air Meter. Anemostat Corp., of America, 10 E. 39th St., New York 16 , N. Y. Bulletin 25A tells how the Anemotherm air meter measures air velocity, air temperature and static pressure. Included are illustrations of the instrument in operation for each of its functions.

Insulation Measurement. Associated Research, Inc., 3758 West Belmont Ave., Chicago 18, Ill. Bulletin 209 covers the Vibrotest, an insulation and resistance measuring instrument. Specifications of all models from 100 to 50,000 megohms are listed. Also shown are the advantages of a self-contained power unit eliminating hand cranking.

Apparatus Notes. Andrew Technical Service, 4747 N. Damen Ave., Chicago 25, Ill. Bulletin 504 of the Apparatus Notes series is devoted to stop watches, interval timers, circuit control timers and chronographs. Bulletin 515 deals with a variety of technical device including temperature recorders, immersion heaters and manometers. Prices of all instruments are included.

Sweep Signal Generator. The Triplett Electrical Instrument Co., Bluffton, Ohio, recently issued a catalog sheet on the model 3434 television and f-m sweep signal generator with built-in markers. Illustration, general description and frequency coverage are given.

Mobile Communication Equipment.
Radio Corp. of America, Camden, N. J. Form 2 J 4628 is an 8 -page folder giving an illustrated description of the Carfone which features " 31 Circuit" selectivity for interference-free operation in the 152 to $174-\mathrm{me}$ f-m band. Complete specifications are listed.

Low-Frequency Oscilloscopes.
Smith \& Stone Ltd., Georgetown,

If you use choke coils, bandtuning coils, channel coils, contact coils and others for television assembly, and if you want them coated with plastic, cotton, nylon, enamel, lenzak, formvar, etc., you can depend on Lewis for your needs. Coils are stripped and tinned, ready for assembly!
Lewis has the facilities and experience for mass production of all types of television coils-and our efficient methods permit economical prices.
Whatever your requirements, have a Lewis Engineer call and check them, quote delivery and prices. No obligation.

LEWIS SPRING \& manufacturing co.
2656 West North Avenue, Chicago 47, Illinois

NEW PRODUCTS
(continued)
Ontario, has available a brochure giving a detailed technical description of models L-22 and L-24 lowfrequency oscilloscopes which are especially designed for the precise study of transient or recurring phenomena from O to 200 cps .

Broadcast • Engineers Manual. Hewlett-Packard Co., Palo Alto, Calif., is offering free on request to all radio station chief engineers a 37-page manual to aid broadcast engineers in making FCC-required station performance measurements. The manual states each requirement for both $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ broadcasters, lists equipment needed to make appropriate measurements, and gives in detail proper procedures for measuring, recording, tabulating and presenting the required data.

Battery Eliminator, Raytheon Mfg. Co., Waltham 54, Mass., has published a brochure including illustrations, diagrams, schematics and full specifications of the new Rectifilter, the battery eliminator that has no moving parts, requires no adjustments and practically no maintenance.

Selenium Rectifiers. Standard Arcturus Corp., 54 Clark St., Newark 4, N. J. Three recent bulletins describe and illustrate a variety of selenium rectifiers for all electronic and industrial applications. Voltage regulation curves and specifications for half-wave strip, half-wave stack and power rectifiers are given.

Broadcast Equipment. Radio Corp. of America, Camden, N. J. Five new brochures describe the latest broadcast station equipment. Form 2J-4864 deals with broadcast microphones and accessories; Form 2J-4910, magnetic tape recorders; 2J-4784, professional recorder; $2 \mathrm{~J}-4770$, portable remote amplifier; and 2J-4771, Duo-cone monitoring loudspeaker. Also available are catalog sheets on a studio consolette, tone generator and field intensity meter.

Radio Timers. Telechron Inc., 285 Union St., Ashland, Mass. A recent bulletin includes illustrations, dimensional drawings, and

You can do every kind of soldering with this new 250 watt Weller Gun. Power-packed, it handles heavy work with ease-yet the compact, lightweight design makes it equally suited for delicate soldering and getting into tight spots.

Pull the trigger switch and you solder. Release the trigger, and off goes the heat-automatically. No wasted time. No wasted current. No need to unplug the gin between jobs. 'Over and under' position of terminals provides greater visibility with built-in spotlight. Extra $51 / 4^{\prime \prime}$ length and new RIGID-TIP mean real soldering efficiency.

Chisel-shape RIGID-TIP offers more soldering area for faster heat transfer, and new design gives bracing action for heavy jobs. Here you get features not found in any other soldering tool... advantages that save hours and dollars. Your Weller Gun pays for itself in a few months. Order from your distributor or write for bulletin direct.
SOLDERING TIPS—get your copy of the new Weller guide to easier, faster soldering-20 pages fully illustrated. Price loc af your distributor, or order direct.

shock NFITS VIBRATION BY BARRY BARRYMOUNTS

ELIMINATE SHOCK and VIBRATION and ASSURE QUIET OPERATION FOR

Sturtevant MULTIVANE RAILWAY CAR VENTILATING FANS

To preserve the high standard of smooth, silent riding achieved in modern transportation . . . to isolate fan motor vibration . . . and to protect the unit from accidental shock, Sturtevant specifies BARRYMOUNTS.

Experience has proved to Sturtevant that, in numerous railway and bus applications, BARRYMOUNTS provide uniform dependability of sound isolation and protection from shock and vibration.

Whatever your vibration problem . . . whether it involves fans, motors, heavy machinery, transformers, punch presses, or delicate instruments . . . BARRY experience and consulting engineering facilities offer a sure solution. Our free catalog lists stock mountings; for special information, call our nearest office or write to

descriptions of four types of radio timers: the Station Preselector, the Sleep Switch, the Radio Alarm Clock and the Auto-On. The bulletin also carries an account of a free engineering service for radio engineers and manufacturers.

Electrical Contact Metals. Fansteel Metallurgical Corp., North Chicago, Ill. Technical data bulletin 7.101 is a 12-page booklet dealing with Fastells, a group of materials made from metal powders for use as electrical contacts. Information and data of basic importance to design and production departments, as well as explanatory illustrations, are included.

Image Orthicon Data. Radio Corp. of America, Harrison, N. J. Three 12-page booklets of television camera tube data are available. They cover the 5655 , for applications with artificial illumination; the 2P23, for outdoor pickup; and the 5769, for outdoor and studio pickup.

Solder Manual. Kester Solder Co., 4204 Wrightwood Ave., Chicago 39, Ill. A comprehensive reference book now available on request is Solder and Soldering Technique. It gives a complete analysis of the properties of soft solder alloys and soldering fluxes.

Magnetic Materials. The Arnold Engineering Co., 147 E. Ontario St., Chicago 11, Ill. Issue No. 1 of the Magneteer gives 8 pages of technical information on Remalloy. Future issues will be concerned with the fabrication, utilization and application of magnetic materials.

Miniature Power Pentode. TungSol Lamp Works Inc., 95 Eighth Ave., Newark 4, N. J. Electron tube bulletin No. 1 is a catalog sheet describing the new tube type 5A6, a miniature power pentode intended for use as a Class C power amplifier or oscillator. Filament voltage rating, power output and tube dimensions are given.

Decoder Chart. Aerovox Corp., 740 Belleville Ave., New Bedford,

4336 N. Knox Ave.
Chicago 41, ill.

Sarite
 STEATITE CERAMIC

Design engineers and manufacturers in the radio, electrical and electronic fields are finding in LAVITE the precise qualities called for in their specifications; . . high compressive and dielectric strength, low moisture absorption and resistance to rot, fumes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its excellent workability makes it ideal for all high frequency applications.

Complete details on request

D. M. STEWARD MFG. COMPANY Main Office \& Warks: Chattonooga, Tenn. Needham, Mass. Chicago - Las Angeles New York - Philadelphio

FLEXIBLE SHAFT COUPLINGS

SIMPLIFY YOUR DESIGN PROBLEMS
FLEXIBLE SHAFT COUPLINGS—Here is absolutely accurate and effortless remote control at its finest. Dependability builp for trouble-free service. Send specifications for our recommendations and prices, RADIO WIRE SHIELDING-Flat wire construction with smooth inner and outer surfaces makes it more rigid, easier to handle. Makes smoother bends and allows for quicker insertion of wires. Used to shield audio, radio and video circuit components. Popular in discriminator and television circuirs. Sold in various diameters in mill lengths of over 10 feet or cut to exact lengths. Available in tinned steel, copper and brass for easy soldering. ECONOMICAL

(F) Helloir manuvacuunce compan

\star FLEXIBLE SHAFTS FOR POWER TAKE-OFFS ANO REMOTE CONTROLS \star

SPECIFICATIONS:
Dimensions: $43 / 4^{\prime \prime}$ high, width $4-3 / 16^{\prime \prime}$, depth $2 \frac{1}{4} 4^{\prime \prime}$ Volume: 44.7 cubic inches
Weight: $5 \frac{1}{4} \mathrm{lbs}$.
3 phase primary, 3 phase secondary
Y - \triangle connection
700 volt test
Frequency: $400-800$ cycles
Primary voltage-208, secondary 25

IN SMALL SPACE?

We made this special transformer for a major aircraft company

It delivers 480 V.A. in a $1 / 2$ hour duty cycle with temperature rise

UNDER $40^{\circ} \mathrm{C}$.!

Meets Pro Jan-T-27 Grade 1, Class A specs

Let Peerless figure on your transformer requirements

PEERLESS ELECTRICAL PRODUCTS DIVISION

1161 N. Vine St., Hollywood 38, Cal. 161 Sixth Avenue, New York 13, N. Y. FRAZAR \& HANSEN LTD 301 Clay St., San Francisco 11, Cal. Exclusive Export Agent

Saves time and increases efficiency in your office and plant. Code Call is made by a numerical code, sounding signals. Promptly completes telephone connections with organization personnel away from their own telephones. Write for new Bulletin © 4-6

Mass., has issued the Duranite decoder chart printed in colors and showing the RMA color band coding for molded tubular paper capacitors, with corresponding numerical values of capacitance, tolerance and voltage. It enables the reader to match colors and read exact values.

Thermostatic Bimetal. The H. A. Wilson Co., 105 Chestnut St., Newark 5, N. J., has available a 4-page pamphlet on the thermostatic bimetal known as Thermometal R-16. The material described was developed primarily for application in high-capacity circuit breakers and similar devices where low electrical resistance is required.

Television Film Projector. Radio Corp. of America, Department 522, Camden, N. J. An eight-page descriptive brochure (Form 2J4685) provides comprehensive information on the $35-\mathrm{mm}$ television projector. The publication is well illustrated and gives complete operating data, suggested studio layout and simplified line drawings.

Printed Circuits. Haas Bros., 75 West St., New York 6, N. Y. A 6-page reprint covers the practice of printed circuits. Also available is bulletin No. 1 which is descriptive of the Elargol process, developed in England during the war, for the mass production of printed circuits on chassis. With the process described it is possible to print on both sides of the chassis, the only requirement being a black and white drawing of the type of circuit desired.

Camera and Recording Equipment. J. A. Maurer, Inc., 37-01 Thirty-first St., Long Island City 1, N. Y. A 27-page cardboard-covered booklet with spiral-type binding thoroughly describes a $16-\mathrm{mm}$ motion picture camera, sound-on-film recording system and film phonograph. The booklet is profusely illustrated.

A-C Generators. Kato Engineering Co., 1415 First Ave., Mankato,

Minn., recently issued literature on a-c generators with speeds from 720 to 1800 rpm . Bulletin $3149 \mathrm{de}-$ scribes those ranging from 5 to 175 kw at 60 cycles; and bulletin 21749 , those in the 150 to $300-\mathrm{kw}$ range.

Voltage Regulators. Union Electric Products Co., Inc., 24 Edison Pl., Newark 2, N. J. A single cata\log sheet describes and gives illustrations and ratings for a line of step-down auto transformers and voltage regulators. Inquiries are invited for voltages and ratings not listed.

Electrical Insulation. Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, Ill. Available widths and thicknesses for four types of woven glass tapes are shown in a one-sheet bulletin. The tapes described are designed to provide better insulated and longer lasting electrical products.

Liquid Level Gage. The Vapor Recovery Systems Co., P. O. Box 231, Compton, Calif. An illustrated account of the Electronic Gauger, a remote-reading liquid level gage, is given in a recent 8 -page folder. With the instrument described it is possible to gage tanks accurately to within $\pm \frac{1}{1 E}$ inch of tank level on a centrally located panel.

Portable Geiger Counter. Nuclear Instrument \& Chemical Corp., 223233 West Erie St., Chicago 10, Ill., has issued a bulletin describing the Sniffer, a two pound Geiger counter which is powered by two flashlight batteries. Chief features and method of operation are outlined.

Electric Control Devices. Ward Leonard, Electric Co., 31 South St., Mount Vernon, N. Y. Bulletin No. 100,000 describes and illustrates a complete line of electric control devices for industrial and commercial control applications. Devices covered are rheostats, resistors, relays, motor starters, contactors, control accessories and dimmers.

This versatile metal forming machine was developed for use in model shops, experimental laboratories and production departments where it often replaces dies for all types of precision forming operations. Di-Acro Brakes will form a great variety of materials including bronze, stainless steel, aluminum and bi-metals.

WRITE FOR CATALOG. New edition of 40-page Di-Acro Catalog contains detailed information on all Di-Acro Brakes, Shears, Benders, Notchers, Rod Parters, Punches and illustrates how these precision machines can be used individually or cooperatively for "DIE-LESS DUPLICATING".

Pred "DIE-ACK-RO"
D'IEIL-IRIIIII mFG.co.
321 EIGHTH AVENUE, LAKE CITY, MINNESOTA

TT-1 3000 mc Temperature Limited Noise Diode Tube.

Y-Type Position ConvectronVertical Sensing Tube.

We're not in the standard vacuum tube business. But we are definitely in the business of developing and manufacturing special purpose vacuum tubes-tubes that are not generally available. During the past three years, for example, our facilities have produced, such devices as the Chronotron thermal time delay tube, the Convectron* vertical sensing tube, the TT- 13000 mc temperature limited noise diode tube, counter tubes, glass enclosed spark gaps, and phono pickup tubes. Quantities of all these are now serving many phases of industry in a wide variety of applications. We invite your use of our facilities to develop and produce your requirements of special purpose vacuum tubes. Your inquiries concerning the scope of our facilities or details of any of our tubes will be given immediate attention.
*REG. U. s. pat. off.
Eclipse-Pioneer Division of TETERBORO, NEW JERSEY

Eriorl Seles-fentix latenulional Divisitn, 12 Fith Avenue. Nen Yerk 11, N. Y.

Welded GERMANIUM DIODES

NOW AVAILABLE AT NEW LOW PRICES!

Ceneral electric's four types of G Germanium Diode Rectifiers are available to meet electronic requirements where problems of space or $A C$ hum exist, or where heat produced by a vacuum tube would be objectionable.

LOOK AT THESE FEATURES-

\star Welded Contact Con-struction-For stability, shock resistance, high ambients, long life.
\star Insulating Case - For low lead-to-lead capacitance, high moisture resistance, mechanical strength.
\star Small Size-For "no room" applications.

Call the G-E office near you, or write for specifications and price list: Specialty Dicision, General Electric Compan: Electronics Park, Syracuse, New York.

[^8]
GENERAL (9) EIECTRIC

NEWS OF THE INDUSTRY
(continued from page 130)
library of standard operations is also being accumulated.

IRE-AIEE Nucleonics Symposium

Electronic instrumentation in nucleonics and medicine will be the subject of a conference at the Hotel Commodore, New York, on October 31, November 1 and 2. This is the second annual conference on the subject to be sponsored jointly by the IRE and AIEE.

The conference program will be similar to the one held last year in that the first day will be devoted to electronics in medicine, the second day to nucleonics in medicine, and the third day to the physical aspects of nucleonics instrumentation.

Some of the topics to be discussed are: audible interpretation of electroencephalograph; high - fidelity electrocardiography; electrical methods of blood-pressure recording; stable d-c amplifiers for biological recordings; design of c-r oscillograph; medical applications of ionizing radiation; dosage measurements of ionizing radiation; scintillation counters; measurements of low-energy beta-ray emitters; criteria in the selection of radioisotopes for industrial use; and desirable improvements in nuclear instruments.

Electronics Attracts Vets

More than 136,000 World War II veterans are studying radio and television in schools and colleges under the G. I. Bill and Public Law 16. This figure was recently disclosed in a Veterans Administration Study as of Dec. 1, 1948.

Of the above number, 55,761 were studying electrical engineer-ing-including radio engineeringin colleges and universities under the G. I. Bill; 2,944 were training to become electrical engineers under Public Law 16; and 76,920 were taking courses in radio and television in trade and vocational schools under the G. I. Bill. Of the 76,920 students, 51,236 were training as radio and television mechanics, 1,856 as radio operators, 195 as ship radio operators, 151 as air-

WIND more COILS faster

Installation of these inexpensive PAMARCO tensions lowers winding costs because each machine will. accommodate more coils at higher winding speeds. In addition to increased production, PAMARCO tensions raise production quality. Fiee-running action practically eliminates wire breakage and shorted turns. Simple thumb screw setting quickly adjusts for any wire gauge. No tools or special skill are needed for operation. For complete data call or write.

PAPER MACHINERY \& RESEARCH, INC.

1014 OAK STREET
ROSELLE, NEW JERSEY

how to keep your PLUG-INS plugged in

THE TOP HAT RETAINER
Four standard sizes fit
most tubes and components

New stainless steel clamp for plugin units subject to vibration.
Materials and finishes comply with Armed Forces specifications.
Recommended for use in military electronic equipment.

Please state in your inquiry the type of tube or component to which the retainer is to be applied, or supply sample or outline drawings with pertinent dimensions.
TIMES FACSIMLIE CORPORATION
A Subsidiary of The New York Times Company 229 West 43 St., New Yörk 18, N. Y.

Faster Evacuation to Low Pressures with Top Efficiency

Beach-Russ Type Rp Beach-Russ Type RP
Single Stage Vacuum Single Stage Vacuum
Pump. Capacity -17 to 845 c. f.m.

For vacuum exhausting and processing at low pressures in electronic or electrical operations, these pumps offer the advantages of positive rofary, automatically lubricated, noiseless operation. They are "fops" for producing high vacuum or for backing diffusion pumps. Test to absolute pressures as low as 4 microns.

BEACH-RUSS high vacuum PUMPS	$\begin{gathered} \text { Write } \\ \text { for } \\ \text { Cotalog } \\ \text { No. } 84 \end{gathered}$
$\begin{aligned} & \text { BEACH-RUSS } \\ & 52 \text { CHURCH } 5 T . \quad \text { NEV } \end{aligned}$	

MHS THE BEST YEI!"
Yes! We think it's the best yet. We think this
transmitter ideal for such applications as Police, Forestry, Airport Traffic Control, 0il Fields, Aerophare, Beacons, Explorations, Public Utilities, Mining, Emergencies and Point-to-Point requirements. It can be controlled either locally or from remote position; either for telephone ($A-3$) or telegraph ($A-1$ or $A-2$) service . . . it is
compact, complete and designed for hard service.

This transmitter is arvstal rontrolled. Single channel with phug-in coils for bands 200.525 ke and $1.6-13.5 \mathrm{mc}^{\text {; dual chemel with self contained }}$ corls for the bund 2.5-13.5 mu. Carrier poter output 75 watls A-I and 50 zuats A-3. Trpes of tubes used, 807 and $866 A$ (or 3B25 for low remperahures). Suitathe for use in either tropical or cold climutes. With the uddition of tone oscillutor the single chamel min becomes a 50 watt beacon (ferophare) iransmitter, and is used in conjunction with $\mathbf{1 K} .3$ idenificution keyer and 1 UU. 75 SL antenna tuner. Operates from fither 115 or 230 rolts. $50 / 60$ rveles.

1才,
Model 50HXS
comsiltanis. desigmers and manufacturers of stamoard or spicat electronic. meteorological ama communications equipment.

Little thought-of facts about capacitors

The short time breakdown voltage of a well-made D.C. capacitor is not less than 5 to 6 times the actual working vcltage at 20° -

$$
\begin{aligned}
& \mathbf{E}=5 \times \text { e min } \\
& \mathbf{E}=\text { Breakdown voltage } \\
& \mathrm{e}=\text { Rated d.c. working voltage }
\end{aligned}
$$

INDUSTRIAL CAPACITORS are unvaryingly held to this formula.

Designed for maximum safety factor and the smallest possible volume, INDUSTRIAL CAPACITORS are the most widely used capacitor in industrial applications. WRITE TODAY FOR DETAILED CATALOG
INDUSTRIAL CONDENSER CORP.

Sales Offices in All Principal Cities 3243 N. California Ave Chicago 18, Illinois

For Precisian Washers...For Precisian Stampings...

WHITEHEAD STAMPING CO.

A preferred source of precision-made WASHERS and STAMPINGS. 46 years of experience and up-fo-the-minute facilities, assure highest quality and service.

"Just tell them they CAN'T AFFORD TO USE ANYTHING ELSE . . ."

That's Joe Gibbons speaking. We were talking about how to make people realize what a terrific thing this new

JELLIFF ALLOY 1000 RESISTANCE WIRE

really is, and that's the way he summed it up. And even when you make allowances for a salesman's natural enthusiasm, he's pretty near right. Just look at some of the important data:

> Resistivity 1000 ohms/cmfTensile strength 165,000 psiTC of Resistance 20 ppm Coefficient of Expansion 13.9 ppm-

Corrosion Resistance equal to the best nickel-chromiums-
Winds fast and solders easilyLots more ohms in lots less space.
See what we mean? For the whole story, write for Bulletin 17.

Individually Calibrated Scale

OUTPUT: Continuously variable, 1 microvolt to 2.2 volts. OUTPUT IMPEDANCE: 5 ohms to .2 volt, rising to 15 ohms at 2.2 volts.

MODULATION: From zero to 100%. 400 cycles, 1000 cycles and provision for external modulation. Built-in, low distortion modulating amplifier.
POWER SUPPLY: 117 volts, $50-60$ cycles, AC.
DIMENSIONS: $11^{\prime \prime}$ high, $20^{\prime \prime}$ long، $101 / 4^{\prime \prime}$ deep, overall.
WEIGHT: Approximately 50 lbs .
Cotalog on requesf

MEASUREMENTS

 BOONTONCORPORATION NEW JERSEY
craft radio operators and 23,482 were taking other courses in radio and communications. An additionai 335 veterans were taking on-thejob training under the G. I. Bill, 125 as radio operators and 210 as workers in the field of radio and phonograph manufacturing.

Eligibility for G. I. Bill training consists of (1) active military service some time between Sept. 16, 1940 and July 25, 1947; (2) service of at least 90 days, or a discharge for a service-connected disability if released, before 90 days service; and (3) a discharge under conditions other than dishonorable.

For Public Law 16, requirements are (1) military service between and 1940 and 1947 dates; (2) a discharge other than dishonorable; (3) a compensable service-connected disability; and (4) V.A's determination that training is necessary to overcome a handicap.

Railroad Radio Progress

SysTEM-WIDE railroad radio communication was recently demonstrated by the Chicago, South Shore and South Bend R. R. The primary purpose in covering the entire 77 mile operating area between Kensington, Ill., and South Bend, Ind., was to facilitate service and maintenance operations along the road and to provide instant communication with any of the railroad's mobile units in case of emergency.

The vhf system demonstrated was planned and developed by the South Shore engineering department in cooperation with the Bendix Radio Division of Bendix Aviation Corp. It solved the problem of greater coverage by installing remotely-controlled, unattended relay stations. The relay stations, strategically located so that their service areas overlap, receive and transmit messages automatically. Two separate frequencies provide dual-channel operation.

The central operating office and mobile units can communicate with each other without the use of relay stations within a 15 to 20 mile radius. Mobile units up to 30 miles apart can communicate through the relay stations. For greater distances communication betwen mo-
bile units can be manually relayed by the dispatcher situated at the line's half-way mark.

BUSINESS NEWS

Lenkurt Electric Co., San Carlos, Calif., has incorporated a subsidiary company with its plant at Vancouver, B. C., to be known as Lenkurt Electric Co. of Canada, Ltd.

American Television Inc., Chicago, Ill., manufacturers of cathoderay tubes, recently began the manufacture of direct-view television receivers.

Battelle Institute, Columbus, Ohio, recently completed a new laboratory area and enlarged its electrical engineering staff to provide adequate facilities for companies not equipped to conduct research on complex electrical engineering problems.

Atwater Television Co., has moved to new and larger quarters at 360 Furman St., Brooklyn, N. Y., to increase production of largescreen television sets.

Radio station KUSN, an independent $a-m$ and $f-m$ station in San Diego, Calif., recently purchased KYOR and has switched to the latter's frequency of $1,130 \mathrm{kc}$ as well as its construction permit for day and night operations at 5,000 watts. KUSN also has applied for a change of call letters to KSDO.

Isolantite Mfg. Corp. has moved from Lyndhurst, N. J., to its new plant in Stirling, N. J., enlarging its production capacity for steatite products and porcelain insulators.

Jensen Mfg. Co., a subsidiary of the Muter Co., Chicago, Ill., has purchased the fixed assets and inventory of Radio Speakers, Inc., Chicago, from Emerson Radio \& Phonograph Corp., New York City.

PERSONNEL

J. Grayson Jones, formerly chief engineer of Peyton Television, has been appointed chief engineer of Conrac, Inc., Glendora, Calif., tele-

NOTHELFER

Custom Built TRANSFORMERS

Proved by

Performance

Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built in quality proved by years of actual use.
From 10VA to 300 KVA Dry-Type only. Both Open and Encased. 1, 2, and 3 Phase. 15 to 400 Cycles.

NOTHELFER
 WINDING LABORATORIES

9 albemarle ave., trenton 3, N. J.

Automatic Frequency Response Recorder

This recorder is specifically designed to plot fully automatically frequency response characteristics of electro-acoustical and electronic devices. Other typical applications are the recording of sound, noise and vibration in conjunction with or without analyzers; the recording of beam patterns, directional properties of transducers and subjective loudness.

SPECIFICATIONS:
SCALE RANGES : 0-20, 0-40, $0.50,0.60, \quad 0.80$ db, Linear, Square Root, or Phon Potentiometer.
RECORDING CIIART : $5^{\prime \prime}$ wide paper, 4" recording widrh 15 different charts available.
SENSITIVITY: 10 mv . for bottom scale deflection, 200 mv . full scale for linear scale range. ACCURACY. Staic acuracy $\Psi 1 \%$ of full scale accuracy

Descripti

INPUT: 10,000 ohms to potentiometer.
RECORDING METHOD: Ink writing by means of interchangeable ink siphons.
FREQUENCY RESPONSE : $20-$ 40,000 c.p.s. $\pm 1 \mathrm{db}$; has a usetul range to 200,000 c.p.s. CHART SPEEDS: Equipped with a two-speed drive for either a $2: 1$ or $4: 1$ reduction. A great variety of chart speeds
available.
available.

DIRECTION OF RFCORD. ING: Motor is reversible, perING: Motor is reversible, per-
mitting recording in either direction.
GEARING TO AUXILIARY EQUIPMENT: A drive shaft is accessible from the front panel for connecting to oscillator or analyzer. Any available oscil lator or wave analyzer can be means of a LINK the recorder b means of a LINK UNIT
SIZE: $101 / 2^{\prime \prime} \times 19^{\prime \prime}$ front panel, slotted for RACK MOUNTING. 12" deep.

Consultations invited Send for our new catalog

Kahle enonising co.

1309 Seventh Street, North Bergen, New Jersey

WAVEGUIDE TEST equipment for use between 2600 and 3950 mc ; $11 / 2$ by 3 by 0.080 in.; RG-48/U waveguide with UG-53/U flanges. These and special units for early delivery.

Standing-wave detector Precision ground for continuing accuracy better than 1 per cent.
B Variable attenuator. Attennuation 0.5 to 10 db ; vswr less than $1.1,2600$ to 3400 mc ; average power 1 watt, peak 1 kw .

Termination. Average power 1 watt, peak 1 kw ; vswr less than $1.05,2600$ to 3400 mc .
D
Co-ax waveguide transition. Connectorless type for RG$5 / \mathrm{U}, \mathrm{RG}-8 / \mathrm{U}$, or RG-21/U flexible cable; vswr less than $1.25,2700$ to 3200 mc .
vision receiver and component manufacturers.

Ross Gessford has been promoted from engineering specialist in cathode-ray tubes to chief engineer for the television picture tube division of Sylvania Electric Products Inc., Seneca Falls, N. Y.

R. Gesslord
S. A. Schelkunofi

Sergei A. Schelkunoff of Bell Labs has been awarded the Stuart Ballantine Medal of the Franklin Institute in Philadelphia for his outstanding contributions to the extension of the electromagnetic wave theory.
H. S. OSBORNE, chief engineer of the American Telephone and Telegraph Co., has been elected chairman of the United States National Committee of the International Electrotechnical Commission.

Robert G. Breckenbridge, formerly assistant professor of electrical insulation at MIT, was recently appointed to the staff of the National Bureau of Standards to take charge of a special study on the electrical properties of semiconducting materials.

Virgil H. Disney, formerly an assistant section head in research at the airplane division of the Cur-tiss-Wright Corp., Dayton, Ohio, has been named a supervisor of electronics at Armour Research Foundation of Illinois Institute of Technology.

Warren S. Master was recently promoted from rectifier engineer to chief engineer of the RichardsonAllen Corp., New York City, manufacturers of selenium rectifiers.

Victor B. Corey, formerly supervisor of research and development,

What Makes A

 Mailing Click?- Advertising men agree -the list is more than halt the story.

McGraw-Hill Mailing Lists, used by leading manufacturers and industrial service organizations, direct your advertising and sales promotional efforts to kay purchasing power. They offer thorough horizontal and vertical coverage of major markets, including new personnel and plants. Selections may be made to fif your own special requirements.

New names are added to every McGraw-Hill list daily. List revisions are made on a twenty-four hour basis. And all names are guaranteed accurate within two per cent.

In view of present day difficulties in maintaining your own mailing lists, this efficient personalized service is particularly important in securing the comprehensive market coverage you need and want. Ask for more detailed information foday. You'll probably be surprised of the low over-all cost and the tested effectiveness of these hand-picked selections.

McGraw-Hill Publishing Co, Inc. DIRECT MAIL DIVISION 330 WEST 42nd ST. NEW YORK 18, N. Y.

- CUSTOM INSTRUMENTATION
- acCelerometers
- altimeters
- AIRSPEED TRANSMITTERS
- PRESSURE TRANSMITTERS

Specify Teleflight Instruments Write for descriptive bulletin

ENGINEERING PHYSICS DIVISION Fredric Flader, 9nc. North Tonawanda, New York, U. S. A.

SMALL PARTS

Filaments, anodes, supports, springs, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to $1 / 8$-inch. Any length up to 12 feet.
LUXON fishing tackle accessories.
Inquiries will receive prompt attention.

RRT WIRE AND STRMPING CO.

227 High St.
Newarle 2, N. J.

gheatiy imphovelo linearity with PALINEY * ${ }^{*}$ * minish contacts

Results of life tests on nickel-chrome wirc-wound potentiometers, using contacts of PALINEY 7^{*} in comparison with phosphor bronze, showed greatly improved linearity maintained through longcr servic life. If you have this or similar contact problems write or call our Research Department for detailed test data. Reg. T.M. of J. M. Ney Co.

Write ar phone (Hartford 2-1271) wir Redtarh Deparment

THE J. M. NEY COMPANY
 179 elai st. - hantfond i, conn. slegeialists in precious metal HETALILUBGY SINCF 1812

Cathode Ray Oscillograph show: performance of modified potentiometer after one million cycles or two million sweeps of PALINEY ** contact over wire. The initial error was reduced to $\pm .12 \mathrm{c} ; \mathrm{i}$ and this linearity was mantuined throughoui the test.

NEW... Improved Wring Eliminates Leakgge
 TYPE 12AT \& TYPE 12ATK (KIT) TRANSMISSION MEASURING SET

Range: 111 db . in 0.2 steps.
Frequency resp.: 0.1 db from 0 to 20 kc . Accurecy: 0.1 db .
Impedance, load section: 4, 8, 16, 50, $150,200,500$, 600 ohms.
Impedance, fransm. set.: $50,150,200$ 500 \& 600 ohms.
Reference level: Imw. into 600 ohms.
Circuit: "T". unbalanced.
Attenuators: 10×10, $10 \times 1 \& 5 \times 0.2 \mathrm{db}$. Load corr. cap.: Transm. sect. 1 w. laad section 10 w .

NEWS OF THE INDUSTRY
has been appointed manager of the engineering physics division of Fredric Flader, Inc., North Tonawanda, New York.

Alfred O. C. Nier, first man to isolate uranium 235, has become associated with Minneapolis-Honeywell Regulator Co. on a consulting basis to assist in resarch on supersensitive mercury switches.

Dónald L. Benedict, during the last year a special consultant to Raytheon Mfg. Co. working on microwave tubes and dielectric heating for specialized applications, has been appointed assistant chairman of the department of electrical engineering of Stanford Research Institute, Stanford, Calif.

