Buy smart. Check prices and specs of test instruments in the easy way. From voltmeters to counters, the charts in this issue list more than 2500 instruments. But there
is more than just a list. The impact of digital and linear ICs and of automated testing on new test methods and instruments are also explored. For the full story, turn to p. T1.

hp 140A - The Scope System that gives you

PRECISION DC \& AC MEASUREMENTS

Zero drift, calibrated offset, DC cou-

hp 140A: PERFORMANCE IN ANY DIRECTION 20 MHz Wideband - High-Sensitivity, no drift - 150 ps TDR • 12.4 GHz Samp. ling - Variable Persistence and Storage
pled. $50 \mu \mathrm{~V} / \mathrm{CM}$ the versatile hp 140A Scope System gives you a choice of 17 plug-ins-five of them especially designed for high sensitivity measurements. For example, the 1406A vertical plug-in offers high $50 \mu \mathrm{v} / \mathrm{cm}$ sensitivity with no dc drift-plus precision calibrated dc offset for extreme magnification.

With the hp calibrated offset feature, the 1406A gives you all the ad vantages of a dc and ac voltmeter-four-digit readout, auto decimal placement, better than 0.5% accuracy. As a dc voltmeter, the 1406A offers you the additional advantages of no drift in the measurement instrument, and the ability to observe and measure any ac riding on the dc voltage. With these capabilities, you can make measurements never before possible. For example, you can simultaneously display a 10 V dc output at $50 \mu \mathrm{v} / \mathrm{cm}$ (giving a magnification of 200,000), measure signal levels accurately to four digits, see short term dc drift in microvolts, and view all ac ripple-an impossible measurement with a meter. (CRT dis play above is at $50 \mu \mathrm{v} / \mathrm{cm}$ at 8.500 dc offset.)

The hp 1406A plug-in operates in two modes: as a dc coupled, no drift differential amplifier with 80 dB common mode rejection, or as a single ended amplifier with no dc drift and large offset capability. Maximum sensitivity is $50 \mu \mathrm{v} / \mathrm{cm}$. The 400 kHz bandwidth may be reduced with a bandpass filter to 5,25 or 100 kHz , eliminating high frequency noise in the unused bandwidth. There are five offset voltage ranges from $\pm 0.1 \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$.

Price of the 1406 A is $\$ 850$. Time bases start at $\$ 225$. The 140 A mainframe is $\$ 595$. The Variable Persistence and Storage 141 A main. frame, $\$ 1395$.

Ask your hp Sales Engineer for brochure (Data Sheet 140A) with specs on the 140A high-sensitivity dc \& ac measurement systems. Hewlett-Packard. Palo Alto, California, 94304. Phone 415 326-7000. In Europe: 54 Route des Acacias, Geneva.

087 /19 -

IRC Metal Glaze resistors now offer you a combination of proved reliability and economy that just can't be matched. You can upgrade your circuit designs and still keep the lid on costs.

- RELIABILITY PROVEN DESIGN. A design so conservatively rated that even at twice rated load, performance still far exceeds applicable MIL requirements.
- RELIABILITY PROVEN BY TESTS. After more than 4 million unit hours of testing, estimated maximum failure rate is $.02 \% / 1000$ hours, full load @ $70^{\circ} \mathrm{C}$, at 60% confidence. Failure is defined as $\Delta \mathrm{R}> \pm 4 \%$.
- RELIABILITY PROVEN IN USE. Millions used in a wide range of applications. No in-circuit failurecatastrophic or otherwise-has ever been reported.
Metal Glaze resistors offer other benefits, too: indestructible thick-film resistance element, plated-on copper
end cap, high-temperature soldered termination and a smooth, tough molded body that resists solvents, corrosion, and mechanical abuse.
For top resistor performance without any cost penalty, specify IRC Type RG. Write for data, prices, and sample. IRC, Inc., 401 N. Broad St., Phila., Pa. 19108.

CAPSULE SPECIFICATION

WATTAGE:	1/W W © $70^{\circ} \mathrm{C}$	$1 / 2 \mathrm{~W}$ © $70^{\circ} \mathrm{C}$
RESISTANCE:	51Ω thru 150K	10Ω thru 470 K
TOLERANCES:	$\pm 2 \%, \pm 5 \%$	$\pm 2 \% . \pm 5 \%$
TEMP. COEF.	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
IRC TYPE:	RG07	RG20

king me!

Outwit Your Data Simulation Problems

Crown the Datapulse Model 201 16-Bit Data Generator with a pulse generator and solve your data simulation problems economically.

For only \$680.00, the 201 provides these superior features: 16 -bit cycle lengths, bit rates to 10 MHz (from an external clock), NRZ outputs to 10 V , variable baseline offset to $\pm 10 \mathrm{~V}$, and continuous or command recycle.

To king the 201 simply add a Datapulse 101 Pulse Generator - \$395.00 - or any other async-gated pulse generator with the output characteristics you need.* The result: a system capable of producing variable parameter RZ formats - ideal for a host of simulation tests on components, circuitry, memory elements, or data transmission links - the perfect programmer for developing time related sequential signals to command systems operations.
*Datapulse Model 111 for ultra-fast linear rise times; Datapulse Model 108 for 50 V outputs; Datapulse Model 110A for fully controllable fast pulses, etc.

Interconnect several 201's for longer serial words or additional parallel channels. Then set up programs for core testing, drive any gate array from zero to +10 V , produce true complimentary outputs to drive adders, etc.

There's one more thing about the 201. It's small. Two units can be mounted in just $31 / 2$ inches of rack panel height.

If the 201 doesn't solve all your data simulation problems, pick up a copy of our catalog! We offer more off-the-shelf digital test instrumentation than any other manufacturer in the world, so if you don't have our catalog, do something about it!

Your move!

NEWS

13 News Scope
17 Solid-state microwave power growing up
Conference explores advances with LSA and Gunn-effect oscillators.
22 Infrared horizon mapping urged in space
Honeywell asks U.S. backing for project to help astronauts navigate.
26 Sound-scanned semiconductor emits light
Electron excitation and lattice vibrations produce glow at pn junctions.
29 Washington Report
33 Post Office looks to voiced mail-sorting.
36 TV set plays prerecorded film Electron-beam scanning attachment extracts sound and color images.
38 Ape's panting gauged to 300 picostrains.
40 Letters
45 Editorial: Let's help the Post Office solve its problems.

Test Instrument Reference Directory Pages T1-T116

TECHNOLOGY

50 Speed up binary-to-decimal conversion by using a simple design approach that minimizes the number of logic blocks you'll need.
56 Three ways to read distortion range from approximation to precise evaluation of all intermodulation products. Choose the method that suits your system best.
62 Dielectric constants are quickly found with this simple nomogram. Twelve of the most common foam plastics are tabulated.
66 Ideas for Design

PRODUCTS

84 Test Equipment: Instant X ray uses Polaroid film to give insight on your project.
90 Semiconductors: Resonant-gate transistor spans 3 to 30 MHz .
92 Components
96 Microwaves
95 Systems
98 Materials

Departments

76	Book Reviews	102	New Literature
99	Design Aids	108	Advertisers' Index
100	Application Notes	112	Designer's Datebook

Reprints on special Reader Service card facing p. T114
Regular Reader Service card inside back cover

[^0]

Measure Picoamp Current Signals

With bias current drift of only $1.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}\left(i_{b}\right)$ and noise of only $0.1 p$ A the 147 can resolve signal currents as low as one picoamp. Voltage drift errors ($e_{o s} / R_{r}$) are negligible for R_{f} greater than 10^{7} ohms. flame detectors, phototubes, ion gauges, and semiconductor tests are typical applications.

The Model 147 is aimed at solving more difficult application problems where moderate performance, lower cost operational amplifiers are just not adequate. With common mode rejection of 300,000 and voltage drift of $2 \mathrm{uV} /{ }^{\circ} \mathrm{C}$, the 147 solves the limitations of present day FET amplifier designs and sets new performance standards for FETs. Bias current has also been improved - 5pA typical and 15pA maximum at $25^{\circ} \mathrm{C}$ - reducing current drift to $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$.
The Model 147 approaches the performance of chopper stabilized amplifiers and yet has lower price, smaller size, lower noise and can achieve input impedance of 10^{12} ohms when connected non-inverting.
Write for 4 -page brochure giving complete specs and application notes on the Model 147 - We'll also send information on other models for use where dollars count more than performance.

SPECIFICATIONS

Open Loop Gain, min. Rated Output, min. Unity Bandwidth Full Power Response, min. Slewing Rate, min. Common Mode Rejection Input Impedance, C.M. Voltage Noise Current Noise
10^{6} $\pm 10 \mathrm{~V} @ 10 \mathrm{~mA}$ 10 MHz 150 kHz $10 \mathrm{~V} / \mu \mathrm{sec}$ 300,000 $10^{12} \Omega, 3 \mathrm{pF}$ $3 \mu \mathrm{~V}, \mathrm{p}-\mathrm{p}, \mathrm{DC}$ to 1 Hz $0.1 \mathrm{pA}, \mathrm{p}-\mathrm{p}, \mathrm{DC}$ to 1 Hz

	Model A	Model B	Model C
Bias Current, max.*	30 pA	15 pA	15 pA
Current Drift, max.*	$3 \mathrm{pA} /{ }^{\circ} \mathrm{C}$	$1.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$	$1.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$
Voltage Drift, max.			
(+10 to $\left.+60^{\circ} \mathrm{C}\right)$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Price $(1-9)$	$\$ 110$.	$\$ 120$.	$\$ 135$.
*At $25^{\circ} \mathrm{C}$, doubles each $10{ }^{\circ} \mathrm{C}$			

Inkless recording isn't a"record-breaking" technique.

It's designed not to be.

The exclusive new inkless writing option for the Hewlett-Packard $10^{\prime \prime} 7100$ series or the $5^{\prime \prime} 680$ series strip-chart recorders won't "break" your records by tearing, smearing or running out of ink when you're not around to notice it.

Instead, it takes the uncertainty out of stripchart use by offering reliable, long-term recording-without interruption or constant attention - with economical and maintenance-free operation. This new low-

voltage electric writing method gives you sharp and clear printing on unique electrosensitive paper-and with instant start-up. Call your local HP field engineer or write Hewlett-Packard, Palo Alto, Calif. 94304. Europe: 54 Route des Acacias, Geneva.

11702
HEWLETT hp PACKARD
GRAPHIC RECORDERS

NEW GERMANIUM DEVICES FOR HIGHPERFORMANCEDESIGNS

1.6 dB NF DEVICE WITH TINY PRICE TAG SOLVES RF FRONT END NEEDS

A NF as low as 1.6 dB at an operating frequency of 200 MHz makes the MM5000-02 germanium transistors just about the quietest, low-cost amplifier series you can design into your sensitive, front-end RF circuits . . . and with 100 -up prices as low as $\$ 2.00$, the best value. Nothing subdued about its performance - it furnishes up to 24 dB minimum power gain at 200 MHz , out-performing virtually every other low-priced RF unit you can call into play!

Superior performance in all HF operations is ensured through a collector-base time constant as low as 3.5 ps (max) and collector-base capacitance of 0.6 pF (\max). These dynamic performers also feature an 800 MHz minimum f_{T}.

TYPE	LOW NOISE @ 200 MHZ	KIGH GAIN @ 200 MHZ	PRICE $(100-U P)$
MM5000	1.6 dB (max)	24 dB (min)	$\$ 4.75$
MM5001	2.0 dB (max)	22 dB (min)	2.80
MM5002	2.2 dB (max)	20 dB (min)	2.00

Motorola's exclusive Selective Metal Etch \ddagger process permits greater freedom of geometry design and better definition and closer spacing of emitter/base areas to gain optimum device performance.

Production quantities of the TO-72 packaged (4-lead, TO-18) units can be delivered immediately.

ADE TRANSISTOR STRUCTURE DOUBLES YOUR "BRUTE POWER"

It's almost like having two power transistors for the price of one in demanding power conversion and high voltage switching applications!

The advanced ADE \dagger (alloy diffused epitaxial) process upgrades performance capabilities by incorporating these significant advantages:

- low resistivity diffused base for high h_{FE}
- aluminum doped emitter alloyed into die for sustained h_{FE} @ high I_{C}
- wide base width for good safe area The diffused base structure minimizes switching losses ordinarily resulting from a wide base.

The first ADE transistors with these advantages are the MP2200A2400A, 25 A switches, featuring peak power capability approximately twice that of present alloy units 80 to 120 V (min) @ 8 A - at virtually the same prices. In addition, high current gain (25 min @ 8 A), low saturation voltage (0.6 V @ 25 A) and good switching ($9 \mu \mathrm{~s} \mathrm{t}_{\text {on }}$ @ 10 A, typ.) advantages rank them as versatile, efficient, solid-state servants in "brute power" designs.

ADE units are ready now in TO-41 or TO-3 cases . . . send for data!

TYPE	VCE Volts (sus)	$\begin{gathered} \text { Ic } \\ \text { Amps } \\ \text { (cont) } \end{gathered}$	VCEIsat) Volts @ Ic (max)	$\begin{aligned} & h_{\mathrm{PE}} \\ & @ \mathrm{IC}_{6}^{(\mathrm{min})} \end{aligned}$	$\begin{gathered} \text { PRICE } \\ (100-U P) \end{gathered}$
MP2200A	80	25	0.6	25 @ 8 A	\$2.25
MP2300A	100				2.45
MP2400A	120				2.60

SME DEVICES OFFER "DROP IN" PERFORMANCE IN MADT SOCKETS WITH NO REDESIGN

Eight new Motorola germanium mesa transistors - including two popular JAN types - are available in quantity to electrically and mechanically fit neatly into original MADT ${ }^{\circledR}$-type sockets without any redesign. In fact, besides meeting exact parameter-by-parameter specs of the older, conventional units, the inherent flexibility of the advanced SME process (see column 1) makes it possible for Motorola to closely approximate key MADT parameter distributions, ensuring both direct replacement and immediate availability.

Type	Use	$\begin{aligned} & \text { Pawer Gain } \\ & @ 200 \mathrm{mHz} \\ & \text { (min) } \end{aligned}$	$\begin{gathered} \text { MF } \\ \text { (man) } \end{gathered}$	$\underset{\left(\text { max }^{\prime}\right)}{ }$	$\begin{gathered} \text { Prica } \\ (100-u p) \end{gathered}$
2N502	VHF Ampl.	888	10 dB	500 MHz	\$2.15
$\begin{array}{\|l\|} \hline \text { 2N502A } \\ \text { JAN 2N502A } \end{array}$	VhF Ampl.	10 dB	7 dB	620 MHz	$\begin{aligned} & 2.50 \\ & 2.75 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { 2N5028 } \\ \text { JAN 2N5028 } \end{array}$	VHF Ampl.	10 dB	7 dB	620 MH2	$\begin{array}{r} 2.80 \\ 3.05 \end{array}$
2N1499A	HF Switch	N.A.	N.A.	$100^{\circ} \mathrm{MHz}$	1.05
2N1742	VHF Ampl.	14 dB	5.5 dB	980 MHz	2.15
2N2048	HF Switeh	N.A.	N.A.	$150^{\circ} \mathrm{MH2}$	1.32

*r (min)

For complete data on these new Motorola germanium developments, or, for details on any of your present or future germanium requirements - write: Box 955, Phoenix, Arizona 85001. There's no end to Motorola germanium semiconductors!

Wednesday morning, October 11 th:

Fairchild has produced a half-hour color television program, a briefing on integrated circuits. It's not a big state-of-theart spectacular. In fact, it's pretty basic.

If this seems like an extraordinary move for a technical company, we agree. It's been an extraordinary decade.

BRIEFING OUTLINE

I. What is an Integrated Circuit?
A. What it looks like
B. What it does
C. How it compares to other circuits
II. How an Integrated Circuit is made.
A. Circuit design
B. Masking
C. Etching
D. Diffusion
E. Metallization
F. Wafer testing
G. Scribing
H. Packaging
I. Testing the completed circuit
III. Uses of Integrated Circuits.
A. Functions now available
B. Applications in industry
C. Applications in research

CITY

Albuquerque

Baltimore

Boston
Chicago
Cincinnatı
Cleveland
Dallas-Fort Worth
Dayton
Denver
Detroit
Fort Wayne
Houston
Huntsville
Indianapolis
Kansas City
Los Angeles
Miamı
Milwaukee
Minneapolis-St. Paul
New Orleans
New York
New York
New York
Orlando
Philadelphia
Phoenix
Rochester
St. Louis
San Diego
San Francisco-Oakland
Seattle-Tacoma
Syracuse
Utica
Washington. D.C.

CHANNEL	TIME
KOB-4	7:00 AM
WMAR-2	7:00 AM
WNAC-7	6:30 AM
WBKB-7	6:30 AM
WKRC-12	7:00 AM
WEWS-5	7:00 AM
KTVT-11	6:30 AM
WHIO-7	7:00 AM
KLZ-7	7:00 AM
WWJ-4	6:30 AM
WANE-15	7:00 AM
KHOU-11	7:00 AM
WAAY-31	7:00 AM
WISH-8	7:00 AM
KСМО-5	7:00 AM
KHJ-9	7:00 AM
WCKT-7	6:30 AM
WITI-6	7:00 AM
WCCO-4	7:00 AM
WVUE-12	7:00 AM
WPIX-11	6:30 AM
WPIX-11	7:00 AM
WPIX-11	7:30 AM
WDBO-6	6:30 AM
WFIL-6	7:00 AM
KTAR-12	9:00 AM *
WHEC-10	7:00 AM
KPLR-11	7:00 AM
KOGO-10	6:30 AM
KPIX-5	6:30 AM
KING-5	6:30 AM
WHEN-5	7:00 AM
WKTV-2	7:00 AM
WTTG-5	7:00 AM
*Sunday.	ctober 1

RESISTORS FOR PERSPICAGIOUS DESIGN ENGINEERS

FILMISTOR PRICISION METAL-FILM RESISTORS

Extended-range Filmistor Resistors now give you dramatic space savings in all wattage ratings $1 / 20,1 / 10,1 / 8,1 / 4,1 / 2$, and I watt - with absolutely no sacrifice in stahility!

Filmistors offer extended resistance values in size reductions previously unobtainable. For example, you can get a $4.0 \mathrm{M} \Omega$ resistor in the standard 1 i 4 watt size, which had conventionally been limited to 1 M @. Filmistor Metal-Film Resistors are now the ideal selection for "tight-spot" applications in high-impedance circuits, field-effect transistor circuits, ctc.

Other key features are $\pm 1 \%$ resistance tolerance, low and controlled temperature coefficients, low inherent noise level, negligible coefficient of resistance, and rugged molded case.

Filmistors surpass the performance requirements of MIL-R-10509E.
Write for Engineering Bulletin 7025D

ACRASLL ${ }^{\text {o }}$ PRECISION/POWEK WIREIOLVD RESISTORS

These silicone-encapsulated resistors combine the best features of both precision and power wirewound types, giving them unusual stability and reliability.

Acrasil Resistors are available with tolerances as close as $.05 \%$, in power ratings from 1 to 10 watts. Resistance values range from 0.5 ohm to $250,0(0)$ ohms.

Their tough silicone coating, with closely matched expansion coefficient, protects against shock, vibration, moisture, and fungus.

Acrasil Resistors meet or exceed the requirements of MIL-R-26D. Write for Engincering Bulletin 7450A

Axial-lead resistors available in ratings from 1 to 11 watts, with resistance tolerances to $\pm 1 \%$. Noninductive windings available to $\pm 2 \%$ tolerance.

All welded end-cap construction securely anchors leads to resistor body. Vitreous coating and ceramic base have closely matched expansion coefficients.
Write for Engineering Bulletins 7410D, 7411A

Tab-terminal Blue Jacket Resistors can be had in a wide selection of ratings from 5 to 218 watts, with several terminal styles to meet specific needs.

Tab-terminal as well as axial-lead Blue Jackets can be furnished to meet the requirements of MIL-R-26D.
Write for Engincering Bulletins 7400B, 7401A

KOOLOIIII ${ }^{3}$ CER HIIC-SHELL pOWER WIREWOLND RESISTORS

Koolohm Resistors are furnished in axial-lead, axial-tab, and radial-tab styles, in a broad range of ratings from 2 to 120 watts. Both standard and non-inductive windings are available.

Exclusive ceramic-insulated resistance wire permits "short-proof" multilayer windings on a special ceramic center core for higher resistance values. The tough nonporous ceramic shell provides complete moisture protection and electrical insulation. Koolohms can be mounted in direct contact with chassis or "live" components.
Write for Engineering Bulletins 7300C, 7310A

STACKUHM POWER WIREMOLND RESISTORS

Sprague Stackohm Resistors are especially designed for equipment which requires power wirewound resistors of minimum height. Their flat silhouette permits stacking of resistor banks in close quarters.

Aluminum thru-bars with integral spacers act as mounting means and also conduct heat from within the resistance element. Resistance windings are welded to end terminations for maximum reliability. An outstanding vitreous coating protects the assembly against mechanical damage and moisture. Ceramic core, end terminations, and vitreous enamel are closely matched for coefficient of expansion.

Stackohm Resistors are available in both 10 -watt and 20 -watt ratings, and can be furnished with resistance tolerances as close as $\pm 1 \%$. Resistance values range from 1 ohm to 6000 ohms.

Both 10- and 20-watt types meet the stringent requirements of MIL-R26D.
Write for Engineering Bulletin 7430

Send your request to Technical Literature Service, Sprague Electric Co., 347 Marshall St., North Adams, Mass. 01247, indicating the engineering bulletins in which you are interested.

```
ON READER-SERVICE
    CIRCLE }82
```

ON READER-SERVICE
CIRCLE 822

ON READER-SERVICE
CIRCLE 823

ON READER-SERVICE
CIRCLE 824

ON READER-SERVICE CIRCLE 825

RESISTORS

CAPACITORS
TRANSISTORS
THIN-FILM MICROCIRCUITS
INTEGRATED MICROCIRCUITS

PULSE TRANSFORMERS INTERFERENCE FILTERS PULSE-FORMING NETWORKS TOROIDAL INDUCTORS ELECTRIC WAVE FILTERS

CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES BOBBIN and TAPE WOUND MAGNETIC CORES SILICON RECTIFIER GATE CONTROLS FUNCTIONAL DIGITAL CIRCUITS

News

LSA diodes are in the forefront as solid-state microwave power sources; Gunn-effect units
are not yet outmoded. GaAs devices are topic at Cornell conference on hf research. Page 17

Unmanned satellite may map Earth's IR horizon for space navigators. Page 22

Attachment to TV set allows sound movies to be watched on unused television channel. Page 36

Also in this section:

Sound-scanned semıconductor emits light at pn junctions. Page 26

Post Office investigates voice-operated sorting system. Page 33
News Scope, Page 13 . . . Washington Report, Page 29 . . . Editorial, Page 45

WFWIN
WHOLE BASKET OF GOURMET FOODS!
(Everything from imported sardines and paté de foie gras to Beluga caviar. Shipped to you direct from Vendome's Gourmet Foods in Beverly Hills, Calif.)

Now that we've whetted your appetite, a few well chosen words about the entree - our connectors. You'll need to know about these before
A periodical periodical, designed to further the sales of Microdot In connectors and cables. Publis d entirely in the interest of

high densith packaging BXDEPI

goes too lar!

Let's face it. The reason our connectors lend themselves so superbly to high density packaging solutions is that they are-in and of themselves-outstanding examples of high density packaging. That's a long winded way of saying that we make smaller connectors than anybody. And it takes some pretty far out designers to jam 420 contacts on one teeny square inch of connector surface (see Twist/Con).

One of these far out typesAlgonquin G. Squozen in our design group - has a hobby. In his spare time he dreams up all sorts of high density packaging solutions. Trouble is there isn't always a problem to fit the solution. A classic example of Algonquin's creative work is shown on this page. Study it carefully because it will help you to

It all started like this: We eliminated the contact spring member normally found in socket contacts by creating a breathing helical spring principle on the pin contact. Smaller. More durable. More economical. The result was the
best family of rack/panel and strip connectors on the market. Some of the high density applications for TWIST/ CON include connections for IC's, interconnecting of printed circuit boards, edge-on connections for p.c. boards, and on modules with connectors welded to hybrid circuits. Single pins are being used for high density line splices. TWIST/CON is usable with 22 AWG to 30 AWG standard wires. Next, we applied the TWIST/CON principle to
LEPRA/CON-
WORLD'S SMALLEST
FULL 50 OHM COAX

$O D$ is $1 / 8$ inch and mated length is about one inch. That makes it the smallest. And the completely protected contacts also make it the most reliable.
The size means you can use a much smaller OD cable for even greater weight/size reduction in your package. The price is as low as $\$ 1.07$ in nominal quantities. You can get straight plugs, jacks, bulkhead jacks, right angle plugs, or printed circuit receptacles. Screw-on or slide-on versions in entire line. That's the menu for today.

BIG WINNERS!

But everybody who enters receives a photo of Squozen's high density packaging solution. Five lucky entrants will receive the cases of gourmet foods. All you have to do is (a) study the information about our Twist/Con and Lepra/Con connectors, and (b) write an appropriate caption or problem statement for the sardine can, working in at least one of the two connectors we've talked about. Contest closes October 1, and is not valid anyplace where it is considered illegal, immoral

- or fattening.

MICRODOT INC.

- or fattening.
MICRODOT INC., 220 Pasadena Avenue, South Pasadena, California 91030
Dear Microdot
\square Enclosed find my entry in \square your high density packaging contest

\square Enough of this foolishness.
 Just send me literature on (circle) TWIST/CON
Address

\square I have a connector applica lıon for high density packag ing. Get somebody over here.
State Zip Code
Telephone Ext
en Thist Con are registered urademarks of Microdot Inc.

U.S. plans 8 to 10 sites in its missile defense

The Nike-X anti-ballistic missile defense planned by the United States calls for spotting eight to 10 missile batteries across the country. The decision, approved by Defense Secretary Robert S. McNamara, follows seven years of in-fighting involving the Army, the Joint Chiefs of Staff, and the three military service Secretaries; all supported the program before Congress.

The proposed system will be limited, in that it will be designed to provide defense against first-generation Red-Chinese ICBMs and against the accidental launching of a Soviet ICBM. During his announcement of the new system, Secretary McNamara, in referring to the Chinese threat of the early 1970's, indicated that an attack by the Chinese would be "insane and suicidal". One could conceive, however, of conditions under which that country might make a catastrophic miscalculation, he said.

Of late referred to as the "thin Nike-X," the defense will require from four to five years to develop and install at a cost of about $\$ 5$ billion. It will employ a mix of Spartan and Sprint ground-to-air weapons. Financing is expected to be at nearly the billion-dollar level for the next year, with nearly one-half this amount allocated for the operational system; the rest will go for continued research and development. Some $\$ 730$ million has been authorized for fiscal 1968, and over $\$ 150$ million of the funds for 1967 remain unspent.

The Spartan, traveling at Mach 4, is designed to intercept an incoming ICBM at a slant range of more than 400 nautical miles, when the missile is above the atmosphere. The Sprint, with higher but classified speed, is designed to intercept ICBMs near the terminal phase of their flight at a slant range of about 75 nautical
miles, when their altitude is 18 to 22 miles. Both weapons are radio guided with inertial reference.

The entire Nike-X program is under direction of the Army Missile Command at Huntsville, Ala., and the prime contractor is Western Electric Co. McDonell-Douglas is developing Spartan and MartinMarietta is developing Sprint.

The total financing would break down into $\$ 3.5$ billion for protecting United States cities and $\$ 1.5$ billion for defending U.S. ICBM complexes.

Spartan, a greatly improved version of what was once called NikeZeus, is scheduled for flight-testing early next year, probably over the Pacific from Kwajalein Atoll. Sprint has been undergoing rigid flight-testing at White Sands Missile Range in New Mexico.

Considerable pressure has been applied by Congress for the Dept. of Defense to install at least a minimal anti-ballistic missile system. Congressional reasoning has been based not only on the need for a practical anti-ballistic defense but also on the desire for another high card to play in international politics. The reasoning is based on the following: The Soviet Union has for some time had an acknowledged lead in operational large-payload ICBMs, while the U.S. has employed smaller, yet more, ICBMs. However, the Russians, during an extended high-altitude nuclear test series in 1961-62, exploded many weapons that could be used either as ICBMs or anti-ballistic missiles. In fact, it is known that on two occasions the Soviet launched an ICBM, then intercepted it with a nuclear blast, and then fired a second missile-probably an ICBM-through the blast zone to study the over-all effects on both missile and ground electronic subsystems. The U.S., as of this date, has never tested nuclear weapons of
such magnitude.
It is believed that both the Soviet approach and the contemplated U.S. approach will employ an area defense that is largely dependent on highly intense x-ray and other pulse radiation effects of nuclear blasts to incapacitate the electronic components in incoming warheads (News Scope, ED 11, May 24, 1967, p. 14).

With the "thin" anti-ballistic missile system, Army informants have said that planned tests of multi-functional-array radar on Kwajalein Atoll will be scratched. The existing parameter-array radar, a VHF phased-array developed by General Electric, will be used to support the Spartan system in place of the mul-ti-functional array. A scaled-down version will be used to provide the same accuracy, but it will track and discriminate fewer targets.

What's moon made of? Surveyor 5 may tell

A three-legged, 616-pound spacecraft resting on a 20 -degree slope inside a small crater on the lunar Sea of Tranquility may soon tell man what the moon is made of.

The soft landing of Surveyor 5 earlier this month, despite inflight problems, marked an important shift in lunar exploration-from picture-taking and trench digging to a pioneering analysis of the moon's surface.

So far the spacecraft has transmitted to earth more than 5000 clear pictures of itself and its surroundings. Scientists consider the quality of the pictures superior to

News

SCOPO $_{\text {continued }}$

the pictures returned by Surveyors 1 and 3.

What is significant about Surveyor 5 , however, is a small six-inch square gold-plated metal box that, on radio command from earth, was lowered from the spacecraft to the moon's surface. Between picturetaking sessions it has bombarded the moon with atomic particles in an attempt to determine the chemical constituents of the lunar surface material.

The $5-1 / 4$ pound unit contains six Curium-242 radioactive sources that emit streams of alpha particles to bombard four square inches of the lunar surface. The particles can penetrate to a depth of about onethousandth of an inch. Two alpha sensors detect the scattered alpha particles reflected from atomic nuclei in the soil's elements, and four additional detectors measure the energy of reflected protons. (Known elements reflect alpha particles, protons or both at different velocities and comparison of the results against known values indicates the chemical composition of the soil.)
The instrument's sensor measures the velocity of the reflections, and the logic circuitry in the electronics package converts the data into binary form for on board processing and transmission to earth. Surface composition will be determined from a spectrum analysis of the telemetered data.

Scientists believe that experiments such as the soil analysis can provide a clue to the history and present stage of the moon's development. Of more immediate concern, however, is the fact that the experiment can aid scientists in determining how to build bases on the moon. If lunar building material can be used, less material will have to be transported from earth.

The alpha scattering experiment will be conducted again on Surveyor 6 , scheduled for flight this fall, and on Surveyor 7, scheduled for launching early next year. These are the final two spacecraft in the Surveyor series.

Electronics to get watchdog war role

The increasing role of electronics in modern ground warfare has been emphasized anew by the Government's announcement that it will construct an anti-infiltration barrier between North and South Vietnam.

The barrier, which would rely heavily on sophisticated detection devices, would alert U.S. and South Vietnamese forces whenever the 15-mile-wide demilitarized zone was penetrated. There is considerable skepticism in Congress that it will work sufficiently well to warrant the millions in cost. But electronic companies are being asked, in secret, to press the development of detector devices. The Defense Dept.'s Advanced Research Projects Agency has asked for $\$ 11.7$-million for work on advanced sensors alone.

Defense Secretary Robert S. McNamara, in announcing the barrier plan, warned that he did not want the enemy to know "what materials we will use, where they might be used or in what quantities." So details are not being made public at this time. However, there is speculation that acoustic, seismic and infrared scanning systems are being considered.
(Clues to military thinking about detection devices in Vietnam were presented by Electronic Design in an exclusive interview with the Green Berets in the issue of Aug. 2, 1966-"Electronics Needed for Guerrilla Warfare," pp. 36-47. Metallic detectors were among those strongly urged, on the theory that an attacker would be bound to carry some type of metal on his person.)

Vietnam buildup creates a million new jobs

Intensification of the Vietnam War in the last two years has created a million new jobs, according to a report by the Dept. of Labor.

The sharp rise in employment amounted to some 23 per cent of the total increase of more than four million jobs in the United States economy since 1965, the report says.

Defense work now accounts for 5.2 per cent of the nation's total civilian employment, up from 3.9 per cent two years ago.

The report says that civilian jobs
in defense work rose from about three million to 4.1 million in the last two years, with the sharpest increases in the weapons, aircraft and communications industries.

In a companion report, the bureau's mobilization expert, Max Rutzick, says that about 18 per cent of all engineers in the nation are in defense work, as are some 22 per cent of electrical and electronic technicians.

He attributes a rise of more than 141,000 jobs in the aircraft industry to the Vietnam build-up, and he says 10,000 other jobs have been added in the communications equipment field.

A further expansion of war work could create shortages of skilled workers of "considerable magnitude," the report continues.

But "this should not be interpreted to mean that one million jobs would be lost if the conflict in Vietnam were to end," says the Bureau of Labor Statistics.

A switch of workers to the production of civilian goods and the timing of cuts in military expenditures would help cushion a drop in war work, according to the report, which was published in the Monthly Labor Review.

Satellite traffic control of ocean flights urged

The use of satellite to help trafficcontrol centers keep constant track of airliners flying the oceans of the world has been suggested by a Pan American World Airways' chief electronic engineer.

As the engineer, Ben F. McLeod, sees it, position reports from hundreds of airliners would be radioed to the satellites automatically. Navigation systems onboard the planes would furnish the data.

At present the pilots must radio their positions periodically by voice. Ground-based radar is also used, but only when the aircraft flies into range-about 250 miles from land.

McLeod made his proposal earlier this month in Milan, Italy, at a technical symposium held by the NATO Advisory Group for Aerospace Research and Development.

The satellite capability already exists, he noted, and many airliners are equipped with dual Doppler or inertial navigation systems.

When you hold a MINIVERTER' in your hand

 . . . You'll have a 16-channel multi-These three cards make up the ADC. An optional fourth card is a DC power supply that runs on +5 volts and provides all necessary ADC power.

Plug a 16-channel MINIVERTER into an
MC-40 case and you've still got plenty of room for expansion and logic. For fast system assembly, module connectors come in blocks of 10,30 and 40. Power and analog and digital ground are available in module cases via laminated bus bars. And you can have automatic wire wrap if you want it.

Tuned Amplifier/Oscillator is Six Instruments in One

- LOW -NOISE AMPLIFIER
- WAVE ANALYZER
- DISTORTION ANALYZER
- LOW-DISTORTION OSCILLATOR
- SENSITIVE AC VOLTMETER
- ALLPASS DELAY PHASE SHIFTER

The PAR Model 110 Tuned Amplifier/Oscillator is a versatile high - gain, low - noise, low - distortion frequency selective amplifier operating over the frequency range of 1 Hz to 110 kHz with Q variable fron 1 to 100 with no gain change. It provides four outputs simultaneously: a second order (resonance) bandpass; a second order band-reject (notch) providing rejection of the center frequency in excess of 100 dB ; a second order allpass characterized by an amplitude response which is flat with frequency and a phase lag which increases monotonically with frequency; and a flat output. Each of the 600 ohm outputs is capable of providing 5 volts rms into a 5 K ohm load. A front panel AC voltmeter permits measurement of any one of the four outputs.

The instrument can function as a wave analyzer with bandwidth adjustable from 1% to 100%; as a flat
or selective AC voltmeter with sensitivity ranging from 10 microvolts to 5 volts rms full scale; as a distortion analyzer to measure distortion levels as low as 0.1% (as low as 0.001% when used in conjunction with a second Model 110); as a low-noise amplifier (typical noise figure of 1 dB) with voltage gain ranging from 1 to 10^{4}; as a stable generalpurpose low-distortion oscillator providing up to 5 volts rms into 600 ohms, capable of being synchronized by an external signal; and as an AC-DC converter with ground-based output.
Price: $\$ 1195$. Export price approximately 5% higher (except Canada).

For additional information, write for Bulletin T-140 to Princeton Applied Research Corporation, Dept. E, P.O. Box 565, Princeton, New Jersey 08540. Telephone: (609) 924-6835.

Solid-state microwave power growing up

Novel radar is shown as conference explores advances with LSA and Gunn-effect oscillators

Neil Sclater
East Coast Editor

An experimental radar, made from laboratory odds and ends and using a chip of gallium arsenide only 20 -thousandths of an inch thick as a microwave oscillator, was placed at an open window in a building on the Cornell University campus. As engineers and scientists watched, it detected moving automobiles a fifth of a mile away.

The test was conducted at a recent Conference on High-Frequency Generation and Amplification, held at Ithaca, N. Y. A gallium-arsenide diode able to produce 60 watts of X band power in the limited-space-charge-accumulation (LSA) mode was the power source in the radar.

The novel radar had been assembled by the Microwave Solid State Research Group at Cornell to demonstrate the dramatic advances in solid-state microwave generators.

The pulsed output power from the radar at the conference was far from the record 615 watts at about 8 GHz held by the Cornell research-ers-the highest power level attained so far from a solid-state device at X band. But the range on the new experimental radar was impressive, and it demonstrated that the simple, small device could have practical uses as a primary
microwave power source.
The conference explored the possibilities for using the LSA diode oscillator for power in millimeterwave transmissions to and from communications satellites, and it also considered current plans to adapt Gunn diodes to existing radar systems as local oscillators.

Wide interest in research

Microwave engineers have been optimistic about replacing power tubes with smaller, lighter, solidstate devices ever since J.B. Gunn of the IBM Research Laboratory discovered four years ago that a simple crystal of gallium arsenide could produce microwave oscillations.

Two years ago Dr. John Copeland of Bell Telephone Laboratories, in extending Gunn's work, discovered a phenomena related to the Gunn domain-limited-space-charge accu-mulation-that could generate more power at even higher frequencies.

Dr. Copeland evolved a theory for LSA operation and predicted theoretical power and frequency limits. Laboratories around the world are anxious to exploit these significant advances.

Bell Telephone Laboratories at Murray Hill, N. J., and Cornell University have reported important
advances in LSA technology. But the Radio Corporation of America has been improving Gunn-effect devices, and Britain's Royal Radar Establishment has reported successful application of Gunn devices as replacements for klystrons in radar systems. Improvements in materials were key factors in all these advancements.

Transit time avoided

The LSA oscillator, unlike the Gunn-effect device, is not powerlimited at high frequencies by an effect called "transit time"-the time it takes for space-charge waves or domains to travel through the device.

The LSA device is a bulk galliumarsenide diode that oscillates because it has negative resistance in a high dc bias field when part of a specially designed microwave resonant circuit. The negative resistance is used to convert dc power directly to rf power. However, this occurs only if the growth of the space charge within the diode is limited or dissipated.

The oscillating field in the LSA mode swings above the threshold field long enough to generate a negative resistance but not long enough for the carriers to rearrange themselves into domains. When the field swings below threshold, minor space-charge irregularities are smoothed before the next cycle.

Experimental X-band radar at Cornell uses a limited-space-charge-accumulation-(LSA) diode to obtain 60 watts of peak power. At left, Prof. Lester F. Eastman tunes the diode mount. At right, the transmitter assembly (the
lower of the two arms) with the diode mount and antenna horn. The receiver horn assembly (the upper of the two arms) passes returned signals to an oscilloscope display. A traveling-wave tube amplified the returned signal.

NEWS

(diode power, continued)
Accumulation of space charge is limited if the semiconductor dop-ing-to-frequency relationship is held within limits and if the effective load resistance in parallel with the diode is greater than 10 times the diode's low voltage resistance.

According to Dr. Copeland, the ratio of the diode doping level (impurity atoms per cubic centimeter) to the operating frequency (in hertz), n / f, must be a number between 2×10^{4} and 2×10^{5} with an optimum value of about 6×10^{4}.

If the voltage across the LSA diode becomes concentrated in a high-field domain, it would swing into Gunn-effect oscillations at a lower frequency. Because of the higher applied voltages, this could lead to the destruction of the device by high-field breakdown.

The active material thickness in transit-time devices must be made thinner if the frequency is to be increased. This unfortunately increases the device capacitance, causing the power-impedance product to decrease.

Since no transit time phenomena is involved, the power from the LSA device is essentially independent of frequency. It can be as much as 20 times thicker than a Gunn device of the same frequency and can thus withstand relatively high applied voltages.

Efficiency limit predicted

Dr. Copeland told the Ithaca conference that power-conversion efficiencies of up to 20 per cent could be achieved below 100 GHz and that the drop-off would be reasonable up to several hundred GHz .

The LSA GaAs bulk chip used in the Cornell experimental radar was pressure-mounted in a modified 1 N 23 ceramic crystal cartridge between a gold-plated brass post and a bellows. This convenient package gave electrical-mechanical contact with the chip and provided for heat dissipation. It was pulsed for 10 nanoseconds, 60 times a second at 600 volts. The setup was assembled by Prof. Lester F. Eastman of the engineering faculty and W. Keith Kennedy Jr., a doctoral candidate.

In a conference paper devoted largely to the theory of LSA operation in long, bulk GaAs samples, Kennedy reported that peak pulse power of 615 watts at X band had been attained with another device.

The work was supported by the U.S. Air Force Rome Air Development Center.

Communications uses foreseen

Bell Laboratories' Dr. Copeland pointed out the potential advantages of LSA in "short-haul and medium-haul" communications satellites. He said that within the next 10 years the demand for communications between cities like Chicago and New York would make millime-
ter-wave satellites desirable. These would be economically and technically feasible only if carrier frequencies of greater than 50 GHz were used. The higher frequencies permit the use of both wider bandwidths and a larger number of channels.

LSA devices, Dr. Copeland said, are the means to accomplish this goal. Because of the short range and the possibility of satellite redundancy, the scientist said, atmospheric attenuation would not pose a serious threat to millimeter-wave communication.

Bell Laboratories is already at work on devices for this application, Dr. Copeland reported. He said that the laboratory had successfully

An unpackaged LSA millimeter-wave oscillator is adjusted by Dr. John A. Copeland. The circuit produces 20 mw of cw power between 44 and 88 GHz . The waveguide short and tuner load the circuit for maximum output. Frequency is primarily determined by the tab-like stub.

STOP HIGH ENERGY TRANSIENT DAMAGE WITH NEW ZenGard* SUPPRESSORS

Protect entire electronic systems subject to damage or destruction from random power surges up to 12 kW with the new line of MPZ5 series ZenGard transient suppressors!

Their compact size (each occupies less than 2 cubic inches) belies their impressive advantages over conventional suppressors:

- predictable temperature sensitivity and relatively constant breakdown voltage over a -65° to $175^{\circ} \mathrm{C}$ operating range
- inherent parameter stability over long-term use
- absolute non-existence of ringing
- low $50 \mu \mathrm{~A}$ quiescent current

Sharp reaction time and clamping factors $\left(\frac{V_{z}(\max)}{\mathrm{V}_{\mathrm{z}}(\min)}\right.$ see table $)$ as low as 1.25 mean significantly lower overshoot voltages, consequently less chance of component degradation and burn out.

Economical, ZenGard transient protection for virtually any high en-

Type	$\left\lvert\, \begin{gathered} \text { pe } \\ \text { Dissipat } \\ \text { oispation } \end{gathered}\right.$		Mas. Zener Valt.$\mathrm{pw}=1.0 \mathrm{mg}$		
			$\mathrm{V}_{\mathbf{1} \mid \text { mal }}$ (a)		
MP25-168 8 A	350 w	14	20, 24	200 A	16 (3) 0.4 A
MP25.32C. B, 8 A		28	40, 45, 50	100 A	32 © 0.2 A
MP25-180C, B. 8 A		165	205. 225. 250	20 A	180 ch 0.02 A

ergy application (1000 W units have been supplied to hi-rel requirements) is made possible by the Motorola-originated Multi-Cell \dagger technique of mounting individually matched zener diodes on a common heat sink. The same desirable, sharp, controlled reverse breakdown characteristics as Motorola's other 250 mW to 50 W zener diodes are ensured.

Evaluation units available now! non-standard voltages, lower clamping factors and higher power units can be supplied to specific needs!

FAST PHOTO SENSORS AID LIGHT-ACTIVATED DESIGNS

A tiny photo detector - type MRD200 - and a sensitive phototransistor - type MRD300 - now provide opportunities to simplify light-activated designs!

Functional and compact (only $0.060^{\prime \prime}$ diameter), the MRD200, twoterminal unit serves where small size, precise alignment and high density

Type	Radiation Sensitivity mA/mW/cm (typ)	Illumination Sensitivity $\mu \mathrm{A} /$ lum/ $/ \mathrm{t}^{2}$ (typ)	Dark current $\mu \mathrm{A}$ (max)
MRD200	0.5	5.0	0.025
MRD300	$1.6 \dagger$	$10 \dagger$	0.0

\dagger Base open
arrays are required such as highspeed tape and card readers and rotating shaft information encoders.

It displays linear characteristics over the dynamic range-ideal for reading film sound tracks. Total $t_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ is only $6.5 \mu \mathrm{~s}$ (max.) allowing faster reading than any mechanical contacts. And, its extremely narrow field of view minimizes crosstalk.

With equally fast rise and fall time, the MRD300 utilizes a TO-18 case with external connections for added control and excels in applications where high sensitivity is essential. It responds to modulation well above the audio spectrum.

Both units operate from 1 V to 50 V power supplies and are compatible with most transistor circuits. Low leakage permits use in directcoupled designs for low-signal-level operation.

Evaluate them now! . . . Send for Introduction to Optoelectronics and a new data sheet!

Use the reader service card for complete data on these products or write Motorola Semiconductor Products Inc., Box 955, Phoenix, Arizona 85001.

MRD300 combined with 2N4 198 ELF ${ }^{\circ}$ SCR (600 V) gives total ton of 300 ns . Single light source coupled by multiple-output fiber optic bundle transmits light to photo transistors. Fast ton is accompanied by gate isolation advantage.

MOTOROLA Semicondesctors - where the priceless inqredient is care!

NEWS

(diode power, continued)
incorporated cw LSA diodes into an experimental $50.4-\mathrm{GHz}$, guidedwave pulse code modulation transmission system. Continuous-wave power of 20 milliwatts has been produced in the 44 -to- $88-\mathrm{GHz}$ re-gion-still the record at this high frequency. The diodes have produced detectable power at 160 GHz . A special half-wave stub is used in the diodes' package.

The success of semiconductor microwave power sources has inspired two Cornell University professors to form a company for producing advanced prototypes. Cayuga Associates at Ithaca, N. Y., founded by Prof. Eastman and Prof. G. Conrad Dalman, plan to custom-make diode devices and develop improved circuit techniques.

Professor Dalman who was chairman of a Gunn-effect session at the conference, said in an interview that much higher power would be achieved when large slabs of more homogeneous materials became available. A novel slab geometry and scaling relationship worked out by Kennedy and Professor Eastman shows that peak powers as high as 400 kW at 10 GHz can ultimately be achieved, Professor Dalman reported.

Another Cornell researcher,

Richard J. Gilbert, a graduate student, has investigated optimum device and circuit parameters for LSA operation, according to Professor Dalman. The parameters included the ratio of carrier density to operating frequency, circuit loading, applied fields and transient response of the sample. Among other things, the research verified computer simulations performed by Dr. Copeland.

Gunn power increasing

Despite the dramatic advances in the LSA devices, work on Gunn devices is continuing in many laboratories, the conference was told. Dr. S. Y. Narayan of RCA's Princeton, N. J., laboratory reported improvements in pulse power, efficiency and growth techniques for epitaxial GaAs Gunn diodes.

The RCA scientist said his laboratory had operated Gunn-effect devices with pulse power output up to 150 watts in the 1 -to- $2-\mathrm{GHz}$ region with efficiencies as high as 24.7 per cent. These values, he said, represent the highest power x (frequency $)^{2}$ product and efficiency reported for Gunn oscillators in non-LSA modes.

Progress in making a Gunn-effect device to replace reflex klystron local oscillators was discussed by an engineer from Britain's Royal Ra-

Gunn-effect device, to be used as a klystron replacement, contains a Gunn diode oscillator and a varactor diode for electronic tuning. This British device is about $1-1 / 2$ inches long and uses a dielectric washer for mechanical tuning.
dar Establishment. Frank L. Warner of the group's Malvern laboratory said the device intended for use in existing radar systems was both mechanically and electronically tunable. Improved versions will be operating in British military radars within a year, he said.

A cavity, with standard connectors includes both a commercial encapsulated GaAs diode as the power source and a varactor diode for electronic tuning (see illustration).

Warner said that mechanical tuning over a 20 per cent band has been obtained by moving a low-loss dielectric washer along the cavity. Electronic tuning over a range of 400 MHz is achieved by varying the bias voltage on the varactor diode, which is mounted in a side arm and loop-coupled into the main cavity.

The device, intended to replace some reflex klystrons, is small and light, and it has low operating voltage. Warner said, however, that it suffered from poor short-term frequency stability and that fm noise was a problem over a frequency range of less than 100 kHz away from the carrier. But Warner said that researchers at the British laboratory were solving these problems while improving the uniformity of electronic tuning over the mechani-cal-tuning range.

Dr. Peter Bulman of the British laboratory described a 1-watt peak, 5 -nanosecond pulsed radar with a range discrimination of better than 3 feet at ranges as short as 10 feet. The transmitter oscillator, an unencapsulated epitaxial Gunn diode, was mounted across the waveguide rather than a half wavelength from a movable short. A sampling oscilloscope in the receiver gave an A scope display.

The Cornell conference attracted more than 350 representatives from industry, government and university research. It was co-sponsored by the Office of the Naval Research, with the cooperation of the IEEE. Other subjects among the 40 papers included parametric devices, avalanche effects, and quantum and optical effects.

The proceedings may be obtained by writing to Dr. Herbert Carlin, Director, School of Electrical Engineering, Cornell Univerity, Ithaca, N. Y. 14850. The price for members of IEEE is $\$ 5$ a copy, and for nonmembers, $\$ 6$. -

Replace 80\% of all FET types with one!

Here's how:

 Buy the Union Carbide 244416 uni. versal FET in quantity, and you can select transistors over she entire frequency range covered by 80% of all field effect thees. The 2 N4 416 is specified below as a VHF/UHF amplifier. However trom any class lot of this device you can select (1) general qurmese, low poise, high gain amplifiers from D.C. to 900 MHz or (2) aitra low hoise davices for low frequency applications. This device alsp available in a ribbon lead ceramic package (.138" Gra. as the pory canacitance 2 N4417. Use for TV tuners, FM sots, in strips, mixers osoltators, or even switches. Write for commeterspec fications.

ELECTRONICS

Semiconductor Department / 365 Middlefield Road. Mountain View California 94040 /Telephone: (415) 961 -3300/TWX: 910-379-6942

Infrared horizon-mapping urged in space

Honeywell asks U.S. backing for project to help astronauts determine their positions accurately

Charles D. LaFond
Chief, Washington News Bureau

A concept for an unmanned in-frared-scanning satellite has been offered to NASA by Honeywell, Inc., as a step toward solving a troublesome problem for both manned and unmanned space missions-accurate determination by the spacecraft of its position over the Earth.
The scanner would map the Earth's infrared horizon for future reference.

Before they can determine their precise position or even the attitude of the spacecraft, astronauts must know where the true horizon is. A sparse carbon-dioxide layer in the rare-atmosphere shell about the Earth produces a corona that makes observation by the usual optical instruments far too inaccurate for practical use. Infrared scanning in the 14 -to- 16 -micron portion of the
spectrum has been found to improve discrimination of the horizon.

The Honeywell satellite, being considered by NASA, would be launched into a 270 -mile-high polar orbit for its mapping mission. Called Orbital Scanner, the 725pound spin-stabilized satellite would draw energy for a continuous 70 -watt demand from six large solar panels, fanned out like 12 -foot-long flower petals.

Widespread use envisioned

Despite the austerity of the nation's present scientific satellite effort, Honeywell, somewhat optimistically, has started a campaign for what could become a $\$ 10$-million effort. Honeywell researchers believe that the technological payoff would far exceed the anticipated cost.

The primary mapping mission would be performed in 1972-73.

Usable data would be available by 1974. This would be well within the deadlines for the Apollo Applications Program, the upcoming Earth Resources Orbiting Satellite, and the large meteorological satellite systems planned for the mid 1970s.

Although not mentioned by Honeywell, there are other obvious applications for improved navigation and attitude control in future military space programs, the Manned Orbiting Laboratory, reconnais-sance-surveillance satellite systems, and possibly satellite-inspection vehicles.

The Air Force has already embarked on a similar effort called Project Profile. MIT's Instrumentation Laboratory is the prime systems contractor for development of two orbital spacecraft (see "News Scope," ED 18, Sept. 1, 1967, p. 14). Honeywell contends, however, that its proposed vehicle and over-all program are far more comprehensive.

The need for accurate horizon-

Infrared-scanning satellite (above) that would map the earth's infrared horizon, could lead to improved navigation and attitude control systems for future space missions. It would carry a measurement "package," such as shown on the right, containing an infrared radiometer and dual star mappers and sun sensors for attitude determination.

sensing is paramount, for if detectors could determine the true terrestrial horizons fore and aft of a spacecraft along its orbital path, then the bisector of this angle would be the true local vertical, or the position over the Earth. The need for complex on-board instrumentation would be eased.

While infrared horizon-scanning has been found promising, experience has shown that the amount and frequency of infrared radiation that can penetrate the layer of car-bon-dioxide above the Earth varies with the location of the layer, time of day and season.

As early as 1958, when the first U.S. spacecraft encountered difficulty in maintaining accurate reference to local vertical, NASA's Langley Research Center at Hampton, Va., began an effort to improve horizon-sensor performance. By 1960 suborbital rocket probes proved the need for new concepts, not just improved detectors and data correlation.

Radiometric studies obtained in X-15 flights during 1964 and 1965 supported analytical studies, which concluded that the most promising spectral interval for use was the 14 -to- 16 -micron CO_{2} absorption band. Langley then began Project Scanner, with Honeywell as the prime contractor. The effort culminated in two ballistic-trajectory probes in August and December, 1966, in which highly instrumented payloads were hurled to an altitude of 400 miles.

Each of these flights lasted only 15 minutes, and they provided data associated only with the northern hemisphere and during only two seasons of the year. So in March, 1966, Langley selected Honeywell to perform a 15 -month, $\$ 700,000$ feasibility study for a long-term, global, 18-measurement program. The presently proposed Orbital Scanner concept evolved from this study, completed last July.

Subcontractors stand by

Honeywell's optimism is reflected in the fact that it has suggested a complete program team to design and fabricate major instrumentation for an Orbital Scanner project. The Company's Systems and Research Div. would serve as spacecraft developer and systems integrator under this arrangement.

No small print

The Nytronics name on the package is all the insurance you need, to know your sub-miniaturized ceramic capacitors represent the highest standards of quality, stability, and capacitance-to-size-ratio. Available in four complete lines:

NYT-CHIP - An ultra-stable chip capacitor with tinned terminals, $0.170^{\prime \prime} \times 0.065^{\prime \prime} \times 0.070^{\prime \prime}$, with capacitance range of 4.7 pf through 220 pf , and $0.280^{\prime \prime} \times 0.195^{\prime \prime} \times 0.070^{\prime \prime}$ for 270 pf to 4700 pf . Temperature coefficient does not exceed $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Working voltage 200 volts D.C.

NYT-CAP - An ultra high stability ceramic capacitor series packaged in a miniature molded epoxy tubular package $0.1^{\prime \prime}$ diameter by $0.250^{\prime \prime}$ in length, with capacitance range of 4.7 pf to 220 pf . The remainder of series in miniature, molded epoxy case $0.350^{\prime \prime}$ long by $0.250^{\prime \prime}$ wide by $0.1^{\prime \prime}$, with a range of 270 pf to 4700 pf . Temperature coefficient does not exceed $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Working voltages 200 D.C.

DECI-CAP - A subminiature ceramic capacitor with an epoxy molded envelope $0.100^{\prime \prime}$ diameter by $0.250^{\prime \prime}$ long, axial leads, with capacitance range 4.7 pf to $27,000 \mathrm{pf}$, tolerance $\pm 10 \%$. Unit designed to meet MIL-C-11015.

HY-CAP - Offers extremely high capacitance range .01 mfd . to 2.5 mfd . in $\pm 20 \%$ tolerance. Voltage 100 WVDC, no derating to $125^{\circ} \mathrm{C}$. Designed to meet MIL-C-11015.

Write or call for more information. In addition to ceramic capacitors, our inventory of other standardized high quality components includes inductors, delay lines, and resistors.

NEWS

(scanner, continued)

The hexagonal vehicle would measure 54 inches in diameter by 36 inches in length. In flight, the craft would roll about its longitudinal axis, perpendicular to the orbital plane. A major constraint placed on all subsystems design is the complete avoidance of any moving parts, with the exception of solarpanel deployment.

A key mission element would be launch time and orbital characteristics: the spacecraft would be launched at 3 p.m., nodal crossing, into a near polar orbit, and would then be sun-synchronous. This would be expected to yield a radiance profile based on near-maximum daily atmospheric temperature variations, and it would ensure efficient solar: panel operation aboard the spacecraft.
Data Acquisition Network would be used for range and range-rate tracking (S band) and vhf communications. On-board telemetry and data-handling subsystems would be developed by RCA's Astro-Electronics Div. Data would be stored in a 500,000 -bit memory and transmitted after each revolution about the earth by telemetry to NASA stations at either the University of Alaska or Rosman, N.C., for relay to the Goddard Space Flight Center in Greenbelt, Md. The data would include radiometric measurements, navigational star and sun positions, and timing signals.

The IR radiometer, which would peer through a 26 -inch-diameter viewport, would be built by the Lockheed Missiles and Space Co. The cadmium-doped germanium de-.

Attitude pointing and stabilization requirements for present and proposed space missions show need for greater horizon definition. Proposed infrared-scanning satellite is intended to provide data needed to improve horizon-sensor performance.
tectors would encompass a 0.01° field of view and would operate in the 15 -micron range. A $20^{\circ} \mathrm{K}$ neon cooler would be used with the detectors. Except for the primary optics, the radiometer design would employ dual redundancy.

For attitude determination, dual star mappers and sun sensors would be used to secure a pointing accuracy to 10 arc seconds with respect to the Earth's surface. Some 300 bodies in the celestial sphere would be used for attitude reference. The star telescopes would be protected automatically from exposure to the sun. The Control Data Corp. would provide the complete system.

Honeywell's Aerospace Div. would build an attitude-control system employing redundant magnetic-torquing coils that would interact with
the Earth's magnetic field. Although the design is passive, operation could be redirected by ground command.

Gulton Industries, Inc., would provide the electrical power supply, and the Spectrolab Div. of Textron Electronics, Inc., would produce the solar panels.

Designed for a minimum of one year's operation in space, Orbital Scanner could provide the data necessary to achieve a twentyfold improvement over present horizonsensing techniques, according to Honeywell. The best accuracies now obtained, its experts assert, are around 0.25°.

By using the 15 -micron CO_{21} band and data established in the IR mapping effort, astronauts could obtain accuracies of 0.01° to 0.02°.

Red-hot arc furnaces tamed by computer

A Westinghouse process-control computer has been adapted to cut the electrical operating costs of arc furnaces. It does it by keeping tabs on demand and load factors.

The solid-state process-control computer controls the maximum rate at which electricity is used by the furnaces and the total energy con-
sumption by means of time-sharing. The system also provides a heat log or record of temperatures, alloy composition control and other plant management information.

The computer receives power meter readings, transformer data and operating panel settings from each furnace being monitored and sends
control orders to the furnaces.
Westinghouse spokesmen say that the control method is more versatile than previous wired-logic systems. They say that their process control computer can operate in an ambient temperature of $120^{\circ} \mathrm{F}$ and has filters to keep out the dust encountered in furnace shops.

RE SERIES POWER SUPPLIES

HIGH PERFORMANCE - LOW COST POWER SUPPLY

... for system and laboratory applications

The Rowan RE series is designed for both precise laboratory and systems applications. The units are convection cooled and use all silicon semi-conductors throughout. The RE series can be operated in either a constant voltage mode or a constant current mode and features circuitry providing automatic crossover to either mode.

RE 40-5ML

FEATURES:

- All silicon semi-conductors
- Series master-slave operation
- Convection cooled
- Remote sensing
- Automatic E/I crossover
- Remote programming
- Constant voltage/constant current operation
- Single knob voltage control with dual knob resolution

RE SERIES SPECIFICATION TABLE

Model	volts	amps	Regulation line or load \%*	Ripole MV RMS	Meters Voltmeter	Terminals F - front R- rear	$\begin{gathered} \text { Size } \\ 19^{\prime \prime} \text { panel } \end{gathered}$	Weight	Price
RE $40-5$	0.40	5	. 01 or 2 MV	0.5	No	R	$31 / 2 \mathrm{H} \times 171 / 4 \mathrm{D}$	36\#	\$290.00
RE $40-5 \mathrm{M}$	0.40	5	. 01 or 2 MV	0.5	Yes	R	$31 / 2 \mathrm{H} \times 171 / 4 \mathrm{D}$	36\#	315.00
RE 40 - 5ML	0.40	5	. 01 or 2 MV	0.5	Yes	F \& R	$31 / 2 H \times 171 / 4 \mathrm{D}$	36\#	320.00
RE $60-2.5$	0.60	2.5	. 01 or 2 MV	0.5	No	R	$31 / 2 \mathrm{H} \times 171 / 4 \mathrm{D}$	36\#	290.00
RE $60-2.5 \mathrm{M}$	0.60	2.5	. 01 or 2 MV	0.5	Yes	R	$31 / 2 \mathrm{H} \times 171 / 4$	36\#	315.00
RE $60-2.5 \mathrm{ML}$	0.60	2.5	. 01 or 2 MV	0.5	Yes	F \& R	$31 / 2 \mathrm{H} \times 171 / 4 \mathrm{D}$	36\#	320.00

*whichever is greater. Input for all models $105 \cdot 125,50.63 \mathrm{HZ}$

```
ELECTRONIC MEASUREMENTS
division of THE ROWAN CONTRDLLER CO.| 2 CRESCENT PLACE | OCEANPORT. N.J. OTフ5\
```


Sound-scanned semiconductor emits light

Applied field excites electrons that couple with lattice vibrations to produce glow at pn junctions

Richard N. Einhorn News Editor

An engineer working at Bell Telephone Laboratories, Murray Hill, N. J., has demonstrated that sound waves produced in piezoelectric semiconductors can generate light. His method may lead to a new approach to flat-panel image display devices as well as to a new class of light detectors.

The laboratory development, known as a solid-state acoustoelectric light scanner, is claimed to offer the following advantages by its inventor, Basil W. Hakki:

- Energy lost in the process is rapidly restored, regardless of the number of light-emitting elements used in series.
- The effect is produced at room temperature.
- It operates over a convenient range of voltages (10 to 400 in Hakki's experiments.
- Quantities of devices can be produced with uniform properties.

Hakki explained his discovery as follows:

If a strong electrical field is applied to a semiconductor, it can excite drift electrons to a velocity greater than the speed of sound in that material. When this threshold is breached, strong electron coupling with phonons (lattice vibrations at the velocity of sound) can lead to the formation of an acoustic domain (see Fig. 1). As this acoustic domain, or sound field, passes under a pn junction, part of the acoustic energy is transformed into light. The light-emitting junction is formed by depositing a layer of pcuprous sulfide on one surface of the n -cadmium sulfide strip.

Domain velocity is constant

A domain moves through the semiconductor at a constant velocity that is determined by the medium itself. Vary the applied bias or the carrier concentration, shine light on the semiconductor, chill or warm it, and the velocity still remains con-stant-a desirable feature considering that manufactured items should be uniform.

Sound propagates at different ve-

1. Breaking the sound barrier in a pn semiconductor produces light. An electrical field applied to cathode (at left) excites drift electrons to speed of sound. Electrons couple strongly with lattice vibrations to produce acoustic domain. As domain passes under each junction in turn, light is emitted.
locities along the three axes of a piezoelectric semiconductor. In cadmium sulfide (the material Hakki used in his experiments) the velocity of a longitudinal wave is about $4.5 \times 10^{5} \mathrm{~cm} / \mathrm{s}$; it is 1.75×10^{5} cm / s in the shear direction, which is orthogonal to the longitudinal axis. When the applied voltage is sufficient to accelerate the drift electrons above $1.75 \times 10^{5} \mathrm{~cm} / \mathrm{s}$, an abrupt transition occurs, and the drift electrons couple to the sound domains in the shear mode through an electromechanical coupling coefficient. The scanning speed of the electrons is the same as the shear sound velocity.

Hakki used a 660-volt trigger pulse to form an acoustic domain at the cathode of the semiconductor. Once the domain is formed, it is sustained at 200 volts during its transit from cathode to anode by a 460 -volt pulse.

The sound waves extract energy from the electron stream, so the device acts as a sound amplifier. If the gain is large enough, instability will result. A bulk negative conductivity effect is present; once the domain is formed, the current drops. The excess current is shunted across the domain.

Hakki says that the domain-voltage can be anywhere between 10 and 400 volts ("a hefty source"). As shown in Fig. 2, a great voltage across a narrow domain creates a high field intensity. The domain voltage V_{D} causes local breakdown in the heterojunction.

In a semiconductor, the domain voltage is equal to the anode voltage minus the product of field intensity and sample length. But this product is a constant, so the domain voltage increases with the voltage on the sample. This reveals another good feature: if the domain gives off energy to do a job, the applied voltage will restore that energy. This energy is constant regardless of the number of elements, provided that there is enough time for recovery. The recovery time is finite. Therefore the functional elements must
be spaced far enough apart to permit recovery, but close enough to avoid needless delay.

This is what led Hakki to investigate a scanning array of pn junctions. A heterojunction (adjacent layers of dissimilar materials) is formed by coating n-cadmium sulfide with p-cuprous sulfide. Whenever the acoustic domain passes under a junction, minority carriers are given off. The radiative recombination of carriers gives off red light. Light is emitted chiefly because of reverse breakdown of the junction, but Hakki predicts that improvements in heterojunctions will lead to efficient forwardconduction luminescence.

The color obtained is due to the hole injected into n-CdS. The combination of holes and electrons gives off 2.5 eV (the energy difference between the valence and conduction bands), which ordinarily would produce green. But instead, the hole falls into the copper level of the cadmium sulfide and recombines radiatively with a free electron. The two copper impurity levels in the cadmium sulfide are 1.2 and 0.9 eV above the valence band.

The energy band is bent at the junction between the n-type semiconductor and the p-type semiconductor. ${ }^{1}$ The transition from the cuprous sulfide to the cadmium sulfide represents a drop in the potential barrier for holes and an increase in the potential barrier for electrons, since reverse conduction occurs.

This suggests that either varying the way in which the material is produced (controlling the impurities) or varying the material itself (substituting semiconductors) will produce light of different colors.

Hakki allows approximately 100 ns spacing between elements. The delay is short enough to permit the eye to average or mix the primary colors to produce secondary colors. This is aided by two factors:

- There would be a decay time for the light pulses, producing mixing in the absolute physical sense.
- There would be aftereffects from the visual inputs, so that the eye would see the colors after the stimulus was removed.

The device might be used as a light detector by keeping the bias voltage below the junction breakdown level. The addition of photo-
electrons would change the current drawn by the circuit, and this current change could be detected.

Homojunctions more efficient

When the device is used as an emitter, the light output is produced in a spectrum that peaks in the infrared but includes useful outputs in the visible region.

Hakki points out that heterojunctions do not emit light as efficiently as homojunctions, such as gallium arsenide in the infrared region or gallium phosphide in the visible region, but they are much easier to fabricate. Cadmium sulfide happens to "prefer" the n-state, hence the selection of p-cuprous sulfide to complete the heterojunction. Hakki says that up to now he has been more interested in proving the feasibility of the acoustoelectric light scanner than in optimizing it. His next step will consist of weighing the merits and demerits of other materials and then recommending whether products should be developed.

Operates at room temperature

One great advantage of heterojunctions such as n-cadmium sulfide coated with p-cuprous sulfide is the ease of operation at room temperature $\left(300^{\circ} \mathrm{K}\right)$. Gallium arsenide must be cooled to the temperature of liquid nitrogen $\left(77^{\circ} \mathrm{K}\right)$ if it is to lase. Cryogenic cooling of his own

V = VOLTAGE AT ANY GIVEN POINT
V_{0}-ANODE VOLTAGE
$V_{D}=$ DOMAIN VOLTAGE $=V_{0}-E_{s} L$
$E_{S^{2}} \frac{d v}{d x}=$ FIELD INTENSITY
L = LENGTH OF SAMPLE
$L_{D}=$ DOMAIN WIDTH
2. Great voltage across a narrow domain creates high field intensity. Domain voltage can be $10<\mathrm{V}_{\text {p }}<400$ volts, "a hefty source.'
heterojunctions offers no immediately significant advantages, Hakki says.

Hakki says that a typical solidstate acoustoelectric light scanner might be between 0.2 and 0.4 cm long, 400 microns wide, and between 12.5 and 100 microns thick. The light-emitting junction would be formed by depositing a layer (1 to 10 microns) of p-cuprous sulfide on the top surface of the cadmium sulfide. This is accomplished by a chemical process in which two cuprous ions substitute for each cadmium ion. The desired pattern of pn heterejunctions is obtained by means of photoresist techniques.

Mechanical strength is gained by sandwiching the semiconductor between two transparent glass plates (not shown in Fig. 1). Ohmic contacts are formed at the two ends of the cadmium sulfide strip using an indium-gallium mixture.

Earlier work at Bell described

Hakki says that his work is a logical outgrowth of experiments conducted at Bell Telephone Laboratories about five years ago by Andy Hutson. The latter was the first to discover the sound amplification effect in piezoelectric semiconductors. Hutson recognized that if an electrical field in a semiconductor propagates at the velocity of sound, the resulting sound wave may be considered as a surface stream.

Large arrays of experimental sol-id-state acoustoelectric light scanners have been built by Bell Telephone Laboratories. Hakki says he will describe a square array of 20 ,000 light-emitting junctions on October 19 at the International Electron Devices Meeting, Washington, D. C. The experimental matrix consists of 141 rows by 141 columns in a one-half-inch square. Integrated switching circuits are planned for this application, but have not been built.

The advantage of the square array is the same as that of computer memory arrays: the peripheral electronics increases by the square root of the number of elements.

Reference:

[^1]

30-60 day delivery ...

...helps you meet tight schedules when you use I/C μ-STORE core memories

Our one microsecond ICM-40 memories are ready now to meet your tightest delivery schedule - 60 days or less on standard models with capacities of 4,096 , $8,192,16,384$ and 32,768 words.

If you've drawn a block marked "core memory" recently, let us show you μ-STORE speeds, capacities, and fast delivery capability. You'll find that both our ICM-40 and 1CM-47 (670 nanosecond full cycle time) have been designed to offer a custom solution to your memory problems. Write for our new brochure. It sums up all the facts. Honeywell, Computer Control Division, Old Connecticut Path, Framingham,
Massachusetts 01701.

Honeywell

Comsat labs hopes to rival BTL

Washington Report:=

Comsat aims to lead the field

On completion early in 1969, Comsat Corp.'s new Clarksburg, Md., research laboratory will begin operation under a $\$ 5$ million annual budget with nearly 350 personnel. Roughly onethird of these will be scientists and engineers engaged in advanced applied research for both ground and satellite subsystems and techniques. Comsat Corp. must lead in this technology and "not be at the mercy" of its suppliers, said Wilbur Pritchard, director of Comsat Laboratories. The corporation must be a sophisticated buyer, he declared, and in time the new organizer will rival the competency of the world-renowned Bell Telephone Laboratories, despite Comsat's greater specialization.
Early research by Comsat, Pritchard disclosed, will be directed toward such problems as the improvement of spectrum utilization through data compression and the use of the millimeter wave band. If the effective use of data compression obviated a single satellite launching, which costs $\$ 15-\$ 17$ million, the entire research effort of several years would pay for itself, he claimed. With present spectrum space nearly exhausted and bandwidth limitations a serious operational factor, the $18-\mathrm{GHz}$ and $35-\mathrm{GHz}$ bands will be studied for future use. (Present operating bands are at 4 GHz and 6 GHz .) Above 8 to 10 GHz , he said, atmospheric attenuation becomes an increasing problem but good windows do exist. Among the first devices to be studied, Pritchard stated, will be rf power emitters for use at these very high frequencies. The complete design of future satellites by Comsat is not being considered, the laboratory director declared.

'This, gentlemen, is a fact of life'

Representative George P. Miller (D-Calif.), Chairman of the House Science and Astronautics Committee, recently gave some
advice to an industry group, in describing the House's latest cut in NASA's budget, from a requested $\$ 5.1$ billion to $\$ 4.6$ billion. He said that industry should be aware of this as a clear enunciation of a political fact. It is a fact of life, Miller said, that firms in aerospace activity must live with. They must take it seriously into consideration when planning future operations.

Members of Congress on both sides of the aisle, he stressed, are deeply concerned with current national economic burdens. But, he said, "in no sense should the actions by the House on the authorization and appropriation bills be interpreted as hostility to space exploration." Congressman Miller castigated NASA for its apparent willingness to accept major program delays in the belief that those same programs can be picked up again at some indeterminate date without massive financial penalty. No program, said Congressman Miller, has ever been put aside and then resumed later without involving very heavy increases in expenditures. Technology, he stated, cannot be put on the shelf, because technology resides in the minds of people, not things.

AF computer contract rebid

Like a rerun of an earlier episode, proposals have again been submitted for an anticipated $\$ 120$ million commercial-computer buy by the Air Force. The rebids supersede a contract previously awarded by the Air Force to IBM in the hotly contested program. Insiders, both in government and in industry, still maintain that IBM will be the ultimate winner.

The highly controversial procurement, the first award for which was upset by the U.S. General Accounting Office, is currently being sought by the same contractors as made the original bids -Honeywell, Inc., Burroughs Corp., and RCA. The real problem, informants say, was centered on IBM's costing approach-while IBM offered

Washington
 Report covinuseo

more for its money over a five-year period, the total price of its bid was higher than either of its competitors'. IBM's current proposal is expected to approximate its former proposal closely both in details of dollars and of benefits provided on a long-term basis.

Exports finally exceed imports

For the first time in many years, U.S. electronic exports during the first five months of 1967 have exceeded imports with a record total of $\$ 737$ million, representing an increase of 32.5% over $\$ 556$ million during the same period last year, according to the latest Electronic Industries Association report. Imports actually increased some $\$ 300$ million during this same period.

Major gains were achieved by radiotelegraphic and telephonic transmission and reception instrumentation (increased 337%); electrosurgical devices and parts (up 252%); and television cameras and parts (up 167%). Of major interest was the rise in militaryindustrial electronics exports which jumped more than 38% for a total of $\$ 517$ million during this same period. Electronic-component exports surpassed the sales increase within the U.S., with a 22% increase.

Lasers as tunnel diggers-again?

For the umpteenth time in as many years, the proposal has been made to use "high-power lasers" for drilling tunnels, on this occasion by Alan F. Boyd, Secretary of Transportation.
Speaking recently before a group in Los Angeles, the Transportation Secretary was describing research needed to overcome the shortcomings of U.S. mass transportation systems. He indicated that radically different means of providing transportation facilities are within our grasp. As an example, he suggested that one project could be investigation of the use of laser beams to tunnel under cities "rapidly and at dramatically lower cost than present digging techniques." He did not suggest what laser would be used. Boyd commented that such techniques might ultimately make possible the use of high-speed, induction-driven trains between cities with little interference
with surface life.
Continuing his blue-sky forecasting, Secretary Boyd indicated that current research has suggested that tracked air-cushion vehicles capable of $200 \mathrm{mi} / \mathrm{h}$ could be built in the near future, if the U. S. were able to concentrate more resources on such developments. He pointed out that less than 1% of the annual Federal research budget is presently applied to transportation and the majority of that input is spent on aircraft and associated air movement problems. He stated, moreover, that transportation companies in general spend less than 0.5% of their total revenues on research (typical aerospace R\&D in-house research varies from 5% to 8% annually).

Pakistani satellite report erred

Let's set the record straight. A recent Reuters report in the national press that the ExportImport Bank was to provide a $\$ 10$-million loan to the Pakistani government for a communications satellite to be synchronously orbited over the Indian Ocean was incorrect. The announcement was attributed in the story to the Pakistani Communications Secretary M. H. Zuberi.

The facts are these. A letter of intent has been filed by the government with Comsat Corp. here for technical assistance to provide:

- A definition of specifications for use in a proposal request for two Earth stations compatible with the global Intelsat systems.
- Evaluations of such proposals to assist Pakistan in selecting ultimate contractors.

The Export-Import Bank will lend the $\$ 10$ million but has stipulated that the procurement must be from U.S. firms. The program is scheduled for completion late in 1968.

Soviet computer efforts snagged

Centralization of power is supposed to be a dominant characteristic of dictatorships, but the reverse situation is reported causing difficulties in computer technology in the Soviet Union. Instead of one supervisor to direct the government's research, the efforts are said to be divided among many ministries. The result, according to Russian sources: " a fractured multitude of one-of-a-kind designs and programing principles." The reports, culled and translated by Electro-Optical Systems, Inc., of Pasadena. Calif., nut the Soviet five to 10 years behind the U. S. in computer design and programing.

To the $1 / 2$ Nanosecond . . .
shown twice actual size

We now have a range of diodes to fit many more applications. By virtue of this addition to the: line, Solitron is now able to supply customers with a complete range of switching devices which perform in any step down to the superfast Schottky Barrier Diodes. Make a note! We now offer, among others:
. Gold Bond Silicon Diodes: $1 / 2$ nanosecond switching.
. Gold Bond Germanium Diodes:
. Planar Epitaxial Silicon Switching Diodes: Of rugged double stud construction, assembled in sub-miniature glass packages. The power rating is 500 mw , giving greater power handling capacity in a smaller package than ever before. The encapsulation technique ensures "no internal contamination". Also available in pill package.
Complete your diode purchasing with one phone call!

$\pm 2 \%$... 1 -100mc

Balanced or Unbalanced Measurements on Antennas F Cables
 ■ Transmission Lines. Also, Input Impedances of Amplifiers and Receivers
 - Transistor Parameters ■ VSWR, etc.

Versatile describes the features and performance of the new Wayne Kerr B801B VHF Admittance Bridge.

Alone, the B 801 B provides $\pm 2 \%$ accurate measurements of antennas, cables and transmission lines, as well as input impedances of amplifiers and receivers over the frequency range $1-100 \mathrm{mc}$. It can also be used for checking transistor parameters, VSWR, and a wide variety of component measurements, including shunt capacitance of coils.

In conjunction with the Wayne Kerr Q801 Adaptor, the B801B provides a most convenient means for performing both grounded-base and groundedemitter measurements of all common small-signal AC transistor parameters, from 1-100 mc.

Of particular importance, two-terminal
balanced or unbalanced measurements and three-terminal measurements are easily performed, and thumb-wheel-activated dials permit rapid bridge balance and direct readout of admittance in terms of conductance and positive or negative capacitance.

Weighing only 9 pounds, the B801B is readily portable to remote locations such as field antenna sites, cable runs, and transmission lines.

B801B In conjunction with Wayne Kerr SR268 Combined Source and Detector, with single dial funed system to provide ganged tuning of source and detector from $100 \mathrm{kHz}-100 \mathrm{MHz}$ simultaneously in one operation.

For ilterature and detalled specifications, write:

18AFrink Street, Montclair, N. J. 07042 • Phone (201) 746-2438
INNOVATIONS IN INSTRUMENTATION

NEWS

Explosive pumping of lasers studied

Scientists in the Soviet Union are reported experimenting with rapidly moving bodies, accelerated by gunshot, as a possible method of pumping medium power lasers.

According to M. S. Rabinovich of the USSR Physics Institute, the shot energy from a modern weapon ranges from several kilojoules for an ordinary rifle to several thousand for an artillery piece. At a repetition frequency of 10 through 30 shots per second, an efficiency of 1 per cent would yield 10 joules to 1 kilojoule, he said.

The mechanism of converting the bullet energy into pump energy, according to Rabinovich, may be provided either by the flash of light produced by the compression wave in front of the bullet, or by magnetohydrodynamic generation of electric energy by the bullet.

In the case involving a flash of light, a bullet maintained at approximately $3 \mathrm{~km} / \mathrm{sec}$ over a path length of about one meter produces a sufficiently intense pump flash, especially if it moves through a jet of gas having high emissivity, Rabinovich reports.

Energy provided by induction

In the magnetohydrodynamic case, the electric energy is produced by induction as the bullet moves transversley to a strong magnetic field. The necessary conducting circuit is provided by the gas that is ionized by the moving body.
Rabinovich has observed that the pulse power of several dozen megawatts can be produced at a velocity of about $3 \mathrm{~km} / \mathrm{sec}$ and a path length of approximately 30 cm .
He concludes that the explosivepumping method can be used to construct compact pump systems for laboratory lasers without resorting to capacitor banks.
The experiments were reported in the September, 1967, issue of Soviet Science in the News, published by Electro-Optical Systems, Inc., of Pasadena, Calif. - •

"we have used many millions of

Allen-Bradley hot molded resistors.

The uniformity of quality from one shipment to the next is truly astounding.

There can be no question about the reliability of these resistors.'

Wang Laboratories

Model 320 Wang Electronic Calculator with 320K keyboard for scientific application. Readout provides 10 -place accuracy with floating decimal point, and all calculations are displayed in one millisecond. Normally the 320 calculator is placed in a desk drawer rather than on the desk. It is shown here next to the keyboard to indicate compactness of the calculator.

One of the printed circuit cards from the Model 320 calculator. All resistors on this card are Allen-Bradley Type CB $1 / 4$ watt hot molded resistors.

To insure the extremely accurate and high speed operation of the 300 Series Wang Electronic Calculators, all components are selected with utmost care. Thus, it was only natural that Allen-Bradley hot molded resistors were chosen for this most exacting application.