D. L. Benedict

H. Jacobs

Harold Jacobs, formerly with Sylvania Electric Products, Inc., has joined the Thermionics Branch, Signal Corps Engineering Laboratories, Belmar, N. J. He is in charge of tube processing research and development.
L. E. RECORD, formerly supervisor of the tube development laboratory, has been appointed supervisor of the tube development and testing laboratories of the Tube Division, General Electric Co., Schenectady, N. Y.

Royal C. Bergyall, after 11 years as assistant to the vice-president in charge of engineering, has been named engineering manager of industrial products at Westinghouse Electric Corp., Pittsburgh, Pa.

Leo L. Beranek, associate professor of engineering at MIT, was awarded a grant-in-aid by the Dept. of State to lecture on electroacoustics at the Institute of Radio Technology, Buenos Aires, during the summer months.

A TRUE

 BLECTROSTITII touTMerter

This instrument permits voltage readings on $A C$ or DC circuits of very high resistance. The only current drawn is the very small leak. age current and a very low capacitance current on AC circuits. Very useful for the many high vol. tage-low current circuits employed in nuclear research. Available with full scale voltages ranging between 300 and 3500 volts. Special lab. oratory instrument available with full scale reading of 150 volts. Full scale capacitance ranges from 8 mmfds for the 3500 volt model to 100 mmfds for the 150 volt instru. ment. Magnetic damping. $21 / 2^{\prime \prime}$ dial. Write for complete specifications.

|EERRATII|

FERRANTI ELECTRIC, INC. 30 Rockefeller Plaza - New York 20, N. Y.
FERRANTI, LTD., Hollinwood, England FERRANTI ELECTRIC,LTD., Toronto, Canado

NEW BOOKS

Electronics Manual for Radio Engineers

By Vin Zeluff and John Markus. McGrau-Hill Book Co., Iuc., Ner. Yort, N. Y., 1949, 879 pages. \$9.万0.
THIS B00K of nearly 900 pages contains 289 articles selected by the authors from issues of Electronics. The page size is the same as in the periodical.

The authors have wisely not gone back of 1940 in selecting their material and, as a matter of fact, there are relatively few reprinted that appeared earlier than 1944. Thus, this volume contains only modern material. The articles selected are of a practical nature, of primary interest to engineers and, in general, with little mathematical content.

Even if one carefully keeps his Electronics month by month and remembers that a particular article was published a few years back, that reference is usually difficult to find without scanning a considerable number of indices.

The extent of the cross referencing in the index of this book is indicated by the fact that it has approximately 1,200 entries or better than four references to each article.

The Table of Contents is divided into 16 groups including, as examples, such divergent subjects as antennas, components, tubes, production, microwaves and d-c amplifiers. In addition to these several aids in finding a desired reference, there is an author index.

A collection of reprinted articles of this sort has a further advantage over a text prepared by one or a few authors. Each title is accompanied by a sub-title that, for quick reference, gives a further insight as to the information that follows.

In this book, it is the authors individually and collectively that determine the quality but in this case the two compilers deserve much credit for the selection of articles, their grouping and the excellent index.

This volume forms a sort of companion book to "Handbook of Industrial Electronic Circuits" gotten out by the same publisher and authors last vear. The present

- Accurate, uniform and smooth
- Also available in Molybdenum and cthe-metals

Write sor detals and List of Products

New words are easy to coin, but it takes popular acceptance to give them life. That's why you're hearing so much about "MAGNECORDER" "MAGNECORDED," and 'MAGNECORDING

MAGNECORDER

The Only Tape Recorder Featuring Unit Construction

The several elements that make up the Magnecorder are available as individual units. Buy only those you need. Combine them or carry them where you need them as you need them.

MAGNECORDED

Proven Highest Broadcast Quality
Thousands of hours of unexcelled performance in radio stations and recording studios throughout the world have proved Magnecord portable and studio equipment to be the finest. Now you can see actual PROOF of Magnecord equipment's superiority. Don't delay. See how a Magnecorder can improve your recordings today!

ANOTHER MAGNECORD FIRST
The new, completely portable Copyright Magnecorder PT6-JA produces 1949 truly amazing professional recordings. Write for speel fications.
$\$ 499.50$

m aquecord.inc. CHICAGO

 Office - 360 North Michigan Avenue. Plant - 222 W. Ohio St.World's Largest and Oldest Manufacfurers of Professional Magnefic Recorders
volume also deserves a comment made about the other volume that "one article alone, available when needed, can justify a place for this look on an engineer's desk."-W. C. White, Electronics Engineer, Research Laboratory, General Electric Co., Schenectady, N. Y

ElektronenstrahlOszillographen

By Paul E. Klein. Weidmann Pub. Co., Berlin, 1948, 210 pages, DM 19.

This German-language book treats the subject of cathode-ray oscilloscopes. Main chapters cover the cathode-ray tube, power supply, deflection system, brightness control, amplifiers, sweep circuits, representation of multiple phenomena, photographic recording, and construction and operation of complete oscilloscopes. There are many subchapters with useful graphs and formulas. The author endeavored to give a working knowledge of c-r tubes, and associated circuits, with most of the space being devoted to the subject of amplifiers. The book fulfils this aim, although certain chapters such as those on electron lenses and c-r tube construction are treated too sketchily. Other chapters include too much detailed information, as on stem mounting of electron guns and on rectification. The book requires a good knowledge of the German laneruage (Laufzeit $=$ transit time; Summer = buzzer). It is regrettable that the book is confined to the German art and omits references to important foreign litera-ture.-E. B. Steinberg, Remington Rand Inc.. South Norwalk. Conn.

Micro Waves and Wave Guides

By H. M. Barlow, Prof. of Elec. Eng., University College, London. Dover Publications, Inc., New York, 1949, 122 pages, \$1.95.

THE OPENING chapters of this wellillustrated little book provide an approach to waveguide modes through familiar conventional transmission line concepts. The following mathematical analysis of electromagnetic fields in guides is then quite straightforward, and is comparable in many respects to ordinary trans-
from AF to UHF
Faster and Simpler with these
Panoramic Instruments
Whether your problem is investigation of noises. vibrations, harmonies, characteristics of AM, FAI
or pulsed signale, oscillations, cross modulation, or pulsed signals, oscillation cross modulation, transmission characteristics of lines and filters,
monitoring teremetering or any phenomena remonitoring, tesenetering or any phenomena restruments will help collect information faster. easier and more economically by automatically

Panoramic Ultrasonic Analyzer Entirely New for Ultrasonic Studies An invaluable new direct reading instrument, the sonic spectrum or very highly detailed examina tion of any selected narrow spectrum segment Frequency hang ikC-300 kc, linear scale. Scanning Width: Continuously variable, 200 KC to zero.
Amplitude Scale: linear and two decade log.

Panalyzor Panadaptor for RF Spectrum Analysis
Long accepted as the simplest and fastest means of observing seginents of the RF Spectrum, Panadaptor units operate with superheterodyne receivers, which tune in the segment to be
examined. Panalyzors use an external signal generator for this purpcse and have a flat amglitude response for determining relative levels of signals.
Both are available in over a dozen standard models and types differing in. Maximum scanning Wously variable to zero. Signal Resolution Capabilities from 250 KC down to 100 CPS .
Wrife Now for Complefe Technical Dafa
See these instruments demonstrated at the
National Efectronics Conference, Booth No. 5

Here's a career opportunity for Mechanical and Electrical

ENGINEERS

Dalmo Victor, one of America's foremost manufacturers of airborne radar equipment, has openings on the staff for engineers experienced in design of intricate mechanisms and microwave transmission lines.

If you are an electrical or mechanical engineer with high qualifications, interested in associating yourself with a team of top-flight engineers and physicists, then here's a career opportunity you should investigate.
Mail details of education and technical background to WILLIAM F. GATES, Chief Engineer

[if:

Manufacturers of Airborne Radar Antennas
SAN CARLOS, CALIFORNIA

FORMVAR - FORMEX - ENAMEL

 INSULATION STRIPPED CLEAN IN SECONDS!

1. Dip wire in X-VAR for 3 seconds, then withdraw.
2. Expose to air and watch coating disintegrate.
3. Wipe wire clean. Whole operation takes a matter of seconds.

X-VAR is non-corrosive and does not creep. Now in use by leading manufacturers of electrical products. Write for FREE SAMPLE for testing.

FIDELITY CHEMICAL PRODUCTS CORP.

472 FRELINGHUYSEN AVE.
NEWARK, 5, N. J.

FREE: 32,000 RESISTORS* These Kits are in use by industrial, design, and research labs.; colleges; trade schools; amateurs.

YOU CAN REDUCE COSTS ON YOUR PRESENT PRODUCTS
with the aid of Conducting Resistance and Magnetic coatings.
You do not have to switch complotely to rinted circuits to realize part of their savings. Your prasent product designs can benelft from coatings. A fow dabs or short painted or sprayed lines may save you pennies and dimes on every unlt. *Current uses are for shlolding, elimlna. tion of resistors and wires, orounding of static and many others.
DO THIS:
. Order one of our convenient $\$ 21$ KIts of airdrying conducting and resistance paints.
2. Use it to simplify your circults or to make complete experimental printed circuits. 3. Tell us what kind of paint you will need in Lacquer, Manual "Dosign and Repair of Print Circutty", Manual "Design and Repair of Printed
From your distributor or our factory only $\$ 7.27$. FOne KIt contains the equivalent of $33,000 \mathrm{t} / 4$: watt resistors
MICROCIRCUITS COMPANY
Dept. 7H
New Buffalo, Michigan

Designers of microwave transmission equipment are now taking full advantage of the flexibility of WAVEFLEX flexible waveguides without sacrificing any of the advantages of rigid waveguides. As a result, design problems are greatly simplified. WAVEFLEX waveguides offer lower attenuation loss, excellent impedance match, and extreme flexibility without loss of efficiency.

Standard WAVEFLEX flexible wave.
guides are made in accordance with joint Army-Navy specifications. We will gladly work with you in developing special Waveguides to serve in special applications.

> Literature on request

Titeflex Inc., 410 Frelinghuysen Ave., Newark 5, N. J.

mission line theory, with the coaxial cable serving as the common meeting ground of waveguide modes and the simple transverse electromagnetic wave.

In his nomenclature, the author has adopted the practice of the telecommunications engineer when dealing with transmission along wires, by taking the x axis in the direction of propagation of the wave, whereas most authors use the z axis for the direction of propagation.

A final chapter on microwave measurements and applications deserves commendation for the quality and number of illustrations of specific applications. For its price, this book is definitely a bargain to student and engineer alike.-J.m.

Electromechanical Transducers and Wave Filters

By W. P. Mason, Bell Telephone Laboratories, Inc. D. Van Nostrand Co., Inc., New York, 2nd edition, 1948, 419 pages, $\$ 6.00$.
Although a second edition, this book incorporates 88 pages of important new material that has entered the art of designing transducers during the war. For example, the gyroscope, although long used in automatic pilots but only recently generally appreciated, is treated as a circuit element. A number of additional topics on propagating and filtering acoustic waves have been introduced. Crystals and techniques used in such applications as sonar are discussed. A paragraph on mercury illustrates how its high impedance suits it for use with crystals in wideband systems.

As a matter of publishing expediency the new material has been printed at the back of the book but numbered so it fits in with the content of the first edition. It follows the same pattern of basic analysis that characterizes the old material. For the graduate student and research engineer this book, first published in 1942, presents a unified and fundamental approach to several fields (electric circuits, acoustics, mechanics) that are usually treated separately. As such, it is quite in the growing spirit of view-
ing the various aspects of the electronic arts as different applications of a single set of principles.-F. H. Rockett, Jr., Airborne Instruments Laboratory, Inc.

Books Received for Review

PHYSICS PRINCIPLES AN゙, APPLICATIONS. By Henry Margenau, W. W. Watson and C. G. Montgomery. MeGrawHill Book Co., Inc., 1949,373 pages, $\$ 5.00$. Covering both classical and modern physics, this textbook is designed for college sophomores who require a thorough and accurate introduction to engineering and the physical sciences.

INTRODUCTION TO RADIOCHEMISTRY. By G. Friedlander and J. W. Kennedy. John Wiley \& Sons, Inc., New York, $1.949,412$ pages, $\$ 5.00$. Describes the nature and application of the entire field of radioactivity without assuming previous knowledge of nuclear physics. Each chapter has a separate bibliography of standard works on allied topics in recent literature. There are numerous illustrative examples and exercises to aid the reader
in understanding the material presented.

HOW TO KEEP INVENTION RECORDS. By H. A. Toulmin, Jr. Research Press, Inc., Dayton, Ohio, Second Edition, 1948, 78 pages, \$2.50. Specific instructions for keeping adequate records to help in obtaining valid patents, preventing costly litigation and reducing costs of fighting unavoidable litigation. Samples of needed forms are included.

TERRESTRIAL MAGNETISM AND ELECTRICITY, Edited by J. A. Fleming. Dover Publications, Inc., New York, 1949 , 794 pages, $\$ 4.95$. Reprint of first edition published in 1939 by McGraw-Hill Book Co. Twelve chapters by members of various National Research Council Committees and others, covering: The Earth's Magnetism and Magnetic Surveys; Magnetic Instruments: Magnetic Prospecting: Atmospheric Electricity; Instruments Used in Observations of Atmospheric Jelectrieity; Earth-Currents; on Causes of the Problems of Terrestrial Magnetism and Flectricity; Radio Exploration of the Eurth's Outer Atmosphere: The Upper Atmosphere; The Aurora; Polaris and the Upper Atmosphere; Thunder-clouds, Shower-clouds and Their Electrical Effects. Th+re are also 1523 selected references arranged by subject matter. plus extensilp bibliographical notes.

INDUCTION HEATING. By N. R. Stansel. McGraw-Hill Book Co., Inc., New York, 1949,212 pages, $\$ 3.50$. Eléctrical and thermal principles involved in the use of eddy currents for heating service, as generated by rotating equipment. Shows relationships between electric, magnetic and thermal properties of conductive materials in equations and curves. Highfrequency electronic heating by induction is not taken up.

PHOTOFACT TELEVISION COURSE. Based on a series of lectures by Albert C. W. Saunders. Compiled and published apolis, Ind., 1949 , 215 pages, \$3.00. A well illustrated treatment designed to familiarize experienced radio technicians with the basic principles of practical television theory and operation.

OUR SUN. By D. H. Menzel, Harvard College Olservatory, The Blakiston Co. Philadelphia, Pa., 1949, 326 pages 84.50. as a natural resource, and effect of sun on radio transmission.

HANDBOOK OF PATENTS. By H. A. Toulmin, Jr, D. Van Nostrand Co., Inc. New York, 1949, 800 pages, \$9.00. Essentials of patent law, presented accurately and simply for reference by lawyers as well as laymen. Many specific references to leading cases.

An Electronic Stop-Watch

 for the measurement of time 10 microseconds to 1 second

DESIGNED for universal application. Four ranges $-1,10,100$ and 1000 milliseconds full scale. Accuracy is better than one scale division (1%) on any range.

INDISPENSABLE for development and production of business machines, contactors, gas tubes, relays, shutters, switches, welders and a host of other products. Write for Bulletin 100 A .

American Chromuscupe Curporatimn

316 WEST FIRST ST.
MT. VERNON, N. Y.

138A CROMWELL ROAD LONDON. SW. T-ENGLAND.

Quality Electronic Equipment Deserves

TRIAD "HS" transformers

Volume production of Triad HS (hermetically sealed) Transformers to JAN specifications has enabled Triad to lower costs to little more than that of ordinary cased types. Triad HS Series Transformers feature:
Triad Hermetic Seals-sturdy brass studs, molded in low-loss plastic, eliminate mechanical weaknesses often found in other designs.
Wide Frequency Range-Nickel alloy laminations, low capacity and low leakage reactance windings, plus balanced designs, result in a frequency range from $20-20,000$ cycles $\pm 1 \mathrm{db}$.
Reduced Field Pickup-Triad GP series cases, drawn from annealed nickel alloy, reduce stray field pickup by as much as 95 db .
Small sixe-HS-1 line input transformer with 95 db . shielding and $20-$ 20,000 cycle frequency response, in case only $17^{\prime \prime \prime} \times 13 / 4 "$ (base dimensions) $\times 21 / 2^{\prime \prime}$ high above chassis.
Low Distortion-Triad output coils employ large cores of the best magnetic alloys, with coils of low resistance and low leakage reactance, to approach full output at all frequencies with low distortion. Output transformers may be included in feedback loops using 30 db of feed-back.
Complete 1 ine-All types of audio coils, power coils, reactors, supplied in matching HS Series construction.

Backtalk

This department is operated as an open forum where our readers may discuss problems of the electronics industry or comment upon articles which ELECTRONICS has published.

Author's Answer
 Dears Sirs:

I have read D. J. Braak's letter (Backtalk, August 1§49) with great interest. Braak is correct within 1 db in his statement that the a-m/f-m crossover occurs at 10 db output s/n ratio with perfect limiting. Figures 6, 15 , and 16 in the original manuscript on "A-M and Narrow-Band F-M" (Electronics, Feb. and Mar., 1949) show that the point is close to +11 db output s / n ratio, as is also stated in the text. Ideal limiting, however, results in serious vulnerability to detuning in the system considered, a factor which must be taken into account. All the superiority of $f-m$ with perfect limiting over a-m is lost with comparatively small off-center drifts, for example, with only 23 kc detuning of the f-m signal when the car-rier-to-noise (c / n) , ratio is +6 decibels, as illustrated in Fig. 19. Detuning of 23 kc at a carrier frequency of 328 mc amounts to only 0.007 percent or 70 parts per million, which must include the combined drifts of the transmitter, the local receiver heterodyne and i-f amplifier system, and the discriminator circuits of the f-m detector, as well as an allowance for crystal grinding tolerances in a crystalcontrolled system. Unfortunately, the f-m system's vulnerability to drift is greatest at c / n levels which give the lower values of output s / n ratio.

Considering the proposed system with 60 -ke bandwidth, a deviation of $\pm 20 \mathrm{kc}$ would represent 67 -percent modulation of the receiver's pre-detector bandwidth, as compared to about 11 percent for ± 7 ke deviation in a bandwidth of 125 kc. The increased modulation per-

Now Best TV servicing practices

HERE is an up-to-the-minute A-to-Z manual for everyone concerned with TV receiver tells installations and optimum signal output. It how they are transmitted. . . how they are received. It gives a balanced and detailed picture of both AM and FM circuits, operation and servicing.

Covered in detail are such topics as oscilloscope operation, the ratio detector system and intercarrier sound recevers, deflection circuits, automatic synchronizing control and the synchroguide system, projection systems, sequential and simultaneous grams, complete schematics diagrams, comp schematics and photographs supplement the text matter.

A quick-reference chart gives you every important characteristic of all pic-
ture tubes in common use from the ture rubes in common use, from the Elaborate trouble-shooting the 20BP4 symproms, causes and cures for more than 50 typical receiver problems.

Just Published!

BASIC TELEVISION Principles and Servicing

By BERNARD GROB Instructor, RCA Institutes, Inc.
592 pages • 6×9 - Over 400 Tables, charts, illustrations - $\$ 6.50$

CONTENTS

The Television System-
The Television SystemElectron Subes Scanning Beam- Scanning and Synchronizing - The Composite Video Signal Signal Picture Carrier Signal - Frequency
Modulation-Television Receivers - Picture - Video Amplification -Practical Design of VId eo Amplifiers of Brightness Control and D.C Reinsertion-Video Gain Control-Semaration of the Synchronizing Signals-Deflection Gircuits - Picture I.F Stages-Tho R-F Tun. ing Section - Antennas and Transmission Lines Signal and FM Receiv-ors-Recalver Servicing -Television Broadcast-ing-Color TelevisionSight Appendixes: gineering Practice Concerning TV Broadcast Stations, etc.

工his new book combines Well-rounded
struction in basic in
selevision principles with practical, ready-reference receiver trouble-shooting guidance. Full and careful explanathese are given-phase inversion, automatic volume control, rectifier circuits, modulation and condenser action in a circuit.

Circuit-Block Treatment Each block of circults in the receiver is given a separate chapter to cover details fully. Other chapters are devoted to camera tubes, scanning and
synchronizing, power suoplies antennas and trasmission lines and color telerision.
This new manual gives you more than enough ma-
terial to qualify for the FCC terial to qualify for the FCC's
added FM and TV requirements for the lst class license test. It also gives you the necessary background theory to understand now TV
developments, and work with them easily.

Accept This Offer Now You can examine this book for 10 pull days free of charge. Fill out and mail the free-examination coupon zine is handy.

10 DAYS' FREE EXAMINATION

rpc

WIRE WOUND PRECISION RESISTORS

RPC Resistors are designed to meet stringent requirements of manufacturers of test instruments, meters and scientific equipment. They are made of finest materials in six sizes with choice of terminal lugs or wire leads to meet ald requirements: RPC Resistors are widely used by the Armed Forces, research laboratories, instrument makers and uniRersities. service. Write today for catalog.

Also manufacturers of High Voltage, High Megohm and High Frequency Resistors.

RESISTANCE PRODUCTS CO.

 714 RACE STREETharrisburg - pennsyivania
Spechin DRI BATIEATES
Cuctom sult 10 5rocine hambin

and Farmonts

Looking for a dry battery that's odd sized or with unusual capacity or lasting power? Specialty Battery Company makes special batteries for every conceivable purpose Send us your specifications. We can fill your needs from our stock or manufacture a battery to your specifications.

Write For Catalog

Gíves complete descriptions of hard-lo-get industrial, laboratory, radio and ignition batferies.

SPECIALTY BATTERY COMPANY A Ray-O-Vor Subsidiafy

RAYO.VAC

MADISON 3, WISCONSIN

SOLDER PRE-FORMS

Speed Assembly

Standardize

Save money

Step up production-bring costs in your shop down-with solder pre. forms. Pre-formed rings, washers, pellets, dises, etc., made to your order, insure better bonds, lower costs, and faster assembly. We can supply you with custom-made pre-forms of any shape required, in a wide variety of solders, copper and brazing alloys.

Write for complete information.

Soldering Specialties

Dept. C, Summit, N. J.

CDMIDUNIS

Scientifically compounded for specific applications from wayes, resins, asphalts, pitches, oils, and minerals. Available in wide range of melting points and hardnesses. Special poting compounds are heat coniucting and data, and samples will be furnished on request.

3445 HOWARD STREET SKOKIE, ILLINOIS

NOW! Modern, Comprehensive TV "Sfaging" plus NEW TV REVENUE from Paftern Time

wnt TELOP

This most versatile telecasting optical projector enables dual projection with any desired optical dissolve under exact control.

The accessory STAGE NUMBER 1 adds three functions separately or simultaneously: a) teletype news strip, b) vertical roll strip and c) revolving stage for small objects.

The TELOP, used with TV film cam. eras, permits instant fading of one object to another, change by lap dissolve or by superimposing. Widest latitude is given program directors for maximum visual interest and increased TV station income.

For full derails wrife for Bulleth T-101
GRAY RESEARCH and Development Co., Inc. 16 Arbor St., Hartford 1, Conn.

Low loss insulators for all frequencies in standard stock shapes or special designs

General Ceramics low loss insulators function efficiently in all frequency ranges and are capable of withstanding most all conditions of shock or vibration. Specification of standard shapes offers an opportunity to effect production economaies. For unusual designs or mechanical specifications consult General Ceramics engincers. Estimates without obligation.

MAXERS OF STEATITE, TITANAIES, ZIRCON PORCELAIK, ALUMINA, LIGHT DUTYREFRACTORIES, CHEMICAL STONEWARE, IMPERVIOUS GRAPHITE, FERRITES, COAXIAL CABLE

BACKTALK (continued)
centage will make the system less vulnerable to detuning, and it will change the $a-m / f-m$ crossover to ± 7.5 decibels output s / n for perfect f-m limiting, as against +11 decibels for the $125-\mathrm{kc}$ narrow-deviation system. (There seems to be a small error in Mr. Braak's Fig. B, which indicates the crossover for the $60-\mathrm{kc}$ system to be +5 decibels. In any case, however, the s / n ratio for crossover is lower for the narrower bandwidth system.)

The 60 kc -wide system with ± 20 kc deviation just accommodates the sidebands of the signal, which has components of more than 1 percent of maximum out to $\pm 30 \mathrm{kc}$. If distortion is a criterion, there then remains no allowance for system frequency drift, since any such drift would result in sideband cutting on one side or the other of the carrier. Assuming, however, that a symmetrical sideband clipping from ± 30 to $\pm 20 \mathrm{kc}$ is accepted, we then have $\pm 10 \mathrm{kc}$ possible drift before more serious distortion is encountered. For a carrier of 328 mc , this represents a stability of only 0.003 percent, a tolerance which must be divided at least six ways. Thus each contributing drift source must be less than ± 0.0005 percent or $\pm 1.7 \mathrm{kc}$, if the tolerance is divided equally amongst them.

Such an individual accuracy and stability for normal feasible designs is extremely difficult to obtain and maintain. Even afc sircuits are very difficult to stabiiize and maintain to within $\pm 10 \mathrm{kc}$ under most operational conditions with carrier frequencies above 100 me, and in vhf/uhf equipment, they practically force the use of a double-heterodyne receiver, with a considerable increase of complexity, size and weight, and to some extent increase in spurious responses.

It must also be remembered that reducing the pre-detector bandwidth of a superheterodyne receiver often requires lowering the $i-f$ amplifier center frequency so as to insure desirable values of transformer coupling coefficient and adjacent channel selectivity. If it is not feasible to increase the i-f transformer circuit Q values so as to approach double what they were, a change of bandwidth from 125 to 60 kc may require reduction of the i-f amplifier center frequency to

BACKTALK
as low as one-half its former value. This would, of course, result in much poorer image rejection and a general increase in vulnerability to various other undesired responses.

The figure shown below is a comparison between the 125 and 60 kc bandwidth ideal cases as regards output s / n ratio. It should be noted that the abscissa is relative input carrier power, so that the comparison is on the basis of any given value of carrier power input to the detectors rather than input c / n ratio. This type of presentation is necessary to determine relative performance for a particular set of conditions in which the transmitter, the antennas, the orientation, and the distance are all held constant, and only the pre-detector bandwidth and the frequency deviation vary for any given level of radiated carrier power. This sort of comparison cannot be made on the basis of various given levels of c / n ratio, because changing the pre-detector bandwidth changes the noise factor, resulting in a new value of c / n. The curves show that changing the input bandwidth from 125 to 60 kc affects the a-m system very little, whereas the $\mathrm{f}-\mathrm{m}$ system benefits considerably from the change, mainly because of lowering of the capture transition point ($\mathrm{c}=\mathrm{n}$ or $\mathrm{c} / \mathrm{n}=0 \mathrm{db}$), which comes about from the reduction in noise consequent to reduction of bandwidth. The change in noise power is directly proportionate to the change in bandwidth, so that halving the

Comparison of theoretical α-m and $\mathrm{f}-\mathrm{m}$ range performance with decrease of input bandwidth and different frequency deviations

THE BARRY CORPORATION

$$
\begin{aligned}
& \text { Specialist in the Control of } \\
& \text { vibration }{ }^{\text {Specialist in the Control of }} \text { IMPACT } \\
& \text { Engineering Development } \\
& \text { Manufacturing } \\
& \text { 185. Sidney } \underset{\substack{\text { Street } \\
\text { Telephone }}}{\substack{\text { ELIot } \\
0861-0140}} \text { Cambridge, Mass. }
\end{aligned}
$$

S. BERTRAND BARNARD, LL.B., M.E.
registered patent attorney Mechanical, Electrontc.
Automotive and Aircraft Patents. patent analises and investigation
29-28 41st Arenue
Lang Island Clty $1 . \mathrm{N} . \mathrm{Y}$
STillwell 4-5428

CROSBY LABORATORIES

Murray G. Crosby E゚ Staff
FM, Communications, TV, High-Frequency Heating Offices, Laboratory \& Model Shop at: Garden City 7-0284

EDGERTON, GERMESHAUSEN \& GRIER, Inc.

Consulting Engineers
Research, Development and Manufacture
of Electronic and Stroboscopic Equipnitht
Specialists in IIIgh-Speed Photography
leo Brookline Avenue, Boston 15. Mass.

ELECTRO IMPULSE LABORATORY

Consulting Physicists Radio Interference and Noise Neters: Interference Electrrcal Devices. for 1 gnition Systems and
P. O. Box 250 .

Red Bank $\underset{6-4247}{\text { Red }}$

ELECTRO-MECHANICAL RESEARCH INC.
Specialized Research and Manufacture
High and Low Frequency Circuit Deselopment
Electronic Measuring and Test Equipnient
Optical and Infra-lied Studies
Special Geophysical Equipment Automatic Inspection Devices Ridgefield, Conn.

ELECTRONIC ENGINEERING

 CO. of CALIFORNIARadio and Electronic Consulting and Designing.
2008 W . Seventh St.
2008 W. Seven
Jos Angeles

ERCO RADIO

 LABORATORIES, INC.Radio Communications Equipment Engineering - Design - Development - Production Engineering - Design - Development - Frod
Pioneers in Frequency Shift Telegraph Garden City - Long Island - New York

PAUL GODLEY CO.
Cansulting Radio Engineers
great notch, N. J.

Est. 1926

Little Falls 4 -100t

HANSON-GORRILL-BRIAN INC.
Product জ゚ Mjg. Development flectrical - flectronic hydravlic - mechavical
One Continental hill
Glen Coie, N. Y. Glen Cove 1922

MEASUREMENTS CORP.

Resparch ©f Manufacturing Engineers
Specialists in the Design and
Develogment of Electronic Test Instruments Boonton, N. J.

MEASUREMENT ENGINEERING LIMITED
 Consultants on Special Equipment for measurement

 and production tests. communications and audicsystems. Head Office and Plant Arnprior Canada 60 Front Street West

Montreal
ioutuda
Toronto. Canada

Eugene Mittelmann, E.E., Ph.D.
 Consulting Engincer \&f Physicist
 High Frequency Heating - Industrial Electronics Applied Physics and Mathematics 549 W . Washington Blrd.
 Chicago 6, In State 2-8021

NEWTON ENGINEERING SERVICE
Transformers for Electronics Designs, prototypes and production quantities to indiridual requirements. We offer a highly per somal sert
84 Linden Park Street Highlands 2-1311 Boston 20, Mass, Nights—Holidays LA Salle 7-4959

NIAGARA ELECTRON LABORATORIES

 CONSULTATION - DESIGN - CONSTRUCTIOMFG. - THE THERMOCAP RELAY
Specializing in solution of problems of electromic and electro-physical instrumentation for the re problems also invited.
Andover, New York Cable Address: NiATRONLAB

PICKARD AND BURNS, INC.

Consulting Electronic Engineers

```
            Analysis and Evaluation
        Research, Develovment & Design
        Researeh. Derelonic Fquipment
240 Highland Are.
                                    Needham 94, Mass
```


ALBERT PREISMAN

Consulting Engineer
Telerision, Pulse Technicues, Video
Amplifiers, Phasing Networks,
industrial Adplianc
MANAGEMENT-TRAINING ASSOCIATES 3308-14th St., N.W. Washington 10, D.C
A. F. SMUCKLER \& CO., INC.

Electronic and Communication Engineers and Manufacturers
202-208 Tillary Street Brookiyn 1, N. Y ULster 5-5141

TECHNICAL

MATERIEL CORPORATION

Communications Consultants RADIOTELETYPE FREQUENT SHIFT TELETYPE HETWORNS
453 West 47th Street New York 19, N. Y

YARDENY LABORATORIES, INC.

Research and Development
Remote Controls and Electro Chemical Generators of Energy
10.5 Chambers Street

WO 2-3534. 33
New York, S . Y.

The DIAL LIGITT COMPANY of AMERICA Foremost Manufacturer of Pilot Lights.
900 BROADWAY, NEW YORK 3, N. Y. TELEPHONE SPRING 7.1300 Write for Handbook D.149

Precision machined soft iron pole pieces and alnico magnets, used by Burlington has no equal for permanent magnetic strength and uniform flux distribution. All ranges AC and DC available in rectan gular or round case styles and are guaranteed for one year against defects in workmanship or materials. Refer inquiries to Dept. F-99.

ONE OF A SERIES

 SOFT IRON POLE PIECES
bandwidth reduces n by 3 decibels.
If off-centering, de-tuning, and drift in general did not enter the picture, the narrower bandwidth and wider deviation system would certainly be preferable. With such limitations, however, there seems to be little prospect of utilizing the narrower bandwidth, unless large amounts of distortion are tolerable and the operating situation is not particularly rigorous as regards ambient conditions.

It is possible to use a greater deviation. This would provide better output s / n ratio, as illustrated, but only at c / n ratio values for which the output s / n is already satisfactory with ± 7-kc deviation. The main advantage of the greater deviation would be a considerable improvement as regards s / n deterioration with detuning, but the tolerance for drift without considerable distortion would then be reduced from $\pm 55 \mathrm{kc}$ with the smaller deviation to $\pm 33 \mathrm{kc}$. Even $\pm 55 \mathrm{kc}$ is feasible only with excellent crystals in the uhf region of the radio spectrum. (Incidentally, test and maintenance equipment presents quite a problem for such small percentage frequency tolerances).

No figures of measured harmonic distortion are at present available to the writer for the 60 -kc bandwidth ± 20-kc deviation cases, however severe distortion could be expected in the 60 kc -wide, $\pm 20-\mathrm{kc}$ deviation system for only $10-\mathrm{kc}$ detuning.

Attractive as it seems at first glance, I am afraid that Braak's suggestion of narrowing the predetector bandwidth and increasing the deviation will run into engineering and operational difficulties which would more than nullify its advantages of lower input s / n ratio for $\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ crossover and decreased susceptibility to detuning. I am glad, however, that Braak has brought up so interesting and informative a point for discussion, and am also pleased that he has found the equations (which were developed by Robert M. Maiden of this Laboratory) useful for implementing his suggestions with figures.

Emerick Toth
Naval Research Laboratory Washington, D. C

EL-TRONICS, INC.

Research, development, and manufacture of electronic equipment- α single model to large quantities.

Specialists in Geiger-Muller equipment
2647-67 N. Howard St., Phila. 33, Pa.

PRINTIED CELLOPHANE

Colorful - Self Adhesive - Cellophane, processed in Rolls. Easy to buy - Easy to apply - used for Packaging-Point of Sale advertising-Parts marking and Aircraft Wire terminal identification. TOPFLIGHT TAPE - YORK, PA.

(10)
For precision instruments, taboratory equipment, electronic dernces, to minimize friction, space, weight, and to
overcome startimg torve specty overcane starting torque specify MPB bearings. Radial - Pivot - Angular Contact - Thrust Promptly Available Ask for catalog Elon
V10 D गागयTगT 1
APB MIIIATURE frecision BEARILGS

This

CONTACTS

Section

supplements other advertising is this issue with these additional announcements of products essential to efficient and economical production and maintenance. Make a habit of checking this page, each issue.

Classified Advertising Division ELECTRONICS

Write for Price Bulletin E-9

TUNGSTEN and MOLYBDENUM
Quality and accuracy in our fabrica tion of Tungsten δ Molybdenum Rib. bons have characterized our service to the Electronic industry.

A development of
H. CROSS Co.

5 Beekman St.. Now York 7. N. Y

MICROMETER

FREQUENCY
METER
 FM or AM, 100 Kr fauencios, LAMPKIN LABORATORIES, INC.

Bradenton, Fla., U. S. A.

ETSLETB

SPECIALIZES IN EQUIPMENT FOR THE COMPLETE MANUFACTURE OF

Head ladio Tube Exhausting Machine
Transformers of All Types IN SIZES FROM I/4 TO 300 KVA

EISLER ENGINEERING CO. Inc. 751 So. 13 th St. Newark 3, N. J.

FRLEBManufactures Complete Equipment for:
SPOT WELDERS. Electric, for $1 / 4$ to 250 KVA .
A.C. ARC WELDERS from 100 to 400 Amps. INCANDESCENT LAMP Manufacturing Equipme FLUORESCENT TUBE Manufacturing Equipment
NEON SIGN MAKERS EQUIPMENT
ELECTRONIC EQUIPMENT, Vacuum Pumps, ote
EISIER ENGINEERING and Cutting machines for Laboratory us
EISLER ENGINEERING CO.. INC. 75I So. 13th St.. Newark 3. N. J.

Searchlight Section

EMPLOYMENT • BUSINESS

UNDISPLAYED RATE:
$\$ 1.20$ a line, minimum 4 lines to figure advance payment count 5 overage words as a line.
INDIVIDUAL EMPLOYMENT WANTED undisplayed advertising rate is one-half of above rate, payable in advance.
PROPOSALS $\$ 1.20$ a line on insertion.

opportunities

INFORMATION:
BOX NUMBERS in care of any of our New York, Chicago or San Francisco offices count I line additional in undisplayed ads.
DISCOUNT of 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).

- EQUIPMENT——USED or RESALE

DISPLAYED-RATE PER INCH
The advertising rate is $\$ 10.25$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request
AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns- 30 inches -to a page.

NEW ADVERTISEMENTS received by August 30th will appear in the October issue, subject to limitation of space available.

RADAR, COMMUNICATIONS and SONAR TECHNICIANS WANTED

For Overseas Assignments

Technical Qualifications:

1. At least 3 years' practical experience in installation and maintenance.
2. Navy veterans ETM $1 / \mathrm{c}$ or higher.
3. Army veterans TECH/SGT or higher.

Personal Qualifications:

1. Age, over 22-must pass physical examination.
2. Ability to assume responsibility.
3. Must stand thorough character investigation.
4. Willing to go overseas for 1 year.

Base pay, bonus, living allowance, vacation add up to $\$ 7,000.00$ per year. Permanent connection with company possible.

Apply by Writing to
 A-1, P. O. Box 3414 Philadelphia 22, Pa.

Men qualified in RADAR, COMMUNICA. TIONS or SONAR give complete history. Interview will be arranged for successful applicants.

Positions Open for PHYSICISTS SR. ELECTRONIC ENGINEERS

Familiar with ultra high frequency and micro wave technique
with electronic digital and/or analog, computer research and develop
ment program
Salaries commensurate with experience and ability. Excellent opportunities for qualified personnel.

Contact:
C. G. JONES, Personnel Department GOODYEAR AIRCRAFT CORPORATION

Electronic Engineers

PROJECT ENGINEERS
Five or more years experience in the design and development, for production, of major components in radio and radar equipment.

ASSISTANT PROJECT ENGINEERS

Two or more years experience in the development, for production, of components in radio and radar equipment.

Well equipped laboratories in modern radio plant . . . Excellent opportunity ..advancement on individual merit.

Baltimore Has Adequate Housing
Send resume to Mr. John Siena:
BENDIX RADIO DIVISION
BENDIX AVIATION CORPORATION
Baltimore 4, Maryland

SCIENTISTS AND ENGINEERS

Wanted for Interesting and profossionally ohalleag.Ing research and advancod development in the fields of mlerowaves, radar, gyroscopes, zervomech-
 monsurato with experlence and ability. Difeot in-

ELECTRONIC ENGINEERS PHYSICISTS

"A leading Electronics Company in Los Angeles, California offers parmanent employgens, to persons experienced in odvonced research and development. Stote qualificotions fully."

68 Post St., San Franciaco 4, Calif.

WANTED

Electronic Enginoer or Exporimental Phyicicist

 permanent posisition in research and developmentiar speclal instrumenhs and ond
open. Give tull details in frrst litter.

THE SHARPLES CORPORATION 424 West Fourth Street. \quad Rridgedort. Penna.

Mr. Sales Representative

We are manufatecurers op parts eslling to the Coil Winding. Electrical. Electronics. Radio, Tolevision and Transformer industries. Due to our recent expansion program, we have territories open. It
Interested in handing. we invite your inquiry stat. ing your present isnes and territory.
$520 \mathrm{~N} . \underset{\text { RW-957I, Electronics }}{\text { RWigan Ave., Chicago 11, Ill. }}$

REPLIES (Box No.): Address to offoe nearest yow NEW YORK: 350 W. 42nd St. (18) SAN FRANCISCO: 68 Post $8 t$ (11

POSITION VACANT

DIRECTOR OF training to take charge of courses in radio and television. Approved school. Salary $\$ 325 / \mathrm{mo}$. Academic hours Tech. exp. pref. P. O. Box 505, Atlanta. Ga.

EMPLOYMENT SERVICES

SALARIED POSITIONS $\$ 3,500-\$ 35,000$. If you are considering a new connection communlcate with the undersigned. We offer the original personal employment service (39 years recognized standing and reputation). The procedure, of highest ethical standards, is individualized to your personal requirements and develops overtures without initiative on your tion protected. Send only name and address for details. R. W. Bixby Inc., 278 Dun Bldg. Burfalo 2, N. Y.

POSITIONS WANTED

ELECTRONIC ENGINEER desires posttion with company making electrunic equipment. Consider development, laboratory, service or sales. Ten yrs. experience, prefer midwest PW-9127, Electronics.

SERVOMECHANISMS AND Instrumentation Engineer. BS MS in EE. Technical expericontrol systems, simulators, gyros, computers. and wind tunnel instrumentation. Patent and technical publications in these fields. Administrative experience includes supervising groups of $\mathbf{1 5 - 3 0}$ men and establishing and maintaining operating budget. PW-9590, Electronics.

SENIOR ELECTRONIC Engineer. Now group leader in charge of missle telemetering. 10 years experlence: development of low frequency circuits, instruments and Instrumentation; Haison, Government spec., field work, report writing. Famlliar with mechanlcal problems and small shop methods. Energetic, imaginative,
resourceful. Excellent recommendations. Reply PW-9399, Electronics, 68 Post St., San Franclsco, 4, Callfornia.

avallable for Permanent EMPLOYMENT integrated engineerng group

Small group of versatile engineers specializing in pulse, video, radar circuits. Experience up to 10 years, two have headed important projects. Excellent academic backgrounds, advanced degrees.

PW-9644, Electronics
330 W. 42nd Street, New York 18, N. Y.

When Answering BOX NUMBERS

to expedite the handling of your correspondence and avoid confusion, please do not address a single reply to more than one individual box number. Be sure to address separate replies for each advertisement.

(TD) SEARCHLIGHT SECTION

WESTINGHOUSE RESEARCH

in

TELEVISION

PHYSICISTS • ENGINEERS

Specialists in OPTICS, ELEC-TRON-OPTICS, PHOSPHORS, PHOTO SURFACES, SYSTEMS and CIRCUITS are needed for an expanding program at the Westinghouse Research Laboratories, in East Pittsburgh, Pennsylvania.

For Information Write:

Manager, Technical Empl.
Westinghouse Elec. Corp.
306 4th Ave.,
Pittsburgh, Pa.

4 POSITIONS NOW OPEN

PHD-Physicist-Infrared, Optics
MS-Electronic Engineer-Servos
BS-Electronic Engineer-Circuits
ME-Design Engineer-Small Mechanisms
Have you considered the advantages of working for a smaller, growing Company?

1. Closer relationship with management.

YOUR abilities more quickly recognized!
2. Quicker delegation of responsibility.

YOU are in position to develop!
3. Diversity of problems.

YOUR job has greater interest!
4. Faster advancement.

YOU have opportunities!
5. No complex wage structure.

YOUR salary determined by ability!
If you are alert to these advantages, please send resume of qualifications to Personnel Manager
SERVO CORPORATION OF AMERICA
2020 Jericho Turnpike New Hyde Park, New York

IS THIS YOU?

This advertisement is addressed to a graduate radio engineer between the ages of 25 and 50 who has had a minimum of five years practical commercial radio experience either before, during or affer his college education.
He is of an amiable disposition, gets along well with people, has the ability to organize and works well under adverse conditions. He can teach or be taught and can give and take orders. He is accustomed to a good salary and is willing to His bacept the responsibilities necessary to earn it.
His background includes a good general radio experience including operation, design and service. He is either a permanent resident of the Philippines or is willing to reside in the Philippines for a minimum of three years. His race, religion or nationality will have no bearing whatsoever in choice for this position. He This may be you If
perating in the Far East awa good future with a rapidly expanding company your past history and experience, present status and personal circumstances.ining your past history and experience, present status and personal circumstances. An

P-9489, Electronics, 330 W. 42nd St., New York 18, N. Y.

WANTED PATENTABLE IDEAS

A reliable transformer company is looking for patentable idears on transformers to manufacture.

1122 W. Catalpa Avenue Chicago 40, Illinois

> Time is money. Save it by referring to our ACCUMULATIVE INDEX FOR ELECTRONICS BIBLIOGRAPHY simple and dependable
> Write for descriptive literature
> TECHNICAL INDEX SERVICE
> Box 632 Ashury Park, Now Jorsey

CONTRACT

ENGINEERING-MANUFACTURING
electronic and electro-mechanical devices - developed to meet your specifications - manufactured per sample or drawings

TELETRONICS LABORATORY, Inc. Westbury, L. I., N. Y.-Westbury 7-1028

W A N T E D

```
WANTED
W.E. 984 or LINK MODEL 9 MODULATOR
STATE PRICE \& CONDITION
W-9631, Electronics
330 W. 42 nd Street, New York 18, N. Y.
```

WANTED, AIRCRAFT RADIOS
AN/ART.13, BC. 348 . RTA-1B, AN/APN-9, R3A/ ARN.7. AN/AAC.1, AN/ARG.3, BC.788-C. 1-152. motora; Control Boxes, Transmitiers, Recolvers. Power Suppllies. etc. State quantity, condition and best price first lettier.

HI-MU ELECTRONICS
Box 105, New Haven, Conn.

WANTED

Toletypewriters complete, componenls or parts. Any quantity and condition.

20 W-6654. Electronics
320 Went 42 nd Street, New York 18, N. Y.

WANTED

TN-18-APR-4 or TN-3-APR-1 TUNING UNITS RANGE 300 TO 1000 MC. IN ANY CONDITION

W-8301, Electronics
330 West $42 n d$ St., New York 18, N. Y.

WANTEG

WESTERN ELECTRIC VACUUM TUBES
Types 101F, 102F, 272A, 274A or B, 310A or B, 311R, 313C, 323A, 328A, 329A, 348A, 34A, 352A, 373A, 374A, 393R, 394A, 121A Ballost Lamps.
330 West 42nd Gt lectronica

MANUFACTURERS WHOLESALER'S DEALERS

A service to save you TIME and MONEY by locating your "HARD TO FIND" items and please your non-movable surplus

ELECTRONIC SURPLUS BROKERS

 3232 Broadway, N. Y. C. 27

3 CENTIMETER

（STD． $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ GUIDE UNLESS OTHERWISE 723 A／B Klystron mixer section with crystal mount
 CUIO5／APS31 Directional Coupler 25 DB．．．$\$ 85.50$ ${ }_{720} 70$ deare A wist， 6 inches lonk．
 2 Way Wave directionai coupler，type N itting 118.5
 TR－ATR Section，APS is，Por iBe 24, with 724 ATR Grystal mount
Stabilizer Cavity with belinws．
$3 \mathrm{~cm} .180^{\circ}$ bend with pressurizing nipole $\$ 21.50$ $3 \mathrm{~cm} .90^{\circ}$ bend， $14^{\prime \prime}$ long 90° twist with pressuriz－

to feed bark．
3 cm directionai coupler．．．．．．．．．．．．． 88.50 ea

CIRCULAR CHOKE FLANGES．solid brass． .55 CIRCULAR CHOKE FLLANGES．solid brass． .55
SQ．FLANGES FLAT BRASS．
APS 10 TR／ATR DUPLEXER section with addi

 A／B loral osclilator－beacon feening waveruide Rand $1 . . .1$ of 4 ft．seetlon with Rt，ankle bend on one send WAVEGUIDE RUN． $11 / 4^{2} \times \cdots 1 / 2 \cdots$ guide，consistinn

15 DEG BENO 1 T＂chnke to noner．
5 FT．SECTIONS choke to
Platef ${ }^{5}$ T．SECTIONS choke to cover．
Plated
BULKHEAO FEED THRU
＇ \mathbf{X}＇BANO WAYEGUIO

 724TR TUBE T41TTM
SWR MEAS．SECTION

 WAVEGUIOE SECTION．i2＂inn ehinke to cover

 With chnke firnge ROTARY JOINT chno to chiok
ROTARY JONNT choke to cho

200 MC COAXIAL PLUMBING

Right Angle Bend
 ight An I Section

10 CENTIMETER

WAVEGUIDE TO ${ }^{7 / 4}$ RIGID COAX＂．DOOR－

THERMISTORS

WAVEGUIDE DIRECTIONAL COUPLER． 27 db Navy type CABV－47AAN，with 4 in．sloter SQ．FLANGE io ra choke adapter， 18 in．lon OA $11 / 2 \mathrm{in} . \mathrm{x} 3 \mathrm{in}$ ．guide，type＂ N ，＂output and sampling probe Crystal Mixer with tunabie outpit Tis pick up lood Tlype＂N＂connectors．Type 62 Ali H．abi． 514.50
 Coaxial soitted section，$\% /{ }^{*}$ rigid cosx with carriag．
and probe

 AN／APR5A 10 cm anvenas equibment consisting 45 degrees …．．．．．．．．．．．．．．．．．．． $\mathbf{\$ 7 5 . 0 0}$ per set McNally Cavity for 707 B ，with tuning ＂s，＂BANOCBYSTAL MOUUT，gold plated with

 MAGNETRON TO WAVEGUIDE Coupler $721-\mathrm{A}$ duplexer cavity gold plated．．．．． 527.5 $10^{\circ} \mathrm{CM}$ WAVEGUIDE SWITCHING UNiT，suthe 1 invut to any of 3 outputs．Standsid $11 / w^{n} \times 3^{3}$
gulde with square flankes．Complete with 11 gulde with square flankesing Complete wirs Ras
var or do arranged switching mitor．MPs． theor dr arranged switching mitor． OCMEND－FIRE ARRAY POLYRODS．\＄1．75 ea
 10 CM ．MCNALLY CAVITY TyDe SG． Weng ${ }^{2} \mathrm{Lh}^{*}$ Pt． 10 CM osc．PICKUP LOOP，with male Homede

 ${ }^{0}$ ite ball，for use with Darabola $7 \mathrm{~m}^{*}$ Rixid Coa
 TYTF E\＆G83816．E PLANE TO H PLANT 21A TR cavitles．Hea

7／8＂${ }^{\prime 4}$ RIGID COAX—3／8＂I．C．
\％n rinit coaxial tuning stubs with vernier stuh ad－ \％／R RIGID COAX ROTAR YOiNT．PTessurlzed．
 RIGHT ANGLE BEND，with flexible coar output plrkun lond ginnle coix to ile roax connector．．．．．．．．． 33.50 ：TUBESUPPORTED RIGID COAX，gold QTT．ANGLES Por abore IT．ANGLE BEND $15^{\prime \prime}$ L．OA
ILEXBLE SECTIN． 15^{*}
\square . .52 .50
$\cdots .53 .50$
\cdots －LEXIBLE SECTION．15＂L．Mirale पAGNFTRON COUPLiNGS to －KEX TR Didkun lop．gold platet． G 54／U－4 foot flexible section

WAVEGUIDE

Available in 10 FT to 15 ft．iength
if $65 / \mathrm{U}$ 10CM flanges．．．．．． UG 53／U Corer

MISCELLANEOUS

Typg＂N＂patching cord YG11／U Pemate to IGG／U using RGJ／U cable 12 Jonk．．．．．3．25ibl
 Transmission line pressure gauge
Pulse cable assembly Western Elec
 \＃J－102X …．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 3.75$ ва dapter type＂N＂RG8／U to RG17／U or
cable
or
18／， ADAPTER TYPE＂ニN＂TO RG－ZVUCONNEC
 APR－5AX．TYPE NV CONNECTORS． $\mathrm{S5} 512.50$ iland poumps for pressurizing transmission 1 line
with humidity indleator...........$\$ 12.50$ ea．

TEST EQUIPMENT

TS． 1 IT． GP TE 10 ．． Coaxis 1 Cerry $2400-3400$ MC．Micrometer Adj． transnission method．Mounts Crystal Current VSWR AMPLIFIER TS．iz／AP．Unit i 3 ．$\$ 175.00$ of Amplifs and Diode Rectifier w／direot VSWR． tion w／Inst BK and CCT Ciag New．S285．00 tion incld＇g Accessories TS－12／AP，Unit 2 inol． CG87／U，MXi58／U，CG88／U，CG90／U，UG80／U

 MODEL TS－268／U

Test set designed to provide a

 means of rapld chocking of crystal diodes IN21，IN21A． IN21B，IN23，IN23A，IN23B． Operates on $11 / 2$ volt $d r y$ cell battery． $3 \times 6 \times 7$ ．$\$ 35.00$
10CM ECHG BOX CABV 1HABA－1 of ORU－3． 2890 MC to 3170 MCS，direct reading micro－
meter head．Ring prediction scale plus 9% io minus 9% ．TYoe N No input．Resonance indi－ 10 CM Directional Coubler．．．．．．．．．．．．．．s350．00
3 CM RECEIVER．SO－3．Conplete with $\left.\begin{array}{c}\text { W．G }\end{array}\right)$ 3 CM RECEIVER．SO－3 Complete with W．G 10 cm ．horn assambly consisting of two ${ }^{2}$ ．${ }^{\circ}$ dishes

 diameter．Coax．output．Silver plated．$\$ 64.50$ ea． 10 cm ．echo box．
THERMISTER BRIDGE：Power meter I－203－A． 10cm．mpg．W．E．Complete with meter，Inter
int
 range．Lighthouse tube oscilator with atten
 sion waremeter： 9200 to $11,000 \mathrm{mc}$ ．transmis 3 cm．stablizer cavty，transmission type．．．．$\$ 20.00$ TS－108A／P DUMM LOAD．．．．．．．．．．．．．．．．．$\$ 65.00$ 3 CM．HORN AT－48／UP model 710．Type AT．68／UP 3 rM FHrn with type N ititing．．．．55．00 quency corerage $1000-4500$ megacycles．Dual back to hack parabolas，complete with drive．．．．．． 5150.00
SA－1，2nuMc Bedspring Antenna with pedestal $\$ 4.50$ TUNABLE PKGD．＂CW＂MAGNITRONS
 New Gusranteed ．．．．．．．．．．．．．．．．．．．．．．Each $\$ 65.00$

SUPER SONICS
QCU Magneto striction bead RCA type CR 278225－．．．．．．．．．．．．． 875 Nea $\begin{aligned} & \text { Naintess steel stremmining bousings for above } 00\end{aligned}$ QBG Driver Ampliffer．New．．．．．．．．．．．．．$\$ 200.00$ QCU Magneto striction head coil Diate assemi．5．$\$ 14.50$

(ID SEARCHLIGHT SECTION II

PULSE EQUIPMENT - IR IDAIR - MAGNETRONS

PULSE EQUIPMENT
MIT. MOD. 3 HARD TUBE PULSER: Outpu Pulse Power 144 KW (12 KV at 12 amp). Duty Ratio: 001 max. Puse duration: 5, 1.0 , 2.0
mperosec. Input voltage: 115.7 .400 to 2400 cps.
Uses $1-715-\mathrm{B}, 4-829-\mathrm{B}, ~ 3-72$'s, $1-73$. New APQ-I3 PULSE MDDULATOR. Pulse Width 5 1.1 Micro Sec. Rep. rate 624 to 1348 PDs. ${ }^{\text {DWr. }}$. Put. 35 KW Energy 0.018 Joulen.... $\$ 49.00$ TPS.3 PULSE MODULATOR. Pk. power 50 amp microsec. pulse line impedance 50 ohms. Cir type. Uses two $705-\mathrm{A}$'s as rectifiers. $115 \% 400$ APS IO MODULATOR DECK Complete 49.5 BC 1203B Loran pulse modulator BC 758 A I'ulse modulator. APS. 10 Low roltage power supply. iess tui. . $\$ 395.00$

PULSE NETWORKS

15A-1-400-50: 15 KV . "A" CKT. 1 microsec, 400
 sections, 5 microsecond. 2000 PPS, 50 ohms
impedance
 Microsec. 810 PPS, 50 ohms imp. : Unit 2,8 Sections, 2.24 Microsec . 405 PPS, 50 ohms imp. $\$ 6.50$ 7.5E4-16S. $60-67 \mathrm{P}$, $7.5 \mathrm{Kmpedance}, 3$ sections.. $\$ 7.50$ 16 microsec, 60 PPS, $6 \overline{7}$ ohms imperdance, $\$ 15.00$ 200 PPS , 77 microsec

DELAY LINES

D-168184: .5 milerosec, up to 2000 PPS, 1800 ohm D-170499:.25/.50\% 75% microsec, 8 KV, $\%$ ohms D-165997: ī microsec

PULSE TRANSFORMERS

G.E.K.- 2745

G.E.K.-2744-A, i15 KV high Voltage, 3.2 KV \mathbf{K} Iow

 impedance ratio 50 ohms to 900 ohms
range: 10 kc to 2 me, 2 sections paraliel range: ${ }^{10} \mathrm{kc}$ to $2 \mathrm{mc}, 2$ sections paralle
nected. W.E. KS 9800 Input transformer, Winding ratio tween terminals 6-7 and $1-2$ is $2: 1$. Frequency
range: $3 \times 0-520$ c.p.s. Permallov core...... $\$ 600$ range: $3 \times 0-520$ c.p.s. Permallov core. .
G.E. $\#$ K 2731 Repetition Rate: 635 PRS.
50 Ohms, Sec. Imp: Microsec. Pri. Input: 9.5 KV PK, Sec. Output:
28 KV PK, Peak Output: 800 KW Rifiar 2.75 W.E. \#Di69271 Hi volt input pulse Transformer G.E. K2450A. Will receive 13 KV .4 micro-second power out 100 KW G. E..................... $\$ 4.50$ *9280 Utaln Pulse or Blocking Oscillator XFSir Freq. limits $790-810 \mathrm{cy}-3$ windings turns ratio Raytheon $\mathbf{U} \quad \mathbf{X} \quad 8093 \quad 3 \times 32$ Turns T.V. 1000 RMS G.E. ${ }_{1}^{9318 \text { Pulse Xfrmr 1:1:1 }}$

WILCOX CS390

CONTROL EQUIPMENT

FOR AIRPORT CONTROL GRUUND STA.

 loud speaker, dual channel recelver amplifter, Trpe 109 A control panel, microphone speech amplifier, etc., spars parts. new and com-
400 CYCLE TRANSFORMERS

 52-7176: 2-5U4's. For AP'S-15. T201. 15 . 400 cy . Sec: $6.3 \mathrm{~V}, 20$ APS-15. T202. ${ }^{2} 278$: Pri : $115 \mathrm{~V}, 400 \mathrm{cy}$ ${ }_{55 P 7}^{3500 V}(2 \times 2)$, For APS-15. T203 (Anode $\$ 2$) $2.5 \mathrm{~V}, 2.5 \mathrm{Amp;}(2000 \mathrm{~V}$. Ins.); 6.3 V .2 .25 Amp 1200V. Tbul at 1000 and 750 V ', P/o AN/APS 15

 6.3V, 66Amp; \quad. $400-2400 \mathrm{cy}, \mathrm{Sec}: 400 \mathrm{Vet} .35$ $32-7138 \mathrm{M}, \operatorname{Pri} 115 \mathrm{~V}, 400-2400 \mathrm{cy}$ Sec: 640 V. 5

SO. 1 AND SO-8 RADAR SETS, Complete, in Usef but Excelitent Condition. 10 CM Sulerare, Searen but Excellent Condition. 10 cM Surfare Search using 2. 26 or 2.27 Magnetron, 70713 Mixer. PPI Indicator. Invut $115 \mathrm{~V} D \mathrm{C}$. Used on Merchant Indicator. Inyut $115 V \mathrm{VC}$ Used on Merchant Guarantsed
 SF. 1 RADAR

10 CM surface search usimp PPP and "
115 VDC input complete with shat
MICROWAVE ANTENNAS

ID type high speed scanner anterna bolic reffector. Less liternal mechanisma, 10 ussd. 'Gor't Cost-\$450n.00) APS-4 3 cm . antenna, romplete. $14 \frac{1 \%}{2}$ dish $\$ 250.00$ ler feed dipole directional coupler, all standard mechanisms tor horizontal and vert.cal sear
 N/O, PS. Parabone dish type reflector approx.
 approx. range: 2000 to 6000 mc . Dimensions: TDY "JAMי' RADAR ROTATINGANTENNA. 11 clm, 30 deg. beam. 115 r.a.c. drive. New. $\$ 100.00$ 300 leg. rotation, complete with drive motor and
selsyn. New selsyn. New
Used
AS125/APR Come type recelving antenna, ios $40-600 \mathrm{MC}$. GONE type antenna, complete with 25° sectlonal steel mast, guys, cables, carryin,
case, etc. New............................ $\$ 49.55$ ASD 3 cm. antenna, used, ex, cond............. \$49.5 ments
. $\$ 75.00$ F29/SPR-2 High Pass Filte

\$ $\$ 12.50$

CPN-6 3CM RADAR

BEACON EQUIPMENT
Complete sets avallable in unused condition.

 $5.5 / 5.26$ amps, 4000 v. rms test.
FILTER REACTOR: 156 hy. $5 \mathrm{amps}, 4000$ r. test. liaytheon UX 9547 .
TRANSFORMER: Pri: 186 V. 5 amps; See: 115
7.2 amps. Siz* $12^{\prime \prime} \times 20^{\prime \prime} \times 29^{n}$. Net Wt. appro. 7.2 amps. Size $12^{\prime \prime} \times 20^{\prime \prime} \times 29^{\prime \prime}$. Net Wt. approx
250 Iabs. Entire unit enclosed in grey metal cabinet wit

CROSS POINTER INDICATOR

ZA Tчpe TEST SET 159 TPX
Measures fretueticy between 150 \& 200 me . by heterodyne method. Power of Xmtr can be directhy
measured. Measures DC voltages up to 500 Volts. Original Operation on 110 V . 400 cy. but conversion
kit makes it operable on 10 V . 60 cy . new, and kit makes it operable on 110 V . 60 cy . new, and
complete with tuhes. crystal, cal. chart, antenna comple
meter
Typewr Typewriter Desk Welle
Mounted on Steel Parre for Standard Rack Mfg Thick. W^{w} ell is 22
Wide. 20^{r} Deep. Af
ording fording Full Working
Space. Grey Crackle
 Finish.

AIRCRAFT AUXILIARY POWER PLANT
Navy take IA. Laurence Model 30 D, 10 horsepower 2 cylinder, 4 Stroke cycle air cooled engine. fol use with
generator. new. in original cellophane packin.
$\$ 425.0$

ALL MERCHANDISE GUARANTEED. MAIL ORDERS PROMPTLY FILLED. ALL PRICES F O.B. NEW YORK CITY. SEND MONEY ORDER OR CHECK ONLY, SHIPPING CHARGES SENT MERCHANDISE SUBIEGT TOPRRIOR SAI
COMDIUNICATIDNS EQEIPDIENT
131 "E9" Liberty St., New York, N.Y. ATT: P. J. Plishner Cable "Comsupo" Ph. Digby 9-4124

MAGNETRON			
Tuhe	Freq. Range	Pk. Pwr.Out	
2.31	28:2-2813 me.	26.5 K	\$25.00
2.311	93+5-9405 mc.		
2 L 22	32673333 mc .	265 KW .	\$25.00
2.32	2992.3019 mc.		\$25.00
2.27	2965-2992 mc	275 KW	\$25.00
2 l 32	2780-2820 anc.	285 K.W	\$25.00
2 L 40 ($9305-9325 \mathrm{mc}$. $10 \mathrm{KW} . \quad \$ 65.0 \mathrm{~J}$			
	9000-9160 mc	58 K	\$85.00
2.562	914-3010 mc	35 KW	\$65.00
3. 31 24,000 me. 50 KW . $\$ 55.00$			
714AY, A			
7180Y 2800 mc (000 KW			
720C.Y			
725-A	45-9405 m	50 KW .	\$25.00
9105 mo 50 KW			
DY.DY.EY.FY.GY \$50.00			
$706-\mathrm{AY}, \mathrm{HY}$, I)Y, EY. FY. GY © $\$ 50.00$			
Klystrons: 723A/B \$12.50; 707 B W/Cavity $\$ 20.00$			
$417 \mathrm{~A} \quad \$ 20.00 \quad 2 \mathrm{~K}+1 \$ 65.00$			
MAGNETRON MAGNETS			
Gauss	Poie Diam.	Spact	P
4200	21,32 ln .		\$17.50
1300	8 in.		
$1800 \quad 15 / 8 \mathrm{ln} \quad 1 \quad 1 / 2 \mathrm{in}$Electromagneta formagnetrons $\$ 00 \mathrm{~S}$$\$ 24.50$ ea.			
R. F. EQUIPMENT			
LHTR. LIGHTHUUSc msScmbly. P'grt of RT- 			
Lighimuase cidrates with assoc. I't Caraly and			
T3 pe N Ci'Lat To Kerr. Uses 2Cidu, $2 \mathrm{C}+3$, 1及 2, Tumeable A1'X 2400-2700 MCS. Silver plated.			
Receiver transmitter Rt 39a/AP' ${ }^{\text {a }} 510 \mathrm{cmi}$, gun			
laying RE pachage using $2 \mathrm{C}+\mathrm{dO}$ and 2 C 43 , new.$\$ 150.00$			
PS. 2100 M RF HEAD COMPLETE WITH HAKD			
Miser all $7 / 0^{\prime \prime}$ rigid coax. Hel. rear. fromt end			
Beacon lighthouse cavity 10 cm with miniature 20			
volt DC His hotur, Mig. Bernard kice. . \$47.50 ea. T-128-/APN-19 10 cm . radar Beacon transmiter package, used.			
SU-3 "A" band 3cm RF package, new complete,			
Pre-Amptinar' cavilies tspe " 31 " 74105906 l to use			
4 ± 6 a ligmhouse tube. Completely tunable. lleavy silver blated construction.......... $\$ 37.50$ ea.			
RT32/AF'S GA KF HEAD. Compl. wihh 725A			
Maguetron magnet pulse xfmr, Tha-ATh. 723			
A/B local osc, and beacon mount, pre amplifier. Used but exc, cond.			
AN/APS-15A " X " Band compl. RF' head and			
nodulator, incl $725-$ A maguetron and magnet,			
tho $723 \mathrm{~A} / \mathrm{B}$ Elystrons (local osc. de beacon).			
1B24, Th8, revr-umpl. duplexer. HV supply. blower, pulse xtmir. l'eak l'ur out: 45 KW ayx.			
Invut: 115 , 400 cy. Modulator pulse dumumy			
with all	tubes incl. 73.	two 72's.	Com-
AN/APS2. Complete liv head and mo			
cluding magnecton and ungnet, 417-A mixer, TR receiver, duplexer, blower, etc., and complete pulser. With tubes, used, fair condition. . S/0,00			
ceiser usiug 2-2, magatron oscilator, $2 \overline{50} 0 \mathrm{KW}$ peak input. $707-1$ reveiver-mixer. $\$ 150.00$			
ASib.50n Mfuacycles Hadar liecelver with two GL446 lighthouse cavitles, new, less tubes $\$ 37.50$			

IKW-FM STATION

General Electric Khowar amplat

Serial RC 25
Model 4BTIA1 TyDe 3T1A
General Electric Station Monitor
Model HFM1A1 Type BMLA
Serial WC268

Serial WC547 2 A

General Fle-tric Transmitter Console
Model 41BC3A1
Type BC3A
Serial WXC. 5 Two Bay Circular Antenna with Transmission Line, Flevators and Matchers 1 Fee including 90° elbows.
Dehydrator for transmission line
Dehydrator for transmission line.
Desk and Chair for Transmitter Console.
WRITE FOR PRICE AND UNFO.