Composition resistors, not produced by the technique of hot molding used by Allen-Bradley-using completely automatic machinescannot equal the quality and uniformity of production for which the hot molded Allen-Bradley resistors have a worldwide reputation. The precise control during manufacture results in such uniformity of one A-B resistor to the next-million after million-that long term resistor performance can be accurately predicted. There is no record of any Allen-Bradley hot molded resistor having failed catastrophically.

Let the experience of the engineers at Wang Laboratories become your
own experience. Allen-Bradley fixed and variable hot molded resistors will do exactly as well for you as they have done for all other users. For complete specifications, please write for Technical Bulletin 5000: AllenBradley Co., 222 W. Greenfield Ave., Milwaukee, Wis. 53204. In Canada: Allen-Bradley Canada Limited. Export Office: 630 Third Ave., New York, N. Y., U.S.A. 10017.

HOT MOLDED FIXED RESISTORS are available in all standard resistance values and tolerances, plus values above and below standard limits. Shown actual size.

Miniature A-B Type BB hot molded resistors provide over 1,300,000 units per cu. ft.*

...your answer to high packaging density with discrete components

Faced with a severe space limitation for your electronics equipment, the miniature Allen-Bradley Type BB is just the "ticket." Its extremely high packaging density (over $1,300,000$ per cu. ft. ${ }^{*}$) enables a drastic size reductionwith no sacrifice in reliability!

These tiny Type BB resistors are made by the identical exclusive hot molding process as the larger Allen-Bradley resistor. Using precision automatic machines-developed and perfected by Allen-Bradley-the human element is completely eliminated. The resulting uniformity from one resistor to the next-million after million and year after year - is so exact that long term resistor performance can be accurately predicted. And during the twenty-five years this exclusive hot molding process has been in operation, no Allen-Bradley resistor is known to have failed catastrophically.

Allen-Bradley Type BB resistors are available in standard resistance values from 2.7 ohms to 100 megohms with tolerances of $\pm 5 \%, \pm 10 \%$, and $\pm 20 \%$. Maximum rated wattage is $1 / 8$ watt at $70^{\circ} \mathrm{C}$ and can be derated linearly to zero watts at $130^{\circ} \mathrm{C}$. The maximum continuous rated voltage is 150 volts RMS or DC. For complete specifications on the Type BB resistor, please write for Technical Bulletin B-5005. Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee, Wis. 53204. In Canada: Allen-Bradley Canada Limited. Export Office: 630 Third Ave., New York, N.Y., U.S.A. 10017.
*Theoretical packaging in cordwood arrangement.
actual size
of Allen-Bradley Type BB hot molded resistors

71-05.7E

Post Office looks to voiced mail-sorting

In a bid to speed the massive volume of parcel post, the U.S. Post Office has contracted with RCA's Advanced Technology Dept. in Camden, N. J., to develop a voice-operated sorting system (see "News Scope," ED 18, Sept. 1, 1967, p. 13).

To operate the system, a postal employee would read the ZIP Code number on a package into a head microphone, and place the package on a conveyor belt. Both hands would be free for package-handling.

The spoken number would be instantly flashed on a verifier screen in front of the operator as an accuracy check. The package would move along the belt until it reaches the bin assigned for that ZIP Cude destination. There it would be automatically deposited.

An experimental Numeric Speech Translating System, according to RCA spokesman D. J Parker, is capable of operating despite regional, ethnic and personal speech differences among operators and is sensitive enough to function in the noisy environment of a busy post office.

The translator employs circuitry which functions similar to neurons (nerve cells). These threshold-logic elements perform both digital and analog functions, Parker explained.

The equipment recognizes a continuous string of spoken digits by examining the speech energy as a function of both frequency and time. The relative values of speech energy in the various frequency bands and the changes in these values with time are abstracted from the microphone input signal. These data are then processed by several phoneme recognition networks that employ analog threshold-logic elements. (A phoneme is the smallest unit of speech essential for distinguishing one utterance from another, such as the " p " in pin as opposed to the " b " in bin). Delivery of a feasibility model is set for early 1968.

RCA officials declined to speculate on other specific uses for their system except to say that it most likely could find application for any numerically controlled machine. - ■

DICITAL PHASE METER mesmo
 toos ogege Acenvecy, 20 crs to 500 kc

Type 524A3 with indicator. Computer alone (bottom panel) can produce analog output to drive recorder and d.c. digital voltmeter. Price $\$ 999$.

FEATURES:

Phase reading directly in degrees in 5 digits (or 4 digits).
No amplitude adjust. ment from 0.3 v to 5 Cv . No frequency adjust. ment up to 500 kc .
Analog output available for recorder or programmable system
USES:
Plot phase vs. frequency curve of unknown network.
Plot envelope delay curve with RF sweep oscillator.
A standard phase meter with 5 -digit readout.

WORLD FAMOUS FOR PHASE AND TIME MEASUREMENT 0.001 CPS TO 18 GC

IIOW... RIEAII LEAD DIOIDAN in flip-chips, invial-lead microdiodes and mulfi-diode modules

You can now select from General Instrument's line of Beam Lead diode products, flip-chips, axial-lead microdiodes. and a complete line of multi-diode modulesall providing the extreme reliability of the Beam Lead structure.

The Beam Lead Technology:
General Instrument's Beam Lead devices consist of gold bonding leads extending beyond the edges of the chipin cantilever form. Securely bonded to the silicon and its passivating layer, Beam Leads make ohmic contact through a highly stable and low resistance platinum alloy. Beam Leaded devices are prepared on the slice in a batch process, thereby lowering costs and providing the utmost uniformity between Beam Lead interconnected devices. Beam Lead technology creates a total chip/bond system which is unusually rugged and yields extremely reliable package bonds by a variety of techniques.

only firom Gencral lustrwnent

For information in Europe, write to: General Instrument Europe, Via Turati 28, Milano, Italy.

How available in...

Chips and Chip Arrays-for use in flip-chip bonding in a wide range of electrical parameters and circuit configurations. The cantilevered Beam Leads permit economic assembly to substrates without the use of eutectics, aluminum or thermal wire bonding. No bonding energy need be transmitted through the chip itself and, once formed, the bond is visually available for inspection. Discrete diode chips as well as diode arrays containing two to eight air isolated junctions are available.

nall in...

Beam Lead Microdiodes-in a small plastic axial-lead Microdiode which exceeds MIL moisture specifications. The Microdiode body measures only $40 \times 40 \times 80$ mils. It has half inch long gold plated Kovar ribbon leads (5×20 mils). Life tests performed on General Instrument's Microdiode indicate a typical ΔI_{r} less than $1.5 \times I_{r}$ (orig.) at PRV and $25^{\circ} \mathrm{C}$ after 2000 hours at $150^{\circ} \mathrm{C}$ operating conditions.

and in...

Beam Lead Microdiode Strips-as modular diode strips on 50 mil centers. The strip may comprise from two to twenty diodes in any combination of common anode, common cathode or discrete interconnections. They can be easily used to form large diode matrices for switching applications.

and in...

Beam Lead Diode Modules and Arrays-in any circuit configuration and in plastic or hermetic packages-both flat pack and dual in-line. The extreme stability and long life provided by Beam Lead bonding is assured. The use of Beam Lead isolation between junctions allows the production of switching and core driver modules with faster response times than obtainable by the usual monolithic approaches.

TV set plays prerecorded photographic film

Electron-beam scanning attachment extracts sound and color images from 7-inch cartridges

The Columbia Broadcasting System has officially announced its device that permits a home viewer to watch motion pictures on an unused TV channel. In March, 1966 the company denied its existence, but talk persisted. Now advances in home video tape recorders may have sof tened the impact of the CBS announcement.

A spokesman for CBS Laboratories, Stamford, Conn., explained the "new" system as a cartridge of special film that is loaded into an attachment, which feeds the antenna terminals of a standard television set. An electron beam scans the film and converts the light variations into audio and video, which modulate an rf carrier. Playback is identical to reception of a telesast.

Only plays back film

The playback unit is not a video tape recorder. It operates only with the specially processed film cartridges and it cannot record.

Playback of the film-cartridge requires a breadbox-size unit that can sit atop a TV set. It contains an electro-optical scanner instead of a light source for extracting the information stored on the film. The output of the optical converter is modulated rf. The film may be viewed on any vhf-channel. A switch
on the unit can block incoming programs.

Operation of the unit is described as simple: the round cartridge is plopped onto a spindle. It is automatically threaded, played, rewound and rejected, much like a phonograph disk on a changer.

Film normally progresses through the unit at $5 \mathrm{in} . / \mathrm{s}$, but the user can stop it at will, so that he can freeze any frame.

Dr. Peter Goldmark, President and Director of Research, CBS Laboratories, maintains that a great deal more pictorial and sound infor-mation-one hour of black-andwhite or one-half hour of color viewing - can be stored in a 7 -inchdiameter by $1 / 2$-inch-thick cartridge than on a comparable reel of magnetic tape. Moreover, he says, this can be done at a much lower cost. One estimate is $\$ 7$ to $\$ 14$.

As explained by CBS, a filmprocessing company would electronically transfer the information on film or video tape onto a special $8.75-\mathrm{mm}$-wide, unperforated thin film. This master film would be duplicated at high speed by multiple printers. The final processed film would be spooled onto the hubs of the 7-inch cartridges. Dr. Goldmark says that a 20 -minute program can be duplicated in half a minute. He predicts that duplicating time can

Electron-beam scanning permits playback of monochrome or color motion pictures on home TV sets. Variations in light intensity are converted into audio and video signals that are coupled to the antenna terminals of a TV set. Commercial prerecorded film is packed in 7 -inch cartridges.
be halved in a year or two.
The convenience with which action can be stopped suggests an important application for the device: classroom or even home instruction. A teacher can dwell on a problem for as long as he desires.

Cost does not appear to be prohibitive. The playback unit can be manufactured for about $\$ 280$, says a CBS spokesman. The price cited is for small-scale production in England. An expert on the television industry estimated that in quantity costs could be held to about $\$ 150$ in the United States.

The same expert is less than enthusiastic about the future of the CBS unit vis-à-vis video tape recorders using the Newell tape transport (see "Low-cost tape transport records 50 MHz ," ED 13 , June 21, 1967 p. 38). Retail prices under $\$ 500$ have been forecast for Newell-licensed units in a few years by various industry sources, but some spokesmen are skeptical.

Some call it 'reactionary'

Another expert likens the CBS device to "an electronic buggy whip" in that it uses photographic film instead of magnetic tape. He does admit, however, that despite cost reductions magnetic tape will still cost much more than the film cartridges for some time to come.

He thinks that CBS will reserve all rights on the film-duplicating process in order to remain the sole producer of the cartridges in the United States. The foreign partners of CBS are Imperial Chemical Industries Ltd (England) and CIBA Ltd (Switzerland).

Will the public accept passive playback? Arvin Industries, Columbus, Ind., is readying for fall demonstration an experimental colortelevision console embodying a video tape recorder that uses specially developed tape heads and electronicsand, it is rumored, a Newell transport. However, no product line is likely to appear before 1969 -the CBS target date.

BRAND-REX SLEEVING	CHARACTERISTICS	IEEE CLASS	DIELECTRIC STRENGTH	TEMP RANGE	GRADES	SPECS.
TURBO ${ }^{\text {® }}$ Varnished Sleeving	High tensile strength; excellent flexibility; low maisture absorption; oil and acid resistant.	A	$\begin{aligned} & \text { To } 7,000 \\ & \text { volts } \end{aligned}$	$\begin{aligned} & -100^{\circ} \mathrm{C} \text { to } \\ & +105^{\circ} \mathrm{C} \end{aligned}$	thruc-3	$\text { NEMA VS } 1 \text {, }$ MIL-I-3190 ASTM D-372
TURBOGLAS ${ }^{\circledR}$ Varnished Glass Sleeving	Strong; flexible; tear, moisture and chemical resistant.	B	$\begin{aligned} & \text { To } 7,000 \\ & \text { voits } \end{aligned}$	$\begin{aligned} & =10^{\circ} \mathrm{C} \text { to } \\ & +130^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{A}-1 \\ \text { thru } \\ \mathrm{C}-3 \end{gathered}$	NEMA VS 1 , Type 2 MIL-I-3190 ASTM D-372
TURBOTUF® Vinyl Coated Glass Sleeving	Abrasive resistant; highly flexible; retains dielectric strength under severe handling.	B	$\begin{aligned} & \text { To } 8,000 \\ & \text { voits } \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & +130^{\circ} \mathrm{C} \end{aligned}$	$\stackrel{\mathrm{A}-1}{\text { thru }} \mathrm{C}-1$	NEMA VS 1 , Type 3 MIL-1-3190 MIL-I-21557
TURBOCRYL® Acrylic Coated Glass Sleeving	Tough; flexible; maisture, abrasion and chemical resistant. Compatible with magnet wire coating.	F	$\begin{aligned} & \text { To } 7,000 \\ & \text { voits } \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { cto } \\ & +155^{\circ} \mathrm{Co} \end{aligned}$	$\begin{gathered} \mathrm{A}-1 \\ \text { thru } \\ \mathrm{C}-2 \end{gathered}$	NEMA VS 1 , Type 6 MIL-I-3190 ASTM D-372
TURBOSIL® Silicone Coated Glass Sleeving	Chemically inert; oil, moisture, abrasion and peel resistant. Compatible with magnet wire coating.	H	$\begin{aligned} & \text { To } 7,000 \\ & \text { volts } \end{aligned}$	$\begin{aligned} & -65^{\circ} \mathrm{C} \text { to } \\ & +200^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{A}-1 \\ \text { thru } \mathrm{C}-3 \end{gathered}$	$\underset{\text { Type }}{\substack{\text { NEM }}}$ MIL-T-3190
TURBO 117^{\circledR} Silicone Rubber Coated Glass Sleeving	Extremely tough; radiation resistant; electrical properties unaffected by bending or twisting.	H	$\begin{aligned} & \text { To } 8,000 \\ & \text { voits } \end{aligned}$	$\begin{aligned} & -70^{\circ} \mathrm{C} \text { to } \\ & +200^{\circ} \mathrm{C} \end{aligned}$	$\stackrel{\mathrm{A}}{\mathrm{~A}-1}$	NEMA VS 1 , Type 5 MIL-I-3190 MIL-I-18057
BRAND-REX TUBING	CHARACTERISTICS		TEMP. RANGE	COLORS		SPECS.
TURBOTHERM 105 ${ }^{\circledR}$ High-temperature vinyl tubing	High dielectric strength; retains fiexibility and elongation at elevated temperatures where conventional vinyls may crack. Odorless, tasteless. Recommended for potting application.		-20° to $+105^{\circ} \mathrm{C}$	Clear and colors		$\begin{aligned} & \text { UL-105 } \\ & \text { ASTM D-922 } \\ & \text { Grade C } \end{aligned}$
TURBOLEX $10{ }^{\text {® }}$ High-temperature vinyl tubing	Flame and fungus resistant; retains clarity through use of light-stable fungicides.		-20° to $+105^{\circ} \mathrm{C}$	Clear and colors		$\begin{aligned} & \text { MIL-I-631 } \\ & \text { Grade c, Class } 1 \\ & \text { Category } 1 \\ & \text { UL-105 } \end{aligned}$
TURBOLEX 85° General-purpose vinyl tubing	For use where moderate heat and occasional exposure to oil are encountered. Easily printed, retains legibility.		-32° to $+60^{\circ} \mathrm{C}$	Colors only		$\begin{aligned} & \text { ASTM D-922 } \\ & \text { Grade a } \end{aligned}$
TURBOLEX 76A ${ }^{\text {® }}$ General-purpose and low temperature vinyl tubing	Good dielectric and low temperature properties. Fungus-resistant, noncorrosive.		-46° to $+80^{\circ} \mathrm{C}$	Clear and colors		MIL-I-621 Grades a \& b, Class 1 Category 1
TURBOLEX 40° Low-temperature vinyl tubing	Low temperature tubing for military applications with xcellent high temperature characteristics. Flan and fungus resistant.		-55° to $+80^{\circ} \mathrm{C}$	Clear and colors		MIL-I-22076
TURBOZONE 40® Low-temperature vinyl tubing	Flame retardant; fungus-resistant; noncorrosive; available in Types I and III in all sizes.		$\begin{aligned} & \text { Class 1: }-90^{\circ} \\ & \text { to }+80^{\circ} \mathrm{C} \\ & \text { Class } 111-67^{\circ} \\ & \text { to }+80^{\circ} \mathrm{C} \end{aligned}$	Clear and colors		MIL-I-744C
TURBOTEMP ${ }^{\oplus}$ Teflon TFE tubing	Chemically inert; moisture-resistant; excellent dielectric.		-70° to $+250^{\circ} \mathrm{C}$	Natural and colors		MIL-1-22129

Brand-Rex will cut, slice, split or punch
Turbo ${ }^{\star}$ tubing and sleeving as requested.

Now that you've found a complete line of tubing and sleeving, cut out this bookmark to keep your place.

NEWS

Ape's panting gauged to 300 picostrain

A single-crystal silicon strain gauge, developed as a sensitive pressure transducer, has been implanted in the chest of a rhesus monkey to measure respiration during suborbital flights. It has also been inserted through the veins into a man's heart to detect irregularities, and used to measure fuel level in space vehicles.

The 80-by-6-by-0.5-mil device is adaptable to such applications as angle sensors, torque arms, load cells, pressure bays, traffic counters and phonograph cartridges.
In an industrial counter, the strain gauge can detect minute differentials in paper thickness caused by weight strain of stacking. It produces varying output signals from the output electronics that are translatable into an accurate sheet count.

The gauge has been tested down to 300 picostrain (a picostrain is $10^{-12} \mathrm{in}$./in. strain) by its manufacturer, Electro-Optical Systems, Inc., of Pasadena, Calif. The company says the device has a theoretical detection limit of 100 picostrain. It also reports a mean time between failures of 100,000 hours.

The gauge can be compensated for temperature over an operating range of $-100^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$. -

Microminiature pressure gauge inside monkey's chest measures respiration. Dimensions of device are 0.08 by 0.006 by 0.0005 inches.

Oh, no! Not another "revolutionary new breakthrough in electronic science." Just what in the world is a "Glo-Annunciator"?*
It may not be as important as the invention of the transistor, but in it's own way, in it's own application, it's a pretty revolutionary product.
The Switchcraft "Glo-Annunciator" is a miniature, electromagnetically operated annunciator that appears to glow without the use of a lamp. A magnet-
 indicator panel simply slides back and forth behind a display screen, alternately exposing and hiding the reflective indiings or latches to wear out. Secondly,

$$
\begin{aligned}
& \text { SMTCH: } \\
& \text { CRaFT TORUm }
\end{aligned}
$$

cator as the device is actuated. The highly reflective material appears to glow, just as though there was a lamp behind it.
No power is needed to burn a lamp. In fact, the only power needed is a pulse signal to activate the slide magnet.

Sounds ingenious. But what does all this mean in terms of improved electrical efficiency? An annunciator board isn't all that complicated.
Oh, no? Add up the power consumption on a big board. And the heat. Not only from lamps. Buzzers or ring-down devices also use a lot of power and generate heat. What we have is a real cool device. The pulse signal feeds the annunciator coil which consumes only 0.7 watts at rated voltage. Even if you had an application where the annunciator coil must operate continuously, 0.7 watts is still a lot less than required for many indicator lamps.
And for extended life, we use a highly efficient ceramic magnet. Just for comparison, a ceramic magnet has 5 to 6 times greater magnetic retention than Alnico.

I'm used to lamps. At least with a lamp, when it's "on," you know it. Can your reflective material match the intensity of a lamp?
In the dark, no. It takes ambient light to reflect. But, here's one big advantage: the brighter the ambient light, the less a lamp appears to glow, by contrast. With our material, the brighter the ambient light, the brighter our reflected signal. And here's another big advan-

tage of the "Glo-Annunciator". A lamp is either "on" or "off". When a lamp is out, how do you know it isn't just burned out? Ours is a two-way signal. In one position it can glow green, in the other it can glow red . . . or many other combinations of colors. It is a positive signal in either position, and nomenclature may be imprinted on the indicator.
"Burn-out" brings us to another point. Lamps are relatively cheap, but how about the labor costs and down-time to replace them?
You claim infinite life characteristics. Just how long will the "Glo-Annunciator" continue to operate?
Practically forever. Here's why. The only moving part is the ceramic magnet slider. No pins, no bear-
lamps, the flourescent material just keeps on glowing as long as there is light to reflect.
The simplified operation of the "Glo-Annunciator" bears this out:

Sounds pretty exciting. How do I get complete details on mounting dimensions, circuit applications, etc? By the way, I've got some comments on your FORUM, too.
Good, just circle the Reader Service No. below. And, drop us a line on your company letterhead with your comments on any of our FORUM projects. We're anxious to have a lively exchange of ideas.
Also, we'll print the most interesting comments in our TECH-TOPICS engineering magazine, which you'll receive every other month. TECH-TOPICS features technical articles on switches and related products. Ten-thousand engineers already receive this Switchcraft publication and find the application stories useful in solving similar switching problems. *Patents pending.

Simplify power-supply short-circuit protection

Sir:
Electronic Design's March 1 issue shows a circuit in the Ideas for Design section that uses 18 components to provide short-circuit protection ["Protect power supply against overloading," ED 5, p. 110]. This function may be combined with the design of the regulator without the addition of another black box just for short-circuit protection. The regulator in the figure is designed for a predetermined maximum load current and simultaneously provides the specified regulation.

The conventional method of overload protection relies on an increase in voltage across a precision series resistor to turn off the power supply. Most overload protection circuits require several components owing to their complexity.

A more simple and economical method is to limit the output of the series control transistor to the desired short-circuit current. R_{2} and $C R_{1}$ are chosen for a constant current, I_{1}. This limits the collector current of $Q 3$ to $I_{s c}=\beta_{3} I_{1}$, with the output shorted and Q2 off. Q3 is

Relay protects regulator circuit against short-circuit overloads.
then selected to have a rated collector dissipation of $V_{d c} I_{s c}$. Without the output shorted, the maximum collector dissipation is $V_{c e} I_{g c}$, which is less than the rated power of $Q 3$. During normal operation when $V_{\text {out }}$ is high, Q2 is driven hard, allowing I_{1} to be shunted through Q2. A relay may be added to disconnect the load when the out-
put is shorted, to avoid continuous heating by $Q 3$.

This same technique could be applied to other regulators by limiting the current of the source rather than implementing a complex detec-tion/shut-off system downstream.

Nelson M. Nekomoto
Tasker Instrument Corp. Van Nuys, Calif.

Three-phase generator made with 2 flip-flops

Sir :
Regarding the circuits on p. 106 of the April 12 issue of Electronic Design ["Generation of 3 phase square waves simplified," ED 8] and p. 48 of the June 7 issue ["Three phase generator may lock in subsequence," ED 12], I submit another method.
[In the former, John L. Nichols of Fairchild Semiconductor showed how three DTHL 946 packages could be used to generate three squareuave signals phased 120° apart. In the latter, Howard Hamer and Paul Holtzman of RCA contended that Nichols's design would lock up in a subsequence. They proposed two circuits that would not lock up. Nichols rebutted the RCA engineers' claim that his circuit was flawed in the Letters column of ED 15, July

19, p. 40.-Ed.]

This method (see figure) uses only two 945 flip-flops and half a 946 quad two-input gate. it will not lock up into the one unused state. The spare half of the 946 gate could be used elsewhere.
E. G. Holm

Hughes Aircraft Co.
Culver City, Calif.

Three-phase square-wave generator can be realized with two flip-flops and half a quad 2 -input gate.

Information inputs must be cleaned up

Sir:
I appreciated your editorial in the 5 July issue of Electronic DeSIGN. ["It isn't the retrieval, it's what you retrieve"]. The intent of your comments clearly reflects a few basic rules I learned in a technical-report-writing course at the University of Michigan. We learned, for example, to exercise care in choosing a title for a report, because eventually the paper would be cataloged and retrieved. Moral: If the job is done right the first time (a good input) a lot of trouble will be avoided in the future.

Presently, I am working for the Navy as an electrical engineer and see poorly written, misleading reports every week. These "bad inputs" to the collection of informa-
(continued on p. 42)

Ohmite makes just about every kind. But you won't find axial-lead wirewounds anywhere that measure up to Series 99 and Series 88 resistors. Why? One big reason is their exclusive MOLDED jackets. MOLDING produces a thick, dense coating that gives superior electrical insulation (1,000 VAC minimum breakdown)...exceptional protection against abrasion and rough handling
size and shape uniformity which works beautifully in the mechanical feeds of automated assembly lines. Uniformity also facilitates mounting in metal clips for a heat-sink advantage of up to 100%. MOLDED Series 88
and 99 units are the most durable axial-lead resistors available today. Get all the facts in the Ohmite "Answer Book," Catalog 100. Ohmite Manufacturing Company, 3643 Howard St., Skokie, Illinois 60076. Phone: (312) OR 5-2600.

OHMITE
MANUFACTURING COMPANY

As indicated in the curve above, the total change in capacitance of Synthar Capacitors over a wide range of operating temperatures $\left(10^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}\right)$ is only $\pm 0.12 \%$. This makes them suitable for use in all types of circuitry requiring a high degree of capacitance stability. Extremely high insulation resistance, low dielectric absorption and low power factor, all are outstanding characteristics of Synthar Capacitors. They offer the performance of costly laboratory built capacitors at commercial prices.

SPECIFICATIONS

- Rated from $-75^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Temperature Coelficient- ± 35 PPM, from $+20^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
- Standard DC Working voltages-up to 600 VDC.
- AC Voltageratingsavailable-up to radio trequency
- Insulation Resistance-A1 $25^{\circ} \mathrm{C} 3.5 \times 10^{2} \mathrm{Megohm}$

Mic
At $125^{\circ} \mathrm{C} 2 \times 100 \mathrm{Megohm}$ Mid.

- Outatanding long time capacitance atability.
- Available in matched paira-within $\pm 0.1 \%$ of each other.

For complete performance characteristics send for free catalog No. 1212.

3243 No. Callfornla Ave Chicago, lllinols 60618

LETTERS

(continued from p. 40)
tion pose a nearly meaningless, heavy burden to our libraries. Let's press to clean up the present and future "inputs."

Carter S. Rose
San Francisco

Article and editorial don't jibe, reader gibes

 Sir:I wonder whether the writer of the fine editorial, "It isn't the retrieval, it's what you retrieve" looked hard at the article, "Make IC digital frequency comparators," in the same issue on pp. 62-64.

What can one retrieve from that article? Well, there exist frequencies. What frequencies? Clearly these frequencies cannot be gigahertz. They must presumably be in the range of IC clock circuits, say, under 50 MHz . It is suggested that one may compare these frequencies. To what accuracy? It is hard to say. We are told that we will know when they are "equal," or when one is "higher" or "lower" than the other. How much higher or lower? How close to equal? Reading the article enables one to surmise that it must depend on the length of the "short, sharp" pulses used. One circuit, however, uses square waves. That one's accuracy must vary with the actual period of the square waves, and also with their rise times, and with the delay lines of the flip-flops.

What information can one retrieve from all this? That you preach more virtue than you manage to practice. This may often be so. But I still applaud your editorial.

Myron Pleasure
Physicist
Jackson Heights, N. Y.

The author to the defense

 Sir:Myron Pleasure certainly makes a valid point in saying that the frequency range and the accuracy of the systems have not been discussed.

Let me point out that the con-
tents of the article concern the systems as such, not so much their implementation with actual devices. A fairly comprehensive description of the different possibilities for implementing them would have been too voluminous to be included in the one article.

The upper frequency limit depends on the logic elements used in the construction. If one succeeds in building logic elements that operate at frequencies in the gigahertz range, the discriminator description is still valid, as is the double pulse elimination circuit.

My response to Pleasure's inquiry about the circuit employing square waves falls into the same pattern. The rise time of the square waves is determined by the characteristics of the flip-flops. For example, the $\mathrm{DT} \mu \mathrm{L} 950$ pulse-triggered binary, which was used experimentally, responds to the negative slope of the input voltage if the slope is 1 V / ns. The rise time is immaterial.

The general condition that is necessary for the other two systems, which I should have included in the article, is that the pulse width used has to be equal to or shorter than the response time of the flip-flops. The accuracy is plainly $\pm 0 \%$. Either the frequencies are equal or they are not. One can, however, define an "indication response time" as the time that elapses while the circuit changes from one state to the other. This time is equal to or shorter than:

$$
T=1 /\left(f_{1}-f_{2}\right),
$$

where f_{1} and f_{2} are the input frequencies. If both frequencies are, for instance, 1 hertz apart and the discriminator initially indicates f_{2} to be greater than f_{1} when the opposite is true, it will take two seconds in the worst case for the output of the discriminator to give the right answer. The actual time depends on the initial starting point of the discrimination, so the smaller the difference in frequencies, the slower the change will occur. But if the duty cycle of the square wave that appears at the output remains constant, then the frequencies are equal, plus or minus 0.0 hertz or per cent.

Hermann Ebenhoech Consumer Application Engineer Fairchild Semiconductor Div. Mountain View, Calif.

PG-16.

1 Hz to 100 MHz

E-Mode: $\pm 20 \mathrm{~V}$ at 100 MHz
I-Mode: $\pm 400 \mathrm{~mA}$ at 100 MHz
Tr: less than 2.5 ns to 1 sec.
Tf: less than 3 ns to 1 sec.
Width: 5 ns to 0.5 sec.
Delay: 10 ns to 0.5 sec .
Variable PRF, Amplitude, Tr, Tf, Width, Delay

Single or double pulses with separately variable width and delay for each pulse. Sync pulse. Duty cycle to 100%. DC-offset in either direction. Can be externally triggered or gated. One-shot via front panel pushbutton. All (silicon) solid-state. Rack height $31 / 2^{\prime \prime}$.

Write or 'phone for technical data and/or a demonstration.

...stand tall

Type X601PE Metallized Mylars typify TRW's stature in advanced metallized dielectrics.

They're smaller and lighter... metallized! Tough and rugged...
epoxy sealed! Ideal for printed circuits...save space!

TRW offers many additional styles and dielectrics for demanding Military and Industrial needs.

Product information is available from TRW Capacitor Division, TRW INC., Box 1000, Ogallala, Nebraska. Phone (308) 284-3611. TWX: 910-620-0321.

Co-Publishers
James S. Mulholland, Jr.
Hugh R. Roome
Editorial Director
Edward E. Grazda

Editor

Howard Bierman

Managing Editor

Robert C. Haavind

Technical Editors

Jeffrey N. Bairstow
Peter N. Budzilovich Maria Dekany
Roger K. Field
David H. Surgan
Careers and Management Editor Howard S. Ravis

News Editors

Ralph Dobriner, Chief
Richard N. Einhorn
Washington News Bureau
Charles D. LaFond, Chief
East Coast Editor
Neil Sclater

West Coast Editor

Ron Gechman
Copy Editor
Peter Beales
New Products Editor
Steven B. Futterman
Directory Editor
William Alvarez
Washington Editor
S. David Pursglove

Editorial Production
Dollie S. Viebig
Marian Arkin
Art Director
Clifford M. Gardiner
Art Assistant
William Kelly
Technical Illustrators
Cheh Nam Low
Sheila F. Ward
Richard Hartman
Production Manager
Thomas V. Sedita
Asst. Production Manager
Helen De Polo
Production Assistants
Bernard Wolinsky
Robert M. Henry
Murray Friedman
Circulation Manager
Nancy L. Merritt
Reader Service
Diane Mandell

EDITORIAL

Let's help the Post Office solve its problems

For years it has been a favorite pastime of politicians and the public to decry the many shortcomings of the U.S. Post Office Dept. Few such criticisms have ever suggested any realistic solutions. Now, at last, the POD, under the guidance of Postmaster General Lawrence F. O'Brien, has begun its own massive modernization program.

The most significant aspects of this program are the establishment of the Bureau for Research and Engineering in Washington, D. C., the creation of the Postal Institute of Technology (to be operational by the middle of next year) and general emphasis on a systems approach to postal problems.

The bureau is rapidly expanding its staff, so that it will include 965 specialists by 1972. Their main function will be to analyze, formulate and explain POD problems to industry. Their number will include experts in automatic control, operations research, datahandling, applied mathematics, communications and materialhandling. They will form a technologically self-sufficient postal research organization, capable of holding a meaningful dialogue with private industry.

The Postal Institute of Technology will train post office personnel in every facet of postal technology and management, both on its future campus and at a number of extensions elsewhere in the U.S.

The Post Office research programs have been viewed favorably by Congress. The last R\&D budget, one of the largest in POD history, sailed through without a single penny cut.

How can electronics engineers and companies help?
Firsthand knowledge of post office problems is a prime prerequisite. Dr. Leo S. Packer, director of the Bureau of Research and Engineering, is eager to give and receive every assistance in this direction. After obtaining the list of POD's needs from the bureau and comparing them with your company's product lines and capabilities, consider the possibility of submitting an unsolicited proposal to the POD.

The time for action is now. The POD is determined to modernize its operations, exploiting all the resources of today's technology. Let's stop crying about letters that take two weeks to arrive, and start working with the post office to make sure that the last increase in mailing rates will really be the last one.

Peter N. Budzilovich

The Tektronix Type 454 is an advanced new portable oscilloscope with DC-to-150 MHz bandwidth and $2.4-\mathrm{ns}$ risetime performance specified at the probe tip. The new P6047 10X Attenuator Probes and the optional FET and current probes are designed to solve your measurement problems.
The Type 454 has a dual-trace vertical, high-performance triggering, 5 -ns/div delayed sweep and solid state design. You also can make $1 \mathrm{mV} / \mathrm{div}$ single-trace measurements and 5 $\mathrm{mV} / \mathrm{div} \mathrm{X}-\mathrm{Y}$ measurements.
The dual-trace amplifiers provide the following capabilities with or without the P6047 probes:

Deflection Factor*	Risetime	Bandwidth
20 mV to $10 \mathrm{~V} / \mathrm{div}$	2.4 ns	DC to 150 MHz
$\mathbf{1 0 ~ m V / d i v}$	3.5 ns	DC to 100 MHz
$\mathbf{5 m V} / \mathrm{div}$	5.9 ns	DC to 60 MHz

*Front panel reading. With P6047 deflection factor is 10 X panel reading.
The Type 454 can trigger to above 150 MHz internally, and provides $5 \mathrm{~ns} / \mathrm{div}$ sweep speed in either normal or delayed sweep operation. The calibrated sweep range is from $50 \mathrm{~ns} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$, extending to $5 \mathrm{~ns} / \mathrm{div}$ with the X 10 magnifler. Calibrated delay range is from $1 \mu s$ to 50 seconds.
For a demonstration, contact your nearby Tektronix field engineer, or write: Tektronix, Inc., P. O. Box 500, Beaverton, Oregon 97005.

Two P6047 Miniature 10X Attenuator Probes are included with the Type 454. They have a $10 \mathrm{M} \Omega$ input resistance and 10.3 pF input capacitance and provide $\mathrm{DC}-\mathrm{to}-150 \mathrm{MHz}$ bandwidth with 2.4-ns risetime performance when used with the Type 454.

The Optional P6045 FET Probe features unity gain with $10-M \Omega$ input resistance and $4-p F$ input capacitance. With the Type 454 it provides a system risetime of 2.7 ns and a bandwidth of DC to 130 MHz from $20 \mathrm{mV} /$ div to $10 \mathrm{~V} / \mathrm{div}$ without signal attenuation. Probe power is obtained from a jack on the front panel of the Type 454.
The Optional P6020 Current Probe is easy to use with its clip-on feature and it provides up to 2.4 -ns risetime and 150 MHz bandwidth when used with the Type 454.

Type 454/P6020 Characteristics (454 at $20 \mathrm{mV} / \mathrm{div}$)

P6020	Deflection Factor	Risetime	Bandwidth
$1 \mathrm{~mA} / \mathrm{mV}$	$20 \mathrm{~mA} / \mathrm{div}$	3 ns	8.5 kHz to 120 MHz
$10 \mathrm{~mA} / \mathrm{mV}$	$200 \mathrm{~mA} / \mathrm{div}$	2.4 ns	935 Hz to 150 MHz

Type 454 (complete with 2-P6047 and accessories) $\$ 2600$
Rackmount Type R454 (complete with 2-P6047 and accessories) . \$2685
Type P6045 FET Probe (010-0204-00)
$\$ 2685$
$\$ 275$
Type P6020 with Passive Termination (015-0066-00) \$ 135 U.S. Sales Prices FOB Eeaverton. Oregon
... part of the Tektronix commitment
to progress in the measurement sciences

Technology

Courtesy of Cary Instruments, subsidiary of Varian Associates

The future direction of test instrumentation is keyed to integrated circuits and automation,
but they are only part of the story. An analysis of trends in the reference insert on p. T6.

Distortion can be read in three ways that range from approximation to evaluation of all
intermodulation products. The method used should be what best suits the system. Page 56

Also in this section:

Binary-to-decimal conversion can be made faster with fewer logic blocks. Page 50
Dielectric constants of 12 common plastics are shown by a simple nomogram. Page 62
Ideas for Design. Pages 66 to 74 .

Here Are The Two PNP Transistors You Would Build For Your Own Audio Amplifier Designs!

(and the 2N5086-87 are available in quantity)

Maybe you can't find transistors that have all the features you want for a design. But the new Motorola PNP 2N5086 and 2N5087 plastic packaged devices for audio amplifier applications come about as close as you can get to all-around versatility and performance perfection . . . just like you would build for yourself!

These devices offer such features as:

	2N5086	2N5087
High Voltage ($\mathrm{BV}_{\text {ceo }}$)	50 V (min)	50 V (min)
High, Stable Gain $\left(h_{F E} @ I_{C}=100 \mu \mathrm{~A}\right)$	150 (min)	250 (min)
Low Wideband Noise Figure $\text { (} \mathrm{c}_{\mathrm{C}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{ct}}=5 \text { Volts) }$	3 dB (max)	2 dB (max)
Low Current-Gain Bandwidth Product (f_{T})	120 MHz (typ)	150 MHz (typ)
Prices (5,000-up)	\$0.35	\$0.38

In addition, then, the 2N5086-87 transistors give you good gain linearity at low currents . . . excellent signal-to-noise ratio . . . good amplification of the wanted signal . . . extra flexibility in your choice of supply voltage ... and less chance of parasitic oscillations - due to low f_{T}.

PLUS, you get additional benefits like low leakage current for good bias stability ($\mathrm{I}_{\text {сво }}=10 \mathrm{nA}$ (max) at 10 V) . . . rugged TO-92 UNIBLOC* plastic package
. . . and patented Annular device structure for extra stability and reliability.

AVAILABILITY UNLIMITED!. Production quantities of both devices are available, immediately. Contact your Motorola field representative or franchised Motorola distributor to fill your order - with no waiting. For detailed data, write Dept. TIC, Box 955, Phoenix, Arizona 85001.

- Trademark of Motorola Inc.

Excellent Noise Characteristics At Four Current Levels!

-where the priceless ingredient is care!

Electronit Design

Test Instrument Directory

POWER witt PRECISION

The Model 2005
combines the accuracy of a precision DC voltage calibrator with a general purpose power supply at a fraction of the cost of equivalent instrumentation.

Provides

- .001\% plus $100 \mu \mathrm{~V}$ Stability / 8 Hours
- $100 \mu \mathrm{~V}$ Peak to Peak Ripple \& Noise
- . 0005% plus 500 山V Regulation
- $.001 \% /{ }^{\circ} \mathrm{C}$ Temperature Coefficient
- $10 \mu \mathrm{~V}$ Resolution
- All the Added Features of a High Quality Power Supply: Remote Sensing, Remote Programming, Current Limiting, Etc.

Rack Panel Adapter RRB-12

$\$ 325.00$

WRITE FOR DETAILED SPECS.

1967

Test Instrument Reference Issue

Maria Dekany
Technical Editor

William Alvarez
Directory Editor

ELECTRONIC DESIGN's Test Instrument listing puts the whole spectrum of test equipment at the design engineer's fingertips.

The ten most widely used instrument groups are included in this Directory. In each group the devices are listed according to a key parameter. For example, digital voltmeters are listed by their maximum voltage ranges. In addition, at the end of each group you'll find a list of manufacturers with a cross index that helps locate instruments by their model number. For additional data, circle on the Reader Service card the number assigned to the manufacturer in the cross index. The card, located inside the back cover, is good for a whole year.

What Makes Test Instruments Tick? . T6
Multitesters T14
Frequency Meters T84
Cross IndexT17
Cross Index T86
OscilloscopesT20
Cross IndexT36
Waveguide Frequency Meters . . T88
Cross Index T96
Frequency Counters T100
Cross Index T104
Field Strength Meters T106
Cross Index T108
Slotted Lines T110
Cross Index T114

> Data for this Test Instrument Directory were tabulated by Greg Guercio, president of Technical Information Corp., Smithtown, N. Y. The company publishes directories on electronic test instruments. A complete set of six volumes is available for $\$ 300$.

Update Your Test Instrument File

 ... in two simple steps (at no charge)

Step 1

Discard obsolete data sheets and catalogs

Step 2

Circle the appropriate numbers on the Reader Service card and receive the latest data sheets, notes on new measurement techniques and test procedures, price lists and catalogs from test instrument manufacturers.

Result

. . . a completely updated test instrument file.

Our military switches are sweeping the country!

Quick now, what's the first thing you think of when you think of Cutler-Hammer military switches?

We thought so: airborne equipment.
Not surprising. We created the first line of switches for airborne use back in the roaring 20 's. Today, nearly everything that flies-from helicopters to space vehicles-uses CutlerHammer switches.

So what's new? Just that designers are discovering that these same switches work as well in ground support equipment, shipboard electronics, and ordnance as they do in the air.

That's because of the painstaking care we take in design and manufacture. The exhaustive in-process inspection. And our rigorous final testing.

The result? Unquestionable reliability, performance, and long life-under extreme environmental conditions.

On your next project-ground, marine, or airbornespecify Cutler-Hammer military switches. Call your local stocking distributor, or write for new catalog LL-291-K217.

A few of the thousands of military switches available from Cutler-Hammer: miniature, and standard-size positive-action toggle switches (MIL-S-8834), Shallcross rotary switches (MIL-S-3786).

What makes test instruments tick? Automation and integrated circuits are the key concepts, but they don't solve all problems, as you'll find out here.

Test instrument designers are rallying to the aid of engineers who are being overwhelmed by floods of measured data. The test instruments of the future will help them to collect meaningful data in the simplest fashion and to extract as much information from the data as possible.

The key concept is electronic data-processing. Instruments will be designed to fit in with computers, to provide data in a form suitable for in-line processing, and to operate under software program. In short, equipment will be automated and programmable.

Increased complexity, however, must not bring increased costs; the changes have to be made at reasonable expense. This aim is well served by the growing interchangeability between analog and digital techniques, which affords an opportunity to take advantage of inexpensive digital integrated circuits.

These trends are leading toward a completely new class of test instrument-one that is wholly under software control.

These advances will not be unaccompanied by problems and are bound to affect the technical thinking and approach of both instrument design engineers and users. As the engineer begins to control the system from a keyboard or some other simple, conversational input, large parts of earlier experimental circuit synthesis and component-optimizing work are likely to be reduced to a few rapid measurements or calculations based purely on his instructions.

Where do linear ICs fit in?

All these development hinge on adroit use of various integrated circuits-monolithic, hybrid, thickand thin-film types.

Integrated circuits first found a home in digital instruments. primarily because digital ICs are much simpler, cheaper. more versatile and more readily available than linear units. Nowadays, however. some instrument manufacturers are developing digital and linear ICs for specific instruments, to improve and expand on those instruments' processing abilities.

An exclusive interview with Robert Brunner. Corporate Engineering Manager. Hewlett-Packard, Palo Alto, Calif.. edited by Maria Dekany. Technical Editor.

Even in the most typically digital of instruments. DVMs and counters, a considerable amount of sig-nal-conditioning must be performed with linear circuits. This is especially notable in the plug-in models, which are the most popular types.

At present, linear circuits are hard to devise as direct replacements for established solid-state circuits. Even though tremendous progress is reported with linear ICs, ${ }^{1}$ they are still costlier and less versatile than digital types or their discrete counterparts.

The design of the Hewlett-Packard loudness analyzer ${ }^{2}$ illustrates the point. It contains 20 thirdorder filters. which use a total of 60 operational amplifiers. In these circuits, some cost or performance shortcoming precluded the use of integrated operational amplifiers.

This situation may change in the future. The present difficulty may be somewhat lessened, but not overcome altogether, by use of hybrid circuits. Since the number of units needed for signal-conditioning is typically rather small, a special integrated or hybrid circuit must yield a significant improvement in performance over a discrete circuit to justify its development cost.
Finally, thick- and thin-film hybrids may also find a place in test instruments that use only a few digital circuits, such as oscilloscopes, spectrum analyzers, and sweep generators. The payoff will not be in cost, but in the improvement of some vital parameter-for example high-frequency capability due to the smaller size of the circuit.

It is safe to predict, then, that the emergence of instruments with many integrated circuits will be rapid where the instrument is primarily digital. somewhat slower where it is analog.
The trend toward instruments that are simpler on the outside, even if not on the inside, is enhanced by ICs but is only marginally related to them. This simplicity is required because man prefers it and the computer virtually demands it.

Another aspect of this question of simplicity is the form of the measured data. Why should an engineer have to read volts and then translate them into appropriate physical units such as pounds, inches, or degrees of temperature? Certainly, modern instruments should be expected to read out in appropriate units, to simplify their use as separate instruments or as

See a frequency counter on a card; add the case and the power supply and the counter is ready to operate up to

Subject loudness is plofted on the scope face while the meter shows the absolute loudness. Hewlett-Packard's loudness analyzer selects the proper spectrum with comb filters and performs complex analog signal processing to arrive at these data, which formerly had to be calculated manually. But there are no linear integrated circuits in the filter system.
12.5 MHz . according to Hewlett-Packard. It uses inte-grated-circuit counter decades, buffers and nixie drivers.

Noise signals are replacing impulse trains in many tests. A typical noise signal from the Gaussian output of Hew-lett-Packard's pseudo-random noise generator is shown on the general-purpose oscilloscope (top trace). A multichannel analyzer monitors the noise pattern and plots its probability density function, which verifies the Gaussian nature of the noise (bottom trace).
part of a system. That this may take additional internal circuitry is not germane to the instrument's external simplicity, so long as the circuitry requires no special controls or other inputs. Here, too, ICs can make these features economically feasible.

How large a part should computers have?

It has already been stated that the key concept is electronic data-processing. The big debate is how much of it should be done on a general-purpose computer and how much should be built into the instrument.

There are many instances of complex cornputation where the temptation is to take the output data as they emerge from the measuring device and either process them with an on-line computer or record them for later off-line processing. In some cases the computational process can best be done right inside the measuring instrument. There is no clear choice but the desire for near-instantaneous display of processed data would shift the balance in favor of self-sufficient instruments.
To those who believe that the digital computer may inherit the earth, the most useful instrument is a programmable, high-speed, high-accuracy, high resolution A/D converter with a large choice of signal-conditioning front ends. This would allow a tremendous range of measurements, all of which would be represented by raw digital data requiring processing by a computer. Unfortunately, the accuracy, convenience and range of the measurements would still be limited by the capability of the analog input stages.

At the other end of the scale are self-sufficient instruments that comprise measuring circuits, computational facilities and display systems.

Hewlett-Packard's loudness analyzer, for example, has a cathode-ray tube and a meter display which provides the desired information on loudness in several forms, each of which previously required tedious data-manipulating and -graphing processes. The instrument is designed as a purely analog. discretecomponent machine that processes the measured data into meaningful display and output. The analog approximation circuits are adequate and their processing time constants are compatible with subjective response to noise transients as well as repetitive sounds. The information display is in real time.

New instrumentation techniques

How does one predict new instrumentation techniques? The simplest way is to examine the evolution of the methods in use today. It was, for instance, the voltage tunability of backward-wave oscillators that made swept-frequency testing at microwave frequencies popular. Very high-frequency sampling scopes and related fast pulse techniques led to timedomain reflectometry. Sampling capability from dc
through X band enabled convenient phase and amplitude measurements to be made at microwave frequencies. Such precedents suggest that the development of a new instrument or an improvement in the versatility of an existing one may give rise to a new class of testing methods.

Test engineers have long been interested in an instrument that allows them to switch conveniently from the time domain to the frequency domain and back. The exploding popularity of spectrum analyzers since the introduction of models with measuring convenience and calibration accuracy, which complements the time-domain oscilloscope, is a clear indication of this. While the ability to view signals and make measurements in either domain does not exactly represent a true transform capability, the popularity of the devices suggest that further development on spectrum analyzers is warranted.

Other signs of interest in true transform ability include the preparation of computer programs that provide the Fourier transform of time-varying data. These programs are generally not fast enough yet for real on-line touch and read capability using an A/D converter, general-purpose computer and display. But several hard-wired special-purpose machines that provide essentially real-time transforms have been built.

Pseudo-random noise as test signal

New instrument capabilities lead to new testing techniques. From a mathematical viewpoint. noise has been recognized for some time as a good test signal. Its obvious application was for low-frequency systems, where such signal techniques as frequency response, square wave, and impulse testing fall short for one reason or another. The evolution of techniques to put it to use depended on the development of a noise source that not only had spectral and amplitude statistics typical of noise but was also controlled and repetitive, so that the ramdom nature of noise could be eliminated.

The pseudo-random noise generator provides a signal with just these qualities. Based on digital techniques, it has a clock-driven logic system that ensures an absolutely repetitive binary pattern. Pattern length and clock rate are adjustable over wide ranges but the spectral power density of the output is absolutely defined. In addition to the binary pattern output, there is further internal digital processing and conversion to analog. .This produces an output with a Gaussian probability density function. The process also adjusts the power density spectrum to be very nearly rectangular. Absolute control, statistics, and repeatability of the analog pattern are retained.

For low frequencies, an impulse train is often suggested as a test signal, because its broad flat spectrum exercises the item under test over a wide

Digital ICs in a dual NAND-NOR gate configuration replace operational amplifiers in oscilloscopes of Measurement Control Devices. Inc. (on blue card).

What's in the box? A portable test instrument, that can function as a digital voltmeter, a digital time, frequency or period counter, or as an ac converter. The modular construction permits this flexibility, as Thomas Laugesen points out to Art Hoyt, both from Electronic Associates. Inc.

Printed-circuit cards help combine versatile systems with off-the-shelf output devices. The upper card has miniature switches to provide preset work-counting and the lower unit has miniature patch board for format flexibility.

frequency range all at once. Moreover, the impulse response contains complete information about the system, so long as it is not driven out of its linear range by the impulse. The technique's main limitation is its inability to put much broadband energy into the system, because it has to use a low-duty-cycle impulse train. It must not be of an amplitude great enough to drive the system beyond its linear range. Providing greater sensitivity in the system-measuring instrument is generally ruled out by inherent system noise.

As a test signal, noise has distinct advantages over an impulse. Its only real limitations are the need to control its randomness and the difficulty of generating a known flat spectrum down to essentially dc.

Pseudo-random noise specifically overcomes these problems. Because its autocorrelation function approximates an impulse, the system output can be cross-correlated with the input signal to yield the desired system impulse response. Noise inherent in the system is suppressed in the measurement result because it is not correlated with the input noise. The continuous-wave nature of the noise enables the system to be driven with appreciable energy evenly distributed throughout the spectrum of interest without danger of driving it out of its linear range.

It is arguable that this is not true noise because it repeats, but if the sequences last a bit longer than the period of interest for a given measurement. then the fact that they repeat later is of no consequence. After all, consider the analogy between pseudo-random noise and an impulse train. The length of the noise sequence controls the density of lines in the frequency spectrum just as does the impulse repetition rate. The band width of the spectrum is controlled by the random-noise clock rate while the bandwidth for an impulse is dependent on the impulse width.

Once the response to an impulse input is known, the engineer can anticipate the system's responses to other stimuli in either the time or the frequency domain. This makes cross-correlated noise measurement particularly appealing. It has been implemented by recording both the input and output noise, and then digitizing and performing the cross-correlation in a general-purpose computer on an off-line basis. Several hard-wired instruments have also been built. The existence of the pseudo-random noise generator will ultimately simplify building either a correlation instrument or arranging a computer system for the purpose.

Computer-controlled design is wave of the future

The use of programmable signal sources for stimulus, and programmable instruments for measuring the response of a circuit or device under test, is best
illustrated by military systems, such as GPATS (General-Purpose Automatic Test System), which routinely test a wide variety of airborne electronic systems. But such systems will only become suitable for $R \& D$ if the ability to change parameters. modify test conditions. and vary computational procedures to suit a wide variety of problems can be built into them.
The shape of the future for designers is typified by an experimental system in one of Hewlett-Packard's engineering laboratories. It is an instrument system. controlled by a small computer, which greatly shortens design time on complex devices.
The system contains several elements. A network analyzer is connected through precision rf hardware to a mounting fixture, to which many different devices may readily be connected in several configurations. These devices may be passive or active, simple or complex-usually they are high-frequency transistors.

The interconnecting hardware is calibrated at many frequencies. Errors have been determined and recorded in vector form in the computer's memory. Dc sources and sweep oscillators are programed, so swept measurement may be commanded by the computer under many different conditions of bias and at many dynamic levels. Only information corrected according to the stored errors is retained for calculation, so the system combines the accuracy of tedious, point-by-point, calibration-corrected measurements with the speed of swept measurements.

For a quick look, the engineer might, for example. ask to see an oscilloscope display of maximum available gain under optimum matching conditions over a range of interest, perhaps up above X bands. A series of closely-spaced dots quickly appear on an ordinary laboratory oscilloscope. He may then ask for a presentation of optimum matching conditions for maximum gain. This will be a vector display, giving both magnitude and phase angle for each frequency. He may command the system to derive a full set of s parameters on the device and to type them out. These may be stored, if desired, and the engineer may then have the computer convert them into y, z, or h parameters by a three-character command. ${ }^{3}$

Much equipment is still needed

The focus hitherto has been on trends rather than specific needs, successes, and problems. This is not to imply that all sensing, generating, measuring, memory, and readout techniques have been perfected.

There are still some specific requirements for which answers are just beginning to evolve or are still distant. More convenient and pleasing readout devices are needed, along with better visual recording media with improvements in speed, cost, and quality. There is great need for good voltage-tunable solid-state microwave signal sources that operate at

Random notes from elsewhere

It is all but impossible to examine every new advance in instrumentation and measurement techniques. So a couple of examples, which appeared to represent a trend, a school of thought, were selected:

- The application of digital integrated circuits in place of linear ones. (For a special report on this theme, see "Digital chips shift into analog territory," ED 18. Sept. 1, 1967. pp. 41-64.
- The sophisticated use of random events.

The uphill battle facing linear integrated circuits is illustrated by the experience of Measurement Control Devices, Inc. The company needed operational amplifiers in the vertical channel of one of its oscilloscopes. But, says president Nathan Bylock, digital integrated circuits proved to be a better solution. A dual RTL 914-type NAND-NOR gate was connected as a dual transistor, to achieve the symmetry of a multiple device on a single chip. The dual transistor was then connected as a differential amplifier, fed by the -6 -volt source through a resistor (see circuit diagram). The output is inverted by Q1. which is a gain-of-two amplifier. The total cost was 94 cents- 12 per cent of the cost of a discrete-component approach. The integrated circuits occupy less space- 11 per cent of what the discrete versions would take-and have improved thermal stability.

Integrated operational amplifiers were considered and discarded, says Bylock. They cost twice as much as their discrete counterparts and offered no better performance than the digital gated approach.

As Bob Brunner pointed out previously, random noise is becoming an accepted test signal, because practical instruments are now available at reasonable costs. The same is true of random sampling, according to a Tektronix project engineer, Al Zimmerman.

Random sampling needs no pretrigger

The principles of random sampling have been known for years, but only recently have the proper instruments become available.

The random sampler displays a repetitive wave-

A 914-type dual RTL NAND-NOR gate is connected as a dual transistor on a single chip. The other components make the chip perform as an operational amplifier.
form much as a conventional sampling oscilloscope does, but with one difference: no delay line or pretrigger is required for lead time in the display. This confers a host of benefits:

- The inherent distortions and rise-time limitation of bulky signal delay lines are eliminated.
- It is no longer necessary to work into the 50-characteristic impedance of a delay line.
- Direct sampling probes may be used for convenient high-impedance, in-circuit signal pickup.
- Triggers may occur prior to, coincident with, or even after the displayed signal without sacrificing lead time in the display.
- Display jitter caused by pretrigger-to-signal jitter or by signal-period uncertainty is eliminated. - Signals with no convenient source of pretrigger can be observed.
low voltages and over ever-increasing bandwidths.
Although remarkably high accuracy has been achieved in dc voltage generation and measurement, there is room in ac measurement for considerable improvement-about an order of magnitude.

The advantages of converting phvsical quantities into digital signals that are more immune to noise and capable of a higher degree of resolution than transducers of the analog type are evident. For this, a higher impedance probing capability is necessary at higher frequencies and, if this capability requires an active circuit, it will be equally important for the need for wide dynamic range to be satisfied.

Finally, one area that demands considerable attention is that of interface standards. There should
be some assurance that instruments, computers, and peripherals can be conveniently programed and interrogated and that the data involved can be passed between elements of a system with some uniformity of codes, impedance levels, and polarity. Not nearly as much has been done in this regard as might be deduced from the present proliferation of systemsoriented instrumentation. ■ ■

References:

1. R.K. Field. "The Tiny Exploding World of Linear Microcircuits", Electronic Design XV. No. 15 (July 19, 1967), 49-72.
2. "Loudness Analyzer Imitates the Ear's Response", Electronic Design , XV, No. 12, (June 7, 1967), 36.
3. John A. Young, "With New Measurement Methods, the Future Is Almost Here", The Microwave Journal, X, No. 6 (May, 1967).

Silfo will get you our Model 7000 DVM:

 0.01% accuracy 100 iV resolution, noise rejection, stobility and 70\% integrated circuitry Reader Service No. 71 will get you full information.

Multitesters

					VOLTA	AGE RA	NGES			RRENT R	ANGE		RESISTA	ANCE R	NGES			
	Manufacturer	Model		Sensitivity $k \Omega / V$	Min. V	Max. kV	No.	Acc. \%	Min. mA	Max. A	No.	Acc. \%	Min. $\mathrm{k} \Omega$	Mox. $M \Omega$	No.	Meter Colib.in: $V \Omega A$	$\begin{aligned} & \text { C-Cab. } \\ & \text { P-Port. } \\ & \text { R-Rack } \end{aligned}$	Price Approx \$
M1	Hartmann	Elovi J	dc	0.1	60	0.6	3	2.5	none	none	$\begin{aligned} & \text { none } \\ & 3 \end{aligned}$	none	none	none	none	VA (d)	P	ino
			oc	0.1	60	0.6	3	2.5	1500	30		2.5						
	Avo Lid	PA	dc	0.1	1.5	1.5	9	0.3	1.5	15	9	0.5	none	none	none	VA	C	555
			oc	0.1	3	1.5	8	0.75	3	15	8	0.75				(ie)		
	Hartmann	Multavi2	de	0.333	6	0.6	5	ino	3	6	6	ina	none	none	none	VA	P	68
			ac	0.333	6	0.6	5	ino	3	6	6	ina				(de)		
	Hartmann	MultaviS	de	0.333	0.06	0.6	6	ino	ina	ina	ina	ino	none	none	none	\checkmark,	P	90
			ac	0.333	6	0.6	5	ino	1.2	150	12	ina				(de)		
	Hartmann	Elavi 1	dc	0.333	0.06	0.6	6	2.5	3	30	5	2.5	ina	0.01	ina	$V \Omega A$	P	ino
			ac	0.333	6	0.6	5	2.5	300	30	4	2.5				(d)		
	Martmann	Elavi 11	de	0.333	0.06	0.6	6	2.5	3	30	5	2.5	ino	0.05	ina	$V \Omega A$	P	ina
			ac	0.333	6	0.6	5	2.5	300	30	4	2.5				(d)		
$\begin{aligned} & M \\ & 2 \end{aligned}$	Martmann	Elavi 12	dc	0.333	0.6	0.6	6	2.5	3	30	5	2.5	0.05	0.005	2	$V \Omega A$	P	ina
			ac	0.333	6	0.6	5	2.5	300	30	4	2.5						
	Avo Lid	40	dc	0.333	0.06	1.2	12		6	12	8	1	1	1	4	$V \Omega A$	P	99
			oc	0.333	6	1.2	8	2.25		12	8	2.25				(de)		
	Barnett	431-AN	dc	1	15	3	6	ina	1.5	7.5	3	ino	10	1	3	$v \Omega A$	P	25
			ac	1	15	3	6	ina	none	none	none	none						
	Triplett	666-R	dc	1	10	5	5	3	10	1	3	3	3	3	3	$V \Omega A$	P	42
			ac	1	10	5	5	4	none	none	none	none				(d)		
	Simpson	240-4	de	1	15	3	5	3	15	0.75	3		3	0.3	2	$V \Omega A$	P	40
			ac	1	15	3	4	5	none	none	none	none				(d)		
	Simpson	230-2	dc	1	10	1	4	3	10	0.25			1	0.1	2	$v \Omega A$	P	40
			ac	0.4	10	1	3	5	none	none	none	none				(d)		
M3	Assoc-RE	205	de	1	150	1.5	3	2	none	none	none	none	20	200	2	ina	C	195
			ac	1	150	0.75	3	2.5	none	none	none	none				(df)		
	Assoc-RE	210	de	1	150	0.75	3	2	none	none	none	none	2	200	2	ino	C	175
			ac	1	150	0.75	3	2.5	none	none	none	none				(df)		
	Assoc-RE	208	dc	1	150	0.6	3	2	none	none	none	none	2	200	3	$\mathrm{V} \Omega$	C	190
			ac	1	150	0.6	3	2.5	none	none	none	none				(df)		
	Assoc-RE	201	dc	1	150	0.6	3	2	none	none	none	none	2	200	2	$\vee \Omega$	C	148
			ac	1	150	0.6	3	2.5	none	none	none	none				(df)		
	Assoc-RE	204	dc	1	150	0.6	3	2	none	none	none	none	2	200	2	$\vee \Omega$	C	185
			oc	1	150	0.6	3	2.5	none	none	none	none				(df)		
	Inst-Lab	102	dc	1	0.05	0.5	8	2	1	25	6	2	0.01	1	2	$V \Omega A$	C, R	195
			ac	1		0.5	5											
M4	Assoc-RE	233	de	1	30	0.3	3	2	none	none	none	none	2	200	2	$\mathrm{V} \Omega$	C	192
			ac	1	150	0.6	3	2.5	none	none	none	none				(df)		
	Hartmann	Multavi8	de	1	6	0.6	4	1	15	15	6		10	1	2	$V \Omega A$	P	235
			ac	1	1.5	0.6	5	1.5	15	6	5	1.5				(de)		
	Avo Lid	7	dc	1	0.05	1	12	1	1	10	10	1	10	40	5	$V \Omega A$	P	99
			ac	1		1	8	2.25		10		2.25				(dehij)		
	Hartmann	Multovi5	dc	3.333	0.06	0.6	8	ina	0.3	6	9	ina	0.01	60	ino	ino	P	80
			ac	0.666	0.3	0.6	7	ina	1.5	6	8	ina						
	Hartmann	Multavi 5L	dc	3.333	0.006	0.6	8	ina	0.3	8	9	ina	0.01	60	ina	ino	P	108
			ac	0.666	0.3	0.6	7	ino	1.5	6	8	ino				(d)		
	Hartmann	Multavi P	de	3.333	0.006	0.6	8	ino	0.3	6	9	ina	0.01	60	ino	ino	P	82
			ac	0.666	0.3	0.6	7	ino	1.5	6	8	ino						
$\begin{aligned} & M \\ & 5 \end{aligned}$	Hartmann	Elavi 2	de	3.333	0.15	0.6	7	2.5	0.3	1.5	6	2.5	1	0.1	2	ina	P	ina
			ac	3.333	6	0.6	5	2.5	0.3	1.5	6	2.5						
	Physics	226211p	dc	3.333	0.012	1.2	10	1	0.3	30	9	1	0.0001	10	4	$V \Omega A$	P	113
			oc	3.333	0.012	1.2	10	1.5	0.3	30	9	1.5				(d)		
	Simpson	355	de	10	3	1.2	5	3	none	none	none	none	0.12	10	4	$\vee \Omega$	P	47
			oc	10	3	1.2	5		norie	none	none	none				(df)		
	Avo Lid	MM4	de	10	2.5	1	6	2.25	0.1	1	5	2.25	20	2	2	ina	P	35
			ac	1	10	1	5	2.75	none	none	none	none				(d)		
	Heath	MM-1	de	20	1.5	5	7	ina	0.15	15	5	ina	2	20	3	$\mathrm{V} \Omega \mathrm{A}$	P	30
			ac	5	1.5	5	7	ino	none	none	none	none				(dk)		(kit)
	E-Measur	109A	de	20	6	3	5	ino	6	0.6	3	ino	20	20	3	$V \Omega A$	P	28
			ac	10	12	3	5	ina	30		3	ina						

See reader-service card for valuable FREE reprints.
Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.

					VOL	TAGE R	ANG		CUR	RRENT	ANGE		RESISTA	ANCE R	NGES			
	Manufacturer	Model		Sensitivity $k \Omega N$	Min.	Max. kV	No.	Ace. $\%$	Min. mA	Max.	No.	Acc. \%	Min. $\mathrm{k} \Omega$	Max. $M \Omega$	No.	Meter Calib.in. : $\mathrm{V} \Omega \mathrm{A}$	$\begin{aligned} & \text { C-Cab. } \\ & \text { P-Port. } \\ & \text { R-Rack } \end{aligned}$	Price Approx S
M6	RCA	WV-38A	de	20 5	2.5 2.5	5	6 6	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	0.05 none	10 none	6 none	$\begin{aligned} & 3 \\ & N / A \end{aligned}$	2	20	3	$\mathrm{V} \Omega \mathrm{A}$ (d)	P	50
	Simpson	262-2	de	20	1.6	4	7	3	0.08	16		3	0.5	50	6	$V \Omega A$	P	75
			oc	5	3	0.8	5	5	none	none	none	N/A				(dk)		
	Internat	VOM-22	dc	20	5	1.5	5	3	0.5	0.5	4		2	2	4	$V \Omega A$	P	40
			ac	15.5	15	1.5	5	5	none	none	none	N/A				(d)		
	Simpson	268	dc	20	3	1.2	6	3	0.06	12			2	20	3	$V \Omega A$	P	65
			oc	5	3	1.2	6	5	none	none	none	N/A				(dk)		
	Triplett	631	dc	20	3	1.2	5	3	0.06	12	6	3	1.5	150	4	$V \Omega A$	P	78
			ac	5	3	1.2	5	4	none	none	none	N/A				(dk)		
	Triplett	310	de	20	3	1.2	5	3	0.6	0.6		3	20	20	4	$V \Omega A$	P	42
			ac	5	3	1.2	5	5	none	none	none	N/A				(d)		
$\begin{aligned} & M \\ & 7 \end{aligned}$	Hickok	455A	de	20	3	1.2	6	3	0.05				5	100	4	$\mathrm{V} \Omega \mathrm{A}$	P	90
			ac	20	3	1.2	6	5	none	none	none	N/A				(d)		
	Simpson	160	dc	20	2.5	1	8	3	0.05	0.5			3	30	5	$V \Omega A$	P	ina
			oc	5	2.5	1	5	4	none	nane	none	N/A				(k)		
	Triplett	310-C	dc	20	3	0.6	5	3	0.6	0.6			20	20	4	$V \Omega A$	p	53
			oc	15	3	0.6	5	5	none	none	none	N/A				(d)		
	Connolly	651	dc	20	2.5	1	6	2.25	0.05	1		2.25	2	20	3	$v \Omega A$	P	40
			oc	2	2.5	1	6	2.75	none	none	none	N/A				(dfh)		
	Triplett	630	dc	20	3	6	6	2	0.06	12			1	100	4	$V \Omega A$	P	58
				5		6	6	3	none	none	none	N/A				(dk)		
	Triplett	630-PLK (c)	de ac	$\begin{aligned} & 20 \\ & 5 \end{aligned}$	$\begin{array}{l\|l} 2.5 \\ 3 \end{array}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	0.1 none	10 none	5 none	$\begin{aligned} & 3 \\ & N / A \end{aligned}$	1	100	4	$\begin{aligned} & V \Omega A \\ & (d k) \end{aligned}$	P	89
M8	Triplett	630-PL	dc	20	2.5	5	6	2	0.1	10	5	3	1	100	4	$\mathrm{V} \Omega \mathrm{A}$	P	58
			ac	5	3	5	6	3	none	none	none	N/A				(dk)		
	Simpson	280-5P	dc	20	0.25	5	7	2	0.05	10			2	20	3	$V \Omega A$	p	88
			ac	5	2.5	5	6	3	none	none	none	N/A				(dk)		
	Simpson	260-5	de	20	0.25	5	7	2	0.05	10		2	2	20	3	$V \Omega A$	P	58
			ac	5	2.5	5	6	3	none	none	none	N/A				(dk)		
	Triplett	630-L	dc	20	0.25	5	7	2	0.1	10	5		1	100	4	$V \Omega A$	P	60
			ac	5	3	5	6	3	none	none	none	N/A				(dek)		
	Weston	980Mk2	dc	20	1.6	4	7	2	0.08		6		1	10	5	$v \Omega A$	P	57
			ac	1		1.6	6		none	nane	none	N / A				(dfh)		
	Avo Lid	$9 \mathrm{Mk2}$	dc	20	3	3	7	2	0.05	10	7	1	2	20	3	$V \Omega A$	P	99
			ac	1	10	3	6		10	10	4					(de)		
M9	Avo Lid	8Mk 111	dc	20	2.5	2.5	8		0.05	10	7		0.0025	200	5	$V \Omega A$	P	99
			ac		2.5	2.5	7	2.25	100	10	4	2.25				(deh)		
	Weston	779-8	de	20/1	2.5	1	5	2	0.1	10	7	2	3	30	4	$V \Omega A$	P	207
			ac	1	2.5	1	5	3	none	none	none	N/A				(dfh)		
	Simpson	250	de	20	0.05	1	8	2	0.05	10	6	2	2	20	3	$\checkmark \Omega A$	P	63
			ac	5	2.5	1	6	3	none	none	none	N/A				(dk)		
	Simpson	255/0531	dc	20	0.05	1	8	2	0.05	0.5	5	2	2	20	3	$V \Omega A$	P	90
			ac	5	2.5	1	5	3	5000	250	4	ina				(dk)		30
	Simpson	263	dc	20/10	0.15	6	18	1.5	0.075	15	12	1.5	0.5	50	6	$v \Omega A$	P	88
			ac	10/5	2.5	1.5	10	3		none	none	N / A				(dk)		
	Triplett	800	de	20	$\begin{aligned} & 0.12 \\ & 1.5 \end{aligned}$	6	14	1.5 3	0.06 none	12	12	$\begin{aligned} & 1.5 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	1	100	6	$\mathrm{V} \Omega \mathrm{A}$ (dek)	P	105
			ac	10	1.5	6	12	3	none	none	none	N/A				(dek)		
$\begin{aligned} & M \\ & 10 \end{aligned}$	Triplett	630-APL	dc	20	2.5	5	6	1.5	0.1	10	5	1.5	1	100	4	$V \Omega A$	P	68
			ac	5		5	6		none	none	none	N/A				(dek)		
	Simpson	261	de	20	0.25	5	7	1.5	0.05	10	6	1.5	0.002	20	3	$v \Omega A$	P	68
			ac	5	2.5	5	6	3	none	none	none	N/A				(defh)		
	Triplett	$\begin{aligned} & \text { 630-APLK } \\ & \text { (c) } \\ & 630-A \end{aligned}$	dc	20	0.25	5	7	1.5	0.1	10	ino	1.5	1	100	4	$V \Omega A$	P	100
			ac	5	3	5	6	3	none	none	none	N/A				(dek)		
	Triplett		dc	20	3	6	6	1.5	0.06	12	5	1.5	1	100	4	$V \Omega A$	P	68
			ac	5	3	6	6	3	none	nane	none	N/A				(dek)		
	Simpson	270-3	dc	20	0.25	5	7	1.25	0.05	10	6	1.25	2	20	3	$V \Omega A$	p	70
			ac	5	0.5	5	6	-2	none	none	none	N/A				(dek)		
	Connolly	50	dc	20	0. 25	2.5	8	1	50	10	8	1	2	20	3	$V \Omega A$	p	80
			ac	2	2.5	2.5	7	2.25	25	10	6	2.25				(df)		

Multitester index starts on page T19.
Reader-service cards are good all year.
Reader-service numbers are given in the index.

Circle as many numbers on the reader-service card as you like.
See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Get detailed data: use the reader-service card.
Multitester index starts on page T19.

From Monsanto: 130,000,000 discrete frequencies with almost perfect purity.

Computer-aided design and integrated-circuit construction in this new Frequency Synthesizer bring a new level of perfection to signal generation. The new "4th generation" Model 3100A Digital Frequency Synthesizer obsoletes just about every current concept of general purpose signal sources. Pick your frequency from 0.01 Hz to 1.3 MHz in 0.01 Hz steps. The result-signal purity you can get only from Monsanto, with a stability of 1 part in 10^{9} / day. Other refinements include: internally supplied rapid or slow sweep and provision for
external sweep; dc coupled output permitting internally supplied offset; continuous control of output level over a 90 dB range; provision for amplitude modulation; and, in the remotely programmable version, switching time of less than 20 microseconds. Best of all, you can put this better way of signal generation to work for you for only $\$ 3,950^{*}$. Call our field engineering representative in your area for full technical details, or contact us directly at: MonsantoElectronics TechnicalCtr.,620 Passaic Ave., W. Caldwell, N.J. 07006.

MUlt'EPSErS (continued)

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.

Multitester Notes

a. Battery or line power.
b. Requires $105-125 \mathrm{~V}$ ac, 60 Hz .
c. Solid-state.
d. Linear
e. Mirror
f. Logarithmic
g. Internal resistance varies with range and function.
\square
h. dB
i. Capacitance
j. Power
k. dBm
l. Null with zero center
m. Charge in coulombs

PUBLISHED BY MOTOROLA SEMICONDUCTOR PRODUCTS INC.

Dual Op Amp Leads Parade Of Five Money-Saving Integrated Circuits

Prices as low as $\$ 3.50$ ($100-\mathrm{up}$) have been announced for a series of five I/C Op Amps that are now available in the Unibloc 14 -pin dual in-line plastic package. Heading the series is Motorola's new dual operational amplifier (MC1435P), a single monolithic chip that contains two op amps in one package and is capable of providing a theoretical open-loop voltage gain of more than 36,000,000!
Significantly, the 6,000 gain in each of the MC1435's two amplifiers will provide usable gain for any practical application, without a need to cascade. And, there's gain to spare, for stability in feedback configurations, with a minimum of external components.
Other low-cost linear circuits in the group include four different single-function op amps. All five circuits operate over the 0 to $+75^{\circ} \mathrm{C}$ temperature range; and, all are completely specified for industrial and consumer applications. Here are some highlight specifications to prove that Motorola offers "The Most I/C Op Amp for the Least Money:"

Device Type	Open- Lopp Gain (Typ)	Temp. Drift	Output Voltage (Typ)		$\left\|\begin{array}{c} \text { Price } \\ (100-U p \end{array}\right\|$
MC1435P	$\begin{array}{r} 6.000 \\ \text { ea. ampl. } \end{array}$	$\pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 3.6 \mathrm{~V}$	1.7 K	\$4.50
MC1430P	5,000		$\pm 5.0 \mathrm{~V}$	25	3.50
MC1431P	3,500		$\pm 5.0 \mathrm{~V}$	25	4.00
MC1433P	60,000	$\pm 8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 13.0 \mathrm{~V}$	100	6.00
MC1709C	45,000	$\pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 14.0 \mathrm{~V}$	150	6.00

For details circle Reader Service \# 121

Logic diagram and truth table show how MC1O14 and MC1015 are con. connected to form two Master-Slave shift register elements.

TRUTH TABLES							
MC1014				MC1015			
8	5	C	$0{ }^{n+1}$				c 0^{n+1}
8	8	0	0			1	10
0	0	1	0			0	0
0	1	1	1			0	0 I
1	0	1	1				0
1	1	1	U			0	0
$8=$ EITHER$U=$ UMOERFINED LOGIC STATE CCOMMOM TO ALL DUAL-RALL IMPUT R-S FLIP FLIPS							

MECL II Dual R-S Flip-Flops Combine To Achieve Two Gating Levels; 2 ns Prop. Delay Increase

Two new additions to the growing MECL II line of integrated circuits MC1014 and MC1015P, may be used as positive-gated and negative-gated R-S Flip-Flops, respectively. The two levels of gating are accomplished with only 2 ns increase in propagation delay. As a result, a single phase, clocked Master-Slave type of shift register may be obtained as shown.

The MC1014P, in addition to teaming with MC1015P for shift register functions, is also useful as a dual storage element. It contains two dc Set-Reset Flip-Flops with a positive clock input provided for each flip-flop. The counterpart, MC1015P, operates with a negative clock input. Both circuits exhibit a typi-
cal propagation delay of 5.0 ns , operating over the 0 to $+75^{\circ} \mathrm{C}$ temperature range. Both provide typical power dissipation of 125 mW at an operating frequency of 80 MHz . Minimum dc fan-out of 25 for each output is guaranteed. Prices for the MC1014P and MC1015P are $\$ 4.25$ (1,000 -up), in the 14 -pin dual in-line plastic package.

The MECL II family of logic integrated circuits now includes 27 functional elements in the limited temperature range $\mathrm{MC1000P}$ series and a comparable number in the full temperature range MC1200F series. All of these circuits are fully compatible with the MECL 300/350 series types.

For details, circle Reader Service \# 122

MDTL Presettable Decade Counters Feature 20 MHz Operation

A new series of MDTL circuits, types MC938F, MC838F and MC838P, all offer individual direct-sets for each stage as well as a common reset and buffered inputs (a standard MDTL loading factor of 1). These monolithic ripple counters operate in excess of 20 MHz at $\pm 20 \%$ of the nominal 5.0 V power supply.

The three new devices are composed basically of four MC950 pulse-triggered binaries. All have standard MDTL inputs and use active pull-up devices in the outputs to increase capacitive drive capabilities. Typical de noise immunity is better
than 1.0 volt.
All three new circuits are fully compatible with the Motorola MC930/830 series MDTL and Motorola MC500/400 series MTTL.

Circuit Type	Package	Temp. Range	Price $(100-$ Up $)$
MC938F	14-Pin Ceramic Flat Pack	$\left(-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$	$\$ 18.00$
MC838F	14-Pin Ceramic Flat Pack	$\left(0\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$	10.00
MC838P	14-Pin Unibloc Plastic	$\left(0\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$	$(1,000-\mathrm{up})$

Differential

"In" and "Out"I/C Ideal For Wide-Band Amplifier Applications

Motorola's new MC1520, a monolithic Op Amp integrated circuit, provides both differential input and differential output characteristics. Because of the latter capability, this new circuit exhibits an extremely good common-mode rejection ratio of 90 dB (typ) - making it ideal for use in instrumentation, communication and computer equipment.

The MC1520 also provides a high differential gain of 74 dB (max) - numer-

New linear I/C boasts differential outputs as well as differential inputs . . making it a good universal operational amplifier.
ically 7,200 - and, as a result, is also a good general purpose operational amplifier. It is particularly useful in wideband applications requiring large output-voltage swings at high frequencies, especially those calling for differential outputs. The MC1520's gain of 7,200 compares with gains of less than 1,000 for comparable circuits.

Other outstanding typical characteristics of the MC1520 are:

- Wide Closed-Loop Bandwidth - 10 MHz
- High Input Impedance - $2 \mathrm{M} \Omega$
- Low Output Impedance - 50Ω
- Full Output Voltage Swing to Greater than 1 MHz
Available in both the TO-99 10-pin metal can and TO-91 ceramic flat pack, the MC1520G is $100-$ up priced at $\$ 10.00$; and the MC1520F is $\$ 15.00$ (100-up).

One ounce of ZenGard protects against kW '"spikes'

$\begin{aligned} & \text { Type } \\ & \text { Numbers } \end{aligned}$	$\begin{array}{c}\text { Naminal Operating } \\ \text { Voltaga }\end{array}$ Vol		$\begin{gathered} \text { Clamping } \\ \text { Facter } \\ \text { CE } \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { 2ener Vollage } \\ \text { Pw }=1 \mathrm{~ms} \\ \hline \end{gathered}$		minimum Zener Valtage	
	Vop (ac)	Vopansi		V_{2}	Izi	/ V_{2}	(2)
$\begin{array}{\|l\|} \hline \text { MP22-168 } \\ \text { MP25.16A } \end{array}$	14	10	1.25 1.5	$\begin{aligned} & 20 v \\ & 24 v \end{aligned}$	200A	$16 V_{\text {oc }}$	0.4Aoc
MP25.32C MP2.32 MP25-32	28	20	$\begin{aligned} & 1.25 \\ & 1.4 \\ & 1.56 \end{aligned}$	$\begin{aligned} & 400 \\ & 45 \\ & 500 \end{aligned}$	100A	32 Voc	0.2 A
	165	117	$\begin{aligned} & 1.14 \\ & 1.25 \\ & 1.39 \end{aligned}$	$\begin{aligned} & 205 \mathrm{~V} \\ & 225 \mathrm{~V} \\ & 250 \mathrm{~V} \end{aligned}$	20A	180Voc	0.03

New ZenGard Transient Suppressors Provide 12 kW Surge Protection

The MPZ5 series of ZenGard suppressors are designed to protect transistors, SCR's, rectifiers and other sensitive components in danger of destruction from circuit transients above their ratings. They can easily absorb up to 12 kW for 0.1 ms in applications as 14 V military automotive ignition, 28 V aircraft equipment and 110 V ac line-operated circuits. They are more-than-equal replacements for mechanically or electrically-limited selenium cells, silicon carbide varistors, RC networks and electro-mechanical relay systems.

Besides providing sharp, controlled reverse breakdown characteristics, the new series exhibits clamping factors as low as 1.25 - a figure of merit which means
lower overshoot voltages and less chance of component degradation and burn-out - and is less temperature and agesensitive than conventional stacked cells. Costs can also be reduced by allowing the safe use of lower voltage-rated rectifiers.