5071930 , Delco, 115 V., 60 cycle, 7000 r.p.m. Price $\$ 4.50$ each net. 36938-2, Haydon Timing Motor, $110 \mathrm{~V} ., 60$ cycle, 2.2 w., $4 / 5$ r.p.m.

Price $\$ 3.00$ ea. net.
Haydon Timing Moror- $110 \mathrm{~V} ., 60$ cycle, 3.2 w., 4 r.p.m., with brake.

Price $\$ 4.00$ each net. 45629R Haydon Timing Motor, 110 V ., 60 cycle, 2.2 w., $1 / 240$ r.p.m.

Price $\$ 3.00$ each net. 36938-3, Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., $11 / 5$ r.p.m.

Price $\$ 2.70$ each net. 36228 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., 1/60 r.p.m.

Price $\$ 2.70$ each net. Eastern Air Devices Type J33 Synchronous Motor 115 V., 400 cycle, 3 phase, 8,000 r.p.m. Price $\$ 8.50$ each net. Telechron Synchronous Motor, Type B3, 115 V., 60 cycle, 2 r.p.m., 4 w.

Price $\$ 5.00$ each net.

SERVO MOTORS

CK1, Pioneer, 2 phase, 400 cycle.
Price $\$ 10.00$ each net.
CK2, Pioneer, 2 phase, 400 cycle.
Price $\$ 4.50$ each net. 10047-2-A Pioneer 2 phose, 400 cycle, with 40:1 reduction gear.

Price $\$ 7.25$ each net. FPE-25-11, DiehI, Low-Inertia, 75 to 115 V., 60 cycle, 2 phase.

Price $\$ 16.00$ each net.
FPE-49-7 Diehl, Low-Inertia, 115 V., 60 cycle, 2 phase, $3.0 \mathrm{amps} ., 10 \mathrm{w}$. output. Price $\$ 34.50$ each net. FP-25-2, Diehi, Low-Inertia, 20 V., 60 cycle, 2 phase. Price $\$ 9.00$ each net. FP-25-3, Diehl, Low-Inertia, 20 V., 60 cycle, 2 phase. Price $\$ 9.00$ each net. CK2, Pioneer, 2 phase, 400 cycle, with 40:1 reduction gear.

Price $\$ 6.70$ each net. MINNEAPOLIS-HONEYWELL TYPE B Port No. G303AY, 115 V., 400 cycle, 2 phase, built-in gear reduction, 50 in . lbs. torque. Price $\$ 7.50$ each net.

REMOTE INDICATING

 MAGNESYN COMPASS SETPioneer Type AN5730-2 Indicator and AN5730-3 Transmitter 26 V ., 400 cycle.
Price $\$ 40.00$ per set new sealed boxes

3 Kollsman Remote Indicating Compass Set Transmitter part No. 679-01, indicator part No. 680k-03, 26 V., 400 cycle.

Price $\$ 12.50$ each net.

GYROS

Schwein Free \& Rate Gyro type 45600. Consists of two 28 V. D.C. constant speed gyros. Size $8^{\prime \prime} \times 4.25^{\prime \prime} \times 25^{\prime \prime}$.

Price $\$ 10.00$ ea, net.

Schwein Free \& Rate Gyro, type 46800. Same as above except later design.
Price $\$ 11.00$ each net.
Sperry A5 Directional Gyro, Part No. 656029, 115 volts,
 Price $\$ 17.50$ each net.
Sperry A5 Vertical Gyro, Part No. 644841,115 V., 400 cycle, 3 phase.

Price $\$ \mathbf{2 0 . 0 0}$ each net.
Sperry A5 Amplier Rack Part No. 644890. Contains Weston Frequency Meter. 350 to 450 cycle and 400 cycle, 0 to 130 voltmeter.

Price $\$ 10.00$ each net.
Sperry A5 Control Unit Part No. 644836. Price $\$ 7.50$ each net.

Sperry A5 Azimuth Follow-Up Amplifier Part No. 656030. With tube.

Price $\$ 5.50$ each net.
Pioneer Type 12800-1-D Gyro Servo Unit. 115 V., 400 cycle, 3 phase.

Price $\$ 8.00$ each net.
Norden Type M7 Vertical Gyro. 26 V . D.C. Price $\$ 19.00$ each net. Norden Type M7 Servo Motor. 26 V . D.C. Price $\$ \mathbf{2 0 . 0 0}$ each net.

Allen Calculator, Type C10 Bank and Turn Indicator, Part No. 21500, 28 V. D.C. Contains 28 V. D.C. con stant speed gyro.

Price $\$ 10.00$ each net

D.C. MOTORS

Jaeger Warch Co. Type 44-K-2 Contactor Motor, Operates on 3 to 4.5 volts D.C. Makes one contact per second. Price $\$ 2.00$ each net.
General Electric Type 5BA10AJ52C, 27 V. D.C., 0.65 amps., 14 oz . in. torque, 145 r.p.m. Shunt Wound, 4 lead reversible. Price $\$ 4.70$ each net.
General Electric Type 5BA10AJ37C, 27 V. D.C., . $5 \mathrm{amps} ., 8 \mathrm{oz}$. in. torque, 250 r.p.m. Shunt Wound, 4 leads reversible. Price $\$ 6.50$ each net.
D.C. MOTORS

5069625, Delco Constant Speed, 27 V. 120 r.p.m. Built-in reduction gears and governor. Price $\$ 3.90$ each net.

A-7155, Delco Constant Speed Shunt Motor, 27 V., 2.4 amps., 3600 r.p.m. $1 / 30$ h.p. Built-in governor.

Price \$6.25 each net.
C-28P-1A, John Oster Shunt Motor, 27 V., 0.7 amps., 7000 r.p.m., $1 / 100$ h.p. Price $\$ 3.75$ each net.

D.C. ALNICO FIELD MOTORS

5069456, Delco, 27.5 V., 10,000 r.p.m Price $\$ 4.70$ each net

5069600, Delco, 27 V., 250 r.p.m. Price $\$ 4.70$ each net.

5069466, Delco, 27
V., 10,000 r.p.m.

Price $\$ 3.50$ each net.

5069370, Delco, 27 V., 10,000 r.p.m. Price $\$ 4.70$ each net.
5069230, Delco, 27 V., 145 r.p.m. Price $\$ 5.00$ each net.
S. S. FD6-16, Diehl, 27 V., 10,000 r.p.m Price $\$ 3.75$ each net.
S. S. FD6-18, Diehl, 27 V., 10,000 r.p.m.

Price $\$ 3.75$ each net.
S. S. FD6-21, Diehl, 27 V., 10,000 r.p.m. Price $\$ 3.75$

Sampsel Time Control Inc. Alnico Field Motor, 27 V. D.C. Overall length $35 / 16^{\prime \prime}$ by $13 / 8^{\prime \prime}$. Shaft $5 / 8^{\prime \prime}$ long by 3/16", 10,000 r.p.m.

Price $\$ 4.50$ each net
GENERAL ELECTRIC D.C. SELSYNS

8TJ9-PDN Transmitter, 24 V .

Price $\$ 3.75$ each net.

8DJ11-PCY Indicator, 24 V . Dial marked - 10° to $+65^{\circ}$

Price $\$ 4.50$ each net. 8DJ11-PCY Indicator, 24 V . Dial marked 0 to 360°

Price $\$ 7.50$ each net. AMPLIFIER
Pioneer Gyro Flux Gate Amplifier, Type 12076-1-A.

Price $\$ 17.50$ ea. net, with tubes.

[^9]
INSTRUMENT

147.57 41st AVENUE FLUSHING, N. Y. Telephone INdependence 3-1919

SUPPLIER OF ELEGTRONIC \& AIRGRAFT EQUIPMENT

INVERTERS

Wincharger Corp. Dynamotor Unit. PE-101-C. input 13, V.D.C. or 26 V.D.C. D.C. AT, 12.6 or 6.3 amps. Output AT, 12.6 or 6.3 amps. Output 400 V.D.C. AT. . 135 amps., 800 V.D.C. AT. $.02 \mathrm{amps}, 9$ V.A.C. 80 cycle at 1.12 amps. Price $\$ 10.00$ each net.

V., 400 cycle, 1 phase, 250 V.A. Voltage and frequency regulated also built in radio filter.

Price \$115.00 each net.
149H, Holtzer Cabot. Input 28 V . at 44 amps. Output 26 V. at 250 V.A., 400 cycle and 115 V . at 500 V.A. 400 cycle. Price $\$ 39.00$ each net.

149F, Holtzer Cabat. Input 28 V. at 36 amps. Output 26 V. at 250 V.A., 400 cycle and 115 V. at 500 V.A. 400 cycle. Price $\$ 35.00$ each net.

12117, Pioneer. Input 12 V.D.C. Output 26 V., 400 cycle, 6 V.A.

Price $\$ 22.50$ each net.
12117-2, Pioneer. Input 24 V.D.C. Output 26 V. 400 cycle, 6 V.A. Price $\$ 20.00$ each net.

5-D21NJ3A General Electric. Input 24 V.D.C. Output 115 V., 400 cycle ot 485 V.A. Price $\$ 12.00$ each net.

PE218, Ballentine. Input 28 V.D.C. at 90 amps. Output $115 \mathrm{~V} ., 400$ cycle at 1.5 K.V.A. Price $\$ 45.00$ each net.

WESTON FREQUENCY METER

Model 637, 350-450 cycle, 115 V .
Price $\$ 10.00$ each net.

WESTON VOLTMETER

Model 833, 0 to 130 V. 400 cycle.
Price $\$ 4.00$ each net.

VIBRATOR

Rauland Corp. vibrator non-synchros type. Stock No. 3H6694-11; 6, 12 or 24 V.D.C., input frequency 200 cycle. Price $\$ 3.25$ each net.

PIONEER AUTOSYNS

AY1, 26 V., 400 cycle.
Price $\$ 5.50$ each net. AY14D, 26 V., 400 cycle, new with calibration curve.

Price $\$ 15.00$ each net. AY20, 26 V., 400 cycle.

Price $\$ 7.50$ each net.
AY31, 26 V., 400 cycle. Shaft extends from both ends.

Price $\$ 10.00$ ea, net.
AY38, 26 V., 400 cycle. Shaft extends from both ends. Price $\$ 10.00$ each net.

PIONEER PRECISION AUTOSYNS

AYIO1D, new with

 calibration curve.

PRICE-WRITE OR CALL FOR SPECIAL QUANTITY PRICES
AY131D, new with calibration curve.
Price $\$ 35.00$ each net.
AY130D, new. Price $\$ 35.00$ each net.
PIONEER AUTOSYN POSITION INDICATORS
Type 5907-17. Dial graduated 0 to 360° 26 V., 400 cycle.

Price \$15.50 each net.
Type 6007-39, Dual, Dial graduated 0 to $360^{\circ}, 26 \mathrm{~V} ., 400$ cycle.

Price $\$ 30.00$ each net.
PIONEER TORQUE UNITS
Type 12602-1-A.
Frice $\$ 30.00$
each net.
Type 12604-3-A.
Price $\$ 30.00$ each net.
Type 12606-1-A. Price $\$ 40.00$ each net. Type 12627-1-A. Price $\$ 80.00$ each net.

MAGNETIC AMPLIFIER ASSEMBLY

Pioneer Magnetic Amplifier Assembly Saturable Reactor type output transformer. Designed to supply one phase of 400 cycle servo motor.

Price $\$ 8.50$ each net.

PIONEER TORQUE UNIT

AMPLIFIER

Type 12073-1-A, 5 tube amplifier, Magnesyn input, 115 V ., 400 cycle.

Price $\$ 17.50$ each net with tubes.
Type 12077-1-A, single tube Amplifier, autosyn input, 115 V ., 400 cycle.

Price $\$ 49.50$ each net, with tube.

BLOWER ASSEMBLY
 MX-215/APG

John Oster, 28 V.D.C., 7000 r.p.m. 1/100 h.p. Price $\$ 2.90$ each net. Westinghouse Type FL Blower, 115 V ., 400 cycle, 67000 r.p.m., Airflow 17 C.F.M.

Price $\$ 4.50$ each net.

Price $\$ 15.00$ each net.
7 G Generator, 115 V., 60 cycle.
Price $\$ \mathbf{3 0 . 0 0}$ each net.
6DG Differential Generator, $90-90 \mathrm{~V}$.,
60 cycle. Price $\$ 15.00$ each net.
2J1M1 Control Transformer 105/63 V., 60 cycle. Price $\$ \mathbf{2 0 . 0 0}$ each net.

2J1G1 Control Transformer, 57.5/57.5 \vee., 400 cycle. Price $\$ 1.90$ each net.
2J1H1 Selsyn Differential Generator, 57.5/57.5 V., 400 cycle.

Price $\$ 3.25$ each net.
W. E. KS-5950-L2, Size 5 Generator, 115 V., 400 cycle.

Price $\$ 3.50$ each net.
5G Special, Generator $115 / 90$ V., 400 cycle. Price $\$ 15.50$ each net.
5SF Repeater, $115 / 90 \mathrm{~V}$., 400 cycle
Price $\$ 19.00$ each net.
2J1F1 Selsyn Generator, $115 \mathrm{~V} ., 400$ cycle. Price $\$ 3.50$ each net.
5SDG Differential Generator $90 / 90 \mathrm{~V}$., 400 cycle. Price $\$ 15.30$ each net.

stevivm RECTIFERS EEECTRONC COMPONEMTS

THREE PHASE FULL WAVE BRIDGE RECTIFIERS

Input
$0-126 \mathrm{VaC}$
Type ${ }^{\text {3 }}$
3B7-6
$3 \mathrm{~B} 7-1$;
Input
$0-234 \mathrm{VAC}$
Type *
3B13-4
3813-6
3B13-1.5

	$\begin{aligned} & \text { Output } \\ & 0-130^{* V D C} \end{aligned}$
Current	Price
4 ANP.	\$32.95
6 AMP.	48.90
15.) AMP.	70.00
	$\underset{\substack{\text { Output } \\ 0-250 * V D C}}{\text { Price }}$
4 AMP.	\$rice
${ }_{6}{ }^{\text {AMPP. }}$	81.50
15 AMP.	120.00

CENTER TAPPED RECTIFIERS

SINGLE PhASE

$\begin{gathered} \text { Input } \\ 10-0-10 \mathrm{VAC} \end{gathered}$		$\begin{aligned} & \text { Output } \\ & 0-8 * \text { Inc }^{2} \end{aligned}$
Type ${ }^{\text {a }}$	Current	Price
C1-10	10 AMP.	\$6.95
Cl-20	20 AMP .	10.95
C1-30	30 AMP.	14.95
Cl-4n	40 AMP.	17.95
C1-50	50 AMP .	20.95
C1-80	80 AMP .	26.95
Cl-120	120 AMP .	34.95
CUSTOM DC FOWER SJPPLLES Built to your specifications. For: - industry - laboratories - UNIVERSITES GOVERNMENT AGENCIES We will be pleased to quote on your requirements.		

SINGLE PHASE FULL WAVE

 BRIDGE RECTIFIERS
Output
O-12*VDC
Price
5.98
1.95
2.49
2.95
4.50
5.95
9.95
13.95
1.95
24.95
27.95
32.95
36.95
4.95
Output
$0-26 * V D C$
Price
$\$.98$
1.25
1.50
1.95
3.95
4.95
6.95
9.95
1.995
24.95
27.95
36.95
44.95
0
*Select Proper Capacitor to Obtaln Higher VDC Than Indicated.

VACUUM CAPACITORS

Standited brands

12 Mmfd	20 Kv.	$\$ 1.95$
50 Mmfd	30 Kv.	$\mathbf{4 . 9 5}$
50 Mmfd	32 Kv.	$\mathbf{5 . 9 5}$

SILVER CERAMIC TRIMMERS

820-Z $\quad 5-20 \mathrm{Mmfd}$ Zern Temp $820-Z \quad 5-20$ Mmfd Zern Temp 24 e 822-AZ \quad 4.5-25 Mmfd Zero Temp21d 823-AN $20-125 \mathrm{Mmfd}$ Neg 650

OIL CONDENSERS

2 Mfd 2rov'DC Bathtub......... 2 Mfd 4 nov゙b• Fathtut.
$2 X .1$ Mfd 600 VDC Bathtub.
 $10 \mathrm{Mfd} 440 \mathrm{VAC} / 1500 \mathrm{~V}$ w/Brkta 8 Mfd 660 AC
$16-.15 \mathrm{Mfd} 800 \mathrm{VDC}$ Voltage Double Type 26 F381 w/Brkts..

ATTENTION!!!

Bulletin \#713, listing various government and commercial surplus items, is now arailable upon request.

VOLTAGE REGULATORS

These solenord operated carton plle regV DCCrs will stabilize the output of $12-18$ ing the coll leads acruss the output of the rectlfler, and the carbon element leads in serles with the load.

D-C POWER SUPPLY FTR 3377-AS Rating 115 VAC to 115 VLC. .77 Amperes. Operates fans, motors, mannetic chucks. business muchines. relays, etc. Descilptlve literature avallable.
Complete, ready to operate...... $\$ 16.50$ D-C PANEL METERS
Altractive. ruksed. and reasonably priced. Moving vane solenuld type with 0-6 Aniperes D-C
$0-12$ Anperes D-C Anyrange 0-15 Volts D-C
Minimum order $\$ 3.00$. No C.O.D.'s under $\$ 25.00$. 25% deposit on C.O.D. Add 10% for Prepaid Parcel Post and Handling. Terms: Net 10 days in the presence of opproved credit.
All prices subject to change without notice.
Orders Promntiv Filled from Our Stocks
All Prices F.O.B. our NYC Warehouse

RECTIFIER CHOKES

Type		Amps.	Price
HY5	02 Hy	5	$\$ 3.25$
HY8X	.02 Hy	8.5	7.95
HY10	02 Hy	10	9.95
HY12	02 Hy	12	12.95
HY15	015 Hy	15	13.95

RECTIFIER MOUNTING BRACKETS
For Typee 13I through 136, and For Types B 1
$\$.35$ per set

RECTIFIER KIT

6 and 1: VDC at 10 Amps.
This unit will delfver unfltered direct current for operation of motors, dynamotors, solenuids. electroplating. ba The following components are supplied

1 ea. Full Wave Bridge Rectifler
pr. Rectifier Muunting Brackets
1 ea. Transformer 115 VAC $50 / 60$ CPS
3 ea. Silver-Flated Binding Posts
1 ea. 4-position Tap-Switch
1 ea. Fuse and Fuse Holder
1 ea. Pilot Light Assembly
Asembly and Buit The primary of the transformer la muititapped permitung Complete with dlagram.
$\$ 15.75$

Filter Kits For Above

1 Section choke Input, $\mathbf{1 0 \%}$ rlpplf. . $\mathbf{X} .64$ 2 Section choke input, 2% ripplo 19.28

SYNCHRO MOTORS

Type $1 F$ Special-KS-6949. L1 Wentern Electric $115 / 90$ VAC- 400 , yeres
Brand new, boxed.
$\$ 8.00$
WRITE FOR SELENIUM RECTIFIER CATALOG \#719 ON COMPANY LETTERHEAD

(1) SEARCHLIGHT SECTION \mathbb{I}

We Can't Eat 'Em So We've Priced 'Em to SELL*

Deduct 5 \% From All Items in This Column

ADVANCE
D.P.D.T.

ANTENNA RELAY
110 V .60 cycle coil Steatite
DUNCO RELAY 6 volt 60 cycle coil DPST.... $\$ 1.39$

SCOPE TRANSFORMERS

Pri IIOV 60Cy - Hermetically Sealed $2500 \mathrm{~V} @ 12 \mathrm{Ma}$

PLATE AND FIL. TRANSF. PRI 110 y 60 cy . sec. 1120 volts CT @ 600 ma . 6.3 V CT $\# 3 \mathrm{~A}, 2 \times 5 \mathrm{VCT}$
$1500,50000 \mathrm{hm} 100 \mathrm{Watt}$ Ferrule Resistors.
20.0000 hm 50 Watt Ferrule Resistors.
Any Types only. 10 ea. Min. Order 50 ,

HS 30 HEADPHONES 250 ohms imp. Can be used for Brand new
Brand new 69 вa. LARGE QUANTITY AVAILABLE AT REDUCED PRICE

PHASE SHIFT CAPACITOR

4 Stator Single Rotor. 0-360 Dagress
ODDS AND ENDS BARGAINS 1000 VDC

WIRE WOUND RESISTORS

5 Watt type AA, 20-25-50.200.470.2500.
 $20^{1900-2000-4000}$ whtt type DG . $80.70 .100-150-300.750$ 10000 . $16000-20000-30000$ ohms

30 WATT WIRE WOUND RESISTORS

.09 ea.

Deduct 10\% from All Items in THIS Column

GENERAL PURPOSE TRANSFORMERS
Ideal for Bias. Filament, Isolation, Stendown, eto.

FILAMENT TRANSFORMERS
110 V cocy Pri. Fully Cased.
2.5 Volt 10 Amp
2.5 Volt CT 21 Am
6.3 Volt 10 Amp.
.52 .75 Vort 10 Amp....................................: i.75 $_{1.89}$

MULTIPLE SECONDARIES
$51 / 4 \mathrm{~V}$ CT $21 \mathrm{~A}, 7.5 \mathrm{~V}$ 6A. 7.5 V 6A.
6.3 A
21 Amp
.

HIGH VOLTAGE—CURRENT MICAS

WESTINGHOUSE
Type MN Overcurrent Relay, Adjustable from 250 ma . to 1 amp . External Push Button Reset. Enclosed in glass case. Hand calibrated adjustments, only $\$ 5.95$
*PRICES EFFECTIVE FOR SEPT ONLY

Sorry-But We're Scraping the Bottom in This Column

PANEL METERS-BRAND NEW

2* WESTON 0.0 . Ma a DC 26 ohms res.

" GE $0 \cdot 10$ Volts AC. 0.30 Volts DC $1000 \mathrm{Q} / \mathrm{v}$.
$2^{\prime \prime}$ WESTON 0-250 VOIts DC
$2^{\prime \prime}$ WESTON $150-0.150$ Micoamps DC
$2^{\prime \prime}$ GE
$2^{* \prime}$ GE $0-1$ Amp Am DF (internail Thermo.....
2" WESTON 0.1 Amps RF (Internal Thermo)
GE O-15 Ma DC (Square Case)......
DEJUR 0.100 Ma DC.
$3^{\prime \prime}$ GE $0-200$ Ma DC.
$3^{\prime \prime}$ WESTINGHOUSE $0 ~$
$3^{\prime \prime}$ WESTON 0-50 Amps AC
 $\$ 3.50$
2.95
1.95
2.45
1.95
2.50
2.50
2.50
3.49
2.45
2.45
2.50
3.95
3.95
2.95
2.95
3.95
3.95
4.95
2.95
3.95
3.95

2" GE 0-200 MICROAMPS Model DW5I . $\$ 1.50$ ea.

H.V.-H. CURRENT PLATE TRANS.

$1500-0-1500$ volts at 1.5 amps. Tapped at 1350 and 1250. Pri. $110 / 220$ volts $50 / 60$ cycles in 2 separate
 windings. Built to rigid Navy speos by Amertran. Suitable for broadrast transmitters. induction heating, ete. 10×7. 10 wt
duty. $10 \times 10 \times \mathrm{l}$ 125 ins.

New only 39.50
A GREAT VALUE
As illustrated above. $1500-8-1500$ volts at 600 ma . Pri. $110 / 220 \mathrm{v} .50 / 60$ cycles. $8 \times 81 / 2 \times 78 . w . t$. 78 lbs. HIGH CURRENT TRANSF. 820 Volts CT at 775 Ma. Pri. $110 / 220$ Volts 60 cycles. Fully Cased

MALLORY VIBROPACK

6.3 Volt input-output 300 Volt @ 100 ma. Com.
plate only

MALLORY TRANSFORMER \& 534C VIbrator as
UTC type PA 5000 ohm plate to 500 ohm line and 6 ohm volce cols. 10 watts. 60 to 10.000 cps $\frac{1}{1}$

THORADARSON PLATE TRANSF. 2370 volts CT at 250 MA tapped at $300-0-300$ volts, plus 215 volts Fully shllodedвa. \$1l.95

CHOKE BARGAINS

6 Henry 50 ma 300 ohms.................... 3 for $\$ 0.9$
Henry 80 ma 2200 hms .
2 for
Henry I 60 ma 140 ohms.
1.5 Henry 250 ma 72 ohms.

解 650 mms .

ma 15 ohm
U. H. F. COAX. CONNECTORS

83IAP.UGI2U-UG2IU.UG-14U-83I R-83ISP. 35 on.

W. W. POWER RHEOSTATS | 25 Ohms 25 |
| ---: |
| 150 Watt. |
| 0 hms 50 |
| 50 |

2500 hms 50 Watt.
300 ohms 50 Watt......
Dual 200 0hms 50 Wa
80 hms 150 Watts. . .

WESTERN ELECTRIC MOTOR

 0.65

Tremendous stocks on hand. Please send requests for quotas. Special quantity discounts. Price f.o.b. N. Y. 20% with order unless rated, balance C . 0 . D. Minimum
order $\$ 5.00$.

PEAK ELECTRONICS CO.
188 Washington St., New York 7, N. Y.

PHONE CO-7-6443
DEPARTMENT EA SEND FOR BULLETIN

PORTABLE (CHRONOMETRIC) TACHOMETER
Jaeger Watch Co. Model \#43A-6

- Can be used for speesd up to 20.000 R.P.M.
- Can be used for lineal speed measurements to
- Ideally suited for testing the speeds of motors, particularly of fractional horse power, gen erators.
- Vurbines, cenntrifugals, fans, etc. practically no
- power to drive.
- Unequalled Readability $2^{\prime \prime}$ Open face dial- each division on largas dial equals 10 R.P.M.
division on small
dial equals 1,000 R.P.M.
- divestost Aecuracy maemets Navy specifications-
- Results of test reading remain on dial until next tost taken.
- Push button for automatic resetting.
- Complete with the following accessories.
- Large pointed rubber tip

1 - ${ }^{-6}$ circtumference. Wheel tip
1-0perating 1 Ins ruct ctions.
1 - \mathbf{T} em perature Correction
The combination of the above features will give moourately within a fow seconds, by direct reading, the R.P.M. of shatts or the lineal speeds of surfaces without any accessories or tlming of any kind. Each

PORTABLE TACHOMETER
Multiple Range Continuous Indicating
This unit is of the centrifugal mechanical type and is designod to show INSTANTANEOUSLY and
CONTINUOUSLY the speed or change in speed of any revolving shaft or sperface. No stop wateh or - Three ranges required.
 10 R.P.M.)
Medium Range $1,000-4,000$ (Each division equals High Range 3,000-12,000 (Each division equals Large open dlal $4^{\prime \prime}$ diametor.

- Large open dial $4^{\prime \prime}$ diameter.
- Ruggedly constructed for heavy duty service. lubrication whatsoever.
- Readily portable-Fits neatly into hand.
- Gear shift for selecting low, med., hlgh ranges. Made by Jones Motorola, Stamford, Connecticut $7 \%^{* *} \mathrm{~L} \times 4^{* \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W}$. Your cost............... $\$ 24.50$
A.C.-D.C. VOLTMETER

WESTON 341
0.150 Volts. Electrodynamometer type, $1 / 4$ of 1% Accuracy on D.C. AND A.C. FROM 25 to 1200 CYCLES, Indicates true r m s voltage. Shielded movement, 3.9 V.A. power consumption. Complete In mahogony carrying case with cover.. Even though these instruments are Brand Now Surplus, we had Weston check each and every unlt and furnish a NEW Certificate to guarantee the accuracy of each instrument. Ideal for use in conjunetion with model 3II Potentiai Transformer to extend the range to 750 \& 1500 volts.

Now in original manufacturers boxes.
List Price $\mathbf{\$ 2 2 6 . 5 0}$
Your Cost Only $\$ 115.00$

WESTON MODEL 311

PORTABLE

POTENTIAL TRANSFORMER

To be used to extend the range of any precision laboratory standard 150 Volt A.C. meter

Maximum potential ratio of 1500 and 750 rolts to 150 Volts.
Normal potential ratio of 1150 and 575 volts to 115 Volts.
Frequency rating from 25-125 cycles. Maximum secondary burden of 15 volt-ampere. Ratio accuracy is within $1 / 5$ of 1% when used with model 341 or 326 meters. Complete in polished oak case with removable cover, lock and carrying strap.

List Price $\$ 247.50$
Net Price $\$ 90.00$ F.0.B. N. Y

PORTABLE CURRENT TRANS. FORMER

Weston Model 46I Type 4 (see illustration). This unit can be used with any precision 5 Amperes A.C. Meter to extend the ranges of the meter to $50,100,200,250.500$ or 1000 Amperes A.C. Accuracy within $1 / 4$ of 1% : Normal Secondary Capacity $=15 \mathrm{Va}$; Binding 1Posts for 50 Ampere tap; Inserted primary for $100,200,250,500$ and 1000 Am peres; Insulated for use up to 2500 volts. List Price $\$ 98.00$

NET fob, NY \$35.00

WESTON 327 TYPE 2
5 Amp Secondary, $10 / 20 / 50$ \& 100 Amps on bind. ing posts \& 200/300/400/600/1200 Amps with in. sorted primary. Capacity 25 V. A. 2500 volt $1 \pi 0^{\circ}$
sulation. $25-133$ Cycles. Ratio Accuracy on 60 cycle within $1 / 20$ of 1% on $25-60$ cycle $1 / 5$ of New in original manufacturers boxes. List Price $\$ 206.25 \quad$ YOUR COST ONLY $\$ 72.00$

PORTABLE CURRENT TRANSFORMER

WESTON 539 2/5/10/20 Amps on binding post and switch. In.
serted primary for $50 / 100$ \& 200 Amps. Capacity 2 V. A. Accuracy within 1%. Secondary I Amp for Now in original manufacturers boxes.
List Price $\$ \mathbf{6} .50 \quad$ YOUR COST ONLY $\$ 26.50$
CURRENT TRANSFORMER, General Electric P-3 Cat \#248747, 5 Amp Secondary, binding posts for ist Price $\$ 140.00 \quad$ YOUR COST ONLY $\$ 3250$

"YIBROTEST"
 INSULATION RESISTANCE and

A.C. - D.C. VOLTAGE TESTER

RESISTANCE RANGE: 0-200 Megohms (at 500 rolt test potential) $0-2000$ ohms. VOLTAGE RANGE: $\begin{aligned} & 150-300-600 \text { Volts D.C. } \\ & 150-300-600 \text { Volts A.C. }\end{aligned}$
Push button action for resistance readiags. Operates from internal power supply oft two \#6 dry accurate readings, Complete winh test leads and instructions in metal carrying case.
Associated Research Model $\# 201$.
(Slightly used-excellent condition-guaranteed) Your Net Price $\$ 38.00$

ALL ITEMS ARE BRAND NEW-SUR-PLUS-GUARANTEED UNLESS SPECIFIED OTHERWISE. Orders accepted from rated concerns, public institutions \& agencies on open account, others please send 25% deposit, balance C.O.D. or check with order. All prices FOB our warehouse, N.Y.C.

MARTITME SWITCHBOARD

338 CANAL STREET
NEW YORK 13, N. Y.
Worth 4-8217

We carry a complete line of surplus new meters suitable for every requirement, such as portable, panel, switchboard, laboratory standard, etc.