Weighing only 1 ounce and occupying less than 2 cubic inches, the devices feature low leakage ($50 \mu \mathrm{~A}$ max @ V_{R}) which affords negligible power losses. They are oxide-passivated for top reliability and performance and will operate over a -65 to $+175^{\circ} \mathrm{C}$ range.

Non-standard voltages, tight-tolerance and higher power units (200 kW units have been supplied) can be developed for specific requirements.

SME Transistors Replace "Old-Workhorse" MADT Types

Eight new germanium SME (Selective Metal Etch) mesa transistors - including 2 popular JAN types - are now available in volume quantities to provide a leading second-source for MADT ${ }^{\circledR}$ devices in military and industrial communications equipment.

The SME process, an exclusive Motorola development, is considered a breakthrough in germanium mesa devices. Higher-frequency, lower-noise

Trow	Une	$\begin{aligned} & \text { Fowir Gain } \\ & 200 \text { MPtr } \\ & \text { (min) } \end{aligned}$	N((max)	$e^{2}=10 \mathrm{max}$	F (max)
2nson	Vere mem	808	1500	***	500 Mrem
2nso2n annensoza	vier amol	10 a8	180	\%	200 NaH
2wshze jancansaze	veresmot	1000	10	N*	650 M 58
2mamas	19006a	na	Mat	0.30 nat	1000 mines
2mi7a2	yow mon	1400	15.86	\%a	3 mosu
2020es		ma	\% ${ }^{\text {a }}$	OLT vent	130\% Mer

performance is obtainable due to complete freedom of transistor geometry and much better definition and closer spacing of emitter/base areas to gain optimum device performance.

In addition to meeting exact para-meter-by-parameter specs, the inherent flexibility of the advanced SME process makes it possible to achieve nearly identical key MADT parameter distributions. Thus the user can now count on secondsource direct replacement availability for essentially all MADT-type sockets.

Motorola's MADT replacement types are furnished in the popular TO-5 case (with "tab" removed) which meets all EIA-specified dimensions of the older, TO-9 package, including exact lead configurations.

Fast Photo Sensors Aid Light-Activated Designs

A tiny photo detector-type MRD200 - and a sensitive photo-transistor type MRD300 - now provide opportunities to simplify light-activated designs !

Functional and compact (only $0.060^{\prime \prime}$ diameter), the MRD200, two-terminal unit serves where small size and high density positioning is required such as high-speed tape and card readers and rotating shaft information encoders.

It displays linear characteristics over the dynamic range - ideal for reading film sound tracks. Maximum $t_{\text {on }} / \mathrm{t}_{\text {ofP }}$ is only 6.5 , s allowing faster reading than any mechanical contacts. And, its extremely narrow field of view minimizes cross-talk.

With equally fast rise/fall time, the MRD300 utilizes a TO-18 case with external connections for added control and excels in applications where high sensitivity is essential. It responds to modulation well above the audio spectrum providing a useful means of data transfer from laser light sources.

Both units operate from 1 to 50 Volt power supplies and are compatible with most transistor circuits. Low leakage permits use in direct-coupled designs for low-signal-level operation.

Type	Radiation Sensitivity $\mathrm{mA} / \mathrm{mW} / \mathrm{cm}^{2}$ (typ)	Illumination Sensitivity $\mu A /$ lum $/$ fl 2 (typ)	Dark Current $\underset{(\max)}{\mu A}$
MRD200 MRD300	$\begin{array}{r} 0.5 \\ 1.6 \dagger \end{array}$	$\begin{gathered} 5.0 \\ 10 \dagger \end{gathered}$	0.025
\dagger Base open			

For details, circle Reader Service \# 127

Low-cost MPT28/32/36 silicon plastic bilateral triggers now make it pos sible to use all solid-state design in economy power control circuits

New Bilateral Triggers Trigger New Low-Cost Power Control Designs

Another layer of cost has been peeled from already-economical, all-solid-state power control circuitry with the introduction of the MPT 28/MPT32/MPT36 series of silicon bilateral triggers.

These 28-, 32-, and 36 -volt (nom) devices are housed in the Unibloc plastic package - well-known for its rugged,

Trigger Type	VBR \dagger (nom) Volts	$\begin{gathered} \mathrm{I}_{\mathrm{BR}} 1 \\ (\mathrm{typ}) \\ \mu \mathrm{A} \end{gathered}$	$\Delta \mathrm{V}$ t (typ) Volts	Ipulso (max) Amps
MPT28 MPT32 MPT36	$\begin{aligned} & 28 \\ & 32 \\ & 36 \end{aligned}$	20	10	2

$\dagger \pm 4$ volts, both directions
! Both directions
void-free case integrity that has consistently withstood 3,000 -hour severe environmental testing. The new series furnishes symmetrical switching characteristics, low $50 \mu \mathrm{~A}$ (max) switching current, which reduces capacitor size and a large, 10 -volt (typ) switchback voltage which allows higher energy pulses-to-gate for faster "turn-on," lower
switching losses and reliable thyristor operation.

In addition. use of these lower voltage, solid-state devices in place of shortlived, high-breakover-voltage neon triggering devices affords broader conduction angle control plus casier triggering of less sensitive thyristors through higher pulse current.

And exclusive Annular construction ensures stable operation over a -40 to $+100^{\circ} \mathrm{C}$ operating temperature range.

How can you best use them in consumer/industrial designs . . . at below-254 volume prices?

Tie this new bilateral trigger series together with more than 27() different thyristors now available from the industry's broadest up-to-35-Amp line including these preferred 8 -Amp Motorola favorites: 50 to 400 -volt TRIACS, 50 to 600 -volt THERMOPAD plastic SCR's and the ever-popular, metal "can," 25 to 600 -volt ELF SCR's.

For details, circle Reader Service \# 128

Low-cost, Complementary Chopper Designs With New Plastic MOSFETS

Low-level, low-frequency complementary chopper designs at a low, low cost that's the essence of the story about Motorola's new plastic-encapsulated MOSFET types - MPF159-160. But then, what more could one want?
Low-level (low-power) complementary chopper applications? They've been almost impossible to accomplish with bipolars because bipolars exhibit excessive leakage. MPF159-160 boast an $I_{\text {Gss }}$ value in the picoamp region. Low-cost? The 100-up price for these devices in the Unibloc plastic package (that meets MIL standards) is just $\$ 2.75$ - about onethird the cost of comparable metal "can" types.

The two new devices are both silicon, type C, triode-connected field-effect transistors that utilize the MOS process. MPF 159 offers an R_{u} "on" rating of 100 ohms, while the complementary p-channel device, MPF160, provides 200 ohms of drain-source resistance in the "on"' condition. Both are 15 -volt devices that provide 200 mW of continuous power dissipation.

Other ratings for the two devices are:

Characteristic	Symbol	Max. Rating	Unit
Gate Reverse Current	IGss	100	pA
Zero-Gate Voltage Drain Current	Ioss	10.0	nA
Input Capacitance	$\mathrm{C}_{\text {iss }}$	3.0 4.0	pF (MPF159) DF (MPF160)
Reverse Transfer Capacitance	$\mathrm{C}_{r s 1}$	1.0	pF (Both)

For details, circle Reader Service \# 130

800 mA SCRs Spark New Economy Designs

With prices pegged substantially below 40 e in volume quantities, the 2 N 506()-6.3 SCR series is sure to be a boon to the designer of low-level, power controls.

Housed in the rugged Unibloc plastic package, these 30 to 15() -volt units can be plugged directly into existing TO-18 pin circles without confusing lead crossing. Only $200 \mu \mathrm{~A}$ is necessary to trigger these devices - making them ideal for low-level sensing and triggering designs.

Low-power consumer/industrial/military applications are virtually limitless: military fuzes (squib-firing and safety circuits), flame detectors, automatic warning systems, lamp and relay drivers,
fractional H.P. motor controls, sensing. detecting and process controls, vending machines, touch switches, ring-counters. shift registers, flip-flops, gate drivers for larger SCR's, ad-infinitum!

The exclusive Annular construction affords stable, reliable operation over a wide -65 to $+125^{\circ} \mathrm{C}$ operating temperature range.

Other features are: 6-A peak surge rating. 1.7-V peak forward "on" voltage and 5 mA max. holding-current, at $25^{\circ} \mathrm{C}$.

TYPE	If (AMPS)	$\mathbf{V}_{\text {FXM }} /$ VRXM (VOLTS)	PRICE $\left(100-U_{p}\right)$
2N5060		30	$\$ 51$
2N5061	0.8	60	.55
2N5062		100	64
2N5063		150	85

When you think "low-level power control," think 2N5060-63 SCR's. They're naturals for virtually all low-cost, high-volume designs.

"Surmetic" First Plastic
 Rectifier To Count Cadence To MIL-S-19500/228D

Now - the most popular, industryaccepted standard in plastic rectifiers the Surmetic - is the first of its kind to meet rigid military requirements! . . . an above-and-beyond "call to reliability duty" that you can expect in your consumer/industrial designs, too.

Motorola doesn't have a special production line for mil-type Surmetic rectifiers . . . Rather, identical devices for both military acceptance as well as your particular requirements are from the same production runs - your assurance that all quality designed into the Surmetic is available to all users.

You get these important design advantages too:

- Improved HV avalanche characteristics through advanced die fabrication
- Superior lead and seal capabilities through double nail head construction
- Excellent reliability through high-temperature passivation
And a minimum guard-band of 20% on all voltages means that I_{n} will be maintained at 120% of PIV - an automatic safety factor which assures you that units rated at 400 volts, for example, are actually capable of 480 volts operation!

The complete line of Surmetic rectifiers covers a reverse voltage range of 50 to 1000 volts. They are rated to carry a full amp at $75^{\circ} \mathrm{C}$ and $30-\mathrm{amp}$ surges.

Type	$V_{\text {RM }}$ (Volis)	Io (A1 75 (Amps)	IR (A)	IfM (ISURGE) (Amps)	Prices (100-up)
JAN1N3611	200	1	5	30	$\$.99$
JAN1N3612	400	1	5	30	1.30

Unibloc "Micro-T" Debut Spurs New High-Density Concepts

The advent of Motorola's Micro-T molded Unibloc plastic transistors now provides the ultra-small devices you've needed to make those high-density, miniaturized equipment design dreams come true. Besides being roughly only onetenth the volume of standard plastic or TO-18 transistors, the Micro-T's leads radiate from the center of its body, making it particularly well suited to "drop in" automatic strip-line PC board mounting.

The new Micro-T also lets you design circuits having discrete device performance while achieving the component densities and space reductions approaching that of integrated circuits. In addition, its unique structure allows for a wide latitude of mounting flexibility and circuit-layout design. For example, it makes an ideal device for use in thickfilm and unitized circuit assemblies.

The first Micro-T transistors available are Motorola PNP / NPN complementary MMT3903-06 silicon Annular switching and amplifier types. They feature a host of premium specs including $\mathrm{BV}_{\text {ceo }}$'s of as high as 40 V min., C_{ub} of only 4.0 pF max., current gain speced in two ranges - $100 \mu \mathrm{~A}$ to 1 mA , and 1 mA

Micro-T Unibloc plastic transistors make highperformance ultra-miniature designs economically practical.
to 10 mA - with saturation voltages as low as 0.2 V at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$. They dissipate a full 225 mW at $\mathrm{T}_{.}=25^{\circ} \mathrm{C}$ and operate over a wide junction temperature of from -55 to $+135^{\circ} \mathrm{C}$.

Prices are moderate too - only $\$ 1.60$ for the MMT3903 and MMT3905 and $\$ 2.00$ for the MMT3904 and MMT3906 - in 100-up quantities.

For details, circle Reader Service \# 132

Surmetic-20 Gives Body Blow To Zener Diode Prices
 The new $1 / 2$-watt Surmetic 20 zener

 diodes now place reliable, economical. voltage regulation within the reach of every circuit designer.Priced as low as $36 \$$ (10% tolerance, 5,000-up), the $1 \mathrm{~N} 5221-81$ units will replace more than 450 older, more costly DO-7 devices from 2.4 to 200 volts . . and give an extra "capability cushion" besides.

Surmetic-20's are conservatively rated at 500 mW under normal mounting conditions. Production-line units have demonstrated "no-failure" resistance to greatly overstressed, 1-watt, 1,000-hour testing. In addition, nanoampere reverse leakage current ratings indicate cleanliness of the passivated junctions and assure low-power drain and sharper knees in all applications.

As a result of flame and distortionproof silicone polymer packaging, a $200^{\circ} \mathrm{C}$ operating temperature and repeated defiance of 50 -day moisture resistance tests (5 times the exposure period required in standard mil-type case integrity tests), it can be designed with

Their low-cost makes it economically practical to employ Surmetic-20 zener diodes in multiple arrays ('strings') to provide greater design flexibility.
more confidence - and less heat sinking - into virtually all high-temperature, high-humidity environments.

Both demanding industrial and military circuits which require solid-state devices to be completely spec'd (Surmetic 20 's are 100% oscilloscope-tested and characterized at 4 critical points including $\left.i_{z(\text { surge) }}\right)$, or non-critical commer-cial-type applications are a natural for ultra-economical Surmetic -20 types.

ADE GERMANIUM POWER-SWITCHING TRANSISTORS

\author{

- Double "Brute-Power" Capability Over Alloy Types
}

It's almost like having two power transistors for the price of one! Motorola's new Alloy-Diffused-Epitaxial (ADE) die structure boosts peak power-switching capability to nearly twice that of conventional alloy units, yet carries a low price tag.

The MP2200A-2400A switching transistors are ideal for core driver, power conversion and HV switching applications where high power capability - 80 to 120 V min @ 8 A - is needed at low cost. In addition. high current/gain (25 min @ 8 A). low saturation voltage ($0.6 \mathrm{~V} @ 25 \mathrm{~A}$) and good switching speed ($9 \mu \mathrm{~s}$ ton @ 10 A typ) advantages rank them as efficient. solid-state servants in "brutepower" designs. They are available in TO-41 or TO-3 all-aluminum cases.

Type	$V_{\text {CE }}$ Volts (sus)	$\begin{gathered} \text { Ic } \\ \text { Amps } \\ \text { (Cont) } \end{gathered}$		$\begin{gathered} h_{f E} \\ h_{\mathrm{E}}^{\mathrm{C}} \mathrm{C} \\ (\text { min) } \end{gathered}$	Price (100. up)
$\begin{aligned} & \text { MP2200A } \\ & \text { MP2300 } \\ & \text { MP2400A } \end{aligned}$	$\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$	25	0.6	$\begin{gathered} 25 \\ 9 \\ 8 \mathrm{~A} \end{gathered}$	$\begin{array}{r} \$ 2.25 \\ 2.45 \\ 2.60 \end{array}$

For details circle Reader Service \# 134

TIGHT-VOLTAGE-TOLERANCE REFERENCE DIODES

-Spec'd To $\pm 2 \%$ Limits, $0.0005 \% /{ }^{\circ} \mathrm{C}$; Yet Cost 30% Less!
You can now specify either a $\pm 0.2 \mathrm{~V}$ (" A " type, $\pm 2 \%$) or a $\pm 0.4 \mathrm{~V}$ (nonsuffix, $\pm 4 \%$) tolerance over the nominal 9.4 -volt rating for tight voltage range considerations in critical test equipment, meter, satellite and instrumentation designs with Motorola's 1N2163 reference diode series. And where economy is a factor (where isn't it!) you can realize savings up to 30% over published prices for comparable units. These 750 mW units feature maximum voltage change spec'd over test temperature range and temperature coefficients guaranteed over three operating temperatures.

For details circle Reader Service \# 135

$\begin{gathered} \text { rypae } \\ \text { Number } \end{gathered}$	$\Delta v_{2}^{M a z} \text { NOilts) }^{2}$	$\begin{gathered} \text { Test } \\ \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Temperature Coerricient ($\% /{ }^{\circ} \mathrm{C}$)	Price (100-up)	
				Sto.	$\begin{gathered} \text { "rypes } \\ \text { T" } \end{gathered}$
12163,4	0.033	0. $+25,+70$	0.005	\$ 2.50	\$ 2.60
1232164,4	0.086	$\begin{array}{r} -55.0 .+25 . \\ +75 .+125 \end{array}$	0.005	3.40	4.15
12165,4	0.115	$\begin{array}{r} -55.0 .+25 \\ +75 .+125 .+185 \\ \hline \end{array}$	0.005	4.25	550
122166,4	0.007	0. $+25,+70$	0.001	5.10	6.10
1 12167.4	0.017	$\begin{array}{r} 55.0 .+25 . \\ +75 .+125 \\ \hline \end{array}$	0.001	6.50	8.30
1/2168,4	0.023	$\begin{aligned} & -55.0 .+25 . \\ & +75 .+125 .+185 \end{aligned}$	0.001	8.95	1200
1/2169,4	0.004	0. $+25 .+70$	0.0005	12.75	18.80
1w2170.4	0.009	$\begin{gathered} -55,0,+25 . \\ +75,+125 \\ \hline \end{gathered}$	0.0005	18.00	27.80
1w2171.4	0.012	$\begin{array}{r} -55.0+25 \\ +75 .+125 .+185 \\ \hline \end{array}$	0.0005	26.20	33.50

SENSITIVE GATE SCR's

— Reduce Triggering Requirements to μ A Levels
Only $100 \mu \mathrm{~A}$ (@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$) is needed to turn on the new 2N4212-16 series of SCR's - a current level many orders of magnitude less than that needed by conventional SCR's and one that virtually eliminates the necessity for elaborate pre-triggering (using transistors or high output triggers). This low-level sensing capability also minimizes the complexity of amplifier stages needed to fire larger power SCR's. The 1.6 amp family is packaged in the space-saving, hermetic TO-5 case and includes both premium and economy units.

Type	$\begin{aligned} & \text { Vixm } \\ & \text { Volts } \end{aligned}$	$\begin{gathered} \text { Tru surgol } \\ \text { Amps } \end{gathered}$	Maxal $25 . C$		$\begin{gathered} \text { Prices } \\ (100-\mathrm{up}) \end{gathered}$
			161	$\operatorname{lmx}\left(\mathrm{R}_{\mathrm{Gx}}=1 k\right)$	
2N4212	25	15	$100 \mu \mathrm{~A}$	$3.0 \mu \mathrm{~A}$	\$1.80
2N4213	50				2.00
2N4214	100				3.30
2N4215	150				4.10
2N4216	200				5.40
MCR1906.1	25	15	1 mA	$5.0 \mu \mathrm{~A}$	1.05
MCR1906-2	50				1.10
MCR 1906.3	100				1.25
MCR1905-4	200				1.35

For details circle Reader Service \# 136

UNIBLOC PLASTIC UNIJUNCTION TRANSISTORS

- Combine Low Price And High Performance . . . With Availability

You can select from two narrow-range eta spreads with the $2 \mathrm{~N} 4870-71$ series UJT's, reducing the necessity of tight tolerance resistor/capacitor selection and two valley current characteristics, allowing wider latitude in sawtooth oscillator and frequency divider circuit design. And, ultra-low leakage, resulting from the Annular structure, reduces pulse-width variations. In addition, their low (2.5 V) typical emitter saturation-voltage allows greater output to the following circuit stage - particularly useful in triggering applications.

Use them in consumer/industrial applications such as timers, lamp dimmers/ flashers, sawtooth generators, motor-speed controls, fuse circuits, pulse generators, multivibrators, oscillators . . . ad infinitum!

Type	Package	Peak Point Current (Typ)	EmitterReverseCurrent(Typ)	Intrinsic Standoff Ratio		$\begin{aligned} & \text { Price } \\ & \text { (100-up) } \end{aligned}$
				Min.	Max.	
2N4870	TO.92UNIBLOCPLASTIC	$1 \mu \mathrm{~A}$	$0.05 \mu \mathrm{~A}$	0.56	0.75	\$. 64
2N4871				0.70	0.85	\$. 68

SCR Crowbar Over-Voltage Protection for DC Operation

MM5000-MM5002 - POWER GAIN AND NOISE FIGURE TEST CIRCUT

1-AMP PNP DARLINGTON AMPLIFIERS

- Provide High Current Gain Even at Cryogenic Temperatures

The designer is assured of a minimum gain of 15,000 at $-55^{\circ} \mathrm{C}$ and gains up to 60,000 at $+25^{\circ} \mathrm{C}$ (typ) with two new PNP Darlington amplifiersmaking them highly suited for very-low-temperature designs-types 2N4974 and 2 N 4975 . They operate over a wide dc current range from $1 \mu \mathrm{~A}$ to 1.0 A with characteristics specified at 8 separate points over the complete operating current range. Both units carry a high P_{p}, rating of 800 mW at $25^{\circ} \mathrm{C}$.

Motorola's patented annular semiconductor structure assures unusually low leakage currents $-I_{\text {Cbo }}=10 \mathrm{nA}(\max)$ at $\mathrm{V}_{\text {cbo }}=30 \mathrm{~V}$. They have a maximum noise figure of only 6.0 dB at 1.0 mA and a typical f_{T} of 275 MHz at 20 mA . Typical gain specifications for these PNP Darlington amplifiers are:

TYPE	$-55^{\circ} \mathbf{C}$	$+25^{\circ} \mathbf{C}$
2N4974	15,000	60,000
2N4975	10,000	30,000

For details circle Reader Service \# 138

HIGH-GAIN 2N4416 - VHF/UHF JFET

- Fits 8 Out Of Every 10 Sockets!

There's little doubt that most designers will find this new n-channel JFET so versatile that it will soon become the most useful device in the "designer's tool box." Even though the 2N4416 is characterized as a VHF/UHF amplifier. it will work equally well in low-noise, high-gain amplifiers from dc to above 400 MHz . At 100 MHz , noise figure is specified at 2.0 dB and power gain is 18.0 dB at the same frequency. In addition, the device features input capacitance of 4.0 pF at 1 MHz and transconductance of $4,000 \mu \mathrm{mhos}$ at 400 MHz .

Motorola's 2 N4416 JFET is available now in the TO-72 (4-lead TO-18) package, with isolated chip. The 100 -up price is $\$ 3.35$.

For details circle Reader Service \# 139

GERMANIUM VHF AMPLIFIER TRANSISTORS

-Break 2 dB Noise-Figure Barrier - 1.6 dB max. at 200 MHz !
Low-noise, low-price and high power-gain make the MM5000 PNP VHF amplifier transistor series a natural choice for the value vs. performance conscious engineer. The units also feature an f_{T} of $800 \mathrm{MHz} \min$., and a col-lector-base capacitance of only 0.6 pF max. They are fabricated using Motorola's exclusive Selective Metal Etch process, which permits greater freedom of geometry design. The result . . . better definition and closer spacing of emitter/ base areas to provide optimum performance chracteristics. Case type: TO-72.

Type	Low Noise @ $\mathbf{2 0 0} \mathbf{M H z}$	Power Gain @ $\mathbf{2 0 0} \mathbf{~ M H z}$	Prices (100-up)
MM5000	1.6 dB max	24 dB min	$\$ 4.75$
MM5001	2.0 dB max	22 dB min	2.80
MM5002	2.2 dB max	20 dB min	2.00

For details circle Reader Service \# 140
NOTE:
If coupon is missing use magazine's Reader Service numbers to order literature on items described in NEWSBRIEFS

For Fast Action!

. . . on delivery of literature for items described in this publication - fill out this coupon, fold as indicated and drop in the mail.
(NO POSTAGE IS REQUIRED)

BUSINESS REPLY MAIL

No postage stamp necessary if mailed in the United States
POSTAGE WILL BE PAID BY

Semiconductor NEWSBRIEFS
Motorola Semiconductor Products Inc.
P. O. Box 13408

Phoenix, Arizona 85002

FIRST CLASS
Permit No. 2565
PHOENIX
ARIZONA

NPN/PNP HIGH-VOLTAGE SILICON HIGH-FREQUENCY TRANSISTORS - Offer An Outstanding Combination of Key Parameters

Combining leakage currents in the nanoamp range with low saturation voltages and dc betas (h_{FE}) up to 200 at $\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}$ - all this at very high $\mathrm{f}_{\mathrm{T}}{ }^{\prime} \mathrm{s}$ Motorola's NPN 2N4924-27 and PNP 2N4928-31 complementary high-voltage silicon Annular transistors provide the peak-efficiency parameters you need to avoid expensive "overspecing" often encountered with devices of this type.

Packaged in the TO-39 case, they dissipate up to 5 watts at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. Both polarity types are available in production quantities to serve a broad scope of high-voltage, high-frequency amplifier applications.

NPN 2N4924-27 and PNP 2N4928-31 Silicon Annular Transistors

Types		$\begin{gathered} B V_{c \in O} \\ @ 10 \mathrm{~mA} \\ \mathrm{~V}) \end{gathered}$	$I_{\text {cbo a }}$ (a) $V_{\text {cb }}$			$\begin{gathered} \mathrm{V}_{\mathrm{CE}(\text { Lot })} @ \\ 10 \mathrm{~mA} \text { max. } \\ \hline \end{gathered}$		fr @ $20 \mathrm{~mA} ; 20 \mathrm{~V}$ (MHz)		$\begin{aligned} & \text { Prices } \\ & \text { (100-up) } \end{aligned}$	
NPN	PNP			'PNP	(V)			$\begin{gathered} \text { NPN } \\ \min / \text { max } \end{gathered}$	$\begin{gathered} \text { PNP } \\ \min / \text { max } \end{gathered}$	NPN	PNP
2N4924	2N4928	100	0.1	0.5	50	0.25	0.5	100/500	100/1000	\$1.35	\$2.70
2N4925	2N4929	150	0.1	0.5	75	0.25	0.5	100/500	100/1000	1.65	3.30
2N4926	2N4930	200	0.1	1.0	100	1.00	5.0	30/300*	20/200	1.95	3.95
2N4927	2N4931	250	0.1	1.0	150	1.00	5.0	30/300*	20/200	2.10	4.50

*fr @ Ic $=10 \mathrm{~mA}$
For details, circle Reader Service \# 141

HIGH-EFFICIENCY POWER VARACTOR MULTIPLIERS

- Boost Frequencies Eight Times in a Single Step!

With the advent of four new step-recovery power multipliers (varactors), the microwave designer can say goodbye to the expensive prospect of two, three, and sometimes four multiplication steps in order to reach regions as high as 6 GHz . Motorola types MV1816B-17B ... and their tighter tolerance "1" versions (with superior thermal resistance) multiply a frequency 8 times - e.g. from 800 MHz to 6400 MHz - in a single step, with a minimum $20-25 \%$ efficiency. Other significant parameters for the MV1816B-17B are:

Device Type	$\begin{aligned} & P_{\text {in }} \\ & \text { (W) } \end{aligned}$	$\begin{aligned} & \text { Eff. } \\ & \%(\mathrm{~min}) \end{aligned}$	fin/foul (MHz)	AJc (${ }^{\circ} \mathrm{C} / \mathrm{W}$ max)	$\begin{aligned} & \mathbf{C}_{r}(\bar{n}) 6 \mathrm{~V} \\ & \mathbf{1}_{\mathrm{MHz}} \text { (pF) } \end{aligned}$	$B V_{R} @ 10 \mu \mathrm{~A}$ (Volts, min)
MV1816B MV1816日1	3	20	300/2400	23	2.4 - 3.6	75
		25		15	2.7 - 3.3	
MV18178 MV181781	1	20	800/6400	35	$0.8 \cdot 1.2$	35
		25		25	$0.9 \cdot 1.1$	

These universal devices can be employed in a wide range of local oscillator and transmitter designs requiring a variety of frequencies and multiplication steps. Both types are available in "pill" and "pill/prongs" packages.

For details, circle Reader Service \# 142

Published by Motorola Semiconductor Products Inc.
The circuitry shown external to Motorola products is for illustrative purposes only, and Motorola does not assume any responsibility for its use or warrant its performance or that it is free from patent infringement.
MECL II, MTTL, MDTL, ADE, Micro-T, Unibloc, Surmetic, THERMOPAD,ELF, ZenGard used in this publication are trademarks of Motorola Inc. Annular semiconductors are patented by Motorola Inc. Motorola Inc. has applied for patents on the "Selective Metal Etch" (SME) transistor process. MADT is a registered trademark of Philco Corp.

Tear Along Perforated Line and Drop in Mail (No Postage Required)
To expedite the delivery of the literature you have requested, we would appreciate that you CLEARLY PRINT your name and mailing address below:

NAME, TITLE

COMPANY (DIV.) \qquad

ADDRESS \qquad

CITY \qquad
\qquad
SEMIOONDUOTOR

COPYRIGHT 1967

Please circle the Reader Service number of item(s) you are interested in receiving:

	ED				
121	125	129	133	137	141
122	126	130	134	138	142
123	127	131	135	139	
124	128	132	136	140	
Do you wish a Motorola Field Representative					

to contact you? \square VISIT \square PHONE
Phone No. \qquad Area Code \qquad
Requests for literature on items described in this issue cannot be honored after Feb. 15, 1968.

Multitester Cross Index

CODE	COMPANY	MODEL NO.		READER SERVICE NO.	CODE	COMPANY	MODEL NO.	TABLE LOCA TION	REAUER SERVICE NO.
Aerometrics	Aerometrics Aerojet General Corp. PO Box 216 San Ramon, Calif. 94583	MM100	M 15	256	Millivac	Millivac Instrument Inc. 1100 Altamount Ave. Box 997 Schenectady, N.Y. 12301	$\begin{aligned} & M V-07 C \\ & M V-77 B \\ & M V-864 A \end{aligned}$	M14 M12 M15	272
Assoc-Re	Associated Research Inc. 3758 W. Belmont Ave. Chicago, III. 60618	$\begin{aligned} & 201 \\ & 204 \\ & 205 \\ & 208 \\ & 210 \\ & 233 \end{aligned}$	M3 M3 M3 M3 M3 M4	257	Motorola	Motorolo Communications \& Electronics Inc. Precision Frequency Products 4501 Augusta Boulevard Chicago, III. 60651	$\begin{aligned} & \text { S 1052B } \\ & \text { S } 1063 A \end{aligned}$	M16 M16	273
AUL	AUL Inc. 24-13 Bridge Plaza N. Lang Island City, N. Y.	TVM4 TVOM4	M14 M13	258	Physics	Physics Research Labs Inc. Box 555 Hempstead, N. Y.	$\begin{aligned} & 226211 p \\ & 226213 p \\ & 226214 p \end{aligned}$	M5 MII MII	274
AVO Ltd.	AVO Lid. Amacail Instrument Div. 750 St. Anns Ave.	7 8 Mk III 9 Mk 2	M4 M9 M8	259	RCA	Radio Corp. of America Electronic Components Harrison, N. J. 07029	WV-38A WV-77E WV-98C	M6 M13 M13	275
	Bronx, N. Y. 10456	40 CT471A H 1108 MM4 PA	M2 M13 M12 M5 MI		Rawson	Rawson Electrical Instr. Co. 126 Potter St. Cambridge, Mass.	$\begin{aligned} & \text { 5012AA } \\ & 5012 A D \\ & 5012 A E \\ & 5012 \mathrm{LB} \\ & 5012 \mathrm{CC} \end{aligned}$	M15 MI5 M15 M16 M15	276
Barnett	Barnett Instruments Co. 430-438 Commerce St. Clarksville, Tenn.	431-AN	M2	260	R \& S	Rohde \& Schwarz Sales Co. Inc 111 Lexington Ave. Passaic, N.J. 07056	URI	M14	27
Connolly	Connolly \& Co. Inc. 914 Rengstorff Ave. Mountain View, Calif.	$\begin{array}{\|l\|} \hline 50 \\ 651 \\ \hline \end{array}$	$\begin{aligned} & \text { M10 } \\ & \text { M7 } \end{aligned}$	261	Simpson	Simpson Electric Co. 5200 W. Kinzie St. Chicago, III. 60644	$\begin{array}{\|l} 160 \\ 230-2 \\ 240-4 \\ 250 \end{array}$	M7 M2 M2 M9	278
Dynamics	Dynamics Instrumentation Co 583 Monterey Pass Rd. Monterey Park, Calif.	$\begin{array}{\|l\|} \hline 504 \\ 504 R \end{array}$	M16 M16	262			$\begin{aligned} & 255 / 0531 \\ & 260-5 \\ & 260-5 p \\ & 261 \end{aligned}$	M9 M8 M8 M 10	
Edwin	Edwin Industries Corp. 5858 E. Moloy Rd. Syracuse, N. Y. 13211	CT471	M14	263			$\begin{aligned} & 262-2 \\ & 263 \\ & 268 \\ & 269-2 \end{aligned}$	M6 M9 M6 M12	
E-Measur	Electronic Measurements Corp. 625 Broadway	$\begin{aligned} & 102 A \\ & 103 A \\ & 109 A \end{aligned}$	M14 M14 M5	264	8		$\begin{aligned} & 270-3 \\ & 355 \end{aligned}$	M10 M5	
	New York, N. Y.				Triplett	Triplett Electrical Instr. Co.		M6	279
Hortmann	Hartmann \& Braun c/o Epic Inc 150 Nassau St. New York, N. Y. 10038	ELAVI 1 ELAVI 2 ELAVI 3 ELAVI 4 ELAVI 11 ELAVI 12 ELAVI HO ELAVI 」 MULTAVI 2 MULTAVI 5 MULTAVI 5L MULTAVI B MULTAVI HO MULTAVI P	MI M5 M11 MII MI M2 MII MI MI M4 M4 M4 MII M4	265		Bluffton, Ohio 45817	$\begin{aligned} & 600 \\ & 630 \\ & 630-A \\ & 630-A P L \\ & 630-A P L K \\ & 630-L \\ & 630-M \\ & 630-N S \\ & 630-P L \\ & 630-P L K \\ & 631 \\ & 666 R \\ & 800 \end{aligned}$	$M 13$ $M 7$ $M 10$ $M 10$ $M 10$ $M 8$ $M 12$ $M 12$ $M 8$ $M 7$ $M 6$ $M 2$ $M 9$	
		MULTAVIS	MI		Weston	Weston Instr. \& Electronics	779-8	M9	280
Heath	Heath Company Sub. Daystrom Ine. Benton Harbor, Mich.	$\begin{aligned} & M M-1 \\ & 1 M-25 \end{aligned}$	M5 M13	266		Div. Daystrom Inc. 614 Frelinghausen Ave. Newark, N.J.	980 Mk 2		
Hickok	Hickok Electrical Instr. Co. 10555 Dupont Ave. Clevelond, Ohio 44108	455A	M7	267	Yokogawo	Yokogawa Electric Works Inc. 40 Worth Street New York, N. Y. 10013	L-22	M 12	281
Inst-Lab	Instrument Labs Corp 315 W. Walton Place Chicago, III. 60610	102	M3	268					
Internat	International Instruments Inc. 88 Marsh Hill Rd. Orange, Conn.	VOM-22	M6	269					
Keithley	Keithley Instruments Inc. 12415 Euclid Ave. Cleveland, Ohio 44106	600 A 601 $610 B$	$\begin{aligned} & \text { M17 } \\ & \text { M16 } \\ & \text { M17 } \end{aligned}$	270					
Leeds \& N	Leeds \& Northrup 4907 Stenton Ave. Philadelphia, Pa.	5620	M16	271					

Design decisions belong in the hands of the systems designer.

DCL (Designers' Choice Logic) can start you on your way toward design freedom again. With Signetics' DCL you can optimize your system's performance without drawn-out calculations, expensive and time-consuming ground-plane designs or extensive use of outboard components. DCL is the only family that can offer all of these advantages:

WIDEST CHOICE OF FLIP-FLOPS - Four dual and two single flip-flops provide optimum choices in logic design and speed/ power ratio. DCL offers the only dual low power RS/T binary in the industry, four flexible J-K types, and a dual high speed "D" type. The selection includes DC clocked. AC clocked, leading edge-triggered and trailing edge triggered binaries.

FULLY COMPATIBLE LARGE ARRAYS-Monolithic arrays (containing four binaries and thirteen gates) for counting and storage applications.

three ranges of gate speed/power trade-offs -

$6 \mathrm{~ns} / 20 \mathrm{~mW}, 10 \mathrm{~ns} / 15 \mathrm{~mW}$ and $25 \mathrm{~ns} / 7 \mathrm{~mW}$.
FULLY COMPATIBLE INTERFACE ELEMENTS - Gates designed to match DCL levels to system levels up to 30 volts.

DTL FLEXIBILITY AND TTL SPEEDS - DCL includes high noise immunity DTL gates that are compatible with the high speed TTL members of the family. These gates provide a variety of AND-NOR functions to enhance design flexibility.

THE FIRST FULL MIL RANGE SILICONE DIP-All elements are available for either MIL or industrial temperature ranges in silicone DIPs or 14-lead glass/kovar flat paks.

TYPE	Cal Characteristics				
8162	MONOSTABLE MULTIVIBRATOR (delay from 80 ns to 2 seconds)	12	35	65	1.0
8280	DECADE COUNTER/STORAGE REGISTER	8	25 MHz	25	1.0
8281	BINARY COUNTER/STORAGE REGISTER	8	25 MHz	25	1.0
8415	DUAL 5-INPUT NAND GATE (bare output collector)	9	30	10.0	1.0
8416	DUAL 4-INPUT NAND GATE (input expansion node)	9	25	10.0	1.0
8417	DUAL 3-INPUT NAND GATE (expansion node and optional output resistor)	9	30	9.5	1.0
8424	DUAL, LOW POWER, RS/T BINARY (trailing edge triggered)	9	11 MHz	15.5	1.0
8440	DUAL AND-OR-INVERT GATE (2 AND Gates wide)	9	25	12.0	1.0
8455	DUAL 4-INPUT NAND GATE DRIVER	25	28	11.0	. 0
8470	TRIPLE 3-INPUT NAND GATE	9	25	7.0	. 0
8471	TRIPLE 3-INPUT NAND GATE (bare output collector)	9	30	7.0	1.0
8480	QUADRUPLE 2-INPUT NAND GATE	9	25	7.0	1.0
8481	QUADRUPLE 2-INPUT NAND GATE (bare output collector)	9	30	7.0	. 0
8731	QUADRUPLE 2-INPUT DIODE EXPANDER	-	-	-	
8806	DUAL 4-INPUT EXPANDER	-	-	-	
8808	8-INPUT NAND GATE	20	12	13	1.0
8816	DUAL 4-INPUT NAND GATE	20	12	13	1.0
8825	SINGLE PHASE, AND Input J-K BINARY (leading edge triggered)		25 MHz	90	1.0
8826	DUAL HIGH SPEED J-K BINARY (trailing edge triggered)	10	30 MHz	40	1.0
8827	DUAL HIGH-SPEED J-K BINARY (full asynchronous entry. trailing edge triggered)		30 MHz	40	1.0
8828	DUAL HIGH SPEED "D" TYPE BINARY (leading edge triggered)	20	25 MHz	55	1.0
8829	SINGLE PHASE AND INPUT J-K BINARY (trailing edge triggered)		20 MHz	90	1.0
8840	DUAL AND-OR-INVERT GATE (2 AND gates wide)	20	10	15	1.0
8848	AND-OR-INVERT GATE (4 AND gates wide)	20	10	30	1.0
8855	DUAL 4-INPUT POWER GATE	60	10	24	1.0
8870	TRIPLE 3-INPUT NAND GATE	20	10	15	1.0
8880	QUADRUPLE 2-INPUT NAND GATE	20	10	15	1.0
8 H 16	DUAL 4-INPUT NAND GATE (high-speed)	30	6	20	1.0
8H70	TRIPLE 3-INPUT NAND GATE (high-speed)	30	6	20	1.0
8H8O	QUADRUPLE 2-INPUT NAND GATE (high-speed)	30	6	20	1.0
8T18	DUAL 2-INPUT NAND INTERFACE GATE (high voltage to low voltage)	9	15	45	7.0
8T80	QUADRUPLE 2-INPUT NAND INTERFACE GATE (Iow voltage to high voltage)	9	25	10.0	1.0
8T90	HEX INVERTER INTERFACE ELEMENT (low voltage to high voltage)	9	25	10.0	1.0

So does this DCL sampler from Signetics.

Signetics wants you to find out for yourself just how versatile you can be with DCL. So, we put a representative DCL selection together in an evaluation sampler, complete with a 46-page handbook and evaluator's guide. Then we cut the price in half, to make it even more attractive. The selection includes:

Type No.	Description Qu	Quantity	$\begin{array}{r} \text { Normal } \\ 1-24 \\ \text { Price } \end{array}$
N8280A	Decade Counter	1	\$24.00
N8281A	Binary Counter	1	24.00
N8424A	Dual Lo Power RS/T Binary Element	2 at 5.90 ea	11.80
N8825A	Single Phase AND Input J-K Binary Element	t 2 at 4.00 ea	8.00
N8826A	Dual Hi Speed J-K Binary Element	2 at 5.90 ea	11.80
N8828A	Dual Hi Speed D-Type Binary Element	2 at 5.65 ea	11.30
N8416A	Dual 4-Input Expandable DTL NAND Gate	1	2.25
N8480A	Quad 2-Input Lo Power TTL NAND Gate	2 at 2.25 ea	4.50
N8440A	Dual AND-OR-INVERT Gate	1	2.25
N8455A	Dual 4-Input NAND Driver	1	2.50
N8880A	Quad 2-Inout Hi Speed TTL NAND Gate	2 at 2.25 ea	4.50
		17 \$	\$106.90
SPECIAL INTRODUCTORY PRICE . . . $\$ 45.00$			
YOU SAVE . . . \$61.90			

DCL evaluation samplers are now available at all Signetics' distributors. Call or write right away, supply is limited.

SIGNETICS SALES OFFICES: Metropolitan New York (201) 992 .3980. Uppet New York State (315) 469 1072; Southwestern (214) 231.6344; Western Regional (213) 272-9421; Eastern Regional (617) 245.8200; Mid-Atlantic (609) 858 2864: Southeastern (813) 726-3734: Midwestern Regional (312) 259.8300 ; Northwestern (408) 738.2710.

DISTRIbutors: Compar at all locations listed below. Semiconductor Specialists. Inc. (312) 279 1000; Terminal Hudson Electronics (212) 243-5200; Wesco Electronics (213) 684.0880; Wesco Electronics (405) 968.3475; Hammond Electranics (305) 241.6601; Avnet Electronics Corp. of Massachusetts (617) 272.3060
DOMESTIC REPRESENTATIVES: Jack Pyle Company (415) 349-1266. Compar Corporation at the following locations: Alabama (205) 539 8476; Arizona (602) 947-4336; California (213) 245-1172; California (415) 697.6244. Colorado (303) 781.0912; Connecticut (203) 288 9276; Florida (305) 855.3964; Illinois (312) 715.5300; Maryland (301) 484.5400; Massachusetts (617) 969 7140; Michigan (313) 476.5758; Minnesota (612) 922.7011 Missouri (314) 428.5313; New Jersey (609) 429.1526: New Mexico (505) 265.1020; New York (518) 436.8536: New York (607) 723 8743; New York (716) 684.5731; New York (201) 471-6090; North Carolina (919) 724.0750; Ohio (216) 333-4120; Ohio (513) 878-2631; Texas (214) EM 3-1526; Texas (713) 649.5756; Washington (206) 725.7800 .
INTERNATIONAL SALES: France, Germany, Italy, Beigium, Holland. Luxemburg. Spain-Sovcor Electronique, 11, Chemin de Ronde, Le Vesinet. (S \& O.) France. United Kingdom, Ireland, Sweden. Denmark, Norway, Switzerland. Austria, Portugal-Electrosil Lid., Lakeside Estate. Colnbrook By Pass Slough. Buckinghamshire. Greal Britain. Australia - Corning, 1202 Plaza Building. Australia Square, Sydney. N S W. 27.4318. Canada-Corning Glass Works of Canada, Ltd., Leaside Plant. Ontario, Canada (416) 421-150. Israel-Optronix, P O. Box 195. Ramat Gan, Israel 724 437. Japan-ASAMI Glass Co., Ltd., Corning Products Sales Dept. No. 2, 3 -Chome Marunouchi, Chiyoda ku, Tokyo, Japan

General Purpose Oscilloscopes

					QUENC		SENSIT	VITY			SWEEP	EED		Type	
	Manufacturer	Model	Channel (notes)	Min. Hz	Max. $\mathrm{MHz}_{\mathrm{z}}$	Resp. dB	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm	Imp. $M \Omega(p F)$	Delay us	Max. $\mu s / \mathrm{cm}$	Min. s / cm	Trigger $V(p-p)$	$\begin{aligned} & \text { R-Rack } \\ & \text { P-Port. } \end{aligned}$	Approx $\$$
51	H-P ITT	H41-1208 KP704 (17 inch) KP404 (14 inch) KP704-8 (17 inch) DU-17	vert (s) vert 4	$\begin{aligned} & 0.15 \\ & \text { de } \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.005 \end{aligned}$	ino ina	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	0.005	$\begin{aligned} & 1(150) \\ & 100 k \end{aligned}$	none none	$\begin{aligned} & 25 \mathrm{~mm} / \mathrm{s} \\ & 2.5 \mathrm{~mm} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~mm} / \mathrm{s} \\ & 500 \mathrm{~mm} / \mathrm{s} \end{aligned}$	free run none	$\begin{array}{ll} C, & R \\ C, & R \end{array}$	$\begin{aligned} & 625 \\ & 2650 \end{aligned}$
	ITT		vert 4	dc	0.005	ina	20		100 k	none	$2.5 \mathrm{~mm} / \mathrm{s}$	$500 \mathrm{~mm} / \mathrm{s}$	none	C, R	2550
	ITT		vert 8	dede	0.005	ina	20	-	100 k	none none	2. $5 \mathrm{~mm} / \mathrm{s}$ ina	$500 \mathrm{~mm} / \mathrm{s}$ ina	none	$\text { C, } R$	2950
	Texscan		(e)		0.01	3	1	1					ino	C	1375
	Texscan	DU-88M	ver	de de	0.015 0.001		$\begin{aligned} & 1(h) \\ & 100(h) \end{aligned}$	$\begin{aligned} & 1(h) \\ & \text { ino } \end{aligned}$	1 (30)	none		ina	ina	C	595
	$\begin{aligned} & \text { Meas-Con } \\ & \text { ITT } \end{aligned}$		vert	de	0.02	$\begin{aligned} & 3 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & 100(h) \\ & \operatorname{lv}(i) \end{aligned}$	ino	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	none	none	none	yes	C	200
		$\begin{aligned} & \text { KS307 } \\ & (23 \text { inch) } \end{aligned}$	ver! horz vert horz vert horz	de	0.05	$\begin{array}{\|l\|} \text { ina } \\ 3 \end{array}$	$\operatorname{lv}(\mathrm{i})$ 100	-		none	0.5	10\%s	yes	C, R	2950
	ITT	(23 inch) KS407 (14 inch) K S707 (17 inch)		de de	0.05 0.05	3 3	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	100 k	none	0.5	$10 \mu \mathrm{~s}$	yes	C, R	2570
	ITT			de de	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-		none	0.5	$10 \mu s$	yes	C, R	2650
	IT	KM910S (9 inch)	$\begin{aligned} & \text { vert (s) } \\ & \text { horz } \end{aligned}$	de	$\begin{aligned} & 0.05 \\ & 750 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 3 \\ & \text { ino } \end{aligned}$	$\begin{aligned} & 0.2 \\ & 100 \end{aligned}$		$100 \mathrm{k}$	none	none	none	none	C	1175
	ITT	KM302 (23 inch)	vert (s)	de de	750 Hz 0.05	ino 3	100	10	1	none	none	none	none	C, R	2595
	ITT	KM302S4 (23 inch)	vert (s)	de	0.05 0.05	3	1 (i) 100		$\begin{aligned} & 1 \\ & 100 \mathrm{k} \end{aligned}$	none	none	none	none	C, R	2990
	ITT	KM402S4	vert (s)	de	0.05	3	$\begin{aligned} & 1 \text { (i) } \\ & 100 \end{aligned}$		1	none	none	none	none	C, R	2560
			horz	de	0.05	3			100 k						
	ITT	KM402 (14 inch)	vert	de	0.05	3	100	10	$\left.\right\|_{1} ^{1}$	none	none	none	yes	C, R	2195
			horz	de	0.05	3	100								
2	ITT	KM702	vert (s)	de	0.05	3	100	10		none	none	none	none	C, R	2295
		(17 inch)	horz	de	0.05	3	100	-	100 k	none	none	none	none	C,	229
	ITT	KM702S4	vert (s)	de	0.05	3	1 (i)	-	1	none	none	none	none	C, R	2690
		(17 inch)	horz	de	0.05	3	100	-	100 k	none	none	none	none	C, R	
	$17 T$	KM-708	vert (s)	de(3)	0.05	3	100	-	1	none	none	none	none	C, R	6000
	H-P	(17 inch) H40-1208	vert (s)	de	0.05	ina	100	1	1 (150)	none	$25 \mathrm{~mm} / \mathrm{s}$	$50 \mathrm{~mm} / \mathrm{s}$	free run	C, R	525
	ITT	KM910	vert (s)	de	0.05	3	100	-	$\begin{aligned} & 100 \mathrm{k} \\ & 100 \mathrm{k} \end{aligned}$	none	none	none	none	R	950
		(9 inch)													
	Fairchild	$\begin{aligned} & 304 A \\ & 304 A R \end{aligned}$	vert 1 vert 2	de de	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	-1 -6	25 (i)	250(i)	2 (50)	none	30 kHz	2 Hz	yes	C	550
			horz 1	de	0.1	-1	300 (i)	30 (i)	2.2 (50)	none	none	none	none	R	575
			horz 2	de	0.3	-6	300 (i)	30 (i)	2.2 (50)	none					
	Meas-Con	300	(f)	de	0.1	$\mathrm{-}^{-3}$	10 (h)	50	0.5 (100)	none	20 kHz	10 Hz	yes	C, R	160
	Millen	90905B/90921	vert	15 15	0.125	2				none	40 kHz	15 Hz	yes	R	234
	Millen	90905/90921	horz	15 15	0.125 0.125	2	700	70 50	0.5 0.5	none			yes		204
	millen	90905/90921	horz	15	0.125	2	900	90	0.5	none	40 kHz	15 Hz	yes	R	204
	Millen	90902/90921	vert	15	0.125	2	1100	50		none	40 kHz	15 Hz	yes	R	149
S			horz	15	0.125	2	1700	ino	0.5	none	40 kHz	$\mathrm{JFO}^{\text {H }}$	yes	R	14
3	Millen	90903/90921	vert	15	0.125	2	550	55	0.5	none	40 kHz	15 Hz	yes	R	162
			horz	15	0.125	2	710	71	0.5	none	40 kHz	Hz ${ }^{\text {Hz}}$	yes	R	162
	Benrus	1100/700	(f)	dc	0.15	3	0.1	20	2 (50)	ino	1	5 (i)	0.5 cm	C	950
		$1100 R / 700$ $1100 / 600$				3	0.1							R	960 860
	Benrus	$1100 / 600$ $1100 \mathrm{R} / 600$	vert hor 2	de de	0.15 0.5	3 3	0.1	20 ina	$\begin{aligned} & 2(50) \\ & \text { ina } \end{aligned}$	ino	1	5 (i)	0.5 cm	R	860 870
	Benrus	1120/600	vert 1 (dl)	de	0.15	3	0.1	20	2 (50)	ino	1	5 (i)	0.5 cm	C	955
		1120R/600	vert 2	dc	0.5	3	40	ino	ina					R	965
	Benrus	$\begin{aligned} & 1120 / 700 \\ & 1120 \mathrm{R} / 700 \end{aligned}$	(f)	de	0.15	3	0.1	20	2 (50)	ina	1	5 (i)	0.5 cm	$\begin{aligned} & C \\ & R \end{aligned}$	$\begin{aligned} & 1045 \\ & 1055 \end{aligned}$

Get detailed data: use the reader-service card.
See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Oscilloscope index starts on page T36.

General Purpose Oscilloscopes (continued)

(tables continued on page T24)

Circle as many numbers on the reader-service card as you like.
Reader-service cards are good all year.

General Purpose Oscilloscopes (continued)

See reader-service card for valuable FREE reprints.
Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
Oscilloscope index starts on page T36.

Sampling Oscilloscopes

				FREQU	ENCY		SENSITIV	VITY					SWEEP	SPEED		
	Manufacturer	Model	$\begin{array}{\|c\|} \hline \text { Channel } \\ \text { (notes) } \\ \hline \end{array}$	de to GHz	Resp. dB	Time	Max. $\mathrm{mV} / \mathrm{cm}$	Min. $\mathrm{mV} / \mathrm{cm}$	$\begin{aligned} & \operatorname{Imp} \\ & \Omega(\mathrm{pF}) \end{aligned}$	Noise mV	Line ns	Offset V	Max. ns/cm	Min. $\mu \mathrm{s} / \mathrm{cm}$	CRT, Details	Approx S
$\begin{gathered} S \\ 12 \end{gathered}$	Tektranix	$\begin{aligned} & 567 / 3576 / \\ & 3 T 4 / 6 R 1 A \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(50)	$2 p-p$	yes	± 1	1 (k)	200	$5 \mathrm{in} .13 .5 \mathrm{kV}(\mathrm{i})$	5700
	Tektronix	$\begin{aligned} & \text { RM567/3S76/ } \\ & 3 \text { T4/6R1A } \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(50)	$2 p-p$	yes	± 1	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{i})$	5800
	Tektronix	$\begin{aligned} & 564 / 3576 / \\ & 3 T 4 \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(5)	$2 p-p$	yes	± 1	1 (k)	200	$5 \mathrm{in} .13 .5 \mathrm{kV}(\mathrm{h})$	3275
	Tektronix	RM564/3S76/ $3 T 4$ 561A/3S76/ $3 T 4$	(e) (c)	0.875	-3	400	2	200	(5)	$2 \mathrm{p}-\mathrm{p}$	yes	± 1	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}$ (h)	3360
	Tektronix		(e) (c)	0.875	-3	400	2	200	(50)	$2 p-p$	yes	± 1	1 (k)	200	5 in .3 .5 kV	2900
	Tektronix	$\begin{aligned} & \text { RM56 IA/ } \\ & 3576 / 3 \text { T4 } \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(50)	$2 p-p$	yes	± 1	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}$	2950
	Tektronix	$\begin{aligned} & 561 A / 3 S 76 / \\ & 3 T 77 A \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(50)	2 p-p	55	-1 to +1	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{f})$	2250
	Tektronix	3T77A RM561A/ 3S76/3T77A	(e) (c)	0.875	-3	400	2	200	(50)	2 p-p	55	-1 to +1	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{f})$	2300
	Tektronix	$\begin{aligned} & 3 \mathrm{~S} 76 / 3 \mathrm{~T} 77 \mathrm{~A} \\ & 564 / 3576 / \\ & \text { 3T77A } \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(5)	2 p-p	55	-1 to +1	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	2625
	Tektranix	$\begin{aligned} & \text { 3T77A } \\ & \text { RM564/3S76/ } \\ & 3 \text { TT7A } \end{aligned}$	(e) (c)	0.875	-3	400	2	200	(5)	$2 p-p$	55	-1 to +1	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	2710
$\begin{gathered} 5 \\ 13 \end{gathered}$	Tektronix Tektronix	567/3S76/ 3TT7A/6RIA RM567/ 3576/3T77A	(e) (c) (e) (c)	0.875	-3	400	2	200	(50)	$2 p-p$	55	-1 to +1	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}$ (i)	5050
				0.875	-3	400	2	200	(50)	$2 p-p$	55	-1 to +1	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{i})$	5150
	Tektronix Tektronix	6RIA 1S1 (plug-in)	$\text { vert }(g)$		-3	350	2	200	(50)		yes	± 1	0.1	50		1100
		$\begin{aligned} & 561 A / 3 S 3 / \\ & 3 \mathrm{~T} 77 \mathrm{~A} \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}$	2650
	Tektronix	3T77A RM561A/ 3S3/3T77A	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.2	10	$5 \mathrm{in} . .3 .5 \mathrm{kV}$	2700
	H-P	$141 A / 1410 A /$ 1424A	vert (c)	1	-3	350	1	200	100k (2)	1	ina	ina	0.01	500	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 31(\mathrm{~h}) \end{aligned}$	4195
	Tektronix	$\begin{aligned} & 564 / 353 / \\ & 3 T 77 \Delta \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	3025
	Tektronix	$\begin{aligned} & \text { RM564/ } \\ & 353 / 3 \text { T77A } \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	3110
	$H-P$ Tektronix	$\begin{aligned} & 353 / 3 T 77 A \\ & 140 A / 1410 A / \\ & 1424 A \\ & 567 / 353 / \\ & 3 \text { T77A/GR IA } \end{aligned}$	vert (c)	1	-3	350	1	200	100k (2)	1	ina	ina	0.01	500	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 3 \mathrm{I}(\mathrm{f}) \end{aligned}$	3395
			(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{i})$	5450
$\begin{array}{r} 5 \\ 14 \end{array}$	Tektranix	RM567/353/ 3T77A/6R1A 141A/1410A/ 1425A $661 / 451 /$ 5 T 3 140A/1410A/ 1425A 661/453/ 5 T 3	(e) (c)	1	-3	350	5	100	100k 2)	2	none	± 0.5	0.2	10	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{i})$	5550
	H-P		vert (c)	1	-3	350	1	200	100k (2)	1	ino	ina	1	10	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 3 \mathrm{I}(\mathrm{~h}) \end{aligned}$	4595
	Tektronix		(e) (c)	1	-3	350	2	200	(50)	1	yes	± 1	0.01	5s	5 in. , 3kV(f)	3380
	H-P		vert (c)	1	-3	350	1	200	100k (2)	1	ino	ino	1	10	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 31(f) \end{aligned}$	3795
	TekPronix		(e) (c)	1	-3	350	2	200	100k (2)	1	none	± 1	0.01	5s	$5 \mathrm{in} ., 3 \mathrm{kV}$	4400
	Tektranix	$\begin{aligned} & 567 / 3 S 3 / \\ & 3 T 4 / 6 R 1 A \\ & \text { RM567/3S3/ } \\ & 3 T 4 / 6 R 1 A \\ & 564 / 3 S 3 / \\ & 3 T 4 \\ & \text { RM564/3S3/ } \\ & 3 T 4 \\ & 561 A / 353 / \\ & 3 T 4 \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	1 (k)	200	$5 \mathrm{in} .13 .5 \mathrm{kV}(\mathrm{i})$	6100
	Tektronix		(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}$ (i)	6200
	Tektronix		(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	3675
	Tektronix		(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	3760
	Tektronix		(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	1 (k)	200	5 in . , 3. 5kV	3300

(tables continued on page T26)
Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
Reader-service cards are good all year.
Reader-service numbers are given in the index.
Need a FREE copy of this directory? Circle number 255.

Sampling Oscilloscopes

	Manufacturer	Model	Channel (notes)	FREQUENCY		Rise Time ps	SENSITIVITY			Noise mV	Delay Line ns		SWEEP SPEED		CRT, Details	Price Aporox §
				de to GHz	Resp. dB		Max. $\mathrm{mV} / \mathrm{cm}$	Min. $\mathrm{mV} / \mathrm{cm}$					Max. ns/cm	Min. us/cm		
$\begin{array}{r} 5 \\ 15 \end{array}$	Tektronix	$\begin{aligned} & \text { RM561A/ } \\ & 353 / 3 T 4 \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	1 (k)	200	$5 \mathrm{in} ., 3.5 \mathrm{kV}$	3400
	Tektronix	$\begin{aligned} & 564 / 3 S 3 / \\ & 3 T 2 \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.02	100	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	3325
	Tektronix	$\begin{aligned} & \text { RM564/353/ } \\ & 3 \mathrm{~T}^{2} \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.02	100	$5 \mathrm{in} ., 3.5 \mathrm{kV}(\mathrm{h})$	3410
	Tektronix	$\begin{aligned} & 561 \mathrm{~A} / 3 \mathrm{~S} 3 / \\ & 3 \mathrm{~T} 2 \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.5	0.02	100	$5 \mathrm{in} ., 3.5 \mathrm{kV}$	2950
	Tektronix	$\begin{aligned} & \text { RM56/A/3S3/ } \\ & 3 \text { T2 } \end{aligned}$	(e) (c)	1	-3	350	5	100	100k (2)	2	none	± 0.05	0.02	100	$5 \mathrm{in} ., 3.5 \mathrm{kV}$	3000
	Tektronix	152 (plug-in)	vert (g) vert (i)	3.9	-3	90	5	500	(50)	2	none	± 2	10	1	(g)	1300
	Tektronix	$\begin{aligned} & 661 / 452 A / \\ & 5 T 3 \end{aligned}$	(e) (c)	3.9	-3	90	2	200	(50)	4	none	± 1	0.01	5s	$5 \mathrm{in} ., 3 \mathrm{kV}$	4400
	$\mathrm{H}-\mathrm{P}$	$\begin{aligned} & 140 A / 1411 A / \\ & 1425 A \end{aligned}$	vert (c)	12.4	ina	(1)	1	200	ina	ino	ina	ino	1	10	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 31(f) \end{aligned}$	(m)
	$H-P$	$\begin{aligned} & 141 A / 1411 A / \\ & 1425 A \end{aligned}$	vert (c)	12.4	ina	(1)	1	200	ina	ina	ino	ina	1	10	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 31(\mathrm{~h}) \end{aligned}$	(n)
	H-P	$\begin{aligned} & 141 A / 1411 A / \\ & 1424 A \end{aligned}$	vert (c)	12.4	ina	(1)	1	200	ino	ino	ino	ina	0.01	500	$\begin{aligned} & 10 \times 10 \mathrm{~cm} \\ & 7.3 \mathrm{kV}, \mathrm{P} 3 \mathrm{I}(\mathrm{~h}) \end{aligned}$	(p)

General Purpose Oscilloscope Notes

dl. Dual-trace instrument.
d2. Dual-beam instrument.
e. Multi-channel scope.
f. Identical vertical and horizontal amplifiers.
h. Per division.
i. Per inch.
j. Time base expansion.
n. Selectable 5, 50 and 500 kHz bandwidth.
q. Thry 30 MHz preamp.
r. Includes 2 vertical preamps and sweep plug-ins, camera and film transport (35 mm).
s. Monitoring scope.
t. Programmable.
u. Option 01: Without programming capability $\$ 2150$.
v. Two high writing rate fiber optic CRT's - common sweep.
w. Television scope.

1. Internal sweep: 2 V : $(2.5 \mathrm{~ms} / \mathrm{cm}) ; \pm 5 \%$ for XI , $X 10$ and $\times 25$. $2 \mathrm{H}:(10 \mu \mathrm{~s} / \mathrm{cm}) ; \pm 3 \%$ for $\times 1, \times 10$; $\pm 5 \%$, X25.
H-Line select: $(10 \mu \mathrm{~s} / \mathrm{cm})$-Line selection for lines 16-21; variable line for all lines in the field.
2. Internal sweep: H-Line select: $0.125 \mathrm{H} / \mathrm{cm}$. $2 \mathrm{~V}:(0.175 \mathrm{~V} / \mathrm{cm}) ; 5 \% \times 1, X 5$ and $\times 25$. $2 \mathrm{H}:(0.125 \mathrm{H} / \mathrm{cm}) ; 3 \% \times 1, \times 5 ; 5 \%$, X25.
3. Horizontal axis: 15 kHz sawtooth waveform full screen.
4. Includes digital readout plug-in.
5. Indicated bandwidth is with $\times 10$ probe, included.
6. Bandwidths, $45,40,25$ and $5 \mathrm{MHz}, 1 \mu \mathrm{~s}-50 \mathrm{~s}$ calibrated sweep delay.
7. TF2203 with rechargeable batteries $\$ 695$.

Sampling Oscilloscope Notes

c. Dual-trace instrument.
e. Identical vertical and horizontal amplifiers.
f. Other tube phosphors available.
g) Single-trace sampling plug-in fits 530, 540 and 550 series main frames, also 580 series with adapter.
h. Storage scope.
i. Includes digital readout plug-in.
i. Operates as a reflectometer, system rise time of 140 ps , vertical scale calibrated in p (rho) from $0.005 \mathrm{p} / \mathrm{div}$. to $0.5 \mathrm{p} /$ div., horizontal scale calibrated in time from 10 m to 10 km full scale. X1 to X 100 magnifier. Lighted digital readout of time or distance/division.
k. Programmable.
m, Price 140A main frame $\$ 595$; 1411A sampling amplifier $\$ 700$; 1425A sampling time base $\$ 1600$, 1432A, 90 ps sampler $\$ 1000$; 1430A dc-12.4 GHz sampler $\$ 3000$; 1431 A de to 12.4 GHz , $\$ 3000$.
n. Price 141A main frame $\$ 1395$. Price of plug-ins same as note m.
p. Price: 141A main frame $\$ 1395 ; 1411$ sampling amplifier $\$ 700$; 1424A sampling time base $\$ 1200$; 1432A 90 ps sampler $\$ 1000$; 1430A de-12.4 GHz sampler $\$ 3000$; 1431 A de to $12.4 \mathrm{GHz} \$ 3000$.

Main Frame Oscilloscopes

					QUEN		SENS		SWEE				
	Manufacturer	Model	Channel (notes)	Min. Hz_{z}	Max. MHz	Resp. dB	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm	Max. $\mathrm{ns} / \mathrm{cm}$	Min. s/cm	Int Calib	Mounting	Approx \$
$\begin{gathered} 5 \\ 16 \end{gathered}$	Tektronix	567 RM567 RA850	(a)	dc	0.5	-3	(a)	(a)	(a)	(a)	yes	C	$\begin{aligned} & 3300 \\ & 3400 \end{aligned}$
	Benrus		vert horz	de de	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ino	(a)	(a)	(a)	(a)	ina	C, R (g)	395
	Benrus	RA8408	vert (j) horz	de	0.5 0.5	ino	(a)	(a)	(a)	(a)	ina	C, R	295
	Gen-Atro	K-270	vert (c) horz	de de	5	-3 -3	(a)	(a)	(a)	(a)	yes	C	1700
	Gen-Atro	K-105	vert	de	6	-3 -3	(b)	(b)	100	0.1	yes	C	696
			horz	de	0.5	-3	500	5					
	Gen-Atro	K-106	vert	de	6	-3	(b)	(b)	100	0.1	yes	C	995
	Tektronix	565	horz	de	0.5 10	-3 -3	500 (b)	$5(h)$	100	0.1	yes	C	1400
		565 RM565	vert (c) horz	de	0.35	-3 -3	(b) 100	(b) 30	1000	5	yes	R	$\begin{aligned} & 1400 \\ & 1500 \end{aligned}$
	Tektronix	$\begin{aligned} & 536 \\ & 564 \\ & \text { RM564 } \\ & \text { GA-151 } \end{aligned}$	(e)	de	11	-3	(a)	(a)	(a)	(a)	yes	C	1085
	Tektronix Tektronix		(a) (h)	de	15	-3	(a)	(a)	(a)	(a)	yes	C	875
	Gen-Atro		vert (i) horz	$\begin{aligned} & \text { de } \\ & d c \end{aligned}$	15	$\begin{array}{l\|l} 3 \\ 3 \end{array}$	(a)	(a)	(a)	(a)	yes	C	795
S17	Gen-Atro	GA-255	$\text { vert }(j)$ horz	de de	$\begin{aligned} & 15 \\ & 1 \end{aligned}$	3	(a)	(a)	(a)	(a)	yes	C	1530
	Gen-Atro Tektronix	K-115	vert (a)	de	15	3	(b)	(b)	100	0.1	yes	C	1275
		$\begin{aligned} & 561 A \\ & \text { RM561A } \end{aligned}$		de	15	-3	(a)	(a)	(a)	(a)	yes	C	$\begin{aligned} & 500 \\ & 550 \end{aligned}$
	Tektronix	$\begin{aligned} & \text { RM561A } \\ & 531 \mathrm{~A} \end{aligned}$	vert	de	15	-3	(b)	(b)	100	5	yes	C	995
		531A RM531A	horz	de	0.35	-3	200	20				R	1095
	Tektronix	533A	vert	de	15	-3	(b)	(b)	100	5		C	1125
			horz	de	0.5	-3	100	10	100	5	yes	c	1125
	Tektronix	$\begin{aligned} & \text { 535A } \\ & \text { RM535A } \end{aligned}$	vert	de	15	-3	(b)	(b)				C	1400
				de	0.35	-3	200	20	100	5	yes	R	1500
	H-P	140A	(a)	de	20	-3	(a)	(a)	(a)(k)	(a)	yes	C, R	595
	H-P	141A	(a) (h)	de	23	-3	(a)	(a)	(a)	(a)	yes	C, R	1395
	Tektronix	551	vert (s)	de	27	-3	(b)	(b)	100	5		C	1850
			horz	de	0.4	-3	200	50	100	5	yes		
	Hickok	1805A	vert	$\begin{aligned} & d e \\ & d e \end{aligned}$	$\begin{aligned} & 30 \\ & 0.24 \end{aligned}$	(b)	(b)	(b)	(b)	(b)	yes	C	1340

(tables continued on page T28)

Plug-In and Main Frame Oscilloscope Notes

a. Both horizontal and vertical amplifiers are plug-ins. For complete specifications, see plug-in tables.
Vertical amplifier is a plug-in. Specifications are for main frame and built-in horizontal amplifier. See plug-in tables for vertical amplifier specifications. Multi-channel scope.
d. Other tube phosphors are available.
e. Identical vertical and horizontal amplifiers.
g. Two units fit info 5-1/4 inch rack.
h. Storage scope with split screen.
i. Single trace scope.
i. Dual trace scope.

Time base is also delay generator.
n. Sweed switching.
q. Differential unit.
r. Uses 9571 vertical plug-in and any horizontal plug-in.
s. Dual-beam.
t. Accepts two vertical plug-ins.
u. Higher sensitivity at reduced bandwidth.
v. CRT can be digitized and recorded.
x. Includes internal delay line.
y. Carrier amplifier: 10μ strain $-10,000 \mu$ strain/division.
z. Automatic programmable unit.

Main Frame Oscilloscopes (continued)

					FREQUENCY		SENSITIVITY		SWEEP SPEED		$\operatorname{lnt}_{\text {Calib }}$		
	Manufacturer	Model	Channel (notes)	Min. Hz	Mox. MHz	Resp. $d B$	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm	Max. $\mathrm{ns} / \mathrm{cm}$	Min. s / cm		Mounting	${ }_{\text {Approx }}$
$\begin{gathered} 5 \\ 18 \end{gathered}$	Marconi	TF2201	$\begin{aligned} & \text { vert (i) } \\ & \text { horz } \end{aligned}$	dc	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	(a)	(a)	(a)	(a)	ina	C, R	1975
	Tektronix	555		de de	33 0.35	-3 -3	(a)	(a)	100 (k)	5	yes	C	2650
	Tektronix	5438RM5438		de	33	-3	(b)	(b)	100	5		C	1300
				dc	0.5	-3	100	10	100	5	yes	R	1400
	Tektronix	$\begin{aligned} & 545 B \\ & \text { RM5458 } \end{aligned}$	vert	de	33	-3	(b)	(b)	100 (k)	5		${ }^{\text {c }}$	1550
			horz vert (h) hor z	de	0.35	-3	200	20	100 (k)	5	yes	R	1650
	Tektranix	549		de de	33 0.35	-3 -3	(b) 200	(b)	100	5	yes	C	2375
	Marconi	TF2200A	vert	de	36	ino			50				
							(b)70	(b)		2	ino	C	1950
			hor 2 vert (i)		2.4	ino		3.5		(a)			
	Fairchild	$765 \mathrm{MH}$ (MIL)		de de	$\begin{aligned} & 50 \\ & 5 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	(a)	(a)	(a)		yes	P	985
	Fairchild	766 H	vert$\text { horz (} \mathfrak{j} \text {) }$	de	505	-3-3	(a)	(a)	(a)	(a)	yes	C	650
				de									
	Fairchild	767H	vert horz	de de	$\begin{aligned} & 50 \\ & 5 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	(a)	(a)	(a)	(a)	yes	R	695
	H-P	175A		$d c$	50	-3 -3	(a)	(a)	(a)	(a)	yes	C	1325
$\begin{gathered} 5 \\ 19 \end{gathered}$	H-P	180A	vert	de	50	-3	(a)	(a)	(a)	(a)	yes	C	825
			horz	dc	5	-3						R	900
	Tektronix	556	vert (t)	dc	50	-3	(b)100	$\begin{aligned} & \text { (b) } \\ & 10 \end{aligned}$	100	5	yes	${ }^{\text {c }}$	3150
		R556	horz	de	0.4	-3			100			R	3250
	Tektronix	547	vert	de	500.4	-3	(b)	(b)	100	5	yes	${ }^{C}$	1875
		RM547	horz	de		-3	100	10	(k) (n))	yes	R	1975
	Tektronix	546RM546	vert	de	$\begin{aligned} & 50 \\ & 0.4 \end{aligned}$	-3	(b)	(b)	100 (k)	5	yes	C	1750
			horz	de		-3	100	10	100 (k)	5	yes	R	1850
	Tektronix	544 RM544	vert horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{aligned} & 50 \\ & 0.4 \end{aligned}$	-3	(b)	(b)	100	5	yes	C	1550
						-3	100	10		5	yes	R	1650
	Tektronix	585A RM585A 581A	verthorz	dedc	850.35	-3	(b)200	(b)15	50	2	yes		1725 1825
						-3						R	1825
	Tektronix		vert	de dc	$\begin{aligned} & 85 \\ & 0.35 \end{aligned}$	-3 -3	$\begin{aligned} & \text { (b) } \\ & 200 \end{aligned}$	$\begin{aligned} & \text { (b) } \\ & 15 \end{aligned}$	50	2	ves	C	1475
	Foirchild	$\begin{aligned} & 765 \mathrm{MH} / \mathrm{F} \\ & \text { (MIL) } \end{aligned}$	$\begin{aligned} & \text { vert (} i \text {) } \\ & \text { hor } \end{aligned}$	dcdc	$\begin{aligned} & 100 \\ & 5 \end{aligned}$	-3	(a)	(a)	(a)	(a)	ye	P	1060
						-3							
	Fairchild	$\begin{aligned} & 766 \mathrm{H} / \mathrm{F} \\ & 767 \mathrm{H} / \mathrm{F} \end{aligned}$	horz vert (${ }^{\text {) }}$ horz vert hor z	dc	100	-3	(a)	(a)	(a)	(a)	yes	C	720
	Foirchild			de	$\begin{aligned} & 100 \\ & 5 \end{aligned}$	-3	(a)						770
				de de		-3		(a)	(a)	(a)	yes		
520	Fairchild	9570	vert horz vert 2 (s) horz 2 (s) vert hor z	dc dc	$\begin{aligned} & 100 \\ & 5 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & 20(r) \\ & (r) \end{aligned}$	$\begin{aligned} & 100(r) \\ & (r) \end{aligned}$	(r)	(r)	yes	R	1030
	Foirchild Tektronix	777 647A R647A		de	100	-3 -3	(a)	(a)	(a)	(a)	yes	C, R	1800
				de de	5 100	-3 -3						C	
							(a)	(a)	(a)	(a)	yes	R	1625

Need a FREE copy of this directory? Circle number 255.

Vertical Amplifier Plug-Ins (Single Trace)

	Manufacturer	Model	FREQUENCY			SENSITIVITY		Input Impedance. $M \Omega(\mathrm{pF})$	Common Mode Rej.	Main Frames for Plug-In	Price Approx $\$$
			Min. Hz_{2}	Max. MHz	Resp. dB	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm				
21	Tektronix Tektronix	$\begin{aligned} & 3 C 66 \\ & Q \end{aligned}$	de de	$\begin{aligned} & 0.05 \\ & 0.06 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & (y) \\ & (y) \end{aligned}$	$\begin{aligned} & (y) \\ & (y) \end{aligned}$	AC Bridge $A C$ Bridge	no	$\begin{aligned} & 561 A, 564,565 \\ & 530,540,550,580 \\ & \text { Series } \end{aligned}$	$\begin{aligned} & 400 \\ & 325 \end{aligned}$
	Tektronix	E	0.06	0.06	-3	0.05	0.01	10 (50)	yes	530,540, 5508580	190
	Hickok	1825	0.06	0.06	3	50 nV	0.025		yes	1805A	190
	Benrus	VA227	de	0.1	ina	40	ina	0.04 (ina)	no	RA840B, RA850A	125
	Benrus	VA228	de	0.1	ina	10	ina	0.01 (ina)	no	RA8408, RA850A	135
	Benrus	VA226	de	0.1	ina	100	ina	0.1 (ina)	no	RA8408, RA850A	120
	Benrus	VA2252	de	0.1	ino	400	ina	0.4 (ina)	no	RA8408, RA850A	110
	Benrus	VA224	de	0.1	ino	2 V	ino	1 (ina)	no	RA8408, RA850A	105
	Benrus	VA217	10	0.1	ino	4	ino	1 (ina)	no	RA8408, RA850A	105

(tables continued on page T30)
See reader-service card for valuable FREE reprints.

EFFECTIVE OCTOBER 1, 1967 CTS $=$ Cermet Pots in Wirewound or Carbon Price Range

less than

Only CTS, high volume automated producers of cermet controls, offers a line of $3 / 4^{\prime \prime}$ dia., 2-watt cermet potentiometers at prices you would expect to pay for industrial wirewound or carbon pots.

Series 550 combines long life, low noise, high overload capability, high stability and wide resistance range in compact construction that exceeds MIL-R-23285 (a tighter cermet version of MIL-R-94). Single, dual and concentric constructions.

Series 550
2-watt $3 / 4$ " dia.
Cermet Variable
Resistor

Compare these specifications (linear taper)		
	Standard Characteristics	Optional Characteristics (no more than 10c extra per item)
Temperature Coefficient		
Resistance ohms		
40Ω to $1.35 \mathrm{~K} \Omega 2$	-50 to +200	-0 to +100
$1.36 \mathrm{~K} \Omega$ to $2.9 \mathrm{~K} \Omega$	-100 to +300	-0 to +250
$3 \mathrm{~K} \Omega 2$ to 1.35 meg .	-100 to +250	± 100
1.36 meg , to 5 meg .	± 250	± 150
ENR	$\pm 2 \%$	$\pm 1 \%$
Rotational Life	$50,000 \text { cycles }$ $\pm 5 \% \triangle R$	$\begin{aligned} & 100,000 \text { cycles } \\ & \pm 10 \% \triangle R \end{aligned}$
Resistance Range	50 ohms through 1 megohm	25 to 49 ohms or 1 megohm to 5 megohms
Independent Linearity	$\pm 5 \%$	$\pm 3 \%$

For help in your application, call on CTS, the world's largest producer of variable resistors.

Vertical Amplifier Plug-Ins (Single Trace) (continued)

Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Need a FREE copy of this directory? Circle number 255.

Vertical Amplifier Plug-Ins (Single Trace) (continued)

				UENCY		SENSI	ITY				
	Manufacturer	Model	Min. Hz	Max. $\mathrm{MHz}_{\mathrm{z}}$	Resp. dB	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm	Impedance $M \Omega(p F)$	Mode Rej.	$\begin{aligned} & \text { for } \\ & \text { Plug-In } \end{aligned}$	Approx s
526	Fairchild	76-01A	dc	25	-3	5	25	1 (40)	no	765MH, $766 \mathrm{H}, 765 \mathrm{MH} / \mathrm{F}$ $766 \mathrm{H} / \mathrm{F}, 767 \mathrm{H} / \mathrm{F}, 777$	315
	Fairchild	79-02A	de (x)	25	-3	1	50	1 (14)	no	$\begin{aligned} & 765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}, \\ & 765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, \\ & 767 \mathrm{H} / \mathrm{F}, 777 \end{aligned}$	930
	Tektronix	0 (OP AMP)	dc	25	-3	50	20	1 (47)	no	$\begin{aligned} & 530,540,550,580 \\ & \text { Series } \end{aligned}$	525
	Hickok	1832	dc (u)	30	ino	50	50	ina	no	1805A	178
	Tektronix	L	de (u)	30	-3	50	20	1 (20)	no	$\begin{aligned} & 530,540,-550,580 \\ & \text { Series } \end{aligned}$	210
	Hickok	1831	de	30	ino	50	50	ina	no	1805A	126
	Tektronix	K	dc	30	-3	50	20	1 (20)	no	$\begin{aligned} & 530,540,550,580 \\ & \text { Series } \end{aligned}$	145
	Marconi	TM6457A	dc	34	ino	50	50	1 (30)	yes	TF2200A	495
	Tektronix	IA5	dc (q)	50	-3	5	20	1 (20)	yes	530, 540, 550, 580	550
			de	45	-3	2	N/A	1 (20)	yes	Series	
			de	40	-3	1	N/A	1 (20)	yes		
	Marconi	TM6455A	de	55	ino	50	50	1 (30)	no	TF2200A	220
527	Tektronix	1041	de (u)	55	-3	5	20	1 (20)	yes	647A, R647A	900
	Tektronix		de ($\mathrm{u}^{\text {) }}$	85	-3	100	20	1 (15)	no	581A, 585A	350
	Fairchild	76-05	de (x)	100	-3	5000	8	50Ω	no	765MH, $766 \mathrm{H}, 767 \mathrm{H}$,	225
										$\begin{aligned} & \text { 765MH/F, } 76 \\ & 767 \mathrm{H} / \mathrm{F}, 777 \end{aligned}$	

Reader-service cards are good all year.
Reader-service numbers are given in the index.