Over 50,000 METERS In Stock
We carry a wide assortment of aircraft type electrical meters, precision tubular multipliers and meter shunts. Your inquiries will receive our prompt attention.

(TD SEARCHLIGHT SECTION TI

Buy Now - Buy Niagara

ALL BRAND NEW STANDARD BRAND
 MINIMUM ORDER $\$ 5.00$ QUANTITY PRICES ON REQUEST
 WATCH THIS LISTING EACH MONTH FOR LATEST CHANGES

(ALL TUBE TYPES IN STOCK NOW—SUBJECT TO PRIOR SALE—PRICES SUBJECT TO CHANGE WITHOUT NOTICE)

UNLESS RATED
160-E GREENWICH STREET

(ID) SEARCHEIGHT SECTION TIT

IMMEDIATE DELNERY

MINIATURE DC SELSYN

INDICATOR
 plug for zero dial adjustment. Stock \#SA-268. Price 8.9 .75 each.
G.E. POSITION TRANSMITTER Type 8TJ9-continuously rotatable 360° wound potentiometer. Taps every 120 legrees. Two 180° opposed sliders. 24 v. above. Stock \#SA-13. Price $\$ 4.75$ each.

DC GENERATOR

Ford Instrument Wound. Bu. of Ordnance dwg. 223128.115 v. d-c
0.75 a mperes.
0 Cont. duty. Ideal for laboratory use. Speciall low price $\$ 2.95$

SYNCHROS

Navy Types

 etc.

LP-21-LM Compass Loops

QUANTITY PRICES ON REQUEST

MAGNESYNS
Ploneer CL-3
Lise as transmitter or inor 52 v .800 cy . 400 cy . used as indicator with 360° potentiometer on DC Stock $=\mathrm{SA}-6$

Price $\$ 1.95$ each

DYNAMOTOR
D-101 27 v. DC in (1) 1.5 amps. DC out. 285 - © 0.60 amps. Stoc ll prices F.O.B. Paterson. Teletype PAT. 4.3366 Phone ARmory
Write for Listing.

ALSO IN STOCK
MOO CYCLE MG SETS

AC ANDLDDYNES AUTOSYYS

INVERTER SPECIALS

General Electric PE-218 D-Input 28 v.
d-c 92 amps. Output 115 v. 400 cycles (a-c $1500{ }^{92}$ vamps. Putput 115 v. 400 cycles wt. 100 lbs. New-Original Cartons. Stock
-SA-11り - SA- 112 . Price $\$ 29.50$ cach.

Leland or Russel PE-218 E or PE-218H Similar ${ }^{10}$ PR-218D. Stock \leftrightarrows SA-112A. Rot) Cycle Inverter-Navy Type CRV
21 A AR. G.E. 5 AS121LJ2. Input 27 V d$\frac{1}{650} 45$ amps. Output 120 v. 800 cycles de 750 ra. Power iactor 0.90 . Net. wt. 22.5
lbs. Stock $\#$ SA 192 . Price $\$ 39.50$ each

SERVO MOTOR SPECIAL

Pioneer Type CK-2. $2 f$ v. 400 cycles fixed phase. Variable phase voltage 49 v. max. 1.05 in/o\% stall tor'lue. Rotor moment

Barline NYC-13 AO ils vi. 60 cycles, $1 / 40$ iluty,. 55 amps . Stock. "1uty, 55 amps. Stock
$\# S A-245$.
MERCURY CONTACT RELAY
W.E. D-168429
Millisecond switch-

> MERCURY CONTACT RELAY

Millisecond $\underset{\substack{\text { W.E. } \\ \text { Switch }}}{\text { swit }}$
ing a up to $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Technical data on
reruest. Sloch $\# \mathrm{SA}$
259 . Irice $\$ 1.75$ ea. Speciar ity. brices.

General Electric 2 RPM Motor. Type $513 A 10 F J 228 .{ }^{2} 7 \mathrm{r}$. D-C © 0.6 amps. 10
$\mathrm{lb} / \mathrm{in}$ torque at 2 rpm . Shunt wound. L-C noise filter. Stock $+S A-272$. Price $\$ 6.75$ Gerteral Electric $1 / 2$ HP D-C Motor. Type field 27 v . Armature voltage 60 v . max. field 2.3 amps. 4600 rpm . $7^{\prime \prime}$ lg. $x^{41 / 4}{ }^{\prime \prime}$ diam. with ${ }^{21 / 2 "}$ worm gear shaft $5 / 8^{\prime \prime}$
diam. Stock $\#$ SA- 270 . Price $\$ 12.50$ each.

Universal blectric DC
W. L . KS-5603-I o2, 28 v . DC $0.6 \mathrm{amps} .1 / 100 \mathrm{hp} .4$ lead
shunt. Stock $\#$ SA-233. Price $\$ 1.95$ ea. plus 15e p.p.

Delco 5069466 Motor
Alnico PM fleld, 27.5 V . DOn gear on shaft. Stock \#SA-65. Price $\$ 3.75$ each plus 156 p.p. DELCO CONSTANT SPEED MOTOR A-7 155
$1 / 30 \mathrm{hp} .3600 \mathrm{rpm}$. Cont. duty. $21 / 3^{\prime \prime}$ dlam. x $51 / 2$ base mounting. Stock \#SA-94. Price \$4.75 each

Delco 506925 Constant Wm Speed DC Motor, 27 v. DC. 120 rpm . Governor controlled. Stock \#SA 249. Price $\$ 3.95$ euch. Qty. prices on

DC SERVO MOTORS

C-1 Autopilot Servo Unit-28 v. DC Shunt motor 2250 rpm 2 magnetic clutches, hrakes. Output shaft 15 rpm . Torque 225 Stock Stock \#SA-180 Price \$19.50 each Elincolb-64 InC Serwo Unit- 80 v . DC max. armature voltage, 27.5 v. field. $1 / 165 \mathrm{~h} . \mathrm{p}$.
3100 rpm . Field current 200 ma Armature current 200 ma at normal marat Are current 200 ma at normal tornue.
Stock $\# S A-211 \quad$ Pripat $\$ 12.50$ each

MICROWAVE ANTENNA

AS-217/APG $15 \mathrm{~B}, 1$ Cm dipole and 13 inch Palabola housed in weatherproof Radome $16^{\prime \prime}$ dia. 24 V conic sean. Stock conie sean. Stock
\#SA-95. Shipping ovt 70 lbs.

Price $\$ \mathbf{\$ 6 . 9 5}$ ea.

Price $\$ 1.50$ each

(T) SEARCHLIGHT SECTION WI

RADAR TUBES

$2 J 62$ Magnetron 2914-3010 mc, 35 K W	\$49.50
$4 \mathrm{C35}$ Thyratron	\$22.50
7BP7 Cathode Ray	\$7.50

MODEL AN/APA 10
PANORAMIC ADAPTER
Provides 4 Types of Presentation:
(1) Panoramic (2) Aural
(3) Oscillographic (4) Oscilloscopic Designed for use with receiving equipment AN/
$A R R-7$. $A N / A R R-5$. AN/APR-4. SCR -587 or any receiver with $1 . \mathrm{F}$. of 455 kc , 5.2 mc , or 30 mc .
With 21 tubes including 3^{*} scone tube. Converted for operation on 115 V . 60 cycle source. Includes 80 page T. M..
$\$ 195.00$

Allis Chalmers 115 V . D.C. to 120 V . 60 cy , 1 Ph. 1. 25 K.V.A., P.F., 80 Centrifugal starter. Fully enclosed.

New
$\$ 97.50$
Some os above but for 230 V. $\$ 125.00$ D.C. input and Merritt, i1i5V. D. \ddot{C}. to 120 V . A.C., 50 cycles, 2 K.V.A., Pf. 9.

$$
\text { New } \$ 165.00
$$

Diehl 120V. D.C. to 120 V . A.C., $60 \mathrm{cy}, 11 \mathrm{Ph}$. 2.5 K.V.A. Complete with magnetic controller, 2 field rheostats and full set of spare parts including spare armatures for generator and motor.
New \$185.00

Electrolux Dynamotor $105 / 130$ V. D.C. at 6 amps. to 26 or $13 V$. D.C. at 20 amps. of 40 amps. respective with Square "D" lineswitch. Navy type CAJO 211444.

New
$\$ 74.50$

Send for 4 page Technical data

THERMOSTATIC

TIME DELAY RELAY
Amperite type 115 No-45.
Heater voltage 115 V . Normally open rating $115 \mathrm{~V}-3 \mathrm{~A}$., A.C. (or $440 \mathrm{~V} .$, A.C. 2A.) max. voltage on contacts- 1000
 New Surplus \$1.10

SELENIUM

 RECTIFIERBridge Type
Input: 36 V. AC. 1 . 1 Amps.
Brand New. . \$2.75

PARABOLOIDS

$171 / 2^{\prime \prime}$ diameter, spun magnesium dishes, 4 inches deep Reinforced perimeter, Two sets of mounting
brackets on rear. Opening at apex for waveguide

Brand new, per pair, \$8.75

SYNCHROS in Stock
Navy Types, 5F, 5DG, 5SF, 5SDG, 6DG Prices on request

WESTERN ELECTRIC Type \#Di73312 SOUND POWERED CHEST SETS
 CHEST SETS

Ideal for television Installers, or any antenna moasurement work. Leaves hands free to make ad justments. Consists of microphone and headset as Brand New

Each \$19.50

RADAR COMPONENTS

CRP-23AGC Load Dividers for use with S.G. Modernization Kits. New. CBM-50AFO Navy type Radar Repeoter Adapters. New and complete with 14 tubes, caax fittings, installation plans and wiring diagrams.
SO Series Radar P.P.I. Units and accessory Control Panels. New.
Syncho Amplifiers. New.
Type CARD 23AEK Bearing Control Units. New.
Type T.D.Y., SO-1, SO-13, SO-3 Radar Antenno Assemblies. New.
Radar Crystals Raytheon 98.35 KC .
Type SO-11 Radar Modulator.
Type SO-1 and SO-13 Transmitter Receivers.

> All prices indicated are FO B Tuckahoe, Néw York. Shipments will be made via Railway Express unless other in structions issued.

All merchandise guaranteed. Immediate delivery subject to prior sale.
All Prices Subject to
Change Without Notice

(ID) SEARCHLIGHT SECTION 促

RELIANCE
 SPECLALS

COAXIAL CABLES

RG 8/U 52 OHM—Per $1,000 \mathrm{ft}$. $\$ 50.00$ RG 22/U 95 OHM (2 cond.) per 1000 ft . . . $\$ 120.00$ RG 62/U 93 OHM per 1000 ft. $\$ 40.00$ COAXIAL CABLE CONNECTORS

\qquad
Adaptor for $\begin{array}{cccc}\text { Anole Adlapter } & \text { Plug } & \text { Socket } & \text { Hood } \\ 15 c & 28 c & 28 c & 9 c \\ \text { M.359 } & \text { PL-259 } & 50-239 & 83.1 \mathrm{H} \\ 83.1 \mathrm{AP} & 83.1 S P & 83.1 \mathrm{R} & \end{array}$ 8126 aca
\qquad

CARBON RESISTORS

POWER RHEOSTATS

Resist.	25 WATT			50 WATT			
	Mfg.	Shaft		90Ω	Clarostat		\$.59
10Ω	Clarostat	$\stackrel{7}{181 \%}$	\$. 49	123	IRC	$1 /{ }^{\prime \prime}$	+ .59
15	Ohmite	${ }^{\frac{3}{15}{ }^{\text {² }}}$. 59	1,250	Ohmite		. 79
25	IRC.	S.D.	. 49	2,000	Ward Leo	nard	. 79
35	Ohmite	$\frac{15}{1 / 2}$. 59		$12^{\prime \prime}$. 79
50 145	Grimes Mfg. $1 / 2^{\prime \prime}$ with switch .49			3,500	Ohmite	$1 / 81$. 59
				100 WATT			
200	IRC	$\frac{71}{16}$. 49	22.2	Ohmite	T	59
250	Ohmite	"	. 59	25	Ohmite		. 59
370	IRC	*	. 49	10,000	Ohmite	S.D.	. 79
1.500	Clarostat	${ }_{\text {ITH. }}^{1 / 4}$. 49				
2.000	Ohmite	${ }^{\frac{1}{1 / 4}}$. 69		150 WA	TT	
2.500	Ohmite	S.D.*	. 69	8Ω	Ohmite	$1 / 2$	1.99
3,500	Ohmite	${ }^{\frac{71}{16}}$. 69	75	Ohmite		1.99
5,000	Ohmite	S.D.*	. 69	100	Ohmite	${ }_{1}^{16}{ }^{16}$	1.99
	50 WATT			300 WATT			
2	Ohmite	$\frac{717}{1.6}$. 69	100Ω	Ohmite	$2^{\prime \prime}$	3.75
6	Ohmite	$\frac{1}{1 / 17}$. 69	150	Ohmite	$2^{\prime \prime}$	3.75
8	Ohmite	S.D.*	. 69				
10	Ohmite	${ }^{\frac{7}{15}}$. 69		400 WA	ATT	
12	Ohmite	${ }^{\frac{1}{18}}$. 69	5009	Ohmite	$2^{\prime \prime}$	6.75
20	Ohmite	\% ${ }^{\frac{8}{1 / 4}}$. 69				
50	Ohmite	$\frac{711}{16}$. 69	*S.D	. Screw D	river	

WW PRECISION RESISTORS 1\% OR BETTER
$1 / 4$ WATT-25c

	/4	AT	25c	
6.688	12.32Ω	16.37 Ω	123.8 ת	414.38
10.48	13.02	20	147.5	705
11.85	13.52	79.54	220.4	2193
11.74	14.98	105.8	366.6	59,148
1/2 WATT-25c				
. 2500	11.10	2358	4,4512	15,000 2
. 334	13.15	260 \%	5.000	15,750
. 502	46	270 *	5.900	17,000
. 557	52	298.3	6,500	30,000
. 627	55	400	7,090	100.000
. 76	75 ¢	723.1	7.500	150,000
1.01	97.8	2,500	8,000	
1.53	125	2.850	8.500	
2.04	${ }_{21}^{180}$	3,427	$\begin{aligned} & 10,000 \\ & 14,825 \end{aligned}$	
1 WATT-30c				
1.01 \%	5.21Ω	1,250	9,000 ${ }^{\text {a }}$	55.000Ω
2.58	10.11	3,300	18.000	55.000
3.39	10.9	7,000	50,000	70,000
5.05	270			
1 WATT-40c				
100,000	128,000	180,000ת	522,000 0	700,000 Ω
120,000	130,000	320,000	600.000	
125,000	180.000			
1 Megohm-1 Watt 1\%-65c; 5\%-40c Orders for 100 pieces- 10% off; Orders for 1,000 pieces- 20% off.				

\section*{CAPACITORS
 POSTAGE STAMP MICAS

$\begin{array}{lll}8.2 \mathrm{mmft} \\ .0012 \mathrm{mfd} \text { to } 0.002 \mathrm{mfd} & 5 \mathrm{c} .0026 \mathrm{mfd} \text { to } .008 \mathrm{mfd} & 12 \mathrm{c} \\ 7 \mathrm{c} .01 \mathrm{mfd} & 18 \mathrm{c}\end{array}$

SILVER MICAS

Price Schedule

$$
\begin{array}{ll}
10 \mathrm{mmf} \text { to } .001 \mathrm{mtd} & 10 \mathrm{c} \\
.003 \mathrm{mfd} \\
.0012 \mathrm{mfd} \text { to } 0.0051 \mathrm{mfd} .50 \mathrm{c} \\
60
\end{array}
$$

.0012m1 to.0027min 20 m

GEAR ASSORTMENT Experimenter's less steel and brass.........................86.50

The surplus buy of a lifetime!

35 Ferrile Resistors from 15 Watts to over 100 Watts, Big resistance range................. . $\$ 5.00$

MINIMUM ORDERS $\$ 3$. All orders f.o.b. PHILA.,
CARBON MICROPHONE-T 17 and matching transAN CONNECTOBS. Large stock on hand. inquiries

PULSE TRANSFORMERS

X 124 T2, UTAH, marked 9262 or 9280 , small gray case $17 / /^{\prime \prime}$ high $\times 11 /{ }^{\prime \prime} \times{ }^{5 / 8}{ }^{\prime \prime}$ with two $6-32$
mtg. studs. Ratio $1: 1: 1$, hypersil 6 core.... $\$ 1.50$ mtg. studs. Ratio $1: 1: 1$, hypersil core. . . $\$ 1.50$ ent to 9262 (above) $\ldots .$.
TR 1048, Dinion Coil Co

1019, Dinion Coil Co.

 352-7250-2A. cased $15 / 16^{\prime \prime}$ dia. x 15/g high, DC $10 \mathrm{ohm} .31 / 2$ ohm, 140 cy . to $175 \mathrm{KC} \$ 1.25$ 352-7251-2A, similar-shorter pulses. . $\$$ if $\$ 1.25$ D161310, 50 Ke to $4 \mathrm{Mc} 1 \%$ " dia. v $17 /{ }^{\prime}$ high, K $\$ 9800$, Ratio, $1.1: 1,{ }^{2}, 2:$, Freq. range 380 to D1661\% W " E_{E} Freq response 10 K © nection; 3,850 V. in., $17,300 \mathrm{~V}$, out. (250 KVA 800 KVA G.E. K2731, 28,000 Volt pk, output Bifilar, pulse width; one-microsecond.. $\$ 14.50$

Usod between two \#C78248 as dampener, Can Conversion sheet supplied Mounting Brackets-(Bakelite) for selsyns. and
differentials shown above..................25t pair

ALLEN SET SCREWS

$8-32 \times 5 / 16$
$8-32 \times 3 / 8$ ALL SIZES (Cup Point).......... $\$ 1.50$ per 100

UNIVERSAL JOINT ALUMINUM
ong $x \quad 1 / 2^{\prime \prime}$ O. D. $1 / 4^{\prime \prime} 1 \mathrm{D}$ ONLY 40C

PRECISION POTENTIOMETERS 6 WATT
$\begin{array}{r}1.70 \\ 21.50 \\ 2.50 \\ 1.70 \\ 1.70 \\ 2.50 \\ 2.50 \\ 1.40 \\ 1.70 \\ 2.2 \\ 11.40 \\ \hline\end{array}$

 GR 471-AS15 3.50 | 40 | GR | 214 A | 1.40 | 10,000 | De jur | 571 T |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | JONES BARRIER STRIPS

Type	Price	Type	Price	Type	Price
2-140 Y	\$ 05	15.140 Y	\$.59	4.142	\$. 19
3-140	.10	4.141	. 16	5.142	21
3-140	.12	5-141	. 19	7.142	. 32
$4 \cdot 140$. 13	5.141.3/4 W	. 27	$8 \cdot 142$. 39
+-140 Y	. 17	5.141 Y	. 25	9-142	. 41
$5-140 \mathrm{Y}$. 21	6.141	. 23	10.142	. 45
6 -140	.18	7.141 Y	. 37	11.142	. 48
6 -140 Y	. 25	8.141 3/4 W	. 38	$11.1423 / 4{ }^{\text {W }}$. 57
7-140	. 21	9.141	. 37	12-142	. 53
$8-140$. 23	9.141 Y	. 42	13.142	. 57
10-140	. 41	$10.1413 / 4 \mathrm{~W}$. 47	13.142 3/4W	. 82
10-140 Y	. 40	11.141	. 40	14-142	. 61
13-140	. 36	12-141	. 43	15.142 3/4W	. 94
		17.141 Y	. 78	17.142 Y	. 97

Any order for 100 pieces- 10% ofr

FERRILE RESISTOR ASSORTMENT

 PA.
(ID) SEARCHLIGHT SECTION

SAL ofberudlew Enpime
A huge special purchase by Boston's fomous RADIO SHACK brings you precision instruments of startling savings! Each is brand new inot surplus) in original carton, with such proud BURLINGTON features as; aligned jewel sUpports, precision machihed pole pieces, ceramic pointer stops, non-shifing balance weights, black bakelite housing, accuracy within 2% of full scale of Inotisuments any point on scale! AC is repulsion vane type. DC have Alnico magnets, soft iron pole pieces, magnetic shunt.

108-page parts catalog and big surplus bulletin sent on request. Write TODAY for your copies!

(1) SEARCHLIGHT SECTION W

GUAB
 RANTEED
 420-750 MC OSCILLATOR.
 Compact, beautifully built line oscillator employing two w.E

 knob" tubes in push pull. Exceptionally stable. 0 output at $420 \mathrm{mc}, 2 \mathrm{~W}$ at 700 mc Independent grid and plate tuning. Adjust able output coupling and tuning assembly Coarial output connection. Bullt-in blowe quirements: $300 \mathrm{VDC} / 150 \mathrm{ma}, 1.2 \mathrm{~V} / 4 \mathrm{~A}, 1.2 \mathrm{~V} /$ 4A. $51 / 4 \times 64 / 2^{\prime \prime} \times 11^{1 / 2 "} 7 \mathrm{lb}$. Supplied com plete with tubes. Ideal for 420 mc amateur operation or for use in the $4 \kappa A-470 \mathrm{me}$ citizens ranto hant, Stork No. APO-66.. $\$ 8.95$ Spare 368AS/703A tubes.

CHF D0 011M CO.IN1.11. [PWWER MEASURING ASNEMBLY. Panel mounting, silver-plated assembly mounting, silver-plated assembly male receptacle (easily replaced by so-239). ment at frequencies up to 700 mc . Stock No AMF-89
MATING TYPE "N" MALE PLUG. For use
SPLLKY MODEL 12 KLISTROV TLNER for use with $2 \mathrm{~K} 39,2 \mathrm{~K} 42,2 \mathrm{~K} 43,2 \mathrm{~K} 44,417 \mathrm{~A}$. MAGN NOTRON MAGNET 19no GACSS. \$1.95 dia. $1-5 / \mathrm{s}$. Gap $1 / 2 \mathrm{~m}$. Stock No. CD1MMAGNETRON MAGNET 4800 GAISS. Pole tip dia. 3/4". Gap $0.635^{\prime \prime}$. Stock No.

SO OHM COAXIAL REIAY. Double coil actuating relay
operates from either 12 V DC/ 120 ma or $24 \mathrm{DC} / 60 \mathrm{ma}$. May be operated in plate return circuits to provide automatic
transmitter-receiver antenna ohangeover. Supplied with British type conard SO-239 (83-1R) receptacles or soldered to directly. Completely enclosed in compact housing. $2-3 / 4$ "× $3^{\prime \prime} \times 4-3 / 4$ ". An outstanding

VARIABLE INDUCTOR. 67 microhenries max. Minimum near zero. Wheel type micing short. Ceraity construction. Barker-Williamson \#1565 coll to tune from 14 transmitter plate tank 20 mc . Ideal for pi networks, antenna tuners and plate tanks APC AIR TRIMMER 35 mmp mav Sorev siot adjustment. STOCK NO. CAV-105 APC AIR TRIMMER. Two separate trimmers on ceramic base, Shield between sec-CAV-104 CAPACITOR 100 Min 10 for $\$ 1.00$ haft. Receivins type Ceramle insulation Standard Brand Similar to MC 100 . Straight-line capacity. Stock No. CAV-15

SUPER-FLEXIBLE IPIGTAIL WIRF. Sperry special. Part No. P55357. Consista of 350 Total diameter: $1 / 32^{\prime \prime}$. Useful in applica. tions where electrical connection is to be made to moving parts, e.g., varlometers.
 roll.

F50 CPS BANDPASS TRANSFORMER. Center frequency ad Justable over a small range. In-
put $\$ 3,000$ ohms. Output 225,000 ohms. Triple alloy shlelded. $13 / 4$ xI $1 / 2$ "x2". Stock No. ZBP-750

BEOCKING OSCILLATOR TRANSFORM ER. Two winding 1.35:1. Ideal for tele No. TFF-64 $\$ 0.95$.

SURPLUS

NVVERTER PE 218 D Output $115 \mathrm{~V} / 400$ cps $1500 \mathrm{VA} / 1 \mathrm{ph}$. Input 24-2 charger. Complete with tarting volays, hash fll original packings. Stock No. GAC-10. \$27.50

Tube Specials

OIL-FILLED CAPACITORS

RF and DC PANEL METERS

Wide Range Butterfly Wavemeter \& Oscillator Elements

Preolsion wide range butterfly circuit elements. Sturdily constructSultable for motor drive. Ideal for use as wavemeters and oscillaStock No. Frea. (mis) $\begin{array}{lc}\text { Stock No. Freq. (minc.) Notes } \\ \text { TN-20 } & 105-330\end{array}$ TN2A $\mathrm{TN}-30$
TN 3 A

brand now, in original packing.

- Notes: 1) Aluminum construction

2) Silver-plated brass
) Designed as oucillator ekement (955
3) Has diode socket mounted on unit (955
4) Has erystal diode mount for 1N21

BI.ILEY SMC-100 100 AND I000KC CRYSHILLEY SMC-100 100 AND 100KKC R Hegularly sells for $\$ 8.75$. Stock No. QCD-19 $\$ 5.95$

HAMMAKLUND CEKAMIC ACORN SOCKERS. ${ }^{5}$. CINCH MICA FTLIEI) OCTAL SOCKETS. $1^{\prime \prime}$ dia. $1-5 / 16^{\prime \prime}$ mtg etrs. Stock No. XK'T-20.

DELAY LINE 2 microsecond (one direotion). 1500 ohms. Bandwidth 1 mc . 8 secDELAY LINE. $1^{1 / 4}$ microsecond (one d1-
 DELAY LINE. 5 microsecond (one direction). 1500 ohms. Bandwith 1/2mc. Stork

4200 VOIT TELEVISION OR SCOPE TRANSFORMNAR. Primary: $115 \mathrm{~V} / 60 \mathrm{c}$. Secondary: 3000 VRMS (4200 Volts Peak) 10 ma No. TFF-83 $\$ 0.95$ $\begin{array}{llll}\text { HV TFMR, } \\ \text { MA. Pri. } & 15 & \text { V.000-0-10,000 VOLTS } & \text { V } 50-60 \text { ey. Oil-flled, } \\ \text { her- }\end{array}$ MA. Pri. 115 V. $50-60$ cy. $11^{\prime \prime} \times 13^{\prime \prime} \times 6^{\prime \prime}$. Stock No TEF-451

FILTER CHOKES

Stock No. \quad Description FFF-45 $10 \mathrm{H} / 120 \mathrm{ma} / 600$ ohms

$\begin{array}{ll}\mathrm{FF}-45 & 10 \mathrm{H} / 120 \mathrm{ma} / 600 \text { ohms } \\ \mathrm{LFF}-21 & 20 \mathrm{OH} / 300 \mathrm{mag} / 125 \mathrm{ohms}{ }^{\prime} 5000 \mathrm{~V}\end{array}$
MLLTIPLIER PIIOTOTUBE HOCS ING. Cast aluminum cyllndrical housing containing is subrnagnal ${ }^{11}$)
pin socket (for 931A, 1P21, 1P22) and a dynode voltage divider netAn integral 6 volt pllot lamp providee ligh An integral 6 volt pllot lamp provideellight window may be drilled in the housing for use with an external light source. Operates
with approximately 700 volts at $3-4$ ma. $2^{\prime \prime}$ dia $x{ }^{4 \prime \prime}$ long. Supplied leas phototube.
Stock No. AMP ILECISION HIGH TOROCE TYYE 5 SEISYNS. Bronze housing $41 / \mathbf{y}^{\prime \prime}$ dla. I 5" long. packing. Stock No. SEL-44......4.95 eech
$110 /$ G0CPS/0.38A BLOWER. Exceptionally quiet. $50 \mathrm{cu} . \mathrm{ft}$.

TERMS =

Delivery: Immed, from stock (subj. to prior sele). Mini
Terms: Rated organizations (U. S. and Canada). Others. Cagh
Others: Cash with order, or 20% with order, balance
C. O. D. Foreign: Foreign: Pagment in U. S. funds with order or in U. S. funds at New York.
Condition of material: The major portion of the material listed abore is brand new. Some of the tiems have been removed from new equipmentg. Wo suarcondition.
All prices above are quoted domestic pecked f.o.b.
our warehouse, Corona, New York.
Tel. HI ckory Cable: "Dublectron, New York". We will be pleased to send our bulletins 6-3066-7-8 to you regularly. Write or phone Dept. E-8 for our latest catalog.
ELECTRONICS CO. INC., 103-02 NORTHERN BLVD., CORONA, N. Y.

(ID) SEARCHLIGHT SECTION WI

at PRICES tuat menn SAVINGS Somem fleman

 AlLEN BRADLEY
POTENTIOMETERS
Allen Bradley type 'J' lowing values from stock.
VALUE, OHMS, SINGLE

2000	
2500	55000
3000	60000
5000	70000
6500	100000
10000	200000
16000	250000
20000	500000
22000	600000
25000	1 MFCOHM
30000	

PRICE EACH \$.50 DUAL POTS.

10,000
25,000
50,000 100,000 500,000 1 MEG. MEG.

PRICE EACH \$1.50
Specify whether regular or screwdriver shaft is required.

Crystal Diodes 1N21 1N21B 1N23A 1N23B 1N34

"UHF" COAXIAL CABLE CONNECTORS

			Price	
${ }_{\text {No. }}$	AN NO.	Description	ch	Per C
83-1SP	(PL259)	Plug	. 35	. 28
83-168	(UG176U)	Adapter	. 15	. 12
83-185	(UG175U)	Adapter	. 15	. 13
83-1SPN	(PL259A)	Plug	. 35	. 28
83-776!	(UG203U)	Plug	. 61	. 55
83-1R	(S0239)	Recept.	. 35	. 28
83-1RTY		Recept.	. 66	. 60
83-1H	(UG106U)	Hood	. 12	. 10
83-765	(UG177U)	Hood	. 31	. 25
83-1AC	Cap \& Chain	. 61	. 50
83-1BC		Can \& Chain	. 38	. 34
83-1 T	(1358)	T Connect.	1.12	. 98
83-1AP	(M359A)	Angle Adapt.	. 35	. 28
83-1 J	(PL258)	Junction	. 85	. 70
83-1F	(PL274)	Feed-Thru	1.12	. 98
83-22SP	(UG102U)	Twin Plug.	. 50	. 40
83-22R	(UG103U)	Twin Recpt.	. 50	. 40
83-22AP	(UG104U)	Twin Adapt.	. 98	80
83-22F	PG275	Twin Feed Thru	1.50	1.35
83-22J	UG105/U	Twin Junction		1.12
83-22 T	UG196/U	Twin "T"	1.65	1.50

UG TYPES CONNECTORS

Deduct 10% from prices shown on orders of 100 or more per type

AN	Price ea.	AN	Price
G-9/	\$.95	UG-96A/U	\$1.45
-	1.56	UG-97	3
	1.45	UG-98/	1.55
	1.14	UG-100/	2.34
UG-13/U	1.56	UG-101/	2.95
UG-14/U	1.45	UG-107/U	2.25
UG-15/	. 95	UG-108/U	1.75
UG-16	1.56	$\mathrm{UG}-109 / \mathrm{U}$	1.75
UG-17/	1.45	UG-114/U	1.50
UG-18/	99	UG-115/U	5
UG-18A	1.05	CW-123/U	- .45
UG-18B		UG-15	0
UG-19/U	1.28	UG-154/	5.35
UG-19A	1.38	UG-155	5.35
UG-19B	1.45	UG-156	4.25
UG-20/U	1.17	UG-160/	1.90
UG-20	1.26	UG-160A	1.55
UG-20B	1.41	UG-167	3.00
UG-21/0		UG-173	30
UG-21A	1.05	UG-176	5
UG-2 1/B	99	UG-188/	5
UG-2 $2 / \mathrm{U}$	1.08	UG-201/U	1.83
UG-2	1.38	UG-202/	
UG-22B	1.34	UG-206	1.02
	99	UG-208,	28.50
UG-23A	26	UG-212	4.50
UG-23B	1.29	UG-213/	4.50
UG-27A	2.25	UG-215	3.35
	2.34	UG-218	8.75
G-29	1.22	UG-213	3.10
30	1.75	UG-218/	6.50
UG-32	20.00	UG-222/U	35.00
33	20.00	UG-231/	2.00
UG-34/U	17.50	UG-236/U	11.75
UG-35A	16.00	UG-241/U	2.20
UG-38/	16.00	UG-242/	2.50
-37/	16.00	UG-243/	2.75
UG-37A	16.00	\mathbf{U}	2.50
UG-57	$.99$	\mathbf{U}	1.25
-5	2.75	UG-252/	4.50
UG-59A	1.70	UG-25 - U	1.82
UG-60/	1.90	UG-255/	1.85
UG-60A	1.30	UG-260/	99
UG-61/	2.05		. 95
UG-61A	18.80	$\mathbf{U C}$	1.05 2.60
UG-61/	28.00 1.50	UG-27	1.60 1.50
UG-85/	1.65	UG-274/	1.98
UG-86/U	1.69	UG-290	. 85
	1.40		1.05
UG-88,	1.17	$\begin{aligned} & \mathrm{UG} 306 / \mathrm{U} \\ & \mathrm{UG}-333 / \mathrm{U} \end{aligned}$	2.03 4.70
UG-90/U	1.05	UG -334/U.	5.75
UG-91/U	1.25	UG-352/U.	6.00
UG-91A/	1.05	UG-287/U.	5.25
	1.10	UG-270/U.	6.50
UG-93/U	1.25	UG-259/U.	4.10
UG-93A	1.45	UG-279/U	2.40
U	1.25	UG-157/U.	4.25
	1.05	MX-195/U	.75
5A	1.35	UG-197/U.	5.00
G-96/U	1.25	U G-235/U	28.50

FUSES AND FUSE POSTS

FUSE EXTRACTOR POSTS 3AG Post-Flinger Grip Type.
3AG Post-Screw Driver Type. 3AG Post-screw Driver Type.
4AG Post-Finger Grlp Type.
4AG Post-Screw Driver Type.

\section*{National Manufactures
 | Stock No. | Capacity | voltage | Price each |
| :---: | :---: | :---: | :---: |
| TJU 6005 | 0.5 | 600 | 5.85 |
| TJU 6010 | $\frac{1.0}{1.0}$ | 6000 | 1.30 |
| TJ 640 | 4.0 5 5 | 600 600 | 1.65 |
| TJU 6060 | 6.0 | 600 | 2.50 |
| TJU 6100 | ${ }^{10.0}$ | 600 1000 | 2.75 |
| TJU 10010 | 1.0 | 1000 | 1.15 |
| TJU 10020 | 2.0 | 1000 1000 | 1.90 |
| TJU 20010 | 1.0 | 2000 | 1.65 |
| TJU 20020 | 2.0 | $200{ }^{\text {a }}$ | 1.95 |
 TJU 20010}

Send for our bulletin 3-700

Engineering-Mand Selected-Government Surplus

EVERY ITEM PERSONALLY SELECTED BY OUR ENGINEERS
Unconditionally guaranteed.

UHF \& MICROWAVE

 EQUIPMENT
FREQUENCY METERS

Fiold Strangth-Frequency Meter. I-95BM 100 to 155 Mc. Cavity Type-Battery Op lines. Complete in case-New..... $\$ 21.50$ Wave Meter-BC906D. 160 to 220 Mc . Absorption type consisting of coaxial wave meter, diode rectifier, armplimer complete in ridual calibration charts. Complete 10 Lavoie Frequency Meter. 375 to 725 Mc . Model iow bend Arcraft Amateur Nesp Television band, Government bands. Preclsion Equipment. Individually calibrated. Complete with instruction manusl and cable. New, $\$ 59.50$ Case scratched but Resonance Cavity " S " Band Wavemeter Manf. by Western Electric. Resonance absorption type carity. Coaxial input and output calibration charts. calibrated indicator 2650 Mc to 3000 Mc Band. Western Flec tric 1 140A Resonance cavity, micrometer Fach unit individually calibrated.
Used but good condition........... $\$ 39.50$ Used but poor condition.
$\$ 39.50$
.$\$ 19.50$

R.F. POWER SOURCE

Klystron R.F. Generator 10 CM. Complete with WL 417A Klystron. Regulated power 30 Mc . Entire unit self contained. Size 19x14x9. New $\$ 89.50$ X Band Oscillator, Preamplifier and
Plumbing. R.F. head from DOG-1 unit. Consists of $2-723 \mathrm{~A} / \mathrm{B}$ tubes. (Local oscilla tor-Beacon) Wareguide, TR/ATR box with
$721,60 \mathrm{MC}$. Preamplifier. Complete with tubes ${ }^{6}$................................ 39.50

MAGNETRONS \& EQUIPMENT Complete Magnetron Package "S" Band. Consists of: Magnetron-2132, Magnetron Magnet, Magnetron Fil. Trans. Complete Magnetron- 2132,2780 to 2820 Mc. Fil. Voltage-18-22 Kilovolts. Average Ma 12.5-25. Average Power Out -285 Watts. Peak Power Out-285 KW . Band Width-
2.5 Mc . Duty Cycle 1000 . New JAN- 1 Magnetron Magnet-2000 Aauss. Pole Dia
 Magnetron Filament Transformers. Specially designed for magnetron. Use by Raytheon. 1 mary 6.3 V at $1.5 \mathrm{amps} .19,000$ Volts $1 \mathrm{~m}-\mathrm{c}$ Magnetron Filament Transformer. Same as above except muitiple secondary. 4 windings-each of 6.3 Volts at 4 Amp
each. 5000 Volts. Insulation....... 57.95

MULTI CONDUCTOR CABLE

MILLION FEET AVAILABLE

 9 CONDUCTOR- $\# 20$ str. plastic, 2 vinyl jacket. Shield $1 / 20$ G.E. Reel Lengths0 CONDUCTORinyl lengths $.07 / \mathrm{ft}$. 100 ft . $10 / \mathrm{ft}$.
28 CONDUCTOR- $\# 20$ stranded plastic rinyl jacket 100 ft . $24 / \mathrm{ft}$. dis. Reel lengths. 20/ft. 4 CONDUCTOR. Fach cond. $1 / 4^{" 1}$ dia. Std Table-Extremely fiexible. 1-1/4" Dia. Reel lengths Approximately 250 ft. $26 / \mathrm{ft}$. 3 CONDUCTOR-\#18. Shleld Jacket, CONDUCTOR-\#20 Shleld Jacket.

GRID DIP OSCILLATOR. See August Issue Electronics Pg. 176, "
ucts". An all around Lab. Instrument for measurement of resonant frequency, Circuits Q, RF. voltages, antenna and many other pur-
poses. 3 MC to 250 Mc or poses. ${ }^{\text {extended ranges, Compact and com- }}$ plete in kit form. Instruction book and application book sent free on re-
quest. Complete Kit.......... $\$ 21.50$ BIRD WATTMETER. 5 to 500 watts of R.F. Measures MF, HF, YHF and UHF . Write for full description, Only DAVEN ATTENUATION BOX Model HA--40 100 B atenuation in steps $600 / 600$ ohm input and output.
New. Three left TELRAD FREQUENCY STANDARD. Self contained, dual 100/1000 Kc XTL, Multivibrator and Harmonic Amp. Calibrate with WWV or Brood cast for high accuracy. 100 to 45,000

$$
\begin{aligned}
& \text { KC check points every } 100 / 1000 \text { KC } \\
& \text { Now }
\end{aligned}
$$

COAXIAL CABLE

rennectors on esch end
RG/590
ia.........

WIRE

\# 20 HV str. white plastic............
$=20$ str. white lacquer.
$=20$
str.
red
$=20$
str. red iacquer.
$=20$
str. green lace
$3 / 16^{\prime \prime}$ magnet DCC rect
$=20$ SSE Magnet.
$\qquad$$\$ 2.69$
$.12 / 4 t$.12/ft.

OIL CAPACITORS

SPECIAL

MICA'S AT 90% DISCOUNT
Types-Fil, XR, etc.

Cap. Wk.Vo.Pr. Cap. Wk, Vo.

.	Cap.	
.75	200	3,000
.75	100	3,000
.75	90	3,000
.10	50	3,000
.95	.025	2,500
.950	206	2,500
.70	30	2,000
.70	.015	1,500

тype H-A2
Cap. Wk. Vo. Pr. Cap. Wk. Vo. $\begin{array}{rrrrr}.002 & 350049 & .60 & 350 & 250049 \\ .005 & 25004 & .45 & .002 & 100044\end{array}$

CERAMICONS 50 mmf Feedthru
$\begin{array}{ll}. . & .06 \\ . & .30\end{array}$

RELAYS-CONTACTORS
Type
Coil Contacts
Price CH contactor. 115 V AC $4 \mathrm{PST}, 30 \mathrm{~A} \ldots . . \$ 7.95$ Allied Bo. SV DC DPDT 10 A Advance mln, 45000 hm 12 V DC SPSTi 5 AA .60 G.E. PJC Ad. Overload 4-12A ac-DC. 12.50 $\stackrel{1}{2}$

3

VOLTAGE REGULATOR
Manf. guaranteed 1% regulatlon. Primary $92-138 \mathrm{~V} 57-63$ cycles. 1 Phase Secondary 15V 1 So regulation 96 l F Nayy Gray Cabi-

STEPDOWN TRANSFORMERS
440 to 110 Y AC 50 KVA G.E. oll flled. Steel
440 to $10 V$ AC 50 KVA G.E. oll filled. Steel 440 to 220 to $110-5 \mathrm{KVA}$. Complete encasedG.E. Explo. Proof. Can be used as $4 / 1$ or $2 / 1$ ratio step-up or down, 69 cps. Size
Veight 225 lbs . Navg gray finish, integrad junction box sind mounting frame.... $\$ 75.00$ ions as above except 2 KVA. Size $12 \times 11 \times 10$. Wt. 93 lbs. Only 5 units left......... $\$ 29.50$
220 to 110500 Watts 60 cycles complete en-
 Auto transformer. 220 or 110 Voltage range of 50 c . Write for complete specifications.

BROADCAST MODULATION TRANSFORMER
R.C.A. 833^{\prime} As to pair 833'As, as used in Transmitters. Transformer being used in Vi.S. Broadcast stations. New fully guaranteed. Prinary 15,000 ohms Secondary
0,030 ohms. 86 KVA Audio. Size $12 \times 10 \times 13$, 030 ohms. 86 KVA Audio. Size $12 \times 10 \times 13$
V't-uncrated 153 lbs . Limited Qty. avail.

POWER TRANSFORMER

440/220 3 Phase. A husky brute for induchon heating. Primary $140 / 220 \quad 3$ phase. Crondary. Each phase 1365 V at . 67 Amps. pair of 304 's will give 2.5 KW output at a total cost of less than $\$ 50.00$. Spectai $\frac{1}{5}$
while they last-only $\$ 42.50$

POWER TRANSFORMER

440 or 220 1 phase Filament transformer. 40 or 220 phase Filament transformer
$440 / 220{ }^{\text {Pri. }}$. Secondary 5.0 V at 30 Amp.
Serm. Sealed Nav. 1500 volt insulation. Herm. Sealed Nay Plate transiormer. $200 / 220 / 240$ Pri. Secondary 1400 . Filament Transformer $200 / 220 / 240$ Pri. Sec ondary 6.3V at 2.7 Amps. Matched unit for

POWER TRANSFORMERS

110 V AV 60 Cycle

$3700-0-3700$ $2500-0-2500$ at $500 \mathrm{ma} .$. $2500-0-2500$ at $500 \mathrm{ma} . .$. $1800-0-1800$ at $350 \mathrm{ma}.$.

 40-0-740 at 1.2 amps. 36 Volts at 10 Amps11.5 amps. 11.5 amp 1200 V ot ma 0.3 V @ $24 \mathrm{~A}, 5 \mathrm{~V}$ @ 3 A . @4A, 5.0 V @3A. 750 V @ $300 \mathrm{Ma..}.$.
78 V @ 1.34 Amps. ps.......

Audio Reactor 1 Hy. ${ }^{800}$ ma
Ins.
Imertran-slze
$51 / 2 x 8$. Wt 85 $4-20 \mathrm{H} / 100 \mathrm{ma} / 120$ ohm, herm.
$10 \mathrm{H} / 100 \mathrm{ma} / 260$ ohm, herm. $10 \mathrm{H} / 100 \mathrm{ma} / 260$ ohm, herm. $10-147 / 145-200 \mathrm{ma} / 100 \mathrm{ohm}$. $5 \mathrm{H} / 200 \mathrm{ma} / 70$ ohm..............
 $16 \mathrm{H} / 450 \mathrm{ma} / 112 \mathrm{ohm}$,
$8 \mathrm{H} / 500 \mathrm{ma} / 80 \mathrm{ohm}$
$5-20 \mathrm{H} / 50 \mathrm{mg} / 80 \mathrm{l}$ $5-20 \mathrm{H} / 500 \mathrm{ma} / 80$ ohm
$8 \mathrm{H} / 700 \mathrm{ma} / 60 / 60$ $8 \mathrm{H} / 700 \mathrm{ma} / 60 \mathrm{ohm} . .$.
$5-20 \mathrm{H} / 700 \mathrm{ma} / 60 \mathrm{ohm}$

NEW ALL MATERAL
10% Discount on order over $\$ 100.00$
15% Discount over $\$ 500.00$.
Large quantities available.
Quotes on request.

ELDICO OF NEW YORK, INC:

 44-31 DOUGLASTON PKWAY., DOUGLASTON, L.I., N.Y., U. S.A. Cable Address. ELDICOINC BAYSIDE 9-8686
(TI)

TUBES!! brand new! standard brands! no seconds! compare! TUBES!!

OIL CONDENSERS NATIONALLY ADVERTISED BRANDS					
All Ratings D. C.					
2x. 1 mfd .	600 v	\$0.37	1 mfd .	2000 v	\$0.97
. 25 mfd .	600 v	. 37	2 mfd .	2000 v	1.27
. 5 mfd .	600 v	. 37	4 mfd .	2800 v	3.77
1 mfd .	600 v	. 37	8 mfd .	2000 v	3.47
2 mfd .	630 v	. 37	15 mfd .	2000 v	4.97
4 mtd .	600 v	. 57	4 mfd .	2500 v	3.97
Smid.	600 v	1.07	2 mFd .	2500 v	2.37
10 mfd .	600 v	1.17	. 1 mfd .	2500 v	1.27
3 x .1 mfd .	1000 v	. 47	. 25 mfd .	2500 v	1.47
.25 mfd .	1000 v	. 47	. 5 mfd .	2500 v	1.77
1 mfd .	1000 v	. 57	. 05 mfd .	3000 v	1.97
2 mfd .	1000 v	. 67	. 25 mfd .	3000 v	2.67
4 mfd .	1000 v	. 87	1 mfd .	3000 v	2.87
8 mfd .	1000 v	1.97	12 mfd .	3000 v	6.97
10 mfd .	1000v	2.07	2 mfd .	4000 v	4.87
15 mfd .	1000v	2.27	1 mfd .	5000 v	4.97
20 mfd .	1000 v	2.97	. 1 mfd .	7000v	2.97
24 mfd .	1500 v	5.27	3 mfd .	4000v	5.37
. 1 mfd .	1750 v	. 87	2 mfd .	3000 v	3.47
. infd .	2000v	. 97	2x. 1 mfd .	7000 v	3.27
. 25 mfd .	2000v	1.07	. 02 mfd .	12000 v	9.57
. 5 mfd .	2000v	1.17			

TRANSFORMERS-115 V. 60 Cy. hi-voltage insulation

SELENIUM RECTIFIERS Full Wave Bridge Type

output

PHONE DIGBY 9-0347
(T) SEARCHLIGHT SECTION \mathbb{I}

(T) SEARCHLIGHT SECTION \mathbb{I}

SURPLUS BARGAINS - - NOW! !

GE \#K2731 PULSE TRANSFORMER Pri. Imp. 50 Ohms
Sec. Imp. 450 . Sec. Imp. 450 Ohms 1 Micro-second, 635 PPS, Pri. Input 9.5 KV PK, Sec. Input 28 ${ }_{\text {Bitiliar }}{ }_{2} 75 \mathrm{~A}$ Out 800 KW , A buy at
.$\$ 17.50$
HIGH VOLTAGE TRANSFORMER
GE Cat No. 7470609 can-enclosed with insulators PRI-115/230 V. 50/60 Cycles
SEC-14000
Rating 1.4 Kya
Dimensions: $16^{\prime \prime \prime} \mathrm{H} \times 12^{2 \prime} \mathrm{~W} \times 10^{\prime \prime} \mathrm{D}$. Shipping Weight: 178 lbs.

A buy of $\$ 45.00$
GE TRANSFORMER TYPE M
CAT. $61 G 5$ _ISOLATION TYPE
${ }^{60}$ Cyeles 250 Watts. $8^{\prime \prime} \times 5^{\prime \prime} \times 412^{\prime}$ NEW- $\$ 6.50$ Net weight-14 lbs.-
STEP DOWN TRANSFORMERS SPECIAL Made by GE, heavy duty, considerable overdesign, open frame, ideal for rectifier applica-PRI- 115 Volts 60 Cycles
SEC- 15 V at 12 Amps
\$3.75
HIGH VOLTAGE CAPACITORS

 25.00
9.85

RACK PANEL CABINET

 knocked down, ready to assemble with rear door size $191 / 8^{\prime \prime} \times 363 / 4^{\prime \prime}$. Shipping weight 99 lbs . NEWI A REAL BUY

POWERTRON

117 LAFAYETTE STREET

BUDGET STRETCHERS

PULSE TRANSFORMERS
R1396-At last, a blocklng osclilator transformer
to glve shorter pulses than the 9280 . Designed for to give shorter pulses than the 9280. Designod for
the SR , it can deliver .18 microsecond pulses as the tr, it cen deiliver. 18 microsecond pulses asi
 ${ }_{9280}^{9318 \text {. Utah }}$ $\$ 1.50$
WIRE WOUND POTENTIOMETERS
I am proud to offer this selection of Chicago Telephone controls. They are unquestionably the finest 2 wett sizes: $75.200,500,3500,5 \mathrm{~K}, 10 \mathrm{~K}$ ohms.
4 watt sizes $30,100,1 \mathrm{~K}, 4 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}$. These excellent wire wound pots are only...... 45 . IN2t crystal dlode un to 3000 Mc.. 8.5 db conversion loss, 4.0 output noise ratio, burn out test 0.3 erg SPECIAL .. .494
.$\$ 1.09$
6 CONDUCTOR CABLE made up by Western lectric in 50 foot lengths with $\mathrm{S3} 24 \mathrm{CCT}$ connectors on each end. Each conductor is \#22 stranded and
rubber covered. Although the 0.D. is only $8 / 16$ inches there is a heavy live rubber jacket. Complote With two mating P324AB connectors ONLY $\$ 7.50$

GEAR DIFFERENTIAL
GE ASM 8640201 GI IBM-A beautifully made geared unit from the B29 computer, inputs and eutputs on the same axis. $111 / 16^{\prime \prime}$ OD by $21^{1 / 2}{ }^{\prime \prime}$
overall length of shaft.......................... $\$ 3.85$ Excelient sorvice on: AN connectors, mica con-
densers,
tubes, toggle switches, otc. All material is now and guaranteed.

HAROLD H. POWELL

632 Arch St. Philadelphia 6, Pa.

ELECTRONIC TUBE-MAKING MACHINERY

For manufacturing radio tubes, electronic tubes, cathode-rcy tubes, lamps. New and used. Reasonably priced, satisfaction guarcinteed.

AMERICAN ELECTRICAL SALES CO.
67 E. 8 th St.

L \& N MICROMAX MODEL S
REBUILT, RECONDITIONED ADJUSTED ELECTRICALLY AND MECHANICALLY
Single Point, Curve Drawing, Continuous Line, One set HIGH, COMMON, LOW Contacts. 110 V AC Motor.

PRICE $\$ 210.00$
L \& N MICROMAX MODEL R
REBUILT, RECONDITIONED ADSJSTED ELECTRICALLY AND MECHANICALLY
Single Point, Curve Drowing, Continuous Line. Chart speed-1 RPM/

WESTON MODEL 271 Microammeter
 Another of the fa-
mous weston mous Weston fall
shaped line. Vers shaped line. Very
large scale $5.8^{\prime \prime}$ long. These meters were made by Weston to General Radio specicial mirrored scale and knife edge point
er. Accuracy 1%.

0-600 Mícroamps
Coil Res: $\begin{array}{r}250 \text { Ohms } \\ \$ 2250\end{array}$
Your Price
$\$ 22.50$ 24 hrs. 1 set H.C.L. Contacts. 110 V AC Motor.

RANGES:	
$700-1400^{\circ} \mathrm{FC} / \mathrm{A}$	PRICE
$200-2000^{\circ} \mathrm{FC} / \mathrm{A}$	$\$ 135.00$
$1000-2400^{\circ} \mathrm{F} \mathrm{C/A}$	
BC 403E OSCILLOSCOPE	

Made for Signal Corps by RCA for use in SCR-270D Radar-Can be converted to other uses - A Gold Mine for Parts- Shipping 5BP4 …....................New! $\$ \mathbf{5 7 . 5 0}$ A. T. R. INVERTER

Model RSA Type 12
Input-12V DC. Output-110V AC.
100 W Cont. $81 / 2^{\prime \prime} \times 8^{\prime \prime} \times 41 / 2^{\prime \prime}$ "Net 15 lbs.
New, $\$ 16.50$
ALL PRICES FOB OUR WAREHOUSE NYC.
INCLUDE SUFFICIENT FOR POSTAGE
Electrical Equipment Co. Phone: WOrth 2-8610

NEW YORK 13, N. Y.

PREGSION IESISIOT WIRE			
Size	per ft.	per it.	Price/lb.
\$22 doc	. 459	y) 515	\$1.29
\$24 dec	. 7217	1.829 1.029	1.50
\$20 dco	${ }^{1} .163$	1,305	1.58
${ }^{+28} 8{ }^{\text {dec }}$	1.858	2.078	1.79 1.98
820 dco	${ }^{2} .302$	2.584	2.00
(380 dce	2.940 5.833	$\begin{array}{r}\text { 3,300 } \\ \hline 6.548\end{array}$	$\xrightarrow{2.25}$
${ }_{8} 85 \mathrm{dec}$	9.375	10.522	3.98
			53.25
135 8.E.	9.375	10.522	3.90
${ }_{\text {\% }} 8368$ 8.E.	${ }_{24.00}^{11.76}$	- 26.930	8.50
\$40 \%.E.	30.59	34;330	10.50

ORDERING INSTRUCTIONS UnIess specified wo will shild any of the tydes advertised above. MINIMUM ORDERS D.C.C. \# 22 to $35.1 \mathrm{lb} .+30 \%$ N. ENAMELEB $\# 34-35-36, \mathrm{~min}$. order $1 \mathrm{lb} ., \pm 30 \%$; is epooled on mfgris precision spools. All guart'd.

ATLANTIC INDUSTRIAL CO.
101-38 91st St. Ozone Park, New York

ONE-HALF MILLION BATHITB CONDENSERS

 - OIL IMPREGNATED -| $.1-400 \mathrm{~V}$ | $.25-600 \mathrm{~V}$ |
| ---: | ---: |
| $2 \times .1-600 \mathrm{~V}$ | $.5-400 \mathrm{~V}$ |
| $2 \times .1-600 \mathrm{~V}$ | $.5-600 \mathrm{~V}$ |
| $3 \times .1-400 \mathrm{~V}$ | $4.0-500 \mathrm{~V}$ |
| $3 \times .1-600 \mathrm{~V}$ | $2 \times .25-600 \mathrm{~V}$ |
| $2 \times .05-600 \mathrm{~V}$ | $2 \times .5-230 \mathrm{~V}$ |

PRICES ON REQUEST

Many Others Not Listed Above, in Stock Manufacturers Only-Let Us Know Your Needs

SHRIRO TRADING CORP.
130 W. 42d St.
N. Y. City

Nobody but ARICO has "hard-to-get" items-
SPARE PARTS ARE HARD-TO-GET
RADAR AN/APS-2C or 2E SPARES including:
1 ea B-201 Blower Motor, 1
ed B-801 Blower Motor, ${ }^{1}$ ea
$\$ 89.00$ B-802 Blower Motor, ${ }^{3}$ ea Crystal IN-21 and the follow- Complete Set
 3 ea $6 \mathrm{L6GA}, 2$ ea 2AP1, 2 eq 5FP7, 2 ea VR2 ea 829 , 2 ea RKR72, 2 ea 715-B, 2 ea 2J22, 2 ea $417-\mathrm{A}, 2$ ea $721-\mathrm{A}$, plus misc. fuses, brushes, valve core, dehydrator, etc. Brand new, packed in grey chest with description list.

Aircraft Radio Industries, Inc.
780 State Street, New Haven, Conn

(TD SEARCHLIGHT SECTION TI

OVER \$1,000,000.00 IN SURPLUS! for your every need

NEW BC 223 AX TRANSMITTER

 MODULATION TRANSFORMER AND DRIVER TRANSFORMER

SPRAGUE
CONDENSERS

1000 MFD

$\$ 1.95$
COAXIAL FITTINGS

ARRT AIRBORNE
VERSION OF
ILALILCRAFTER
$\$ 129^{00}$
With 3 RF stages. (One re-readiation suppressor R-F.),
12 tubes. Motor and manual tuning. S-meter. F-selec. tivity control, Crystal Filter. AVC, phasing control,
ANL. etc. Also furnishes video output for scope, and panoramic output for ceanning. Complete with tubes
and Xtal, but without power supply. Power requireand Xtal, but without power supply. Power require-
ments, 270 V.D.c. at 135 MA . and $6 \mathrm{~V} . \mathrm{A} . \mathrm{C}$. 6 Amps. ULTRA IIIGH-FREQUENCY

TRANSMITTER T-85/APT-5

complete Lecher wires, with slider and sensitive tult,
for checking the wave length. The Lecher wires are so calilhrated that the getting of the silider wayes be resid
directly in Centimeters. Operates on 115 V , AC for fila. ments onny. DDes not include any plate supply. The
tubes anone are worth many times mare than whe we tunes anlone are worth many times more than whas wee
are selling the complete transmitter for. Packed in are selling the complete transmitter for. Packed in
original case-contains instruction book. Wgt 118 bes

T-17 CARBON MIKE 79¢ LIKE

SCOPE TRANSFORMER

 The ideal way of indlcating the position of Rotary
beams, wind indicator, etc. Line chord and instruc.
tioms for 110 AC operation furnished on request.

loow. Bleeder consisting of 5 sections; 750 (49
ohms, 23 ohms. 23 ohms. 7500 ohms, 300 ohms.
Total- 11,296 ohme Total- 11.296 . ohms. . 304TL $75 c$

Just the tube for that 1 KW
final - typical final - typical operation
2500 vorts at 400 MA . An ideal tube for that induction Efficient dielectric heater, to 3000 V .

CONTROL BC 1103
Made by General EUSecric. Contains
F301 20A 250V GE. CAT. GE 1025
INDICATOR LAMP 1301 Mounting G.E. DWG. K7887817 ${ }^{1301 A} 115 \mathrm{~V}$ 6W G.E. Mazda Type S 6
$\begin{array}{ll}\mathrm{J} 301 & 3 \text { POLE RUSSELL STOLE } \\ \mathrm{J} 302 & \text { SF } 6852 \\ \text { POL } \\ \text { HART }\end{array}$

K301 120V 60 n STRUTHERS OUNN *AS8×1 S301 ALLEN BRADLEY CAT. 2A
S302 INTERLOCK 10 A PRICED at only $\mathbf{\$ 4 . 9 5}$
 500 microamp moverments, the mand new.
 Choke- 300 MA 20 HY insulated for 5000 V .

 Powdered iron.
Jacks for PL55

Ear straightener for miniatere
Enhene. 2000 on mms. used
SCR 625 Mine detector. used
$75,000-\mathrm{ohm} 200$ watt Bleeder Beautiful DETROLA Record Changer

Handesz 12.10% records
or $10.12 n^{2}$ records.
Au $\$ 9.95$

Be a "Forty-Niner" in '49

THE 'FORTY-NINER". GEIGER COUNTER 58950

- Ligrt weight urantum detector.
- Detects beta and gamma rays.

- Equipped with 36 inch search probe
- Contains two $67 / 2$ vols Minimax batteries in the well-known type of relaxation oscillator supply.

Weight $41 / 2$ lbs. complete; size $4^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}$ Beautifully finished case with handle.
Complese with four tubes, including Geiger tube, batteries, search probe and ear-phone.
Write
for
Free
Catalog

FM RADIO AND TRANSMITTER BC-620-A 20 MC TO 27.9 MC 9.95
This Xtal controlled FM set has 13 tubes and has dual Xtal controlled channels. It also contains built-in Fil. and Plate Meter. Tuber used: (4)1LNS, (1) 11,C6, (1)1LH4, (2) 1291, (4) 1299, (1) 1294. Ideal for communication between trucks, boats, etc. Used, in good
condition. Less power supply. Wt. 38 bs, Complete with carrying condition. Less power supply. Wit. 38 lbs. Complete with carrying
case and diagranm. ase and dagrams.

5249 GRAND RIVER
DETROIT 8, MICIIIGAN

PULSE TRANSFORMERS

Tube base plug in type
Here are precision made, high quallty compact pulse transformers wound on hypersill ceres. Thoy are built in oetal bakelite tube bases and can be adapted to many uses. Kindly distribute this data to key personnel
in your Electrical Engineering Department, to your Technical Library, to your Electronio Equipment Buyers and to any person who should have knowledge of this item.

TYPE UX 7307
EACH COIL-50-T 36 E max. OC RES. OHMS
$\begin{array}{lll}1 & 0 & 8 \\ 2 & 8 & 7 \\ 3 & 4.02 n \\ 0\end{array}$
$2878.3 .37 n$
$3 日 4=2.357 \Omega$
$505=2.357 \Omega$

OTHER DATA

Completely impregnated and sealed

- Physically smad!, measuring only $1.377^{\prime \prime}$ dia. $\times 1.087^{\prime \prime}$ high.
- Convenient to use-merely plug into an octal socket-simpliffes productlon.
- The two types UX7350 and UX7307 differ only by placement and termination of windings.
schematic of winding sequence and connections pressed into dise covering top of tube ba designates socket connections.
- The coils are wound on high-grade tested hypersil cores. Rader and Direction Finding Equipment.
- Standard types-manufactured by Raytheon Manufacturing Company.
- Quantities availablo-immediate delivery.

SUGGESTED USES

*-Blocking Oscillator, Multivibrator and Scope Circuits.

- Wherever Accurate timing and Triggering are necessary
- Can be used in circuits utilizing repetition rates from 0 to well over 1 MC and pulse widthe ranging from . 05 Microsecond up.

PRICE: \$3.95 EACE

GENERAL UTILITY STEEL CABINETS
 FOR SALE

Dimensions 23 wide $\times 201 / 2$ deep $\times 32$ high; shippirg weight 123 lbs. Provides 30° of panel height in standard $19^{\prime \prime}$ width. Finished in pray crackle and provided with 2 sets of shelf brackets
hinged rear door. Only $\$ 15.00$ f.o.b. Weston. WESTON LABORATORIES, Weston, Mass.

THE UNUSUAL 50 KW MODULATION TRANSFORMERS

Three General Electric 37.5 KVA brand new, original crate, for RCA 50 KW broadcast transmitter, \$1,800 each
Three GE 24 henrys reactors for above, $\$ 1,000$ each
300 BD-71 and BD-72 switchboards, good condition, \$12 each
40,000 feet $7 / 8^{\prime \prime}$ copper coaxial 72 ohm transmission line, 20 foot rigid lengths, 45 c foot
SCR 643/644 Bendix 50 watt 100156 mc transmitter and receiver ground station, complete, with masts, cables, power plants, $\$ 1,000$
350 foot Truscon self supported insulated base tower, $\$ 5,500$
300 reels, brand new, CC-358, spiral four telephone cable, original pack, $\$ 40$ per quarter mile reel.

FOB LOUISVILLE, KENTUCKY

ELECTRONIC SERVICE CORPORATION

119 South Sixth Street
S. A. Cisler

Clay 4150

TESTEQUIPMENT- Ised

General Radio

H. TORNHEIM

4246 West End Ave., Chicago 24, III.

[^10]
(I) SEARCHLIGHT SECTION

DESIRABLE SELECT

Limk Radio Transmitter-Receivers Type 50 UFS.

Price on
Radar Type SF, complete with all components
n Request

R5/ARN-7 Radio Compasses, complete boards
BC-375-E's, complete new with all tuning units, dynamotor, tubes, plugs, etc.
TDE Radio Transmitters.
Type SCR-522's-(Slightly Used)
Collins TCS's Navy units......
Hallicrafters Radios, Mindel No. S-40. 110/240 Volts AC, 50/60

Telegraph Transmitters - Model ET-8023 D1.
Generstor Lighting Plants-Type PE.197, 5KW, 120 Volt AC. 50/60 Cycle, Single Phase..
Generator Gasoline Engine Driven
Lighting Plarts Type $5 \mathrm{KW}, 110$
Volt AC, $50 / 60$ Cycle, Single Phase
Reading Storage Batteries, 185 amp-hours, 6 volts......... hours, 12 volts.............
Prism Binoculars- 7 x 50 Navy
Type-Regular Optics 30 per case
Prism Bincculars- 7×50 Navy
Type-Coated Optics 20 per case

NEW-Not Surplus

TUBES

NEW-Not Surplus			
TU8ES			
Type		Type	
10Y	\$. 55	805	3.80
211	. 85	807	1.14
250 TH	21.30	808	2.80
304TL	1.10	810	5.50
450 TH	22.75	836	. 95
450TL	36.50	861	27.50
803	4.50		

*Plus 20% Federal Excise Tax

All Equipment Subject to Prior Sale
FRENCH-VAN BREEMS, INC.
405 Lexington Avenue NEW YORK 17, N. Y.

Oregon 9-3650
Cable Address: Frexvan, N. Y.