Vertical Amplifier Plug-Ins (Dual Trace)

	Manufacturer	Model	FREQUENCY		SENSITIVITY		Input Imp. $M \Omega(p F)$	Common Mode Rej.	Moin Frames for Plug- In	Price Approx s
			de to MHz	Resp. dB	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm				
5 28	Gen-Atro Gen-Arro H-P Gen-Atro Tektronix Tektronix Tektronix Tektronix Gen-Atro H-P	$\begin{aligned} & 70-E \\ & 70-D \\ & 1401 A \\ & 70-C \\ & 3 A 2 \\ & \\ & 3 A 3 \\ & 3 A 72 \\ & 3 A 74 \text { (4 Trace) } \\ & 70-A \\ & 1405 A \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.25 \\ & 0.45 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.65 \\ & 2 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 1 \\ & 2 \\ & 10 \\ & 0.1 \\ & 0 \\ & 10 \\ & 20 \\ & 50 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 10 \\ & 2 \\ & 10 \\ & 10 \\ & 20 \\ & 10 \\ & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & 2(25) \\ & 2(25) \\ & 1(45) \\ & 2(25) \\ & 1(47) \\ & 1(47) \\ & 1(47) \\ & 1(47) \\ & 2(25) \\ & 1(43) \end{aligned}$	no no yes no no yes no no no yes	$\begin{aligned} & \mathrm{K}-270 \\ & \mathrm{~K}-270 \\ & 140 \mathrm{~A}, 141 \mathrm{~A} \\ & \mathrm{~K}-270 \\ & 561 \mathrm{~A}, 564,565,567,568 \\ & 561 \mathrm{~A}, 564,565,567,568 \\ & 561 \mathrm{~A}, 564,565,567,568 \\ & 561 \mathrm{~A}, 564,565,567 \\ & \mathrm{~K}-270 \\ & 140 \mathrm{~A}, 141 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { ina } \\ & 245 \\ & 425 \\ & 235 \\ & 500 \\ & 790 \\ & 275 \\ & 590 \\ & 215 \\ & 325 \end{aligned}$
	Gen-Atro Tektronix Tektronix Gen-Atro Fairchild	$\begin{aligned} & \text { DT-106 } \\ & 3 A 6 \\ & 3 A 1 \\ & \text { GA16 } \\ & 76-06 \text { (4 Trace) } \end{aligned}$	$\begin{aligned} & 6 \\ & 10(x) \\ & 10 \\ & 15 \\ & 20 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ina } \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & 50 / \text { div } \\ & 10 \\ & 10 \\ & 50 / \text { div } \\ & 20 \\ & 2 \end{aligned}$	50/div 10 10 20/div 20 2	$\begin{aligned} & 1(47) \\ & 1(47) \\ & 1(47) \\ & 1(47) \\ & 1(37) \\ & 1(37) \end{aligned}$	no no no no no no	$\begin{aligned} & \text { K-105, K-106, K-115, K-270 } \\ & 561 \mathrm{~A}, 564,565,567 \\ & 561 \mathrm{~A}, 564,565,567 \\ & \text { GA-151, GA-255 } \\ & 765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}, \\ & 765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, \\ & 767 \mathrm{H} / \mathrm{F}, 777 \end{aligned}$	$\begin{aligned} & 590 \\ & 525 \\ & 490 \\ & 514 \\ & 695 \end{aligned}$
29	H-P Tektronix Tektronix Hickok Fairchild	$\begin{aligned} & 1402 A \\ & M \\ & C-A \\ & 1823 A \\ & 76-02 A \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 24 \\ & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \\ & 50 \\ & 50 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1(43) \\ & 1(47) \\ & 1(20) \\ & 1(20) \\ & 1(40) \end{aligned}$	yes no no no no	$\begin{aligned} & 140 \mathrm{~A}, 141 \mathrm{~A} \\ & 530,540,550,580 \\ & 530,540,550,580 \\ & 1805 \end{aligned}$ $765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H},$ $765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{MH} / \mathrm{F}, 777$	$\begin{aligned} & 575 \\ & 525 \\ & 260 \\ & 220 \\ & 475 \end{aligned}$

(tables continued on page T32)
Circle as many numbers on the reader-service card as you like.
Reader-service cards are good all year.

Vertical Amplifier Plug-Ins (Dual Trace) (continued)

	Manufacturer	Model	FREQUENCY		SENSITIVITY		Inpui Imp. M (pF)	Common Mode Rei.	Moin Frames for Plug-In	Price Approx S
			de to MHz	Resp. dB	Max. $\mathrm{mV} / \mathrm{cm}$	Min. V / cm				
530	Marconi	TM6456A	33	ina	50	50	1 (27)	no	TF2200A	395
	$\mathrm{H}-\mathrm{P}$	1754A	40	-3	50	20	1 (22)	no	175A	595
	Tektronix	1 A 4 (4 Troce)	50	-3	10	20	1 (20)	yes	530, 540, 550, 580	750
	Tektronix	1A2	50	-3	50	20	1 (15)	yes	530, 540, 550, 580	325
	H-P	17508	50	-3	50	20	1 (23)	yes	175A	325
	H-P	1755A	50	-3	1	5	$1(22)$	yes	175A	575
	Fairchild	76-08	50 (x)	-3	50	50	$1(23)$	yes	$765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}$,	650
			25	-3	5	5	1 (23)	yes	$\begin{aligned} & 765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, \\ & 767 \mathrm{H} / \mathrm{F}, 777 \end{aligned}$	
	Tektronix	$\|A\|$	$\begin{aligned} & 50(x) \\ & 28(x) \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & 50 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	1 (15)	yes	530, 540, 550, 580	600
	Tektronix	82	85	-3	100	50	1 (15)	no	581A, 585A	650
	Fairchild	79-02A	100	-3	100	50	1 (14)	no	$765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H} \text {, }$	930
			50	-3	10	5	1 (14)	no	$\begin{aligned} & 765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, \\ & 767 \mathrm{H} / \mathrm{F}, 777 \end{aligned}$	
	Tektronix	10A2A	100	-3	10	20	$1(20)$	yes	647A, R647A	775

Circle as many numbers on the reader-service card as you like.

Horizontal Amplifier Plug-Ins

Get detailed data: use the reader-service card.
Need a FREE copy of this directory? Circle number 255.
Horizontal Amplifier Plug-Ins (Time Base)

			SWEEP SPEED			TRIGGER		Main Frames for Plug-In	Price Approx S
	Manufacturer	Model	Max. $\mu \mathrm{s} / \mathrm{cm}$	Min. s / cm	Acc. \%	Input Defl.	Output V		
	Benrus	SC411	$0.12 \mathrm{~cm} / \mathrm{s}$	$0.6 \mathrm{~cm} / \mathrm{s}$	ino	yes	yes	RA840B, RA850	145
	Benrus	SC415	$0.12 \mathrm{~cm} / \mathrm{s}$	$75 \mathrm{~cm} / \mathrm{s}$	ina	yes	yes	RA840B, RA850	180
	Benrus	SC412	$0.3 \mathrm{~cm} / \mathrm{s}$	$3 \mathrm{~cm} / \mathrm{s}$	ina	yes	yes	RA840B, RA850	140
	Benrus	SC413	$3 \mathrm{~cm} / \mathrm{s}$	$15 \mathrm{~cm} / \mathrm{s}$	ina	yes	yes	RA840B, RA850	135
	Benrus	SC414	$15 \mathrm{~cm} / \mathrm{s}$	$75 \mathrm{~cm} / \mathrm{s}$	ino	yes	yes	RA840B, RA850	135
33	Benrus	SC442	10/div	$10 \mathrm{~ms} / \mathrm{div}$	ino	none	none	RA850	145
	Benrus	SC462	10/div	$10 \mathrm{~ms} / \mathrm{div}$	ino	0.3 cm	none	RA840B	135
	Benrus	SC437	10/div	55/div	ina	none	none	RA850	125
	Benrus	SC457	10/div	55/div	ina	0.3 cm	none	RA8408	125
	Benrus	SC456	55/div	$333 \mathrm{~ms} /$ div	ino	0.3 cm	none	RA840B	125

A brief case for TWT Amplifiers

Frequency range from 0.5

 through 12.4 GHz . Power outputs up to 10 watts. Front panel connection for grid and helix modulation, and best of all... our own built-in Traveling Wave Tubes. For more details, write Microwave Associates today, leaders in TWT's and TWT Amplifiers since 1951.

Horizontal Amplifier Plug-Ins (Time Base) (continued)

	Manufacturer	Model	SWEEP SPEED			TRIGGER		Moin Frames for Plug-In	Price Approx S
			Max. $\mu \mathrm{s} / \mathrm{cm}$	Min. s / cm	Acc. \%	Input Defl.	Output V		
5 34	Benrus Benrus	SC436 SC455 SC435 SC454 SC 434 SC433 SC453 SC441 SC461 SC432	55/div 278/div 278/div $1.66 \mathrm{~ms} / \mathrm{div}$ $1.66 \mathrm{~ms} / \mathrm{div}$ $8 \mathrm{~ms} / \mathrm{div}$ $8 \mathrm{~ms} / \mathrm{div}$ $166 \mathrm{~ms} / \mathrm{div}$ $166 \mathrm{~ms} /$ div $0.04 \mathrm{~s} / \mathrm{div}$	$333 \mathrm{~ms} / \mathrm{div}$ $1.66 \mathrm{~ms} / \mathrm{div}$ $1.66 \mathrm{~ms} / \mathrm{div}$ $10 \mathrm{~ms} / \mathrm{div}$ $10 \mathrm{~ms} / \mathrm{div}$ 0.04 s/div $0.04 \mathrm{~s} / \mathrm{div}$ $1 \mathrm{~s} / \mathrm{div}$ $1 \mathrm{~s} / \mathrm{div}$ $0.2 \mathrm{~s} / \mathrm{div}$	ina ino ina	none 0.3 cm none 0.3 cm none none 0.3 cm none 0.3 cm none	none none	RA850 RA840B RA850 RA840B RA850 RA850 RAB40B RA850 RA840B RA850	$\begin{aligned} & 125 \\ & 125 \\ & 125 \\ & 125 \\ & 125 \\ & \\ & 125 \\ & 125 \\ & 135 \\ & 135 \\ & 115 \end{aligned}$
	Benrus Benrus Benrus Fairchild Fairchild	SC452 SC431 SC451 74-13C 74-17A	$0.04 \mathrm{~s} / \mathrm{div}$ $0.2 \mathrm{~s} / \mathrm{div}$ $0.2 \mathrm{~s} / \mathrm{div}$ 0.1 0.01 0.05 0.005 (k)	$0.2 \mathrm{~s} / \mathrm{div}$ $1 \mathrm{~s} / \mathrm{div}$ $1 \mathrm{~s} / \mathrm{div}$ 5 0.5 5 0.5	$\begin{aligned} & \text { ino } \\ & \text { ino } \\ & \text { ino } \\ & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$	0.3 cm none 0.3 cm 0.5 cm 0.3 cm	none none none 2.5 (gate) 14 (gate)	RA840B RA850 RA840B $765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}$, $765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, 767 \mathrm{H} / \mathrm{F}$, 777, 9570 $765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}$, $765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, 767 \mathrm{H} / \mathrm{F}$, T77, 9570	$\begin{aligned} & 125 \\ & 125 \\ & 125 \\ & 750 \\ & \\ & 890 \end{aligned}$
35	Fairchild Gen-Atro Gen-Atro Gen-Atro H-P	$\begin{aligned} & 74-03 A \\ & \text { GA-24 } \\ & 80-A \\ & 70 A \\ & 1423 A \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.005 \\ & 0.1 \quad \text { (k) } \\ & 1 \\ & 1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.5 \\ & 0.1 \\ & 5 \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \\ & \pm 5 \\ & \pm 3 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~cm} \\ & \\ & 0.5 \mathrm{~cm} \\ & 2 \mathrm{~mm} \\ & 2 \mathrm{~mm} \\ & 0.5 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 4 \text { (gate) } \\ & +10 \\ & 0.2-35 \\ & \text { gate } \\ & \text { none } \end{aligned}$	$\begin{aligned} & 765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}, \\ & 765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, 767 \mathrm{H} / \mathrm{F}, \\ & 777,9570 \\ & \text { GA-151, GA-155 } \\ & \mathrm{K}-480 \\ & \mathrm{~K}-270 \\ & 140 \mathrm{~A}, 141 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 395 \\ & \\ & 225 \\ & 469 \\ & 395 \\ & 450 \end{aligned}$
5 36	H-P H-P Tektronix Tektronix Tektronix Tektronix Tektronix	1420A 1422A 1181 385 2867 \uparrow 384	$\begin{aligned} & 0.5 \\ & 1 \\ & 0.1 \\ & 0.1(z) \\ & 1 \\ & 0.2 / \mathrm{div} \\ & 0.2 / \mathrm{div} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 5 \\ & 5 \\ & \\ & \text { 2/div } \\ & 5 / \text { div } \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~cm} \\ & 0.5 \mathrm{~cm} \\ & 2-10 \mathrm{~mm} \\ & 5 \mathrm{~mm} \\ & 4 \mathrm{~mm} \\ & 0.2 \mathrm{~V} \\ & 2 \mathrm{~mm} \end{aligned}$	none none +14 (gate) none none +20 (gote) +20 (gate)	140A, 141A 140A, 141A 647A, R647A 561A, 564 561A, 564 536 561A, 564, 567	325 225 650 890 210 240 400

Reader-service numbers are given in the index.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.

Horizontal Amplifier Plug-Ins (Delay)

	Manufacturer	Model	delay time		Acc. \%	SWEEP SPEED		Acc. \%	Jitter ports	TRIGGER		Moin Frames for Plug-In	Price Approx $\$$
			Min. μs	Max. 5		Max. Hs/cm	$\begin{aligned} & \mathrm{Min} . \\ & \mathrm{s} / \mathrm{cm} \end{aligned}$			Input Defl.	Output v		
$\begin{array}{r} s \\ 37 \end{array}$	Gen-Atro	GA-25	1	1	3	0.1	0.1	3	1/10K	0.5 cm	+10 (gate)	GA-255	595
	Gen-Atro	GA-26	1	10	3	0.2	1	3	1/10K	0.5 cm	+10 (gate)	GA-151	559
	Tektronix	$3{ }^{\text {3 }} 3$	0.5	10	1	0.5	1	3	1/20K	4 mm	none	561A, 564	585
	Tektronix	$3{ }^{1}$	0.5	10	uncal	0.5	1	3	1/20K	4 mm	none	561A, 564	535
	H-P	1421A	0.5	10	± 1	0.2	1	3	1/50K	0.5 cm	+4	140A, 141A	625
	H-P	17818	0.5	10	± 1	2	1	± 3	1/50K	2 mm	+10	175A	325
	Tektronix	382	5	10.5	1	2/div	1/div	3	1/20K	2 mm	+15 (gate)	561A, 564, 567, 568	650
	Fairchild	74-13A	0.25	50	1	$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\pm 1 / 40 \mathrm{~K}$	$\begin{aligned} & 0.5 \mathrm{~cm} \\ & 0.5 \mathrm{~V} \end{aligned}$	2.5 (gate)	$765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}$, $765 \mathrm{MH} / \mathrm{F} \quad 766 \mathrm{H} / \mathrm{F}$	750
	Fairchild	74-17A	0.25	50	1	$\begin{aligned} & 0.05 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\pm 1 / 40 \mathrm{~K}$	$\begin{aligned} & 0.3 \mathrm{~cm} \\ & 0.25 \mathrm{~V} \end{aligned}$	14 (gate)	$\begin{aligned} & 767 \mathrm{H} / \mathrm{F}, 771,9570 \\ & 765 \mathrm{MH}, 766 \mathrm{H}, 767 \mathrm{H}, \\ & 765 \mathrm{MH} / \mathrm{F}, 766 \mathrm{H} / \mathrm{F}, \\ & 767 \mathrm{H} / \mathrm{F}, 7 \mathrm{Tl}, 9570 \end{aligned}$	890
	Tektronix	1182 A	1	50	2.5	0.1	5	3	1/20	3 mm	gate	647A, R647A	850

See reader-service card for valuable FREE reprints.
Get detailed data: use the reader-service card.

trouble-free selection...

$11 / 2 \%$ ACCURACY

MODEL 2750

We build them only one way. Trouble-Free . . . with Simpson's inkless system for a clear record every time . . . with quick and easy paper changing . . . with ruggedness and portability. All our magnatude recorders use Taut Band movements to prevent shock and vibration damage. And speed changes can be made on all models while the chart is in motion, with the flip of a switch. High-quality construction throughout. Choose the recorder you need from the chart. All are Reliable. Convenient. Trouble-Free.
write for further information

SPECIFICATIONS	603	604	2750	2755
Accuracy of recording	DC models: $\pm 2.5 \%$ FS AC models: $\pm 4.0 \%$ FS	$\pm 2.5 \%$ FS on all ranges	$\pm 1.5 \%$, any model	(Event channels only)
Number of ranges built-in	1	22	1	-
Ranges available from stock.	$\begin{aligned} & \text { DC } \mu \text { A: } 0-50 / 100 / 250 \\ & \text { DC } m A: 0-1 / 5 / 50 / 500 \\ & \text { DC A: } 0-5 \text { AC A: } 0-5 \\ & \text { DC } m V: 0-50 \\ & \text { DC V: } 0-15 / 50 / 150 \\ & \text { AC V: } 0-5 / 150 / 300, \\ & 100-130 \end{aligned}$	$\begin{aligned} & \text { DC } \mu \text { A: } 0-50 / 250^{\circ} \\ & \text { DC mA: } 0.1 / 5 / 25 \\ & \text { DC A: } 0.1 / .25 / 1 \\ & \text { AC mA: } 0.2 \\ & \text { DC V: } 0.1 / .5 / 2.5 / 10 / \\ & 25 / 100 / 250 / 500 \\ & \text { AC V:00.10/25/100/ } \\ & 250 / 500 \end{aligned}$	```DC \(\mu \mathrm{A}: 0 \cdot 10 / 25 / 50 / 100 / 500\) DC mA: 0-1/10/100 DC A: \(0-1 / 5 / 10\) AC \(\mu \mathrm{A}: 0-250 / 500\) AC mA: 0-1/10/100 AC A: 0.5 DC mV: 0.50 DC V: \(0-1 / 5 / 10 / 15 / 25 / 50 /\) 100/150/250/500 AC V: \(0-10 / 15 / 25 / 50 / 100 /\) 150/250/500```	-
Number of event channels built-in	1	none	none	10
Event indicator volfage	120 volts $/ 60 \mathrm{~Hz}$.	-	-	120 volts $/ 60 \mathrm{~Hz}$. (optional: 24VDC)
Built-in chart speeds	3/12/24/36" pertr.	1/3/12" per hr.	20/120 mm per hour	
Optional speeds	1/4/1/2/3" per hr.**	30/60/90" per hr.***	30/180; 60/360; 100/600; 300/1800;*** 600/3600 mm per hr.	
Clamp rate	2 seconds	2 seconds	3 seconds	Continuous
Chart Paper	$3^{\prime \prime}$ wide, pressure sensitive	2\%/16" wide, pressure sensitive		
Motor drive	Self-starting, synchronous. 120 volts © 60 Hz .			
Price	$\begin{aligned} & \$ 90.00 . \$ 120.00 \\ & \text { From Electronics } \end{aligned}$	$\$ 200.00$ Parts Distributors	$\$ 138.00-\$ 167.00$FROM YOUR SIMPSON REPRESENTATIVE	
Note: 604 has all ranges listed built-in one unit. Gearbox not interchangeable. Stocked in both low and high speed ranges.				

5200 W. Kinzie Street, Chicago, Illinois 60644 . Phone: (312) 379-1121
Export Dept : 400 W. Madison Street, Chicago, Illinois 60606, Cable, Simelco
IN CANADA: Bach-Simpson Ltd., London, Ontario
IN INDIA: Ruttonsha-Simpson Private Ltd., International House, Bombay-Agra Road, Vikhroli, Bombay

If You're Still Using A V.T.V.M. It's Time To Change Go Solid-State!

$\stackrel{(A)}{k_{i t}}$ IM-16
$\$ 4.95$

These New Heathkit ${ }^{\text {© }}$ Solid-State Meters Feature State-Of-The-Art Performance At Prices You Can Afford

- Modern, stable, long-life solid-state circuitry
- New low-voltage ranges to accurately analyze modern transistor circuits
- Full capability to go "out on the job". .. . instant selection of internal battery power or $120 / 240 \mathrm{v} .50-60 \mathrm{~Hz}$ AC operation
- Exceptional accuracy . . . 3\% on DC volts, plus a large, easy-to-read 6" meter face
- High impedance F.E.T. input for minimum circuit loading
(A) New! Deluxe Solid-State Volt-Ohm Meter Features 8 DC and 8 AC voltage ranges from 0.5 v to 1500 v full scale; 7 ohmmeter ranges (10 ohms center scale) $\mathrm{xI}, \mathrm{x} 10, \mathrm{x} 100$, x1k, x10k, x100k. \& x1 megohm; 11 megohm input on DC ranges; 1 megohm on AC ranges; internal battery or $120 / 240 \mathrm{v} 50-60 \mathrm{~Hz}$ AC power for portable or "in shop" use; large readable-across-thebench $6^{\prime \prime}$ meter; separate switches for individual functions; single test probe for all measurements; modern, stable solid-state circuitboard construction.
Kit IM-16, 10 lbs .

New! Deluxe Solid-State Volt-Ohm-Milliammeter

All silicon transistors plus FET's. Features 9 AC and 9 DC voltage ranges from 150 mV to 1500 volts full scale; 7 ohmmeter ranges (10 ohms center scale) $\mathrm{xI}, \mathrm{x} 10, \mathrm{x} 100, \mathrm{x} 1 \mathrm{k}, \mathrm{x} 10 \mathrm{k}, \mathrm{x} 100 \mathrm{k}$, \& x1 megohm; 11 current ranges from 15 uA to 1.5 Amperes full scale; 11 megohm input on DC voltage ranges; 10 megohm input on AC voltage ranges; internal battery power or $120 / 240 \vee 50-60 \mathrm{~Hz} \mathrm{AC}$ power for maximum versatility; easily readable $6^{\prime \prime}$ meter face; $\pm 3 \%$ accuracy on DC volts; $\pm 4 \%$ on DC current; $\pm 5 \%$ accuracy on AC voltage and current; separate range switches "human engineered" for efficiency in actual use; modern circuit board construction; all solid-state components; easy to assemble.
 Wired IMW-25, 10 lbs. $\$ 115.00$
HEATH COMPANY.
Benton Harbor. Mich. 49022 Dept. 520-26
In Canada, Daystrom Lid.
\square Please send my FREE 1968 Heathkit Catalog.
\square Enclosed is $\$$
\qquad plus postage
Please send model(s)
Name

Address

City Prices State

Zip

Oscilloscope Cross Index

CODE	COMPANY	MODEL NO.	TABLE LOCA- TION	
AUL	AUL Inc 24-13 Bridge Plaza N. Long Island City, N. Y.	055	S8	282
Allied-R	Allied Radio Corp. 100 N. Western Ave. Chicago, III.	$\begin{aligned} & K G-630 \\ & K G-635 \\ & K G-2100 \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \\ & 58 \end{aligned}$	283
Amer-El	American Electranic Labs Inc Box 552H Lansdale, Pa. 19446	725	510	284
Benrus	Benrus Technical Products Div. 30 Cherry Ave. Waterbury, Conn. 06720	$1100 / 100$ $1100 / 200$ $1100 / 300$ $1100 / 600$ $11100 / 700$ $1100 R / 100$ $1100 R / 200$ $11100 R / 300$ $1100 R / 600$ $1100 R / 700$ $1120 / 100$ $1120 / 200$ $1120 / 300$ $1120 / 600$ $1120 / 700$ $1120 R / 100$ $1120 R / 200$ $1120 R / 300$ $1120 R / 600$ $1120 R / 6700$ $1120 R / 700$ $H A$ $H 11$ $H A$		285
8 inary	Binary Electronics of Calif. 1429 N. State College Blvd. Anaheim, Calif. 92805	5 Mc 2 P	58	286

Oscilloscope
 Cross Index (continued)

CODE	COMPANY	MODEL NO.	$\begin{aligned} & \text { TABLE } \\ & \text { LOCA- } \\ & \text { TION } \end{aligned}$	READER SERVICE NO.
Cal-Inst	California Instrument Corp. 3511 Midway Drive San Diego, Calif. 92110	7000	S8	287
EGG	Edgerton Germeshousen \& Grier 160 Brookline Ave. Boston Mass.	707	S11	288
Fairchild	Fairchild Instruments 475 Ellis St. Mountain View, Calif.	$\begin{aligned} & 74-03 \mathrm{~A} \\ & 74-12 \\ & 74-12 \\ & 74-13 \mathrm{~A} \\ & 74-13 \mathrm{C} \\ & 74-15 \\ & 74-15 \\ & 74-17 \mathrm{~A} \\ & 74-17 \mathrm{~A} \\ & 74-19 \\ & 74-19 \\ & 76-01 \mathrm{~A} \\ & 76-02 \mathrm{~A} \\ & 76-05 \\ & 76-06 \text { (4 trace) } \\ & 76-08 \\ & 76-08 \\ & 79-02 \mathrm{~A} \\ & 79-02 \mathrm{~A} \\ & 304 \mathrm{~A} \\ & 304 \mathrm{AR} \\ & 701 \\ & 702 \\ & 704 \mathrm{~A} \\ & 708 \mathrm{~A} \\ & 737 \mathrm{~A} \\ & 765 \mathrm{MH} \text { (MIL) } \\ & 765 \mathrm{MH} / \mathrm{F} \text { (MIL) } \\ & 766 \mathrm{H} \\ & 766 \mathrm{H} / \mathrm{F} \\ & 767 \mathrm{H} \\ & 767 \mathrm{H} / \mathrm{F} \\ & 777 \\ & 977 \mathrm{~A} \\ & 9570 \end{aligned}$	S35 S23 532 537 535 S23 S32 S35 537 S24 532 S26 S29 S27 S29 S24 530 S26 530 53 53 56 56 56 56 56 518 519 518 519 518 519 S20 511 S20	289
Gen-Atro	General Atronics Corp. Electronic Tube Div. 1200 E. Mermaid Ave. Philadelphia, Pa.	70-A 70-A 70-C 70-D 70-E 80-A 80-A 80-B $80-C$ DT-106 GA-15 GA-16 GA-24 GA-25. GA-26 GA-151 GA-255 $K-10-R$ $K-11-R$ $K-12-R$ $K-13-R$ $K-14-R$ K-105 K-106 $K-115$ K-270 MX-2996 ST-106		290
Grundig	Grundig (Epic) 150 Nassou St. New York, N. Y.	$\begin{aligned} & \text { G3/13 } \\ & 1016 / 13 \\ & 1020 / 13 \\ & \text { MO } 5 / 7 \\ & \text { MO } 15 / 10 \\ & \text { TO } 6 / 7 \\ & \text { W2/13 } \\ & \text { W4/7 } \end{aligned}$	$\begin{aligned} & \hline 57 \\ & 510 \\ & 510 \\ & 58 \\ & 510 \\ & 59 \\ & 57 \\ & 57 \end{aligned}$	291
Heath	Heath Company Sub. Daystrom Ine. Benton Horbor, Mich.	$\begin{aligned} & 10-10 \\ & 10-12 \\ & 10-14 \\ & 10-21 \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 57 \\ & 59 \\ & 54 \end{aligned}$	266

$<1 \mathrm{~Hz}$ to 7 KHz TUNING FORKS

The answer to your low frequency oscillator requirements is an Accutronics tuning fork oscillator. "Worst Case" designed for the utmost in reliability the Accutronics tuning fork oscillator can be used for both discreet and I.C. applications. For immediate technical information call collect Area 312-2322600.

JG Series

PRICE: \$113.50 to \$157.50
FREQUENCY: 50 Hz to 7 KHz
FREQUENCY TOLERANCE: $\pm 0.01 \%$ or better over temperature range
FREQUENCY ACCURACY: $\pm 0.005 \%$ or better at $25^{\circ} \mathrm{C}$
TEMPERATURE RANGE: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
OUTPUT POWER: $>15 \mathrm{~V}$ p/p square wave with $<5 \mu \mathrm{sec}$. rise time $>3 V$ rms sine wave with $<5 \%$ total harmonic distortion
NOTE: The above outputs are typical with a 26 volt de input and 10K load
VOLTAGE SUPPLY: 3 V to 30 V dc as specified
DIMENSIONS: $11 / 2 \times 31 / 2 \times 5 / \mathbf{1}^{\prime \prime}$

JC Series

PRICE: $\$ 55.00$ to $\$ 110.00$
FREQUENCY: $<1 \mathrm{~Hz}$ to 7 KHz as specified
FREQUENCY TOLERANCE: $\pm 0.05 \%$ or better over temperature range
FREQUENCY ACCURACY: $\pm 0.025 \%$ or better at $25^{\circ} \mathrm{C}$
TEMPERATURE RANGE: $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
OUTPUT POWER: $>15 \mathrm{~V} \mathrm{p} / \mathrm{p}$ square wave with $<5 \mu \mathrm{sec}$. rise time $>3 V$ rms sine wave with $<5 \%$ total harmonic distortion
NOTE: The above outputs are typical with a 26 volt de input and 10K load
VOLTAGE SUPPLY: 3 V to 30 V dc as specified DIMENSIONS: $11 / 2 \times 11 / 2 \times 3^{\prime \prime}$

CRYSTAL OSCILLATORS

Accutronics also manufactures a complete line of crystal oscillators from 7 KHz to 125 MHz .

628 North St., Geneva, Illinois Area 312, 232-2600.

> SPECIAL Or STOCK BLOWERS Call Ripley!

Designing, development and production of precise air-moving units to fit your performance requirements and your budget. Stocked units available from 4 to 145 CFM for immediate delivery. For fast action, call Sales Dept., (203) 346.6678.

COMPANY, INC. MIDDLETOWN, CONNECTICUT

Oscilloscope Cross Index (continued)

CODE	COMPANY	MODEL NO.	TABLE LOCA TION	
H-P	Hewlett-Packard Co. 1501 Page Mill Road Palo Alto, Calif.	$\begin{aligned} & 1208 \\ & 122 A \\ & 122 A R \\ & 130 C \\ & 132 A \\ & 140 A \\ & 140 A / 1410 A / 1424 A \\ & 140 A / 1410 A / 1425 A \\ & 140 A / 1411 A / 1424 A \\ & 140 A / 1411 A / 1425 A \\ & 141 A \\ & 141 A / 1410 A / 1425 A \\ & 141 A / 1410 A / 1425 A \\ & 141 A / 1411 A / 1424 A \\ & 141 A / 1411 A / 1425 A \\ & 155 A / 1550 A \\ & 175 A \\ & 180 A \\ & 180 A R \\ & 191 A \\ & 193 A \\ & 1400 A \\ & 1401 A \\ & 1401 A \\ & 1402 A \\ & 1403 A \\ & 1405 A \\ & 1406 A \\ & 1407 A \\ & 1420 A \\ & 1421 A \\ & 1422 A \\ & 1423 A \\ & 1750 B \\ & 1752 A \\ & 1754 A \\ & 1755 A \\ & 1781 B \\ & H 40-120 B \\ & H 41-120 B \\ & \hline \end{aligned}$	S5 54 S4 56 S6 S17 S13 S14 S 15 S 15 S 17 S 13 S14 S 15 515 511 518 S 18 S18 S 10 S10 S22 S22 S28 S29 S22 S28 S22 S22 536 S37 536 S35 S30 S25 530 530 537 S2 S1	Contact Local Rep.
Hickok	Hickok Electrical Instr. Co. 10555 Dupont Ave. Cleveland, Ohio 44108	$\begin{array}{\|l\|} \hline 675 A \\ 677 \\ 770 A \\ 1805 A \\ 1822 \\ 1823 A \\ 1824 \\ 1825 \\ 1827 \\ 1831 \\ 1832 \\ \hline \end{array}$	S8 58 $S 7$ $S 17$ $S 25$ $S 29$ $S 24$ $S 21$ $S 25$ $S 26$ $S 26$	292
Honeywell	Honeywell Test Instrument Div. 4800 E. Dry Creek Rd. Denver, Colo.	$\begin{array}{\|l} \hline 270 \\ 275 \end{array}$	$\begin{aligned} & \text { S7 } \\ & \text { S8 } \end{aligned}$	293
$1 T$	ITT Industrial Produets Div. 15191 Bledsae St. San Fernanda, Calif. 91342	KM302 (23 inch) KM302S4 (23 inch) KM402 (14 inch) KM402S4 (14 inch) KM702 (17 inch) KM702S4 (17 inch) KM708 (17 inch) KM910 (9 inch) KM910S (9 inch) KP404 (14 inch) KP704 (17 inch) KP704-8 (17 inch) KS307 (23 inch) K 5407 (14 inch) KS707 (17 inch)	S2 S2 S2 S2 S2 S2 S2 S2 S2 S1 S1 S1 S1 S1 S1	244
Marconi	Mar coni Instruments Div. English Electric Corp. 111 Cedar Lane Englewood, N.J. 07631	TF2200A TF2201 TF2203 TM6455A TM6456A TM6457A	$\begin{aligned} & \$ 18 \\ & \$ 18 \\ & \$ 10 \\ & \$ 26 \\ & \$ 30 \\ & \$ 26 \end{aligned}$	295

Oscilloscope
 Cross Index
 (continued)

CODE	COMPANY	MODEL NO.	TABLE LOCAIION	$\begin{gathered} \text { READER } \\ \text { SERVICE } \\ \text { NO. } \end{gathered}$
Meas - Con	Measurement Contral Devices 2445 Emerald St. Philadephia, Po.	$\begin{aligned} & 100 \\ & 300 \\ & 349 \\ & 701 \end{aligned}$	$\begin{aligned} & \text { S10 } \\ & 53 \\ & \text { S1 } \\ & 57 \end{aligned}$	296
Millen	James Millen Mfg. Co. Inc. 150 Exchange St. Malden, Mass. 02148	$\begin{aligned} & 90902 / 90921 \\ & 90903 / 90921 \\ & 90905 / 90921 \\ & 90905 B / 90921 \\ & 90915 \\ & 90923 \\ & 90952 \end{aligned}$	$\begin{aligned} & \text { S3 } \\ & \text { 53 } \\ & 53 \\ & 53 \\ & 54 \\ & 54 \\ & 57 \end{aligned}$	297
RCA	Radio Corp. of America Electronic Components Harrison, N. J. 07029	$\begin{aligned} & \text { WO-33A } \\ & \text { WO-91A } \end{aligned}$	$\begin{aligned} & \hline 59 \\ & 58 \end{aligned}$	298
Roberts	Robertson Instrument Co. 1760 West First Azuso, Calif.	$\begin{aligned} & \hline 622 A \\ & 6278 R \end{aligned}$	$\begin{aligned} & \hline 59 \\ & 54 \end{aligned}$	299
Sencore	Sencore 42 S. Westgate Drive Addison, III.	PS127	59	311
Simpson	Simpson Electric Co. 5200 W. Kinzie St. Chicago, III. 60644	$\begin{aligned} & 458 \\ & 466 \end{aligned}$	$\begin{aligned} & \hline 59 \\ & 54 \end{aligned}$	312
Tektronix	Tek tronix Inc. Box 5000 Beaverton, Oregon 97005	 1A1 1A2 1A4 (4 trace) 1A5 1A6 1A7 1S1 (plug-in) 1S2 (plug-in) 2A60 $2 A 61$ $2 A 63$ 2867 $3 A 1$ $3 A 2$ $3 A 3$ $3 A 5$ $3 A 6$ $3 A 7$ $3 A 8$ (op amp) $3 A 72$ $3 A 74$ (4 race) $3 A 75$ $3 B 1$ 382 $3 B 3$ $3 B 4$ $3 B 5$ $3 C 66$ $10 A 1$ $10 A 2 A$ 1181 $1182 A$ 82 86 $310 A$ 317 $321 A$ 422 453 454 $502 A$ 503 $531 A$ $533 A$ $535 A$ 536 $543 B$ 544 5458 546 547 549 551 555 556		313

for:

- Mechanical Interface
- Electrical Interface
- Human Factors
- Form Factors
- Exterior Finish

Why compromise your AllMIL A/N system by using a commercial 'scope?
All-MIL (to MIL-E-16400), fully transistorized ETC 'scopes are now available in standard rack and portable (18 lbs.) bench models-in 6 to 10 MHz bandwidth-complete with accessories and plug-ins for non-obsolescence.
Wider bandwidths and unusual form factors and performance characteristics are available on a customized basis.
In Preplanning Your Next System Design, Why NotLeave the Display Work to Us?
Call or write for free consultation on YOUR 'scope problem.

$$
A_{\text {TRONICS's }}^{\text {DENERAL }}
$$

NEW Compact Portable Potentiometer
with Solid State Detector ... Ten Times Greater Sensitivity

- Extremely rugged. Detector will withstand 50 g shock
- Cannot be damaged by large overloads - Will retain sensitivity and zero set in any position • Dual rheostat control for precise standardizing Ranges 0-11 and 0-111 MV with 10 step decade and slidewire • Also available in volt and temperature calibrated models.

Write for BULLETIN 60-36-2ED

Polyranger ${ }^{\circ}$ Volt-Ammeters

Up to 88 overlapping ranges

- Accuracies to 0.25% full scale
- Built-in "self-calibration"
- Measure AC, DC or AC/DC voltages and current
- Portable or edgewise panel designs
- Two-year warranty

Now choose from a wide varlety of types, ranges and sensitivities of SENSITIVE RESEARCH indicating instruments. They provide highest available accuracies - all NBS-traceable. Friction-free movements have diamond-tipped pivots and spring-mounted sapphire jewels, providing optimum ruggedIzation and freedom from catastrophic failure due to shock or vibration.

Oscilloscope Cross Index (continued)

CODE	COMPANY	MODEL NO.	TABLE LOCA- TION	reader service NO.
Tektronix		561A	517	313
		561A/3S3/3T2	515	
		$5614 / 353 / 3$ T4	S 14	
		561A/353/3177A	513	
		$5614 / 3576 / 3 T 4$	S12	
		561A/3576/3177A	512	
		564	516	
		564/353/3T2	S15	
		564/353/3T4	S14	
		564/353/3177A	513	
		564/3576/3T4	S 12	
		564/3576/3177A	S 12	
		565	S16	
		567	516	
		567/353/3T4/6R1A	S14	
		567/353/3T77A/6RIA	S13	
		567/3576/3T4/6R 1A	512	
		567/3576/3T77A/6R 1A	513	
		567/6R IA/3A2/3B2	56	
		581 A	519 519	
		585A	519	
		$647 A$ $661 / 451 / 513$	520 S14	
		661/4S2A/5T3	515	
		661/453/513	S14	
			S25	
		C-A	529	
		D	S24	
		G	S21 S25	
		G H	S25 S25	
		K	S26	
		L	S26	
		M	S29	
		O (op amp)	S26	
		Q ${ }_{\text {R }}^{17}$	S21	
		R317 R422	59 510	
		R422 R453	S11	
		R454	511	
		R647A	520	
		RM502A	57	
		RM503	55	
		RM531A	517 517	
		RM535A	517 518	
		RM5438 RM544	518 S 19	
		RM5458	S18	-
		RM546	S19	
		RM547	519	
		RM556	519 517	
		RM561A	517 S 15	
		RM561A/3S3/3T2	S 15	
		RM561A/353/3T4	S15	
		RM561A/353/3T77A RM561A/3S76/3T4	$\begin{aligned} & \mathrm{s} 13 \\ & \mathrm{~s} 1 \end{aligned}$	
		RM561A/3576/3177A	S12	
		RM564	S 516	
		RM564/353/3T2	515	
		RM564/353/3T4	S14	
		RM564/3S3/3T77A	513	
		RM564/3576/374	512	
		RM564/3S76/3T77A	S12	
		RM565 RM567	512 516	
		RM567/353/3T4/6R1A	514	
		RM567/353/3T77A/6RIA	S14	
		RM567/3576/3T4/6R 1A	S12	
		RM567/3576/3T77A/6R IA	S13 519	
		RM585A	519 536	
		w	519 525 525	
		z	S24	
Texscan	Texscan Corp.	DU-17	S1	314
	51 Koweba Lane Indianapol is, Ind.	DU-88M	S1	
Waterman	Waterman Instrument Corp. 1919 E. Boston Ave. Philadelphia, Pa. 19125	OCA-11A	54	315
		OCA-118	54	
		OCA-12A	54	
		OCA-16A	58	

LOOKING FOR MORE RETURN ON YOUR DVM DOLLAR?

Hewlett-Packard gives you more capability per measurement dollar with the widest choice of DVM's in the industry! Choose from 3, 4,5, and 6 -digit instruments with a variety of accuracies, sensitivities, functions and prices.

+59.	Looking for Economy?

There's the three-digit hp 3430A for measurements within $\pm(0.1 \%+1$ digit $)$ and a sensitivity of $100 \mu \mathrm{~V}$, with up to 60% overranging capability indicated by a fourth digit. Low price of only $\$ 595$.

+999	Looking for Plug-In Capability?

It's yours with the four-digit hp 3440A. Six plug-ins give ac volts, dc volts, dc current and ohms. Basic dc accuracy is $\pm 0.05 \%$ of reading ± 1 digit. The 3440 A has BCD printer output and rear terminals in parallel. Price: hp 3440A, $\$ 1160$; plug-ins, $\$ 40$ to $\$ 575$. For bench use, get lower-priced hp 3439A (no BCD outputs), $\$ 950$.

| +1.19999 |
| :--- | :--- |

Looking for

Accuracy and Speed?
For laboratory precision and systems speed, try the five-digit (plus a sixth digit for 20% overranging) hp 3460B. It has $\pm 0.004 \%$ of reading $\pm 0.002 \%$ full scale accuracy. The 3460B
has $10 \mu \mathrm{~V}$ sensitivity and makes automatic and remote-controlled dc measurements at up to 15 readings per second. The guarded 3460B has high common mode rejection, and $>10^{10} \Omega$ input resistance at balance on the 1 V and 10 V ranges (minimum 10 $\mathrm{M} \Omega$). On the 100 V and 1000 V ranges, in put resistance is $10 \mathrm{M} \Omega$. Price: hp 3460B, $\$ 3600$; hp 3459A, (no BCD outputs), $\$ 2975$.
\square

Looking for Highest

 Accuracy and Sensitivity?hp HO4-3460A gives resolution of 1 part in 1.2×10^{6}, sensitivity of $1 \mu \mathrm{~V}$, accuracy of $\pm 0.005 \%$ of reading or $\pm 0.0005 \%$ of full scale . . . with six-digit readout and seventh digit for 20% overranging. The guarded HO4-3460A has 160 dB effective common mode rejection at dc, and uses integration to reduce effect of superimposed noise. Automatic, manual or remote operation is possible. Instrument has BCD printer output. Price: hp HO43460A, \$4600.
For full details on the hp DVM that fits your needs-contact your nearest hp field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304. In Europe: 54 Route des Acacias, Geneva.

HEWLETT

PACKARD

- Temperature, $A C$ current, and other ranges can be added with exclusive Simpson Add-A-Tester adapters.
makes other specialized VOMs, adapters and accessories, too! And if we can't fill your needs from stock . . . we'll build it! Send your specifications, or write for test equipment brochure 2076.

SIMPSON ELECTRIC COMPANY

5200 W. Kinzie Street, Chicago, Illinois 60644

Digital Voltmeters (dc)

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
Reader-service numbers are given in the index.
See reader-service card for valuable FREE reprints.
DVM index starts on page T52.

Digital Voltmeters (dc)
 (continued)

	Manufacturer	Model	Voltage Ranges			$\begin{gathered} \text { Accurocy } \\ \% \end{gathered}$	Speed reodings per see	Input Impedance $M \Omega$	Outpur		Mounting	Misc. Features	Price Approx. S
			No.	Minimum $m V$	Maximum V				Signal	Printer			
D6	R\&S	UGZ/BN1100	3	1	999.9	0.05	ina	10	contacts	i	C	u	2605
	NLS	RS2	3	1	999.9	0.01	ina	10	dec	i	R	knu	3685
	NLS	9104	3	1	999.9	0.01	ino	10	ina	ina	R	u	2985
	NLS	4814	3	1	999.9	0.01	1	10	contacts	defghi	R	ju	1560
	NLS	5005	3	1	999.9	0.01	1.3	10	none	none	R	\checkmark	985
	NLS	4206	3	1	999.9	± 0.02	20	10	dec	i	R	u	1785
	NLS	4401	3	1	999.9	0.01	200	10	dec	efghi	R	nu	6185
	NLS	4409	3	1	999.9	0.01	200	10	dec	efghi	R	jnou	6185
	NLS	4810	3	1	999.9	0.02	11/3	10	none	none	R	inu	925
	NLS	$x-2 / 4 / 4 C 3$	3	1	999.9	± 0.02	ina	ina	$B C D$	yes	C	aju	1430
D7	H-P	3439A/3442A	3	1	999.9	± 0.05	2,3	10.2	4 line	defghi	C	-(a)	1085
	H-P	3439A/3441A	3	1	999.9	± 0.05	2,3	10.2	4 line	defghi	C	0 (a)	990
	NLS	X-2/4	3	1	999.9	± 0.02	ina	ino	$B C D$	yes	C	वu	980
	Cohu	412(MIL-E-											10,000
	Behl-Invar	4158A) MIL-V-72	3	1	999.9 999.9	0.01	4 ina	10 10	dec	i	R C	iav (o)	10,000 3500
	Behl-invar	MIL-V-72	3	-	999.9	0.01	ina		none	none	c	(0)	3500
	Behl-Invar	MIL-VR-2100	3	1	999.9	0.01	1/2	10	nane	none	C	(a)	4450
	Honeywell	85	4	0.01	999.99	0.004	ino	10G-10	10 line	defghi	C, R	klot(0)	request
	Honeywell	881	4	0.01	999.99	0.002	20	10	10 line	efghi	R	cko (a)	5175
	Honeywell	883	4	0.01	999.99	0.002	20	10	10 line	efghi	R	klo(a)	6400
	Cohu	533-2210	5	0.01	999.99	0.005	ino	1G-10	BCD	-	C, R	mz	2195
D8	Cohu	531-1000	5	0.01	999.99	0.005	ina	1G-10	BCD	i	C, R	kz	1495
	Cohu	533-2810	7	0.012	999.99	0.005	ina	1G-10	BCD	i	C, R	omrz	2750
	Cohu	533-2310	7	0.012	999.99	0.005	ino	1G-10	BCD	1	C, R	mr 2	2295
	3M	5100 M 07	5	0.1	999.99	0.002	ina	10G-10	extra	extra	C, R	kv	4895
	3 M	$5100 \mathrm{MO2}$	5	0.1	999.99	0.002	ina	10G-10	extra	extra	C, R	cv	5795
	3 M	5100	5	0.1	999.99	0.002	ina	10G-10	extra	extra	C, R	v	4845
	Cimron	7650 Multi-											
		meter	3	0.1	999.99	0.001	ino	1G-10	10 line	yes	C, R	k\| (a)	4290
	Cimron	7630 Multi-											
		meter	3	0.1	999.99	0.001	ino	1G-10		none	C, R	kI(a)	4040
	Cimron	7650	3	0.1	999.99	0.001	ina	1G-10	10 line	yes	C, R	$k(a)$	2990
	Cimron	7630	3	0.1	999.99	0.001	ino	1G-10	none	none	C, R	k(a)	2740
D9	Cimron	E95008-355	3	0.1	999.99	0.001	ina	10G-10	10 line	yes	C, R	ks(a)	7750
	Cimron	E93008-355	3	0.1	999.99	0.001	ino	10G-10	none	none	C, R	ks(a)	7165
	Cimron	P95008	3	0.1	999.99	0.001	ino	10G-10	10 line	yes	C, R	k(a)	3990
	Cimron	P9400B	3	0.1	999.99	0.001	ina	10G-10	10 line	yes	C, R	(a)	3840
	Cimron	P93008	3	0.1	999.99	0.001	ino	10G-10	none	none	C, R	k(0)	3340
	Cimron	P9200B	3	0.1	999.99	0.001	ina	10G-10	none	none	C, R	(a)	3190
	Honeywell	880	4	0.1	999.99	0.01	ina	1G-10	10 line	efghi	R	ko(a)	4500
	Honeywell	882	4	0.1	999.99	0.01	ino	1G-10	10 line	efghi	R	mo(a)	4550
	NLS	X-1	3	0.1	999.99	0.005	50	10G	$B C D$	yes	C, R		2450
	NLS	3130	3	0.1	999.99	0.01	1/2.3	1000-10	contacts	defghi	R	iku	4290
D 10	NLS	3020	3	0.1	999.99	0.01	1/2.3	1000-10	contacts	defghi	R	¡ku	3985
	NLS	2021	3	0.1	999.99	0.01	1/1.1	10	dec	defhi	R	klu	5690
	H-P	2401 C	5	0.001	1000	request	ino	10	$B C D$	idirect	R	(a)	3950
	Data-Tec	DVX-315A/											
		DT-615	6	0.001	1000	0.003		1000	$B C D$	i direct	C, R	a (a)	3940
	Systran	6413	5	0.001	1000	0.025	5	10	$B C D$	i	C, R	(a)	1875
	Systran	1033/1936	6	0.001	1000	0.025	5	10	BCD	i	C, R	(a)	1870
	Foirchild	7100 A	5	0.01	1000	0.01	20	1G	BCD	yes	C, R	akl(b)	2075
	H-P	$3439 A / 3444 A$	5	0.01	999.9	± 0.05	2,3	10.2	4 line	defghi	C	0 (a)	1525
	Foirchild	7200	4	0.01	1000	0.005	100	1G	yes	yes	C, R	oc(a)	3500
	Weston	1420	6	0.01	1000	$\pm 1 \mathrm{dig}$	10	5G-10	BCD	defghi	C	$a(0)$	1500

(tables continued on page T46)

Get detailed data: use the reader-service card.
See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Circle as many numbers on the reader-service card as you like.
Need a FREE copy of this directory? Circle number 255.

Digital Voltmeters (dc) (continued)

				Voltage Ro					Ou				Price
	Manufacturer	Model	No.	Minimum mV	Maximum V	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$	readings per sec	Impedance $M \Omega$	Signal	Printer	Mounting	Misc. Features	Approx. S
D11	Data-Tec	DT-323	5	0.01	1000	0.01	5	1000	BCD	idirect	C, R	ak(a)	1445
	Dato-Tec	DVX-315A	4	0.01	1000	0.003	5	1000	BCD	idirect	C, R	a (a)	2750
	Fairchild	7000	4	0.1	1000	0.01	2-5	1G	$B C D$	yes	C, R	oc (a)	1150
	Monsanto	2000	4	0.1	1000	0.01	2	10	$B C D$	defghi	C, R	of (a)	1975
	Weston	1423	6	0.1	1000	0.02	ino	10G-10	$B C D$	defghi	C, R	$a(\mathrm{a})$	1950
	Vidar	500	5	0.1	1000	0.1	30.	10-0. 1	BCD	defghi	C, R	ab(b)	985
	Systran	1235-1	4	0.1	1000	0.1	8.3	1	$B C D$,	R	i(a)	request
	Systran	1234	4	0.1	1000	0.01	300	10	BCD	i	R	(a)	2000
	Roback	305	5	0.1	1000	0.1	250	10-1	$B C D$	yes	C	(b)	445
	Roback	304	5	0.1	1000	0.1	4	10-1	none	none	C	(b)	375
D12	EAI	6001	4	0.1	1000	0.01	1000	10	dec	efghi	C, R	ov	3450
	EAI	6200/6201	5	0.1	1000	0.1	6	10	none	none	C, R	(a)	580
	Behl-Invar	152500	5	0.1	1000	0.005		10	10 line	i	R	jkp(a)	3690
	Cohu	541-1000	5	0.1	1000	0.01	1.5	10	BCD	i	C, R	az	1495
	Cohu	543-2810	7	0.1	1000	0.01	1.5	10	$B C D$	i	C, R	alrz	2750
	Cohu	543-2310	7	0.1	1000	0.01	1.5	10	BCD	i	C, R	alrz	2295
	Cohu	543-2210	5	0.1	1000	0.01	1.5	10	BCD	i	C, R	ajrz	2195
	Cohu	502B	4	0.1	1000	0.01	1/4	10	contacts	yes	R	Iv	4245
	Cohu	507D	4	0.1	1000	0.01	1/4	10	contacts	yes	R	iv	3835
	Cohu	5018	4	0.1	1000	0.01	1/4	10	contacts	yes	R	iv	2995
D 13	Dato-Tec	DVX-315A	4	0.1	1000	0.01	50	1000	BCD	idirect	C, R	a(a)	2750
	Electrolab	100	4	1	1000	0.1	3	10	none	none	C		495
	Technology	DM5000	5	1	1000	0.1	ino	10	none	none	C	ab(a)	950
	Simpon	111	4	1	1000	0.1	ino	11	none	none	C	\checkmark	500
	Fairchild	7050	3	1	1000	0.1	6	IG	none	none	C, R	oc(a)	299
	Ballantine	355	4	1	1000	0.25	ino	2	none	none	C	jx	620
	Ballantine	353	4	1	1000	0.02	ino	10	none	none	C	\times	490
	Cal-Inst	8004	3	1	1000	0.03	ino	10	extro	extra	C	v	725
	Cal-Inst	8002	3	1	1000	0.03	ino	10	extra	extra	C	cv	775
	Cal-Inst	8001	3	1	1000	0.03	ino	10	extro	extra	C	iv	795
D 14	Cal-Inst	8000	3	1	1000	0.03	ino	10	extro	extra	C	iv	845
	Cal-Inst	8104	5	1	1000	0.03	ina	10-1	extra	extra	C	v	request
	Cal-Inst	8101	5	1	1000	0.03	ino	10-1	extra	extra	C	iv	request
	Un-Syst	201	4	1	1000	0.1	1/4	2.2	BCD	i extra	C	(1)	350
	Systran	1234-4	4	1	1000	0.01	1000	10	$B C D$	i	R	i(a)	request
	Roback	35	4	1	1000	± 1 dig	400	10	dec	defghi	R	$\mathrm{co}(\mathrm{b})$	875
	Roback	34	4	1	1000	$\pm 1 \mathrm{dig}$	0.2-3	10-1	yes	yes	C	c (b)	695
	Behl-Invar	DV-271	3	1	1000	0.01	2	10	none		R	jk(a)	1395
	Dato-Tec	DT-322	3	1	1000	0.01	5	10	BCD	idirect	C, R	ak(a)	1225
	Data-Tec	DT-321	3	1	1000	0.01	5	10	none	none	C, R	$a(a)$	995
D15	H-P	3439A/3443A	5	100	1000	± 0.05	2.3	10.2	4 line	defghi	C	\bigcirc (a)	1400
	$\mathrm{H}-\mathrm{P}$	3430A	5	100	1000	± 0.1	ino	10	ina		C	P(a)	595
	$\mathrm{H}-\mathrm{P}$	3440A/3443A	5	100	1000	± 0.05	5-1/5	10.2	4 line	defghi	C	\bigcirc (a)	1610
	CMC	810/835A	5	100	1000	± 0.1	ina	0.1-1	BCD		R	av	2635
	CMC	800A/835A	5	100	1000	± 0.1	ino	0.1-1	BCD	P	C	ov	3095
	Roback	33	3	10	1000	0.1	0. 2-3	10-1	yes	yes	C	c(b)	595
	Dana	5600/11	6	10	1000	± 0.005	30	10G	BCD	yes	R	m(a)	4475
	Hickok	DMS3200/											
		DP100	5	99.9	1000	0.1	2	10	10 line	pextra	C, R	bc(a)	495
	H-P	2402A	5	100	1000	0.01	40	10	4 line	defghi	C	$a(a)$	4800
	H-P	H04-3460A	4	IV	1000	± 0.005	ino	10	4 line	defghi	C	of(a)	4250

(tables continued on page T48)

Circle as many numbers on the reader-service card as you like.
See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Reader-service cards are good all year.
DVM index starts on page T52.
Need a FREE copy of this directory? Circle number 255.

Today $\$ 1495$ buys you immediate delivery of our new 540 Series Integrating Digital Voltmeter.

Stability: within specs for six months. No zero adjust. It automatically corrects for zero offset as a part of each computation. Reliability: at least an order of magnitude better than our competitors' most reliable IDVM.

How come? Because 90% of the design is done with integrated circuits. No vacuum tubes or mechanical choppers. No wonder it delivers specs like these:

Accuracy: 0.01% of reading ± 1 digit in four ranges from 1.5000 to 1000.0 volts dc. Automatic and manual ranging via illuminated, inter-

ELECTRONICS.INC SAN DIEGO DIVISION
locking pushbuttons, with automatic polarity selection. Input impedance: 10 megohms on all ranges. Normal mode rejection: $\geq 80 \mathrm{~dB}$ at 60 Hz without the use of an input filter. Speed: 1.5 readings per second.

For $\$ 2750$ you can get immediate delivery on the 540 Integrating Digital Multimeter. It measures dc millivolts, dc volts, ac volts, dc current, and resistance.

Prices FOB San Diego. Additional export charge. Full details are available from your nearest Cohu engineering representative, or from Ken Walker, Manager, Instruments and Systems. Telephone: 714-277-6700. Box 623, San Diego, Calif. 92112.

While everybody else is still talking about using integrated circuits to design the most stable and reliable IDVM ever...

Cohu ships it.

Digital Voltmeters (dc) (continued)

			Voltage Ranges			Accuracy \%	Speed readings per sec	Input Impedance $M \Omega$	Output		Mounting	Misc. Features	Price Approx. S
	Manufacturer	Model	No.	Minimum mV	Maximum V				Signal	Printer			
D 16	H-P	34608	4	IV	1000	± 0.004	15	10	BCD	idirect	C, R	(r)	3600
	Dana	5600	3	IV	1000	± 0.005	30	10G	BCD	yes	R	m(a)	3675
	$\mathrm{H}-\mathrm{P}$	3459A	3	10 V	1000	± 0.008	1.7-1/5	10	4 line	defghi	C	\bigcirc (a)	2850
	Cimron	6600	3	1	1099.9	0.01	2-20	IG-10	10 line	yes	C, R	kop (a)	1490
	Cimron	4651	3	0.1	1099.99	0.001	ino	10G-10.1	10 line	yes	C, R	mop(a)	4740
	Cimron	4631	3	0.1	1099.99	0.001	ino	10G-10. 1	none	none	C, R	m(a)	4590
	Cimran	4652	3	0.1	1099.99	0.001	ina	10G-10. 1	10 line	yes	C, R	kop(a)	4540
	Cimron	4632	3	0.1	1099.99	0.001	ina	10G-10. 1	none	none	C, R	$k(a)$	4390
	Dana	5700/11A	7	10	1100	± 0.004	50	10G	BCD	yes	R	$k(0)$	4750
	Dana	5400/020	5	110	1100	± 0.01	80	1000	$B C D$	defghi	R	$k(a)$	1995
D 17	Dana	5500/112	5	110	1100	± 0.005	2	10G	BCD	defghi	R	$k(a)$	2850
	Dana	5700	4	IV	1100	± 0.004	50	10G	BCD	yes	R	$k(0)$	3950
	Dana	5400/005	3	IIV	1100	± 0.01	80	1000	BCD	defghi	R	10)	1695
	Dana	5400/010	3	IIV	1100	± 0.01	80	1000	BCD	defghi	R	k (a)	1795
	NLS	2917	5	0.001	1200	0.01	i,10,100	1G-1	dec		R	ou	3720
	Vidar	520	6	0.005	1200	0.01	100	1G-10	BCD	defghi	C, R	ab (b)	3925
	EAI	6000	4	0.1	1200	± 0.01	1000		dec	efghi	C, R	ov	2950
	EAI	6101	4	0.1	1200	0.01	1000		dec	efghi	C, R	cov	4350
	Janus	401	4	1	1300	0.1	8		BCD	defghi	C	au	396
	Janus	400	4	1	1300	0.1	8	100k-10	BCD	defghi	C	au	350
D 18	Jonus	403	4	0.1	1300	0.05	1	100k-10	BCD	defghi	C	au	450
	Janus	404	4	0.1	1300	0.05	3	10	BCD	defghi	C	au	496
	Un-Syst	202	4	2	2000	0.1	1/5	2.2	$B C D$	iextra	C	\times	365
	NLS	$x-3$	6	0.01	10,000	0.1	3	100	analog	none	P	u	695

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
Reader-service numbers are given in the index.
See reader-service card for valuable FREE reprints.
DVM index starts on page T52.

Digital Voltmeters (ac)

	Manufacturer	Model	Frequency		Voltage Ranges				Readout Type	Speed readings per sec	Input Impedance $M \Omega$	Output		Mounting	Misc. Features	Price Approx. S
			Minimum Hz_{z}	Maximum kHz	$\underset{m V}{M i n i m u m}$	Maximum V	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$	No.				Type	Put			
D20	Cohu NLS	412 4401 3024 3026 3134 3135 4408 3023 2022 9128	60 $d c$ 30 30 30 30 30 30 30 30	$\begin{aligned} & 1 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 999.9 \\ & 999.9 \\ & 0999.9 \\ & 0999.9 \\ & 999.9 \\ & \\ & 0999.9 \\ & 999.9 \\ & 999.9 \\ & 0099.9 \\ & 999.9 \end{aligned}$	0.1 0.1	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & u \\ & u \end{aligned}$	$\begin{array}{\|l} 1 / 4 \\ \text { ino } \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & 1 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	contacts dec dec none dec dec dec dec dec dec	i defhi defghi none defhi defhi defhi defghi defhi defhi	$\begin{aligned} & R \\ & C, R \end{aligned}$	$\begin{array}{\|l} \hline \text { iq } \\ i \\ \text { m } \\ m \\ m \\ \text { m } \\ m \\ \text { in } \\ m \\ \text { in } \\ m \end{array}$	$\begin{aligned} & 10,000 \\ & 6185 \\ & 4350 \\ & 4920 \\ & 4990 \\ & \\ & 5500 \\ & 7400 \\ & 4900 \\ & 6970 \\ & 4850 \end{aligned}$
D21	NLS NLS NLS NLS NLS NLS Cohu Cohu Honeywell Honeywell	$\begin{aligned} & 4820 \\ & 9126 \\ & 9127 \\ & 4129 \\ & \text { RS2/125B } \\ & \\ & 2020 \\ & 507 D / 452 B \\ & 502 B \\ & 882 \\ & 883 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 999.9 \\ & 999.9 \\ & 999.9 \\ & 999.9 \\ & 999.9 \\ & \\ & 999.9 \\ & 999.9 \\ & 999.9 \\ & 999.9 \\ & 999.9 \end{aligned}$	0.1 ± 0.1 ± 0.02	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$		$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 / 4 \\ 1 / 4 \\ \text { ina } \\ \text { ina } \end{array}$	10 10 10 10 10 10 1 10 10,1 10,1	dec $=\mathrm{ec}$ none dec dec dec contacts contacts 10 line 10 line	defhi defghi none defghi defhi i defghi defghi	C, R C, R R R C, R R	m i I m in - I mo cmo	$\begin{aligned} & 2490 \\ & 5075 \\ & 4450 \\ & 5150 \\ & 4615 \\ & \\ & 6720 \\ & 5085 \\ & 4245 \\ & 4550 \\ & 6400 \end{aligned}$
D22	Cimron Cimron	P9200B/6980B P9300B/6980B P9400B/6980B P95008/6980B P92008/67008 P93008/67008 P9400B/6700B P95008/6700B P92008/6710B P93008/67108	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	0.1 0.1	$\begin{aligned} & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \end{aligned}$	$\begin{aligned} & \pm 0.02 \\ & \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	nixie rixie nixie	ina ina ina ina ina ina ina ina ina ino	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	none none BCD BCD none none BCD BCD none none	none none defghi defghi none none defghi defghi none none	C, R C, R C, R C, R	1 cm 1 cm i m i m i m	$\begin{aligned} & 5015 \\ & 5265 \\ & 5765 \\ & 5915 \\ & 3945 \\ & 4090 \\ & 4590 \\ & 4740 \\ & 4180 \\ & 4330 \end{aligned}$
D23	Cimron Cimron Cimron Cimron Cimron Cimron Fairchild Behl-Invar Cimron Cimron	$\begin{aligned} & \text { P9400B /6710B } \\ & \text { P9500B/6710B } \\ & \text { P9200B/6701B } \\ & \text { P9300B/6701B } \\ & \text { P9400B/6701B } \\ & \\ & \text { P9500B/6701B } \\ & 7100 A-D M-03 A \\ & 152500 \\ & E 9300 B / 6770- \\ & 943 \\ & E 9500 B / 6770- \\ & 943 \end{aligned}$		10 10 10 10 10 10 10 10 15 15	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & 999.99 \\ & \\ & 999.99 \\ & 1000 \\ & 500 \\ & 999.99 \\ & 999.99 \end{aligned}$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.05 \\ & 0.07 \\ & \pm 0.02 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	nixie nixie nixie nixie nixie nixie amperex u nixie nixie		$\begin{aligned} & 5 \\ & 5 \\ & 10,1 \\ & 10,1 \\ & 10,1 \\ & 10,1 \\ & 5 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	BCD BCD none none BCD BCD extra decimal none BCD	defghi defghi none none defghi defghi extra none defghi	$\begin{aligned} & C, R \\ & C, R \end{aligned}$	i m i m i m oi ¡o m m	$\begin{aligned} & 4830 \\ & 4980 \\ & 4180 \\ & 4330 \\ & 4830 \\ & \\ & 4980 \\ & 2575 \\ & 4710 \\ & 8139 \\ & 8724 \end{aligned}$
D24	$\begin{array}{\|l\|} \hline \text { NLS } \\ 3 M \\ \\ 3 M \\ \text { NLS } \end{array}$	$\begin{aligned} & X-1 / 5 / A C / 1 \\ & X-1 / 5 / O A C / 1 \\ & X-2 / 4 / A C 3 \\ & X-2 / 4 / A C 3 / \\ & O P C \\ & 4101 \\ & \\ & 4103 \\ & 3317 \\ & 3316 \\ & 3320 \\ & 3326 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.1 \\ & 0.1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 500,000 \\ & 500,000 \\ & 500 \\ & 500 \\ & 999.9 \\ & \\ & 999.9 \\ & 999.9 \\ & 999.9 \\ & 999.9 \\ & 0999.9 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \end{aligned}$		ina ina ina ina ina ina 3 3 3 3	10 10 1 1 10,1 10,1 1 1 1 1	BCD BCD extra extra extra extra dec none dec none	defghi defghi extro extro extra extra defghi none defghi none	$\begin{aligned} & C, R \\ & C, R \end{aligned}$		$\begin{aligned} & 3250 \\ & 3850 \\ & 1430 \\ & 1880 \\ & 4195 \\ & 4995 \\ & 4740 \\ & 4190 \\ & 5190 \\ & 4490 \end{aligned}$
D25		$\begin{aligned} & 3330 \\ & 3327 \\ & 4924 \\ & 4922 \\ & 9109 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{\|l} 10 \\ 10 \\ 10 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0999.9 0999.9 0999.9 0999.9 999.9	$\begin{array}{ll} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	dec dec dec dec dec	defghi defghi defhi defhi defhi	$\begin{aligned} & C, R \\ & C, R \\ & C, R \\ & C, R \\ & C, R \end{aligned}$	$\begin{aligned} & 1 \\ & i \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 5490 \\ & 5040 \\ & 4250 \\ & 3950 \\ & 4635 \end{aligned}$

(tables continued on page T50)
Reader-service cards are good all year
Circle as many numbers on the reader-service card as you like.
Reader-service numbers are given in the index.
See reader-service card for valuable FREE reprints.

Need a FREE copy of this directory? Circle number 255.

Digital Voltmeters (ac) (continued)

	Manufacturer	Model	Frequency		Voltage Ranges				Readout Type	Speed readings per sec	Input Impedance $M \Omega$	Output		Mounting	Misc. Feotures	Price Approx. 5
			Minimum Hz	Maximum kHz	Minimum mV	Maximum V	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$	No.				Type	Printer			
$\begin{aligned} & \text { D25 } \\ & \text { cont } \end{aligned}$	NLS NLS NLS NLS NLS	$\begin{aligned} & 9110 \\ & 9119 \\ & 9124 \\ & 9120 \\ & 5005 / 1100 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	999.9 0999.9 999.9 0999.9 999.9	$\left\lvert\, \begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.05 \end{aligned}\right.$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & u \\ & u \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 3 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 10 \end{aligned}$	dec dec none dec none	defhi defhi none defhi none	$\begin{aligned} & C, R \\ & C, R \\ & C, R \\ & C, R \\ & C, R \end{aligned}$	$\begin{array}{\|l} i \\ i \\ i \\ m \\ i \\ i \end{array}$	$\begin{aligned} & 5335 \\ & 5300 \\ & 4375 \\ & 5990 \\ & 2235 \end{aligned}$
D26	NLS NLS	$\begin{aligned} & 4206 / 1100 \\ & 2917 / 1100 \\ & 3307 \\ & 3250 \\ & 3254 \\ & \\ & 3252 \\ & 3237 \\ & 3239 \\ & 3305 \\ & 3248 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	999.9 999.9	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & u \\ & u \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	dee dec dec none none none dec none dec none		$\begin{aligned} & C, R \\ & C, R \end{aligned}$		$\begin{aligned} & 3035 \\ & 4970 \\ & 4690 \\ & 3250 \\ & 3640 \\ & 3345 \\ & 3970 \\ & 3100 \\ & 3990 \\ & 3245 \end{aligned}$
D27	NLS Dato-Tec Data-Tec EPSCO Cimron Cimron Cimron Cimron Cimron Cimron	2023 DVX-315A DT 1404 DT-325 DVP1-803 7630 7650 4632/6775 4652/6775 6600/6770 6600/6770	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 20 \\ & 30 \\ & \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 1 \\ & 10 \\ & 1 \\ & 1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	999.99 1000 1000 1000 999.99 999.99 999.99 999.99 999.99 999.99	0.02 0.03 0.5 ± 3 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.05 ± 0.05	$\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & 3 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	nixie nixie nixie nixie nixie nixie nixie nixie	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 0.20 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	dec BCD BCD dec none BCD none 10 line none BCD	defghi i i i none defghi none defghi none defghi	$\begin{aligned} & C, R \\ & C, R \end{aligned}$		7070 3945 2355 475 4040 4290 4815 4965 1915 ina
D28	Cimron Cimron Cimron Cimron 3 M Un-Syst Cohu Cohu Cohu Cohu	P95008/6760B P92008/6760B P93008/6760B P9400B/6760B 5100-M01 201/900 533-2210 533-28 10 543-2810 543-22 10	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	20 20 20 20 20 20 20 20 20 20	IVrms IVrms IVrms IVrms 0.1 1 1 1 1	999.99 999.99 999.99 999.99 999.9 1000 1000.0 1000.0 1000.0 1000.0	$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	nixie nixie nixie nixie v y z 2 2 2		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 1 \\ & 2.2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	BCD none none BCD extra BCD BCD BCD BCD BCD	defghi none none defghi extra avail i i i	$\begin{aligned} & C, R \\ & C \\ & C, R \\ & C, R \\ & C, R \\ & C, R \end{aligned}$		5480 4680 4830 5330 5445 725 2195 2750 2750 2195
D29	Un-Syst Un-5yst Dana Dana Ballantine Trymetrics Trymetrics Trymetrics Systron EAI	$\begin{aligned} & 202 / 900 \\ & 204 / 900 \\ & 560 / 20 \\ & 5700 / 26 \\ & 350 \\ & 4000-430 \mathrm{M} \\ & 4100-430 \mathrm{M} \\ & 4243 \\ & 1235-1 \\ & 6200 / 6203 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 5 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \\ & \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 1 V \\ & 1.1 \mathrm{~V} \\ & 100 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 1 \\ & 1 \end{aligned}$	1000 1000 1000 1100 1199.9 999.9 999.9 999.9 750 300	± 0.3 ± 0.3 0.1 0.09 0.25 $0.1-$ 0.25 $0.1-$ 0.25 $0.1-$ 0.25 ± 0.5 ± 0.2	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	y y nixie nixie nixie nixie nixie nixie nixie nixie	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 15 \\ & \text { ino } \\ & \text { ina } \\ & \text { ino } \\ & \text { ina } \\ & 8.3 \\ & 6 \end{aligned}$	2.2 2.2 1 1 2 ina ina ina 1 1	BCD BCD BCD BCD none none none none BCD none	avail avail ino ino none none none none none	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C}, \mathrm{R} \end{aligned}$		$\begin{aligned} & 700 \\ & 730 \\ & 4575 \\ & 4850 \\ & 720 \\ & 890 \\ & \\ & 990 \\ & 795 \\ & \\ & \text { request } \\ & 830 \end{aligned}$
D30	Fairchild Col-Inst Cal-Inst Col-Ins? NLS	$\begin{aligned} & 7200 / D M-10 \\ & 8000 \\ & 8001 \\ & 8101 \\ & X-2 / 4 / A C 4 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 50 \end{aligned}$	$\begin{array}{\|l} 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & 0.01 \\ & 1 \\ & 1 \\ & 1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \\ & 500 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & 0.9 \\ & 0.9 \\ & 0.9 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 4 \end{aligned}$	nixie u u u nixie	$\begin{array}{\|l} \text { ina } \\ \text { ina } \end{array}$	$\begin{array}{\|l} 5 \\ 10 \\ 10 \\ 10,1 \\ 1 \end{array}$	yes extro extro extro extro	yes extra extra extra extra	$\begin{aligned} & C, R \\ & C \\ & C \\ & C \\ & C, R \end{aligned}$	$\begin{array}{\|l} \text { oiw } \\ i \\ i \\ \vdots \\ \text { oit } \end{array}$	$\begin{aligned} & 4495 \\ & 845 \\ & 795 \\ & 1095 \\ & 1580 \end{aligned}$

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
Reader-service cards are good all year.
See reader-service card for valuable FREE reprints.
Need a FREE copy of this directory? Circle number 255.

Digital Voltmeters (ac) (continued)

AC and DC Digital Voltmeter Notes

a. Integrating digital voltmeter.
b. Also measures frequency, period and interval.
c. DC/ohmmeter.
d. Clary printer.
e. Flexowriter.
f. Electric typewriter.
g. Card punch.
h. Tape.
i. Digital recorder.
j. Ac/dc meter.
k. Dc/ratio.
l. Ac/dc/ohmmeter.
m. $\mathrm{Ac} / \mathrm{dc} /$ ratiometer.
n. $F O B$ destination.
o. Also BCD.
p. Contacts.
q. 5-10 units.
r. Also current.
s. Built to environmental requirements of MIL-T-21200.
t. Incorporates a storage register for absolute display stability.
u. In-line plastic plates.
v. In-line, single plane projection.
w. Of reading + or $-0.02 \% \mathrm{fs}, 30 \mathrm{~Hz}$ to 10 kHz . Accuracy varies with range, check factory.
x. In-line, mechanical number wheel.
y. Vertical neon decades, counter type.
z. Glow-discharge tubes.
(a) Burroughs nixie tube.
(b) Amperex tube.

Digital Voltmeter Cross Index

WOODSIDE, N.Y. 11377, (212) DE 5.6000

Digital Voltmeter
 Cross Index (continued)

CODE	COMPANY	MODEL NO.	TABLE LOCATION	READER SERVICE NO.
COHU	Cohu Electronics Inc. 5725 Kearny Villa Road San Diego, Calif. 92112	412 412(MIL-E - 4158A) $501 B$ 502B 5028 507D 507D/452B 510 531-1000 533-2210 533-2210 533-2310 533-2810 533-2810 541-1000 543-2210 543-2210 543-2310 543-2810 543-2810	D 20 D 7 D 12 D 12 D 21 D 12 D 21 D 5 D 8 D 7 D 28 D 8 D 8 D 28 D 12 D 12 D 28 D 12 D 12 D 28	321
CMC	Computer Measurements Co. Div. Pacific Ind. Inc. 12970 Bradley Avenue San Fernando, Calif. 91342	$\begin{aligned} & 800 \mathrm{~A} / 835 \mathrm{~A} \\ & 810 / 835 \mathrm{~A} \end{aligned}$	$\begin{array}{ll} \text { D } & 15 \\ \text { D } & 15 \end{array}$	322
DANA	Dana Labs Inc. Irvine Californio	$\begin{aligned} & 5100 / 24 \\ & 5400 / 005 \\ & 5400 / 010 \\ & 5400 / 020 \\ & 5400 / 020 / 27 \\ & 5500 / 112 \\ & 5500 / 130 / 28 \\ & 5600 \\ & 5600 / 11 \\ & 5600 / 20 \\ & 5600 / 25 \\ & 5700 \\ & 5700 / 11 A \\ & 5700 / 26 \end{aligned}$	D 31 D 17 D 17 D 16 D 31 D 17 D 31 D 16 D 15 D 29 D 31 D 17 D 16 D 29	323
DATA- TEC	Data Technology Corp. 2370 Charleston Road Mountain View, Calif.	DT-321 DT-322 DT-323 DT-325 DVX-315A DVX-315A DVX-315A/ DT -615 DVX-315A DT-1404	D 14 D 14 D 11 D 27 D 11 D 13 D 10 D 27	324
DYNAMICS	Dynamics Instrumentation Co. 583 Monterey Pass Rood Monterey Park, California	6539	D 2	325
EPSCO	Epsco Inc. Data System Prods. Div. 411 Providence Highway Westwood, Massachusetts	DVM-803	D 27	326
$\begin{aligned} & \text { ELECTRO- } \\ & \text { LAB } \end{aligned}$	Electrolab Inc. 18271 Parthenia Street Northridge, Calif. 91324	100	D 13	327

COMPLIANCE EXTENSION

 (for Current Regulators)When a power supply is connected to control output current, the load is called "compliance voltage."
Sometimes, when a current regulator has insufficient compliance voltage range for a particular load, two units can be connected together as a means of relief. This is called appropriately enough, "compliance extension.'

COMPLIANCE EXTENSION
In this circuit, the slaved power supply repeats the compliance voltage of the master supply current regulator itself, usually one-for-one, or in any ratio that may be desired. By then placing the supplies in series, the voltages are made to add across the load.

The repeater power supply may be diagrammed as one in which the conventional fixed (zener) reference has been replaced by the terminal voltage of the current regulator.
This connection is one of many master/slave circuits (complementary connection, parallel operation, series boost, voltage correction, etc.), that may be found in Chapter 7 of the Kepco Power Supply Handbook.

For your personal copy of this hondy Handbook, write on your company letterhead to:

HANDBOOK, Dept.1B
G.P.O. BOX 67 •FLUSHING, N.Y. 11352

The 12 cranks from Pleasant Avenue．

A dozen mild－mannered men who love children，dogs and apple pie．Until they come to work at Pleasant Avenue at 0300GMT．Then they take off their jack－ ets and turn into SUPER－CRITICS！Outright cranks！

They make sure that if any Trygon power supply isn＇t made exactly the way it＇s supposed to be made，it becomes our problem；not yours．

Thanks to the Cranks，for example，you can order any of the Trygon Half－Rack Series with complete confidence．These compact units offer power in ranges up to 160 volts， 10 amps with Constant Voltage／Constant Current／ 0.01% regula－ tion／ 0.5 mv ripple $/ 0.05 \%$ stability（with even 0.01% optional）and such niceties as Trygon developed and patented over－ voltage protection if you want it．（We think you should want it．）

Check into Trygon＇s half－rack series． It＇s been awarded the Scowl of Approval by the Twelve Cranks of Pleasant Avenue．

Masel can	TAYGOM HALF RACK SERIES ONSTANT VOLTAGE／CONSTANT CUBGENT Overvaluge				$\begin{aligned} & \text { Might } \\ & \text { sistility } \\ & \text { Option (x) } \end{aligned}$
	Valts	Amps	Standara Madel	Pratection （OV）	
HR2O 15	020	0.15	\＄167	\＄90	8125
HR40 750	0.40	0075			
Ha20 58	0.20	0－5	325	95	125
HR2010日	020	0.10	389	95	125
MA40－38	040	0.3	320	95	125
What 58	0.40	0.5	349	95	125
HRAO 758	0.40	0.75	425	95	125
HR60－2 58		025	349	95	125
HR60 58	0				125
HR60 58	060	0.5	415	125	125
H月160 2B	0160	02	495	125	125
SHR20 3A	0.20	03	225	95	125
SHR40 15A		0－15	225	95	125
SHA60 IA	0.60	01	235	95	125
SHR160 500日	0160	005	295		125
Most	dels s	slighly	higher or	ed in fura	

Trygon Power Supplies

111 Pleasant Avenue．Roosevelt．L．I．，N．Y． 115751 Trygon GmbH 8 Munchen 60．Haidelweg 20，Germany

Digital Voltmeter
 Cross Index（continued）

CODE	COMPANY	MODEL NO．	$\begin{array}{\|l} \text { TABLE } \\ \text { LOCA- } \\ \text { TION } \end{array}$	$\begin{array}{\|c\|} \text { READER } \\ \text { SERVICE } \\ \text { NO. } \end{array}$
EAI	Electronic Associates Inc． Long Branch Avenue Long Branch，New Jersey	$\begin{aligned} & 6000 \\ & 6001 \\ & 6101 \\ & 6200 / 6201 \\ & 6200 / 6203 \end{aligned}$	D 17 D 12 D 17 D 12 D 29	328
FAIR－ CHILD	Fairchild Instrument 475 Ell is Street Mountain View，Colifornia	$\begin{aligned} & 7000 \\ & 7000-02 \\ & 7050 \\ & 7100 A \\ & 7100 A-D M- \\ & \text { 03A } \\ & 7200 \\ & 7200 / D M-10 \end{aligned}$	D 11 D 31 D 13 D 10 D 23 D 10 D 30	329
H－P	Hewlett－Packard Co． 1501 Page Mill Road Palo Alto，California	$\begin{aligned} & 2401 \mathrm{IC} \\ & 2401 \mathrm{C} / 2410 B \\ & 2402 \mathrm{~A} \\ & 3430 A \\ & 3439 A / 3441 \mathrm{~A} \\ & 3439 A / 3442 \mathrm{~A} \\ & 3439 A / 3443 A \\ & 3439 A / 3444 \mathrm{~A} \\ & 3439 A / 3445 A \\ & 3440 A / 3441 \mathrm{~A} \\ & 3440 A / 3442 \mathrm{~A} \\ & 3440 A / 3443 A \\ & 3440 A / 3443 A \\ & 3400 A \\ & 3440 A / 3444 A \\ & 3440 A / 3445 A \\ & 3459 A \\ & 3460 B \\ & 34608 / 2410 B \\ & H 04-3460 A \end{aligned}$	D 10 D 30 D 15 D 15 D 7 D 7 D 15 D 10 D 31 D 5 D 5 D 15 D 32 D 3 D 31 D 16 D 16 D 30 D 15	Contact Local Rep．
HICKOK	Hickak Electrical Instr．Co． 10555 Dupont Avenue Cleveland，Ohio 44108	$\begin{aligned} & \text { DMS3200/ } \\ & \text { DP } 100 \end{aligned}$	D 15	330
HONEY－ WELL	Honeywell Test Instrument Div． 4800 East Dry Creek Road Denver，Colorado	85 85 623 880 881 882 882 883 883	D 7 D 31 D 31 D 9 D 7 D 9 D 21 D 7 D 21	331
JANUS	Janus Control Corp． Div．Tyco Labs Inc． 296 Newton Street Waltham，Mass． 02154	$\begin{aligned} & 400 \\ & 401 \\ & 403 \\ & 404 \end{aligned}$	$\begin{array}{ll} D & 17 \\ D & 17 \\ D & 18 \\ D & 18 \end{array}$	332
3M	3M Co． Instrument Deportment 300 South Lew is Road Camarillo，Calif． 93010	$\begin{aligned} & 4100 \\ & 4101 \\ & 4102 \\ & 4103 \\ & 5100 \\ & 5100-\mathrm{MO1} \\ & 5100-\mathrm{M} 02 \\ & 5100-\mathrm{MO7} \end{aligned}$	D 5 D 24 D 5 D 24 D 8 D 28 D 8 D 8	333
MICRO－ INST	Micro Instrument Co． 13100 Crenshaw Boulevard Gardena，California	$\begin{aligned} & 5600 \\ & 5600 \end{aligned}$	$\left\lvert\, \begin{array}{ll} D & 5 \\ D & 31 \end{array}\right.$	334
MON－ SANTO	Monsanto Electronics Technical Center 620 Passaic Avenue West Caldwell，N．J． 07006	2000	D 11	335

Digital Voltmeter
 Cross Index (continued)

CODE	COMPANY	MODEL NO.	TABLE LOCATION	$\begin{gathered} \text { READER } \\ \text { SERVICE } \\ \text { NO. } \end{gathered}$
NLS	Non-Linear Systems Inc. Del Mar Airport Box 728 Del Mar, Colifornia 92014	15	D 2	336
		2019	D 5	
		2020	D 21	
		2021	D 10	
		2022	D 20	
		2023	D 27	
		2917	D 17	
		2917/1100	D 26	
		3010	D 5	
		3020	D 10	
		3023	D 20	
		3024	D 20	
		3026	D 20	
		3130	D 9	
		3134	D 20	
		3135	D 20	
		3237	D 26	
		3239	D 26	
		3248	D 26	
		3250	D 26	
		3252	D 26	
		3254	D 26	
		3305	D 26	
		3307	D 26	
		3316	D 24	
		3317	D 24	
		3320	D 24	
		3326	D 24	
		3327	D 25	
		3330	D 25	
		4206	D 6	
		4206/1100	D 26	
		4401	D 6	
		4401	D 20	
		4408	D 20	
		4409	D 6	
		4810	D 6	
		4814	D 6	
		4820	D 21	
		4922	D 25	
		4924	D 25	
		5005 $5005 / 1100$	$\begin{array}{ll} \text { D } 6 \\ \text { D } 25 \end{array}$	
		$5005 / 1100$ 6001	$\begin{array}{ll} \text { D } 25 \\ \text { D } & 1 \end{array}$	
		9104	D 6	
		9109	D 25	
		9110	D 25	
		9119	D 25	
		9120	D 25	
		9124	D 25	
		9126	D 21	
		9127	D 21	
		9128	D 20	
		9129	D 21	
		RS2	D 6	
		RS2/125B	D 21	
		$x-1$	D 9	
		$x-1 / 5 / A C / 1$	D 24	
		$x-1 / 5 / O A C / 1$	D 24	
		$x-1 / 5 / A C / 2$	D 30	
		X-2/4	D 7	
		$x-2 / 4 / A C 3$	D 6	
		X-2/4/AC3	D 24	
		$\begin{aligned} & X-2 / 4 / A C 3 / \\ & O P C \end{aligned}$	D 3	
		$X-2 / 4 / A C 3 /$	D 24	
		OPC	D 24	
		X-2/4/AC4	D 30	
		X-2/4/AC4/	D 30	
		OPC		
		$x-2 / 4 / O P C$ $x-3$	D 3 D 19	
		X-3	D 32	

KEFO POWER SUPPLIES

WIDEST VOLT/AMPERE CHOICE IN LOW COST LABORATORY SUPPLIES

ALL-TRANSISTOR MODELS

MODEL	DC OUTPUT vOLTS		PRICE (metered)
ABC 2-1M	$0-2$	$0-1$	5125.00
ABC 7.5-2M	$0-7.5$	$0-2$	167.00
ABC 10-0.75M	$0-10$	$0-0.75$	125.00
ABC 15-1M	$0-15$	$0-1$	167.00
ABC 18-0.5M	$0-18$	$0-0.5$	125.00
ABC 30-0.3M	$0-30$	$0-0.3$	125.00
ABC 40-0.5M	$0-40$	$0-0.5$	167.00
ABC 100-0.2M	$0-100$	$0-0.2$	188.00
HYBRID MODELS			
ABC 200M	$0-200$	$0-0.1$	210.00
ABC 425M	$0-425$	$0-0.05$	210.00
ABC 1000M	$0-1000$	$0-0.02$	295.00
ABC 1500M	$0-1500$	$0-0.01$	295.00
ABC 2500M	$0-2500$	$0-0.002$	365.00

- 0.05\% REGULATION and STABILITY
- TEMPERATURE COMPENSATED ZENER REFERENCE
- TEN-TURN VOLTAGE CONTROL
- Current limited, Convertible FOR CURRENT REGULATION
- OPERATIONALLY PROGRAMMABLE (Accepts modulation commands)

131-38 SANFORD AVE.• FLUSHING, N.Y. 11352 (212) $461-7000$ • TWX \# 710-582-2631

Precise Angle Indicators

- RUGGED - highly accurate - MEET YOUR PANEL REQUIREMENTS

The Clifton Precise Angle Indicator reproduces and displays accurately in digital readout any angular displacement as signalled by a remotely located synchro transmitter. It is an extremely useful piece of test equipment for computer groups and systems engineers and as a laboratory tool for developmental experimentation and substantiation.

Utilizing Clifton synchros, power supply, servo amplifier and stainless steel gears throughout, it is proving to be reliable, accurate and rugged, even under adverse environmental conditions.

The Angle Indicator has a removable face and thus may easily be modified to meet your own panel requirements. Rigid shock proof construction is used throughout, and the entire unit may be conveniently rack mounted.

CLIFTON

Digital Voltmeter Cross Index (continued)

CODE	COMPANY	MODEL NO.	TABLE LOCA- TION	READER SERVICE NO.
NORTH HILLS	North Hills Electronics Inc. Glen Cove New York	DSV. 1	D 3	337
PAR	Princeton Applied Research Corp. Box 565 Princeton, N.J. 08540	CS-3.1	D 2	338
ROBACK	Roback Corp. Huntington Valley Pennsylvania	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 304 \\ & 305 \end{aligned}$	$\begin{array}{ll} D & 15 \\ D & 14 \\ D & 14 \\ D & 11 \\ D & 11 \end{array}$	339
R8S	Rohde \& Schwarz Soles Co. 111 Lexingion Avenue Passaic, New Jersey 07056	UGZ/BN1100	D 6	340
SIMPSON	Simpson Electric Co. 5200 West Kinzie Street Chicago, Illino is 60644	111	D 13	341
SYSTRON	Systron-Donner Corp. 888 Galindo Street Concord, Calif. 94520	$\begin{aligned} & 1033 / 1936 \\ & 1234 \\ & 1234-4 \\ & 1235-1 \\ & 1235-1 \\ & 6413 \end{aligned}$	D 10 D 11 D 14 D 11 D 29 D 10	342
TECHNOLOGY	Technology Inc. 7400 Colonel Glenn Hwy. Dayton, Ohio 45431	DM5000	D 13	343
TRYMETRICS	Trymetrics Corp. 204 Babylon Turnpike Roosevelt, New York	$4000-103$ $4000-104$ $4000-105$ $4000-300 A$ $4000-300 \mathrm{M}$ $4000-400 \mathrm{~A}$ $4000-400 \mathrm{M}$ $4000-430 \mathrm{M}$ $4000-430 \mathrm{M}$ $4000-500 \mathrm{~A}$ $4000-500 \mathrm{M}$ $4100-103$ $4100-105$ $4100-105$ $4100-300 A$ $4100-300 \mathrm{M}$ $4100-400 A$ $4100-400 \mathrm{M}$ $4100-430 \mathrm{M}$ $4100-430 \mathrm{M}$ $4100-500 \mathrm{~A}$ $4100-500 \mathrm{M}$ 4230 4240 4243 4243	$\begin{array}{ll} \text { D } & 2 \\ \text { D } & 1 \\ \text { D } & 1 \\ \text { D } & 4 \\ \text { D } & 4 \\ \text { D } & 3 \\ \text { D } & 4 \\ \text { D } & 4 \\ \text { D } & 29 \\ \text { D } & 3 \\ \text { D } & 3 \\ \text { D } & 2 \\ \text { D } & 1 \\ \text { D } & 2 \\ \text { D } & 4 \\ \text { D } & 4 \\ \text { D } & 3 \\ \text { D } & 4 \\ \text { D } & 4 \\ \text { D } & 29 \\ \text { D } & 3 \\ \text { D } & 3 \\ \text { D } & 5 \\ \text { D } & 4 \\ \text { D } & 4 \\ \text { D } & 29 \end{array}$	344
UN-SYST	United Systems Corp. 918 Woodley Road Dayton, Ohio	$\begin{aligned} & 201 \\ & 201 / 900 \\ & 202 \\ & 202 / 900 \\ & 204 / 900 \\ & 401 \\ & 402 \\ & 404 \\ & 451 \\ & 452 \\ & 454 \end{aligned}$	D 14 D 28 D 18 D 29 D 29 D 1	345
VIDAR	Vidar Corp. 77 Ortega Avenue Mountain View Colifornia 94041	$\begin{aligned} & 500 \\ & 520 \end{aligned}$	$\begin{array}{lll} \text { D } & 11 \\ \text { D } & 17 \end{array}$	346
WESTON	Weston Inst. \& Electronics Div. Daystrom Inc. 614 Frelinghuysen Avenue Newark, New Jersey	$\begin{aligned} & 1420 \\ & 1423 \\ & 4000 \end{aligned}$	$\begin{array}{ll} \text { D } & 10 \\ \text { D } & 11 \\ \text { D } 5 \end{array}$	347

Look what's happened to the sweep generator. The new Telonic 2003 is virtually a

DESIGN-IT-YOURSELF SWEEPER,

for all primary circuits are modular plug-in units.

Initially, you may select frequency ranges from

DC TO MICROWAVE

in wide or narrow bands; attenuators up to 109 dB for 50 or 75 ohm matching; frequency markers that offer a wide selection of harmonic and fixed types; mode programming for square or sine output, sweep width, single sweep presentation, or recording; and detector modules of both passive and active types with 60 dB dynamic range.

Then, when test requirements change, you can alter the instrument parameters instantly by changing one or more modules.

The 2003 system, with this inherent flexibility, can be used universally for swept frequency applications. Is it possible that this is the first instrument that can't become obsolete?

Specifications and complete details are available on request.

60 No. First Ave., Beech Grove, Indlana 45107 Tel: (317) 787-3231 TWX: 810-341-3202
 E17 ; $\frac{2}{8}$

Here's just part of the full Honeywell line, which includes: A 117 Visicorder direct-recording oscillographs in $6^{\prime \prime}, 8^{n}$, and 12" models: B 2 Model 1806 fiberoptics CRT Visicorder oscillographs: C 26 magnetic tape systems, including the 7600 Series in $101 /{ }^{\prime \prime}$ and $1^{\prime \prime \prime}$ reel versions; (D 84 amplifiers and other signal-condi-

We build 847

instruments to be sure we

 have the exact 1 you need.
tioning units; © 78 analog recording systems; © 46 electronic medical systems; $\boldsymbol{G} 14$ oscilloscopes; $\boldsymbol{H} 37$ digital multimeters; (1) 29 differential voltmeters; (1) 179 precision laboratory standards and test instruments; © 128 data loggers; (D) 9 analysis systems; (M61 EMI products; (N) 37 X-Y graphic recorders.

Your Honeywell sales engineer can zero in on the precise solution to your instrumentation problems. Quickly and efficiently. You won't have to settle for "almost" what you need because the Honeywell sales engineer isn't handicapped by a limited line. He can choose from 847 basic instruments whose combinations and permutations approach the infinite.

The solution might be a Visicorder recording oscillograph. Or one of our modular magnetic tape systems. Or an $\mathrm{X}-\mathrm{Y}$ recorder, a digital multimeter, or a portable potentiometer. But whether it's a single instrument or a complete data system, you can be sure the solution will be the right one, carefully thought out with your future requirements considered as well as your current needs.

Local service and nationwide metrology facilities back up your Honeywell instrument or system. And, we can even provide factory training courses for your operating personnel. For the full story on how Honeywell can help you, call your local sales engineer or write: Honeywell. Test Instruments Division. Denver, Colorado 80217.

Honeywell

Honeywell engineers sell solutions

Spectrum Analyzers

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
See reader-service card for valuable FREE reprints.
Spectrum analyzer index starts on page T66.

Spectrum Analyzers (continued)

(tables continued on page T62)

Reader-service cards are good all year.
Reader-service numbers are given in the index.
Need a FREE copy of this directory? Circle number 255.

				Frequency			Voltage S	Sensitivity		Swee		Input	Tvoe C Cab	Price
	Manufacturer	Model	$\underset{\mathrm{Hz}}{\text { Minimum }}$	Maximum	Accuracy \%	$\mathrm{dBm}(\mu \mathrm{V})$	Minimum V	Maximum mV	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$	Width kHz	Rate Hz	Impedance k Ω	R Rack P Port	Approx. S
A8	Spectran	100-50	100	0.11	ino	(250)	30	30	ino	1.6	real time	50	R	8510 m
	Spectron	240-50	100	0.11	ina	(250)	30	30	ino	1.6	real time	50	R	$11,530 \mathrm{~m}$
	Spectran	480-50	100	0.11	ino	(250)	30	30	ino	1.6	real time	50	R	$15,850 \mathrm{~m}$
	Probesep	SS-100	13.5	0.11	2	(50)	500	0.5	± 1	0.2-20		50	C, R	1840
	Panoram	TMI- lb/ 120	350	0.12	$\pm 5\left(\pm 30 \mathrm{~Hz}^{\text {) }}\right.$	(200)	10	2	± 10	0.1-5	1	50	R	4100
	Panoram	TMI-4/120	350	0.12	$\pm 5(\pm 30 \mathrm{~Hz})$	(200)	10	2	± 10	0.1-5	1	50	R	3450
	Probesep	TA-100L	350	0.12	5	(50)	500	0.5	$\pm 1 \mathrm{~dB}$		1	50	R	2225
	Panoram	TMI-23	25	0.12	5	(500)	500	0.5	± 10	0.1-20	1	0.050	R	4325
	Probescp	LL-120	11	0. 12	ino	ino	500	0.5	± 10	0.2-22	1	55	C, R	3750
	Probescp	TA-120L	1	0.12	2	(50)	500	0.5	$\pm 1 \mathrm{~dB}$	0.1-22	1	50	R	1775
A9	Probescp	TA-1200	11	0.132	ina	ino	500	0.5	ina	0.1-24	1-30	5	C, R	1875
	Spectran	40-100	200	0.16	ina	(250)	30	30	ina	3.2	real	50	R	7000
	Spectran	100-100	200	0.16	ina	(250)	30	30	ina	3.2	real	50	R	8930
		240-100	200	0.16	ina	(250)	30	30	ina	3.2	time real	50	R	12,530
	Spectran	240-100	200	0.16	ina	(250)	30	30	ina	3.2	rea	so	R	12, 330
	Spectran	480-100	200	0.16	ino	(250)	30	30	ina	3.2	real time	50	R	17,850
	Spectran	480-125	250	0.2	ino	(250)	30	30	ina	3.2	$\begin{aligned} & \text { real } \\ & \text { time } \end{aligned}$	50	R	18,400
	Panoram	TMI-4/200	25	0.2	$\pm 5(\pm 30 \mathrm{~Hz})$	(200)	10	2	± 10	0.1-5	1	50	R	3800
	Panoram	TMI-23/200	25	0.2		(500)	500		± 10	0.1-20	1	0.050	R	
	Allison	540	2.5	0.2		140 dB	300	0.001	$\pm 1 \mathrm{~dB}$	ina	10	10-100	C, R	$\begin{aligned} & 3000- \\ & 8000 \end{aligned}$
	Probesep	TA-165L	350	0.215	ino	ino	500	0.5fs	ino	full range	1	50	C, R	2325
A 10	Probescp	LL-190	350	0.215	ina	ino	500	0.5	$\pm 1 \mathrm{~dB}$	full range	1	55	C, R	3995
	Probesce	TA-190L	11	0.215	ino	ina	500	0.5	ina	0.1-50	1	50	C, R	1875
	Probescp	SS-300	25	0.335	ina	ina	500	0.5		0.5-70			C, R	1860
	N-Ross	PSA -033(a)	150	0.5	ino	ino	ino	85 $\mathrm{cm} /$	ina	$2.5-$ 150	5-50 sec	1000		800
	N-Ross	PSA-023(k)	150	0.5	ino	ino	ino	$\begin{aligned} & 85 \mu \mathrm{~V} / \\ & \mathrm{cm} \end{aligned}$	ina	$\begin{aligned} & 2.5- \\ & 150 \end{aligned}$	$\begin{aligned} & 2-10 \\ & \mathrm{sec} \end{aligned}$	1000	kr	800
	N-Ross	PSA-013(c)	150	0.5	ino	ino	ino	$\begin{aligned} & 85 \mu \mathrm{~V} / \\ & \mathrm{cm} \end{aligned}$	ino	$\begin{aligned} & 2.5- \\ & 150 \end{aligned}$	$\begin{aligned} & 10-50 \\ & \mathrm{sec} \end{aligned}$	1000	cr	650
	Probescp	LCA-1	100	0.6	2	(20)	250	0.2	± 5	1-200		55	C, R	2025
	Panoram	SB-15a	100	0.6	$2(\pm 100 \mathrm{~Hz})$	(20)	200	0.2	$\pm 0.5 \mathrm{~dB}$	1-200	1-609	55(25 pF)	C, R	2200
	Probesce	SS-500	75	0.6	2	(25)	250	0.25	$\pm 1 \mathrm{~dB}$	2-200	$\begin{aligned} & 0.33^{\circ} \\ & \mathrm{sec} \end{aligned}$	50	C, R	1875
	Panoram	TA-2/UR-3	100	0.7	1	-90	3	0.002	1	0-400	$1-60$	100	C	3250
All	Tektronix	125	50	1	± 5	N/A	2V/cm	$\begin{aligned} & 10 \mu \mathrm{~V} / \\ & \mathrm{cm} \end{aligned}$	3	$\begin{aligned} & 10 \mathrm{~Hz}_{-} \\ & 1 \mathrm{MHz} \end{aligned}$	N/A	1000	cr	1000d
	TekPronix	3 L 5	50	1	± 5	N/A	$2 \mathrm{~V} / \mathrm{cm}$	$\begin{aligned} & 10 \mu \mathrm{~V} / \\ & \mathrm{cm} \end{aligned}$	3	$10 \mathrm{~Hz}_{\mathbf{z}}-$ $1 \mathrm{MHz}$	N/A	1000	cr	1100
	N-Ross	PSA -014(c)	1000	2	ina	ino	ino	$\begin{aligned} & 85 \mu \mathrm{~V} \\ & \mathrm{~cm} \end{aligned}$	ino	10-600	$\begin{aligned} & 10-50 \\ & \mathrm{sec} \end{aligned}$	1000	cr	850
	N-Ross	PSA -024(k)	1000	2	ino	ino	ino	$\begin{aligned} & 85 \mu \mathrm{~V} / \\ & \mathrm{cm} \end{aligned}$	ina	10-600	$\begin{aligned} & 10-55 \\ & \mathrm{sec} \end{aligned}$	1000	kr	1000
	N-Ross	PSA-034(a)	1000	2	ina	ino	ino	$\begin{aligned} & 85 \mu \mathrm{~V} / \\ & \mathrm{cm} \end{aligned}$	ino	10-600	$\begin{aligned} & 5-50 \\ & \text { sec } \end{aligned}$	1000	or	1000
	FED-SCI	UA-7B	1	10	ino	ino	ino	ino	ina	ina	real	50	C	ino
											time			
	Panoram	SPA-3d	20	15	$2(\pm 300 \mathrm{~Hz})$	(2)	1.4	0.025	± 15	$0-3000$	$1-60 \mathrm{~g}$	0.072	C, R	3325
	Panoram	TA-2/VR-4	1000	25	1	-90	3	0.002	1	0-5000	1-60	0.05	C	4250
	N-Ross	PSA-205	1000	25	ino	-90	ino	ino	ina	full range	$\begin{aligned} & 5-30 \\ & \mathrm{sec} \end{aligned}$	$\begin{aligned} & 0.05, \\ & 0.075 \end{aligned}$	r	$1400 \mathrm{~d}$
	N-Ross	PSA-235	1000	25	ina	-90	ino	ino	ina	full range	$\begin{aligned} & 5-30 \\ & \text { sec } \end{aligned}$	$\begin{aligned} & 0.05, \\ & 0.075 \end{aligned}$	'	1500d

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
Reader-service numbers are given in the index.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.
Spectrum analyzer index starts on page T66.

In quartz oscillators, what more could you ask for than high great spectral purity and fast warm-up?

How about phase-locking, small size and lowest price?

That's right. The new Hewlett-Packard 105A/B Quartz Oscillators combine all these features to create the best buy for your precision quartz oscillator requirement. Short-term stability is better than one part in $10^{11} \mathrm{rms}$ for $1-\mathrm{sec}$ averaging time. Output typically reaches 1×10^{-7} of final frequency in 30 minutes; aging rate of $5 \times 10^{-10} / 24$ hours after full warm-up.
S / N exceeds 90 dB . Rated output is 1 V rms
into 50Ω. Outputs are $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ sine wave and 1 MHz or 100 kHz clock drive. Height is only $3 \frac{1}{2} 2^{\prime \prime} ; 105 \mathrm{~A}$ weighs only 16 lbs .

Price: 105A, \$1500; 105B (8-hour standby battery supply), $\$ 1800$.

Call your local HP field engineer or write Hewlett-Packard, Palo Alto, California 94304; Europe: 54 Route des Acacias, Geneva.

HEWLETT hp PACKARD

Spectrum Analyzers (continued)

				Frequency			Voltage	Sensitivi		Sweep		Input	$\begin{aligned} & \text { Type } \\ & \text { C Cab } \end{aligned}$	Price
	Manufacturer	Model	Minimum Hz	Maximum MHz	Accuracy \%	$\mathrm{dBm}(\mu \mathrm{V})$	Minimum V	Maximum mV	$\begin{array}{\|c\|} \hline \text { Accuracy } \\ \% \end{array}$	$\begin{aligned} & \text { Width } \\ & \mathrm{kHz} \end{aligned}$	$\begin{gathered} \text { Rate } \\ \mathrm{Hz} \end{gathered}$	$\left.\right\|_{\mathrm{k} \Omega} ^{\text {Impedance }}$	$\begin{array}{\|l\|} \mathrm{R} \text { Rack } \\ \text { P Port } \end{array}$	Approx. 5
A 12	Panaram Panaram	$\begin{aligned} & \text { SPA }-3 / 25 a \\ & \text { SA }-8 \mathrm{~b} 2 / \mathrm{T}-1000 \end{aligned}$	$\begin{aligned} & 200 \\ & 30 \mathrm{MHz} \end{aligned}$	$\begin{array}{\|l} 25 \\ 30 \end{array}$	$2(\pm 300 \mathrm{~Hz})$ 10	$\left\lvert\, \begin{aligned} & \mathrm{l}, \\ & (150) \end{aligned}\right.$	1.4 0.1	$\begin{aligned} & 0.025 \\ & 0.15 \end{aligned}$	± 15	$\left\lvert\, \begin{aligned} & 0-3000 \\ & 0- \\ & 10,000 \end{aligned}\right.$	$\begin{aligned} & 1-60 \mathrm{~g} \\ & 1-60 \mathrm{~g} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.072 \\ & 0.05 \end{aligned}\right.$	$\begin{aligned} & C, R \\ & C \end{aligned}$	$\begin{aligned} & 3600 \\ & 1570 \end{aligned}$
	Panoram	SA-3/T-2000NC	30 MHz	30	10	(10)	0.001	0.01	f	0-2000	30	0.05	C	580
	TekPronix	1210(c)	1 MHz	36	ino	-100	N/A	N/A	ina	$\begin{aligned} & 10 \mathrm{~Hz} / \\ & 2 \mathrm{kHz} / \end{aligned}$	N/A	0.05	cr	1150
	Tektronix	3L 10	1 MHz	36	ino	-100	N/A	N/A	ina	div $10 \mathrm{~Hz}-$ 2 kHz div	N/A	0.05	cr	1260
	N -Ross	PSA-201	0.6	36	ino	-106	ino	ina	ina	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$	$\begin{array}{\|l} 10-50 \\ \text { sec } \end{array}$	0.05	cr	1600
	N -Ross	PSA-22 ${ }^{1}$	0.6	36	ino	-106	ino	ina	ina	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 8-15 \\ & \mathrm{sec} \end{aligned}$	0.05	kr	2060
	N -Ross	PSA-231	0.6	36	ina	-106	ino	ino	ino	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 8-15 \\ & \mathrm{sec} \end{aligned}$	0.05	or	1700
	Probescp Panoram	$\begin{aligned} & \text { MD-50B } \\ & \text { SSB-3b } \end{aligned}$	$\begin{aligned} & 2 \mathrm{MHz} \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	1	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { ina } \\ & 3 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 10 \\ & \pm 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-100 \\ & 0-100 \end{aligned}\right.$	$\begin{aligned} & 1-30 \\ & 0.1- \\ & 30 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 3575 \\ & 4400 \end{aligned}$
Al3	Polarad	2836	10	40	± 1	ina	0.001	0.1	ino	$\begin{array}{\|l} 0.15- \\ 30 \end{array}$	1-30	0.05	C	4800p
	Polarad	2936	10	40	± 1	ino	0.001	0.1	ino	$\begin{aligned} & 0.15- \\ & 30 \end{aligned}$	1-30	0.05	c	5700p
	Panoram	SSB-50	10	40	± 3	m	ino	ina	ino	0-100	$\left\lvert\, \begin{array}{l\|l} 0.1- \\ 30 \mathrm{~g} \end{array}\right.$	$\begin{aligned} & 0.05, \\ & 0.6 \end{aligned}$	C, R	ina
	Wiltek	PAN-5F	50 MHz	100	0.5	ino	0.005	0.5	ina	5M, 10M, 50 M	22	0.05	C, R	15,000
	N -Ross	PSA-200	0.5	100	ina	-106	ina	ino	ino	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$	$\begin{array}{\|l} 10-50 \\ \text { sec } \end{array}$	0.05	cr	800
	N -Ross	PSA-230	0.5	100	ino	-106	ina	ino	ino	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 8-15 \\ \text { sec } \end{array}$	0.05	or	900
	Wiltek	PAN-1F	100 MHz	150	0.5	ino	0.005	0.5	ino	5000	22	0.05	C, R	15,000
	N -Ross	PSA-311	1 MHz	300	ina	-90	ino	ino	ino		$\begin{array}{\|l\|l} 1-30 \\ \mathrm{sec} \end{array}$	0.05	cr	1300d
	N -Ross	PSA-321	1 MHz	300	ino	-90	ino	ina	ino	full range full	$\begin{aligned} & 1-30 \\ & \mathrm{sec} \end{aligned}$	0.05	kr	1400d
	N-Ross	PSA-331	1 MHz	300	ina	-90	ino	ino	ino	$\begin{array}{\|l\|} \text { full } \\ \text { range } \end{array}$	$\begin{array}{\|l\|l} 1-30 \\ \mathrm{sec} \end{array}$	0.05	or	1400d
A 14	N -Ross	PSA-315	400 MHz	550	inc	-90	ina	ino	ino	full range	$\begin{array}{\|l\|l\|} \hline 1-30 \\ \text { sec } \end{array}$	0.05	er	1400d
	N -Ross	PSA-325	400 MHz	550	ino	-90	ina	ino	ino	full range	$\left\lvert\, \begin{aligned} & 1-30 \\ & 1-30 \\ & \mathrm{sec} \end{aligned}\right.$	0.05	kr	1500d
	N-Ross	PSA-335	400 MHz	550	ino	-90	ina	ino	ino	full range	$\begin{aligned} & 1-30 \\ & \mathrm{sec} \end{aligned}$	0.05	or	1500d
	Wiltek	PAN-6	30 MHz	600	1	-107	0.005	0.001	ino	10M, 100M, 570M	22	0.05	c	25,000
	Wiltek	PAN-7	500 MHz	1000	1	-107	0.005	0.001	ino	$\begin{aligned} & 10 \mathrm{M} \\ & 100 \mathrm{M} \\ & 500 \mathrm{M} \end{aligned}$	22	0.05	C	ina
	Polarad	TSA-W/STU-1B	10 MHz	1000	± 1	$\begin{aligned} & -85 \text { to } \\ & -90 \end{aligned}$	ino	ina	ina	$\begin{array}{\|l\|l} 200- \\ 5000 \end{array}$	1-30	0.05	c	4335
	Panoram	SB-12b/T-100	450,000	1000	1	m	3	0.02	$\pm 0.5 \mathrm{~dB}$	0-100	$\begin{aligned} & 0.1- \\ & 30 \mathrm{a} \end{aligned}$	0.05	C, R	2150
	ELD	PN 1010	120 MHz	1200	ina	$\begin{aligned} & -38 \text { to } \\ & -45 \end{aligned}$	N / A	N/A	ina	$\begin{aligned} & 1200 \\ & \mathrm{MHz} \end{aligned}$	$20-70$	0.05	'	2195
	ELD	OU-501/TU-VL501	120 MHz	1200	ino	$\begin{aligned} & -38 \text { to } \\ & -45 \end{aligned}$	N/A	N/A	ino	$\begin{aligned} & 1200 \\ & \mathrm{MHz} \end{aligned}$	20-70	0.05	C	4975
	LFE	30651	2.7 GHz	3300	1	120	ino	ino	ino	ino	5,25	ino	R	13,737
A15	Tektronix	1 L 20	10 MHz	4200	inc	$\begin{aligned} & -90 \text { to } \\ & -110 \end{aligned}$	N/A	N/A	ino	1 kHz , 10 MHz	N/A	0.05	cr	1925
	Polarad	TSA/STU-28	10 MHz	4560	± 1	$\begin{aligned} & -85 \text { to } \\ & -95 \end{aligned}$	ino	ino	ino	$\begin{aligned} & \text { 400- } \\ & 25,000 \end{aligned}$	1-30	0.05	c	4290
	Polarad	TSA-W/STU-28W	10 MHz	4560	± 1	$\begin{aligned} & -85 \text { to } \\ & -95 \end{aligned}$	ino	ina	ino	$\begin{aligned} & 200- \\ & 5000 \end{aligned}$	1-30	0.05	c	4685
	ELD	PN 1012	500 MHz	5000	-ina	$\begin{aligned} & -42 \text { to } \\ & -55 \end{aligned}$	N/A	N/A	ino	5 GHz	20-70	0.05	,	1995
	LFE	306 Cl	5 GHz	6500	1	120	ino	ino	ino	ino	5,25	ina	R	13,867

Reader-service numbers are given in the index.
Get detailed data: use the reader-service card.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.

				Frequency			Voltage	Sensitivity		Swee		Inout	Type C Cab	Price
	Manufacturer	Model	Minimum Hz	Maximum MHz	Aecuracy \%	$\mathrm{dBm}(\mu \mathrm{V})$	Minimum V	Maximum mV	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$	Width kHz	$\begin{aligned} & \text { Rate } \\ & \mathrm{Hz} \end{aligned}$	$\begin{gathered} \text { Impedance } \\ \mathrm{k} \Omega \end{gathered}$	R Rack P Port	Approx.
$\begin{aligned} & \text { Al5 } \\ & \text { cont } \end{aligned}$	LFE NE-ENGR Tektronix	$\begin{aligned} & 306 \times 1 \\ & 11-20-5 \\ & 1130(\mathrm{c}) \end{aligned}$	8.2 GHz 8.47 GHz 925 MHz	$\begin{aligned} & 9600 \\ & 9630 \\ & 10,500 \end{aligned}$	1 $\pm 5 \mathrm{MHz}$ ino	$\begin{aligned} & (120) \\ & -80 \text { to } \\ & -50 \\ & -75 \text { to } \\ & -105 \end{aligned}$	ino ina N / A	inc ina N/A	ino ino ino	ino 1.5- 20,000 1 kHz - 10 MHz	$\begin{aligned} & 5,25 \\ & 10-30 \\ & N / A \end{aligned}$	$\begin{aligned} & \text { ino } \\ & \text { ina } \\ & 0.05 \end{aligned}$	$\left\lvert\, \begin{aligned} & R \\ & R \end{aligned}\right.$ er	$\begin{aligned} & 13,982 \\ & 2125 \\ & 1925 \end{aligned}$
	ELD	$\begin{aligned} & \text { DU-501/TU- } \\ & \text { LX501 } \\ & \text { PN } 1011 \end{aligned}$	1200 MHz 1200 MHz	12,000	ina ino	$\begin{aligned} & -45 \text { to } \\ & -58 \\ & -45 \text { to } \\ & -58 \end{aligned}$	N/A N/A	N/A N/A	ina ina	cm 12 GHz 12 GHz	20-70	0.05	C	$\begin{aligned} & 4975 \\ & 1995 \end{aligned}$
A16	N -Ross	PSA -510	10 MHz	15,000	$\pm 5 \mathrm{MHz}$	$\begin{aligned} & -95 \text { to } \\ & -75 \end{aligned}$	ino	ina	ina	O-IGHz	1-30	0.05	acr	1250d
	N -Ross	PSA-530	10 MHz	15,000	$\pm 5 \mathrm{MHz}$	$\begin{aligned} & -95 \text { to } \\ & -75 \end{aligned}$	ino	ina	ino	0.1GHz	1-30	0.05	acr	1350d
	Polarad	TSA/STU-3B	4. 37 GHz	22,000	± 1	$\begin{aligned} & -77 \text { to } \\ & -90 \end{aligned}$	ino	ina	ina	$\begin{aligned} & 400- \\ & 25 \mathrm{M} \end{aligned}$	1-30	0.05	c	4590
	Polarad	$\begin{aligned} & \text { TSA-W/STU- } \\ & \text { 3BW } \end{aligned}$	4.37 GHz	22,000	± 1	$\begin{aligned} & -77 \text { to } \\ & -90 \end{aligned}$	ino	ino	ino	$\begin{aligned} & 200- \\ & 5 M \end{aligned}$	1-30	0.05	c	4985
	Polarad	TSA/STU-4B	21 GHz	33,000	± 1	$\begin{aligned} & -57 \text { to } \\ & 75 \end{aligned}$	ino	ino	ina	$\begin{aligned} & 500- \\ & 100 \mathrm{M} \end{aligned}$	1-30	0.05	c	5040
	Polarad	$\begin{aligned} & \text { TSA-W/STU- } \\ & 4 \mathrm{BW} \end{aligned}$	21 GHz	33,000	± 1	$-57 \text { to }$	ino	ino	ino	$\begin{aligned} & 200- \\ & 5 M \end{aligned}$	1-30	0.05	C	5435
	H-P	$85518 / 8518$	10 MHz	40,000	± 1	$\begin{aligned} & -65 \text { to } \\ & -100 \end{aligned}$	ino	ino	ina	$0-2 \mathrm{G}$	3ms$1 \mathrm{~s} / \mathrm{cm}$	ino	C, R	9950
	Panoram	SPA-100	10 MHz	40,000	± 1	$\begin{aligned} & -90 \text { to } \\ & -75 \end{aligned}$	ino	ina	ina	0-70M		ino	C	5470d
	Tektronix	491	10 MHz	40,000	ino	$\begin{aligned} & -70 \text { to } \\ & -110 \end{aligned}$	N/A	N/A	ino	1 kHz , 10 MHz /divb	N/A	0.05	c	4450d
	Tektronix	R491	10 MHz	40,000	ino	$\begin{aligned} & -70 \text { to } \\ & -100 \end{aligned}$	N/A	N/A	ina	1 kHz , 10 MHz /div b	ina	0.05	R	4500
A17	Polarad	SA-84	10 MHz	40,880	± 1	$\begin{aligned} & -40 \text { to } \\ & -90 \end{aligned}$	ino	ina	ina	$\begin{aligned} & 10- \\ & 10 \mathrm{M} \end{aligned}$	1-30	ino	C	5000
	Polarad	SA-84T	10 MHz	40,880	± 1	$\begin{aligned} & -55 \text { to } \\ & -105 \end{aligned}$	ino	ina	ino	$\begin{aligned} & 500- \\ & 5 \mathrm{M} \end{aligned}$	1-30	ino	c	5850
	Polarad	SA-84W	10 MHz	40,880	± 1	$\begin{aligned} & -70 \text { to } \\ & -95 \end{aligned}$	ino	ina	ina	$\begin{aligned} & 10- \\ & 10 \mathrm{M} \end{aligned}$	1-30	0.05	c	6290
	Polarad	2882	10 MHz	42,240	± 1	$\begin{aligned} & -55 \text { to } \\ & -100 \end{aligned}$	ino	ino	ino	10100M	$\begin{aligned} & 0.1- \\ & 33 \end{aligned}$		C, R	6300
	Panoram	SPA-10	10 MHz	43,000	$\begin{aligned} & \pm 1 \\ & \pm 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & -50 \text { to } \\ & -105 \end{aligned}$	ino	ino	ina	$\begin{aligned} & 200- \\ & 80 \mathrm{M} \end{aligned}$	sec	0.05	C	4500
	Polarad	TSA/STU-5B	33 GHz	44,000	± 1	$\begin{aligned} & -50 \text { to } \\ & -65 \end{aligned}$	ino	ina	ino	$\begin{aligned} & 400- \\ & 25 \mathrm{M} \end{aligned}$	1-30	0.05	C	5040
	Polarad	$\begin{aligned} & \text { TSA-W/STU- } \\ & \text { SBW } \end{aligned}$	33 GHz	44,000	± 1	$\begin{aligned} & -50 \text { to } \\ & -65 \end{aligned}$	ina	ino	ina	$\begin{aligned} & 200- \\ & 5 M \end{aligned}$	1-30	0.05	c	5435
	Polarad	SA-84WA	10 MHz	63,680	± 1	$\begin{aligned} & -45 \text { to } \\ & -115 \end{aligned}$	ina	ina	ina	$\begin{aligned} & 10- \\ & 10 \mathrm{M} \end{aligned}$	1-30	ino	c	6490
	Polarad	SA-84WAB	10 MHz	63,680	± 1	$\begin{aligned} & -45 \text { to } \\ & -115 \end{aligned}$	ina	ino	ino	$\begin{aligned} & 10- \\ & 10 \mathrm{M} \end{aligned}$	1-30	ino	C	6665i
	Panoram	SPA-12	10 MHz	73,000	1	$\begin{aligned} & -40 \text { to } \\ & -115 \end{aligned}$	ino	0.001	3 dB	$\begin{aligned} & 0-80 \\ & \mathrm{MHz} \end{aligned}$	1-60	0.05	C, R	6400
Al8	Polarad	29928	10 MHz	91,000	± 1	$\begin{aligned} & -40 \text { to } \\ & -95 \end{aligned}$	ina	ina	ino	10	ina	ino	C, R	9250
	Polarad	SA-84WC	10 MHz	91,040	± 1	$\begin{aligned} & -40 \text { to } \\ & -115 \end{aligned}$	ino	ina	inu	$\begin{aligned} & 10- \\ & 10 \mathrm{M} \end{aligned}$	1-30	ino	c	6790
	Polarad	SA-84WCB	10 MHz	91,040	± 1	$\begin{aligned} & -40 \text { to } \\ & -115 \end{aligned}$	ina	ina	ina	$\begin{aligned} & 10- \\ & 10 \mathrm{M} \end{aligned}$	1-30	ino	C	6965i

Spectrum Analyzer Notes

a. Any Hewlett-Packard 140A/141A oscilloscope.
b. Internal sawtooth.
c. Any Tektronix oscilloscope using letter series plug-in units and $530,540,550$ and 580 series with type 81 adapter.
d. Solid state.
f. Depends on receiver.
g. Sweeps per second.
h. Also $\log 25 \mathrm{~Hz}-25 \mathrm{kHz}$.
i. Depends on signal generator.
k. Any Tektronix 560 series osci!loscope.

- I. Has phase lock.
m. Family has a varying number of filters.
r. Plug-in unit.

30 kHz to 30 MHz

Oscillator

\&
Selective Level Meter

S. L. M ML 42A

The MG44A and ML42A are specifically designed to measure transmission characteristics of 75Ω unbalanced line, system, and their associated equipments. The MG44A has incorporated the use of a frequency synthesis technique which assures exceptionally stable, accurate output frequencies, thereby, achieving versatile precise measurements. In addition, it is capable of performing frequency sweep. amplitude modulation, etc. The ML42A offers the highest possible accuracy which can be retained over a broad range of measurement by providing an optimum circuit switchable according to the type of instrumentation such as measuring of a distortion factor, low level, and level which requires a remarkably high accuracy. By combining the MG44A and ML42A, frequency-ganging operations are automatically accomplished to provide a straight. forward means of achieving highly efficient performance over a wide range of measurement retaining perfect coincidence between frequencies selected by the ML42A and output frequencies derived from the MG44A.

Prices each \$1,896 11 , O. D. I Yokohama

- Calalog information available upon requesi

Anvitou Electric Co. Ctd.

4-12-20, Minamiazabu, Minalo -ku, Tokyo cable address. ANRITDENKI TOKYO

Spectrum Analyzer Cross Index

CODE	COMPANY	MODEL NO.	$\begin{aligned} & \text { TABLE } \\ & \text { LOCA- } \\ & \text { TION } \end{aligned}$	READER SERVICE NO.
ALLISON	Allison Labs Inc. 11301 Ocean Avenue La Habra, California 09631	540	A 9	348
B \& K INST	B \& K Instruments Inc. 5111 West 164th Street Cleveland, Ohio 44124	$\begin{aligned} & 2107 \\ & 2112 \end{aligned}$	$\begin{aligned} & \text { A } 3 \\ & \text { A } 5 \end{aligned}$	349
ELD	Electro/Dato Inc. 3121 Benton Street Garland, Texas 75040	$\begin{aligned} & \text { DU-501/TU- } \\ & \text { LX501 } \\ & \text { DU-501/TU- } \\ & \text { VL501 } \\ & \text { PN } 1010 \\ & \text { PN } 1011 \\ & \text { PN } 1012 \end{aligned}$	$\begin{array}{ll} \text { A } & 15 \\ \text { A } & 14 \\ \text { A } & 14 \\ \text { A } & 15 \\ \text { A } & 15 \end{array}$	350
FED-SCI	Federal Scientific Corp. 615 West 13 lst Street New York, N. Y. 10027	$U A-7 B$	A 11	351
GULTON	Gulton Industries Inc. Metuchen New Jersey	$\begin{aligned} & \text { OCF-1 } \\ & \text { OCF-3 } \\ & \text { OR-WA/1 } \end{aligned}$	$\begin{array}{ll} \text { A } 2 \\ \text { A } 4 \\ \text { A } 4 \end{array}$	352
H-P	Hewlett-Packard Co. 1501 Page Mill Rood Palo Alto, California	$8551 \mathrm{~B} / 851 \mathrm{~B}$	A 16	Contact Local Rep.
HONEYWELL	Honeywell Test Instr. Div. 4800 E. Dry Creek Road Denver, Colorado	9300 Series	A 4	353
KAY	Kay Electric Co. Maple Avenue Pine Brook, N. J. 07058	675 6051 A 6061 A 7029A	$\begin{array}{ll} \text { A } & 2 \\ \text { A } 1 \\ \text { A } 1 \\ \text { A } 2 \end{array}$	354
LFE	LFE Electronics Instrument Division 985 Commonwealth Avenue Boston, Massachusetts	$\begin{aligned} & 190 \mathrm{~A} \\ & 306 \mathrm{Cl} \\ & 306 \mathrm{~S} 1 \\ & 306 \times 1 \end{aligned}$	$\begin{array}{ll} \text { A } 7 \\ \text { A } 15 \\ \text { A } 14 \\ \text { A } 15 \end{array}$	355
N-ROSS	Nelson-Ross Electronics, Inc. 5-05 Burns Avenue Hicksville, New York 11801		A 3 A 7 A 10 A 11 A 1 A 3 A 7 A 10 A 11 A 1 A 3 A 7 A 10 A 11 A 1 A 13 A 12 A 11 A 12 A 13 A 12 A 11 A 13 A 14 A 13 A 14 A 13 A 14 A 16 A 16	356

FAST, EFFICIENT OPTOELECTRONIC SOURCES, DETECTORS...

GaAs source, PIN photodiode
Rugged, compact
Proven reliability
Economy priced

...from HPA

Get optimum performance and design flexibility in the HPA 4107 gallium arsenide infrared source and the fast 4205 photodiode. Both are in identical compact pill packages.
The 4107 delivers a narrow, high-intensity beam when forward biased. The 4205 is a fast detector, DC to 1 GHz , with high sensitivity, stability, and low noise characteristics. Together, these solid-state devices offer unexcelled performance for a broad range of highspeed applications. Quantity price discounts.

For information call your local HP field engineer or write HP Associates, 620 Page Mill Road, Palo Alto, California 94304.

Specifications 4107				
Total Output Power P		Modulation Rise Time	Price	
$100 \mu \mathrm{~W}$		100 nsec	$\begin{aligned} & \$ 21(1-9) \\ & 18(10-99) \end{aligned}$	
Specifications 4205				
Response at $7700 \AA$	Sensitive Area	Speed of Response	Dark Current	Price
$\begin{aligned} & 1.5 \mu \mathrm{~A} / \\ & \mathrm{mW} / \mathrm{cm}^{2} \end{aligned}$	$3.0 \times 10^{-3} \mathrm{~cm}^{2}$	$<1 \mathrm{nsec}$	150 pA(max)	$\begin{aligned} & \$ 16.00(1-9) \\ & 13.60(10-99) \end{aligned}$

HEWLETT

For the men who call the signals

You may be aware that CEC offers the most complete and efficient line of dc and ac signal conditioning equipment. However, we believe that it may be equally important to you to know the reasons why. Namely...
\square Each unit is created to do a specific job at a realistic price.
\square This wide range of instruments assures a compatible match with virtually any transducer device being used today.
\square CEC users are assured the advantage of single-source responsibility from event to readout.

Now, by the numbers (counting off from bottom left to right)..
1-168 DC Amplifier. New from CEC, this solid-state, low level/high level, wideband, differential amplifier is specifically designed to drive high frequency light beam galvanometers. All components and circuitry are contained within a single plug-in module. From one to eight 1-168 DC Amplifiers can be mounted in CEC's $1-028$ or $1-046$ mounting cases. Furthermore, the $1-168$ is compatible with all other CEC amplifiers for economy and convenience.
8-113 Universal Signal Conditioning Module, also new from CEC, represents an advance in strain gage balance and calibration service. Available in two types, $8-113-1$ is a basic universal unit which permits the selection of the circuit and components that will attain the measurement capability desired. 8-113-2 is a balance and calibrate unit which requires only the addition of bridge completion resistors to complete the circuit desired from 100 to 1000 ohms.
1-162A Galvanometer Driver Amplifier is a solid-state, low-gain, wideband power amplifier for driving high frequency light beam galvanometers.
1-163 DC Amplifier can match and deflect all CEC galvanometers to full scale rated deflection, plus properly damp and drive any other available recording galvo. 1-165 DC Amplifier is a differential, highgain, wideband instrument featuring four terminals to provide isolation between input and output and circuitry and ground, thus offering greater application versatility than a single-ended galvo driver.
3-140 Voltage Supply-a solid-state, precision power source specifically designed
for excitation of strain gage transducers and other devices requiring a dc excitation voltage.
1-118 $\mathbf{3} \mathbf{~ K H z}$ Carrier Amplifier is a completely self-contained four-channel carrier amplifier designed to amplify the output of strain gages and other transducers.
8-108 Bridge Balance provides coupling between as many as eight strain gages or resistive-bridge-type pickups and any suitable recording or indicating device.
1-127 20 KHz Carrier Amplifier raises the level of small signals produced by re-sistance-bridge or variable-reluctance-type transducers to a level suitable for operation of companion CEC galvanometers. System D is a multi-channel, dualpurpose system incorporating both linearintegrating and carrier amplifiers. Consequently, any single oscillograph record can indicate strain, pressure, acceleration, vibration and other physical phenomena.

APILLICATIONS

Aerospace, industry and medicine... wherever there is a need to acquire, measure and display dynamic or static data. For complete information about any or all of these signal conditioning instruments, call your nearest CEC Field Office, or write Consolidated Electrodynamics, Pasadena, California 91109. A subsidiary of Bell \& Howell. Bulletin Kit \#308-X 4.
CEC/DATAGRAPH PRODUCTS

Spectrum Analyzer
Cross Index (continued)

MODEL NO.	TABLE LOCA TION	READER jERVICE NO.
11-20-5	A 15	357
LF-2B	A 1	358
LP-laZM	A 3	
SA-3/T-	A 12	
2000NC		
$\begin{aligned} & S A-8 b z / T- \\ & 1000 \end{aligned}$	A 12	
SB-12b/T-100	A 14	
SB-15a	A 10	
SPA -3/25a	A 12	
SPA-3A	A 11	
SPA-10	A 17	
SPA-12	A 17	
SPA-100	A 16	
SSB-3b	A 12	
SSB-50	A 13	
SY-1	A 3	
SY-2	A 3	
TA-2/AL-2	A 4	
TA-2/Ali-1	A 4	
TA-2/UR-3	A 10	
TA-2/VR-4	A 11	
TMI-lb	A 7	
TMI-lb/ 120	A 8	
TMI-4/120	A 8	
TMI-4/200	A 9	
TMI-23	A 8	
TMI-23/200	A 9	
2736	A 4	359
2836	A 13	
2882	A 17	
2936	A 13	
2992B	A 18	
SA-84	A 17	
SA-84T	A 17	
SA -84W	A 17	
SA-84WA	A 17	
SA-84WAB	A 17	
SA-84WC	A 18	
SA-84WCB	A 18	
TSA/STU-2B	A 15	
TSA/STU-3B	A 16	
TSA/STU-4B	A 16	
TSA/STU-5B	A 17	
$\begin{aligned} & \text { TSA-W/STU- } \\ & \text { IB } \end{aligned}$	A 14	
$\begin{aligned} & \text { TSA-W/STU- } \\ & 2 B W \end{aligned}$	A 15	
TSA-W/STU-	A 16	
38W		
TSA-W/STU-	A 16	
4BW		
TSA-W/STU- $5 B W$	A 17	
LCA-1	A 10	360
LL-120	A 8	
LL-190	A 10	
MD-50B	A 12	
SS-5	A 1	
SS-20	A 3	
SS-20L	A 3	
SS-50-S	A 5	
SS-100	A 8	
SS-300	A 10	
SS-500	A 10	
TA-100L	A 8	

basic measuring tools from HEWLETT PACKARD

Field-proven hp 3400A RMS Voltmeter

 Accuracy is $\pm 1 \%$ full scale
High crest factor for accurate pulse, noise measurement DC output 1 v at full scale High maximum input, 1000 v peak

Use it to:

Measure level of noise with a crest factor of 100
Measure rms value of pulse trains
Measure true rms current, using hp 456A Current Probe
Make frequency response tests
Convert ac to dc for recorder or DVM operation

The Hewlett-Packard 3400A RMS Voltmeter measures the actual root mean square of ac voltages which are sinusoidal or nonsinusoidal and have crest factors (ratio of peak to rms) as high as 10 at full-scale de. flection and as high as 100 at 10% of full scale. Overload protection to 30 db or 1000 v peak, whichever is less, on each range. Input resistance 10 megohms. Sca!e calibrated in
both rms volts and db , the latter permitting measurement -72 to +52 dbm. Price 3400A, \$525; Option 01 (db scale uppermost for better resolution), \$550.

Call your Hewlett-Packard field engineer for complete specifications on the 3400A. Or, write HewlettPackard, Palo Alto, Calif. 94304, Tel. (415) 326-7000. Europe: 54 Route des Acacias, Geneva.

ON READER-SERVICE CARD CIRCLE 102

SEND FOR LITERATURE
Occo Manufacturing Corp.
8 Romanelli Avenue, South Hackensack, New Jersey PHONE (Code 201) 342-8984

Spectrum Analyzer
Cross Index (continued)

Cross Index (continued)

MODEL NO.	TABLE LOCATION	READER SERVICE NO.
TA-120L	A 8	
TA-165L	A 9	
TA-190L	A 10	
TA-1200	A 9	
304	A 1	361
305	A 5	
EA-100	A 1	362
FNA BN48301	A 3	363
40-0.6	A 2	364
40-1.3	A 2	
40-3.6	A 4	
40-5	A 5	
40-10	A 6	
40-12	A 6	
40-15	A 5	
40-25	A 7	
40-50	A 7	
40-100	A 9	
100-0.6	A 2	
100-1.3	A 2	
100-3.6	A 4	
100-5	A 5	
100-10	A 6	
100-12	A 6	
100-15	A 5	
100-25	A 7	
100-50	A 8	
100-100	A 9	364
240-0.6	A 2	
240-1.3	A 2	
240-3.6	A 4	
240-5	A 5	
240-10	A 6	
240-12	A 6	
240-15	A 6	
240-25	A 7	
240-50	A 8	
240-100	A 9	
480-0.6	A 2	
480-1.3	A 3	
480-3.6	A 4	
480-5	A 5	
480-10	A 6	
480-12	A 6	
480-15	A 6	
480-25	A 7	
480-50	A 8	
480-100	A 9	
480-125	A 9	
$1 \mathrm{L5}$	A 11	365
1 L 10	A 12	
IL20	A 15	
1L30	A 15	
3L5	A 11	
3L10	A 12	
491	A 16	
R491	A 16	
PAN-1F	A 13	366
PAN-5F	A 13	
PAN-6	A 14	
PAN-7	A 14	

ON READER-SERVICE CARD CIRCLE 104

This was the result of an IMC reducing plan.

Moves more than 11,000 times its own volume of air each minute.

For spot cooling of miniaturized equipment.

Cools micro-circuits, transistor heat sinks, airborne computers and instrumentation . . . de-fogs radomes and optical equipment.

Delivers 6.5 cubic feet of cooling air per minute, yet this precision engineered vaneaxial fan weighs only 1 ounce and measures just 1 inch on a side.

Meets demanding environmental
performance, and reliability specifications, operating efficiently for 1000 hours at $125^{\circ} \mathrm{C}$, much longer at lower temperature ranges.

Standardized, for low cost and easy moishting, IMCube fans are readily placed throughout a system, whether it's already completed, or still in design stage.

IMCube fans with cylindrical hous* ing optionally available.

Ima

MC Magnetics Corp., Eastern Division, 570 Main St., Westbury, N.Y. 11591
Phone (516) 334-7070 or TWX 510 222-4469

Vacuum Tube Voltmeters (dc)

	Monufacturer	Model	Volts			Meter		Amplifier	Ohms		$\begin{aligned} & \text { Type } \\ & \text { C-Cab } \\ & \text { R-Rack } \\ & \text { P-iort. } \end{aligned}$	Misc. Features	Price Approx. S
			Minimum mV	Moximum V	Ranges No.	Scale	Calibration		Minimum	Maximum			
V1	Applied Keithley Keithley Wilk H-P $\mathrm{H}-\mathrm{P}$ Keithley Keithley Keithley	70 148 149 L-6 425A 425AR 150B 600A 2008	$\begin{aligned} & (100 \mathrm{nv}) \\ & (10 \mathrm{nv}) \\ & (100 \mathrm{nv}) \\ & 0.001 \\ & \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.3 \\ & 10 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.003 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & \\ & \pm 1 \\ & \pm 1 \\ & 1 \\ & 10 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \\ & 13 \\ & 17 \\ & 11 \\ & 11 \\ & 14 \\ & 7 \\ & 8 \end{aligned}$	1 in. 1 in. 1 in . 1 in . 1 in. 1 in. 1 in. 1 in . 1 in .	$\begin{aligned} & V, 0-c t r \\ & V, U-c t r \\ & V, O-c t r \\ & \mu V, m V \\ & 0-c t r \\ & 0-c t r \\ & V, O-c t r \\ & \text { ino } \\ & V, O-c t r \end{aligned}$	yes yes yes none yes yes yes yes yes	none 10K none	none 10T none	C, R C R C C R C P P		880 1375 895 675 500 505 825 425 440
V2	R-S IB Decker Keithley Keithley J-Omego Triplett Trio Trio Trio	UVG BN 12061 300 $410-1$ 6108 621 35A 631 105-1 105-2 105-3	$\begin{aligned} & 100 \\ & 1 \\ & \pm 300 \\ & 1 \\ & 100 \\ & 0 \\ & 0 \\ & 1200 \\ & 1000 \\ & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \pm 100 \\ & 100 \\ & 100 \\ & 110 \\ & 120 \\ & \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	14 10 6 11 7 1 4 1 1 6°	1 in . 1 in . 1 in. 1 in . 1 in . 1 in. 1 in . \log 1 in . 1 in. 1 in .	$\begin{aligned} & \text { V, O-ctr } \\ & \text { V, O-ctr } \\ & \mathrm{V}, 0 \text {-ctr } \\ & \mathrm{V}, \Omega A \\ & \mathrm{~V}, \Omega A \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V}, 0-1 \\ & \mathrm{~V}, 0-\mathrm{ctr} \\ & \mathrm{~V}, 0-1 \end{aligned}$	yes none yes yes yes none none yes yes yes	none none none 100 100K none 1.5K ina ina ino	none none none 100T IT none 150M ino ina ina	$\begin{aligned} & \mathrm{C} \\ & \mathrm{P} \\ & \mathrm{C} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{P} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{R} \end{aligned}$		900 175 375 565 425 885 78 85 85 100
V3	Trio Keithley	105-4 106-1 106-2 106-3 106-4 107-1 305-1 305-2 110-1 662	1000 1000 500 1000 1000 10 1000 500 3 ± 500	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & \pm 500 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \\ & 1 \\ & 6 \\ & 6 \\ & 10 \\ & 1 \\ & 1 \\ & 11 \\ & 4 \end{aligned}$	1 in . 1 in . 1 in . 1 in.	$\begin{aligned} & \mathrm{V}, 0-\mathrm{ctr} \\ & \mathrm{~V}, 0-1 \\ & \mathrm{~V}, 0-\mathrm{ctr} \\ & \mathrm{~V}, 0-1 \\ & \mathrm{~V}, 0-\mathrm{ctr} \\ & \mathrm{~V}, 0-\mathrm{ctr} \\ & \mathrm{~V}, 0-\mathrm{ctr} \\ & \mathrm{~V}, 0-1 \\ & \mathrm{~V} \\ & \mathrm{~V}, 0-\mathrm{ctr} \end{aligned}$	yes none yes	ina ina ino ina ino ina ino ina none none	ino ino ino ina ina ina ino ino none none	R 1/2R C		100 140 140 150 150 450 225 225 285 1075
V4	Fluke Fluke Fluke Fluke Fluke Fluke Keithley Keithley Keithley Trio	8018 8018 821 A 821A 825A 825A 630 660A 662 310-1	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 1 \\ & \pm 1 \\ & 1 \\ & 1 \\ & 300 \\ & 500 \\ & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \pm 500 \\ & \pm 500 \\ & +500 \\ & \pm 500 \\ & 500 \\ & \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 4 \\ & 4 \\ & 4 \\ & 12 \end{aligned}$	1 in. 1 in . 1 in. 1 in. 1 in. 1 in. 1 in. 1 in. 1 in. 1 in. expend		yes yes yes yes yes yes ino yes yes yes	none ino	none none none none none none none none none ino	C R C R C R C C C R		485 505 795 815 590 610 1615 650 1075 250
V5	Ballant Dynamics Metronix Metronix	$\begin{aligned} & 365 \\ & 502 \\ & 502 R \\ & 503 \\ & 503 R \\ & 504 \\ & \\ & 504 R \\ & 505 \\ & 505 R \\ & P M-502 A \\ & P M-502 A-C \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 1 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1000 \\ & \pm 1000 \\ & \\ & \pm 1000 \\ & \pm 1000 \\ & \pm 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 9 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 13 \\ & 13 \\ & 11 \\ & 11 \end{aligned}$	\log 1 in. 1 in . 1 in. 1 in . 1 in . 1 in. 1 in. 1 in. 1 in. 1 in.	$\begin{aligned} & V, A, d B \\ & V, O-c t r \\ & V, O-c t r \\ & V, A, O-c t r \\ & V, O-c t r \\ & V, O-c t r \\ & V \\ & V, O-c t r \end{aligned}$	yes yes yes none yes yes yes yes yes ina ina	none none none none none 10 10 none none none none	none none none none none 1M IM none none none none	C C R C R P R C R P P	1 bft bft bft bft bft bft $+$ 1 fk' fk'	620 575 600 625 650 760 785 550 575 ino ina

Circle as many numbers on the reader-service card as you like.
See reader-service card for valuable FREE reprints.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.
VTVM index starts on page T82.

Vacuum Tube Voltmeters (dc) (continued)

(tables continued on pase Tit)

Reader-service numbers are given in the index.
Reader-service cards are good all year.
Circle as many numbers on the reader-service card as you like.
Need a FREE copy of this directory? Circle number 255.

Vacuum Tube Voltmeters (ac)

			Freq	ncy		Volts			eter			hms	Type C-Cab		Price
	Manufacturer	Model	Minimum Hz	Maximum kHz	Minimum mV	Moximum V	Ranges No.	Scale	Calibration	Amplifier	Minimum	Maximum	$\begin{aligned} & \text { R-Rack } \\ & \text { P-Port. } \end{aligned}$	Misc. Features	Approx. S
$\vee 10$	Simpson	303	(dc)	(oc)	1200	1200	5	$1 \mathrm{in} .$	\checkmark, Ω	none	1K	1G	P	s	85
	Ballant	303	1	0.006	$300 \mu \mathrm{~V}$	350	12	1 $l o g . ~$ $l o g$.	ino	yes	none	none	C	fru	320
	GR	1230-A	(dc)	0.010	± 30	± 10	6	1 in .	V, Ω	yes	300K	107	C		525
	Ballant	323	10	0.020	$300 \mu \mathrm{~V}$	330	12	1 in .	$V, 0 B$	ino	none	none	C	fru	520
	Infrared	601	1	1	$(10 \mu \mathrm{~V})$	1	9	$\begin{aligned} & 1 \mathrm{in} . \\ & \log . \end{aligned}$	$V, d B$	none	none	none	C, R	s	1775
	Trio	302-1	380	2	10	300	1	1 in.	V, O-ctr	yes	ina	ina	R	y	275
	Trio	141-1	50	2	10	300	1	1 in.	V, 0-ctr	yes	ino	ino	R	y	185
	Trio	144-1	50	2	10	300	1	1 in .	V, O-ctr	yes	ina	ino	R	y	125
	Trio	143-1	50	2	10	300	10	1 in.	V, O-ctr	yes	ino	ino	R	y	300
	Trio	149-1	50	2	1	300	12	1 in .	V, O-cir	yes	ino	ino	R	y	225
V11	Fluke	883AB	50	5	0.1	1000	8	1 in.	V,0-ctr	ina	none	none	C	bf	1375
	Fluke	883A	30(8.de)	5	0.1	1000	8	1 in .	V, O-ctr	ina	none	none	C	f	1215
	Fluke	887A	20	5	0.1	1000	8	1 in .	V, O-cir	ino	none	none	C	fk	1375
	Fluke	887AB	20	5	0.1	1000	8	1 in.	V, O-ctr	ina	none	none	C	$f \mathrm{fr}$	1535
	Ind-Test	300PB	60	10	1	300	12	1 in .	$\begin{aligned} & \text { V, O-ctr, } \\ & \text { deg } \end{aligned}$	none	none	none	p	$f \mathrm{f}$	1200
	Gerisch	PAV-1A	50	10	1	300	12	1 in.	V, O-ctr	ino	none	none	C	s	1160
	Gertsch	PAV-1AR	50	10	1	300	12	1 in.	V, O-ctr	ino	none	none	R	s	1075
	Gerisch	PAV-2A	50	10	1	300	2	1 in.	V,0-crr	ino	none	none	C	s	1350
	Gertsch	PAV-2AR	50	10	1	300	2	1 in.	V, O-ctr	ino	none	none	R	s	1285
	Fluke	803B	20	10	10	500	9	1 in .	V, O-ctr	none	none	none	C		875
V12	Fluke	803B	20	10	10	500	9	1 in.	V,0-cir	none	none	none	R		895
	Fluke	873A	20	10	0.001	1000	6	1 in.	v, null	yes	none	none	C	fks	875
	Fluke	873AB	20	10	0.1	1000	7	1 in.	V, O-ctr	ino	none	none	C	fkr	1035
	Infrared	600	10	10	($10 \mu \mathrm{v}$)		9	1 in .	V, O-ctr	none	none	none	C, R		1675
	Bollant	350	50	20	100	1199.9	4 dec .	ino	v, null	none	none	none	C	fu	1200
	Gertsch	PAV-3AR	50	20	1	300	12	1 in.	V, O-cir	ino	none	none	C	s	1720
	B8K K Inst	2410	20	20	10	1000	11	$\left\|\begin{array}{l} 1 \mathrm{in} . . \\ \log \end{array}\right\|$	V, db	yes	none	none	C	u	210
	Instr-EL	253-S4	20	20	0.15	500	12	$\begin{aligned} & 1 \mathrm{in} . \\ & \log \end{aligned}$	V,rms	yes	none	none	C, R	s	350
	Instr-EL	253-S5	20	20	0.15	500	12	1 in., \log	V,rms	yes	none	nane	C, R	s	375
	B\&K Inst	2417	2	20	10	1000	11	$\begin{aligned} & 1 \mathrm{in} ., \\ & \mathrm{log} \end{aligned}$	$V, \mathrm{~dB}$	yes	none	none	C	u	445
V13	Ind-Test	300A	15	30	1	300	12	1 in.	$\begin{aligned} & \text { V, 0-ctr, } \\ & \text { deg } \end{aligned}$	none	none	none	R	x	1400
	Ind-Test	3008	15	30	1	300	12	1 in.	V, O-ctr,	none	none	none	R	\times	1675
	Ballant	316	0.01	30	20	200	4	$1 \mathrm{in} .,$	deg p, dB	none	none	none	C	w	375
	Ballant	316-S/2	0.01	30	20	200	4	$\begin{aligned} & 1 \text { in. } . \\ & \text { log } \end{aligned}$	$p-p, d B$	none	none	none	C	w	395
	B8K Inst	2603A	2	40	0.1	1000	11	$\begin{aligned} & 1 \mathrm{in} . \\ & \log \end{aligned}$	V, dB	yes	none	none	C	suw	745
	B \& K Inst	2603B	2	40	0.1	1000	11	$\begin{aligned} & 1 \mathrm{in} . . \\ & \log \end{aligned}$	V, dB	yes	none	none	C	suw	830
	B\&K Inst	2603C	2	40	0.1	1000	11	1 in. .	$V, d B$	yes	none	none	R	suw	830
	Trio	309-1	50	50	10	500	15	1 in. .	V,rms	yes	ino	ino	R	5	325
	Trio		20		10	300	1	expon 1 in.	V,ims		ino	ino	R	s	160
	Trio	103-1	20	50	10	300	10	1 in .	V, rms	yes	ino	ino	R	s	275

(tables continued on page T76)

Circle as many numbers on the reader-service card as you like.
Reader-service cards are good all year.
Reader-service numbers are given in the index.
See reader-service card for valuable FREE reprints
Need a FREE copy of this directory? Circle number 255.
VTVM index starts on page T82.

Model 41 A

RF Microwattmeter

Exceptionally stable microwave power meter providing reliable measurements over a 70 dB range with one power detector. Use of full wave diode detector overcomes limitations of stability, sensitivity and overload of thermal types. No zero balancing except for fractional microwatt measurements. Can be calibrated from low frequency if source Stable dc output.
Power Range : $0.01 \mu \mathrm{~W}(-50 \mathrm{dBm})$ is to $10 \mathrm{~mW}(+10 \mathrm{dBm})$ is
Power Sensitivity: $0.001 \mu \mathrm{~W}(-60 \mathrm{dBm})$
Frequency Range: 0.1 MHz to 7 GHz
Basic Accuracy: $\pm 0.5 \mathrm{~dB}$
Drift: Less than $0.001 \mu \mathrm{~W}$ per hour
Overload Limit: Input of 300 mW cw does not cause damage
Price: 41 A: $\$ 695.00$; rack mounting Model 41 AR, $\$ 720.00$

SENSITIVE RF VOLTMETERS

Capacitance Bridge-1 M Hz
A new capacitance bridge directly replacing the Boonton 75A and 75B series. Embodies a phase sensitive detector which provides capacitance measurements independent of conductance. Amplitude sensitive detector is included for conventional capacitance/loss studies. 3-terminal arrangement permits remote measurements without errors resulting from cable capacitance to ground. 2 . terminal measurements also possible. Provision for measurement of equivalent inductance. Low test signal level. Internal or external dc bias.
Capacitance Measurement: 0 to 1000 pF ; accuracy. $\pm 0.25 \%$; resolution, 0.00005 pF with phase sensitive detector; 0.0005 pF with amplitude sensitive detector Conductance Measurement: 0 to 1000 umhos; accuracy. $\pm 5 \%$; resolution, $0.01 \mu \mathrm{mho}$
curacy, $\pm 5 \%$: resolution, $0.01 \mu \mathrm{mho}$
Inductance Measurement: $25 \mu \mathrm{H}$ to ∞; basic accuracy, $\pm 0.25 \%$
Test Signal: 1 MHz , crystal controlled : level adjustable from 1 mV to 300 mV
Dual External DC Bias: HI to GND and /or LO to GND differential $\pm 400 \mathrm{~V}$, max
Internal DC Bias: HI to LO : -6 V to +150 V
Price: $\$ 1,595.00$

Model
91DA

Voltage Range:	Model 91DA 1 mV is to 3 V is ${ }^{\text {• }}$ (${ }^{\circ}$ to 300 V with Mo	$\frac{\text { Model } 91 \mathrm{H}}{1 \mathrm{mV} \text { is to } 3 \mathrm{~V} \text { is }}$	$\frac{\text { Model } 91 \mathrm{C}}{\frac{\mathrm{mV} \text { fs to } 3 \mathrm{~V} \text { fs }}{} \text {. }}$
Voltage Sensitivity:	$300 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV
Power Sensitivity. (50 Ω) :	$0.0018 \mu \mathrm{~W}$	$0.0002 \mu \mathrm{~W}$	$0.02 \mu \mathrm{~W}$
Basic Accuracy:	$\pm 2 \%$, fs	$\pm 3 \%$, fs	$\pm 5 \%$, fs
Frequency Range:	20 KHz to 1200 MHz , with uncalibrated response to 4000 MHz		
VSWR:	Less than 1.2 to 1200 MHz for all Madels		
Waveform Response:	True rms up to 0.03 V (to 3 V with accessory $100: 1$ Voltage Divider) gradually approaching peak-to-peak (calibrated in rms) above this level		
DC Output	yes	yes	no
dB Range	80 dB	80 dB	70 dB
Price:	$\begin{aligned} & \$ 650.00^{\circ} \\ & \$ 750.00 \dagger \end{aligned}$	\$595.00 *	\$495.00 ${ }^{\text {- }}$

* I Includes 91-12E RF Probe, 91-13B RF Probe Tip, and 91-8B 50 ohm Adapter
\dagger With complete Accessory Kit, consisting of $91-12 E$ RF Probe
91-13B RF Probe Tip, 91-6C Unterminated BNC Adapter, 91-7C 100:1 Voltage Divider,
91-8B 50 ohm Adapter, 91-14A Tee Adapter, 91-15A 50 ohm Termination,
all in 91-18A Accessory Storage Box.

Accessories for RF Voltmeters:

91-4C	1 KHz to 250 MHz Probe	$\begin{aligned} & \text { Price } \\ & \$ 65.00 \end{aligned}$
91-6C	Undeterminated BNC Adapter	20.00
91-7C	$100: 1$ Voltage Divider (50 KHz io 700 MHz)	35.00
91-8B	50Ω BNC Adapter (20 KHz to 600 MHz) (other available)	25.00
91-12E	20 KHz to 1200 MHz Probe	45.00
91-13B	RF Probe Tip.	3.00
91-14A	Type N "Tee" Adapter (20 KHz to 1200 MHz)	35.00
91-15A	50Ω Type N Termination (20 KHz to 1200 MHz)	25.00
91-16A	Unterminated Type N Adapter	20.00
91-18A	Accessory Storage Box.	10.00

DC VOLTAGE INSTRUMENTATION

Model 56A

Sensitive DC

Null Detector

Electronic galvanometer providing exceptionally high sensitivity and high input impedance. Especially high input impedance. Especially valuable as indicator in conjunction
with Wheatstone Bridge. Zero-center with Wheatstone Bridge. Zero-center
scale. 60 dB scale compression in Hunt Mode virtually eliminates range switching when measuring specimens of unknown value. Provision for remote mode switching. Ampli fier output available at front panel terminals. Either floating or grounded operation.
Voltage Sensitivity: $1 \mu \mathrm{~V}$ to 100 V end scale in 8 ranges
Current Sensitivity: 0.1 pA to $10 \mu \mathrm{~A}$, es Input Resistance: $10 \mathrm{M} \Omega$, all ranges OperatingModes: Hunt (60 dB meter scale compression) ; Calibrate (linear meter scale) Amplifiar Output Capability: $\pm 1 \mathrm{~mA}$ into 1000 ת
Amplifier Gain: -40 to +100 dB
Price: $\$ 495.00$ (rack mounted Model 56AR Price:
\$520.00)

Model 95A
 Sensitive DC

Microvolt/Picoammeter

Unusually broad range of dc voltage and current measurements covered in 42 ranges. Front panel range and in 42 ranges. Front panel range and function switching uniquely simple and convenient. Zero-center meter Fast response. Exceptionally stable amplifier output at front panel. Amplifier output gain and reference level adjustable without interaction with meter. Either floating or grounded operation for voltage; floating for
 current.
Voltage Range : $10 \mu \mathrm{~V}$ to 1000 V end scale: Accuracy, $\pm 3 \%$; sensitivity, $1 \mu \mathrm{~V}$ Current Range: 1 pA to 1 A es: Accuracy, $\pm 4 \%$; sensitivity, 0.1 pA
Voltmeter Input Resistance: $10 \mathrm{M} \Omega$, all ranges Amplifier Output: $\pm 1 \mathrm{~V}$ es across 1000Ω Amplifier Gain: 100,000 max
Price: $\$ 550.00$ (rack mounted Model 95A-R, \$575.00)

Vacuum Tube Voltmeters (ac) (continued)

See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Reader-service cards are good all year.
Get detailed data: use the reader-service card.
Need a FREE copy of this directory? Circle number 255.
VTVM index starts on page T82.

Vacuum Tube Vo

	Manufacturer	Model	Frequency	
			Minimum (Hz)	${ }_{(k)}^{\text {Ma }}$
V23	RCA	WV-77E	40(8dc)	500
	Marconi	TF2600		500
	Ballant	3108	10	600
	Ballant	$3108-5 / 2$	10	600
	Ballant	314 A	10	600
	Ballant	314A-S/2	10	600
	Fluke	910A	10	700
	Fluke	910A	10	700
	$\begin{aligned} & \text { Radiomt } \\ & \text { R-S } \end{aligned}$	RV31 UVF BN 12015	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	10 10,
V24	$\begin{aligned} & \text { H-P } \\ & \text { Ballant } \end{aligned}$	$\begin{aligned} & 3400 \mathrm{~A} \\ & 317 \end{aligned}$		10, 11,
	Ballant	317-5/2	10	11,
	R-S	URI B 1050	30(8dc)	20,
	Jennings	J-1003	10	20,
	R-S	USVH BN 1521	10,000	30,
	Ballant Micro-In Micro-In Radiomt	$\begin{aligned} & 393 \\ & 52018 \\ & 5202 \\ & \text { RV23 } \end{aligned}$	$\begin{array}{\|l} 25 \\ (\mathrm{dc}) \\ (\mathrm{dc}) \\ 20 \end{array}$	30, 50 50 100
$\checkmark 25$	Hickok	209C	10(8.dc)	200
	Meas'mis	162	20(8dc)	350
	Meas'mts	162-R	20(8.dc)	350
	R-S	USWV BN 1522	30	400
	R-S	USVVBN 1522	30	480
	H-P	4108	20(8.dc)	700
	H-P	4108 R	20(8de)	700
	H-P	410C	20(8.dc)	700
	Radiomtr	RV13	10(8de)	700
	R-S	URU BN 1080	10(8dc)	800
V26	H-P	411 A	500,000	1,0
	H-P	$411 A R$	500, 000	1,0
	Ballant	340	100, 000	1,0
	Ballant	$340-5 / 2$ 345	100,000	1,0
	dollant		20(adc)	
	Ballant	345-5/2	20(8.de)	1,0
	Boonton	91DA	20,000	1,2
	Boonton	91 DAR	20,000	1,2
	Millivac	MV-388	10,000	1,2
	Millivac	MV-38B	10,000	1,2

Reader-service cards are good al See reader-service card for valua Need a FREE copy of this director

Even though Fluke differential voltmeters feature dc accuracies high as 0.0025%, ac accuracies of 0.05%, and 100 microvolts full scale sensitivity, they are so well designed that use is both simple and easy. Solid state bench top models are adaptable for half- or full-rack mounting... Many are offered in both line and rechargeable battery operated versions. Vacuum-tube models are available in cabinet or full-rack configurations. There are many accessories, too. All the fine features of Fluke differential voltmeters should surprise no one familiar with the Fluke line. For uncommon standards laboratory performance in portable instrumentation has always been and continues to be standard. For particulars, write Fluke, Box 7428, Seattle, Washington 98133. Phone: (206) 774-2211. TWX: (910) 449-2850. In Europe address Fluke International Corporation, P. O. Box 5053, Ledeboerstraat 27, Tilburg, Holland. Telex: 844-50237.

Count 'em. It's the world's largest, most sophisticated line of differential voltmeters. And what a line! You can buy a solid state dc, ac/dc, or true rms voltmeter. Or our vacuum tube version. You'd think Fluke invented the differential voltmeter. (Well, we did.)

probe
able battery pack

Vacuum Tube Voltmeters (ac) (continued)

	Manufacturer	Model	Frequency		Volis			Meter		Amplifier	Ohms		Type C-Cob R-Rack P-Port.	Mise. Features	Price Approx. S
			$\begin{gathered} \text { Minimum } \\ \mathrm{Hz} \end{gathered}$	Maximum kHz	Minimum mV	Maximum v	Ranges No.	Scole	Calibration		Minimum	Marimum			
V27	Millivac	MV-928A	10,000	1,200,000	1	3	8	1 in.	$\begin{aligned} & V, 0 \text {-ctr, } \\ & d B \end{aligned}$	yes	none	none	C	frx	ino
	Metronix	PM-520A	10,000	1,200,000	3	3	7	1 in.	$\begin{aligned} & V, 0-c r \text {, } \\ & d B \end{aligned}$	yes	none	none	P	fkx	ino
	Marconi	2604	20(8dc)	1,500,000	oc 25 de 10	$\begin{aligned} & 300 \\ & 1000 \end{aligned}$	7	$\begin{aligned} & 1 \mathrm{in} ., \\ & \mathrm{log} \end{aligned}$	n, V, Ω	none	500	500M	C	s	395
	Boonton	91 C	10,000	1,200,000			7	$\begin{aligned} & 1 \mathrm{in} . \\ & \log \end{aligned}$	$V, d B$	none	none	none	C	uw	495
	Boonton	91H	10,000	1,200,000	0.3	3	8	$\left\lvert\, \begin{aligned} & 1 \text { in. } \\ & \log \end{aligned}\right.$	$V, d B$	none	none	none	C	uw	595
	Millivac	MV-28B	10,000	1,200,000	1	3	8	$\left\|\begin{array}{l} 1 \mathrm{in} . \\ \log \end{array}\right\|$	$V, d B$	yes	none	none	R	uw	575
	Millivac	MV-28B	10,000	1,200,000	1	3	8	$1 \mathrm{lin}.$.	$V, d B$	yes	none	none	C	uw	550
	Millivac	MV-828A	10,000	1,200,000	1	3	8	1 log in.	$\begin{aligned} & \mathrm{V}, 0-\mathrm{ctr}, \\ & \mathrm{~dB} \end{aligned}$	yes	none	none	C	$f \times$	ino
	GR	1806-A	20(8dc)	1,500,000	1500	1500	4	\log	V, Ω	none	200M	IG	C	w	595
	R-S	URV BN 10913	10,000	1,600,000	2	10	7	$\begin{aligned} & 1 \mathrm{in} ., \\ & \log \end{aligned}$	\checkmark	none	none	none	C	s	1170

See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.
VTVM index starts on page T82.

AC and DC VTVM Notes

b. Battery operated
f. Solid state
k. Also works off 400 Hz power lines
q. Amplifier output
r. Battery and line operated
s. Responds to average meter
\dagger. Responds to dc meter
u. Responds to rms meter
w. Responds to p / t meter
x. Responds to true rms meter
y. Responds to phase meter

There are two kinds of spectrum analyzers

This kind has a swept first LO and high frequency first IF to permit viewing of wide (2 GHz) spectra, free from images, spurious and residual responses; calibrated 60 dB display range for accurate comparison of signals widely different in amplitude; RF attenuator for detecting overdriven input and for setting level; just one wideband ($0.01-12 \mathrm{GHz}$), sensitive $(-100$ to -85 dBm) mixer with extremely flat response ($\pm 1 \mathrm{~dB}$ on fundamental mixing, $< \pm 3 \mathrm{~dB}$ for harmonics) over full 2 GHz sweeps. These and other unique features come to almost $\$ 10,000$.

The other kind of spectrum analyzer does not offer any of these performance features. That's why it costs half as much.