* 44.00
*54.00

I N D U S T R I A L POWER SUPPLY A N

for worthwhile savings to you

WIRE

600 volt Simplox Type S (19) conductor $\# 18$
AWG $\$ 170.00 \mathrm{por} \mathrm{M}^{*}$
 No. 18 AWG single conductor. solid, annunciator
wire 7-lb spool. $\$ 2.90$. 10 spools. $\$ 27.00$
*Above cable in full spools only, i.e. 1000 to 1200 *abov
fect.
ASD 3CM Radar Transmitter \& Modulator, V-2
Also parts for this equipment
Details or prices on reguest.
CONSTANT VOLTAGE TRANSFORMERS 95 to 125 volt 50 cycle single phase input: 115 rolt output: 120 ra 250 volt input; 220 volt output:
190 to 250
60

RAYTHEON
188 to 242 volts $50 / 60$ eycle single phase input: 220 volt 500 watt $\begin{aligned} & \text { output } \\ & \$ 38.00\end{aligned}$
 original boxes
T
1
1
2
2
2
$\begin{array}{ll} \\ \text { 1B22 } & \\ \text { 1B23 } & \ldots . . \\ \text { 1B23 } & \ldots . . \\ \text { 2D21 } & 162 \\ \text { 2162 } & \ldots . .\end{array}$
这
3 C 2
4 B 2
15 E

TUBES
All Tubes are New. of Standard Mig.. in

TUBES All Tubes are New.	POWER FACTOR Correction 9:12 mfd 1265 r a-c, 100 c. 1 ph . kilovolt amp: roactance. New G.E. Pyranol
of Standard Mifg.. in original boxes.	TRANSTATS, AMERTRAN
Type Price	115 r. $50 / 60$ e: $0-115$ г. 100 amy 0 atput
1822 …....... $\$ 5.75$	115 v. $50 / 60$ c: $0-130$ r. 10 amy
2D21 i.25 . . $70.00 / \mathrm{c}$	115 v. 60 c: $103-126$ v. 2.17 amp
216247.50	output …c........... 9.50
3B22 2.75	115/230 г. 50/60 c: 0-260 г. 2.5
	amp output \$2I 50

TRANSFORMERS

 115 v. 60 c , primariesAmertran: 17.600 , 10.4
K. V. A. cont...... $\$ 65.00$
Amertran: $8,800-0,800$ \& (20) 10.4 K. V. A. cont......... $\$ 65.00$
Amertran: $8,800-0-800$. 10.4
K V.A. cont. $1.2 . . .875 .00$ Westinghouse: $18,400-0-18,400$.

RELAYS
 Westinghouse Type SC-M Overcurrent relay. 2 to 1 A., 8 A. cont. rating $20-4076$ drop nuif

H.V. fil. trans \& socket.

RESISTORS 200 watt wire wound rasistors. ferrule ends 160.100 ohm. ă, 000 ohm, or 1,000 ohm....... $\$ 1.00$

(T) SEARCHLIGHT SECTION T

	PULSE INPUT TRANSFORMER Imp. ratio 50 to 1000 to 1000 is SERVO OUTPUT TRANSFORMERS PP 6 Lit to Seifyo mechanism Dual uitit PT F VG to Serro mehanham one can. ea

Good Values-Largée Stocks-Prompt Service

POWER SUPPLIES:
$0-15.000$ v.—. 5 amp d.c. output-110 v. a.c. input $\$ 395.00$
$0-15,000 \mathrm{v}-$. 035 amp. d.c. output 110 v a.c. input.................... $\$ 215.00$
$1000 \mathrm{v} .-350$ ma. d.c. -14 v. a.c.-d.c, output $110-220 \ldots$.
SWITCHES-S.P.D.T.-motor operated 110 v. a.c.-will handle 15 kv . @
1.5 amp.-oil filled-small size-ideal for switching any h.v. output.... $\$ 47.50$

LABORATORY POTENTIOMETERS-20 k. ohms.- 10 v. a.c. reversible motor
5G Selsyn-accuracy better than 1%-oil filled.
$\$ 55.00$
TELEVISION TUBES-We are in the center of the C.R. tube industry and can
supply 7-10-12-15-16-20 inch tubes at low prices. Also tuners, chassis
and complete sets. $10 \mathrm{BP} 4-\$ 28.50-12 \mathrm{LP} 4-\$ 44.50$-Standard Guarantee.
RADAR-See us for test sets. Plumbing-Co-ax-T.R. units-antennas, magnetrons,
Klystrons. Special 10 cm . test dipole. $\$ 4.75$
TRANSFORMERS-From 1 v . to 100 kv - -5 w . to 75 kw . all sizes and types of power, filament, audio, modulation, pulse, supersonic, etc.
MOTOR GENERATORS- 115 v d.c. to 120 v . a.c., 1000 watts, continuous duty, ball bearings, fully inclosed.
LET US KNOW YOUR NEEDS - WE CAN FILL THEM NOW

VETSALCO Inc.
 FOR ELECTRONICS

78-21ST. AVE.
ARMORY 4 -4435
PATERSON, N. J.

BRAND NEW Ussogrive GUARANTEED

MANUFACTURERS - JOBBERS - LABS - SCHOOLS - INDUSTRIALS
\bullet CONDENSERS oill mita $\begin{aligned} & \text { ocheck } \\ & \text { bithtus }\end{aligned} \bullet$ POWER RHEOSTATS \quad CONTROLS $\begin{gathered}\text { carbon } \\ \text { wirewoun }\end{gathered}$

- RESISTORS $\begin{gathered}\text { prerisios } \\ \text { ferulien }\end{gathered}$ - AN-UG CONNECTORS • IONES
- SWITCHES $\begin{gathered}\text { selector } \\ \text { togete ete. } \\ \text { - LORD SHOCKMOUNTS - BIRTCHER TUBE CLAMPS }\end{gathered}$

Write-Wire-Phone today!
Get on our Mailing list!

GRAIN of WHEAT LAMPS

Used for illuminating meters, compass dials, alrplane instruments, etc- Sol-
dering iron removes lamp from base to dering iron removes lamp from base to
use in models, doll houses, minlature trains. Xmas trees, etc.
 'hoto actual size. Glass Buib $\%$ " $\times \%$ " Either doz. \$1.50 $\begin{gathered}75.00 \\ \text { type }\end{gathered}$ MARKTIME 5 HOUR SWITCH A 10 amp. timing device. Pointer moves back to zero after time elapses.
for shutting off radios and Tor shutting ofr radios bed, Limilted supply at this spa. clat PRICE........ $\$ \mathbf{3 . 9 0}$
Also avallable in $15 \mathrm{~min} .30 \mathrm{~min}-1 \mathrm{hr}$. at $\$ 6.55$
ISOLATION
TRANSFORMER

Nat. hmown Mfgrs. 50 wat 2 Whindings, Mfgrs. 115 . 50 wat 115 V. 60 cy. Ideal to preven shocks from small radios | and medical and |
| :--- |
| electronic dertces. |
| $\mathbf{\$ 1}$ |
| 1.95 | Shidping Weight 5 lbs . Other sizes and 220-110 in stock.

O.P.S.T. LEACH RELAY 10 mon. 450 each, 3 for \$4.00. Min. shipment. $\$ 1.00$

A Nowly Written (1948) Book on Photoelectric (Electric Eye) Circuits.......... $\$ 7.50$ or $\$ 1.00$ Kilowatt Demand Meter Totalizer containing hundreds of watch size gears, clutohes, springs. etc. Shipping welght $2{ }^{2}$ bs. ${ }_{5}$ for $\$ 10.00 \quad \$ 2.50$

WE are Authorized Wholesalers for Micro Switch Corporation and carry the largest stock of Allen-Bradley Solenoids Potter and Broomfield Relays Guardian Electric Co. Solenoids and Relays Haydon Clock Motors in all speeds

Experimenters and Inventors Supplies
64 E Dey St., New York 7, N. Y.

(T) SEARCHLIGHT SECTION TI

METERS

0-150 Volt 400 cycle black background luminous, needle \& seale,
mounts in $21 / 4$ " hole. Accu-

D.C. ammeter 0-300 Type \#E-1 Mounts in $25 / 8^{\prime \prime}$ hole. Black background with luminous pointer and scale. Complete with $\$ 2.95$

SELENIUM RECTIFIER

Full-wave bridge rated 90 VAC input 65 VDC output at 150 mills \$1.19

FULL WAVE RECTIFIER

Mallory bridge \#1S36B7M rated 32 VAC input 7 amps continuous \& 15 amps intermittent output ot 14 VDC resistive \& 22 VAC Napacitive load. Brand \$4.95

METER RECTIFIER

full-wave selenium bridge rated

F. W. SELENIUM RECTIFIER
Mallory 120 VAC input 85 VDC output at 15 mills 59e
LOCKING RELAY LEACH

\#2401-514 SPST NO locks in closed position until locking relay coil is actuated to release. 24 VDC coils. 10A contacts. Brand New, ea.. \$1.49
 RECTIFIER SUPPLY 12 volts at 600 Amps. and 24 volts at 300 Amps. momentary,
12 volfs at 130 Amps. and 24 volts ot 65 Amps. continuous volts at 65 Amps. continuous,
220 volts 69 cycle 3 phase $\begin{array}{ll}\text { input } 0 . \mathrm{D} \\ 22 \times 34^{\prime \prime} & 18 \times 175.00\end{array}$ 200 SURPLUS ELECTRONIC ITEMS
 Satisfaction Guaranteed or your money back.

DICK ROSE ERECO $29 i 2$ Hewitt Ave.
 Everett 20,Wash.

RADAR EQUIPMENT

SCR-717B 10 cm search radar
APS-3 \& APS-4 3 cm search sets complete SO-12 complete w/trailer \& gas driven supply SO-9 10 cm shipborne search set compl. W/spores
QBF Sonar sets
SBF Sonar sets $\$ 750.00$
SO-9 pulse networks 1 microsec. 15
SO-9 pulse transformers
AY-101D Autosyn w/calibration
2JIG1 Selsyn motor
15.00

2 Selsyn motor calibration 30.00
Seienium rectifier, full-wave 115 v , AC
BD-77 Dynamotor

TRANSFORMERS

T-100 115v-400 cy 4580v. 2 ma 2.5v

Write for listings of other surplus bargains.
LERU LABORATORIES, INC.
360 Bleecker St. New York 14, New York

ACORN $=$ INDUSTRIALS, — SAME DAY SERVICE

PHONE WORTH 4-32
ACORN ELECTRONICS CORP.
76 Vesey St., Dept. E-9, New York 7, N. Y.

TERMS: 20% eash with order. Balance C.O.D. unless rated. All prices City. No orders under $\$ 2.50$.

OWNERS: Let factory-trained experts treat your ailing receiver

HALLICRAFTERS, HAMMARLUND, COLLINS, NATIONAL, PIERSON, RME Communication and television receivers and transmitters

- Complete realignment
- Image Rejection Ratios
- Bandspread Calibration
- 5 Meter Calibration

11 WARREN STREET NEW YORK 7, N. Y. WO rth 2-7955

GENERAL ELECTRIC

Dynamotor - DM-42A. Model 5DY. 81 ABI2
INPUT $12-14$ volts -46.0 amp .7500 rpm Milliamperes- $215 / 260$ Brand new. Original pack
5453 Virginia Ave

SHEET METAL MACHINERY

NEW and Used - Brakes - Shears Forming Rolls - Folders - Punches -Di-Acro, Pexto, Niagara \& Whitney Equip ment
R. D. BROOKS CO., INC.

361 Atiantic Ave., Boston. Mass.

470 MC EQUIPMENT

150-Navy BG transponders, 110 v AC, $450-470 \mathrm{mc}$, brand new, less tubes, $\$ 72.00$ each. Tube kit, $\$ 18$ complete
300-ABA-1 Navy airborne IFF units (same as SCR 645) complete with plugs, antennas, dynamotors. manual, and set of spares including extra tubes, $\$ 25.00$ each
100-Navy YJ radar beacon units, 110 v AC, 175 ot 515 mc , with antenna mast, less tubes, $\$ 72.00$ each. Tube kit, \$18
FOB LOUISVILLE KENTUCKY
ELECTRONIC SERVICE CORPORATION
119 South Sixth Street Clay 4150

EOUIPMENT FROM
 FORMER DEVELOPMENT LABORATORY IN NEW OR EXCELIENT CONDITION

General Radio 916A R.F. Bridge.... $\$ 3 \% 5$ General Rudio 726A R.F. Voltmeter.. 130 General kudio 650A 1000 Cycle Bridge 210 Gentral Rallio 566A wavemeter....... 25 Hewlett Packard 400 AR Voltmeter., 125 Ferris 32-A fleld Sirength Meter...... 200 (Factory recalibrated May 1949)
Sprague Interference Locator I12.... 60
(AC-DC superhet with loop and pole, V.I.)

Westeril Electric Salt Shaker
swivel, haffle desk stand 40 Clough Brengel Model 79-D A. \mathbf{F}
Oscillator Brengel R - C Bridge Mod CI.B 60007

朝 40
R.Cili. City Voltohmist 155 (new)..

Sigual Corb. 50 watt audio amp.
two corp. 50 watt audio amp.
FS.9596-ELECTRONICS
$330 \mathrm{~W}, 42$ nd Sireet, New York 18, N. Y.

Surplus Fixed Wire Wound Resistors

Ohms	Watts	Tol \%	Terminal	Per C
4	65	5	solder	$\$ 7.50$
5	12	2	pigtail	5.50
10	5	10	plated	$\mathbf{4 . 5 0}$
12	20	5	solder	$\mathbf{6 . 5 0}$
20	65	10	soller	$\mathbf{8 . 5 0}$
50	4	10	pletall	7.50
126	7	2	Boller	$\mathbf{4 . 7 5}$
470	10	5	plitall	$\mathbf{6 . 5 0}$
3600	50	5	日older	$\mathbf{9 . 7 5}$
5000	40	5	ferrule	$\mathbf{9 . 7 5}$
15000	15	2	Bolder	$\mathbf{9 . 7 5}$
399 M	$1 / 2$	3	solder	$\mathbf{9 . 7 5}$

Samples 254 ea. postpaid
LONG ISLAND RADIO COMPANY
164-21 Northern Blvd..
Flushing, N. Y

FACSIMILE

For saie, 2 \#FRS-140C Finch Duplex Facsimile Machines. New Condition. $\$ 1000.00$ Each FOB Cleveland. Literature upon request.

Relay Control ELECTRICAL CABLE
44-Conductor Copper, I Square mm (oqual to \#17 AWG) $4 / 64^{\prime \prime}$ watertite insulation cabled Manufactured by okonite and called "Armortite" Manufactured by for direct burial without conduit JEFF LEE PRODUCTS 1919 Derry Street

Searchlight

Can Help You!

HUNDREDS of miscellaneous business problems that confront you from time to time, can be quickly and easily solved through the use of the Searchlight Section of this or

The
SEARCHLIGHT SECTIONS $\begin{gathered}\text { Classinad } \\ \text { Avoritisne } \\ \text { Sen }\end{gathered}$
of McGraw-Hill Publications

Can help you by bringing business needs of "opportunities" to the attention of other men associated in executive management, sales and responsible technical, engineering and operating capacities with the industries served by:

American Machinist
Aviotion Week
Bus Transportation
Chemical Engineering
Coal Age
Construction Methods \& Equipment Electrical Construction and Maint.

Electrical Merchandising
Electrical World
Electronics
Engineering and Mining Journal
Engineering News-Record
E. \& M. J. Markets

Factory Management and Maintenance
Food Industries
Operoting Engineer
Power
Product Engineering
Textile World
Welding Engineer
other McGraw-Hill publications.

The Searchlight Section is the classified advertising appearing in each of these papers. You can use it at small cost, to announce all kinds of business wants of interest to other men in the fields served by these publications. It is the regular meeting place of the man with a miscellaneous business need and the men who can fill that need.

When you want additional employees, want to buy or sell used or surplus equipment, want additional products to manufacture, seek additional capital, or have other miscellaneous business wants —advertise them in the Searchlight Section for quick, profitable results!

Classified Advertising Division

McGRAW-HILL PUBLISHING CO., Inc.
330 West 42nd Street
New York 18, N. Y.

(TD) SEARCHLIGHT SECTION \mathbb{T}

X HAND SIGNAL GENERATOR, $8500-$ 9600 mc , calibrated wavemeter, power meter and attenuator, for 110 V $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. operatom.
X BAND WAVEMETER CAVITY, TRANSMISSION TYPE, $9200-11000 \mathrm{mc}$ WAVEMETER CATITY, $8500-9600 \mathrm{mc}$ TRANSMISSION TYPE …835.00
TS-155B/CP S BAND SIGNAL GENERATOR, pulsed, calibrated output, 110 V , 60 cy . NEW
S BAND STANDARD REFERENCE CAlITY, Type N input connector, rrys-APR-1 RADAR SEARCH RECEIVER, complete with tuning units for range of $38-4000 \mathrm{mc}$. TUNING UNITS for APR-1 or APR-4 RECEIVFRS (can be used with any 30 mc amplifier):

```
        TN-16, range 30-90 mc
``` \(\mathrm{TN}-17\), range \(80-300 \mathrm{mc}\) \(\mathrm{TN}-19\), range \(1000-2000 \mathrm{mc}\) TN-54, range 2000-4000 mc
X BAND VSWR TEST SET TS-12/AP. complete with linear amplifier, direct guide with gear driven travelling probe, matched termination and various adapters, with carrying case, NEW. UNITS I AND II are available separately, or together as a test set.
S BAND SIGNAL GENERATOR CAVITY With cut-off attenuator, \(2300-2950 \mathrm{mc}\),
2 C 40 tube, with modulator chassis \(\$ 30.00\)

UPN-1 \(S\) BAND BEACON RECFIVYER TRANSMITTER \(\$ 75.00\)
S PAND TEST LOAD, TPS-55P/BT, 50 BAD THGT TOAD TS-108/AP \(\$ 8.00\) X BAND THST LOAD, TS-108/AP, \(\mathbf{1 5 0}\) FIXED ATTENUATOR PADS, \(20 \mathrm{db},+0\) 1.3 or less, 2 watts average power. \(\mathrm{S} 30,00\) MUTUAL INDCCTANCE ATTENUATOR, Calibrated; prequency range .1 to 1000 me by means of plug-in coils, attenuaMTTCAL INDUCTANCE OR PISTON TYPE ATTENUATOR, type N connectors, rack and pinion variable 120 decibels, calibrated \(20-120 \mathrm{db}\). frequency range \(300-2000 \mathrm{mc}\) METCAL INDICTANCE OR PIRTON TYPE ATTENUATOR, similar to above, except upper frequency limit is \(\begin{array}{r}3300 \mathrm{mc} \\ \mathbf{\$ 3 2 . 0 0}\end{array}\)
LOSBY LINE ATTEENUATOR, consisting of RG-21/U cable rolled in metal hox with UG-10/U connectors. furnished in
any attenuation up to 20 db at 3000 mc any attenuation up to 20 db at \(\begin{array}{r}3000 \mathrm{mc} \\ \mathbf{\$ 1 5 . 0 0}\end{array}\) METERS:

0-350 V'OLTS, WESTINGHOUSE NX-35 METER. 1000 ohms per volt... \$4.50 1-0-1 MA, MARION SEAI,ED METER
 PULSE INPUT TRANSFORMER, permalloy core. 50 to 4000 kc impedance ratio
120 to 2350 ohms................... \(\$ 2.00\) PULSE TRANSFORMER, UTAH 9280 PTTSE TRANSFORMFR 132 -AWP . . \(\$ 6.00\) PULSE TRANSFORMER, GE 68G, \(\begin{array}{r}828 \mathrm{GF}-1 \\ \$ 5.00\end{array}\)
PULSE TRANSFORMER, Westinghnuse CONNECTORS:
\begin{tabular}{|c|c|c|c|}
\hline UG-18/U & . 80 & UG-86/U & 1.00 \\
\hline UG-12/U & . 80 & UG-167/U & 2.00 \\
\hline U G-21/U & . 80 & UG-190/U & 1.00 \\
\hline UG-22/U & . 80 & UG.201/U & . 60 \\
\hline U G-24/U & . 80 & UG.245/U & . 60 \\
\hline U G-25/U & . 80 & M-359 & . 28 \\
\hline UG.27/U & . 50 & U G-266 & 1.00 \\
\hline UG-29/U & 1.00 & & \\
\hline UG.30/U & 1.00 & PL 54 & . 10 \\
\hline UG-30/U & special 1.00 & PL 81 & . 50 \\
\hline UG.58/U & . 60 & AN-3102-14S-5P & . 25 \\
\hline UG-59/U & 1.00 & AN.3102.14S.2P & . 25 \\
\hline UG.83/U & 1.00 & RC-10066-20-1P & . 50 \\
\hline
\end{tabular}

PE-206 INVERTER, \(800 \mathrm{cps}, 24 \mathrm{~V}\) input, output 80 V New PE-103A POWER UNIT, 6 V or 12 V in, output 500 V at \(160 \mathrm{ma;}\) new, complete
with filter and cables........... \(\$ 20.00\)

\section*{ELECTRO IMPULSE LABORATORY}
P. O. Box 250 Red Bank, N. J. Eatontown 3-0768

YAGI ANTENNA

COAXIAL CONNECTORS

Antennas for AN/APR-4 Receivers
 AT-48/UP-3CM ANTENNA HORN for receiving FILTER CHOKE-10̈H 400MA DC Res. 90 ohmshermetically sealed
Kollsman 2 Phase Low inortia motors-......... \(\$ 2.93\)
0240

GUARANTEED
SUAKAMIEEU

\section*{LECTRONIC RESEARCH LABORATORIES}

1021-23 Callowhill St.
Phila. 23, Pa.
Telephones: Market \(7-6590\) and 6591

\section*{POINT-TO-POINT RADIOTELEPHONE}

Using the 20.0 to 27.9 Mc channels, the SCR528 is consistently proving itself for broadeast
relay, mobile, and general industrial coramunications. Ideal also for teletspe ria radio as well as interconnecting with telephone lines. COMPLETE for 12 or 24 Volt DC operstion. Spwelal AC power pack for above also available.
Builetin sent on request. Builetia sent on request.

PORTABLE POWER SUPPLY-AVA-126A, RCA Mfg. for mobile, boats, planes. In gres crackle SC and delivers 320 . 10 lbs. Input 6 or 12 Volts DC and delivers 320 V. at 110 Ma. with taps for revr or transmitter. Has OZ4GT rect.
relays, conplete filters, 2 builf-in and mfg accessories. BRAND NEW........ \(\$ 14.95\)

RADIO DIRECTION FINDERS
RCA and Bludworth models for marine use.

\section*{PORTABLE EQUIPMENT}

SCR-511 (2.0 to 6.0 Mcs) with a multitude of accessories and spares. Gross weight 104 lbs.
Weight in use 8 lbs . NEW.......... \(\$ 100.00\) HANDY-TALKIES \& WALKIE-TALRIES HANDY-TALKIES \& WALKIE-TALKIES
The famous SCR-536 in stock, plus others, with The famous SCR-sib in stock, plus others, with
test equipnent and accessories.

\section*{TRANSMITTERS}

Wide variety of Westlnghouse, RCA, W.E., Melsa ner, Collins, Hallicrafter, etc. in stock in varled TDE, Westingh 300 to \(18,100 \mathrm{Kcs}\), CW, ICW \& Phone. For use on ships or land stations. In most input voltages.

\section*{RADAR}

Western Flectric and Haytheon Mfg. Co. equipment n brand npW contition and complete. brand- \(25 \mathrm{Mfd} \times 20,000\) Volts in the better Brand NEW in cartons. Low priced at...... \(\$ 12.95\) BULLETINS on request.

FILAMENT TRANSFORMERS

\section*{PLATE TRANSFORMERS} P410: \(800 \mathrm{VCT} / 40 \mathrm{MA}\), 760VCT/500MA

\begin{tabular}{ll}
P413: \\
P842: & \(500 \mathrm{VCT} / 150 \mathrm{MA}\), \\
& \(650 \mathrm{VCT} / 15 \mathrm{MA}\) \\
\hline
\end{tabular} P885: \(1620 \mathrm{VCT} / 400 \mathrm{MA}\) HV 1 NS \(825 \mathrm{VCT} / 190 \mathrm{MA}, 5 \mathrm{VCT} / 3 \mathrm{~A}\)
P450:2 \(\mathrm{x} 150 \mathrm{~V} / 940 \mathrm{MA}\)
P371: 246VCT/830MA
P345: \(1470 \mathrm{VCT} / 1.2 \mathrm{~A}, 3500 \mathrm{~T}\) P323: \(222 \mathrm{VCT} / \mathrm{P}^{2}\)
\(40 \mathrm{~V} / 2.2\)
COMBINATION TRANSFORMERS C965: \(78 \mathrm{~V} / 600 \mathrm{MA}, 6.3 \mathrm{~V} / 2 \mathrm{~A} .6\). \(45 \mathrm{~V} / 3.5 \mathrm{AmD}\)
\(800 \mathrm{VCT} / 50 \mathrm{MA}, 5 \mathrm{~V} / 3 \mathrm{~A}, 2 \mathrm{~S}\)
\(\mathrm{~V} / 2 \mathrm{~A}\). C055: \(525 \mathrm{VCT} / 75 \mathrm{MA}, 5 \mathrm{~V} / 2 \mathrm{~A}, 6.3 \mathrm{~V} / 1.8 \mathrm{~A}\) T102: \(1080 \mathrm{VCT} / 55 \mathrm{MA}, 2 \times 6 \mathrm{~V} / 2 \mathrm{~A}\)
\(\mathrm{C} 848: 600 \mathrm{VCT} / 155 \mathrm{MA}, 6.3 \mathrm{CT} / 5 \mathrm{~A}\) C848: \(600 \mathrm{VCT} / 155 \mathrm{MA}\), Ins. \(5 \mathrm{VCT} / 5 \mathrm{~A}\) c760: \(\begin{aligned} & 2.5 \mathrm{VCT} / 7 \mathrm{~A}, \ldots \mathrm{VCT} / 10 \mathrm{~A}, 65 \mathrm{~V} .1 \mathrm{~A}, 100 \mathrm{VCT} / \mathrm{IA} . \\ & 40 \mathrm{~V} / 1 \mathrm{~A}, 18 \mathrm{VCT} / 1 \mathrm{~A}, 18 \mathrm{~V} / .1 \mathrm{~A} .\end{aligned}\)
\[
\begin{aligned}
& \text { 40V } / 1 \mathrm{~A}, 18 \mathrm{VCT} / .1 \mathrm{~A} .18 \mathrm{~V} \text { 6V/.1A } \\
& 6.3 \mathrm{~V} / 1 \mathrm{~A}
\end{aligned}
\]

C367: \(5 \mathrm{VCT} / 3 \mathrm{~A}, 580 \mathrm{VCT} / 040 \mathrm{~A}, .0 \mathrm{~V}\)
 T378: \(2300 \mathrm{~V} / 004 \mathrm{~A}, 2 \mathrm{~V} / 2 \mathrm{~A}\) HV Ins.
C \(375: 1120 \mathrm{VCT} / 600 \mathrm{~mA}, 2 \times 5 \mathrm{VCT} / 6-2 \mathrm{~A}\) 6. \(6.3 \mathrm{VCT} / 3 \mathrm{~A}, 6.3 \mathrm{~V} / 300 \mathrm{MA}\) C434: \(40 \mathrm{~V} / .01 \mathrm{~A}, 6.3 \mathrm{~V} / 1.25 \mathrm{~A}\)
\(250 \mathrm{VCT} / 300 \mathrm{MA}, 5 \mathrm{VCT} / 6 \mathrm{~A}\).
651YT/150MA
V/4A, \(6.3 \mathbf{V} / 6 \mathrm{~A}, 2.5 \mathrm{~V} / 4.75 \mathrm{~A}\)
C82I: \(\begin{array}{r}1500 \mathrm{~V} \\ 3500 \mathrm{~T}\end{array}\)
C82I: \(1500 \mathrm{~V} / .4 \mathrm{~A}, 6.3 \mathrm{~V} / .6 \mathrm{~A}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}\)

\section*{f 1 PRECISION} (e. PRECISION
 \(\begin{array}{rrr}120 \\ 1201 & 1100 \\ 17300 & \text { Shlp type } \\ \text { In stock }\end{array}\) \(\begin{array}{llll}100000 & 150000 & 250000 \\ 120000 & 170000 & 220000 & 500000\end{array}\) Above Ea. 40 i Ten For \(\$ 3.50\) 1.000 .000 ohras.

\section*{MISCELLANEOUS}

15 Watt Power Supply Consists of xfmr \(600 \mathrm{rct} / 155 \mathrm{MA}\),

50 Watt Power Supply
 1-5T4, s.ocket. Prices.9.95
Filter Line Ge 100amp is \(2 \times 5 \mathrm{mfd}\) Filter Line Ge 100 amp w/2x5 mid
50 r 0.1 Cond. Operates on 110 rrlc Filter Line H hw. Clean up your \(\mathrm{BCI} \&\) TV1. Fasy to mount, uses
 RAY20A 311 300 \(07 / 5 \mathrm{MA}, 720 \mathrm{rat} / 200 \mathrm{MA}\) \(6.4 \mathrm{y} / 8.7 \mathrm{~A}, 6.4 \mathrm{~F} / 6 \mathrm{~A}, 6.5 \mathrm{r} / 3 \mathrm{~A}, 1.25 \mathrm{~s}\)

\section*{ \\ }
 (wis.

\section*{FILTER CHOKES}

\section*{\(15-29 \mathrm{HY} / 150 \mathrm{MA} \quad \$ 3.25: 8.5 \mathrm{HY} / 125 \mathrm{MA}\)} Dual \(7 \mathrm{HY} / 75 \mathrm{ma}\). \(1111 \mathrm{Y} / 65 \mathrm{MA}\)
7HY/ 140 MA
1.60 \(\begin{array}{ll:l}\text { 7HY/140MA } & 1.60 & \text { Dual } 2 \mathrm{HY} / 100 \mathrm{MA} \\ \text { DUAl } 2.5 H Y / 130 \mathrm{MA} & 1.25 & 116 \mathrm{HY} / 150 \mathrm{MA} \\ 01 \mathrm{HY} / 2.5 \mathrm{~A} & 1.45 & 35 \mathrm{HY} / 350 \mathrm{MA} \\ \text { DUal } & 5 \mathrm{HY} / 380 \mathrm{MA} & 1.00 \\ \text { Dual } 120 \mathrm{HY} / 17 \mathrm{MA}\end{array}\) \begin{tabular}{lr|l}
Dual \(.5 \mathrm{HY} / 380 \mathrm{MA}\) & 1.00 & Dual \(120 \mathrm{HY} / 17 \mathrm{M}\) \\
\(2 \mathrm{HY} / 200 \mathrm{MA}\) & .75 & \(5 \mathrm{HY} / 200 \mathrm{MA}\) \\
\(30 \mathrm{HY} / 20 \mathrm{MA}\) & .85 & \(2 \times 2.2 \mathrm{HY} / .55 \mathrm{~A}\) \\
\(2.1 \mathrm{HY} / 200 \mathrm{MA}\) & 1.20 & \(20 \mathrm{HY} / 300 \mathrm{MA}\)
\end{tabular} \(25 \mathrm{HY} / 75 \mathrm{MA} \quad 1.10 \quad 1.75 \mathrm{HY} / 225 \mathrm{MA} \quad 2.25\) \(\begin{array}{lll}\text { Tapped Choke } 2 \times 1.52 \mathrm{HY} / 167 \mathrm{MA} & 2.25 \\ .033 \mathrm{HY} / 7 \mathrm{~A} & \mathbf{2 . 5 0} \\ \text { dual } 1.52 \mathrm{HY} / 167 \mathrm{MA2.49} & \text { Dual } 10 \mathrm{HY} / 150 \mathrm{MA} & \mathbf{3 . 5 0} \\ \text { Dual } 2.2 \mathrm{HY} / 550 \mathrm{MA} & 5.95\end{array}\)
 \(\begin{array}{ll:l}3.5 \mathrm{HY} / 400 \mathrm{MA} & \mathbf{5 . 9 5} & : 1 \mathrm{HY} / 100 \mathrm{MA} \\ .275 \mathrm{HY} / 2 \mathrm{~A} & \mathbf{3 . 4 5} & \text { Send For } \\ & \text { Lists of Others }\end{array}\)

\section*{POWER EQUIPMENT}
- Fil. Trans. 110 v 60 cy in., 5vet/30A out. \(\$ 9.95\)
 3500 Test \(\$ 6.95\)
 \begin{tabular}{l}
\(40 \mathrm{MA} . \mathrm{c}^{2} \mathrm{cy}\) out \(690 \mathrm{vet} / 400 \mathrm{MA}\)........... \(\$ 10.95\) \\
In 110 v \\
\hline 6.95
\end{tabular} - In 110 v 60 cy out \(690 \mathrm{vct} / 400 \mathrm{MA}\)....... \(\mathbf{2 0 0 \mathrm { v } / 7 0 0 \mathrm { MA }}\) - In 110 v 60 cy out \(4 \mathrm{~V} / 16 \mathrm{~A}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}\) / in 110 v 60 cy out \(17000 \mathrm{~V} / 144 \mathrm{MA}\), w/choke \(26^{\circ} \mathrm{x}\)
 - In II5v 60 cy out Tapped to give 2750/2470/2240/@

\section*{SPECIAL TRANSFORMERS} - In \(440 / 220 / 110 \mathrm{v} 60\) cy 3kva out 115 v 25kv ins. In 220 v 60 cy . 05 kva out 5 vct 34 kv Test.... \(\$ 24.50\) In \(220 \mathrm{v} \quad 60\) cy out \(220 \mathrm{v} / 360 \mathrm{MA}, \quad 3 \times 2.5 \mathrm{v} / 5 \mathrm{~A}\). In 220 v 60 cy out \(10 \mathrm{vct} / 13 \mathrm{~A}, 7.5 \mathrm{vet} / 2.5 \mathrm{~A} \ldots . .55 .25\)
In \(220 \mathrm{v} / 440 \mathrm{v} 60\) cy out \(123 \mathrm{vct} / 2.85 \mathrm{~A} \ldots . . .57 .50\) In. \(240 \mathrm{v} 60 \mathrm{cy} 7000 \mathrm{vet} / 900 \mathrm{MA}\). \(4700 \mathrm{vct} / 750\) In \(210 / 15 / 20 / 25 / 30 / 35 / 240 \mathrm{v} 60\) cy out ilvet/35A. in \(220 / 44060\) cy 1 ph out \(123 v e t 2.85\) amp Test

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{|c|c|}
\hline Aeronautical Communications ment, Inc. & Squip- \\
\hline Alircraft Radio & 181,199 \\
\hline Allen-Bradley Co & . 50 \\
\hline Allen Co., Inc., L. B & 22. \\
\hline Allled Control Co., Inc & 50 \\
\hline Alled Radio Co & \\
\hline Allmetal Screw Products & \\
\hline Altec Lansing Corp & \\
\hline American Brass Co. & 17 \\
\hline American Chronoscope Corp. & 219 \\
\hline American Gas Accumulator Co & 20 \\
\hline American Lava Corp. & \\
\hline American Phenolic Corp. & 180 \\
\hline American Screw Co. & \\
\hline American Television \& Radio Co. & 201 \\
\hline American Time Products, Inc & \\
\hline Ampex Electric Corp. & 17 \\
\hline Anaconda Wire \& Cable Co & \(1 \%\) \\
\hline Arnold Engineering Co & 137 \\
\hline Art Wire \& Stamping co & 213 \\
\hline Astatic Corporation & 188 \\
\hline Audak Compuny & 256 \\
\hline ios Developm & \\
\hline
\end{tabular}

Hallantine Laboratorieb, lnc. 148
Barker \& Williamson, Ine. 175
Harry Corporation 001
Besuch-Kuss Company
1seaver Gear Works, Inc. 201

Isell Telephone Iaboratories
Bendix Aviation Corp
Eclipse-Pioneer Div.
Berkeley Si•ientific Co.
Birteher Corporation
Biwax Corporation
Boonton Radio Corp.
Borg Corp., George w.
Howser, Inc.
w.