HEWLETT hP PACKARD
To find out more about 1967-style spectrum analysis, call your Hewlett-Packard field engineer for complete data on the 8551B/851B, or write Hewlett-Packard Palo Alto, California 94304; Europe: 54 Route des Acacias, Geneva

VTVM Cross Index

CODE	COMPANY	MODEL NO.	TABLE LOCATION	READER SERVICE NO.	CODE	COMPANY	MODEL NO.	TABLE LOCAIION	READER SERVICE NO.
ACTON	Acton Labs Sub Bowmar Instr. Corp. 533 Main Street Acton, Massachusetts 01720	365-A	V 15	367	DYTRON	Dytronics Co. Inc. 5566 North High Street Columbus, Ohio 43214	$\begin{aligned} & 211 \\ & 240 \\ & 241 \\ & 242 \end{aligned}$	$\vee 15$ V 14 V 14 $\vee 15$	375
APPLIED	Applied Research Associates of Texas Inc. Box 9406 Austin, Texas	70	$\vee 1$	368	FLUKE	John Fluke Mfg. Co. Inc. Box 7428 Seatlle, Washington	$801 B$ 803B 8038 803D 821 A	V 4 V 11 V 12 $\vee 16$	376
AVO-LTD	Avo Lid. Amacoil Instrument Division 750 Saint Anns Avenue Bronx, New York 10456	Electronic Test Meter	$\vee 20$	369			823A 825A 871A $871 A B$ 873A	$\begin{array}{ll} V & 16 \\ V & 4 \\ V & 8 \\ V & 8 \\ V & 12 \end{array}$	
B\&K INST	B \& K Instruments Inc. 5111 West 164th Street Cleveland, Ohio 44124	$\begin{aligned} & 2409 \\ & 2410 \\ & 2416 \\ & 2417 \\ & 2603 A \\ & 2603 B \\ & 2603 C \\ & 2604 A \\ & 2604 B \\ & 2604 C \end{aligned}$	$\begin{array}{lll} V & 17 \\ V & 12 \\ v & 17 \\ V & 12 \\ V & 13 \\ V & 13 \\ V & 13 \\ V & 17 \\ V & 17 \\ V & 17 \end{array}$	370			873AB 881 A $881 A B$ 883A 883AB 885A 885AB 887A 887AB 895A 910A	$\begin{array}{ll}V & 12 \\ V & 12 \\ V & 9 \\ V & 11 \\ V & 11 \\ V & 9 \\ V & 9 \\ V & 11 \\ V & 11 \\ V & 7 \\ V & 23\end{array}$	
BALLANT	Ballantine Labs Inc. Box 97 Boonton, New Jersey	$\begin{aligned} & 300 \mathrm{E} \\ & 300 \mathrm{E}-\mathrm{S} / 2 \\ & 300 \mathrm{G} \\ & 300 \mathrm{G}-\mathrm{S} / 2 \\ & 300 \mathrm{H} \\ & 300 \mathrm{H}-\mathrm{S} / 2 \\ & 300 \mathrm{M} \\ & 302 \mathrm{C} \\ & 302 \mathrm{C}-\mathrm{S} / 2 \\ & 303 \\ & 305 \mathrm{~A} \\ & 305 \mathrm{~A}-\mathrm{S} / 2 \\ & 310 \mathrm{~B} \\ & 3108-\mathrm{S} / 2 \\ & 314 \mathrm{~A} \\ & 314 \mathrm{~A}-\mathrm{S} / 2 \\ & 316 \\ & 316-\mathrm{S} / 2 \\ & 317 \\ & 317-\mathrm{S} / 2 \\ & 320 \mathrm{~A} \\ & 320-\mathrm{S} / 2 \\ & 321 \\ & 321-\mathrm{S} / 2 \\ & 323 \\ & 340 \\ & 340-\mathrm{S} / 2 \\ & 345 \\ & 345-\mathrm{S} / 2 \\ & 350 \\ & 365 \\ & 365-\mathrm{S} / 2 \\ & 393 \end{aligned}$	$\vee 17$ $\vee 17$ $\vee 18$ V 18 $\vee 19$ $\vee 19$ V 18 V 16 $\vee 17$ $\vee 10$ $\vee 19$ $\vee 19$ $\vee 23$ $\vee 23$ $\vee 23$ $\vee 23$ $\vee 13$ $\vee 13$ $\vee 24$ $\vee 24$ $\vee 22$ $\vee 22$ $\vee 22$ $\vee 22$ $\vee 10$ $\vee 26$ V 26 V 26 $\vee 26$ $\vee 12$ $\vee 1$ $\vee 9$ $\vee 24$	371					
					GR	General Radio Co. 22 Baker Avenue West Concord, Mass. 01781	$\begin{aligned} & \text { 1230-A } \\ & \text { 1806-A } \end{aligned}$	$\begin{aligned} & \vee 10 \\ & \vee 27 \end{aligned}$	377
					GERTSCH	Gertsch Products Inc. Singer Co., Metrics Div. 3211 S. LoCienega Blvd. Los Angeles 16, California	$\begin{aligned} & \text { PAV-1A } \\ & \text { PAV-1AR } \\ & \text { PAV-2A } \\ & \text { PAV-2AR } \\ & \text { PAV-3AR } \end{aligned}$	$\begin{array}{lll} v & 11 \\ v & 11 \\ v & 11 \\ v & 11 \\ v & 12 \end{array}$	
					HEATH	Heath Co. Sub Daystrom Inc. Benton Harbor, Michigan	$\begin{aligned} & 1 M-13 \\ & 1 M-21 \\ & 1 M W-11 \mid \end{aligned}$	$\begin{array}{ll} \text { V } 19 \\ V & 18 \\ \text { V } 19 \end{array}$	266
					H-P	Hewlett-Packard Co. 1501 Page Mill Road Palo Alto, Colifornio	400D 400DR 400 H 400 HR 400 L 400LR 403A 4038 4108 4108 R 410 C 411A 4 IIAR 412A 412AR 413A 4 IJAR	$\vee 21$ $\vee 21$ V 21 $\vee 21$ $\vee 21$ $\vee 22$ $\vee 20$ $\vee 20$ $\vee 25$ $\vee 25$ $\vee 25$ $\vee 26$ $\vee 26$ $\vee 8$ $\vee 8$ $\vee 8$ $\vee 8$	Contact Local Rep.
BOONTON	Boonton Electronics Corp. Route 287 at Smith Road Parsippany, New Jersey	916 91DA 9IDAR 91H 95A	$\begin{array}{ll} \vee & 27 \\ \vee & 26 \\ \vee & 26 \\ \vee & 27 \\ \vee & 9 \end{array}$	372			$\begin{aligned} & \text { 425A } \\ & \text { 425AR } \\ & 740 B \\ & 741 \mathrm{~B} \\ & 3400 \mathrm{~A} \end{aligned}$	v 1 $\vee 1$ $\vee 8$ $\vee 15$ $\vee 24$	
B URR - B R	Burr-Brown Research Corp. Box 6444 Tucsan 16, Arizona	300	$\checkmark 19$	373	HICKOK	Hickok Elec. Instr. Co. 10555 DuPont Avenue Cleveland, Ohio 44108	$\begin{aligned} & 209 \mathrm{C} \\ & 470 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \vee 25 \\ & \vee 20 \end{aligned}$	379
DYNAMICS	Dynamics Instrumentation Co. 383 Monterey Pass Road Monterey Park, California	501$501 R$502$502 R$503$503 R$504$504 R$505$505 R$	$\begin{array}{ll} \vee & 16 \\ \vee & 16 \end{array}$	374	HOUSTON	Houston Instrument Corp. 4930 Terminal Avenue Bellaire, Texas 77401	HLVC-150 HLVC-1508 HLVC-150R	$\begin{array}{ll} v & 14 \\ v & 15 \\ v & 15 \end{array}$	380
			$\begin{aligned} & V 5 \\ & V 5 \\ & V 5 \\ & V 5 \\ & V \end{aligned}$		18	IB Instruments Inc. 7016 Euclid Avenue Clevelond, Ohio	$\begin{aligned} & 300 \\ & 600 \end{aligned}$	$\begin{aligned} & \vee 2 \\ & \vee 8 \end{aligned}$	381
			$\begin{aligned} & \vee 5 \\ & \vee 5 \\ & \vee 5 \\ & \vee 5 \end{aligned}$		IND-TEST	Industrial Test Equip. Co. 20 Beechwood Avenue Port Washington, N.Y. 11050	$\begin{aligned} & 300 \mathrm{~A} \\ & 300 \mathrm{~B} \\ & 300 \mathrm{~PB} \end{aligned}$	$\begin{array}{lll} V & 13 \\ V & 13 \\ V & 11 \end{array}$	382

Frequency Meters

	Manufacturer	Model	Frequency			$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$	$\begin{aligned} & \text { Sensitivity } \\ & \mathrm{mV} \end{aligned}$	Power Required to Operate	Circuit Type	Type C-Cab R-Rack P-Por ${ }^{1}$	Price Approx. S	
			Minimum MHz	Moximum MHz	Bands No.							
	$\begin{aligned} & R-S \\ & R-S \end{aligned}$ Weston $\mathrm{H}-\mathrm{P}$ $\mathrm{H}-\mathrm{P}$	FZN BN47092 FZN BN47092/60 339 500 C 500B	$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \\ & 20 \mathrm{~Hz} \\ & 3 \mathrm{~Hz} \\ & 3 \mathrm{~Hz} \end{aligned}$	50 Hz 60 Hz 900 Hz 0.1 0.1	$\begin{aligned} & 2 \\ & 2 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \pm 0.0025 \mathrm{~Hz} \\ & \pm 0.003 \mathrm{~Hz} \\ & 0.14-4 \\ & 2 \\ & 2 \end{aligned}$	ino ino ina 200 200	$\begin{aligned} & 115 / 230 \mathrm{Vac} \\ & 115 / 230 \mathrm{Vac} \\ & \text { line } \\ & 115 / 230 \mathrm{Vac} \\ & 115 / 230 \mathrm{Vac} \end{aligned}$	ina ino LC COC COC	C C C C, R C, R	$\begin{aligned} & 1765 \\ & 1765 \\ & 850 \\ & 345 \\ & 335 \end{aligned}$	
	$\begin{aligned} & \text { EL-RES } \\ & \text { R-S } \\ & \text { Sell-Trn } \\ & \text { GR } \\ & \text { Measurements } \end{aligned}$	Freq Meter FKM BN47051 401A 1142-A 59LF	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \\ & 3 \mathrm{~Hz} \\ & 0.100 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & 1 \\ & 1.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 9 \\ & 9 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & 1.5 \\ & 2 \\ & \pm 0.2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { ino } \\ & 100 \\ & 100 \\ & 20 \\ & \text { ino } \end{aligned}$	line line line line line	ina COC ina COC b	$\begin{aligned} & C \\ & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \text { ina } \\ & 1765 \\ & 249 \\ & 595 \\ & 168 \end{aligned}$	
T2	GR R-S Measurements Lampkin Lampkin Radiomir Barker \& W Millen Millen Millen	$\begin{aligned} & 1142-A / 1156-A \\ & \text { WEN BN } 435 \\ & 700 \\ & 105-\text { B MFM } \\ & 103-B \text { MFM } \\ & \\ & \text { GD01 } \\ & 600 \\ & 90651 \\ & 90661 \\ & 90662 \end{aligned}$	$\begin{aligned} & 30 \mathrm{~Hz} \\ & 0.01 \\ & 25 \\ & 0.100 \\ & 0.100 \\ & 2 \\ & 1.75 \\ & 1.7 \\ & 1.7 \\ & 0.225 \end{aligned}$	15 30 50 175 175 220 260 300 300 300	$\begin{aligned} & 5 \\ & 7 \\ & 1 \\ & 1 \\ & 1 \\ & 5 \\ & 5 \\ & 7 \\ & 7 \\ & 11 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.5 \\ & \pm 20 \mathrm{~Hz} \\ & 0.02 \\ & 0.02 \\ & \pm 2 \\ & \text { ino } \\ & 2 \\ & 0.5 \\ & 0.5 \end{aligned}$	20 5 100 ino ina ina ino ino ino ina	line line line line line $115 / 230 \mathrm{Vac}$ line line line line	COC m d d d be b be be be	C C 2C C C P P P P P	$\begin{aligned} & 1085 \\ & 500 \\ & 1500 \\ & 295 \\ & 240 \\ & \\ & 114 \\ & 55 \\ & 69 \\ & 100 \\ & 155 \end{aligned}$	
T3	Millen Measurements Radar Radar Fairchild Measurements Motorola Gertsch Gertsch Narda	$\begin{aligned} & 90662-A \\ & 59 \\ & \text { D828-1 } \\ & \text { D828-10 } \\ & 5890-B \\ & \\ & 760 \\ & T-1021 A \\ & \text { FM-9U } \\ & \text { FM-9 } \\ & 804 \end{aligned}$	$\begin{aligned} & 0.225 \\ & 2.2 \\ & 400 \\ & 400 \\ & 25 \\ & 25 \\ & 25 \\ & 150 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 300 \\ & 420 \\ & 450 \\ & 450 \\ & 470 \\ & \\ & 475 \\ & 475 \\ & 486 \\ & 486 \\ & 500 \end{aligned}$	$\begin{aligned} & 11 \\ & 7 \\ & 1 \\ & 1 \\ & 1 \\ & \\ & 3 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & \pm 2 \\ & 0.1 \\ & 0.1 \\ & \text { ina } \\ & 0.0004 \\ & \pm 100 \mathrm{~Hz} \\ & \pm 0.000 \mathrm{I} \\ & \pm 0.000 \\ & 0.5 \mathrm{MHz} \end{aligned}$	ino ina ino ina 250 1mW 25 ina ino 0.5 mW	line line none none e line line $115 / 230 \mathrm{Vac}$ $115 / 230 \mathrm{Vac}$ ina	bep b i in d d d RC RC i	$\begin{aligned} & \text { P } \\ & \text { C } \\ & \text { COAX } \\ & \text { COAX } \\ & \text { C } \end{aligned}$	195 168 245 285 435 980 983 1645 1495 400	
T4	R-S Fairchild Measurements FEL FEL R-S PRD Gertsch Gertsch Gertsch	WAM BN4312/2 Mark \|l	-A 59UFH WC-5 10-1N WCF510-4N XUC BN44467 587-A FM-6 FM-6R FM-3A	$\begin{aligned} & 30 \\ & 0.005 \\ & 420 \\ & 500 \\ & 500 \\ & \\ & 470 \\ & 250 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	500 500 940 1000	$\begin{aligned} & 8 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.0002 \\ & \pm 2 \\ & \pm 0.01 \\ & 0.01 \\ & 10^{-9} \\ & \pm 0.2 \\ & 0.0001 \\ & 0.0001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 10 \\ & \text { ina } \\ & \text { ina } \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \\ & 3 \mu \mathrm{~A} / \mathrm{mW} \\ & 1 \\ & \text { ina } \\ & 0.5 \\ & 10 \\ & \text { ina } \end{aligned}$	e line line none none line none line line e	m k b h ino ei h d d d	$\begin{aligned} & C \\ & C \\ & C \\ & \text { COAX } \\ & \text { C } \\ & \text { C } \\ & \text { COAX } \\ & C \\ & R \\ & C \end{aligned}$	$\begin{aligned} & 500 \\ & 436 \\ & 198 \\ & 920 \\ & 960 \\ & \\ & 7705 \\ & 350 \\ & 2140 \\ & 2100 \\ & 1260 \end{aligned}$
T5	Gertsch Gertsch Gertsch Gertsch FEL FEL FEL	$\begin{aligned} & \text { FM-7 } \\ & \text { FM-3 } \\ & \text { FM-3R } \\ & \text { SSG-1 } \\ & \text { WC912-1N } \\ & \\ & \text { WC912-3N } \\ & \text { WCF912-4N } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 0.010 \\ & 900 \\ & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \\ & 1200 \\ & 1200 \\ & 1200 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 12 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.0002 \\ & 0.001 \\ & 0.001 \\ & 1 / 10^{7} \\ & \pm 0.01 \\ & \\ & \pm 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \\ & \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \end{aligned}$	line e line $115 / 230 \mathrm{Vac}$ none none none	d d d d h i ina	C C R C COAX COAX C	$\begin{aligned} & 1625 \\ & 850 \\ & 900 \\ & 12,500 \\ & 560 \\ & \\ & 560 \\ & 525 \end{aligned}$	
T6	Doug-MW Diamond Nardo FEL FEL FEL FEL Gen -MW Diamond Nardo	```440L 2090 805 WC-1217-1N WC 1217-3N WCF1217-4N WDS1020-1N N687 2091 806```	$\begin{aligned} & 1100 \\ & 900 \\ & 500 \\ & 1200 \\ & 1200 \\ & \\ & 1200 \\ & 1000 \\ & 950 \\ & 1400 \\ & 1500 \end{aligned}$	$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1700 \\ & 1700 \\ & \\ & 1700 \\ & 2000 \\ & 2000 \\ & 2300 \\ & 2400 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \mathrm{MHz} \\ & 1 \\ & 1 \mathrm{MHz} \\ & \pm 0.01 \\ & \pm 0.01 \\ & \\ & 0.01 \\ & \pm 0.05 \\ & 0.1 \\ & 1 \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { ina } \\ & \text { ina } \\ & 0.5 \mathrm{~mW} \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \\ & \\ & 20 \mu \mathrm{~A} / \mathrm{mW} \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \\ & 0.5 \mathrm{~mW} \end{aligned}$	none none ino none none none nonc none none ina	hi i i h i ino h hi h i	COAX COAX C COAX COAX C COAX COAX COAX C	$\begin{aligned} & 350 \\ & 275 \\ & 400 \\ & 560 \\ & 560 \\ & \\ & 525 \\ & 395 \\ & 325 \\ & 490 \\ & 400 \end{aligned}$	

See reader-service card for valuable FREE reprints.
Reader-service cards are good all year.
Get detailed data: use the reader-service card.
Need a FREE copy of this directory? Circle number 255.
Frequency meter index starts on page T86.

Frequency Meters (continued)

	Manufacturer	Model	Frequency			Accuracy	Sensitivity $M V(f s)$	Power Required to Operate	Circuir Type	Type C-Cab R-Rack P-Por!	Price Approx. S
			Minimum MHz	Maximum MHz_{2}	Bands No.						
T7	$R-S$ FEL FEL FEL Narda	$\begin{aligned} & \text { WAL BN } 4321 / 2 / 50 \\ & \text { WC-1628-IN } \\ & \text { WC-1628-3N } \\ & \text { WCF1628-4N } \\ & \text { 12LI } \end{aligned}$	$\begin{aligned} & 500 \\ & 1600 \\ & 1600 \\ & 1600 \\ & 600 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2800 \\ & 2800 \\ & 2800 \\ & 3000 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.08 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.01 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 3 V \\ & 20 \mu A / m W \\ & 20 \mu A / m W \\ & 20 \mu A / m W \\ & 5 \mathrm{~mW} \end{aligned}$	e none none none ina	m i ina i	$\begin{aligned} & \text { COAX } \\ & \text { COAX } \\ & \text { COAX } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 900 \\ & 560 \\ & 560 \\ & 525 \\ & 975 \end{aligned}$
	PRD Doug-MW FEL FEL PRD	$\begin{aligned} & 560 \\ & 440 \mathrm{~S} \\ & \text { WC-2335-1N } \\ & \text { WCF2335-4N } \\ & 560-S 1 \end{aligned}$	$\begin{aligned} & 2400 \\ & 2400 \\ & 2300 \\ & 2300 \\ & 2700 \end{aligned}$	$\begin{aligned} & 3400 \\ & 3400 \\ & 3500 \\ & 3500 \\ & 3700 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \mathrm{MHz} \\ & 2 \mathrm{MHz} \\ & \pm 0.01 \\ & 0.01 \\ & \pm 0.3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~mW} \\ & \text { ina } \\ & 20 \mu A / \mathrm{mW} \\ & 20 \mu A / \mathrm{mW} \\ & 5 \mathrm{~mW} \end{aligned}$	none none none none line	h, i h, i h ina m	$\begin{aligned} & \text { C } \\ & \text { COAX } \\ & \text { COAX } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { ina } \\ & 285 \\ & 560 \\ & 600 \\ & \text { ina } \end{aligned}$
T8	PRD FEL FXR/MLAB Gen-MW Radar	$\begin{aligned} & \text { 583-D } \\ & \text { WDB2040-IN } \\ & \text { N410A } \\ & \text { N604 } \\ & \text { D719-1 } \end{aligned}$	$\begin{aligned} & 2400 \\ & 2000 \\ & 1000 \\ & 1900 \\ & 2000 \end{aligned}$	3700 4000 4000 4000 4000	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.05 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	ina ina ina ino ino	none none none none none	h h h h, i i	C COAX COAX COAX COAX	$\begin{aligned} & \text { ino } \\ & 395 \\ & 475 \\ & 300 \\ & 250 \end{aligned}$
	Radar Radar Radar R-S H-P	D719-2 D959-0 D959 WAT BN4322/50 536A	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 1200 \\ & 960 \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \\ & 4000 \\ & 4200 \\ & 4200 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & \pm 0.1 \\ & \pm 0.17 \end{aligned}$	ina ina ina 500 N/A	none none none none none	m h,o h m m	COAX COAX COAX COAX COAX	$\begin{aligned} & 275 \\ & 3.55 \\ & 320 \\ & 895 \\ & 550 \end{aligned}$
T9	FEL Diamond FEL FEL FEL	$\begin{aligned} & \text { WDS- } 3645-1 N \\ & 2092 \\ & \text { WC }-3545-1 N \\ & \text { WC- } 3545-3 N \\ & \text { WCF3545-4N } \end{aligned}$	$\begin{aligned} & 3600 \\ & 2200 \\ & 3500 \\ & 3500 \\ & 3500 \end{aligned}$	$\begin{aligned} & 4300 \\ & 4300 \\ & 4500 \\ & 4500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 1 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.01 \end{aligned}$	ino ina $20 \mu \mathrm{~A} / \mathrm{mW}$ $20 \mu \mathrm{~A} / \mathrm{mW}$ $20 \mu \mathrm{~A} / \mathrm{mW}$	none none none none none	h i h i ino	COAX COAX COAX COAX C	$\begin{aligned} & 1200 \\ & 200 \\ & 575 \\ & 575 \\ & 650 \end{aligned}$
	Radar Radar FEL Doug-MW Diamond	$\begin{aligned} & \text { D } 1048 \\ & \text { D } 1048-1 \\ & \text { WCF4458-4N } \\ & 440 C \\ & 2093 \end{aligned}$	$\begin{aligned} & 2300 \\ & 2300 \\ & 4400 \\ & 4000 \\ & 3500 \end{aligned}$	$\begin{aligned} & 5000 \\ & 5000 \\ & 5800 \\ & 5850 \\ & 6500 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.01 \\ & 2 \mathrm{MHz} \\ & 1 \end{aligned}$	ina ina $20 \mu \mathrm{~A} / \mathrm{mW}$ ina ina	none none none none none	h h ina h, i i	COAX COAX C COAX COAX	$\begin{aligned} & 475 \\ & 375 \\ & 650 \\ & 350 \\ & \text { ina } \end{aligned}$
T10	Radar Radar Radar Radar FEL	D819-2 D945-0 D945 D819-1 WDB 4080-1N	4000 4000 4000 4000 4000	8000 8000 8000 8000 8000	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0.1 0.1 0.1 0.1 ± 0.05	ino ino ina ina ino	none none none none none	$\begin{aligned} & m \\ & h \\ & h \\ & i \\ & h \end{aligned}$	COAX COAX COAX COAX COAX	$\begin{aligned} & 290 \\ & 345 \\ & 320 \\ & 275 \\ & 395 \end{aligned}$
	FEL Gen -MW PRD Nardo FEL	$\begin{aligned} & \text { WCF5882-4N } \\ & \text { N608A } \\ & 504 \\ & 802 B \\ & \text { WCF8211-4N } \end{aligned}$	$\begin{aligned} & 5800 \\ & 3950 \\ & 100 \\ & 2340 \\ & 8200 \end{aligned}$	$\begin{aligned} & 8100 \\ & 8200 \\ & 10000 \\ & 10500 \\ & 11000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.1 \\ & 0.03 \\ & 0.2 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 20 \mu A / m W \\ & \text { ina } \\ & 5 \mathrm{dBm} \\ & 5 \mathrm{~mW} \\ & 20 \mu A / \mathrm{mW} \end{aligned}$	none none line ino none	ina h, i d ino	$\begin{aligned} & C \\ & \text { COAX } \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & 575 \\ & 350 \\ & 835 \\ & 785 \\ & 9 / 5 \end{aligned}$
T11	Radar Radar Gen-MW FXR/MLAB H-P	D 1047-1 C 1047 N6 10 N414A 540B	$\begin{aligned} & 7000 \\ & 7000 \\ & 7000 \\ & 3950 \\ & 12400 \end{aligned}$	11000 11000 12400 11000 I	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 1 \times 10^{-7} \end{aligned}$	ina ina ino ina $-20 \mathrm{dBm}$	none none none none line	h h e, h, i m i	COAX COAX COAX COAX C, R	$\begin{aligned} & 385 \\ & 475 \\ & 365 \\ & 475 \\ & 1050 \end{aligned}$
	H-P	537A	3700	12,400	ina	0.1	ino	Ina	ina	COAX	550

Frequency Meter Notes

b. Grid-dip oscillator.
d. Crystal Master oscillator.
e. Battery operated.
h. Absorption type.
i. Transmission type.
j. Transfer oscillator.
k. Heterodyne.
m. Absorption feedthru.
o. With crystal calibrator.
p. Transistor modulator and amplifier.

Frequency Meter Cross Index

CODE	COMPANY	MODEL NO.	$\begin{aligned} & \text { TABLE } \\ & \text { LOCA- } \\ & \text { TION } \end{aligned}$	READER SERVICE NO.	CODE	COMPANY	MODEL NO.	TABLE LOCATION	READER SERVICE NO.
BARKER \& W	Barker \& Williamson Inc. Canal St. at Beaver Dam Rd. Bristol, Pennsylvania 19007	600	T 2	409	LAMPKIN	Lampkin Labs Inc. Perico Road Bradenton, Florida 33505	$\begin{aligned} & \text { 103-B MFM } \\ & \text { 105-B MFM } \end{aligned}$	$\text { T } 2$	419
DIAMOND	Diamond Antenna \& Microwave Corp. 35 River Street Winchester, Mass. 01890	$\begin{aligned} & 2090 \\ & 2091 \\ & 2092 \\ & 2093 \end{aligned}$	$\begin{array}{lll} \hline \text { T } & 6 \\ \text { T } & 6 \\ \text { T } & 9 \\ \text { T } & 9 \end{array}$	410	MEAS'MTS	Measurements McGraw-Edison Division Box 180 Boonton, New Jersey 07005	$\begin{aligned} & \text { 59 } \\ & \text { 59LF } \\ & 59 \text { UFH } \\ & 700 \\ & 760 \end{aligned}$	$\begin{array}{ll} \mathrm{T} & 3 \\ \mathrm{~T} & 1 \\ \mathrm{~T} & 4 \\ \mathrm{~T} & 2 \\ \mathrm{~T} & 3 \end{array}$	420
DOUGMW	Douglas Microwave Corp. 252 East Third Street Mount Vernon, N. Y. 10550	$\begin{aligned} & 440 \mathrm{C} \\ & 440 \mathrm{~L} \\ & 440 \mathrm{~S} \end{aligned}$	$\begin{array}{ll} \hline \text { T } 9 \\ \text { T } & 6 \\ \text { T } & 7 \end{array}$	411	MILLEN	James Millen Mfg. Co. , Inc. 150 Exchange Street Malden, Mass. 02148	$\begin{aligned} & 90651 \\ & 90661 \\ & 90662 \end{aligned}$	$\begin{array}{ll} \mathrm{T} & 2 \\ \mathrm{~T} & 2 \\ \mathrm{~T} & 2 \end{array}$	421
EL-RES	Electronic Research Co. Div. Textron Electronics Inc.	Freq Meter	T 1	412			90662-A	T 3	
	10,000 West 75 th Overland Park, Kansas				MOTOROLA	Motorola Communications \& Electronics Inc. Precision Frequency Prod. 4501 Augusta Boulevard Chicago, Illino is 60651	T-1021A	T 3	422
FAIRCHILD	Fairchild Instrument 475 Ellis Street Mountain View, California	$\begin{aligned} & \text { Mark 111-A } \\ & 5890-B \end{aligned}$	$\begin{array}{\|l\|} \hline \text { I } 4 \\ \text { T } 3 \end{array}$	413					
FEL	Frequency Engineering Labs Div. Harvard Inds. Box 527 Farmingdale, New Jersey	$\begin{aligned} & W C-510-1 N \\ & W C-912-1 N \\ & W C-912-3 N \\ & W C-1217-1 N \\ & W C-1217-3 N \end{aligned}$	$\begin{array}{ll} \hline \text { T } & 4 \\ \text { T } & 5 \\ \text { T } & 5 \\ \text { T } & 6 \\ \text { T } & 6 \end{array}$	414	NARDA	Narda Microwave Corp. Commercial Street Plainview, N. Y. 11803	12 L 1 802 B 804 805 806	$\begin{array}{\|ll} \hline & T \\ \text { T } & 10 \\ \text { T } & 3 \\ \text { T } & 6 \\ T & 6 \end{array}$	423
		$\begin{aligned} & W C-1628-1 N \\ & W C-1628-3 N \\ & W C-2335-1 N \\ & W C-3545-1 N \\ & W C-3545-3 N \\ & W C F-510-4 N \end{aligned}$	$\begin{aligned} & \text { T } 7 \\ & \text { T } 7 \\ & \text { T } 7 \\ & \text { T } 9 \\ & \text { T } 9 \\ & \text { T } 4 \end{aligned}$		PRD	PRD Electronics Inc. Sub Harris-Intertype Corp. 202 Tillary Street Brooklyn, N.Y. 11201	504 560 $560-S 1$ $583-D$ $587-A$	$\begin{array}{ll} \mathrm{T} & 10 \\ \text { T } & 7 \\ \text { T } & 7 \\ \text { T } & 8 \\ \text { T } & 4 \end{array}$	424
		WCF-912-4N WCF 1217-4N WCF-1628-4N WCF-2335-4N WC ${ }^{c}-3545-4 \mathrm{~N}$ WCF-4458-4N WCF-5882-4N WCF-8211-4N WDB 1020-IN WDB2040-IN WDB4080-1N WDC-3645-1N	T 5 T 6 T 7 T 7 T 9 T 9 T 10 T 10 T 6 T 8 T 10 T 9		RADAR	Radar Design Corp. 105 Pickard Drive Syracuse, N. Y. 13211	$\begin{aligned} & \text { D719-1 } \\ & \text { D719-2 } \\ & \text { D819-1 } \\ & \text { D819-2 } \\ & \text { D828-1 } \\ & \text { D828-10 } \\ & \text { D945 } \\ & \text { D945-0 } \\ & \text { D959 } \\ & \text { D959-0 } \\ & \text { D 1047 } \\ & \text { D 1047-1 } \\ & \text { D 1048 } \\ & \text { D 1048-1 } \end{aligned}$	T 8 T 8 T 10 T 10 T 3 T 3 T 10 T 10 T 8 T 8 T 11 T 11 T 9 T 9	425
FXR/ MLAB	FXR (Microlab/FXR) Div. Microlab	$\begin{aligned} & \text { N410A } \\ & \text { N414A } \end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { T } 8 \\ \text { T } & 11 \end{array}\right.$	415					
	Livington, New Jersey				$\begin{aligned} & \text { RADIO- } \\ & \text { MTR } \end{aligned}$	Radiometer The London Co. 811 Sharon Drive Westlake, Ohio	GDO 1	T 2	426
GEN- MW	General Microwave Corp. 155 Marine Street Farmingdale, N. Y. 11735	$\begin{aligned} & \text { N604 } \\ & \text { N608A } \\ & \text { N610 } \end{aligned}$	$\begin{array}{\|ll} \hline \text { T } & 8 \\ \text { T } & 10 \\ \text { T } & 11 \end{array}$	416					
					R-S	Rohde \& Schwarz Sales Co. 111 Lexington Avenue Passaic, N.J. 07056	FKM BN47051FZN BN47092FZN BN47092/60WAL BN4321/$2 / 50$WAM BN4312/2WAT BN4322/50WEN BN435XUC BN44467	$\begin{array}{ll}\text { T } 1 \\ \mathrm{~T} & 1\end{array}$	427
GR	General Radio Co. 22 Baker Avenue West Concord, Mass. 01781	$\begin{aligned} & \text { I142-A } \\ & 1142-A / 1156- \\ & A \end{aligned}$	$\begin{array}{ll} \hline \text { T } & 1 \\ \text { T } & 2 \end{array}$	417				$\begin{array}{cc} \mathrm{T} & 1 \\ \mathrm{~T} 7 \end{array}$	
GERTSCH	Gertsch Products Inc. Singer Co., Metrics Div. 3211 S.LaCienega Blvd. Los Angeles, Californio		$\begin{array}{ll} \text { T } 5 \\ \text { T } 4 \\ \text { T } 5 \\ \text { T } 4 \\ \text { T } 4 \\ \text { T } 5 \\ \text { T } 3 \end{array}$	418				$\begin{array}{ll} \text { T } 4 \\ \text { T } 8 \\ \text { T } & 2 \\ \text { T } & 4 \end{array}$	
		$\begin{aligned} & \text { FM-9U } \\ & \text { SSG-1 } \end{aligned}$	$\begin{array}{ll} \text { T } & 3 \\ \text { T } & \end{array}$		$\begin{aligned} & \text { SELL- } \\ & \text { TRN } \end{aligned}$	Sell-Tronic Products Co. 1973 Hughes Avenue Bronx, New York 10457	401A	T 1	428
H-P	Hewlett-Packard Co: 1501 Page Mill Road Palo Alto, Californio	$\begin{aligned} & \hline 500 \mathrm{~B} \\ & 500 \mathrm{C} \\ & 536 \mathrm{~A} \\ & 537 \mathrm{~A} \\ & 540 \mathrm{~B} \end{aligned}$	$\begin{array}{lll} \hline \text { T } & 1 \\ \text { T } & 1 \\ \text { T } & 8 \\ \mathrm{~T} & 11 \\ \mathrm{~T} & 1 \end{array}$	Contact Local Rep.	WESTON	Weston Instr. \& Electronics Div. Daystrom Inc. 614 Frelinghuysen Ave. Newark, New Jersey	339	T 1	429

At whatever stage of your project you need a cabinet, your most reliable choice is EMCOR ${ }^{\circledR}$

When you start designing your system, it's also the right time to think EMCOR cabinetry. Think how beautiful and precise the final package will lookand plan ahead.
But if time becomes vital, let EMCOR watch the clock for you. We've stepped-up production facilities to the
point where we can meet time deadlines head-on, and give you the same superb cabinetry in very short order. If you have time to plan ahead and order early, great. If you need quick service, just ask us at EMCOR. Or call your local EMCOR Sales and Service Engineer listed on the right.

Albany: 436-9649; Albuquerque: 265-7766; Alexandria: 836-1800; Atlanta: 939-1674; Baltimore: 727-1999; Binghamton: 723-9661; Bridgeport: 368-4582; Chicago: 676-1100; Cleveland: 4428080; Dallas: 631-7450; Dayton: 298-7573; Del Mar: 454-2191; Denver: 934-5505; Detroit: 3573700; Fort Lauderdale: 564-8000; Ft. Lee (No. N.J.): $944-1600$; Ft. Walton Beach: 243-6424; Houston: 526-2959; Huntsville: 539-6884: Indianapolis: 356-4249; Kansas City: 444-9494; Los Angeles: 938-2073; Minneapolis: 545-4481; Newport News: 245-8272; N.Y.C. area: 695-0082; Orlando: 425-5505; Palo Alto: 968-8304; Philadelphia: 242-0150; Pittsburgh: 884-5515; Phoenix: 273-1673; Rochester, N. Y.: 473-2115; St. Louis: 647-4350; Seattle (Bellevue) : 454-5224; Syracuse: 471-7274; Tulsa: 742-4657; Utica: 732-3775; Valley Forge (So. N. J.): 265-5800; Wilmington, Mass.: 944-3930; Winston-Salem: 725-5384. EMCOR Reg. U. S. Pat. Off.

EMCOR/distinguished cabinetry

Waveguide Frequency Meters

	Manufacturer	Model	Frequency			Circuit Type		Minimum Dip dB	Resolution MHz	Connector Type	Price Approx. S
			Minimum GHz	Maximum GHz	Accuracy \%						
W1	Norda DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR	1251 DBL-720-2 DBL-715-1 DBL-715-2 DBL-710-3 DBL-715-3A DBL-720-3 DBL-715-1A DBL-720-1 DBL-710-1	$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	ina e 9 e 9 9 9	$\begin{aligned} & 18 \\ & 8 \\ & 13 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	ino 1.5 ina 1.5 1.5 N A N. A N. A NA N. A	ino I 0.200 0.200 1 Ref, Type 1 Ref, Type 1 1	ino 53 53 53 53 53 53 53 53 53	600 904 839 883 460 855 915 800 860 425
W2	DE-MOR DE-MOR DE-MOR FEL FEL FEL Diamond Diamond Diamond FEL	DBL-715-2A DBL-710-2 DBL-715-3 WDC-3645-IW WC-3545-3W WC-3545-IW 592-1 590-1 591-1 WC-4458-3W	2.6 2.6 2.6 3.6 3.5 3.5 3.95 3.95 3.95 4.4	$\begin{aligned} & 3.95 \\ & 3.95 \\ & 3.95 \\ & 4.3 \\ & 4.5 \\ & 4.5 \\ & 4.85 \\ & 4.85 \\ & 4.85 \\ & 5.8 \end{aligned}$	0.01 0.01 0.01 ± 0.01 ± 0.01 $+0.01$ 0.05 0.05 0.05 ± 0.01		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \text { ina } \\ & \text { ino } \\ & \text { ina } \\ & 3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1 \\ & \mathrm{~N} / \mathrm{A} \\ & \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 15 \% \\ & 15 \% \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	Ref, Type 0.200 ina ino ino 0.02% 0.02\% 0.02\% ino	$\begin{aligned} & 53 \\ & 53 \\ & 53 \\ & \text { ino } \\ & 149 \\ & 149 \\ & 149 \\ & \text { ino } \\ & \text { ino } \\ & \text { ino } \\ & 149 \end{aligned}$	844 455 894 1200 575 575 250 250 250 575
W3	FEL Diomond Diamond Diamond H-P Woveline DE-MOR DE-MOR DE-MOR DE-MOR	$\begin{aligned} & \text { WC-4458-IW } \\ & 592-2 \\ & 590-2 \\ & 591-2 \\ & \text { G532A } \\ & 398-D R \\ & \text { DBR-715-2A } \\ & \text { DBR-720-1 } \\ & \text { DBR-720-2 } \\ & \text { DBR-715-3 } \end{aligned}$	4.4 4.85 4.85 4.85 3.95 3.95 3.95 3.95 3.95 3.95	$\begin{aligned} & 5.8 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.065 \\ & 0.07 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \mathrm{cg} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{e} \\ & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{e} \\ & \mathrm{~g} \\ & \mathrm{e} \end{aligned}$	3 ina ino ino ino ino 6 7 6 5	$\begin{aligned} & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{NA} A \\ & 15 \% \\ & 1 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	ino 0.02\% 0.02\% 0.02% 1 1 Ref, Type 1 1	$\begin{aligned} & 149 \\ & \text { ino } \\ & \text { ind } \\ & \text { ino } \\ & 407 \\ & \\ & 149 A \end{aligned}$	$\begin{aligned} & 575 \\ & 240 \\ & 240 \\ & 240 \\ & 400 \\ & \\ & \text { ino } \\ & 630 \\ & 635 \\ & 668 \\ & 657 \end{aligned}$
W4	DE-MOR DE-MOR	DBK -715-1 DBK-715-2 DBK -720-3 DBK-707-1 DBK-707-2 DBK-710-2 DBK -707-3 DBK-710-1 DBK -710-3 DBK-715-1A	$\begin{aligned} & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{e} \\ & \mathrm{e} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \\ & 5 \\ & 7 \\ & 6 \\ & 6 \\ & 6 \\ & 5 \\ & 7 \\ & 7 \end{aligned}$	ina 1.5 N/A N/A 1.5 1.5 N, A 1.5 N/A N/A		$\begin{aligned} & 149 \mathrm{~A} \\ & 149 \mathrm{~A} \\ & 149 \mathrm{~A} \\ & 144 \mathrm{~A} \\ & 149 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 613 \\ & 646 \\ & 679 \\ & 225 \\ & 250 \\ & 325 \\ & 255 \\ & 300 \\ & 330 \\ & 597 \end{aligned}$
W5	DE-MOR Microlab PRD Narda Doug-MW FEL FEL PRD FEL FEL	DBK-715-3A H4108 532 12 Cl E450C WDC-5459-3W WDC-5459-IW 590-A WC-5264-IW WC-5264-3W	$\begin{aligned} & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 3.95 \\ & 5.4 \\ & 5.4 \\ & 5.1 \\ & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.9 \\ & 5.9 \\ & 5.9 \\ & 6.4 \\ & 6.4 \end{aligned}$	0.01 0.08 ± 0.08 0.06 ± 0.03 ± 0.01 ± 0.01 0.08 ± 0.01 ± 0.01	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \\ & \text { ino } \\ & \mathrm{e} \\ & \mathrm{cf} \\ & \mathrm{cg} \\ & \mathrm{~g} \\ & \mathrm{cg} \\ & \mathrm{cf} \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \\ & 6 \\ & 10 \\ & \text { ino } \\ & 7 \\ & 7 \\ & \text { ino } \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & 7 \\ & \mathrm{~N} / \mathrm{A} \\ & \text { ino } \\ & 20 \% \\ & \mathrm{~N} / \mathrm{A} \\ & 1 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { Ref, Type } \\ & 1.5 \\ & \text { ino } \\ & \text { ina } \\ & \text { ino } \\ & \text { ina } \\ & \text { ino } \\ & 1 \\ & \text { ina } \\ & \text { ino } \end{aligned}$	$\begin{aligned} & 149 \mathrm{~A} \\ & \text { ino } \\ & 149 \\ & \text { ino } \\ & 149 \\ & 344 \\ & 344 \\ & 119 \\ & 344 \\ & 344 \end{aligned}$	$\begin{aligned} & 641 \\ & 320 \\ & 399 \\ & 320 \\ & 165 \\ & 1200 \\ & 1100 \\ & \text { ina } \\ & 575 \\ & 575 \end{aligned}$
W6	$\begin{aligned} & \text { FEL } \\ & \text { FEL } \\ & \text { PRD } \\ & \text { FEL } \\ & \text { FEL } \end{aligned}$	$\begin{aligned} & \text { WDC-5965-IW } \\ & \text { WDC-5965-3W } \\ & 555-A S 3 \\ & \text { WDC-5465-1W } \\ & \text { WDC-5465-3W } \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.85 \\ & 5.4 \\ & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 6.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & 0.015 \\ & \pm 0.01 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & c g \\ & c f \\ & \mathrm{cf} \\ & \mathrm{cg} \\ & \mathrm{cf} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & \text { ina } \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & N / A \\ & N / A \\ & 1 \\ & N / A \end{aligned}$	ina ina 1 ino ina	$\begin{aligned} & 344 \\ & 344 \\ & 344 \\ & 344 \\ & 344 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & \text { ino } \\ & 1200 \\ & 1250 \end{aligned}$

Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
Need a FREE copy of this directory? Circle number 255.
Waveguide frequency meter index starts on page T96.

Waveguide Frequency Meters (continued)

	Manufacturer	Model	Frequency			Circuit Type	$\underset{\substack{\text { Looded } \\ K}}{ }$	Minimum Dip dB	Resolution MHz	Connector Type	Price Approx. S
			Minimum GHz	Maximum GHz	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$						
W6 cont	PRD Diamond Diamand Diamond PRD	$\begin{aligned} & 588-A \\ & 690-1 \\ & 692-1 \\ & 691-1 \\ & 555-8 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.015 \end{aligned}$	$\begin{aligned} & \text { e } \\ & \text { g } \\ & \mathrm{f} \\ & \text { e } \\ & \mathrm{f} \end{aligned}$	6.5 ina ina ina ina	$\begin{aligned} & 40 \% \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 15 \% \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 1 \\ & 0.02 \% \\ & 0.02 \% \\ & 0.02 \% \\ & 1 \end{aligned}$	344 ina ina ino 344	$\begin{aligned} & \text { ino } \\ & 235 \\ & 235 \\ & 235 \\ & \text { ino } \end{aligned}$
W7	PRD FEL FEL Diamond Diamond Diamond Diamond Diamond Diamond PRD	$\begin{aligned} & 555-A \\ & \text { WC-5882-IW } \\ & \text { WC-5882-3W } \\ & 691-2 \\ & 792-1 \\ & 791-1 \\ & 790-1 \\ & 690-2 \\ & 692-2 \\ & 557-A \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.8 \\ & 5.8 \\ & 7.05 \\ & 7.05 \\ & \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \end{aligned}$	7.05 8.1 8.1 8.2	$\begin{aligned} & 0.015 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.015 \end{aligned}$	9 cg cf e f e 9 9 f 9	ina 3 3 ina ino ina ina ina ina ina	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 15 \% \\ & \mathrm{~N} / \mathrm{A} \\ & \\ & 15 \% \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 1 \\ & \text { ino } \\ & \text { ina } \\ & 0.02 \% \\ & 0.02 \% \\ & \\ & 0.02 \% \\ & 0.02 \% \\ & 0.02 \% \\ & 0.02 \% \\ & 1 \end{aligned}$	344 344 344 ina ino ina ino ino ina 51	$\begin{aligned} & \text { ino } \\ & 575 \\ & 575 \\ & 230 \\ & 215 \\ & \\ & 215 \\ & 215 \\ & 230 \\ & 230 \\ & \text { ino } \end{aligned}$
W8	PRD DE-MOR Nardo	557-B DB J-720-3 DBJ-720-1 DBJ-720-2 DB J-715-3 DB J-715-2 DB J-715-3A DB J-715-2A DBJ-715-1A 12G1	$\begin{aligned} & 7.05 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \end{aligned}$	8.2 8.2	$\begin{aligned} & 0.015 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.065 \end{aligned}$	f f 9 e e e g ina	$\begin{aligned} & \text { ina } \\ & 4 \\ & 6 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 6 \\ & 8.5 \end{aligned}$	N/A N / A N/A 1.5 N / A 1.5 N/A 1.5 N/A ina		51 344 ino	ino 629 585 615 608 587 591 580 547 325
W9	Doug-MW Doug-MW Doug-MW Doug-MW Microlab Micralab PRD DE-MOR DE-MOR DE-MOR	RH450A RE450A H450A E450A C410B C402A 533 DB J-707-3 DBJ-715-1 DB」-710-2	$\begin{aligned} & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \end{aligned}$	8.2 8.2	$\begin{aligned} & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03 \\ & 0.08 \\ & 0.01 \\ & \pm 0.08 \\ & 0.02 \\ & 0.02 \\ & 0.02 \end{aligned}$		ina ina ina ina 8 8 4 4 6 4	$\begin{aligned} & 20 \% \\ & 20 \% \\ & 20 \% \\ & 20 \% \\ & 30 \% \\ & \\ & 35 \% \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \end{aligned}$	ina ina ina ino ino 250 ina 1 1 1	344 344	$\begin{aligned} & 225 \\ & 160 \\ & 195 \\ & 135 \\ & 280 \\ & \\ & \text { ina } \\ & 378 \\ & \text { ina } \\ & 564 \\ & 299 \end{aligned}$
W 10	DE-MOR DE-MOR DE-MOR Woveline H-P FEL FEL PRD PRD FEL	$\begin{aligned} & \text { DB } J-710-1 \\ & \text { DB } J-707-1 \\ & \text { DB } J-710-3 \\ & 498-D R \\ & \text { J532A } \\ & \text { WDC-7585-IW } \\ & \text { WDC-7585-3W } \\ & 556-B \\ & 556-A \\ & \text { WDC-9095-IW } \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.85 \\ & 5.3 \\ & 7.5 \\ & 7.5 \\ & 7.05 \\ & 7.05 \\ & 9 \end{aligned}$	8.2 8.2 8.2 8.2 8.2 8.5 8.5 8.6 8.6 9.5	$\begin{aligned} & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.07 \\ & 0.065 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.015 \\ & 0.015 \\ & \pm 0.01 \end{aligned}$	g 9 f f e eg of f 9 cg	6 6 4 ina ina 7 7 ina ina 7	N/A N/A N/A N/A 1 1 N / A N / A N/A 1	1 1 1 2 2 ino ino 1 1 ina	344 344 344 344 441 51 51 344 344 39	275 ino 303 ina 375 1200 1300 ino ino 1070
WII	FEL Doug-MW Doug-MW Doug-MW FEL FEL FEL Doug-MW Diamond PRD	$\begin{aligned} & \text { WDC-8596-IW } \\ & \text { E460B } \\ & \text { E460X } \\ & \text { H460B } \\ & \text { WDC-9197-IW } \\ & \text { WC-8397-IW } \\ & \text { WC-8397-3W } \\ & \text { H460X } \\ & 990-2 \\ & 558-B \end{aligned}$	8.5 8.5 8.5 8.5 9.1 8.3 8.3 8.5 15 8.2	$\begin{aligned} & 9.6 \\ & 9.6 \\ & 9.6 \\ & 9.6 \\ & 9.7 \\ & 9.7 \\ & 9.7 \\ & 9.9 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 3 \mathrm{MHz} \\ & \pm 3 \mathrm{MHz} \\ & \pm 3 \mathrm{MHz} \\ & \pm 0.01 \\ & \\ & \pm 0.01 \\ & \pm 0.01 \\ & \pm 3 \mathrm{MHz} \\ & 0.05 \\ & 0.015 \end{aligned}$	cg e e e cg eg cf e 9	7 ino ina ina 7 7 7 ina ina ina	1 20\% 20\% 20\% 1 1.5 N/A 20\% N/A N/A	ina ino ina ina ino ino ina ina 0.02\% 1	$\begin{aligned} & 39 \\ & 51 \\ & 39 \\ & 51 \\ & 39 \\ & \\ & 39 \\ & 39 \\ & 39 \\ & \text { ino } \\ & 51 \end{aligned}$	$\begin{aligned} & 1200 \\ & 325 \\ & 250 \\ & 350 \\ & 1070 \\ & \\ & 575 \\ & 575 \\ & 325 \\ & 180 \\ & \text { ina } \end{aligned}$

(tables continued on page T9(1)

See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.

Waveguide Frequency Meters (continued)

	Manufacturer	Model	Frequency			Circuit Type		Minimum Dip dB	Resolution $\mathrm{MHz}_{\mathrm{Z}}$	Connector Type	Price Approx. S
			Minimum $G \mathrm{~Hz}_{z}$	Maximum GHz	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$						
W 12	PRD Diamond Diamond Diamond	$\begin{aligned} & 559-8 \\ & 559-A \\ & 585-A \\ & 586-A \\ & 586-8 \\ & 558-A \\ & 585-B \\ & 792-2 \\ & 791-2 \\ & 892-1 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \end{aligned}$	10 10	$\begin{aligned} & 0.015 \\ & 0.015 \\ & 0.08 \\ & 0.08 \\ & 0.08 \\ & 0.015 \\ & 0.08 \\ & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & f \\ & \mathrm{~g} \\ & \mathrm{e} \\ & \mathrm{~g} \\ & \mathrm{f} \end{aligned}$	6 7 8.5 ino ino ino ino ina ino ina	N / A N/A 20\% N/A N/A N / A N / A N/A 15\% N/A	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.02 \% \\ & 0.02 \% \\ & 0.02 \% \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \\ & 39 \\ & 51 \\ & 51 \\ & \\ & 51 \\ & 39 \\ & 39 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \end{aligned}$	ina 1295 ina ino ina ino ina 205 205 195
W 13	Diamond Diamond Diamond DE-MOR	$\begin{aligned} & 890-1 \\ & 790-2 \\ & 891-1 \\ & \text { DBH-720-2 } \\ & \text { DBH-720-3 } \\ & \\ & \text { DBH-710-3 } \\ & \text { DBH-720-1 } \\ & \text { DBH-707-2 } \\ & \text { DBH-715-3 } \\ & \text { DBH-707-1 } \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.2 \\ & 8.2 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \end{aligned}$	10 10	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.02 \\ & 0.02 \\ & 0.05 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{e} \\ & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{~g} \end{aligned}$	ino ino ino 6 5 5 8 6 5 8	N / A N/A 15\% 1.5 N/A N / A N/A 1.5 N/A N / A	$\begin{aligned} & 0.02 \% \\ & 0.02 \% \\ & 0.02 \% \\ & 1 \\ & \text { I(j) } \\ & 1(\mathrm{k}) \\ & 1 \\ & 1.4 \\ & 3 \\ & 1.4 \end{aligned}$	ina ina ina 51	195 205 195 575 581 284 542 208 564 187
W 14	DE-MOR DE-MOR DE-MOR DE-MOR Microlab Norda Doug-MW Doug-MW Doug-MW Doug-MW	DBH-707-3 DBH-710-1 DB H-710-2 DBH-715-1 W4 108 12 HI RE450B E450B H450B RH450B	$\begin{aligned} & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \end{aligned}$	10 10	$\begin{aligned} & 0.02 \\ & 0.05 \\ & 0.05 \\ & 0.02 \\ & 0.08 \\ & \\ & 0.070 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03 \end{aligned}$	f 9 e g e ina e e e e	5 8 6 8 8 8 ina ino ino ina	N / A N/A 1.5 N/A 30\% ina 20\% 20\% 20\% 20\%	1.4 1 1 3 ina ino ina ina ina ina	51 51 51 51 51 ino 51 51 51 51	$\begin{aligned} & 211 \\ & 260 \\ & 281 \\ & 525 \\ & 280 \\ & 290 \\ & 145 \\ & 120 \\ & 165 \\ & 195 \end{aligned}$
W 15	H-P DE-MOR DE-MOR DE-MOR DE-MOR Waveline FEL FEL PRD FEL	H532A DBH-7 15-2 DBH-715-1A DBH-715-2A DBH-715-3A 598 -DR WC-7010-IW WC-70 10-3W 534 WC-9611-3W	$\begin{aligned} & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7.05 \\ & 7 \\ & 7 \\ & 7 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.08 \\ & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.08 \\ & \pm 0.01 \end{aligned}$	e e 9 e f f cg cf 9 cf	ina 6 8 6 5 ina 3 3 3.5 6	$\begin{aligned} & 1 \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	2 3 Ref, Type Ref, Iype Ref, Type 2 ina ina ino ino	138 51 39	$\begin{aligned} & 325 \\ & 558 \\ & 509 \\ & 542 \\ & 547 \\ & \\ & 290 \\ & 575 \\ & 575 \\ & 347 \\ & 575 \end{aligned}$
W 16	FEL FEL FEL FEL Diamond FEL Diamond Diamond FEL FEL	$\begin{aligned} & \text { WC-9611-IW } \\ & \text { WCF9611-4W } \\ & \text { WC-8211-3W } \\ & \text { WC-8211-1W } \\ & 890-2 \\ & \text { WDC-8011-1W } \\ & 891-2 \\ & 892-2 \\ & \text { WDC-10110-3W } \\ & \text { WDC-10110-1W } \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.6 \\ & 8.2 \\ & 8.2 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 10 \\ & 10 \end{aligned}$	11 11.5 1.1 .5	$\begin{aligned} & \pm 0.01 \\ & 0.01 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.05 \\ & \pm 0.01 \\ & 0.05 \\ & 0.05 \\ & \pm 0.01 \\ & \pm 0.01 \end{aligned}$	cg cd cf cg 9 cg e f cf cg	$\begin{aligned} & 6 \\ & 6 \\ & 3 \\ & 3 \\ & \text { ina } \\ & 4 \\ & 4 \\ & \text { ina } \\ & \text { ina } \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & \text { ina } \\ & \mathrm{N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1 \\ & 1 \\ & 15 \% \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{I} \end{aligned}$	ina ina ina ina 0.02\% ina 0.02\% 0.02\% ino ino	39 39 39 39 ino 39 ino ino 39 39	$\begin{aligned} & 575 \\ & 975 \\ & 575 \\ & 575 \\ & 195 \\ & \\ & 1295 \\ & 195 \\ & 195 \\ & 1300 \\ & 1200 \end{aligned}$
W 17	Microlab FEL FEL FEL Diamond Diamand Diamond PRD PRD H-P	$\begin{aligned} & \text { X411A } \\ & \text { WC-11120-3W } \\ & \text { WC-11120-1W } \\ & \text { WCF11120-4W } \\ & 890-3 \\ & \\ & 891-3 \\ & 892-3 \\ & 565-A \\ & 565-B \\ & \text { X532B } \end{aligned}$	$\begin{aligned} & 8.2 \\ & 11 \\ & 11 \\ & 11 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 8.2 \end{aligned}$	11.5 12 12 12 12.4 12.4 12.4 12.4 12.4 12.4	$\begin{aligned} & 0.1 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 0.01 \\ & 0.05 \\ & \\ & 0.05 \\ & 0.05 \\ & 0.03 \\ & 0.03 \\ & 0.075 \end{aligned}$	f of cg cd 9 e f f e	5 6 6 6 ina ina ina ina ino ina	N/A N/A 1.5 ino N/A 15\% N / A N/A N / A 1	ina ino ino ino 0.02\% 0.02\% 0.02\% 1 1 5	39 39 39 39 ina ino ino 39 39 39	$\begin{aligned} & 250 \\ & 575 \\ & 575 \\ & 975 \\ & 195 \\ & 195 \\ & 195 \\ & 195 \\ & \text { ina } \\ & \text { ino } \\ & 200 \end{aligned}$

Need a FREE copy of this directory? Circle number 255.
Waveguide frequency meter index starts on page T96.
Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.

Waveguide Frequency Meters (continued)

	Manufacturer	Model	Frequency			Circuit Type	Q Looded K	Minimum Dip dB	Resolution MHz_{2}	Connector Type	Price Approx. S
			Minimum GHz	Maximum GHz	Accuracy \%						
W 18	Waveline DE-MOR	$698-D R$ DBG-720-2 DBG-707-1 DB G-720-3 DBG -715-3 DBG-710-2 DB G-707-3 DBG-715-2 DBG-707-2 DBG-710-1	$\begin{aligned} & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8.2 \end{aligned}$	12.4 12.4	$\begin{aligned} & 0.08 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.05 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.05 \end{aligned}$		ino 8 13 8 8 8 8 8 8 13	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 5 \\ & 2.5(j) \\ & 2 \\ & 2.5 \\ & 5 \\ & 2.5(\mathrm{k}) \\ & 2 \\ & 5 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 200 \\ & 541 \mathrm{i} \\ & 175 \\ & 546 \\ & 525 \\ & \\ & 269 \mathrm{k} \\ & 199 \\ & 520 \\ & 196 \\ & 248 \end{aligned}$
W 19	DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR FEL PRD Narda Doug-MW Doug-MW	DBG -7 10-3 DBG-715-1 DBG-715-3A DBG-715-1A DBG-715-2A WDB8212-IW 535 12X1 E450X RH450X	8.2 8.20 8.2 8.2	12.4 12.4	$\begin{aligned} & 0.05 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & \\ & \pm 0.05 \\ & 0.08 \\ & 0.075 \\ & \pm 0.03 \\ & \pm 0.03 \end{aligned}$	f 9 f 9 e ag 9 e e	8 13 8 13 8 5 4 7.5 ina ina	N/A N/A N/A N/A 1.5 1 N/A ino 20\% 20\%	2.5 5 Ref, Type Ref, Type Ref, Type ino ina ina ina ina	$\begin{aligned} & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & \\ & 39 \\ & 39 \\ & \text { ina } \\ & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 272 \\ & 487 \\ & 509 \\ & 470 \\ & 503 \\ & \\ & 395 \\ & 200 \\ & 195 \\ & 110 \\ & 185 \end{aligned}$
W20	Doug-MW Doug-MW DE-MOR Microlab Microlob PRD PRD Diamond Diamond FEL	$\begin{aligned} & \text { RE450X } \\ & \text { H450X } \\ & \text { DBG-720-1 } \\ & \text { X410B } \\ & \text { X402A } \\ & \\ & 566-B \\ & 566-A \\ & 990-1 \\ & 992-1 \\ & \text { WCF12150-4W } \end{aligned}$	8.2 8.2 8.2 8.2 8.2 12.4 12.4 12.4 12.4 12	12.4 12.4 12.4 12.4 12.4 15 15 15 15 15	$\begin{aligned} & \pm 0.03 \\ & \pm 0.03 \\ & 0.03 \\ & 0.08 \\ & 0.015 \\ & \\ & 0.03 \\ & 0.03 \\ & 0.02 \\ & 0.02 \\ & 0.01 \end{aligned}$		ina ina 13 8 8 ina ina ina ina 4	20\% 20\% N/A 30\% 35% N/A N/A 1.5 N/A ino	ina ino 2.5 ina 500 1 0.02% 0.02\% ina	39 39 32 39 39 419 419 ina ina 419	$\begin{aligned} & 135 \\ & 155 \\ & 504 \\ & 210 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \\ & 180 \\ & 180 \\ & 975 \end{aligned}$
W21	FEL FEL DE-MOR	WC-12150-3W WC-12150-IW DB FA-710-3 DBFA-710-1 DBFA-710-2 DBFA-715-1 DBFA-707-2 DBFA-720-3 DBFA-707-1 DBFA-715-3	$\begin{aligned} & 12 \\ & 12 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.03 \end{aligned}$	cf cg f 9 e 9 e f 9	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 4 \\ & 13 \\ & 13 \\ & 4 \\ & 5 \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	ino ino 2.5 2.5 2.5 0.5 5 2.5 5 0.5	419 419 ina ino ina 39 ino ino ina 39	$\begin{aligned} & 575 \\ & 575 \\ & 284 \\ & 260 \\ & 281 \\ & 503 \\ & 208 \\ & 542 \\ & 187 \\ & 542 \end{aligned}$
W22	DE-MOR H-P Diamond Diamend	DBFA-715-2 DBFA-707-3 DBFA-720-2 DBFA-720-1 DBFA-715-2A DBFA-715-1A DBFA-715-3A M532A 991-2 992-2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.04 \\ & \\ & 0.04 \\ & 0.04 \\ & 0.085 \\ & 0.05 \\ & 0.05 \end{aligned}$	e f e g e t g f e f	8 5 4 5 4 5 5 ina ina ina	$\begin{aligned} & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1 \\ & 15 \% \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	```0.5 5 2.5 2.5 Ref, Type Ref, Type Ref, Type 5 0.02% 0.02%```	39 ino ino ina WR75 WR75 WR75 ina ina ina	$\begin{aligned} & 536 \\ & 211 \\ & 536 \\ & 503 \\ & 520 \\ & \\ & 487 \\ & 525 \\ & 350 \\ & 180 \\ & 180 \end{aligned}$
W23	FEL FEL FEL PRD FEL	WDC-16170-1W WDC-15180-IW WCF $\$ 5180-4 W$ 567-A WC-15180-3W	$\begin{aligned} & 15.8 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	17.2 18 18 18 18	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & 0.01 \\ & 0.03 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & c g \\ & c g \\ & c d \\ & g \\ & c f \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 3 \\ \text { ina } \\ 3 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \text { ino } \\ & N / A \\ & N ; A \end{aligned}$	ino ina ina 2 ino	$\begin{aligned} & 419 \\ & 419 \\ & 419 \\ & 419 \\ & 419 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \\ & 975 \\ & \text { ina } \\ & 575 \end{aligned}$

(tables continued on page T94)

See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.
Waveguide frequency meter index starts on page T96.

it figures,

and figures fast-for over 22 billion operations without fail or falsing!

Clare Mercury-Wetted Contact Relays take continuous operation and heavy-duty service demands in stride... step far ahead in simplifying advanced circuit design. With no mechanical wear, no electrical erosion, contact resistance remains low, constant, over billions of operations. The mercury film provides a continuously renewed contact surface which breaks rapidly to minimize arcing.

Consider, too, the combination of high speed and low contact noise generation . . . the elimination of contact bounce and chatter and resulting false signalling ... power gain up to 5000 ... sensitivities as low as 20 mw . . . built-in input/output isolation.
NEW Design Manuals are ready! Circle Reader Service Number, or ask Clare for Manuals 801 and $802 \ldots$ write Group 9A8,

$$
\text { C. P. Clare \& Co., Chicago, Illinois } 60645
$$

- Life : 22×10^{9} operations -with no maintenance
- Low, constant contact resistance-no electrical erosion or mechanical wear
- No contact bounce
- Switching speeds to 1 millisecond
- Versatile contact load capabilities . . . low level to 250 va
- High power gain-up to 5000 with no noise sensitivity
- Sensitivities as low as 20 mw

CLARE MERCURY-WETTED CONTACT RELAYS

Waveguide Frequency Meters (continued)

	Manufacturer	Model	Frequency			Circuit Type		Minimum Dip dB	Resolution $\mathrm{MHz}_{\mathrm{z}}$	Connestor Type	Price Approx. S
			Minimum GHz	Maximum GHz	Accuracy \%						
W23 cont	PRD FEL PRD Narda Doug-MW	$\begin{aligned} & 567-B \\ & \text { WC-15180-IW } \\ & 536 \\ & 12 \mathrm{UI} \\ & \text { E450G } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 12.4 \\ & 12.4 \\ & 12.4 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 0.03 \\ & \pm 0.01 \\ & 0.1 \\ & 0.095 \\ & \pm 0.03 \end{aligned}$	f cg g ina e	ina 3 2 5 ina	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \text { ino } \\ & 20 \% \end{aligned}$	2 ina ina ino ina	419 419 419 ino 419	$\begin{aligned} & \text { ina } \\ & 575 \\ & 310 \\ & 250 \\ & 120 \end{aligned}$
W24	Doug-MW Doug-MW Doug-MW DE-MOR	RH450G H450G RE450G DBF-707-2 DBF-720-1 DBF-715-3 DBF-710-3 DBF-715-2A DBF-710-1 DBF-707-3	12.4 12.4	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03 \\ & 0.04 \\ & 0.04 \\ & \\ & 0.04 \\ & 0.05 \\ & 0.04 \\ & 0.05 \\ & 0.04 \end{aligned}$		ino ino ina 4 5 5 5 4 5 5	$\begin{aligned} & 20 \% \\ & 20 \% \\ & 20 \% \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	```ina ino ino 5 2.5 l 2.5 Ref, Type 2.5 5```	419 419	$\begin{aligned} & 195 \\ & 165 \\ & 145 \\ & 208 \\ & 503 \\ & \\ & 542 \\ & 284 \\ & 520 \\ & 260 \\ & 211 \end{aligned}$
W 25	DE-MOR Diamand TRG	DBF-715-2 DBF-707-1 DBF-715-1 DBF-710-2 DBF-720-2 DBF-720-3 DBF-715-3A DBF-715-1A 991-1 KU55	12.4 12.4	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.05 \\ & 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.02 \\ & 0.11 \end{aligned}$		4 5 5 4 4 5 5 5 ino ino	1.5 N/A N/A 1.5 1.5 N / A N/A N/A 15\% 0.5-1.0	```1 5 1 2.5 2.5 2.5 Ref, Type Ref, Type 0.02% ino```	419 ina 419	$\begin{aligned} & 536 \\ & 187 \\ & 503 \\ & 281 \\ & 536 \\ & \\ & 542 \\ & 525 \\ & 487 \\ & 180 \\ & 300 \end{aligned}$
W26	H-P Wavel ine Microlab FEL PRD PRD West Eleven PRD PRD Microlab	$\begin{aligned} & \text { P532A } \\ & 798-D R \\ & \text { Y410A } \\ & \text { WDB12180-IW } \\ & 568-B \\ & \\ & 568-A \\ & \text { K2203 } \\ & 569-A \\ & 569-B \\ & \text { K410AF } \end{aligned}$	12.4 12.4 12.4 12 18 18 22 22 22 18	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 22 \\ & 22 \\ & 25 \\ & 25 \\ & 26.5 \\ & 26.5 \\ & 26.5 \end{aligned}$	0.1 0.1 0.1 ± 0.05 0.05 0.05 ± 0.03 0.05 0.05 0.1	e f e og f g df g f e	ino ino 4.5 3 ino ino 5 ino ino 4	$\begin{aligned} & 1 \\ & N / A \\ & 30 \% \\ & 1 \\ & N / A \\ & 30 \% \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \text { ina } \\ & \text { ina } \\ & 2 \\ & 2 \\ & 2 \\ & \text { ina } \\ & 5 \\ & 5 \\ & \text { ina } \end{aligned}$	419 419 419 419 425 425 595 425 425 595	275 270 250 395 ino ina 341 ina ina 280
W27	DE-MOR FEL DE-MOR	DBE-715-3A DBE-715-1 DBE-715-3 DBE-715-2A DBE-720-1 DBE-720-3 DBE -720-2 DBE-715-IA WDB 18260-1W DBE-715-2	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.06 \\ & 0.06 \\ & 0.06 \\ & \\ & 0.06 \\ & 0.06 \\ & 0.06 \\ & \pm 0.05 \\ & 0.06 \end{aligned}$	9 e g e 9 og e	$\begin{aligned} & 3.7 \\ & 4.8 \\ & 3.7 \\ & 2.8 \\ & 4.8 \\ & \\ & 3.7 \\ & 2 \\ & 4.8 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.5 \\ & \mathrm{~N} / \mathrm{A} \\ & 1 \\ & 1.5 \end{aligned}$	```Ref, Type 2.5 2.5 Ref, Type 5 5 5 Ref,Type ino 2.5```	595 595	$\begin{aligned} & 565 \\ & 541 \\ & 580 \\ & 560 \\ & \text { ino } \\ & \\ & \text { ino } \\ & \text { ino } \\ & 525 \\ & 550 \\ & 575 \end{aligned}$
W28	Waveline TRG H-P Doug-MW Doug-MW Doug-MW Doug-MW PRD PRD Narda	$\begin{aligned} & 898-D R \\ & \text { K551 } \\ & \text { K532A } \\ & \text { RH-450K } \\ & \text { E450K } \\ & \\ & \text { H450K } \\ & \text { RE450K } \\ & 537 \\ & 537-F I \\ & 12 K \text { I } \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.11 \\ & 0.11 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \\ & \pm 0.03 \\ & \pm 0.03 \\ & 0.1 \\ & 0.1 \\ & 0.105 \end{aligned}$	f f e e e e e 9 9 ina	ino ina ino ino ino ino ino 2.5 2.5 4	N/A 0.5-1.0 1 20\% 20\% 20\% 20\% N/A N/A ino	10 ina 10 inc ina ina ina ino ina ino	595 425 595 ino	$\begin{aligned} & 335 \\ & 375 \\ & 350 \\ & 225 \\ & 145 \\ & \\ & 195 \\ & 175 \\ & 310 \\ & 310 \\ & 280 \end{aligned}$

Circle as many numbers on the reader-service card as you like.
Get detailed data: use the reader-service card.
Waveguide frequency meter index starts on page T96.

Waveguide Frequency Meters (continued)

	Manufacturer	Model	Frequency			Circuit Type	Q Looded K	Minimum Dip dB	Resolution MHz	Connector Type	Price Approx. S
			Minimum GHz	Maximum GHz	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$						
W29	West Eleven West Eleven PRD PRD West Eleven PRD PRD PRD Micralab FEL	$\begin{aligned} & \text { K2210 } \\ & \text { K2201 } \\ & 570-A \\ & 570-B \\ & \text { R2203 } \\ & 571-A F 1 \\ & 571-B \\ & 571-A \\ & \text { U410AF } \\ & \text { WDB26400-IW } \end{aligned}$	18 18 26.5 26.5 32.5 32 32 32 26.5 26.5	26.5 26.5 32 32 37.5 39 39 39 39.5 40	$\begin{aligned} & \pm 0.14 \\ & \pm 0.07 \\ & 0.075 \\ & 0.075 \\ & \pm 0.03 \\ & \\ & 0.075 \\ & 0.075 \\ & 0.075 \\ & 0.3 \\ & \pm 0.05 \end{aligned}$	ae dg 9 f df 9 f 9 og	4 4 ina ina 5 ino ina ina 3 2	5\% 5\% N/A N / A N/A N / A N / A N/A 30\% 1	ino ino 5 5 ina 10 10 10 ina ino	$\begin{aligned} & 595 \\ & 595 \\ & 381 \\ & 381 \\ & 381 \\ & 599 \\ & 381 \\ & 381 \\ & 599 \\ & 599 \end{aligned}$	301 ina ino ina 341 ina ina ina 320 700
W30	Norda H-P Doug-MW DE-MOR	$\begin{aligned} & \text { 12V I } \\ & \text { R532A } \\ & \text { RE450T } \\ & \text { DBD }-715-3 A \\ & \text { DBD }-720-3 \\ & \\ & \text { DBD }-715-3 \\ & \text { DBD }-715-2 \\ & \text { DBD }-715-2 A \\ & \text { DBD }-715-1 \text { A } \\ & \text { DBD }-720-2 \end{aligned}$	26.5 26.5	40 40	$\begin{aligned} & 0.115 \\ & 0.12 \\ & \pm 0.03 \\ & 0.09 \\ & 0.09 \\ & \\ & 0.09 \\ & 0.09 \\ & 0.09 \\ & 0.09 \\ & 0.09 \end{aligned}$	ino e e 1 + 1 e e g e	3 ina ina 2.5 2.5 2.5 3.1 3.1 3.8 3.1	$\begin{aligned} & \text { ino } \\ & 1 \\ & 20 \% \\ & \text { N/A } \\ & \text { N/A } \\ & \text { N/A } \\ & 2 \\ & 1.5 \\ & \text { N/A } \\ & 2 \end{aligned}$	ino 10 ina Ref, Type 5 5 5 Ref, Type Ref, Type 5	ino 599	300 400 195 565 ina 580 575 560 525 ina
W31	DE-MOR DE-MOR Doug-MW Doug-MW Doug-MW PRD TRG Woveline West Eleven West Eleven	DBD -715-1 DBD-720-1 RH450T H450T E450T 538 A551 1098-DR R2210 R2201	26.5 26.5	40 40	$\begin{aligned} & 0.09 \\ & 0.09 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \\ & 0.3 \\ & 0.12 \\ & 0.12 \\ & \pm 0.14 \\ & \pm 0.09 \end{aligned}$	9 9 e e e 9 e f ae $d g$	3.8 3.8 ina ina ino 1 ina ino 3 3	ina N/A 20\% 20\% 20\% N/A 0.5-1.0 N/A 5\% 5\%	5 5 inc ina ina ino ina 10 ina ina	$\begin{aligned} & 599 \\ & 599 \\ & 599 \\ & 599 \\ & 599 \\ & \\ & 381 \\ & 599 \\ & 599 \\ & 381 \\ & 381 \end{aligned}$	541 ino 270 235 165 331 450 385 360 440
W32	West Eleven DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR DE-MOR TRG TRG Microlob	Q2203 DBC-715-3A DBC-715-3 DBC-715-1 DBC-715-2 DBC-715-1A DBC-715-2A B 551 B550 Q410X	$\begin{aligned} & 37 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 43 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \pm 0.07 \\ & 0.13 \\ & 0.13 \\ & 0.13 \\ & 0.13 \\ & 0.13 \\ & 0.13 \\ & 0.2 \\ & 0.2 \\ & 0.15 \end{aligned}$	df ! f 9 e 9 e 9 9 e	$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 3.2 \\ & 2.5 \\ & \\ & 3.2 \\ & 2.5 \\ & \text { ina } \\ & 3.2 \\ & 1.5 \end{aligned}$	N / A N/A N / A N/A 1 N/A 1.5 $0.5-1.0$ 1-2 30%	ino Ref, Type 7.5 7.5 7.5 Ref, Type Ref, Type ina ina ina	$\begin{aligned} & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \end{aligned}$	$\begin{aligned} & 374 \\ & 565 \\ & 580 \\ & 541 \\ & 575 \\ & \\ & 525 \\ & 560 \\ & 650 \\ & 460 \\ & 330 \end{aligned}$
W33	West Eleven TRG West Eleven DE-MOR DE-MOR	Q2201 Q22 10 F2203 F2201 F22 10 M2203 V550 E2203 DBB-715-3A DBB-715-2	33 33 45.5 40 40 57 50 60 50 50	50 50 53.5 60 60 65 70 71 75 75	$\begin{aligned} & \pm 0.14 \\ & \pm 0.23 \\ & \pm 0.07 \\ & \pm 0.16 \\ & \pm 0.25 \\ & \pm 0.08 \\ & 0.2 \\ & \pm 0.09 \\ & 0.17 \\ & 0.17 \end{aligned}$	dg ae df dg ae df 9 df t e	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 3 \\ & 2 \\ & 2 \\ & \\ & 3 \\ & 2.1 \\ & 3 \\ & 1.3 \\ & 1.4 \end{aligned}$	5\% 5\% N/A 5\% 5\% N/A 1-2 N/A N/A 1	ino ina ino ino ina ina ino ino Ref, Type 15	$\begin{aligned} & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 383 \\ & 385 \\ & 385 \\ & 387 \\ & 385 \\ & 385 \end{aligned}$	$\begin{aligned} & 440 \\ & 530 \\ & 398 \\ & 462 \\ & 746 \\ & 549 \\ & 300 \\ & 711 \\ & 565 \\ & 575 \end{aligned}$
W34	DE-MOR DE-MOR DE-MOR DE-MOR TRG	$\begin{aligned} & \text { DBB }-715-3 \\ & \text { DBB }-715-1 \\ & \text { DBB }-715-1 A \\ & \text { DBB }-715-2 A \\ & \text { V551 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.17 \\ & 0.17 \\ & 0.17 \\ & 0.2 \end{aligned}$	g g e g	$\begin{aligned} & 1.3 \\ & 2.1 \\ & 2.1 \\ & 1.4 \\ & \text { ino } \end{aligned}$	$\begin{aligned} & N / A \\ & N / A \\ & N / A \\ & 1.5 \\ & 0.5-1.0 \end{aligned}$	```15 15 Ref, Type Ref, Type ina```	$\begin{aligned} & 385 \\ & 385 \\ & 385 \\ & 385 \\ & 385 \end{aligned}$	$\begin{aligned} & 580 \\ & 541 \\ & 525 \\ & 560 \\ & 975 \end{aligned}$

(tables continued on pase T96)

See reader-service card for valuable FREE reprints.
Reader-service numbers are given in the index.
Need a FREE copy of this directory? Circle number 255.

Waveguide Frequency Meters (continued)

	Monufacturer	Model	Frequency			Circuit Type	Q Loaded K	Minimum Dip dB	Resolution MHz	Connector Type	Price Approx. S
			Minimum GHz	Moximum GHz	$\begin{gathered} \text { Accuracy } \\ \% \end{gathered}$						
$\begin{aligned} & \text { W34 } \\ & \text { cont } \end{aligned}$	Microlab West Eleven West Eleven TRG DE-MOR	$\begin{aligned} & \text { M410X } \\ & \text { M2201 } \\ & \text { M2210 } \\ & \text { E550 } \\ & \text { DBA-715-3 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \pm 0.19 \\ & \pm 0.33 \\ & 0.2 \\ & 0.2 \end{aligned}$	e dg ae 9 f	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 2.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 30 \% \\ & 5 \% \\ & 5 \% \\ & 1-2 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	ino ino ino ino 25	$\begin{aligned} & 385 \\ & 385 \\ & 385 \\ & 387 \\ & 387 \end{aligned}$	$\begin{aligned} & 330 \\ & 522 \\ & 775 \\ & 500 \\ & 580 \end{aligned}$
W35	DE-MOR DE-MOR DE-MOR DE-MOR TRG MCS Microlab West Eleven West Eleven West Eleven	$\begin{aligned} & \text { DBA-715-2 } \\ & \text { DBA-715-1 } \\ & \text { DBA-715-2A } \\ & \text { DBA-715-3A } \\ & \text { E551 } \\ & \text { Y390 } \\ & \text { E410X } \\ & \text { E2210 } \\ & \text { E2201 } \\ & \text { W2203 } \end{aligned}$	60 88.5	90 102	0.2 0.2 0.2 0.2 0.2 0.25 0.25 ± 0.34 ± 0.22 ± 0.13	e 9 9 1 9 e e ae dg df	$\begin{aligned} & 1.4 \\ & 1.8 \\ & 2.1 \\ & 1.1 \\ & \text { ino } \\ & 1.4 \\ & 1 \\ & 1 \\ & 1 \\ & 2.5 \end{aligned}$	1 N/A 1-2 N/A 0.5-1.0 1 30% 5\% 5\% N/A	25 25 ina Ref, Type ino 20 ino ina ino ino	$\begin{aligned} & 387 \\ & 387 \\ & 387 \\ & 387 \\ & 387 \\ & \\ & \text { ino } \\ & 387 \\ & 387 \\ & 387 \\ & 387 \end{aligned}$	575 541 500 565 1200 1700 450 960 547 811
W36	TRG TRG West Eleven W'est Eleven DE-MOR Micralab TRG Microlab TRG DE-MOR	W550 W551 W2210 W2201 DBA-715-1A F412A F550 G412A G550 DBW-715-2	75 75 75 75 60 90 90 140 140 90	110 110 110 110 110 140 140 220 220 140	$\begin{aligned} & 0.2 \\ & 0.2 \\ & \pm 0.47 \\ & \pm 0.32 \\ & 0.2 \\ & \\ & 0.5 \\ & 0.2 \\ & 0.5 \\ & 0.2 \\ & 0.2 \end{aligned}$	9 9 oe $d g$ 9 9 9 9 e	$\begin{aligned} & 2 \\ & \text { ino } \\ & 1 \\ & 1 \\ & 2 \\ & 0.5 \\ & 1 \\ & 1 \\ & 0.5 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 0.5-1.0 \\ & 5 \% \\ & 5 \% \\ & 1-2 \\ & \\ & \mathrm{~N} / \mathrm{A} \\ & 1-2 \\ & \mathrm{~N} / \mathrm{A} \\ & 1-2 \\ & 1.5 \end{aligned}$	ino ino ina ina ina ina ina ino ino 100	387 387 387 387 387 special TRG714 special TRG715 DBW 1000	625 1600 1122 588 625 600 750 630 750 1220
W37	DE-MOR	DBW-715-1	90	140	0.2	9	1	N/A	100	DBW 1000	1109

Waveguide Frequency Meter Notes
a. Direct-reading dial
f. Transmission.
c. Micrometer.
d. Calibration chart furnished.
e. Absorption feed-in.
g. Reaction.
j. Temperature coefficient $0.075 \mathrm{MHz} /{ }^{\circ} \mathrm{C}$. k. Temperature coefficient $0.25 \mathrm{MHz} /{ }^{\circ} \mathrm{C}$.

Waveguide Frequency Meter Cross Index

CODE	COMPANY	MODEL NO.	$\begin{aligned} & \text { TABLE } \\ & \text { LOCA- } \\ & \text { TION } \end{aligned}$	READER SERVICE NO.	CODE	COMPANY	MODEL NO.	tABLE LOCA- TION	READER SERVIC NO.
DE-MOR	DeMorney-Bonardi Div. Datapulse Inc. 780 South Arroyo Parkway Pasadena, California	DBA-715-1 DBA-715-1A DBA-715-2 DBA-715-2A DBA-715-3 DBA-715-3A DBB-715-1 DBB-715-1A DBB-715-2 DBB-715-2A DBB-715-3 DBB-715-3A DBC-715-1 DBC-715-1A DBC-715-2 DBC-715-2A DBC-715-3 DBC-715-3A DBD-715-1 DBD-715-1A DBD-715-2	W 35 W 36 W 35 W 35 W 34 W 35 W 34 W 34 W 33 W 34 W 34 W 33 W 32 W 31 W 30 W 30	430	$\begin{aligned} & \text { DE-MOR } \\ & (\operatorname{cont}) \end{aligned}$		DBD-715-2A DBD-715-3 DBD-715-3A DBD-720-1 DBD-720-2 DBD-720-3 DBE-715-1 DBE-715-IA DBE-715-2 DBE-715-2A DBE-715-3 DBE-715-3A DBE-720-1 DBE-720-2 DBE-720-3 DBF-707-1 DBF-707-2 DBF-707-3 DBF-710-1 DBF-710-2 DBF-710-3	W 30 W 30 W 30 W 31 W 30 W 30 W 27 W 25 W 24 W 24 W 24 W 25 W 24	

$\$ 695.00$ (and at last)

No Needless Needles

WHY?
Because Non-Linear Systems introduces (X-3), a solid-state integrated circuit DVM "(VTVM)" with extras for $\$ 695$.
DC Volts:
10 mv to 10 K v
$.1 \%=1$ digit
100 Megohm input
impedance, entire
range
10 Microvolts resolution

AC Volts:

200 Millivolts to 300 volts

10 Millivolts resolution
3\% Accuracy
20 Hz to 500 MHz 10 Megohms Input Impedance

Resistance:

10 Ohms to
2000 Megohms
$.1 \%=1$ digit to 200 K

Current:

10 Nano Amps to 200 Milliamps
$1 \%=1 \mathrm{digit}$
Yes, all these extras for $\$ 695$ (including probes)

LOOK AT These extras 100\% Over-range Digit
Over-load Indicator
Over-load Protection
Automatic Polarity
Display Storage
High CMR
Unique Low, Medium, and High Range Selector

Waveguide Frequency Meter Cross Index (continued)

Frequency Counters

	Manufacturer	Model	FREQUENCY		Stability ppm	Digits No.	INPUT		Gate Time s	DISPLAY		Conn. Type	Solid State	Type C-Cab. R-Rack P-Port.	Price Approx S
			Min. Hz_{2}	Max. MHz			Sens. mV	Imp. $M \Omega(p F)$		Interval s	Type				
$\begin{aligned} & F \\ & 1 \end{aligned}$	Magtrol Avtron Aviron Avtron Avtron $\begin{aligned} & H-P \\ & H-P \\ & H-P \\ & H-P \\ & H-P \end{aligned}$	4602 T569 T420 T572 T734 5228 521 A 521 C 521 D 521 E	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 1 \\ & 1 \\ & 10 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.12 \\ & 0.12 \\ & 0.12 \\ & 0.12 \\ & 0.12 \end{aligned}$	ina ino ina ina ina 10/wk 0.1% 0.01% 0.1% $\pm 0.01 \%$	4 (a) 5 (a) 5 (a) 4 4 5 4 (b) 5 (b) 4 (a) 5 (a)	$\begin{aligned} & (\pm 0.5-50 \mathrm{~V}) \\ & 1000 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \\ & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	ina 0.03 ino ina ino 1 (50)	$\begin{aligned} & 0.1,1 \\ & 0.01-10 \\ & 0.01 \\ & 1 \\ & 1 \\ & 0.001-10 \\ & 0.1-1 \\ & 0.1-10 \\ & 0.1-1 \\ & 0.1-10 \end{aligned}$	ina ina ina 0.8-10 0.8-10 0.1-10 $0.1-15$ $0.1-15$ 0.1-15 $0.1-15$	ino ina ino ino ino e, f none f none f	ino ino ino MS MS BNC BNC BNC BNC BNC	yes yes yes yes yes no no no no no	C R R C C R R R R C, R	575 ino ina 1250 ino 1100 650 800 900 1125
$\begin{aligned} & F \\ & 2 \end{aligned}$	Beckman Beckman Anadex Anadex Anadex Anadex Anadex Anadex Anodex Anadex	6225 6230 CF-500R CF-500-4R CF-500-6R $\begin{aligned} & C F-501 R \\ & C F-501-4 R \\ & C F-501-6 R \\ & C F-503 R \\ & C F-503-4 R \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1000 \\ & 100 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \\ & \pm 2 / w k \\ & \pm 2 / w k \\ & \pm 2 / w k \\ & \text { ina } \\ & \text { ina } \end{aligned}$	4 4 5 (a) 4 (a) 6 (a) 5 (a) 4 (a) 6 (a) 5 (a) 4 (a)	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.1(50) \\ & 0.1(50) \\ & 100 K(50) \end{aligned}$	$\begin{aligned} & 0.1,1,10 \\ & 100 \mu \mathrm{~s}-10 \\ & 0.01,0.1,1 \\ & 0.01,0.1,1 \\ & 0.01,0.1 .1 \\ & 0.0001-10 \\ & 0.0001-10 \\ & 0.0001-10 \\ & 0.1,0.6,1 \\ & 0.1,0.6,1 \end{aligned}$	0.1 0.1 0.2-6	9 9 d, e	BNC BNC	(1) (1) yes	C, R C R	$\begin{aligned} & 575 \\ & 675 \\ & 820 \\ & 780 \\ & 880 \\ & \\ & 945 \\ & 905 \\ & 995 \\ & 710 \\ & 670 \end{aligned}$
$\begin{aligned} & \text { F } \\ & 3 \end{aligned}$	Anadex H-P H-P H-P H-P H-P Systran Systron Chad-Hel Wang	$\begin{aligned} & \text { CF-503-6R } \\ & 5211 A \\ & 5211 B \\ & 5212 A \\ & 5214 L \\ & 5512 A \\ & 1011 \\ & 1013 \\ & 423 \\ & 2019 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	$\begin{aligned} & \text { ino } \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 2 / \mathrm{wk} \\ & \pm 2 / \mathrm{wk} \\ & \pm 2 / \mathrm{wk} \\ & 60 \mathrm{~Hz} \text { line } \\ & \pm 2 \\ & 60 \mathrm{~Hz} \text { line } \\ & \pm 2(\mathrm{~h}) \end{aligned}$	6 (a) 4 (b) 4 (b) 5 (b) 5 (a) 5 (a) 4 (a) 5 (o) 4 (a) 5 (a)	100 100	100K (50) 1 (50) 0.1 (100) 1 (50) 1 (50) 1 (50)	$\begin{aligned} & 0.1,0.6,1 \\ & 0.1-1 \\ & 10,1,0.1 \\ & 0.01-10 \\ & 10 \mu s-100 \\ & 0.1-10 \\ & \text { ina } \\ & 10 \mu s \\ & 0.1-1 \\ & 10 \mu s-100 \end{aligned}$	0. 2-6 0.2-5 0.2-5 0.2-5 0.2-5 0.2-5 ino ino ina 0.2-5	d, e d d d, e d.e d, e ina ina ina d, e	BNC BNC	yes yes	R C, R C, R C, R R R	770 575 675 875 1300 975 850 1000 1290 1250
F	Wang H-P Wang Wang Atec Atec Atec Atec Alec Atec	$\begin{aligned} & 2240 \\ & 5223 \mathrm{~L} \\ & 2026 \\ & 5510 \\ & 5 \text { A } 15 \\ & \\ & \text { A525 } \\ & \text { B } 535 \\ & \text { A545 } \\ & \text { C535 } \\ & \text { SA35 } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.35 \\ & \\ & 0.35 \\ & 0.35 \\ & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & \pm 2(h) \\ & \pm 2 / w k \\ & \pm 0.1 \% \\ & \pm 2(h) \\ & 60 \mathrm{~Hz} \text { line } \\ & \pm 2 / w k \end{aligned}$	5 5 (a) 4 (o) 5 (a) 5 (b)	100 100	1 (50) 1 (80) I (50) 1 (50) 1 (50) 1 (50) 1 (50) I (50) I (50) 0.1 (50)	$\begin{aligned} & 10 \mu s-1000 \\ & 10 \mu s-10 \\ & 0.1-10 \\ & 10 \mu s-10 \\ & 0.1-10 \\ & 10 \mu s-10 \\ & 10 \mu s-100 \\ & 0.01-10 \\ & 10 \mu s-100 \\ & 0.01-10 \end{aligned}$	0.2-5 0. 2-5 0.2-5	d, e d, e ina d d, e, f d, f d, e, f d, e, f d, e, f d, e, f	BNC BNC bp BNC	yes yes	$\begin{array}{ll} R & \\ C, & R \\ C & \\ R & \\ C, & R \\ C & \end{array}$	$\begin{aligned} & 1350 \\ & 1275 \\ & 750 \\ & 995 \\ & 915 \\ & \\ & 1095 \\ & 1275(r) \\ & 1425 \\ & 1195 \\ & 975 \end{aligned}$
$\begin{aligned} & F \\ & 5 \end{aligned}$	GR GR GR Hickok TSI H-P H-P $\mathrm{H}-\mathrm{P}$ $\mathrm{H}-\mathrm{P}$ $\mathrm{H}-\mathrm{P}$	$\begin{aligned} & 1150-B \\ & 1151-A \\ & 1150-B H \\ & \text { DMS-3200 } \\ & \text { DP-150 } \\ & 361 \& 361 R \\ & 523 C \\ & 523 D \\ & 5232 A \\ & 5532 A \\ & 521 G \end{aligned}$	10 0 10 0.1 0.1 10 10 2 2 1	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 1 \\ & 1 \\ & 1 \\ & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.001 \%(i) \\ & 0.5 \\ & \pm 1 / w k \\ & \pm 0.005 \% \\ & \pm 3 / 107 / \mathrm{wk} \\ & 2 / \mathrm{wk} \\ & 2 / \mathrm{wk} \\ & \pm 2 / 10^{2} / \mathrm{mo} \\ & 22 / 10^{2} / \mathrm{mo} \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 5(c) \\ & 5(c) \\ & 5(c) \\ & 3 \\ & 6(\mathrm{c}) \\ & 6(\mathrm{c}) \\ & 6(\mathrm{~b}) \\ & 6(\mathrm{~b}) \\ & 6(\mathrm{a}) \\ & 5(\mathrm{~b}) \end{aligned}$	$\begin{aligned} & 1 \\ & 100 \\ & 1000 \\ & 10 \\ & 10 \\ & \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 200 \end{aligned}$	1 (100) 0.1 1 (80) 1 (24) 1 (40) 1 (50) 1 (50) 1 (50) I (50) I (50)	0.1-10 0. 1-10 0.1-10 1 $\mu \mathrm{s}$-10 1 $\mu \mathrm{s}$ - 10 $0.001-10$ $0.001-10$ 0. 1-10 0. 1-10 0.1-1	$0.16-$ 10.2 $0.16-$ 10.25 $0.16-$ 10.2 $0.1-10$ 0.2-10 0. 1-10 0. 1-10 0.2-5 0. 2-5 0.1-15	avail. avail. avail. e f e, f e, f d, e d, e d, e, f	bp bp bp ino BNC BNC BNC BNC BNC BNC	yes yes yes yes yes no no yes yes no	$\begin{array}{ll} C, R \\ C, & R \\ C, & R \\ C & \\ C, & R \\ C, & R \\ C, & R \\ C & R \\ C, & R \\ C, & R \end{array}$	995 1195 1095 515 995 1950 1700 1250 1350 750
$\begin{aligned} & F \\ & 6 \end{aligned}$	Atec Atec NLS NLS NLS Beckman Wang H-P Beckman Atec	$\begin{aligned} & 6 B 45 \\ & 6 C 46 \\ & 2807 \\ & 2808 \\ & 2809 \\ & \\ & 6023 \\ & 2029 \\ & 5233 L \\ & 6010 A \\ & 6 A 75 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	*2/wk $\pm 0.2 / \mathrm{mo}$ 5/107/mo 5/107/mo 5/107/mo 0.3 1/103 2/107/mo 0.3 *2/wk	$\begin{aligned} & 6(a) \\ & 6(a) \\ & 5(c) \\ & 5(c) \\ & 6(c) \\ & 6 \\ & 7(a) \\ & 6(a) \\ & 5 \\ & 5 \text { (a) } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \\ & 100 \\ & 1000 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 1(50) \\ & 1(50) \\ & 1(60) \\ & 1(60) \\ & 1(60) \\ & 1(70) \\ & 0.001(50) \\ & 1(80) \\ & 0.02(50) \\ & 1(50) \end{aligned}$	$0.01-10$ $0.01-10$ 0. 1-10 0. 1-10 0. 1-10 1 $\mu s-1$ ina $10 \mu s-10$ (u) 10~s-10	0.2-5 0.2-5 0.2-6 0.2-6 0.2-6 0.1 ina 0.2-5 (u) 0.2-5	$\begin{aligned} & d, e, f \\ & d, e, f \\ & f \\ & \text { dec, f } \\ & f \\ & \text { (c) } \\ & \text { ino } \\ & \text { d, e } \\ & \text { g } \\ & d, \mathbf{e}, f \end{aligned}$	BNC BNC amp- henol amp- henol amp- henol BNC BNC BNC BNC BNC	yes yes	C C, R C, R C, R C, R C, R R C, R C, R C, R	$\begin{aligned} & 1025 \\ & 1125 \\ & 1050 \\ & 1090 \\ & 1200 \\ & \\ & 945 \\ & 1400 \\ & 1600 \\ & 995 \\ & 1275(r) \end{aligned}$

Reader-service numbers are given in the index.
Reader-service cards are good all year.
Frequency counter index starts on page T104.
Need a FREE copy of this directory? Circle number 255.

Frequency Counters (continued)

	Manufacłurer	Model	FREQUENCY		Stability ppm	Digits No.	INPUT		Gate Time s	DISPLAY		Conn. Type	Solid State	$\begin{aligned} & \text { Type } \\ & \text { C-Cab. } \\ & \text { R-Rack } \\ & \text { P-Port. } \end{aligned}$	Price Approx S
			Min. Hz_{z}	Max. MHz			Sens. mV	Imp. $M \Omega(p F)$		Interval s	Type				
$\begin{aligned} & F \\ & 7 \end{aligned}$	Atec	6C86	0	2	$\pm 0.2 / \mathrm{mo}$	6 (a)	100	1 (50)	1/ss-10	0.2-5	d, e, f	BNC	yes	C, R	(r)
	CMC	600	2	2.5	60 Hz line	4 (b)	100	1	0. 1, 1, 10	0.2-5	e, f	BNC	yes	C, R	865
	CMC	601	2	2.5	60 Hz line	4 (c)	100	1	0. 1, 1, 10	0.2-5	e, f	BNC	yes	C, R	965
	CMC	602	2	2.5	2/wk	5 (b)	100	1	10ヶs-10	0. 2-5	e, f	BNC	yes	C, R	1050
	CMC	603	2	2.5	2/wk	5 (c)	100	1	10 $\mu \mathrm{s}-10$	0. 2-5	e, f	BNC	yes	C, R	1175
	CMC	604	0	2.5	2/wk	5 (b)	100	1	10ys-10	0.2-5	e, f	BNC	yes	C, R	1300
	CMC	605	0	2.5	2/wk	5 (c)	100	1	10 $\mu \mathrm{s}-10$	0.2-5	e, f	BNC	yes	C, R	1425
	IERC	3030/930	0	2.5	1/106/day	7 (o)	0.15V	1 (25)	1-10	0.2-5	ina	ina	yes	C, R	ino
	TSI	$3648364-R$	10	5	$\pm 3 / 107 /$ wk	6 (a)	100	1 (40)	$1 \mu s-10$	0.2-10	e, f	BNC	yes	C, R	1490
	Systran	6013	2	5	60 Hz line	4	100	10 (15)	ips	0.1-10	c, f	BNC	yes(t)	C, R	1000
F	CMC	607A	0	5	$\pm 2 / 10^{7} / \mathrm{mo}$	6	100	1 (80)	ino	0.2-5	d, e	BNC	yes	C, R	1575
	Systran	1033	0	5	$\pm 3 / 107 / w k$	6 (a)	50	1 (i)	Irs	ino	ino	BNC	yes	C, R	1295
	Monsanto	1010	0	5	ina	6 (a)	100	1 (70)	1 $\mu \mathrm{s}$-100	0.2-5	d, e	ino	ina	C, R	1575
	Systron	6034	10	10	3/107/wk		100	10 (15)	100ns-10	0.1-10	e,f	BNC	yes(t)	C, R	1650
	TSI	373 \& 373R	0.1	10		7 (a)	85	1 (40)	$1 \mu \mathrm{~s}-10$	0.2-10	e, f	BNC	yes(t)	C, R	1495
	Systron	6014	0	10	3/107/wk	6	100	10 (15)	100ns-10	0.1-10	e, f	BNC	yes(t)	C, R	1450
	GR	1153-A	0	10	0.1/wk	5 (a)	100	0.1 (50)	0.001-10	$\begin{aligned} & 0.16- \\ & 10.4 \end{aligned}$	avail.	b, p	yes	C, R	1495
	NE-Engr	40-60	0	10	3/107/wk	6 (a)	100	1 (40)	1 $\mu \mathrm{s}$-10	0.1-10	e, f	BNC	yes	C, R	1525
	Eldorado	1000/10	0	10	1/day	5 (a)	250	1 (40) (i)	1 $\mu \mathrm{s}$-10	0.1-10	d, e	BNC	yes	R	1190
	Eldorado	1000A	0	10	60 Hz line	5 (a)	250	ino	ina	1	d, e	BNC	yes	R	595
F	Eldorado	10008	0	10	1	5 (a)	250	ina	ino	0.1-10	u,d, e	BNC	yes	R	795
	Aerometrics	7154	0	10	± 0.02 /wk	4	ina	0.2 (100)	ino	ina	e, f	ina	no	P, R	1250
	Aerometrics	7155	0	10	$\pm 0.02 / w k$	5	ina	0.2 (100)	ino	ino	e,f	ino	no	P, R	1400
	Aerometrics	7156	0	10	$\pm 0.02 / w k$	6	ina	0.2 (100)	ino	ina	e,f	ino	no	P, R	1550
	Aerometrics	7157	0	10	$\pm 0.02 / w k$	7	ino	0.2 (100)	ino	ina	e, f	ino	no	P, R	1700
	Aerometrics	7158	0	10	$\pm 0.02 / \mathrm{wk}$	8	ina	0.2 (100)	ino	ino	e, f	ina	no	P, R	1925
	Wang	7716	0	10		7	250	0.001 (50)	t	r	d, e	BNC	yes		2000
	NE-Engr	14-20C	10	10.1	5/108/wk	8 (c)	500	$1(40)$	$0.001-100$	0.1-10	e, f	BNC	no	C, R	1300
	NE-Engr	$14-20 \mathrm{CV}$	10	10.1	5/108/wk	8 (b)	500	$1(40)$	0.001-100	0.1-10	e, f	BNC	no	C, R	1100
	Systron	1034	0	11	$\pm 3 / 107 / w k$	7 (a)	10	$1(50)$	100 s-10	0.1-15	d, e, f	BNC	yes	C, R	2150
$\begin{gathered} F \\ 10 \end{gathered}$	H-P	5216A	3	12.4	2/ $106 / \mathrm{mo}$	7 (a)	30	$1(50)$	10,0.1, 1	ino	d, e	BNC	no	C, R	
	H-P	5221 A	1	12.4	ina	4 (a)	0. IV	1 (30)	1,0.1	50us-5	ino	ina	no	C, R	ina
	Monsanto	1000	0	20	ina	7 (a)	100	$1(20)$	0. $1 \mu_{s}-10$	0.5-10	d, e	ino	ino	C, R	1975
	TSI	$\begin{aligned} & 500 A-L M / \\ & 510 A \end{aligned}$	0	20	$\pm 2 / 108 / w k$	7 (a)	100	$0.01,0.1,1$	100 $\mu \mathrm{s}-10$	0.2-10	e, f	BNC	yes	C, R	$2395(r)$
	TSI	$\begin{aligned} & 500 A-L M / \\ & 511 A \end{aligned}$	0	20	$\pm 2 / 108 / w k$	7 (a)	100	$0.01,0.1,1$	100 $/$ s-10	0.2-10	e, f	BNC	yes	C, R	2285
	TSI	500A-L/	0	20	$\pm 2 / 108 / w k$	8 (a)	100	0.01, 0.1, 1	100 $\mu_{s}-10$	0.2-10	e, f	BNC	yes	C, R	2650(r)
	TSI	$\begin{aligned} & 500 A-L / \\ & 511 A \end{aligned}$	0	20	$\pm 2 / 10^{8} / \mathrm{wk}$	8 (a)	100	$0.01,0.1,1$	100/s-10	0.2-10	e,f	BNC	yes	C, R	2540
	Systran	1038-4	10	25	$\pm 1 / 10^{7}$	none	200	0.1 (50)	0.001-10	remote	d	inc	yes		ina
	Beckman	6120	10	25	0.3	6	150	0.02 (40)	$10 \mu s-1$	0.1		BNC	yes	C, R	1750
	Systron	1038	5	25	13/107/wk	8 (a)	200	1 (20)	$1 \mu s-10$	0.1-15	d, e, f	BNC	yes	C, R	3450
$\begin{gathered} F \\ 11 \end{gathered}$	CMC	$\begin{aligned} & 800 \mathrm{~A} / \\ & 801 \mathrm{~A} / 831 \mathrm{~A} \end{aligned}$	0.1	25	$\pm 3 / 109 /$ day	8 (a)	100	1 (30)	1us-100	0.1-10	d, e,f	BNC	no	C, R	2735(s)
	CMC	$\begin{aligned} & 800 A / \\ & 801 \mathrm{~A} / 832 \mathrm{~A} \end{aligned}$	0.1	25	$\pm 3 / 109 /$ doy	8 (a)	100	1 (30)	1 $\mu \mathrm{s}$-100	0.1-10	d, e,f	BNC	no	C, R	2875(s)
	CMC	$\begin{aligned} & 800 \mathrm{~A} / \\ & 801 \mathrm{~A} / 833 \mathrm{~A} \end{aligned}$	0.1	25	$\pm 3 / 109 /$ doy	8 (a)	100	1 (30)	$1 \mu \mathrm{~s}$-100	0.1-10	d, e,f	BNC	no	C, R	2990(r)
	Atec	7898	0	25	-0.2/mo	8 (o)	100	1 (25)	1 $\mu \mathrm{s}$-10	0.2-5	d, e, f	BNC	yes	C, R	2010(r)
	Beckman	6126	0	25	0.003	8	100	0.02 (40)	$1 \mu s-10$	0.1	d	BNC	yes	C, R	2495
	NE-Engr	40-70	10	50	3/107/yk	7 (a)	100	50/10K	0.1-10	0.1-10	f	BNC	yes	R	1575
	Beckman	6121	10	50	0.3	6	100	0.02 (40)	10ヶs-1	0.1		BNC	yes	C, R	1950
	Marconi	$\begin{aligned} & \text { TF2401/ } \\ & \text { TF7557/ } \end{aligned}$	1	50	$\pm 2 / 10^{9}(\mathrm{~h})$	8 (c)	100	0.5 (25)	1 $\mu \mathrm{s}$ - 100	ina	avail.	BNC	yes	C	ino
		TF7558 800A/	0.1				100	1 (25)							
	CMC	800A 802A/831A	0.1	50	23/109/day	8 (a)	100	1 (25)	1/ns-100	0.2-10	d, e, f	BNC	no	C	3060(s)
	CMC	$\begin{aligned} & 800 \mathrm{~A} / \\ & 802 \mathrm{~A} / 832 \mathrm{~A} \end{aligned}$	0.1	50	13/109\% day	8 (a)	100	1 (25)	1 ${ }_{\text {s }}$-100	0.2-10	d, e, f	BNC	no	C	3185(s)

(tables continued on page T10?)

Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
See reader-service card for valuable FREE reprints.
Need a FREE copy of this directory? Circle number 255.

Frequency Counters (continued)

	Manufacturer	Model	FREQUENCY		Stability ppm	Digits No.	INPUT		Gate Time s	DISPLAY		Conn. Type	Solid State	$\begin{aligned} & \text { Type } \\ & \text { C-Cab. } \\ & \text { R-Rack } \\ & \text { P-Port. } \end{aligned}$	
			$\begin{gathered} \mathrm{Min} \\ \mathrm{~Hz}_{\mathrm{z}} \end{gathered}$	Max. MHz			$\begin{aligned} & \text { Sens. } \\ & \mathrm{mV} . \end{aligned}$	Imp. $M \Omega(p F)$		Interval s	Type				
$\begin{array}{r} F \\ 12 \end{array}$	CMC	$\begin{aligned} & \text { 800A/ } \\ & 802 A / 833 A \end{aligned}$	0.1	50	3/109/doy	8 (a)	100	1 (25)	1/ss-100	0.2-10	d, e, f	BNC	no	C	3300(r)
	Beckman	6127	0	50	0.003	8	100	0.02 (40)	4 $\mu s-1$	0.1	n	BNC	yes	C, R	2895
	Beckman	6145	0	50	0.003	8	100	0.02 (40)	$1 \mu s-10$	0.1	n	BNC	yes	C, R	2935
	CMC	7270	0	50	$\begin{aligned} & \pm 5 / 108 \\ & 3 \mathrm{hrs} \end{aligned}$	7 (a)	100	1 (50)	1 $\mu \mathrm{s}$ - 10	ino	d, e, f	BNC	yes	C, R	2190
	Atec	7848	0	50	$\pm 0.2 / \mathrm{mo}$	8 (a)	100	1 (50)	0.01-10	0.2-5	d, e, f	BNC	yes	C, R	1785
	H-P	5244L	0	50	$\pm 2 / 107 / \mathrm{mo}$	7 (a)	100	0.1 (40)	1 ss -10	0.1-5	d, e	BNC	yes	C, R	1900
	H-P	5245L	0	50	3/109 day	8 (a)	100	1 (25)	1 Hs -10	0.1-15	d, e, f	BNC	yes	C, R	2950
	H-P	5246 L	0	50	$\pm 2 \cdot 107 / \mathrm{mo}$	6 (a)	100	1 (25)	1 $\mathrm{\mu s}$ - 1		ino	BNC	yes	C, R	1800
	Systron	1037	0	50	$\pm 3 / 107 / \mathrm{wk}$	8 (a)	100	$0.01,0.1,1$	100us-1	0.1-15	e, ${ }^{\text {f }}$	BNC	yes	C, R	2250
	NE-Engr	40-90A	0	50	3/107, wk	8 (o)	100	0.01 (40)	1 $\mathrm{s}^{\text {-10 }}$	0.1-10	e, f	BNC	yes		2325
$\begin{gathered} F \\ 13 \end{gathered}$	Beckman	6122	25	100	0.3	6	100	0.02 (40)	10بs-1	0.1	n	BNC	yes	C, R	1750
	CMC	738A	10	100	+5/108/	7 (a)	100	1-10	1-10	ino	d	BNC	yes	C, R	1925
	CMC	880	0	100	3 hrs $1 / 109$		100		$1 \mu \mathrm{~s}-10$	0.1-5	d, e, f	BNC	yes		
	Atec	8 A 18	0	100	*0.2/mo	8 (a)	100	50Ω (30)	1 fixed	0.2-5	e,f	BNC	yes yes	C, R	1920
	GR	114-A	0	100	0.1/wk	5 (c)	100	0.1	0.01-10	$\begin{aligned} & 0.16 / \\ & 10.24 \end{aligned}$	avail.	bp	yes	C, R	1995
	Systron	6018	0	100	3/107/wk	7	100	10 (15)	100 ${ }_{\text {s-1 }}$	0.1-5	e,f	BNC	yes(t)	C, R	2950
	Systran	6038	0	100	1/109/	9	100	10 (15)	100 s^{-1}	0.1-5	e,f	BNC	yes(t)	C, R	3350
	TSI	1535	0	100	$\begin{aligned} & 24 \text { hrs } \\ & \text { ino } \end{aligned}$	7 (a)	100	50Ω	ino		d	BNC	yes		2300
	TSI	600/690	0	100	2/109/	8 (a)	100	50Ω	ina	0.2-6	d, e	ina	yes	R	2890
	Monsanto	1020	0	100	ina	7 (a)	100	1 (22)	0. $1 \mu \mathrm{~s}-10$	0. 2-5	d, e	ina ${ }^{\text {- }}$	ina	C, R	2550
$\begin{gathered} F \\ 14 \end{gathered}$	Mansanto	1021	0	100	ino	8 (a)	100	1 (22)	0. 1 $1 \mathrm{~s}-10$	0. 2-5	d, e	ina	ino	C, R	2950
	TSI	500A/513A	1	100	22/108/wk	8 (o)	5	50Ω	100 s - -10	0.2-10	e,f	UNC	yes	C, R	2770
	CMC	8004	10	110	3/109/doy	8 (a)	100	0.1(15)	$1 \mu s-100$	0.2-10	d, e, f	BNC	no	C	3735(s)
	CMC	$803 \mathrm{~A} / 83 \mathrm{IA}$ 800 A	10	110	3/109/day	8 (a)	100	0.1(15)i	1 $\mu \mathrm{s}$-100	0.2-10	d, e, f	BNC	no	C	3860(s)
		803A/832A					,								
	CMC	$\begin{aligned} & 800 \mathrm{~A} \\ & 803 \mathrm{~A} / 833 \mathrm{~A} \end{aligned}$	10	110	3/109/doy	8 (a)	100	$0.1(15) \mathrm{i}$	1/s-100	0.2-10	d, e, l	BNC	no	c	3975(r)
	TSI	385-R/83	0	125	*3/107/wk	7 (o)	100	50Ω	100~s-10	0.2-10	e, f	ina	yes	R	1880
	TSI	385-R/85	0	125	ina	7 (a)	10	50Ω	100ys-10	0.2-10	e, f	ina	yes		2080
	TSI	500A/510A	0	125	+2/108/wk	8 (a)	100	50Ω	100 \% s-10	0.2-10	e, f	BNC	yes	C, R	2900(r)
	TSI	500A/511A	0	125	$\pm 2 / 108 / w k$	8 (a)	100	50Ω	100us-10	0.2-10	e, f	BNC	yes	C, R	2790
	TSI	500A/512A	$\begin{aligned} & 1 \\ & \mathrm{MH}_{7} \end{aligned}$	125	2/108/wk	8 (a)	100	50Ω	100 $/$ s-10	0.2-10	e, f	BNC	yes	C, R	2665
$\begin{gathered} \text { F } \\ 15 \end{gathered}$	Systron	1038-12	0	150	3/109	8 (a)	100	0.1 (50)	0.1ps-10	0.1	e,f	BNC			
	Motorola	S-10758	10	475	$\pm 2 / 109 /$ day	7 (c)	100	0.1 (50)	0.1, 1, 10	0.1-5	ino	BNC	yes		2595
	TSI	500A/520A	10	500	= $2 / 108 / \mathrm{wk}$	8 (a)	100	50Ω	100 s-10	0.2-10	e, f	BNC	yes	C, R	3120
	Systran	6313	MHz_{3} 300	3000		7	100	50Ω	0.001-10	ina	e, f	BNC	yes(t)	C, R	4450
	Systron			3000	24 hrs		100		0.001-10	ino	e,	ONC	yes(t)	C, R	4450
	Eldorado	945	20	4000	$[5 / 108$ $24 \text { hrs }$	7 (a)	50	50Ω	0.1	0.3-10	d, f	N	yes	R	3950
	Eldorado	946	20	4000	5/109/	9 (a)	50	50Ω	0.001-10	0.3-10	ino	N	yes	R	5020
					24 hrs										
	Eldorado	950	20	6000	5/108/	7 (a)	50	50Ω	0.1	0.3-10	d, f	N	yes	R	5925
	Eldorado	951	20	6000		9 (a)	50	50Ω	0.001-10	0.3-10	d, f	N	yes	R	7250
	Systron	6314	2.96	8200	24 hrs	7	100	50Ω	0.001-10	ina	e, f	BNC	yes (t)	C, R	4450
			GHz		24 hrs										
	Systron	6315	$\begin{aligned} & 8.2 \\ & G H_{z} \end{aligned}$	12400	$\begin{aligned} & 3 / 109 \\ & 24 \mathrm{hrs} \end{aligned}$	7	100	50 Ω	0.001-10	ino	e, f	BNC	yes (t)	C, R	4450

Frequency Counter and Extender Notes

a. Nixie readout.
b. Vertical neon decades.
c. In-line readout.
d. Binary-coded output for recorder .
e. Time-base pulse output.
f. External frequency output.
g. Glow-transfer-tube readout.
h. Short-term accuracy.
i. Pervolt.
k. Nixie readout available
m. Maintains accuracy of counter.
n. Electroluminescent.
r. Has time interval.
s. Family has different trigger levels.
t. Integrated circuits.
u. Manual or remote programming.

Frequency Counter Extenders

	Manufacturer	Model	Counter Used With Model	FREQUENCY		Accuracy	INPUT		Type C-Cab. R-Rack P-Port.	Price Approx S
				Min. Hz	Max. MHz_{2}		Sensitivity mV	Impedance Ω		
$\begin{gathered} F \\ 16 \end{gathered}$	NE-Engr NE-Engr NE-Engr H-P H-P TSI TSI Systran NE Engr TSI	$\begin{aligned} & 40-82 \\ & 1421 C \\ & 40-97 \\ & 5251 A \\ & 525 A \\ & \\ & 1532 \\ & 1532 A \\ & 1979 \\ & 14-40 \\ & 83 \end{aligned}$	$\begin{aligned} & 40-70,40-90 \mathrm{~A} \\ & 14-20 \mathrm{C}, 14-20 \mathrm{CV} \\ & 40-70,40-90 \mathrm{~A} \\ & 5245 \mathrm{~L}, 5246 \mathrm{~L} \\ & 524 \mathrm{C}, 524 \mathrm{D} \\ & \\ & 1511 \mathrm{~A} \\ & 1511 \mathrm{~A} \\ & 1033,1034,1017,1037 \\ & 14-20 \mathrm{C}, 14-20 \mathrm{CV} \\ & 385 \mathrm{R} \end{aligned}$	10 ino 50 20 10.1 10 10 0.1 de 0	50 100 125	ina ina ina (m) (m) (m) (m) (m) ino (m)	$\begin{aligned} & \text { k } \\ & \text { ino } \\ & 100 \\ & 50 \\ & 10 \\ & 100 \\ & 100 \\ & 100 \\ & \text { ina } \\ & 100 \end{aligned}$	$\begin{aligned} & (1 \mathrm{M}, 15 \mathrm{pF}) \\ & \text { ino } \\ & 50 \\ & 50 \\ & 50 \\ & \\ & \text { ina } \\ & \text { ina } \\ & 50 \\ & \text { ina } \\ & 50 \end{aligned}$	$\begin{aligned} & P-1 \\ & R \\ & R \\ & P-1 \\ & P-1 \\ & P-1 \end{aligned}$	$\begin{aligned} & 350 \\ & 325 \\ & 595 \\ & 300 \\ & 350 \\ & \\ & 1950 \\ & 2150 \\ & 350 \\ & 425 \\ & 440 \end{aligned}$
$\begin{gathered} \mathrm{F} \\ 17 \end{gathered}$	H-P NE-Engr NE-Engr H-P NE-Engr H-P CMC TSI TSI GR	$\begin{aligned} & 5258 A \\ & 40-84 \\ & 14-22 C \\ & 525 B \\ & 40-98 \\ & \\ & 5252 A \\ & 735 C \\ & 520 B \\ & 520 A \\ & 1133 A \end{aligned}$	$\begin{aligned} & 5245 \mathrm{~L}, 5246 \mathrm{~L} \\ & 40-70,40-90 \mathrm{~A} \\ & 14-20 \mathrm{C}, 14-20 \mathrm{CV} \\ & 524 \mathrm{C}, 524 \mathrm{D} \\ & 40-70,40-90 \mathrm{~A} \\ & 5245 \mathrm{~L}, 5246 \mathrm{~L} \\ & 738 \mathrm{~A} \\ & 500 \text { Series } \\ & 500 \text { Series } \\ & 1153-\mathrm{A} \end{aligned}$	$\begin{gathered} 1 \\ d c \\ 100 \\ 100 \\ 10 \\ d c \\ d 00 \\ 100 \\ 10 \\ 0.1 \end{gathered}$	$\begin{aligned} & 200 \\ & 200 \\ & 220 \\ & 220 \\ & 300 \\ & \\ & 350 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	(m) ina ina (m) ino (m) ina (m) (m) ina	k ina ino 200 100 100 ina 100 100 10	$\begin{aligned} & 50 \\ & 50 \\ & \text { ina } \\ & 50 \\ & 50 \\ & 50 \\ & \text { ina } \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & P-1 \\ & C \end{aligned}$	$\begin{aligned} & 825 \\ & 475 \\ & 375 \\ & 425 \\ & 675 \\ & \\ & 685 \\ & 500 \\ & 500 \\ & 500 \\ & 1525 \end{aligned}$
$\begin{gathered} F \\ 18 \end{gathered}$	H-P H-P Systran NE-Engr NE-Engr NE-Engr NE-Engr TSI Systran NE-Engr	$\begin{aligned} & 525 A \\ & 52538 \\ & 1291 \\ & 14-26 E \\ & 40-95 \\ & \\ & 14-26 C \\ & 40-85 \\ & 522 \\ & 1253 \\ & 40-96 \end{aligned}$	$\begin{aligned} & 524 \mathrm{C}, 524 \mathrm{D} \\ & 5245 \mathrm{~L}, 5246 \mathrm{~L} \\ & 1034 \mathrm{H}, 1017,1018,1037,1038 \\ & 14-20 \mathrm{C}, 14-20 \mathrm{CV} \\ & 40-70,40-90 \mathrm{~A} \\ & \text { 14-20C, 14-20CV } \\ & 40-70,40-90 \mathrm{~A} \\ & 500 \text { Series (P) } \\ & 1017,1018,1037,1038 \\ & 40-70,40-90 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 50 \\ & 100 \\ & 50 \\ & 200 \\ & 200 \\ & 200 \\ & 300 \\ & 300 \end{aligned}$	510 512 512 600 600 1000 1000 2500 3000 3000	(m) (m) (m) ina ino ± 1 count ino (m) (m) ino	$\begin{aligned} & 100 \\ & 50 \\ & 50 \\ & \text { ina } \\ & 100 \\ & \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \text { ina } \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & P-1 \\ & P-1 \end{aligned}$	$\begin{aligned} & 475 \\ & 500 \\ & 550 \\ & 470 \\ & 500 \\ & \\ & 525 \\ & 550 \\ & 230 \\ & 975 \\ & 825 \end{aligned}$
$\begin{gathered} F \\ 19 \end{gathered}$	H-P Systran Systron Eldorado $\mathrm{H}-\mathrm{P}$ Systron Systron Eldorado Systron	$\begin{aligned} & 52548 \\ & 1254 \\ & 1255 \\ & 680 \\ & 5255 A \\ & \\ & 1292 \\ & 1293 \\ & 681 \\ & 1297 \end{aligned}$	```5254L, 5246L 1017, 1018, 1037, 1038 1017, 1018, 1037, 1038 950 & 951 5245L 1037 1038-12 950 & 951 1017, 1018, 1037, 1038```	200 2960 8200 6000 3000 15 150 12000 50	3012 8200 12400 12400 12400 15000 18000 18400 26000	(m) (m)	50 100 100 50 100 100 300 50 100	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	P-I $P-1$ P-I R P-I P-I R R P-1	825 1950 1975 1525 1650 1500 ina 1525 1550

Frequency Counters Late Arrival

Manufacturer	Model	FREQUENCY		Stability ppm	Digits No.	INPUT		Gate Time s	Display		Conn. Type	Solid State	$\begin{aligned} & \text { Type } \\ & \text { C-Cab. } \\ & \text { R-Rack } \\ & \text { P-Port. } \end{aligned}$	Price Approx S
		Minimum Hz_{2}	Moximum MHz			Sens. $m V$	$\begin{gathered} \operatorname{Imp} . \\ M \Omega(\mathrm{pF}) \end{gathered}$		Intarval s	Type				
Computer Logic	816	de	3	ino	6	500	0.5(50)	$0.01 \mathrm{~ms}-10$	$0.1 \mathrm{~Hz}-$ 100 kHz	ino	ino	'	C	1095
Computer Logic	815	dc	3	ino	5	500	0.5(50)	$0.01 \mathrm{~ms}-10$	$\begin{aligned} & 0.1 \mathrm{~Hz}- \\ & 100 \mathrm{kHz} \end{aligned}$	ina	ina	+	c	1030
Computer Logic	814	de	3	ino	4	500	0.5(50)	$0.01 \mathrm{~ms}-10$	$\begin{aligned} & 0.1 \mathrm{~Hz}- \\ & 100 \mathrm{kHz} \end{aligned}$	ino	ino	1	c	975
Computer Logic	806	dc	3	ino	6	500	0.5(50)	0.01-1ms	$1,10,100 \mathrm{kHz}$	ino	ino	'	c	1055
Computer Logic	805	dc	3	ino	5	500	0.5(50)	$0.01-1 \mathrm{~ms}$	1, 10, 100 kHz	ino	ino	+	C	995
Computer Logic	804	dc	3	ino	4	500	$0.5(50)$	0.01-1ms	$1,10,100 \mathrm{kHz}$	ino	ino	+	C	935
Computer Logic	716	de	3	ino	6	500	$0.5(50)$	0.01-10	$0.1-10 \mathrm{~Hz}$	ino	C	+	c	1015
Computer Logic	715	dc	3	ino	5	500	$0.5(50)$	0.1-10	$0.1-10 \mathrm{~Hz}$	ino	ino	+	C	955
Computer Logic	714	dc	3	ino	4	500	0.5(50)	0. 1-10	$0.1-10 \mathrm{~Hz}$	ino	ino	,	C	895
Computer Logic	706	dc	3	ino	6	100	1(50)	0.1	10 Hz	ina	ino	'	C	975
Computer Logic	705	de	3	ino	5	100	$1(50)$	0.1	10 Hz	ino	ino	+	C	915
Computer Logic	704	de	3	ino	4	100	$1(50)$	0.1	10 Hz	ino	ino	1	C	855
EAI	6200;6202	0	10	$\pm 0.005 \%$	4	100	1(30)	ina	$1{ }_{\text {Hs-1000 }}$	ina	BNC	yes	c	550
Amark	TSA6634	10	5	$\pm 5 / 10^{6}$	4 g	75	250k	0.5-5	ino	ovail	BNC	yes	C	ino
Amark	TSA6634A	10	7.5	$\pm 1 / 10^{\circ}$	4	75	250k(40)	$\begin{aligned} & l_{\mu s}- \\ & 10 \end{aligned}$	ino	ovail	BNC	yes	C	ino
Amark	TSA6636	10	12.5	$\pm 1 / 10^{6}$	69	75	250k(40)	$\begin{aligned} & l_{\mu s}- \\ & 10 \end{aligned}$	ina	ovail	BNC	yes	C	ino

Frequency Counter Cross Index

CODE	COMPANY	MODEL NO.	table LOCA IION	READER SERVICE NO.	CODF	COMPANY	MODEL NO.	$\begin{aligned} & \text { TABLE } \\ & \text { LOCA- } \\ & \text { TION } \end{aligned}$	reader SERVICE NO.
Aerometrics	Aerometrics, Aerojet-General Corp. PO Box 216 San Ramon, Calif. 94583	$\begin{aligned} & 7154 \\ & 7155 \\ & 7156 \\ & 7157 \\ & 7158 \end{aligned}$	$\begin{aligned} & \text { F9 } \\ & \text { F9 } \end{aligned}$	441	H-P	Hewlett-Packard Co. 1501 Page Mill Road Palo Alto, Calif.	521 A 521 C 521 D $521 E$ $521 G$ 5228	$\begin{aligned} & F 1 \\ & F 1 \\ & F 1 \\ & F 1 \\ & F 5 \\ & F 1 \end{aligned}$	Contacl Local Rep.
Anadex	Anadex Instruments Inc. 7833 Haskell Ave. Van Nuys, Calif. 91406	CFE500R CF-500-4R CF-500-6R CF-50IR CF-501-4R CF-501-6R CF-503R CF-503-4R CF-503-6R	$\begin{aligned} & \text { F2 } \\ & \text { F3 } \end{aligned}$	442			$523 C$ 523D 525A 5258 525C 5211 A 52118 5212 A 5214 L 5216 A	F5 F5 F16 F17 F18 F3 F3 F3 F3 F10	
Atec	Atec Inc Box 19426 1125 Lumpkin Road Houston, Tex. 77024	5A 15 5A35 6A75 6845 6C46 6C86 7848 7898 8A 18 A525 A545 8535 C535	F4 F4 F6 F6 F6 F7 F12 F11 F13 F4 F4 F4 F4	443			5221 A 5223 L 5232A 5233L 5244L 5245L 5246L 5251A 5252A 52538 5254B 5255A 5258A 5512A	F10 F4 F5 F6 F12 F12 F12 F16 F17 F18 F19 F19 F17	
Aviron	Avtron Mfg. Inc. 10409 Meech Ave.	$\begin{aligned} & \hline \text { T420 } \\ & \text { T569 } \end{aligned}$		444			5532A	F5	
	Cleveland, Ohio,44105	$\begin{aligned} & \mathrm{T} 572 \\ & \mathrm{~T} 734 \end{aligned}$	$\begin{aligned} & \text { F1 } \\ & \text { FI } \end{aligned}$		Hickok	Hickok Electrical Inst. Co. 10555 Dupont Ave. Cleveland, Ohio 44108	DMS-3200/DP-150	F5	450
Beckman	Beckman Instruments Inc. Berkeley Div. 2200 Wright Ave. Richmond, Colif. 94804	$6010 A$602361206121612261266127614562256230	F6 F6 F 10 F11 F13 FII F12 F12 F2 F2	445	lerc	IERC 135 W Magnolia Blvd. Burbank, Calif.	3030/930	F7	451
					Magtrol	Magtrol, Inc. 240 Seneca St. Buffalo, N. J. 14204	4602	F1	452
					Marconi	Marconi Instruments Div. English Electric Corp. 111 Cedar Lane Englewood, N. J. 07631	TF2401/TF7557/T57558	F11	453
Chad-Hel	Chadwick-Helmuth Co. 111 E Railroad Ave. Monrovia, Colif. 91016	423	F3	446					
CMC	Computer Measurements Co Div. Pacific Industries Inc 12970 Bradley Ave. San Fernando, Calif. 91342	600 601 602 603 604 605 $607 A$ 7270 $738 A$ $738 C$ $800 A / 801 A / 831 A$ $800 A / 801 A / 832 A$ $800 A / 801 A / 833 A$ $800 A / 802 A / 831 A$ $800 A / 802 A / 832 A$ $800 A / 802 A / 333$ $800 A / 803 A / 831 A$ $800 A / 803 A / 832 A$ $800 A / 803 A / 833 A$ 880	F7 F7 F7 F7 F7 F7 F8 F12 F13 F17 FII FII FII F11 FII F12 F14 F14 F14 F13	447	Monsanto	Monsanto Co. 620 Passiac Ave. West Caldwell, N. J. 07006	$\begin{array}{\|l\|} \hline 1000 \\ 1010 \\ 1020 \\ 1021 \end{array}$	$\begin{aligned} & \text { F10 } \\ & \text { F8 } \\ & \text { F13 } \\ & \text { F14 } \end{aligned}$	454
					Motorola	Motorola Communications \& Electronics Inc. Precision Frequency Products 4501 Augusta Blvd. Chicago, III. 60651	S-10758	F15	455
					NLS	Non-Linear Systems Inc. Delmar Airpart Box 728 Del-Mar, Calif. 92014	$\begin{array}{\|l\|} \hline 2807 \\ 2808 \\ 2809 \end{array}$	$\begin{aligned} & \text { F6 } \\ & \text { FG } \\ & \text { F6 } \end{aligned}$	456
					Ne-Engr	Northeastern Engineering Div. of LaPointe Industries Inc. 130 Silver Street Manchester, N.H.	$\begin{aligned} & \hline 14-20 C \\ & 14-20 C V \\ & 14-21 C \\ & 14-22 C \\ & 14-26 C \\ & 14-26 E \end{aligned}$	$\begin{aligned} & \text { F9 } \\ & \text { F9 } \\ & \text { F16 } \\ & \text { F17 } \\ & \text { F18 } \\ & \text { F18 } \end{aligned}$	457
Eidorado	Eldorado Electronics 601 Chadomar Road Concord, Calif. 94520	680 681 945 946 950 951 1000/10 1000A 1000B	$\begin{aligned} & \text { F19 } \\ & \text { F19 } \\ & \text { F15 } \\ & \text { F8 } \\ & \text { F8 } \end{aligned}$	448			$\begin{aligned} & 14-40 \\ & 40-60 \\ & 40-70 \\ & 40-82 \\ & 40-84 \\ & 40-85 \\ & 40-90 \mathrm{~A} \\ & 40-95 \\ & 40-96 \\ & 40-97 \end{aligned}$	F16 F8 F11 F16 F17 F19 F12 F19 F19 F16	
GR	General Radio Co. 22 Baker Ave. West Concord, Mass. 01781	$1133-A$ $1144-A$	F17	449			40-98	$F 17$	
		$\begin{aligned} & 1150-B \\ & 1150-B H \\ & 1151-A \\ & 1153-A \end{aligned}$	$\begin{aligned} & \text { F5 } \\ & \text { F5 } \\ & \text { F5 } \\ & \text { F8 } \end{aligned}$		Systron	Systron-Donner Corp. 888 Galindo St. Concord, Calif. 94520	$\begin{array}{\|l\|} \hline 1011 \\ 1013 \\ 1033 \\ 1034 \\ 1037 \end{array}$	$\begin{aligned} & \text { F3 } \\ & \text { F3 } \\ & \text { F8 } \\ & \text { F9 } \\ & \text { F12 } \\ & \hline \end{aligned}$	458

CODE	COMPANY	MODEL NO.	table LOCATION	READER SERVICE NO.
		$\begin{aligned} & 1038 \\ & 1038-4 \\ & 1038-12 \\ & 1253 \\ & 1254 \\ & 1255 \\ & 1291 \\ & 1292 \\ & 1293 \\ & 1297 \\ & 1979 \\ & 6013 \\ & 6014 \\ & 6018 \\ & 6034 \\ & 6038 \\ & 6313 \\ & 6314 \\ & 6315 \end{aligned}$	F10 F10 F15 F18 F19 F19 F18 F19 F19 F19 F16 F7 F8 F13 F8 F13 F15 F15 F15	
TSI	Transistor Specialities Terminal Drive Plainview, N. Y.	83 361 36 IR 364 364R 373 373R 385-R/83 385-R/85 500A-L. 510A 500A-L 511A 500A-LM 510A 500A-LM/511A 500A 510 A 500 A .511 A 500A/513A 500A/520A 520A 5208 522 600/69 1532 1532A 1535	F16 F5 F5 F7 F7 F8 F8 F14 F14 F10 F10 F10 F10 F14 F14 F14 F15 F17 F17 F18 F13 F16 F16 F13	459
Wang	Wang Labs Inc. 836 North 51. Tewksbury, Moss.	$\begin{aligned} & 2019 \\ & 2026 \\ & 2029 \\ & 2240 \\ & 5510 \\ & 7716 \end{aligned}$	$\begin{aligned} & \text { F3 } \\ & \text { F4 } \\ & \text { F6 } \\ & \text { F4 } \\ & \text { F4 } \\ & \overline{F 9} \end{aligned}$	460

CODE	COMPANY	MODEL NO.	$\begin{aligned} & \text { TABLE } \\ & \text { LOCA- } \\ & \text { TION } \end{aligned}$	READER SERVICE NO.
Computer Logic	Computer Logic Corp. 1528 20th Street Sonto Monica, Colif.	704 705 706 714 715 716 804 805 806 814 815 816	Late Arrival	483
Amark	Amark 31 Commercial Street Plainvie: New York	TSA6634 TSA6634A iSA6636	Late Arrival	485
EAI	Electionic Associates Inc. 185 Monmouth Porkway West Lang Branch, N.J.	6200. 6202	Late Arrival	484

Now . . . A low cost Power Supply with 1% Line and Load Regulation, Minimum Ripple, 3\% Output Voltage Adjustability, Frequency Insensitive with 47-63 Cycle Operation. 45 Standard Models. 4-240 vdc 0-25 Amps.

Three Lines Available

60-LX 60 watts output $\$ 85$ each
120-LX 120 watts output $\$ 125$ each
200-LX 200 watts output $\$ 170$ each

WAN LASS

ELECTRIC CO.
A Subsidiary of American Bosch Arma Corporation 2175 South Grand Avenue/Santa Ana, California 92705

ON READER-SERVICE CARD CIRCLE 305

Field Strength Meters

Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
Field strength meter index starts on page T108.
Need a FREE copy of this directory? Circle number 255.

Field Strength Meters (continued)

	Manufacturer	Model	Frequency		Field Strength		$\begin{gathered} \text { IF } \\ \mathrm{MHz} \end{gathered}$	Band- Width MHz	Image Ratio d ${ }^{8}$	Internal Calibration	Accuracy dB	Meter Calibration	$\begin{aligned} & \text { Input } \\ & \text { Imped- } \\ & \text { ance } \\ & \Omega \end{aligned}$	Output Types	Mounting	Misc. Feotures	Price Approx. S
			Minimum $\mathrm{MHz}_{\mathrm{z}}$	Maximum MHz	Minimum μV	Maximum \checkmark											
H4	Polarad	CFI-L	1000	2040	-90dBm	ina		1,5,8	60	sig. gen.	$\pm 1 \%$	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	d	7570
	Polarad	FIM-L2	1000	2240	20	3	$\begin{aligned} & 260, \\ & 140, \end{aligned}$	5	60	ina	± 1	$\mu V, d B$	50	h	c	d	6973
	R-S	HFA BN15003	900	2700	$50 \mu \mathrm{Vm}$	0.5 m	$\begin{aligned} & 250, \\ & 25 \end{aligned}$	2	30	ino	± 3	dB	50	ose. recdr.	C	d	11,695
	Teltrncs	LR-101/2-4	2000	4000	0.1	1	30b	10	ino	res.	± 0.5	dB	50		C, R	-	5113
	Teltrncs	LR-101A	1000	4000	0.1	ino	30	$\begin{aligned} & 30 \mathrm{~Hz}, \\ & 0.3, \\ & 3.8 \end{aligned}$	ino	lierm.	$0^{0}-10^{5} \mathrm{k}$	yes	50	h	C	-	4250
	Empire	$\begin{array}{\|l} \mathrm{T}-2 / \mathrm{NF}-112 \\ \mathrm{BA}-112 \end{array}$	200	4000	10	1	$\begin{aligned} & 348, \\ & 60,42 \end{aligned}$	1,5	60	noise gen.	± 1	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	-	6180
	Polarad	F1M-S2	2140	4340	20	3	260, 140,	5	60	ina	± 1	$\mu \mathrm{V}, \mathrm{dB}$	50	h	c	d	6973
	Polarad	CFI-S	1900	4340	-90dBm	ino	$\begin{aligned} & 40 \\ & 260, \\ & 140, \end{aligned}$	1,5	60	$\begin{aligned} & \text { sig. } \\ & \text { gen. } \end{aligned}$	$\pm 1 \%$	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	d	7570
	Empire	$\begin{array}{\|l} \mathrm{T}-3 / \mathrm{NF}-112 \\ \mathrm{BA}-112 \end{array}$	4000	7000	10	1	348, 60,42	1,5	60	noise gen.		$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	-	6450
	Polarad	CFI-M	4. 2 GHz	7740	-860d Bm	ina	$\begin{aligned} & 260, \\ & 140, \\ & 40 \end{aligned}$	1,5	60	sig. gen.	$\pm 1 \%$	$\mu V, \mathrm{~dB}$	50	h	C	d	7570
H5	Polarad	FIM-M2	4200	7740	20	3	260, 140,	5	60	ina	± 1	$\mu V, d B$	50	h	C	d	6973
	Teltrncs	LR-101/4-8	4000	8000	0.1	1	30b	10	ina	res.	± 0.5	$d B$	50	h	C, R	-	8893
	Teltrncs	LR-101/2-8	2000	8000	0.1	1	30 b	10	ino	res.	± 0.5	dB	50	h	C, R	-	10,253
	Polarad	FIM-X2	7360	10,000	20	3	$\begin{aligned} & 260, \\ & 140, \end{aligned}$ 40	5	60	ina	± 1	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	d	6973
	Polarad	CFI-X	7300	10,000	-85dBm	ino	$\begin{aligned} & 260, \\ & 140, \\ & 40 \end{aligned}$	1,5	60	ina	± 1	$\mu V, d B$	50	h	C	d	6973
	Empire	$\begin{aligned} & \mathrm{T}-4 / \mathrm{NF}-112 / \\ & \mathrm{BA}-112 \end{aligned}$	7000	10,000	10	1	$\begin{aligned} & 348, \\ & 60,42 \end{aligned}$	1,5	60	noise gen.	± 1	$\mu \mathrm{N}, \mathrm{dB}$	50	h	C	-	6460
	Polarad	FIM-KS	9850	15,350	20	3	260, 140,	5	60	ino	± 1	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	-	8673
	Polarad	CFI-KS	9850	15,350	-80dBm	ino		1,5	60	sig. gen.	$\pm 1 \%$	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	-	8920
	Polarad	CFI-KU	15,000	21,000	-77dRm	ino	$\begin{aligned} & 260, \\ & 140, \\ & 40 \end{aligned}$	1,5	60	sig. gen.	$\pm 1 \%$	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	-	9620
	Polarad	FIM-KU	14,800	21,000	20	3	$\begin{aligned} & 260, \\ & 140, \\ & 40 \end{aligned}$	5	60	ina	± 1	$\mu \mathrm{V}, \mathrm{dB}$	50	h	C	-	8848

Field Strength Meter Notes

a. Rechargeable internal batteries; AC or battery operated.
b. Other IF's available.
c. Solid-state.
d. External tunable antenna included.
e. Battery operated.
g. Outputs: carrier, peak, quasi-peak, 60 db scan, FM deviation, slide back, audio, IF, AM and FM, video.
h. Outputs: audio, video, recorder.
i. Field-strength varies with bandwidth. At narrow band, it is 101 to 85 dbm . At broad band, it is 4 to $26 \mu \mathrm{v} / \mathrm{MHz}$.
k. Fixed.
l. Output: audio, recorder.
m. Per meter.
o. Switched radiometer or direct.
p. Outputs: audio, video, recorder, IF, "X".

Field Strength Meter Cross Index

CODE	COMPANY	MODEL NO.	TABLE LOCATION	READER SERVICE NO.
EMPIRE	Empire Devices Singer Co., Metrics Division 915 Pembroke Street Bridgeport, Connecticut 06608	NF-315 T-1/NF-105/BA-105 T-1/NF-112/BA-112 T-2/NF-105/BA-105 T-2/NF-112/BA-112 T-3/NF-105/BA-105 T-3/NF-112/BA-112 T-4/NF-112/BA- 112 T-A/NF-105/BA-105 T-X/NF-105/BA-105	H H 2 H 3 H 2 H 4 H 3 H 4 H 5 H 1 H 1	461
FA/EL-M	Fairchild/Electro Metrics Corp. 88 Church Street Amsterdam, New York	$\begin{aligned} & \text { EMC-10 } \\ & \text { EMC-25 } \end{aligned}$	$\begin{aligned} & \text { H } 1 \\ & \text { H } 3 \end{aligned}$	462
JERROLD	Jerrold Electronics Corp. Industrial Products Division 15th \& Lehigh Philadelphia, Pennsylvania 19132	$\begin{aligned} & 7048 \\ & 720 \\ & 727 \\ & \text { UH } 727 \end{aligned}$	$\begin{aligned} & \text { H } 2 \\ & \text { H } 2 \\ & \text { H } 2 \\ & \text { H } 2 \end{aligned}$	463
POLARAD	Polarad Electronic Instr. Division 34-02 Queens Boulevard Long Island City, New York 11101	CFI-KS CFI-KU CFI-L CFI-M CFI-S CFI-X FIM-KS FIM-KU FIM-L2 FIM-M2 FIM-S2 FIM-X2	H 5 H 5 H 4 H 4 H 4 H 5 H 5 H 5 H 4 H 5 H 4 H 5	464
R-S	Rohde \& Schwarz Sales Co. 111 Lexington Avenue Passaic, New Jersey 07056	HFA BN15003 HFN BN 15001 HFU BN 15002 HUZ BN 15012/2 HUZE BN 15015/2	$\begin{aligned} & \text { H } 4 \\ & \text { H } 1 \\ & \text { H } 3 \\ & \text { H } 2 \\ & \text { H } 3 \end{aligned}$	465
SADELCO	Sadelco Inc. 601 West 26th Street New York, New York	FS-2	H 2	466
STODDART	Stoddort Electro Systems Division Tamar Electronics Inds. Inc. 2045 West Rosecrans Avenue Gardena, California	$\begin{aligned} & \text { NM-12T } \\ & \text { NM-22A(URM-131) } \\ & \text { NM-25T } \\ & \text { NM-30A(URM-47) } \\ & \text { NM-40A(URM-41) } \\ & \text { NM-52A(URM-17) } \end{aligned}$	$\begin{array}{lll} \mathrm{H} & 1 \\ \mathrm{H} & 1 \\ \mathrm{H} & 1 \\ \text { H } & 2 \\ \text { H } & 1 \\ \mathrm{H} & 3 \end{array}$	467
TELTRNCS	Teltronics Inc. 23-27 Main Street Nashau, New Hampshire 03060	$\begin{aligned} & 210-A \\ & \text { LR-101 } \\ & \text { LR-101/.05-1.5 } \\ & \text { LR-101/1-2 } \\ & \text { LR-101/2-4 } \\ & \text { LR-101/2-8 } \\ & \text { LR-101/4-8 } \\ & \text { LR-101A } \end{aligned}$	$\begin{aligned} & \text { H } 3 \\ & \text { H } \\ & \text { H } \\ & \text { H } 3 \\ & \text { H } 4 \\ & \text { H } 5 \\ & \text { H } 5 \\ & \text { H } 4 \end{aligned}$	468
VITRO	Vitro Electronics Division Vitro Corporation of America 919 Jesup-Blair Drive Silver Springs, Maryland	$\begin{aligned} & 107-A \\ & 135 \end{aligned}$	$\begin{aligned} & \text { H } 2 \\ & \text { H } 1 \end{aligned}$	469

Coaxial Slotted Lines

	Manufacturer	Model	Frequency		Residual VSWR	Characteristic Impedance Ω	Probe Travel cm	Price Approx. S
			Minimum GHz	Maximum GHz				
LI	R-S R-S Phe-Dodge Phe-Dodge Aircom Aircom Aircom Aircom Aircom Phe-Dodge	LMM BN3916/50 LMM BN3916/75 $6-1 / 8$ " slotted line $3-1 / 8$ " slotted line 150-7/8-25 150-15/8-25 150-15/8-50 150-1.5-50 150-7/8-50 $1-5 / 8$ " slotted line	0.08 0.08 0.3 0.3 1 1 0.5 0.5 0.5 0.3	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.9 \\ & 1.35 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.03 \\ & 1.010 \\ & 1.010 \\ & 1.03 \\ & 1.03 \\ & 1.03 \\ & 1.01 \\ & 1.03 \\ & 1.010 \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \\ & 75 \\ & 50 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 193 \\ & 193 \\ & 450 \\ & 450 \\ & 30 \mathrm{~d} \\ & 30 \mathrm{~d} \\ & 50 \mathrm{~d} \\ & 50 \\ & 50 \mathrm{~d} \\ & 450 \end{aligned}$	1680 1680 ina ino $965 f$ $965 f$ 1075g 1400 1075g ina
L2	R-S R-S Alford	LMD BN3926/50 LMD BN3926/75 1026C-2 1198A-2 1026C-4 1198A-4 1026C-6 1198A-6 1026C-8 1198A-8	0.3 0.3 0.3 0.3 0.15 0.15 0.1 0.1 0.075 0.075	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.02 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.010 \\ & 1.010 \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \\ & 50 \\ & 75 \\ & 50 \\ & 75 \\ & 50 \\ & 75 \\ & 50 \\ & 75 \end{aligned}$	50 50 20 in. 20 in. 40 in. 40 in. 60 in. 60 in. 80 in . 80 in.	$\begin{aligned} & 1280 \\ & 1280 \\ & 1450 \\ & 1700 \\ & 1550 \\ & 1800 \\ & 1925 \\ & 2175 \\ & 2550 \\ & 2800 \end{aligned}$
L3	Alford Alford Alford Alford Radar Radar PRD H-P Alford Alford	1026C-13 1198A-13 1026C-16 1198A-16 D4086 D4087 215A 805C 1300A-2 1300A-3	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.0375 \\ & 0.0375 \\ & 1.5 \\ & 1.5 \\ & 1 \\ & 0.5 \\ & 0.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.010 \\ & 1.010 \\ & 1.010 \\ & 1.010 \\ & 1.04 \\ & 1.06 \\ & \text { ina } \\ & 1.04 \\ & 1.010 \\ & 1.010 \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \\ & 50 \\ & 75 \\ & 50 \\ & \\ & 50 \\ & 49.4 \\ & 50 \\ & 75 \\ & 75 \end{aligned}$	125 in. 125 in. 160 in. 160 in. ina ino 5 in. 36.8 20 in. 30 in .	$\begin{aligned} & 3985 \\ & 4235 \\ & 4785 \\ & 5035 \\ & \text { ino } \\ & \text { ino } \\ & 575 \\ & 550 \\ & 1150 \\ & 1275 \end{aligned}$
14	Alford R-S Norda	$\begin{aligned} & 1300 A-4 \\ & 1300 \mathrm{~A}-6 \\ & 2181 \mathrm{~A}-2 \\ & 2181 \mathrm{~A}-3 \\ & 2181 \mathrm{~A}-4 \\ & \\ & 2181 \mathrm{~A}-6 \\ & 3116 \mathrm{~A}-1 \\ & 3116 \mathrm{~A}-1.6 \\ & \text { LMC BN } 3931 / 50 \\ & 6235 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.1 \\ & 0.3 \\ & 0.2 \\ & 0.15 \\ & 0.1 \\ & 0.6 \\ & 0.35 \\ & 1.65 \\ & 0.395 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4.5 \\ & 4.5 \\ & 4.5 \\ & 4.5 \\ & 6 \\ & 6 \\ & 6.35 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.01 \\ & 1.007 \\ & 1.005 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	40 in. 60 in . 20 in. 30 in . 40 in. 60 in. 10 in. 16 in. 37.5	$\begin{aligned} & 1375 \\ & 1590 \\ & 915 \\ & 1030 \\ & 1140 \\ & 1380 \\ & 1060 \\ & 1385 \\ & 2472 \\ & 800 \end{aligned}$
L5	GR GR PRD RD Rodar Radar Al'ard Omega Radar Radar	874-LBB 900-LB N231/230 N233/ 232 D 1107 D2319 2288A-1 5350,520 D2216 D2554	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 4 \\ & 2.5 \\ & 1.5 \\ & 1.5 \\ & 0.6 \\ & 3 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.001 \\ & \text { ina } \\ & \text { ina } \\ & 1.06 \\ & 1.06 \\ & 1.01 \\ & 1.10 \\ & 1.03 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 49.4 \\ & 50 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 3.5 \mathrm{in.} \\ & 4 \mathrm{in.} \\ & 10 \\ & \\ & \text { ina } \\ & 10 \mathrm{in.} \\ & 10 \\ & \text { ina } \\ & \text { ina } \end{aligned}$	395 675 438 370 ino 590 750 275 660 e 952e
16	Radar FXR/MLAB Nardo Nardo Nardo Alford Omni-Spec H-P R-S Alford	D4046 N 1018 23 ITNC 231 N 4231 $\because 20$ 1010 816A/809C 4561 2852-05	$\begin{aligned} & 1.5 \\ & 2.6 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 2.5 \\ & 2 \\ & 1.8 \\ & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12.4 \\ & 12.4 \\ & 12.4 \\ & 12.4 \\ & 17.5 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 1.01 \\ & 1.06 \\ & 1.04 \\ & 1.06 \\ & 1.025 \\ & 1.10 \\ & 1.04 \\ & 1.030 \\ & 1.025 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & \text { ino } \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	ino ino 10 10 10 $4-1 / 4 \mathrm{in}$. 10 10 ino 5.25 in.	inae 450 575e 440e 650e 1050 960 450 995 1140
17	Alford	2920-05	1.2	18	1.020	50	5.25 in.	1050

Reader-service numbers are given in the index.
Slotted lines index starts on page T114.
Need a FREE copy of this directory? Circle number 255.

Waveguide Slotted Lines

	Monufacturer	Model	Minimum GHz	Maximum GHz	Irregularity SWR	Slope SWR	Residual VSWR Maximum	Probe Travel cm	Waveguide Size inches	Flange Type	Price Apprax. S
L8	Omega	1515	0.750	1.12	1.005	ina	1.01	71	9.750×4.850	CPR975F	2800
	Omega	1516	0.960	1.45	1.005	ina	1.01	54	7.700×3.850	CPR770F	1900
	Omega	510	1. 12	1.7	1.005	ina	1.01	32	6.66×3.41	417	1700
	Aircom	150L/151L	1. 12	1.7	ina	1.01	1.02	19-7/8	6.66×3.41	417	1275
	FXR/MLAB	L1018	1. 12	1.7	1.005	1.01	ina	ina	6.66×3.41	417	1100
	Nardo	226C	1.12	1.7	1.01	ino	1.01	25	6.66×3.41	417	950
	Aircom	150LS/151LS	1.7	2.6	ina	ina	1.02	$\begin{aligned} & 11- \\ & 7 / 8 \mathrm{in.} \end{aligned}$	4. 46×2.31	435	1050
	Omega	511	1.7	2.6	1.005	ina	1.01	30	4. 46×2.31	435	1500
	FXR/MLAB	R101B	1.7	2.6	1.005	1.01	ina	ina	4.46×2.31	435A	1600
	Omega	2074	2.3	2.7	1.005	ina	1.01	30	3.698×1.849	CPR369F	1800
19	FXR/MLAB	SIO1A	2.6	3.95	1.005	1.01	ina	ina	3×1.5	53	445
	Aircom	150S/152	2.6	3.95	ino	1.01	1.01	ino	3×1.5	53	500
	Omega	512	2.6	3.95	1.005	ino	1.01	25	3×1.5	53	950
	Narda	224	2.6	3.95	1.01	ina	1.01	19.25	3×1.5	53	445
	Omega	523/520	3.3	4.9	1.005	ina	1.01	10	2.418×1.273	CHR229	255
	PRD	W233/232	3.3	4.9		ina	1.005		2.418×1.273	WR229	425
	PRD	G233/232	3.95	5.85	ino	ina	1.005	6	2×1	149A	300
	Omega	524/520	3.95	5.85	1.005	ina	1.01	10	2×1	$149 \mathrm{~A}$	250
	Aircom	150C/152	3.95	5.85	ina	1.01	1.01	ina	2x1	149A	395
	Omega	525/520	4.9	7.05	1.005	ino	1.01	10	1.718×0.923	CMR159	255
LIO	Omega	526/520	5.85	8.2	1.005	ina	1.01	10	1. 5×0.75	344	245
	FXR/MLAB	CII5A/Z116A	5.85	8.2	1.005	1.01	ina	4$3 / 4 \mathrm{in}$.	1. 5×0.75	344	105
	Aircom	150xC/152	5.85	8.2	ino	1.01	1.01	ino	1.5×0.75	344	385
	$\mathrm{H}-\mathrm{P}$	J810B/809C	5.3	8.2	1.01	ina	1.01	10	1. 5×0.75	441	325
	Nordo	222	5.3	8.2	1.01	ino	1.01	9.4	1. 5×0.75	344	335
	PRD	C233/232	5.3	8.2	ino	ina	1.005	6	1. 5×0.75	344	285
	FXR/MLAB	W101A	7.05	10	1.005	1.01	ina	ino	1.25×0.625	51	240
	H-P	H810B/809C	7.05	10	1.01	ina	1.01	10	1. 25×0.625	138	310
	PRD	H233/232	7.05	10	ina	ina	1.005	6	1. 25×0.625	51	285
	Aircom	1508L/152	7.05	10	ino	1.01	1.01	ina	1.250×0.625	51	375
L11	Omega	527/520	7.05	10	1.005	ino	1.01	10	1.25×0.625	51	240
	FXR/MLAB	W 115A/2116A	7.05	10	1.005	1.01	ino	4$3 / 4 \mathrm{in}$.	1.25×0.625	51	105h
	H-P	$\times 810 \mathrm{~B} / 809 \mathrm{C}$	8.2	12.4	1.01	ina	1.01		1×0.5	135	290
	Somerset	+102	8.2	12.4	1.01	ina	1.01	fixed	1×0.5	39	65
	Somerset	$\times 103$	8.2	12.4	1.01	ino	1.01	1 in .	1×0.5	39	115
	PRD	X231/230	8.2	12.4	ino	ina	1.01	6	1×0.5	39	265
	PRD	$\times 233 / 232$	8.2	12.4	ino	ina	1.005	6	1×0.5	39	265
	Aircom	$150 \mathrm{X} / 152$	8.2	12.4	ina	1.01	1.01	ina	1×0.5	39	362
	FXR/MLAB	X115A/2116A	8.2	12.4	1.005	1.01	ina	4$3 / 4 \mathrm{in}$.	1×0.5	39	105
	FXR/MLAB	$\times 1014$	8.2	12.4	1.005	ino	ino	ino	1×0.5	39	230
L12	Narda	220	8.2	12.4	1.01	ino	1.01	8.9	1×0.5	39	250
	Omega	528/520	8.2	12.4	1.005	ino	1.01	10	1×0.5	39	240
	Omega	3525/520	10	15	1.005	ino	1.01	10	0.850×0.475	ina	250
	PRD	U231/230	12.4	18	ino	ino	1.01	6	0.702×0.391	419	285
	H-P	P810B/809C	12.4	18	1.01	ino	1.01	10	0.702×0.391	419	310
	Omega	529/520	12.4	18	1.005	ino	1.01	10	0.702×0.391	419	250
	Narda	219	12.4	18	1.01	ino	1.01	8.9	0.702×0.391	419	350
	Omega	$3526 / 520$	15	22	1.005	ino	1.01	10	0.590×0.335	WR51	250
	H-P	K815B/814B	18	26.5	ina	ina	1.01	$1 / 2$ wave	0.500×0.250	595	625
	PRD	K231/230	18	26.5	ina	ino	1.01	6	0.500×0.250	425	435

(tables continued on pane T112)
Get detailed data: use the reader-service card.
Circle as many numbers on the reader-service card as you like.
See reader-service card for valuable FREE reprints.
Reader-service cards are good all year.
Need a FREE copy of this directory? Circle number 255.

Waveguide Slotted Lines (continued)

	Manufacturer	Model	$\begin{aligned} & \text { Minimum } \\ & G H_{z} \end{aligned}$	Maximum GHz	Irregularity SWR	Slope SWR	Residual VSWR Maximum	Probe Travel cm	Waveguide Size inches	Flange Type	Price Approx. §
L13	PRD H-P	$\begin{aligned} & \text { A231/230 } \\ & \text { R815B/814B } \end{aligned}$	$\begin{aligned} & 26.5 \\ & 26.5 \end{aligned}$	40	ina ina	ina	1.01 1.01	ina 1/2 wove	$\begin{aligned} & 0.360 \times 0.220 \\ & 0.360 \times 0.220 \end{aligned}$	$\begin{aligned} & 381 \\ & 559 \end{aligned}$	$\begin{aligned} & 435 \\ & 675 \end{aligned}$
	TRG	A740	26.5	40	1.03	ina	ina	ino	$0.280 \times 0.140 \mathrm{~b}$	381	990
	FXR/MLAB	Q103A	33	50	1.03	ina	ina	ina	0.304×0. 192	383	650
	TRG	8740	33	50	1.03	ino	ina	ina	$0.244 \times 0.112 \mathrm{~b}$	383	990
	TRG	V740	50	75	1.03	ino	ina	ino	0. $148 \times 0.074 \mathrm{~b}$	385	990
	FXR/MLAB	M 103A	50	75	1.03	ino	ina	ina	0.228×0.154	ino	750
	FXR/MLAB	E103A	60	90	1.03	ino	ina	ina	0.202×0.141	387	1350
	TRG	E740	60	90	1.03	ina	ino	ino	$0.122 \times 0.06 \mathrm{lb}$	387	1050
	TRG	W740	75	110	1.03	ina	ina	ino	$0.100 \times 0.050 \mathrm{~b}$	387	1700
114	FXR/MLAB	F105A	90	140	ino	ino	ino	$\begin{aligned} & 2- \\ & 1 / 16 \mathrm{in} . \end{aligned}$	0.080×0.040	special	950
	TRG	F741	90	140	1.03	ina	ino	ino	0.080×0.0406	714	ina
	TRG	D741	110	170	1.03	ina	ino	ina	0.065×0.0325	716	1900
	FXR/MLAB	G 105A	140	220	ino	ino	ina	2-	0.051×0.025	special	975
	TRG	G741	140	220	1.03	ina	ina	ina	0.051×0.0255	715	2100

Circle as many numbers on the reader-service card as you like.
Reader-service cards are good all year.
Slotted lines index starts on page T114.
Need a FREE copy of this directory? Circle number 255.

Coaxial Slotted Lines Late Arrival

	Model	Frequency		Residual VSWR	Characteristic Impedance (Ω)	Probe Travel (cm)	Price Approx. (S)
Manufacturer		Minimum $\left(\mathrm{GHz}_{\mathrm{z}}\right)$	Maximum (GHz)				
Narda	5235	1.5	17	$1.003+$	$50 \Omega \pm 0.15 \Omega$	15	request

Coaxial and Waveguide Slotted Line Notes

a. Piston with inductive loop.
b. Inner dimension.
d. Family has varying slotted-line lengths.
e. Family has different connectors.
f. Twenty-two-inch length.
g. Twenty-eight-inch !ength.
h. Comes in separate units.

Today's standards for precision coaxial measurements

GR900 Connector

The GR900 connector gives new meaning to accuracy in microwave measurements. With VSWR less than $1.001+0.001 \mathrm{f}_{\mathrm{GHz}}$ to 8.5 GHz , characteristic impedance accurate to 0.1%, shielding better than 130 dB , and repeatability within 0.03%, the $14-\mathrm{mm}$ GR900 has become a recognized industry standard.

Today the GR900 line of coaxial components contains air lines, standards, terminations, a slotted line, tuners, elbow, and adaptors to most other popular coaxial connectors ($\mathrm{N}, \mathrm{TNC}, \mathrm{BNC}, \mathrm{C}, \mathrm{SC}, \mathrm{OSM} / \mathrm{BRM}, ~ G R 874$, Amphenol APC-7, and $7-\mathrm{mm}$ Precifix). And the GR900 product line is still growing.

For high-accuracy microwave measurements, you won't find anything that will outperform the GR900. For complete information, write General Radio Company, W. Concord, Massachusetts 01781 ; telephone (617) 369-4400; TWX (710) 347-1051.