Bradley Laboratories, Inc.
Brand \& Co., Wm.
Brush Development Co.
Burgess Battery Co.
Burlington Instrument Co.
Burnell \& Company

Cambridge Thermionic Corp.
Cannon Electric Development (o. 133
Capitol Radio Engineering Institute

Central Screw Co.
Cinch Manufacturing Cory.
Clarostat Mfg. Co., Inc.
Cleveland Container Co
Cohn Corporation, Sigmund
Coil-O-Matic Co.
Collins Radio Co.
.
Cormell-Dabller Electric Corp.
Coto-Coll Company, Inc
Cross Company, H.
Crose Company, H.
Cyclotron Specialties ('o.

\section*{Dalmo Victor}

Dano Electric Co.
Daven Company Third Cowrr Dial Light Co. of Americu. \(2 y^{4}\) Dow Corning Corp.
Driver-Harrls Co.
Dumont Electric Cory.

\footnotetext{
tisler Engineering Co., line
}

Elliott Mfg. ('s.
El-Tronics, Ime.
Erie Resistor Corp.
Fairchild Reco:ding Equipment Cory Fansteel Metallurgical Corp.
Federal Teleploone \& Radio Corp. Ferranti Electric, Inc.
Fidelity Chemical Products Corp.
Filtron Company, Inc.
Flader, Inc., Frederic.
Furst Llectronics
Fusite Corporatlon

General Ceramics \& Steatite Corp
222
General Electric Co.
Apparatus Dept.
\(.48,49\)
Chemical Dept.
.22, 23
Electronics Dept.
55, 183, 208
General Radlo Co.
GM Laboratories. Inc.
Goodmans Industries Ltd.
Gramer Company
Gramer Company
Graphite Metallizing Corp
Gray Research \& Development Co., Inc Green Instrument Co.

17

Hathaway Instrument C
Haydon Mfg. Co., Inc.
Heath Company
Heinemann Electric Co.
Melipot Corporation
Herlec Corporation
Hewlett-Packard Co.

Indlana Steel I'roducts Co. \(\qquad\)
Industrial Condenser Corp
Instrument Resistors Co.
International Nickel Co., Inc.
International Resistance Co.
I-T-E Circuit Breaker Co.

Jelliff Mfg. Co., C. O.
Johnson Company, E. F.191, 198
Jones Div., Howard B., Cincli Mfy. (oril). 217
Kahle Engineering Co.
........... 212
Kay Electric Co. 36

Kenyon Transformpr Co., Iuc.
Kester Solder Co.
Kinney Manufacturing Co.
162
21

Kights Co., James
Kollsnar Instrument Div., Square I)
Co. . .. 5

Lamphin Laboraturies, Inc. 225
Lavoie Laboratories
Leach Relay Co.
Lewis Engineering Co. 129
ord Manufacturb 203
Lord Manufacturing Co. 156

Machlett Laboratories, Ine.
Magnecord, Inc.
Mallory \& Co., Inc., \(\mathbf{P}\). IR.
Manning, Maxwell \& Moore, Inc..
Marsh Stencil Machine Co.
Graw-Hill Book Co. 193, 220
Measurements Corp.
Microcircuits Co.
217
Millen Mfg. Co., Luc., dumes.
20
Mines Equipment Co.
Minnesota Mining d Mfy. Co.
Mitchell-Rand Insulation Co., Inc
176

Mosinee Paper Mills Co.
Muirhead \& Co., Ltd.
Multicore Solders, Ltd.

Nationai Moldite Co.
lional Varnished Hroduct
New York Transformer Co.
Ney Company, J. M.

This unique packaged component is easily built into your apparatus. It has true decimal reading, and simple binary circuit with reliable automatic interpolation. Miniature size. Moderate price. Immediate shipment.

Send for Bulletin DCU-115
Berbeley Scientiflc Campany
sixth and wivin ave - richmond, califormia

ELECTRONIC INSTRUMENT CO., INC.
276 Nowport Street * Irooklyn 12, N. Y.

\section*{reproducers}

Microgrroove ascs Standard oiscs Vertical uscs

\section*{The standaral by Whieh Dthers Are Judged and Valued}

It is futile to buy the most modern records, if you do not give them the very BEST pick-up to bring out their built-in excellence! There is so much in present-day discs, that even a mediocre pick-up is bound to bring sontething out of them. However, to obtain the fullest results of which these discs are capable, they must be reproduced with the finest reproducer for that pur-pose-the ALDAX.

Remember, two singers may both be able to hit "high C". . . yet one will please the ear-the other not at all. There is much more than mere WIDE-RANGE to quality reproduction. ALDAX reproducers deliver not merely WIDE-RANGE, but also all vital factors essential to highest quality of musical perform ance and unequalled

EAR-ACCEPTABILITY
Write for complimentary pamphlet on life of normoment points

\section*{AUDAK CDNIPANY 500 Fifth Avenue New York 18, N. Y.}
\({ }^{\text {"C Creators of }}\) Fine ElectronicAroustical Apparatu: since 1915"

North American Philius Co., Ins

O'Nell-Irwin Mfg. Co

Palnot Co., The 179
Panoramic Radio Corp. 216
Paper Machinery \(\boldsymbol{A}\) Research, luc...... 208 1’aramount Paper Tube Curp. \(18 \%\)
Park Metalware Co., Inc.
Peerless Electricad Products Div., Altec
Lamsing Corp.
Polarad Electronics Co, 183
Potter \& Ifrumfield Sales Co 183

Potter Instrument Co., Inc. 18 202
Precision Paper Tube C'I. 195
Prento Kecording Corp. 62
I'rogressive Mig. Co. 172
Pyramid Llectrie Co.

Quaker City Gear Works, lue

Radio Corp. of America
\[
\text { Fourth Cover 37, } 190
\]

Liadio Receptor Co., Inc.............. 161,190
Railway Express Co. 168
Railway Lxpress Co., Air Ex, Dets Div.. 178 IRaytheon Manufacturing Co. 125
Hesistance Products Co, 221
Resistors, lnc 225
Revere Copper \& Brass, Inc............ 10
Richardson Company

Sangamo IClectric Co.
Ncientific Electric, Div. of "S" Corrmgated Quenched Gap Co.
Nhalleross Munufacturing Co. 177
Shure Brothers, Inc. 18
Sigma Instruments, Inc.
185
Signal Engineering \& Mfg. Co.
63
Simpson Electric Co.
Soldering Specialtias
Somerset Laboratories, Inc
Sonotone
Sorensen d Co., Inc
Sound Apparatus Co
specialty Battery Co
Spencer-Kennedy Laboratories, Ine.
Sprague Electric Co.
Stackpole Carbon Co.
Standard Eiectric Time Co
Standard Piezo Co.
Standard Telephones \& Cabies, Lid
Steward Manufacturing Co., D. M.
Stupakoff Cermic \& Mfg. Co.
Superior Electric Co
Superior Tube Co.

Tech Iaboratories, Inc.
Tektronix, Ine.
214
TEL Instrument Co., Inc.
Telemark Eiectronies Corp.
Times Fucsimile Corlb.
Titeflex, luc.
Toptlight Tape
Transicoil Corporation
Transradio, Itd.
Triad Transformer Mfg. Co.
Triplett Electrical Instrument Co.
Turner Compan.
C.H.F. Ketonator Co.

United-Carr Fastener Corl.

Varfex Corporation

Varian Associates
Vickers Electric Div., Vickers, Inc., a
Unit of The Sperry corb.
Virtoreen Instrument (0 .

Whrd Leonard Electric Co.
Watertown Mfg. Co.
Webster Spring Cord.
Weller Manufacturing Co.
Western Electric Co.
203

Westinghouse Electric Corp

Weston Electricai Lnstrument Corp..... z White Dental Mfg. Co., S. S.......... 154, 199 Whitehead stamping Co. 209

\section*{SEARCHLIGHT SECTION}
(Classified Advertising)

\section*{EMPLOYMENT}

Positions Vacant …..................226, 227
Selling Opportunities Offered............ 226
Positions Wanted 226
SPECIAL SERVICES
Contract Work
227
EQUIPMENT
(ITsed or Surplus New)
For Sale
.228-254
WANTED

Equipment
227

\section*{ADVERTISERS INDEX}

Acorn Electronics Corp. 251
Aircraft Radio Industries, Inc 246
American Electrical Sales Co., Inc. 246
Atlantic Industrial Co. 246
Bell Aircraft Corp. 226
Rendix Aviation Corp. Radio Div 226

Blan 250

Brooks Inc., R. D. 251
Communications Equipment Co. ...228-229. 254
Dubin Electronics Co., Inc.254

Drillick Sales Co. 251
Idico of New York, Inc. 242
Electronic Service Corp. 248, 252
237Electronic Surplus Brokers.

EPCO 240

Ereco, Dick Rose.

251

Export Factors 248
French-Van Breems Inc................... 249
Goodyear Aircraft Corp. 226
Green Gould
Ilatry \& Young
246
Tery 248
Hi-Mu Electronics 227
[nstrument Associates 230-231
Klein. Manue 248
L.ee Products, Jeff 252
rectronic Research Laboratories 253
Terı Laboratories, Inc. 251
Liberty Electronics. Inc 253
T.ong Island Radio Co................................. 252

Maritime Switchboard 234
Mogull Co.. Inc., Alexander. 250
Niagara Radio Supply Corp.............. 235
Opad-Green Co. 232
Peak Flectronics Co...................... 233
Perry-Briggs Co. 252
Powell, Harold H. 246
Powertron Flectrical Equipment Co...... 246
Precision Electrical Instrument Co...... 248
Radio Ham Shack Inc.
Radio Shack Corp.
Reliance Merchandising Co
Servo-Corporation of America........... 227
Servo-Tek Products Co., Inc............... 236
Sharples Corp. Research Laboratories. The 226
Sliriro Trading Co.
TAJ
Technical Index Service
. 227
Tornheim, H .

Veisalco, Inc 250
Wells Sales Inc. 241
Westinghouse Electric Corp.. 227
Weston Laboratories 248
Vinters Radio Iah. Arthur..................... 251

FEATURES

FREQUENCY RANGE: 20 cycles to 20 KC .
ACCURACY: Accuracy is \(\pm 0.1 \mathrm{db}\), from 20 cps to 20 KC .

OUTPUT LEVELS: Ranges of output level: \(+\mathbf{4}\) to -110 db and -10 to - 124 db in steps of . 1 db.

ACCESSIBILITY: All components accessible from front of rack panel for ease of servicing.
IMPEDANCE RANGES: (a) Sources Section -600-150 ohms internally terminated.
600-250-150-30 ohms unterminated.
(b) Load Section-600-250-150-16-8-4 ohms.

\section*{AUDIO MEASUREMENT}

PROBLEMS
Daven's Moderate Priced Transmission Measuring Set

This is the instrument for which you have been waiting! For accuracy and efficiency, the Daven Type 11 A gain set, will fill your bill. Incorporating many of the features employed in more expensive models, this unit may be used to make all the precise measurements required by the FCC. This is a direct reading instrument, entirely eliminating time-consuming computations.

A new design feature, permits the servicing and inspection of all components from the front of the panel, with a maximum of ease and in a minimum of time.

It is no longer necessary to use makeshift equipment for determining the transmission characteristics of audio systems. The Type 11 A gain set has been priced low enough to put it within the reach of the most limited budget.

\section*{APPLICATIONS}
- Audio gain measurements.
- Audio loss measurements.
- Measurements of matching and bridging devices.
- Complex circuit measurements.
- Measuring mismatch loss.
- Frequency response measurements.
- Checking cable loss.
- Telephone repeater data

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

\section*{. . . the five most popular kinescopes from one dependable source}

RCA now has a popular type of kinescope to accommodate television receiver designs in practically every class and price range.

Concentrated production on these five accepted types results in longer production runs, which in turn, make possible lower cost, more uniform, and better quality tubes for our customers.

All five types are currently being mass-produced at the famed RCA tube plant in Lancaster, Pennsylvania. In addition, a large new plant is under construction at Marion, Indiana, where the pro-
duction will be centered on the RCA-16-inch metal-cone kinescope.

RCA Application Engineers are ready to cooperate with you in applying these kinescopes and their associated components to your specific designs. For further information write RCA, Commercial Engineering, Section 42IR, Harrison, N. J.

\footnotetext{
RCA, LANCASTER, PA.
}

\section*{QUALITY COILS}

\section*{TO}

\section*{YOUR SPECIFICATIONS}

We manufacture quality coils for the radio and electronics industry. Universal, bank-wound, universalprogressive or solenoid coils made to JAN specifications. Let us know your requirements: We will quote promptly.

\section*{FUGLE-MILLER LABORATORIES}

\section*{The Latest News of Science Now Yours in One Big Magazine!}

Now at last you can keep up with the new inventions and discoveries of science that affect you and your industry. Every month Science Illustrated is filled with new ad vances in vital fields... Electricity, Construction, Aviation, Atomic Energy, Radio, Synthetics, Mining, Chemistry, Electronics, Home Appliances, etc.
Science Illustrated shows you new products and designs and explains why, when and how they were made. Every monthly issue is packed with 30 complete, authentic articles and 140 photographs, diagrams.

\section*{ORDER NOW AND SAVE \$4!}

You can order 36 big issues of Science Illustrated (3 full years) for ONLY \(\$ 5\) ! This special rate saves you \$4 over the one-year price. We'll start your subscription with the big new issue now on the press-if you order within 10 days!
MAIL THIS ORDER FORM TODAY!

National Moldite Co
National Varnished Products Corp
National Sulcanized Fibre Co
Newark Electric
Ney Co., J. M.
North American Philips Co., Inc.
Nothelfer Winding Laboratories

O'Neill-Irwin Mfy. Co.
Palnut Co.
Panoramic IRadio Corp
Paramountinery and kesearch, ine
Park Metalware Cube Corp
Penn Rivet and Muchine Co.
Philce Corporation
Polarad Electronles Co.
Polarad Electronles Co.
and De
Co., Inc. \(\begin{gathered}\text { Inotter } \\ \text { Instrument } \\ \text { Co., } \\ \text { Inc. }\end{gathered}\)
I'recision Apparatus Co., Inc
Precision Paper Tube Co.
Premier Metal Etching Co.
Press Wireless Mfg. Co., In
Iresto Recording Corp. Co
Progressive Mfg. Co.
jrogressive Mig. Co.
Pyroferric Co.

\title{
240
}

Quaker City Gear Works, Inc.

Science Illustrated
Scientilic Electric, Div. of "S'" Corru-
grott, lne., llermon Hosmer.
Ghalleross."Manufacturing Corp.
204
shatice Mas Manufacturing Corp.
Shure ibrothers, Inc.
Sigma Instruments, Inc
Signul Engineering and Mfg. © \(\dot{C} \boldsymbol{u}\).
Simpson Electric Co
Sisiakrait Coctric Co.
Solar Manufacturing Corporation
Soldering Specialties
Sorensen and Co., inc
Specinlty Battery Co.
Spellman Television Co., Inc \(221^{7}\)
Sprague Electrle Co.
tackpole Carbon Co.
Standard Preturus Corp.
Stantard Pressed Steel Co
Standard Teleploones and Cables, Lid.
Stax Expansion Produets Co., Ine.
Steward Mfg. Co., D. M
Lid. Stewart Mfy. Corp.,
Struthers-Dumn, Inc.
Stupakoft Ceramic and Mig. Co. Sylvania Electric I'roducts........

246, Synthane Corporation \(\qquad\)

Taylor Fibre Co. 164
Tech Laboratories
Technitrol Engi
Tel-Instrument Co., Ine
Thompson Corp., George \&.
Titeflex, Inc.
Turner Co.
rurner co.
145
611
170
\(23 \frac{1}{1}\) \begin{tabular}{l}
237 \\
225 \\
\hline 23
\end{tabular}
ynthane Corporation ucts. Ine
16a, 16b

Victoreen Instrument Co
Vitamite Co

> Examine these 4 recent books from the MIT RADIATION LABORATORY SERIES 10 Days Free

\section*{THEORY OF}

\section*{SERVOMECHANISMS}

Vol. 25. Edited by H. M. JAMES, Purdue Univ.; N. B. NICHOLS, Taylor Instrument Co.; and R. S. PHILLIPS, Univ. of Southern Calif. 375 pages, illus., \(\$ 5.00\)
Here is a coherent description of the theory and mathematies involved in standard methods of servomechanism design, showing application of current techniques, and providing an introduction to a new technidue. It covers attenuation vs log-frequency plots, phese-angle ve log attenuation vs. \(10 g\)-frequency plots, phase-angle vs, log-
frequency plots-and explains the later method which depends upon minimization of rms error with which the mechanism produces a desired result in the presence of electrical noise and other disturbances.

\section*{TECHNIQUE OF}

MICROWAVE MEASUREMENTS
Vol. II. Edited by C. G. MONTGOMERY, Associate
Professor of Physics, Yale University. 937 pages, illus., \(\$ 10.00\)
The four sections of this book profle a thorough analysis of the methods and apparatus deemed most useful in measuring the projerties of nicrowaves and designing circuits in which they are to be used. A full description of the measurable quantitles of microwaves provides sound suitable for measuring purposes and the means for detecting energy at microwave frequencies. Methods for measuring wave lengths, impedance, frequency, and attenuation are fully described.

\section*{PULSE GENERATORS}

Vol. 5. G. N. GLASOE, Rensselaer Polytechnic Institute; and J. V. LEVACQZ, Johns Hopkins Univ., 737 pages, \(\$ 9.00\)
This detailed discussion of the techniques of pulse generation presents a comprehensive survey of the rapid advance ments made in this field. It covers the theoretical and practical methods of pulse-generator design, including hard-tube pulsers, line-type pulsers, and pulse transformers. Pulse powers in the range of 100 watts to 20 megawatts and pulse durations from .03 to 10 microsec onds are considered, covering pulse formation, pulse power, circuit efficlency, etc

\section*{MICROWAVE RECEIVERS}

Vol. 23. Edited by S. N. VAN VOORHIS, Assoc Professor of Physics, Univ. of Rochester. 611 pages, illus., \(\$ 8.00\)
This analysis of wide-band receivers provities a thorough description of the rarious component circuits and equip ment-individual circuit types, duplexers, microware mixers, local oscillators, automatio frequeney control sys tems, 1-f input circuits, amplifers, and detectors. With assembly, testing, and maintenance of receivers, offering analyses of actual recelvers which contain examples of important circult combinations.

\section*{SEND NO MONEY}

\section*{Microgroove LM-79}

\section*{Vertical Studio 99}

Lateral Studio 81 (standard dises)

eeThe Standard by Which Dthers Are Judged and Valued"
T HERE is so much in the new discs, that even a mediocre pickup is bound to bring something out of them. However, to obtain the fullest results of which these discs are capable, they must be reproduced with the finest reproducer for that purpose-the AUDAX L.M TUNED-RIBBON reproducer. Of course, these latest AUDAX LM reproducers operate with the extremely low point-pressure and special stylus-point required by the new discs.
Two singers may both be able to hit "high C" . . . yet one will please the ear, the other not at all. There is nuch more than range to good reproduction! QUALITY, which is determined by all-important factors well recognized in AUDAX construction, should never be compromised . . . for, where is the point in buying the most modern new players and records, if you do not give them the very BEST pick-up to bring out their built-in excellence! True, present-day records are remarkably faithful to the original performance, but . . . it requires an ultra-sensitive-an ultra-fine reproducer to bring out the elaborate detail and beauty-EVERYTHING—that has been put into these discs.

STUDIO 99
"Permanent" points,* whether sapphire, diamond or metal, keep their original shape for only a limited number of plays . . . then they progressively destroy record grooves. TUNED. RIBBON models permit easy stylus changing by the owner himself. Very important!
* Write for complimentary pamphlet on the Life of Permanent Needles.

\section*{AUDAK CDMPANY}

500 Fifth Avenue
"Creators of fine electro-acoustical apparatus since 1915"

\section*{EARCHLIGHT SECTION} (Classified Advertising)
MPLOYMENT
Positions Vacant252, 253, 254
Selling Opportunities Offered............. 252
Positions Wanted. 252
SPECIAL SERVICES 254
Building . 254
NOTICES
Legal
EQUIPMENT
(Used or Surplus New)
For Sale
255.285

Equipmen
ADVERTISERS INDEX 278
Acorn Electronics Corp..................... . . . 278
Airborne Instruments Laboratory, Inc...... 254
Aircraft kadio Industries Inc............... 254
Air King Products Co., Inc................. 2724
American Electrical Sales Co., Inc.......... 278
Amperex Electronic Corp.......................... 252
Bell Aircraft Corp.
Bendix Radio Division.
Blan
Brooks Inc.............
Buffalo Radio Supply
Comet Electronic Sales Co.
Communications Devices.......
Communications Equipment Co.................. 28.283
Compass Communications Co............ 282
Crosley Div, Avco Mfg. Corp............ . 252
Edlie Electronics Inc.
Edlie Electronics Inc. 264
Electro Impulse Laboratory 281
Electro Sales Co..
273
267
Electronicraft, Inc.................................. 25
Excess Inventory Corp
Excess Inventory Corp...........
Federated Purchaser Inc
Freeman \& Co., Sammel.
Goodyear Aircraft Corp.
Heath Company
Hi Mu Electronics
Instrument Associates.
Interstate Appliance Co.
Lectronic Research Labs
Leeds Radio Co.....
Life Electronics Sales.
Marco Electronics Inc.
Maritime Switchboard.
Martin Co., Glenn L.
Maxson Corp., W. L
Melpar, Inc.
National Geopliysical C....................... 253
National Geophysical Co., Inc . \(276,278,280\),
National Unstrument Co.
National Union Radio Corp
Niagara Radio Supply Corp. .
Opad-Green Co.......
Powertron Electrical Equipment Co.
Precision Electrical Instrument Co
Radio Ham Shack, Inc.
266
274
Radio Shack Corp...
Railway Communications Inc
Rathway Communtations Inc
Reliance Merchandising Co..
Ruoff. I. R.
San Francisco Radio Supply Co
Senco Radio Inc
Senco Radio Inc...............
Servo-Tek Products Co.,
Sbips \& Power Co
Spectra Products.
Sperry Gyroscope Co.
Standard Radio Electrical Products.
Star Electronics Corp.
Tab
256,
Telemarine Communications \(\mathrm{Co} .\).
Thomas Mfg. Co.
Universal General Corp.
Veterans Salvage Co., Inc
Village Radio Equip. Co..
Westinghouse Electric Corp.
Vinters Radio Lab.

\section*{EW!. \\ R. F. AND VIDEO COMPONENTS FOR PRECISE CONTROL}

In keeping with the Daven policy of continually dereloping new components to meet the electronic industry's new needs, we are once again first to offer video and radio frequency fixed and variable attenuators. These units embody the characteristics which have come to be synonymous with the name DAVEN . . . excellence of workmanship, top-notch desigr, finest materials and accurate, eficient performance.
R. F. FIXED ATTENUATORS TYPE RF-155

CIRCUIT: \(\pi\) network. IMPEDANCE: 50 ohms. LOSS: 5 to 20 DB.
R. F. Variable attenuators

CIRCUIT: \(\pi\) network. IMPEDANCE: 50 ohms.
NO. OF STEPS: 4 (push-buttons.)
RESISTOR ACCURACY: \(\pm 5 \%\) at D.C.
IMPEDANCE ACCURACY:Terminal impedence will not vary more than \(\pm 2 \%\) from 0-225 MC. Slightly greater variation to 216 MC .
LOSS:
Type RF. 540 - 1, 2, 3, 4 DB (10 DB total. Type RF-541-10,20,20,20 DB (70 DB total.)

\section*{SUGGESTED APPLICATIONS}
- In signal generators.
- In field strength measuring equipment.
- Nucleonic and atomic research.
- Television receiver testing.
- Wide-band amplifiers.
- Pulse amplifiers.
- Any application where attenuation of UHF is required.

\section*{VIDEO FIXED ATTENUATORS}

\section*{TYPE V-154}

CIRCUIT: "T" network or equivalent.

IMPEDANCE: 75 ohms. LOSS: 1 to 20 DB.

\section*{VIDEO VARIABLE ATTENUATORS}

SERIES V-250 CIRCUIT: "T" network. IMPEDANCE: 75 ohms. RESISTOR ACCURACY: \(\pm 1 \%\)
at D.C.

\section*{FREQUENCY}

CHARACTERISTICS: Essentially flat to 10 MC .

\section*{NO. OF STEPS DB PER STEP TOTAL DB}

\section*{250 \\ 251 \\ 252 \\ 253}

TYPE

These units will be supplied with co-akial connectors or regular terminal boards with lugs.

NOTE: A video push-butron control, similar to the R.F. push-button unit shown, is available. Additional information will be furnlshed on request.

\section*{SUGGESTED APPLICATIONS}
- In television video circuits where a wide frequency range withou change of impedance is of special importance.
Wide-band amplifiers.
Pulse amplifiers.

NEWARK 4, NEW JERSEY

\title{
... presents three new types of major importance
}
- Here are three new miniature tubes.. additions to RCA's large family of miniature types... that have particular significance in FM receiver design and voltage reference applications.
- RCA 6BA7 and 12BA7 are pentagrid converters-alike except for heater ratings. They have high conversion gaii: 1 , because of their high conversion transconductance; and a separate connection for direct grounding of the suppressor. These features in combination with the short in ternal leads characteristic of miniature tubes, result in efficient operation of either type in the 88 to 108 -megacycle FM band. In addition to realizing substantial gains at the higher frequencies, the RCA 6BA7
and 12BA7 contribute a highly favorable sígnal-to-noise ratio.

RCA-5651 is a voltage reference tube of the cold-cathode, glow-discharge type. It maintains a dc operating potential of 87 volts, has an operating current range of 1.5 to 3.5 ma ., an operating characteristic essentially independent of ambient temperature, and a voltage stability at any current level of better than 0.1 volt.

RCA Application Engineers will be pleased to consult with you on the incorporation of these new miniatures in your equipment designs. For further information write RCA, Commercial Engineering, Section KR40, Harrison, N. J.
the fountainhead of modern tube development is rea

RATINGS AND CHARACTERISTICS 6BA7 and 12BA7 Pentagrid Converiers Heater Voltage (ac 6BA7 I2BA7 \(\begin{array}{llll}\text { or dc) } & 6.3 & 12.6 \text { Volts }\end{array}\) Heater Current . . 0.3 0.15 Ampere Characteristics - Separate Excitation* Plate Voltage : \(100 \quad 250\) Volts
Grid No. 5 and InterPlate Voltage Grid Internal shield. Connected directly to ground Grids No. 2 and
No. \(4 \cdots 100\)... 100 Volts Grid No. \(3: \therefore-1.0 \quad-1.0\) Volts Grid No. I Resistor \(0.02 \quad 0.02\) Megohm
(Approx.) Conversion TransconConversion Transcon-
ductance (approx.)
dutan
Grid No. 3 at. - 20
volts. ... \(3.5 \quad 3.5\) Micromhos
\(\begin{array}{llll}\text { Prids Nas. } 2 \text { and } 4 & 3.6 & 3.8 & \mathrm{Ma} \text {. }\end{array}\)
Current. \(10.2 \quad 10 \mathrm{Ma}\). \(\begin{array}{lll}\text { Grid No. I Current. } 0.35 & 0.35 \mathrm{Ma} \text {. }\end{array}\) Total Cathode Current \(14.2 \quad 14.2 \mathrm{Ma}\). * Characteristics correspand very closely with those obtained in a self-excited
cuit operating with zero bias. 5651 Voltage-Reference Tubè DCStarting Voltage Min. Av. Max. Volts DC Operating Voltage \(82 \quad 87 \quad 92\) Volts DC Operating Current 1.5 - \(\quad 3.5\) Ma. Regulation (1.5 to 3.5 Ma.). - - 3 Volts Stability*
Ambient Temperature
Ambient 1
Range. -55 to \(+90^{\circ} \mathrm{C}\)
*Defined os the maximum voltage fluctuation at any current level within operoting current range.```

[^0]: GLEVELAND - DETROIT - INDIANAPOLIS • MILWAUKEE - NEW BRUNSWICK, (N. J.) - NEW YORK - PHILADELPHIA • ROCHESTER • ST. LOUIS

[^1]: * Now with Machlett Laboratories, Inc. Springdale, Connecticut

[^2]: --GET YOUR COPY NOW-USE THIS COUPON---
 Federal Telephone and Radio Corporation
 Publication Dept. E-13, 67 Broad Street
 New York 4, N. Y.
 I enclose..dollars. for which send me
 copies, at $\$ 3.75$ per copy. *
 Name
 Address
 City Zone \qquad State
 For 12 or more copies, sent in bulk to a single address, the price per copy is $\$ 3.00$.
 copy is $\$ 3.00$.

[^3]: Made in U.S.A. by MINNESOTA MINING \& MFG. CO., Saint Paul 6, Minn. also makers of other "Scotch" Pressure-Sensitive Tapes, "Underseal" Rubberized Coating, "Scotch lite" Reflective Sheeting, "Safety-Walk" Non-Slip Surfacing, "3M" Abrasives, "3M" Adhesives

 General Export: DUREX ABRASIVES CORP., New Rochelle, N. Y. in Conodo: CANADIAN DUREX ABRASIVES iTD., Brontford, Ontorio

[^4]: PRICE
 $\$ 200.00$

[^5]: WE ALSO MSNUFACTURE LIQUID PUMPS, CLUTCHES AND BITUMNOUS DISTRIBUTORS

[^6]: TELEVISION ENGINEERS and CONSULTANTS to the Nation's leading Television Stations

[^7]: Quality components including bi-megobm resistors-sub-miniature ubes - and complete line of G-M counter tubes avatlable without delay. Write for information and data sheers.

[^8]: *: wiulect to priur urders.

[^9]: COMPLETE LINE OF
 AIRCRAFT THERMOCOUPLES

[^10]: D.C. MICROAMMETERS

 ## R.F. MILLIAMMETERS

 $0-115 \mathrm{Ma} 33 /{ }^{3}$ ". Weston 425
 .12 .100
 12.00

 ## PRECISION

 ## PORTABLE INSTRUMENTS

 single or multi-range
 D.C. Microammeters, from 5 ua full sale Thermo-couple Mlliammeters, from 1.5 Ma. Thermo-couple voltmeters.

 Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.