Slotted Line Cross Index

CODE	COMPANY	MODEL NO.	TABLE LOCATION	$\begin{array}{\|c\|} \text { READER } \\ \text { SERVICE } \\ \text { NO. } \end{array}$	CODE	COMPANY	MODEL NO.	TABLE LOCATION	READER SERVICE NO.
AIRCOM	Aircom Inc. 48 Cummington Street Boston, Mass. 02115	$\begin{aligned} & 150-1.5-50 \\ & 150-7 / 8-25 \\ & 150-7 / 8-50 \\ & 150-15 / 8-25 \\ & 150-15 / 8-50 \\ & 150 B L / 152 \\ & 150 \mathrm{C} / 152 \\ & 150 \mathrm{~L} / 151 \mathrm{~L} \\ & 150 \mathrm{LS} / 151 \mathrm{LS} \\ & 150 \mathrm{~S} / 152 \\ & 150 \mathrm{X} / 152 \\ & 150 \mathrm{XC} / 152 \end{aligned}$	LI LI LI LI LI L 10 L9 L8 L8 L9 LII L 10	470	OMEGA	Omega Labs Inc. Haverhill Street Rowley, Mass. 01969	$\begin{aligned} & 510 \\ & 511 \\ & 512 \\ & 523 / 520 \\ & 524 / 520 \\ & 525 / 520 \\ & 526 / 520 \\ & 527 / 520 \\ & 528 / 520 \\ & 529 / 520 \\ & 1515 \\ & 1516 \end{aligned}$	L8 L8 L9 L9 L9 L9 LIO LII LI2 LI2 L8 L8	475
ALFORD	Alford Mfg. Co. 120 Cross Street Winchester, Mass. 01890	1026C-2 1026C-4 1026C-6 1026C-8 1026C-13 1026C-16 1198A-2 1198A-4 1198A-6 1198A-8 1198A-13 1198A-16 1300A-2 1300A-3 1300A-4 1300A-6 2181A-2 2181A-3 2181A-4 2181A-6 2288A-1 2852-05 2920 2920-05 3116A-1 3116A-1.6	L2 L2 $\stackrel{1}{12}$ L3 L3 L2 L 2 L 2 L2 L3 L3 L3 L3 L4 L4 L4 L4 L4 L4 L5 L6 L6 L7 L4 L4	471			$\begin{aligned} & 2074 \\ & 3525 / 520 \\ & 3526 / 520 \\ & 5350 / 520 \end{aligned}$	$\begin{aligned} & \text { L8 } \\ & \text { L12 } \\ & \text { L12 } \\ & \text { L5 } \end{aligned}$	
					OMNISPEC	Omni-Spectra Inc. 8844 Puritan Avenue Detroit, Michigan 48238	20010	L6	476
					PRD	PRD Electronics Inc. 1200 Prospect Avenue Westbury, New York 11590	215A A231/230 C233/232 G233/232 H233/232 K231/230 N231/230 N233/232 U231/230 W233/232 $\times 231 / 230$ $\times 233 / 232$	L3 LI3 L10 L9 LIO L12 L5 L5 L12 L9 LII LII	477
					PHEDODGE	Phelps Dodge Electronic Products 60 Dodge Avenue North Haven, Connecticut	$1-5 / 8^{\prime \prime}$ slotted line $3-1 / 8^{\prime \prime}$ slotted line $6-1 / 8^{\prime \prime}$ slotted line	$\begin{aligned} & \mathrm{LI} \\ & \mathrm{LI} \end{aligned}$	478
FXR/ MLAB	FXR (Microlab/FXR) Division Microlab Livingston, New Jersey	$\begin{aligned} & \text { C115A/2116A } \\ & \text { E 103A } \\ & \text { F105A } \\ & \text { G105A } \\ & \text { L101B } \\ & \text { M103A } \\ & \text { N101B } \\ & \text { Q103A } \\ & \text { R101B } \\ & \text { S101A } \\ & \text { W101A } \\ & \text { W115A/2116A } \\ & \text { X101A } \\ & \text { X115A/2116A } \end{aligned}$	$\begin{aligned} & \mathrm{L} 10 \\ & \mathrm{~L} 13 \\ & \mathrm{~L} 14 \\ & \mathrm{~L} 14 \\ & \mathrm{~L} 8 \\ & \text { L13 } \\ & \text { L6 } \\ & \text { L13 } \\ & \text { L8 } \\ & \text { L9 } \\ & \text { L10 } \\ & \text { L11 } \\ & \text { L11 } \\ & \text { L11 } \end{aligned}$	472					
					RADAR	Radar Design Corp. 105 Pickard Drive Syracuse, New York 13211	$\begin{aligned} & \text { D } 1107 \\ & \text { D2216 } \\ & \text { D2319 } \\ & \text { D2554 } \\ & \text { D4046 } \\ & \text { D4086 } \\ & \text { D4087 } \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & \text { L6 } \\ & \text { L3 } \\ & \text { L3 } \end{aligned}$	479
					R-S	Rohde \& Schwarz Sales Co. 111 Lexington Avenue Passaic, New Jersey 07056	4561 LMD BN3926/ 50 LMD BN3926/ 75 LMC BN3931/ 50 LMM BN3916/ 50 LMM BN3915/ 75	$\begin{array}{\|l} \mathrm{L} 6 \\ \mathrm{~L} 2 \end{array}$	480
GR	General Radio Co. 22 Baker Avenue West Concord, Mass. 01781	$\begin{aligned} & 874-L B B \\ & 900-L B \end{aligned}$	$\begin{aligned} & \mathrm{L} 5 \\ & \text { L5 } \end{aligned}$	473				L2 L4	
H-P	Hewlett-Packard Co. 1501 Page Mill Road Polo Alto, California	805C 816A/809C H8 10B/809C J8108/809C K815B/814B P8108/809C	$\begin{aligned} & \text { L3 } \\ & \text { L6 } \\ & \text { L10 } \\ & \text { L10 } \\ & \text { L12 } \\ & \text { L12 } \end{aligned}$	Contact Local Rep.				LI LI	
		$\begin{aligned} & R 815 B / 8148 \\ & \times 810 B / 809 C \end{aligned}$	$\begin{aligned} & \text { L13 } \\ & \hline \end{aligned}$		SOMER SET	Somerset Radiation Lab Inc. Box 201 Edison, Pennsylvania 18919	$\begin{array}{r} \times 102 \\ \times 103 \end{array}$	$\begin{aligned} & \text { L.11 } \\ & \text { LII } \end{aligned}$	481
NARDA	Narda Microwave Corp. Commercial Street Plainview, New York 11803	$\begin{aligned} & \hline 219 \\ & 220 \\ & 222 \\ & 224 \\ & 226 \mathrm{C} \\ & 231 \mathrm{~N} \\ & 231 \mathrm{TNC} \\ & 4231 \\ & 6235 \end{aligned}$	L12 L12 L10 L9 L8 L6 L6 L6 L4	474	TRG	TRG Inc. 400 Border Street East Boston, Mass. 02128	A740 B740 D741 E740 F741 G741 V740 W740	$\begin{aligned} & \text { L13 } \\ & \text { LI3 } \\ & \text { L14 } \\ & \text { L13 } \\ & \text { L14 } \\ & \text { L14 } \\ & \text { L13 } \\ & \text { L13 } \end{aligned}$	482

Support your local Resistance.

	Multi-	rpose instr	ments		esistance B				ridges
Model	250 DE	292	300	231	232	242	122	500	261
Range	. $1!$-12M!	.1!-1.2M!	.01!-500M!	.01! 12 T !	.1!-500M!	.001!2-120M?	.001!-100M!	.19-111M?	10!!-2M@
Accuracy	.1\%	.05\%	.02\%	.01\%	. 01%	50ppm	0.2ppm	.01\%	.1\%
Price	\$475	1380	875	2050	1075	3500	4000	2595	Appr. 250
Comments	R, C and L	$\begin{aligned} & \mathrm{R}, \mathrm{C}, \mathrm{~L} \\ & \text { and } \mathrm{G} \end{aligned}$	R, E, I and Ratio			Ratio and deviation ranges	$1: 1,10: 1$ ratios	Deviation ranges $\pm 10 \%$ to $\pm .01 \%$	$\begin{aligned} & 1: 1 \text { ratio } \\ & \pm 1 \%, 5 \%, \\ & 20 \% \text { ranges } \end{aligned}$

Resistance measurement is very much a local matter, requiring resistance measuring instruments designed to match your local needs. Whether the job is production testing, on-line inspection, or laboratory calibration and certification-you want an instrument specifically tailored to the task.

The chart illustrates the wide range of approaches ESI can offer to meet your resistance measuring needs. Among them, you're sure to find the ranges, accuracies and special features that suit your particular application. In many cases, you may be able to answer a number of different electronic measurement requirements in a single multi-purpose instrument.

It's not by chance that every major manufacturer of precision resistors uses an ESI measuring instrument. You'll find, as they have, that ESI instruments are fast and easy to use. And they give you the greatest reliability and accuracy for your dollar. That's a good local cause to be supporting, ESI, 13900 NW Science Park Drive, Portland, Oregon 97229. ON READER-SERVICE CARD CIRCLE 308

Here's the most foolproof volt-ohm-milliammeter ever made. Protection approaches 100%. It's the VOM you will want to have on hand where inexperienced people are running tests . . . or will reach for yourself on those days when you're all thumbs. The 260-5P will save you all kinds of headaches from burned out meters and resistors, bent pointers, and inaccuracies caused by overheating.

Combined Protection You Won't Find In Any Other VOM

1. Reset button pops out to indicate overload.
2. You cannot reset circuits while overload is present.
3. Protective circuit does not require massive overloads which can cause hidden damage to the instrument.
4. All ranges are protected except those not feasible in a portable instrument-1000 and 5000 volts DC and AC; 10 amp DC .

ONLY \$88.00

Write for Bulletin 2076
Ranges-The 260-5P has the same ranges and takes the same accessories as Simpson's famous 260-5 volt-ohm-milliammeter.

5200 W. Kinzie Street, Chicago. III. 60644 - Phone: (312) 379-1121

Looking for a book on Semiconductors? Here's a shelf-full from Hayden:

TRANSISTORS FOR AUDIOFREQUENCY

Guy Fontaine
The companion volume to Fontaine's DIODES AND TRANSISTORS offers highly detailed treatment of the practical aspects of semiconductors in the audiofrequency range. The book provides thorough explanation of the parameters and characteristics furnished by the manufacturer, and their various applications in the design of an audiofrequency stage. \#5641. 384 pages, illustrated, clothbound. \$7.95

TRANSISTOR CIRCUITS
 IN ELECTRONICS

S. S. Hakim and R. Barrett

This indispensable sourcebook introduces the working principles of transistors in both amplifiers and oscillators, and linear and switching circuits. The book begins by discussing transistor characteristics and the functions performed by various types, then goes on to consider the transistor as a switch and to discuss regenerative switching circuits. In addition, the book shows how Boolean Algebra, the algebra of sets and binary arithmetic are applied in the study of computer and other logical circuits. \#5034. 341 pages, illustrated, cloth. $\$ 9.50$

DESIGN OF TRANSISTORIZED CIRCUITS FOR DIGITAL COMPUTERS
 Abraham I. Pressman

Here is a book that provides the design engineer with a firm grasp of the principles and practices. Primarily concerned with the design of computer building blocks using transistors, the book employs "worst case" design calculations throughout. Circuit analysis and all aspects of output wave forms are calculated by treating the transistor as a current switch. \#0215. 328 pages, illustrated, cloth. $\$ 9.95$

PRINCIPLES OF TRANSISTOR CIRCUITS s.w. Amos

Keeping pace with this rapidly advancing field, the updated Third Edition offers fifty per cent more information than its distinguished predecessor. The book includes new material on dc stabilization of amplifiers by direct-coupled feedback, phase shift and Weinbridge oscillators, blocking oscillators and transistor sawtooth generators. New appendices of transistor parameters and transistor manufacturers add to the completeness of this definitive work. \#5649. 293 pages, illustrated, cloth. $\$ 7.95$

ELECTRONICS FOUR: SEMICONDUCTORS

This self-contained unit-volume from Hayden's new ELECTRONICS 1-7 course, Harry Mileaf, Editor-inChief, was designed to meet the requirements of modern technical education. From first response it will be a standard text in schools teaching electronics. With unparalleled 2-color illustrations, review, and reinforcement, it promotes a complete understanding of the theory, operation, design, and functions of semiconductors, providing a concise background in atomic and electron theory. Equally valid for classroom use or as a seif-study text for technicians, engineers will find it valuable also for updating themselves and as a convenient reference. \#5556. 118 pages, illustrated, paper. $\$ 3.45$

MICROELECTRONIC DESIGN

Edited by Howard Bierman
Almost 90 authoritative discussions of all aspects of microelectronics have been selected from Electronic Design and organized into a compact, convenient, and comprehensive reference. Each topic has been approached in practical and useful terms to provide a working overview of the field. \#5762, 312 pp., Illustrated, \$11.50

DIODES AND TRANSISTORS
 Guy Fontaine

Written to teach the language of semiconductors and its applications in all kinds of circuits, this popular work is divided into three comprehensive parts. The first section provides a thorough review of the principles underlying all semiconductor devices; section two covers diodes, the fundamental properties of point contact and PN junction diodes, plus an analysis of the performance characteristics of both; the balance of the book is devoted to transistors and gives a detailed presentation of all the parameters that could interest engineers. A final section deals with methods of designing circuits using transistors. \#5500. 480 pages, illustrated, cloth. $\$ 7.95$

TRANSISTOR AND DIODE NETWORK PROBLEMS AND SOLUTIONS

Harry E. Stockman
This two-way reference demonstrates the practical application of theory and serves as sourcebook of step-by-step mathematical solutions to practical problems. With schematic situations covering the entire field of transistor and diode networks, the reader develops effective techniques by comparing his own solution methods with the author's. \#5694, 332 pp., Illustrated, $\$ 9.95$

TRANSISTOR BASICS: A SHORT COURSE George C. Stanley, It.

For your own review, or for training technicians, here is a fast way to gain a practical understanding of transistors. Its simplified approach to transistor circuit analysis will enable the reader to determine desired values to an accuracy adequate for almost any practical situation. Includes material on working with and handling transistors and transistor troubleshooting techniques. \#5819, 112 pp., Illustrated, \$2.75

Examine these

outstanding

new books

for 10 full days... with no obligation!

HAYDEN BOOK COMPANY, INC., 116 W. 14 St., New York, N.Y. 10011
Send me the books circled below for a free ten-day examination. At the end of that time 1 will remit payment (plus postage) for those I wish to keep and return the rest.

5649	5500	5034	5556	5819
5762	5641	0215	5694	

Name
Title
Company
Address
City
Check here if payment enclosed. Publisher pays postage with same return guarantee. (On all foreign orders except Canada, payment in \$US must be enclosed.)

Speed up binary-to-decimal conversion by using a simple design approach that minimizes the number of logic blocks you'll need.

Engineers use the decimal number system for their calculations. Digital devices prefer binary numbers. This dichotomy creates a nced for bi-nary-to-decimal conversion. The dcsigner has a choice of methods to accomplish this. A quick comparison reveals which basic method is best suited to higher-speed operations with large numbers. He can:

- Use a logic matrix to convert all possible binary input states into their equivalent decimal states.
- Store the binary number in a clocked binary counter which is counted down to zero while simultaneously counting the clock pulses in a binarycoded decimal (BCD) counter.
- Shift the binary number, most significant bit (MSB) first, into a shift register divided into decades such that the number in each decade can have only the value 0 through 9 .

The first method is economical when the number to be converted is small, say, binary 1111 (decimal 15). The second technique can be used with larger numbers but is relatively slow. A 24 bit number, for example, would require up to 2^{24} -1 clock pulses for conversion. At a $1-\mathrm{MHz}$ clock rate, this would take almost two seconds.

The third method is limited only by the speed of the logic elements used in the decade shift registers. It is this approach that is to be considered here. The particular design to be presented uses a minimization technique that eliminates between-the-register elements and so reduces the number of parts needed and increases the speed of conversion.

Two decade registers are possible

To see how the conversion works, consider a binary shift register and a shift register divided into decades (Fig. 1). If a binary number is shifted, most significant bit first, into the binary register, each shift in effect multiplies the previous contents by two and adds the next bit of the binary word being shifted in from the storage

[^2]register:
$$
X_{i}=2 X_{i-1}+B_{i},
$$
where X_{i} is the new number and B_{i} is the bit added in. For example, say that three bits of the binary number 10111 have been shifted into either register. Now 111 will be stored in each-equivalent to decimal 7. Another shift takes place, putting 0111 into each-decimal 14. In this case, $B=0$, so the value was simply doubled.

In the decade shift register a problem arises at the fifth shift, where the decimal number should go from 8 to 10 while the binary shift register goes from 8 to 16 , so that a 6 must be added into the first decade of the decade counter. If, for example, the old contents of the binary shift register are 9 (binary 1001), as in Fig. 1, then a shift would double this to 18 (binary *1001, where the asterisk represents the bit added in). In a decade shift register the 9 (binary 1001) would also be doubled to 18 , but this appears as an 8 in the first (units') decade and a 1 in the second (tens') decade (binary *001 1000).
Thus to use a binary shift register as a decade shift register, each group of four binary elements must be reset whenever their count goes above 9 instead of above 15 as in a straight binary regis-

1. The binary number is shifted, most significant bit first, into a decade shift register. In a binary register (upper) the old number is multiplied by two and a new bit added on each shift. In a decade shift register (lower) the number in any decade is limited to 9 . Groups of four flip-flops are used for each decade.
ter．Effectively a 6 must be added in whenever the count is about to go over 9 ，that is，when the old number is 5 or more，so that a value of 10 or more is the result after shifting．This can be accom－ plished either by adding 3 before shifting for numbers of 5 or over，so that the 3 becomes 6 after shifting，or by using logic to generate the carry into the next decade and to leave the correct number in the previous decade．

Karnaugh maps simplify design

The latter process can be nicely represented in a truth table．The table shows the state of the units＇ decade before and after shifting for any possible old number．If the old number is 5 or more，a carry digit must be generated and logic used to guarantee that the correct number is left after the shift．If the old number were 6 （binary 0110），for example，a shift would result in a multiplication by two－yielding 12 （0011）－before the next bit is added in．In BCD code，however， 12 is 0100 with a carry to the next decade，so a BCD converter must contain 0100 after the shift and pass a carry on to the next decade（see colored portion of the truth table）．The logic equations needed to imple－ ment this design may be determined by using Karnaugh maps and minimizing the results．
Consider a four－stage binary shift register． This can yield 16 possible code combinations， which may be represented in a Karnaugh map （Fig．2a）．Since only ten of these， 0 through 9 ，are of interest，the rest may be indicated as＂don＇t care＂states（Fig．2b）．To find the Boolean equa－ tions for the converter，a Karnaugh map is drawn for each of the flip－flops B, C and D ．Since the state of flip－flop A is always determined by the data shifted in，no logic will be performed on the inputs of flip－flop A and no Karnaugh map will be needed．

Truth table：storage element states．

BEFORE SHIFT					AFTER SHIFT				
DECIMAL VALUE	A	日	C	D	A^{\prime}	B^{\prime}	c^{\prime}	D^{\prime}	CARRY
	2^{0}	21	2^{2}	2^{3}	2^{0}	2^{1}	2^{2}	2^{3}	
0	0	0	0	0	凖	0	0	0	0
1	1	0	0	0	帚	1	0	0	0
2	0	1	0	0	赏	0	1	0	0
3	1	1	0	0	婁	1	1	0	0
4	0	0	1	0	\％	0	0	1	0
5	1	0	1	0	\＃	0	0	0	1
6	0	1	1	0	罝	1	0	0	1
7	1	1	1	0	易	0	1	0	1
8	0	0	0	1	\％	1	1	0	1
9	1	0	0	1	\＃	0	0	1	1

昜 DEPENDS ON THE BIT SHIFTED IN

2．The basic Karnaugh map（a）has 16 possible states for a four－stage binary shift register．Each decade of the decade shift register is also made up of four flip－flops but is limited to only 10 possible states（b）．
－

c

$O R=\bar{A} D+B \bar{C}$
$S=\bar{A} D+B(\bar{C}$ IS IMPLIED $)$
$O R \begin{aligned} & R=\bar{B} C+\bar{A} C \\ & R=\bar{B}+\bar{A} C\end{aligned}$
$R=\bar{B}+\bar{A}(C$ IS IMPLIED $)$
－

3．The Boolean equations for each flip－flop are found by enclosing the states that change on the next shift．The simplified equations hold if internally crossconnected J．K flip－flops are used．

Take B as an example (Fig. 3a). A 1 or a 0 is placed in each square corresponding to the next state of B. The next state of B can be found for any decimal from 0 to 9 from the truth table. Thus if the old number is 6 (the colored strip in the truth table), the new state after shifting will be 1 . A 1 is therefore entered in the top left-hand corner of Fig. 3a. In the case of the number zero in the truth table, the new state would be 0 so a 0 would be entered in the lower right-hand corner. The same procedure is followed for all the states 0 through 9 . Then d 's can be placed in the "don't care" positions.

The letters B and \bar{B} outside the map of Fig. 3a represent the old states of B before the shift, that is, $B=1$ and $\bar{B}=0$. Now, if a 1 occurs in a B row, no change will take place in B with the shift, but if a 0 is located in a B row, a change does occur and an R (reset) is marked in the appropriate box. A 0 in a \bar{B} row means no change of state for those numbers; a 1 indicates a change and is marked with an S (set).

The logic equations are now written by forming squares and rectangles inside the map to enclose
κ

$K=D+A C+B C$
$\overline{\mathrm{K}}=\overline{\mathrm{CD}}+\overline{\mathrm{A}} \overline{\overline{\mathrm{B}}} \overline{\mathrm{D}}$
the states that remain constant within the enclosure. Thus the two equations for B are:

$$
\text { Set: } S=A \bar{C} \bar{D}+\bar{A} D
$$

Reset: $R=A C+\bar{A} B \bar{C}$.
The equations for C and D are also given in Fig. 3. In the case of the Karnaugh map for K (carry) in Fig. 4, all the terms must be included, since implementation of K will be by direct logic, not by a flip-flop.

J-K flip-flops simplify logic needs

The flip-flop equations may be further simplified if J-K flip-flops are used because their outputs are normally cross-coupled. The B output of the B flip-flop, for example, is connected to the reset input (K terminal), enabling the B reset equation (Fig. 3a) to be reduced to $R=A C+$ $\bar{A} \bar{C}$, because B is implicit. The same is true for both C equations and the D reset equation. The implementation of these simplified equations appears in Fig. 5a for the first decade.
Generation of the carry may be performed in two ways. Of the two, Fig. $5 b$ shows a method that employs some of the input gates of the next decade, and Fig. 5c shows an alternative. The former is preferable because fewer parts are used and speed is slightly increased. - -

Bibliography
Couleur, J. F. "Bidec-A Binary-to-Decimal or Decimal-to-Binary Converter," IRE Trans. on Electronic Computers, Vol. EC-7, No. 6 (Dec., 1958), 313-316.
Grandmaison, C. J. "Take the Easy Road to Logic Design," Electronic Design, XIV, No. 26 (Nov. 22, 1966), 64-67.
Karnaugh, M. "The Map Method of Synthesis of Combinational Logic Circuits," AIEE Trans. on Communication and Electronics, LXXXII, Nov., 1953, 593-595.
Krieger, M. The Basic Switching Circuit Theory. Syracuse, N. Y.: University Electrical Engineering Dept.
4. All possible states are enclosed on this Karnaugh map since the carry digit (K) is generated by gates and not by a flip-flop.

the gates of the next decade (b), or by using a further pair of gates (c). The first method (b) is slightly faster than the second (c).

3 ways you can use the Raysistor to improve your product, cut costs

1. Use the Raysistor ${ }^{\circledR}$ as a simple remote or automatic volume control in SSB suppressed carrier receivers. Feeding part of the audio output into the control light source varies the resistance of the Raysistor's photocell, making it usable in place of a normal volume control.

2. As a photochopper stabilized D-C microvoltmeter. Raysistors, used as photochoppers in both modulator and demodulator circuits, enable d-c levels to be measured to a fraction of a microvolt. They facilitate synchronous detection and demodulation with simple electrical coupling, have less noise than transistor choppers, while avoiding maintenance problems of mechanical choppers. Other photochopper applications: photochopper relay, series or shunt chopper, modulator circuit, and as a stabilizer to reduce long-term drift.

3. As a remotely controlled linear potentiometer. The Raysistor can be used as a remotely controlled linear potentiometer when used in the circuit shown above. Here the Raysistor forms a voltage divider between the positive and negative voltages.

Many more ways you can use the Raysistor. Send for The Raysistor Applications Manual which describes ways you can use this unique optoelectronic component as a photochopper, variable resistor, solid-state switch, relay, voltage or signal isolator, nonlinear potentiometer, etc. For complete specifications and prices, call your Raytheon distributor or regional sales office. For a copy of this 28page manual, circle the reader service card or write directly to Raytheon Company, Components Division, Quincy, Massachusetts 02169.

At these prices,

you try one of these sh scheme now and then.

nobody will holler if ift registers on a wild

MM500 50 bit shift register $\$ 9.85$
in $\mathbf{1 0 0}$ lots - It's very fast, uses low power, and, similar to all our other shift registers, has the lowest operating voltage around. It's organized as a dual 25 bit element. The unit uses -10 volt VDD supply voltage and 16 volt clock amplitudes. Power dissipation at 10 kc is a typical $28 \mu \mathrm{w} /$ bit. And guaranteed operation is at 1 MHz in a temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

MM502 100 bit shift register $\$ 14.80$
in 100 lots-Power dissipation for this one at 10 kc is a typical 16 $\mu_{\mathrm{w}} /$ bit. Otherwise, specs are about the same, except there are 50 more
bits. This one is organized as a dual 50 bit unit.
They're available right now at any of our distributors, or call National Semiconductor Corporation, 2975 San Ysidro Way, Santa Clara, California 95051 (408) 245-4320.

National Semiconductor

Wild scheme goes here.

Three ways to read distortion range from approximation to precise evaluation of all intermodulation products. Choose the method that suits your system best.

How do you read signal distortion in single-sideband (ssb) systems? Do you waste time getting very precise values for higher-order harmonics, when a quick comparison of input and output waveshapes would do? In most cases there are three options for the read-out device: an oscilloscope, a spectrum analyzer and a wave analyzer. Because they do not give equivalent results, the choice should be made carefully.

Distortion results when power amplifiers generate enough odd-order products to garble the transmitted information or interfere with adjacent channels. The ratio of these distortion products to the test-signal amplitude is measured by the two-tone test; the results are used to specify a distortion limit.
To be able to establish a yardstick of linearity, the engineer must come up with a method that can be easily reproduced during all tests, from vendor to user. The two-tone test is proved to be satisfactory, but the engineer must ensure that the same technique is used in all tests.

A typical example where the choice of read-out is important occurs in production-testing of tubes and transistors. The oscilloscope is not precise enough and the wave analyzer is too slow for high-production units. The major tube manufacturers have therefore adopted the spectrum-analyzer technique.

In some cases precise and involved laboratory procedures are needed to determine the best choice among the three alternatives. Sometimes more than one is needed; a combination of spectrum analyzer and wave analyzer is frequently used.

Two-tone test needs careful setup

Briefly the two-tone test (see Fig. 1) uses a composite signal of two equal-amplitude sine waves the frequencies of which differ by a very small percentage. For the usual communications bands this means a multitone generator that can supply signals in the megahertz range and frequency differences of only 1 to 3 kilohertz. Its special purity should be much greater than the requirements of the device under

[^3]test. If the test signal's third-order products are below the amplitude of the fundamental by more than 50 dB , and the fifth-order products are below by more than 60 dB , it will satisfy most present-day requirements.

The drive level must be sufficient to ensure that the device under test can be driven to full power without degrading the test signal's quality. For elec-tron-tube amplifiers, this means an ability to deliver a large voltage swing. For transistors, this means an ability to deliver considerable power. since the drive level may have to be only 10 dB below the output power.

Two factors to consider simultaneously

The adjustment for minimum distortion must be made at the given power level, specified by the particular application. Single-sideband distortion specifications are meaningless unless they relate to the power output.

Therefore the measurement should consider simultaneously the following two factors: the importance of higher-order harmonics and the magnitude of the output power level during the test.
Some manufacturers prefer to make a power output measurement with the circuit optimized for maximum power output, for example, disregarding the effect of distortion. Then the distortion is checked while the circuit is optimized for minimum distortion, which results in a lower power level. Therefore the resultant values do not reflect performance under actual operating conditions.

Whenever it is necessary to obtain values of intermodulation products; bear in mind that knowledge of only one product may lead you to accept poor performance. Both the upper and lower third- and fifth-order products should be checked for typical ssb applications. In many cases even seventh-order products may be significant. Consider, for example, the output envelopes with severe peak-flattening in Figs. 2a and b. This usually indicates a high thirdorder distorting. In this instance, however, the measured fifth-order products are actually worse than the third-order products, which the seventh-order ones closely approach. Thus, the usual inverse relation between order number and order amplitude is not

1. Basic setup for two-tone test may use one of three popular read-out devices-oscilloscope. spectrum analyzer and wave analyzer. Each should be chosen accord-
always true. A good envelope waveform has a shape as in Fig. 3.

The power meter should be of the true rms type. Although most power meters in use read average power, peak envelope power (PEP) has become the accepted term for ssb use. An undistorted signal yields PEP that is considered equal to twice the average power. However, severe distortion and meter accuracy limit the precision of this assumed relattionship. The recent appearance of new power meters designed to read both average and PEP values may simplify correlation.

The rest of the output circuitry of the test setup should afford a range of load impedance adjustment and still maintain a Q similar to that of typical applications.

Scopes offer 'quick-and-dirty' results

Oscilloscope waveforms are convenient to observe. The input and output envelope waveshapes can be compared for a quick check of linearity distortion. The drive signal level and the amplitudes of both
ing to the specific application, for each has its advantages and its drawbacks. To obtain meaningful data. the designer should use the same instrument for all tests.

While author Shar stands by analyzer that'll stiow the distortion product. another engineer checks test signal.

©
2. Flattened peaks of output envelope (top traces) are often taken to indicate large third-order intermodulation (imd) products. In fact, the fifth-order imd product is larger for (a) and the seventh-order is significant. too.

(b)
(36. 30 and 39 dB below the fundamental was measured for the third-, fifth-and seventh-order products for (a), and 27, 30 and 45 dB for (b), respectively.) The lower traces are the inputs.

Table: Comparison of read-out devices for two-tone measurements

Technique	Accuracy	Type of distortion	Resolution	Interpretive flexibility	Maximum frequency
Oscilloscope	Intermodulation not measured, peak envelope voltage depends on scope used.	Envelope wảveform peak flattening. crossover	Not available	Qualitative (proportional to experience)	No serious limit
Spectrum analyzer	$+2 \mathrm{~dB}$	Inte:modulation products. harmonics where applicable	Fair to excellent	Good	Microwave
Wave analyzer	$\pm 0.5 \mathrm{dP}$	Intermodulation products. harmorics where applicable	Good	Best (most suited for mathematical analysis)	Hf band (13 m)

test tones can be checked rapidly. The crossover null is a clearly defined zero when both tones of the multitone generator have equal amplitudes (Fig. 4). The level at which the human eye can perceive distortion, however, depends in part on the relative distribution of the intermodulation products. In general, distortion becomes noticeable when the third-order product is numerically less than about 25 dB below the test tone. It is better therefore not to use scopes above this level.

The oscilloscope method may be looked on as a distortion threshold indicator. Its value lies in perception rather than measurement. Although distortion cannot be determined better than on a good, fair or bad basis, the waveform indicates possible reasons for distortion. Effects such as peak-flattening and crossover distortion can be spotted readily and can help to fix a system's optimum operating conditions. ${ }^{1.2,3}$ The direct measurement of the peak output voltage makes it easy to distinguish the peak envelope power, independent of average power readings.

Spectrum analyzers help check spectral response

With a spectrum analyzer, the relative amplitudes of each tone and their intermodulation products are observable at a glance. The odd-order products are separated from the test tones and from each other by the same frequency difference, Δf, as that between the two tones. Thus if $\Delta f=1 \mathrm{kHz}$, the third-order products are 1 kHz apart from each tone, the fifthorder products are 1 kHz away from the third-order, and so forth. Logarithmic scales and calibrated attenuators enable distortion in decibels to be read out directly.

But the spectrum analyzer has its drawbacks. The major one is that its accuracy may rary with model and age. A joint effort by several tube manufacturers showed variations in test results up ts 7 dB in measuring distortion products. ${ }^{+}$Since then, equipment manufacturers have indicated improvements so that $\pm 2 \mathrm{~dB}$ appears representative of recent models. Factors that may limit the instrument's accuracy are:

- Trace width.
- Vertical sensitivity deviations along the horizontal axis.
- Operator skill.

Resolution, the ability to distinguish or resolve closely spaced spectral lines, varies according to the model and the adjustment. For a given dynamic response this involves optimizing the frequency dispersion, i-f bandwidth and sweep rate.

Manufacturers' specifications for spectrum analyzers do not always depict resolution clearly. since it varies with adjustment and signal ratios. They usually define it as the minimum discernible frequency difference between two tones of equal amplitude. Since intermodulation measurement is a comparison of very unequal signals (test-tone-to-distortion-product ratio), the analyzer specification may not always apply. Dynamic range and minimum full-scale dispersion are sometimes the only specifications relating to resolution.

Typical published dynamic ranges for most instruments lie between 40 and 60 dB . Recently specialized analyzers designed for ssb have dispersion ratings down to 150 Hz and a resolution specification of 7 Hz .

The spectrum-analyzer display is self-explanatory. The entire spectrum of test tone, distortion products and their frequency amplitude relationships forms one thorough, compact presentation. No time-consuming tabulation of data is necessary. But specific measurements such as absolute voltage or power per tone are feasible only with indirect calibration.

The popularity of spectrum analyzers makes this an easy method to implement with existing equipment. Although not a precision technique, this method is a good production tool where correlation requirements are not severe. Future analyzer changes may improve accuracy limitations. The excellent frequency range is almost unmatched by any other laboratory instrument.

Wave analyzers are slow but accurate

Wave analyzers can be considered as electronic voltmeters with narrow-band radio receivers and calibrated frequency dials. The rms voltage for each tone and each product is directly measured. An accurately calibrated decibel meter-scale measures the distortion level referenced to each tone. This permits measurement of undistorted average power output for each signal tone, and hence the comparison of individual tone power with total average power (the sum of both tones and distortion). Comparison of high-amplitude ratios does not degrade resolution.
Available rf wave analyzers have rated accuracies of $\pm 0.5 \mathrm{~dB}$. This accuracy, plus the ease of read-out and the ability to measure each tone and product voltage directly, contrasts sharply with the largely

3. Good output envelope (top trace) shows no distortion. The bottom trace is the input. The measured third-fifth- and seventh-order imd products are 30. 49 and 53 dB below the fundamental, respectively.

4. Crossover null on scope display helps to establish the equal-amplitude test signals.
qualitative and relative nature of the other two techniques.
Although the wave analyzer may yield more information with greater precision than the other instruments, it is a slow method. Each tone and each distortion product must be tuned separately and measured singly. The over-all picture is not obtained until all the data have been tabulated.
Selection of the filter passband determines the wave analyzer's resolution. A typical resolution is better than 1 kHz for signals with a $70-\mathrm{dB}$ ratio. While there are no serious maximum-frequency limitations to the oscilloscope or spectrum-analyzer techniques, the wave-analyzer technique is restricted at present to about 22 MHz . But low-distortion frequency converters should extend the wave-analyzer range into the vhf region. - -

Acknowledgments:

To my assistant. G. Infosino, for collection of data and circuit modification; to J. Falcone, who constructed the test sets; to L. E. Scharmann and G. Fincke. for helpful discussion of tubes; and to O . Pizalis, for useful discussion of transistors

References:

1. E. W. Pappenfus. Warren B. Bruene and E. O. Schoenike. Single Sideband Principles and Circuits (New York: McGrawHill Book Co., 1964).
2. D. Stoner. New Sideband Handbook (New York: Cowan Publishing Corp., 1958).
3. Byron Goodman (ed.), The Radio Amateur's Handbook (44th ed.; Newington, Conn.: American Radio Relay League. 1967).
4. TG Report on Single-Sideband Specifications (No. JT-1-b) (Washington, D. C.: JEDEC. 1963).

Want to conver high energy

 at high eliciency?

 at high eliciency?}

Convert to circuit designs using Delco high voltage silicon power.

The DC to DC converter above operates directly from a 150 V DC source and delivers 180 watts to the load at an efficiency of over 94 percent. The 1.1 kHz circuit operates over a temperature range of $-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Frequencies of up to 25 kHz may be obtained with selected transformer core materials. And the switching job is handled easily by just two Delco NPN DTS-423 silicon transistors-priced at just $\$ 4.95$ each in 1,000 and up quantities.

Delco pioneered the development of high voltage silicon power transistors to provide you high energy capability at the lowest cost. Among the many circuit benefits you get are: high reliability, reduced assembly time, and a reduction in the number, weight and
complexity of the electronic components needed. Coupled with the low prices of the Delco silicon power line, these benefits mean real cost advantages to you.

Other applications? They've proven their capability in such high energy circuits as: DC and switching regulators, ultrasonic power supplies, VLF class C amplifiers, off-line class A audio output and CRT deflection (several major TV manufacturers use them for big screen horizontal and vertical deflection).

Availability? With Delco's lead in knowhow and plant facilities it's no problem. Samples or production quantities can be shipped promptly. Contact one of our distributors or a Delco sales office right now and see.

For more details on the DC-DC converter circuit-ask for application note number 32.

Application of Delco high voltage silicon power transistors: the DC to DC Converter.

DEVICE TYPE	Vcex	$\begin{aligned} & \text { VCEO/sus } \\ & \text { (min.) } \end{aligned}$	$h_{F E E} \min _{C=5} @ I_{V}$		Ic max.	Pd max.
DTS-410	200	200	10	2.5A	3.5A	80w
DTS-411	300	300	10	2.5A	3.5A	100w
DTS-413	400	325	15	1.0A	2.0A	75W
DTS-423	400	325	10	2.5A	3.5A	100W
DTS-430	400	300	10	3.5A	5.0A	125w
DTS.431	400	325	10	3.5A	5.0A	125W

NPN silicon transistors pachaged in solid copper TO-3 case

Field Union, New Jersey* 07083 Detroit, Michigan 48202 Santa Monica, Calif.* 90401
Sales Box 1018 Chestnut Station 57 Harper Avenue 726 Santa Monica Blvd
Offices (201) 687-3770 \quad (313) 873-6560
Syracuse, New York 13203 Chicago, Illinois* 60656
1054 James Street 5151 N Harlem Avenue (312) 775-5411
(213) $393-1465$

General Sales Office
700 E. Firmin, Kokomo, Ind. 46901
(317) 459-2175
-Office includes field lab and resident engineer lor applications assistance.

Dielectric constants are quickly found with this simple nomogram. Twelve of the most common foam plastics are tabulated.

Electronic applications of foamed plastics, or even the choice of a foam for a particular application, often require a close approximation of the substance's dielectric constant. These values vary with changes in foam density and the frequency of operation of the device in which the foam will be used. The nomogram provides an easy, convenient method of determining these values without reference to handbooks.

Where are foams used?

Low-density foams are widely used for creating the lowest possible weight encapsulated electronic packages. While not as good environmentally as low-density resins, foams do provide maximum weight reduction and very adequate environmental protection in many applications. Polyurethane foams are most widely used because of their relative ease of handling. Silicone foams are also in wide use, although they are not available in as uniform a range of densities as the polyurethanes.
To determine the dielectric constant, select the

Dr. Robert L. Peters, Consultant. New York.
foam density ($\mathrm{lb} / \mathrm{ft}^{3}$) on the right-hand scale of the nomogram. Determine the correct code for the desired material and frequency from the table and locate the code. Then, simply align a straight edge to intersect the dielectric constant at the left. The code may be found as a number on the center scale, or as an isolated point, depending on the plastic.

The accuracy of the nomogram should suffice for most engineering needs. Some variation in the values may be expected from batch variations, plasticizers and variants of foaming agents.

To illustrate the use of the method, determine the dielectric constant of a $4-\mathrm{lb} / \mathrm{ft}^{3}$ silicone foam for operation at 1 MHz . Referring to the table, the correct code for silicone is seen to be 4.7 to 6.2 . By joining the $4-\mathrm{lb} / \mathrm{ft}_{3}$ point on the right-hand (density) scale with the 4.7 and 6.2 points on the center scale, the dielectric constant is read out on the left-hand scale as ranging over 1.173 to 1.35 . Or, find the dielectric constant of a castor oil urethane foam having a density of $2 \mathrm{lb} / \mathrm{ft}^{3}$. Frequency of operation is to be 60 Hz . From the table, the code is 3 . A straight edge joining 2 on the right-hand scale to the point 3 gives the dielectric constant as 1.65 .

Table. Materials code for nomogram

Parent resin	Frequency (Hz)	Code	Parent resin	Frequency (Hz)	Code
Cellulose acetate	$\begin{aligned} & 60 \\ & 10^{\prime} \\ & 10^{6} \end{aligned}$	$\begin{aligned} & 5.5 \text { to } 6.5 \\ & 4.8 \text { to } 7.0 \\ & 6.9 \text { to } 7.5 \end{aligned}$	Styrene	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{6} \end{aligned}$	$\begin{aligned} & 7.5 \text { to } 8.3 \\ & 7.5 \text { to } 8.3 \\ & 7.5 \text { to } 8.3 \end{aligned}$
Epoxy	$\begin{aligned} & 60 \\ & 10^{\prime} \\ & 10^{\circ} \end{aligned}$	$\begin{aligned} & 5.8 \text { to } 6.5 \\ & 5.8 \text { to } 6.5 \\ & 5.8 \text { to } 6.5 \end{aligned}$	Styrene acrylonitrile copolymer	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{\circ} \end{aligned}$	$\begin{gathered} 7.5 \\ 7.5 \text { to } 8.3 \\ 7.5 \text { to } 8.3 \end{gathered}$
Phenolic	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{\circ} \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 5.0 \\ & 5.3 \text { to } 5.8 \\ & 5.8 \text { to } 6.5 \end{aligned}$	Urea	$\begin{aligned} & 60 \\ & 10^{\prime} \\ & 10^{6} \end{aligned}$	4.2 to 4.5 4.4 to 4.5 4.1 to 4.4
Polyethylene	$\begin{aligned} & 60 \\ & 10^{\prime} \\ & 10^{6} \end{aligned}$	$\begin{aligned} & 7.3 \text { to } 7.9 \\ & 7.3 \text { to } 7.9 \\ & 7.3 \text { to } 7.9 \end{aligned}$	Urethane (castor oil)	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{6} \end{aligned}$	3 3 3
Polyvinyl (rigid, semirigid \& flexible)	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{6} \end{aligned}$	$\begin{aligned} & 7.5 \text { to } 7.8 \\ & 7.8 \text { to } 8.1 \\ & 8.0 \text { to } 9.0 \end{aligned}$	Urethane (polyester)	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{6} \end{aligned}$	2 2 2
Silicone (flexible \& rigid)	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{6} \end{aligned}$	$\begin{aligned} & 7.3 \text { to } 8.0 \\ & 4.7 \text { to } 6.2 \\ & 4.7 \text { to } 6.2 \end{aligned}$	Urethane (polyether)	$\begin{aligned} & 60 \\ & 10^{3} \\ & 10^{6} \end{aligned}$	1 1 1

What has the little red school house got to do with engineering?

In the context of the Little Red School House, our publication serves as a "blackboard" for the communication of knowledge . . . knowledge that is vital to the creative force within the electronics industry, specifically the 155,000 engineering and engineering manager readers of Electronic Design. The communicators of this knowledge are our editors. They are engineers who find enjoyment and satisfaction
discovering, analyzing, interpreting, reporting and teaching through the pages of Electronic Design.

If you've ever thought about teaching, consider communicating in another dimension as an editor of Electronic Design. The rewards can be many. Call or write Howard Bierman, our Editor.

Hayden Publications
850 Third Avenue
New York, N.Y. 10022

Burr-Brown Encapsulated Function Modules

Cut costs, simplify design, and achieve maximum performance from your analog and hybrid circuits by utilizing Burr-Brown encapsulated function modules. These compatible sub-systems are designed to mount and work side by side with operational amplifiers. You save money on component and assembly costs, design time is reduced to an absolute minimum, and you gain the performance advantage of Burr-Brown's specialized experience in analog applications.

Currently, Burr-Brown is supplying thirteen 10V, encapsulated function modules from stock. Each one provides the type of performance you'd expect from the company that "wrote the book" on operational amplifier applications. Available units include: \square Quarter Square Multiplier - Fast, $E_{0}=-E_{1} E_{2} / 10$. \square Squaring Modules -

Four separate units are offered. \square Noise Generator - Random digital output. Logarithmic Amplifiers - Both 40 db and $60 \mathrm{db} \log$ units. \square Adaptive Analog Comparator Switched hysteresis. \square Electronic Switches - Including Fast Sample/Hold, Sample/Hold, Integrate/Hold, and Reset/Integrate/Hold units.

Rack Mounting Units - For your rack-mounting applications, Burr-Brown offers thirteen modules. These pre-engineered circuits are ready for you to plug in, wire together, and put to use immediately.

FOR COMPLETE INFORMATION on these maximum value units, contact your nearest Burr-Brown Engineering Representative and ask him for a copy of the new 16 -page Burr-Brown catalog. He also has demonstrator units available for your immediate evaluation.

Operational Amplifiers Instrumentation Amplifiers Function Modules
Analog Simulators Geophysical Instruments

[^4]
Coincidence gate generates first field reference trigger

In interlaced television scanning systems, the delayed sweep feature of certain oscilloscopes is sometimes used to provide a means of TV lineselection. The use of the Electronics Industries Association (EIA) Standard vertical-drive pulses to trigger the oscilloscope's delayed time-base may give rise to an undesirable situation. Because the scope cannot distinguish between the first and second field-pulses, it may lock to one or the other

1. "Powerless" coincidence gate ensures that the output trigger pulse is generated only when both inputs are present.

VOTE! Go through all Idea-for-Design entries, select the best, and circle the appropriate number on the Reader. Service-Card.

SEND US YOUR IDEAS FOR DESIGN. You may win a grand total of $\$ 1050$ (cash)! Here's how. Submit your IFD describing a new or important circuit or design technique, the clever use of a new component or test equipment, packaging tips, cost-saving ideas to our Ideas-for-Design editor. You will receive $\$ 20$ for each accepted idea, $\$ 30$ more if it is voted best-of-issue by our readers. The best-of-issue winners become eligible for the Idea Of the Year award of $\$ 1000$.
at random. In order to avoid this condition, a novel gate-circuit was designed to produce a stable frame-rate trigger, coincident with the first field of each frame (see figure).

In a specific application, the device plugs directly into existing test jacks of a monoscope chassis and is immediately operable, since it requires no external power. Three small pins mate with the test jacks, establishing the appropriate drive and ground connections. A small wire loop used as a handle for inserting and withdrawing the unit also functions as a low-impedance output connector. The simplicity of the actual circuit is obvious, and all parts are of the "junk-box" variety.

It should be noted that in the differentiation of the vertical drive pulse too long a time-constant will result in a multipulse output.

Orville Harper, Electronic Components Laboratory, U.S. Army Electronics Command, Fort Monmouth, N. J.

Vote for 110

Ultrawide-range VCO uses op amp and UJT

This circuit, developed as a source of pulses for a stepping motor drive in a servo system, is capable of producing a sawtooth waveshape over a frequency range approaching $100,000: 1$. For the component values shown, the input control signal range is from 0 to +5 volts.

Resistors R_{1} through R_{4}, together with the operational amplifier and capacitor C, form a usual dc integrator circuit with offset zeroing adjustment. Unijunction transistor (UJT) Q1 discharges capacitor C at the end of each timing period. Diode D_{1} and resistor R_{7} disconnect the UJT emitter from the integrator summing point until the firing threshold has been attained. This prevents the UJT trigger current from placing a lower limit on the integrating current supplied to the timing capacitor. Potentiometer R_{5} serves as a frequency calibration control by setting the amplitude of the output voltage at which the UJT triggers.

The extreme operating range possible with this

Ulane－is the leading manufacturer

of screen process stencil film

．．．any kind！

Voltage-controlled oscillator with an extremely wide range (100,000 to 1) is possible with this circuit. $Q 1, R_{5}, R_{i}$ can be replaced with a four-layer diode.
circuit makes it necessary to keep operating temperatures constant and/or to use an operational amplifier with low drift characteristics.

In a bench setup, a Fairchild $\mu \mathrm{A} 709 \mathrm{C}$ operating at room temperature and a $1-\mu \mathrm{F}$ timing capacitor produced a frequency range greater than $50,000: 1$ with an upper frequency of 250 Hz and an output signal amplitude of 5 volts pk-pk.

The voltage-controlled oscillator (VCO) may be used as a wide-range cathode-ray oscilloscope (CRO) sweep circuit with points X and Y used as either synchronizing signal injection points or as CRO blanking signal sources.
$R_{\mathrm{i}}, R_{\mathrm{i}}$ and $Q 1$ may be replaced by a four-layer diode (1 N 5188) connected from the junction of R; (change to 4.7 K) and D_{1} to the output terminal. In this case, frequency calibration may be obtained with a potentiometer placed in series with R_{2}. A similar frequency range was obtained for this configuration.
W. F. Ball, AURA, Inc., Tucson, Ariz.

Vote for 111

FET is used to give simple timing circuit

This timing circuit gives a delayed response both when applying and removing a signal. Both delay times may be chosen independently of each other by means of two separate resistors. A transistor ensures the circuit's low output resistance.

Prior to application of a signal to point A, capacitors C_{1} and C_{2} are uncharged, the voltage at point H is high and all the transistors are cut off.

As soon as +48 volts appears at A, capacitor C_{2} rapidly charges to a voltage, the value of which is determined by the divider chain R_{1}, R_{2}, R_{3} at the junction of R_{z} and R_{3}. This value is lower than at point H, so FET $Q 1$ remains cut off.

Capacitor C_{1} charges through resistors R_{13} toward a voltage that is higher than that at point H. When the voltage at the capacitor is equal or slightly higher than that at $H, Q 1$ starts conducting. The delay time t_{1} is determined by the time constant R_{13}, C_{1}. As C_{1} is chosen to be constant, the time may be determined by resistor R_{13}.

When Q1 starts conducting, base current is provided to $Q 2$, which also starts conducting. This in turn causes Q3 and Q4 to conduct. The collector of Q4 is the output terminal of the circuit and, when conducting, it connects the load to minus as shown in the figure. When Q3 is conducting, the voltage at point H is lowered.

On removal of the signal, C_{1} discharges through D_{1} and R_{2} and $R_{3} . D_{3}$ prevents C_{2} from discharging over the same path as C_{1}.

The charge on C_{2} now provides gate signal for $Q 1$ because voltage at H is lower than that at C_{2}. C_{2} discharges through R_{1+}, however, and when the voltage of C_{2} is reduced to a value lower than at H. Q1 ceases to conduct. Delay time t_{2} is determined by the time constant $C_{2}, R_{14} . C_{2}$ is chosen to be constant, so the time may be determined by R_{1+}.

When Q1 stops conducting, Q2 and Q4 also cut

Two independent delay times are obtained with this circuit. The switching of the load by applying +48 V to the input is delayed by the amount determined by R_{13} and C_{1}. Off delay is determined by R_{14} and C_{2}.

Yank the dead component. Shove in a new one.
Snap in wafers for DIP's
and TO 5 cans with 8,10 and 12 leadsColor coded.
Gold or tin plated spring sockets grip leads tight. Low profile. Low maintenance.

AMP

off and the load is disconnected. Thus, when the input voltage is removed, the delay in response at output is represented by time t_{2}.

If the pulse width of the input signal is less than the delay time t_{1} of the circuit, C_{1} will not attain a voltage level higher than that at H, so the circuit will not be activated. C_{1} and C_{2} will dispose of the charge obtained in the manner described. If the time between removal of one signal from the input and the application of a subsequent signal is less than delay time t_{2}, C_{2} will still keep Q1 conducting and it will be impossible to separate the end of the previous pulse from the start of the subsequent pulse.
O. Tedenstig, Laboratory Engineer, L.M. Ericsson, a.-b., Stockholm, Sweden. Vote for 112

On-off solid-state switch is simple and inexpensive

A snap-action switch is often used for on-off controls. Such switches are often realized by feeding a relay coil through a bistable circuit.

Among well-known bistable switches, a very useful circuit is a silicon complementary pair behaving like the Schmitt circuit.

In the circuit of Fig. 1a, positive feedback takes place as soon as the input signal amplitude, $V_{i n}$, is large enough to produce unity gain in the loop Q_{1}, $Q_{\bullet,}, R_{n}, R_{3}$.

Snap switching takes place when the loop gain is larger than unity, or approximately when:

$$
\begin{equation*}
h_{f e 1} h_{f e 2}\left(R_{3} / R_{z}\right)>1 . \tag{1}
\end{equation*}
$$

The input threshold levels for the values shown in

Solid-state snap switch uses two complementary silicon transistors (a). It turns on for $\mathrm{V}_{1 n}=1.4 \mathrm{~V}$ and turns off when $\mathrm{V}_{\text {in }}=1.1 \mathrm{~V}$. A simple oscillator is shown in (b).

Fig. 1a are approximately equal to:

$$
\begin{align*}
& V_{\text {in(on) })}=0.6\left(R_{1}+R_{z}\right) / R_{2}=1.4 \mathrm{~V} ; \tag{2}\\
& V_{\text {in(otf) }}=\left[0.6\left(R_{1}+R_{z}\right) / R_{2}\right] \\
&-\left[V_{c c} R_{3} R_{1} /\left(R_{3}+R_{L}\right) R_{2}\right]=1.1 \mathrm{~V} . \tag{3}\\
& V_{\text {CE(sat) }} \text { of } Q_{1} \text { and } Q_{2} \text { are not considered. }
\end{align*}
$$

From the above equations a wide choice of threshold and hysteresis is readily obtainable. In order to have input signal $V_{\text {in }}$ control switching to either the on or the off state, it is necessary to satisfy:

$$
\begin{equation*}
V_{i n(o f f)}>V_{i n(\min)} . \tag{4}
\end{equation*}
$$

An interesting feature of the above circuit is that there is no current drain in the off state.

Should input signal $V_{i n}$ be the voltage drop across a resistive transducer, such as negative- or positive-temperature- coefficient resistors and light- or magnetic-dependent resistors, or the voltage across a discharging capacitor, this circuit can be used as a very simple and reliable temperature, light, magnetic-field or time control.

A flasher is possible with another fcedback loop including a lag network (Fig. b).

Alberto Anzani, Electronic Consultant Engineer, Varese, Italy.

Vote for 113

IC in logic one-shot ends contact bounce

Many digital systems require a logical singleshot. Such a circuit, on receipt of a changing input waveform, produces a single pulse with a duration of a clock period. The single pulse is used to activate flip-flops to start a process, or to single-shot through a digital sequence when commissioning or debugging. The changing input waveform may be obtained from a mechanical switch or relay, where electrical noise is often present because of bouncing during closing.

The logic circuit in the figure removes such noise and produces a single-shot waveform when the switch is closed. Only one dual flip-flop integrated circuit ($\mu \mathrm{L}$ 9994) is required. The switch should be a break-before-make type-normal for a toggle switch. The inputs of the first flip-flop are held high with 640 -ohm resistors to $V_{c c}$, since open inputs to the flip-flops act as a logical 0 . The output of the second flip-flop is the bounce-free version of the switch waveform and is often required in addition to the single pulse.

The circuit operates as follows. When the switch is in position A, both flip-flops are storing a logic 1 . No change will occur until the switch is moved and arrives at position B. Flip-flop 1 is

Yes

There's no either-or when you pick the 2470A Data Amplifier.
Performance? The Hewlett-Packard 2470A has the highest across-the-board performance of any wideband amplifier of its type. Fixed gain steps X10 to X1000, X1 and precision vernier optional. DC linearity better than $.002 \%$, gain stability $.005 \%$ per month. Constant 50 kHz bandwidth (3 dB), $\pm 10 \mathrm{~V}, 100 \mathrm{~mA}$ output. Differential input results in less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, RTI; 120 dB CMR even at 60 Hz with 1 k ! unbalance.

Economy? Each instrument is enclosed in a unique modular package, with self-contained transformer-isolated power supply and rugged connector-no "extra" dust
covers or carrying case to buy. Use on the bench, or plug ten into a combining case which occupies only $5^{1 / 4}$ "of standard $19^{\prime \prime}$ rack space. The predicted MTBF for this design is more than 20,000 hours, assuring a long and trouble-free life. All included in the low price of $\$ 585$.
Applications? Use it on signals from low-level resistive transducers such as strain gages or thermocouples. Ideal for amplification over long transmission lines. Or use it with resistive or reactive loads: recorders, digital voltmeters, telemetry systems.

Any other questions? Contact your local Hewlett-Packard field engineer. Or write Hewlett-Packard, Palo Alto, California 94304; Europe: 54 Route des Acacias, Geneva.

then reset on arrival of a clock pulse. Bouncing from B will not affect the resetting of flip-flop 1; sooner or later it will be reset. When it does become reset, the following clock pulse will reset flip-flop 2. This immediately sets flip-flop 1 and holds it set by means of the asynchronous set input. The flip-flops remain in this state until the switch is moved back to position A. Then flip-flop 2 is set. As long as the switch does not bounce all the way between positions A and B, a single pulse is obtained at the output shown and a bounce-free version of the switch waveform is available from flip-flop 2.
R. C. Ghest, Integrated Circuit Engineer, Fairchild Semiconductor, Mountain View, Calif.

Vote for 114

Reed relay one-shot uses three components

The circuit in the figure affords extended relay contact closure in response to a short input pulse. The input pulse cannot be less than 2 ms while the

Variable-width pulse is obtained at the reed relay output by varying the value of C. With the components shown the width of the output pulse is 100 ms .
output pulse width may be adjusted over a wide range by varying the value of capacitor C.

In operation, a $700-\mathrm{mW}, 12$-volt positive pulse of at least $2-\mathrm{ms}$ duration is applied to the input, causing reed relay K to energize. This relay is latched through its own contacts and is held on by the charging current through the series capacitor. It will stay energized until the capacitor charging current drops below the hold current of the relay. When the relay drops out, the capacitor is discharged through R. The one-shot is now ready to accept another input pulse.

A capacitor value of 250 mF results in a $100-\mathrm{ms}$ output with the 200 -ohm reed relay coil shown.

Leonard A. Daley, Electronics Technician, Pavlovian Lab., The Johns Hopkins University, Baltimore.

Vote for 115

Stabilize voltage regulator by replacing Zener with a FET

A p-channel FET used as a constant-current source in combination with a resistor serves as a voltage reference in a low-voltage regulated power supply. The use of either a Zener diode (for $V_{z}<5$ volts) or a string of forward-biased silicon diodes as a voltage reference in a low-voltage regulator generally results in rather large changes in voltage output with temperature. This is because both Zeners and forward-biased diodes have a large negative temperature coefficient. Using a FET (see figure) biased to operate near its zero TC current point (adjusted by changing R_{1}) improves temperature stability.

The circuit itself is designed to use off-the-shelf, inexpensive components; all the semiconductors are of the plastic-encapsulated type except the 2N1540 which is an inexpensive germanium type. The use of choke-input yields low ripple ($<1 \mathrm{mV}$) with a small capacitor. The shunt regulator allows

New Mercury Relay Applications From Adlake

Backed by sound research and disciplined engineering, Adlake applies the industry's broadest line of mercury displacement and mercury wetted relays to the creative solution of design circuit problems. However unique or special your application, Adlake can assist you in developing it. For prompt, personal and knowledgeable attention to your relay needs, contact the one source that is the complete source in the mercury relay field. Contact Adlake today for catalog and further information.

THE ADAMS \& WESTLAKE company
a subsidiary of ALLIED products corporation
ELKHART, INDIANA 46514 • AC 219•264-1141
IRANSPORTATION EQUIPMENT - ARCHITECTURAL PRODUCTS • MERCURY RELAYS • DOORS AND ENTRANCES • CONTRACT MANUFACTURIMG

Improved temperature stability is the result when a p . channel FET is used as a reference element in this low. voltage, regulated power supply capable of delivering up to 18 mA .
the collector of the 2 N 1540 to be grounded to the chassis. The internal impedance of the regulated supply is less than 0.1 ohm over its output range of zero to 180 mA .

Henry Olson, Research Engineer, Stanford Research Institute, Menlo Park, Calif.

Vote for 116

Trimming screw adjusts TEM resonators' coupling

Bandpass filters that use transverse electromagnetic quarter-wave resonators often have apertures for interstage coupling between adjacent resonators. These apertures are usually circular openings in thin metallic plates. If somewhat thicker partitions are used, the coefficients of coupling can be adjusted with trimming screws.

A bandpass filter structure was built (see figure) on a slab transmission line basis. Roundrod center conductors, $3 / 8$ inch in diameter, were used between 1-3/8-inch ground planes. Center-tocenter spacing between center conductors was

Trimming screw increases coupling bandwidth from 71 to 96 MHz at a center frequency of 2 GHz .
0.843 inch. A 3/16-inch-thick partition was located midway between adjacent center conductors. With a circular aperture 0.750 inch in diameter (D) located 0.650 inch (L) from the plane of the short, a coupling bandwidth of 71 MHz was obtained at a center frequency of 2.0 GHz . (The coefficient of coupling is equal to the coupling bandwidth divided by the center frequency.) Insertion of a No. 8-32 transverse trimming screw enables the coupling bandwidth to be increased:

$$
\begin{array}{cc}
\text { Screw penetration } & \text { Coupling bandwidth } \\
0 & 71 \mathrm{MHz} \\
0.250 \text { inch } & 75 \mathrm{MHz} \\
0.437 \text { inch } & 80 \mathrm{MHz} \\
0.625 \text { inch } & 91 \mathrm{MHz} \\
0.750 \text { inch } & 96 \mathrm{MHz}
\end{array}
$$

The variation of coupling bandwidth between conditions of zero and maximum screw penetration is 25 MHz . This is a 35.2 per cent change from the initial coupling bandwidth.

Richard M. Kurzrok, New York.
Vote for 117

IFD Winner for June 21, 1967

John H. Cone, General Manager, Electronic Enterprises, Pasadena, Calif.
His Idea, "Build a square-wave generator with $\$ 3$ worth of components," has been voted the $\$ 50$ Most Valuable of Issue Award.
Cast Your Vote for the Best Idea in this Issue.

plugboards that have to withstand severe shock and vibration? MAC ships off-the-shelf.

When the environment will be nasty, you set tight specifications for components and equipment that must operate despite the nastiness. We're not trying to outguess you, but for some kinds of nastiness, the new MAC Series 140 plugboards, receivers and plugwires will meet or exceed your requirements. And we'll ship 'em off-the-shelf, if they're what you want. Here's what they'll do. Each system can withstand up to 50 G 's without self-generated contact noise; life tests to 10,000 cycles have shown only random variations in contact voltage drop. 240 to 5,120 positions. Receivers engineered for easy, secure rack mounting. Receiver contacts accept standard MAC taper pins, or can be ordered for Wire-Wrap. Series 140 plugwires are interchangeable with most existing systems; Ball-D-Tent design prevents accidental dislodging, won't mar insert surface, yet provides closely controlled extraction forces; wires available with gold or nickel plating, in color-coded lengths from $5^{\prime \prime}$ to $35^{\prime \prime}$. Did we outguess you? If not, we'll design-and deliver-what you need. Remember, to think pleasant thoughts about nastiness,
think of MAC Series 140...
they're mostly nasty-proof.

O.E.M. DIVISION

Why Make Trade-offs in Your Career?

You make trade-offs all the time in engineering-giving up cost advantages, say, for miniaturization and light weight. But are you making trade-offs with your personal career, too? Giving up a pleasant place to live for a good salary? Or submerging yourself in a mammoth engineering staff so you can work on big aerospace projects? You don't have to, you know! Look into L.S.I. We design and produce advanced flight reference, navigation, communication and display systems. As a result, we have a team of 450 crack engineers making important contributions to every major aerospace program. They've gained recognition - and are well rewarded, too - because everybody here knows that our engineers are the backbone of the company. And our men live in a pleasant, mediumsize city just minutes from the office and high-rated schools, in the heart of Michigan's year 'round vacationland. If you'd like to have your cake and eat it too, write in confidence to L. A. Mellinger, Professional Employment Manager. Some of the many opportunities now available include these disciplines:
COMMUNICATION SYSTEMS
RECEIVER SYSTEMS
NAVIGATION SYSTEMS
CIRCUIT DESIGN
ELECTRONIC PACKAGING SYSTEMS ANALYSIS

ON CAREER-INQUIRY FORM CIRCLE 901

BENDIX KANSAS CITY

Has Immediate Openings For:

EIECTRONC ENANEEPS

Solid State Circuitry

(Open/BS-MSEE) Experience required in design and packaging of solid state circuitry for production. Assignment will be in transistor and magnetic digital circuitry. U.S. citizenship required.
Semi-conductor Components
(Open/BS-MSEE or Physics) Responsibilities will include preparation of specifications and testing techniques for monolithic integrated circuits, hybrid circuits, transistors, diodes, and silicon controlled rectifiers. U.S. citizenship required. Please send your confidential resume to:

MR. R. E. COX
Professional Placement
BENDIX CORPORATION
Box 303-ES
Kansas City, Mo. 64131
A Prime Contractor for the Atomic
Energy Commission and Equal
Opportunity Employer.

BOOK
 Reviews

As a further service to our readers, Electronic Design is now including a Reader's Service number with book reviews. Publishing companies have agreed to supply information about their books to interested readers.

Electronic Components

Electronic Devices and Circuits, Jacob Millman and Christos C. Halkias ("Electrical and Electronic Engineering Series" [McGraw-Hill Book Co., New York]), 752 pp. \$12.50.

This book describes the fundamentals of a variety of active electronic components-diodes (vacuum and semiconductor), tubes, transistors, FETs, and ICs.

In addition to thorough coverage of the physical properties of the devices, the discussion of components is supplemented with good circuit examples employing commercially available transistors and tubes. In this fashion, a reader is given some practical hints that can be used to advantage in circuit design.

Since the book is intended as a text for engineering students, no answers to the problems are given. It is mentioned in the text that they

Free Career Inquiry Service Absolutely Confidential

Respond to the career opportunities advertised in this issue. Fill out and send us this handy resume. Electronic Design will do the rest - neatly typed copies of this form will be mailed to the companies of

20 your choice, indicated by the circled Career Inquiry Numbers at the bottom of this page.

Additional Training - non-degree, industry, military, etc.

Professional Societies

Published Articles

Career Inquiry Numbers:

900	901	902	903	904	905	906	907	908	909	ELECTRONIC DESIGN
910	911	912	913	914	915	916	917	918	919	New Third Avenue
York, New York 10022										

If you are a naval architect, a marine, mechanical, structural, electrical, electronics, architectural, general, or civil engineer, we urge you to consider the unusual opportunities that exist for you at the San Francisco Bay Naval Shipyard.
Here you can work in design, development, testing, installation, check-out and evaluation on all systems for naval ships including submarines, destroyers, frigates, cruisers, aircraft carriers, and special projects such as the deep submergence program and the design of bathyscaphs and sea labs.
Programs include developments on weapons systems, radar and communications, nuclear power systems, hydraulics, ventilation and air-conditioning systems, high-strength steel structures, preliminary design, new material development.
San Francisco Bay Naval Shipyard has two work sites located 40 miles apart: San Francisco and Vallejo, California. Each location has ready access to the full cultural advantages of San Francisco and the mild year-round climate of the Bay Area. All types of recreation from ocean surfing to skiing on the slopes of the Sierras are within easy driving distance.

Openings exist af Grades GS-5, GS-7, GS-9 and GS-1 1. Salaries range from $\$ 6,400$ to $\$ 10,500$. These are career Civil Service positions with regular salary increases, generous benefits. Financial support for continued education available.

Send resume or Standard Form 57, Application for Federal Employment, to:

Coordinator, Professional and Technical Recruitment
Employment Division (Code 174A40)
San Francisco Bay Naval Shipyard
Vallejo, California 94592

are available from the publisher. Moreover, the value of the book would be greatly enhanced if one could freely obtain the problem solutions manual which is also available from the publisher. It is available however, only to those college instructors who adopt the text for their use. For a practicing engineer such a manual would be invaluable in working specific design problems.

> Peter N. Budzilovich CIRCLE NO. 600

Waveguide junction theory

Basic Theory of Waveguide Junctions and Introductory Microwave Network Analysis ("International Series of Monographs in Electromagnetic Waves," Vol. XIII), D. M. Kerns and R. W. Beatty (Pergamon Press, New York and London), 164 pp. $\$ 5.50$.

Written by two scientists of the Radio Standards Laboratory of the U.S. National Bureau of Standards, this book focuses on the basic theory and analytical techniques for waveguide junctions. Definitions of modal characteristic impedance and an impedance normalization scheme lead toward generalized expressions for reciprocity, realizability, losslessness and symmetry of waveguide junctions. It specifically deals with two-ports and touches on three- and fourports. It is solidly based on Maxwell's equations and includes a few practical applications. The level is graduate.

Medical electronics

Medical Electronic Laboratory Equipment 1967-68, G. W. A. Dummer and J. Mackenzie Robertson (eds.) (Pergamon Press, London), 1305 pp. $\$ 30.00$.

This volume is a compilation of brochures, releases and reports contributed by manufacturers of medical electronics equipment. It covers a variety of instruments, including transducers, amplifiers, telemetry equipment and display devices. The equipment is indexed both by manufacturer and by category.

The task of collating so large a number of documents is no mean one. The sheer convenience of hav-

is meant to discourage.
 But not engineers.

The mighty new POSEIDON has the ability to strike a broader range of possible targets and will be a more forceful discourager of war. But there's a silver lining in the making of ultimate weapons quite apart from their ultimate objective of making war itself unthinkable. Each of them that has come along has thrust a dozen technologies ahead.

It was so with General Electric's 10-year-long assignment to develop, design and manufacture the fire control and-in collaboratlon with the Massachusetts Institute of Technologythe inertial guidance systems for Polaris. (And Polaris support activities will be going on here for years to come).

It will be far, far more so as we thrust our way into the POSEIDON missile generation which will be the U.S.'s top priority ultimate deterrent at least through the 1970's. The guidance system can be only 15% larger than that of Polaris. But the missile will be carrying twice the payload with twice the accuracy and virtually unlimited and instantaneous targeting flexibility. And with hardware that must anticipate any other nation's most ingenious anti-missile defense systems.

Think about meeting such austere requirements in the context of a submerged sub's course, speed, pitch, roll and yaw, not to mention the tide and the weather and possible enemy action topside, and you'll begin to believe that making ultimate weapons takes (and makes) engineers of top caliber. If you are one, or would like to become one (with or without defense/aerospace experience), write us.

HERE'S A PARTIAL LIST OF CURRENT OPENINGS:

Digltal Systems Design Engineers

Responsible for concept and development of digital computational and control systems for inertial guidance and fire control evaluation equipment. Establish system design requirements utilizing state-of-the-art knowledge in digital data handling and mechanization techniques. Perform trade-off analysis to determine optimum mechanization approach. Position requires knowledge of techniques for tolerance partitioning and real-time input/output equipment.

Systems Design Englneers

Responsible for conducting systems design studies with special emphasis on guidance system accuracy and design compatibility with fire control and missile equipments. Guidance system parameter and system test requirement definition are required. The work requires significant experience in military electronic systems with emphasis on inertial devices, servos, and digital computers.

nertial Guldance Control

Development Engineers

Responsible for designing servo control for inertial system. Should be capable of servo loop analysis and of supervising the design of required solid state circuitry. Individuals must promote development work and supervise technical personnel.

Electronic Circult Engineers

Develop, design, package and evaluate digital and analog circuits to meet requirements of Weapon Control and guidance systems. Analyze, design and evaluate circuits and packaging techniques -using both discreet solid-state components and integrated micro-electronic circuits for applications such as submarine based missile fire control, gun mount and antenna drives, digital servos, sophisticated space power conversion and control equipments.

System Engineers

Establish Weapon Control system requirements, conceive new digital and hybrid digital/analog system designs, conduct trade-off studies, and identify and solve interface problems with other systems. Plan and conduct engineering hardware evaluation of this system.

Electronic Clicult Test Design

Apply precision measurement techniques using automatic checkout equipment to test discreet and integrated analog and digital semiconductor circuits.

Technical Writers

To keep pace with each technological breakthrough and innovation on major defense programs and effectively bridge the gap between the designer and user. Background in fields of electronics, digital and analog computers and/or servomechanisms, plus an interest in developing competence in technical communications and publications is desired.

Pittsfield, in the heart of the Berkshires, is well known for its skiing in the winter and Tanglewood in the summer.
If you have the qualifications, and interest, please send full detalls Including salary requirements, $10:$ Mr. J. K. Handler, Room 54-E, Ordnance Dept., General Electric Co., 100 Plastics Avenue, Pittsfield, Mass. 01201.

An Equal Opportunity Employer (M/F)
ORDNANCE DEPARTMENT GENERAL

ELECTRIC

SWITCHING PROBLEMS? Solve Them With These HSI Sealed Switches

Premium Performance in Sub-miniature Switches

6100 series toggle and push-button switches are rugged compact assemblies designed for use wherever stringent environment conditions must be met - such as aircraft, space, industrial, shipboard and armored vehicles. The precision snap-action switches in these assemblies are hermetlcally sealed. They meet the requirements of MIL-S-8805 Enclosure 4 and perform reliably with consistently low contact resistance under the adverse conditions that cause unsealed switches to fail.
Wherever reliable switching is a problem, solve it by specifying "HSI". Basic hermetically sealed switches are single pole double throw rated 5 Amp. resistive, 3 Amp. inductive, 28 V D.C. For single and multiple circuits. Extremely compact. Complete data in Bulletin 61T-1 . . . send for your copy, today.

BOOK REVIEWS

ing all this material in one volume justifies its publication. However, one wishes that the collation had been approached more critically. There is no attempt at evaluation; the manufacturers' words are permitted to stand without comment. Some of the releases are informative, while others are unabashedly promotional. Nor is there any bridging text. It is not self-evident why some devices for measuring blood pressure are classed with transducers, others with blood flow meters, and still others with monitors, blood flow/pressure.
Aside from the variation in quality and quantity of information, there is also a wide range in the legibility of the material. The manufacturers' releases were apparently photo-offset, regardless of their quality. This means that some of the originals were typeset, others Xeroxed, still others mimeographed. In places the reproduction is poor.

On balance, the book is worth while. Even allowing the limited sales potential for such a publication, however, thirty dollars is a steep price to pay.

-Richard N. Einhorn

Communications propagation

Modern Communication Principles, Seymour Stein and J. Jay Jones (McGraw-Hill, New York), 377 pp. $\$ 15.00$.

The authors of this tutorial book present the major principles and theoretical results that form the basis of modern digital communications design.

The early chapters enable the reader, with little more than a working recollection of calculus and Fourier series, to grasp the material in later chapters. Separate chapters deal with a-m, pulse modulation, multiplexing, binary frequen-cy- and phase-shift keying, matched filters, M-ary signaling and channel control.

The book is aimed at engineers in the communications field as well as those involved in peripheral fields who want to learn more about communications.

CIRCLE NO. 601

Breakthrough by Dearborn!

Practical transistor circuits

Electronic Designer's Handbook, T. K. Hemingway (Business Publications, Ltd., London), 296 pp. $\$ 8.95$.

Here is a book on transistor circuit design really devoted to just that - circuit design. Unlike many other books allegedly on the same subject that dedicate half their expensive pages to treatises on electron holes, Boltzmann's constants, etc., this one wastes no time on interesting but pretty useless sidetracks. The author seems correctly to have assumed that engineers mastered these subjects in their college days.

All 296 pages are devoted exclusively to practical design procedures and explanations. For instance, instead of deriving a complicated expression for $I_{c n}$ dependence on temperature, the author simply says that the $I_{c o}$ will double for every $10^{\circ} \mathrm{C}$ rise in ambient temperature.

Numerous circuit examples include component values and detailed explanations of how they operate and how they are designed.

All in all, the practicality of this book coupled with its relatively low price should make it widely acceptable to practicing circuit designers, in spite of the fact that it does not cover the latest semiconductor toys -FETs and MOS FETs.
-Peter N. Budzilovich CIRCLE NO. 602

$40 \mu \mathrm{~F}$ @ 50 V

 in $1^{1 \prime} \times 1 \%^{\prime \prime}$ metal-encased METALLIZED POLYCARBONATE-FILM CAPACITORS> HCapacitance range of Dearborn DIMIE ${ }^{\circledR}$ Series now extended to more than 700% higher than previously-available values!

HA new order of size and stability in capacitors for critical low-voltage miniaturized circuits.
7 Rated for operation at temperatures to +125 C without derating.
TH Low loss characteristics, high current-carrying capabilities-ideally suited for specialized a-c and r-f applications.

For complete fechnical information,
write to Dearborn Electronics, Inc.,

Amperex
 FETS, Zeners \& Dual Isolated Diodes, RFEIF Amplifiers and Switches Now Available in TM

VERY high frequency
RF AMPLIFIER (NPN)
LDA 407
functionally replaces types:
2N2857, 2N5053/4
HIGH GAIN, LOW CAPACITY IF AMPLIFIER (NPN)
LDA 410
functionally replaces type A473

VERY HIGH SPEED SWITCH (NPN)
LDS 205
functionally replaces type 2N709
LOW "ON" RESISTANCE
D/A SWITCHES (NPN)
LDS 206
LDS 208

LOW NOISE FETS

(N-CHANNEL JUNCTION)
LDF 603/604/605
functionally replace types:
$2 \mathrm{~N} 5103 / 4 / 5$ 2N5103/4/5

PLANAR ZENER DIODES
(4 to 10 Volts, 5%)
LOZ 70 SERIES

HIGH SPEED

LOGIC/SWITCHING DIODES
SINGLE TYPE LDD5
DUAL ISOLATED TYPE LDD15
functionally replaces type 1 N914

Other (IT) types

HIGH SPEED SWITCHES (NPN)
LDS 200/201
functionally replace types: 2N706, 2N708, 2N743/4, 2N834/5, 2N914, 2N2368/9

GENERAL PURPOSE

AMPLIFIERS (NPN)
LDA 402/403
functionally replace general-purpose amplifiers operating from
1 to 100 ma , such as:
2N69667, 2N1613, 2N2218/9, 2N3390/1

MEDIUM CURRENT
AMPLIFIER AND SWITCH (NPN)
LDA 404/405
(Complement to LDA 452 and LDA 453)
functionally replaces types: 2N2217/8/9, 2N2220/1/2, 2N1613, 2N1711, 2N718A, 2N871
high frequency
RF AMPLIFIER (NPN)
LDA 406
functionally replaces type 2 N918

GENERAL PURPOSE
AMPLIFIER AND SWITCH (PNP)
LDA 450/451
functionally replaces types: 2N2604/5
high gain, LOW LEVEL AMPLIFIERS (NPN)
LDA 400/401
functionally replace types: 2N929/30, $2 \mathrm{~N} 2483 / 4$

MEDIUM CURRENT

AMPLIFIER AND SWITCH (PNP)
LDA 452/453
(Complement to LDA 404 and LDA 405)
functionally replaces types: 2N2904/5/6/7

DUAL, GENERAL PURPOSE AND HIGH SPEED SWITCHING DIODES COMMON CATHODE TYPE LDDIO COMMON ANODE TYPE LDD50

Amperex's expanded line of LID semiconductors now can satisfy all your design requirements for hybrid IC's. First introduced by Amperex early in '66, the LID, an all-ceramic microelectronic package for semiconductors, has proven to be the answer for high yield, low cost production of hybrid integrated circuits.

Evaluation level quantities of LIDS are available now from your local franchised Amperex distributor. Mechanized production techniques now in full swing have resulted in price reductions across the board. For data, write: Amperex Electronic Corp., Semiconductor \& Receiving Tube Div., Dept. 371, Slatersville, R. I. 02876.

Products

Liquid-cooled thyristor handles 630 A and uses 1-1/2 gallons per minute. Page 92

MOS register handles 1,024 bits and operates from 10 kHz to 1.0 MHz . Page 95

Hybrid op amp ranges to 200 kHz and is packaged in a TO-5 can. Page 90

Also in this section:

Silicon planar epitaxial transistors to 50 W. Page 91
Resistors contain 12-V lamp to control photocell. Page 93
Low-VSWR slotted line spans 0.395 to 8.5 GHz . Page 96
Design Aids, Page 99
Application Notes, Page 100

Instant X-ray uses Polaroid film to give insight on your project

Field Emission Corp., Melrose Ave. at Linke St., McMinnville, Ore. Phone: (503) 472-5101. Price: $\$ 1970$.

This instrument permits you to take your own X-rays when and where you wish. You can locate, define and modify your project with a quick inside look any time the need arises. Just insert the subject into the machine, select the exposure time and voltage, and push a button. With Polaroid land film, the Faxitron 804 delivers clear, sharp radiographic prints in seconds.

The illustrated IC was radiographed on Type 55 film. Optical
magnification (about 10 times) reveals broken wires, indicated by the arrows. The wires are clearly visible, even though they are about 1 mil thick and are buried in potting.

The small source size of the unit minimizes blur due to penumbra. This makes possible very sharp images with high information content. The penumbra is about a thousandth of the distance from the object to the film-that is, about one-ten-thousandth of an inch for objects closer than one-tenth of an inch. Thus the highest-resolution film can be used effectively when maximum information is desired.

The beryllium window in the X-ray tube transmits soft, low-voltage X rays with minimum attenuation. This conserves X-ray intensity, and shortens exposure times.

An accessory tube without a window is available for applications using only high voltages. The Faxitron 804 qualifies as an exempt installation according to the National Bureau of Standards because the radiation is completely enclosed in a lead-lined chamber. Interlocks prevent operation with the door open. Extension collar 804008 increases the distance from tube to film from the standard 25.5 in . to 48 in . for MIL SPEC work. It minimizes parallax but requires exposure times approximately four times longer than the standard model. Another accessory collar is available to increase distance to 36 in .

Screens convert X-rays into light which exposes the film. They shorten the exposure time and accommodate thick objects. Resolution of the screens is typically 4 to 15 line pairs per mm.

The power requirements are 110 -$120-\mathrm{V}$ ac, at $60 \mathrm{~Hz} 600 \mathrm{~V} / \mathrm{A}$ or 220 V ac at $50 \mathrm{~Hz} 600 \mathrm{~V} / \mathrm{A}$. The unit weighs 355 lb and is 33 in . high, 21.5 in . wide and 20 in . deep.

Wet films have high contrast, large areas and thick emulsions which tend to shorten exposure times. In some applications they are preferred. Specific areas can easily be shown in even greater detail by, photographic enlargement or optical magnification of any area.

CIRCLE NO. 609

Polaroid negatives reproduce fine detail and do it in a hurry. You can take advantage of the high information content of the film by using optical magnification. Wet-film cassettes can also be used.

The table-top unit has interlocks on the door and exposure will stop if the door is pulled open.

JFD Modutrim microminiature Ceramic Variable Capacitors...

Widest Δ Cs, highest stability and smallest size

Capacitors shown enlarged 30%

Modutrim microminiature ceramic variable capacitors offer micromodule and hybrid circuit designers a choice of wide $\triangle \mathrm{Cs}$ in extremely small and stable units. MT 200 Series measures only 0.208 in. x 0.281×0.120 in. thick.

The excellent stability inherent in all MT Series is due to a unique rotor design utilizing a special proprietary ceramic material in a monolithic structure. Electrical characteristics are outstanding for components of
this size and type- Q in excess of 500 measured at 1 MC for those values under 50.0 pf.

MT 100 Series' design is specifically for channel-mount and cordwood applications, as well as many other micromodule packages.

MT 200 Series offers further miniaturization, an answer to high component density problems and various LC networks packaged in TO-5 cans.

In order to make available superior mounting techniques for printed and
modular circuitry, JFD has created two new series - MT 300 and 400 . . .
MT 300 Series' 4 terminal lead configuration provides optimum mechanical support and is specifically designed for printed, microminiature and module circuit applications.

MT 400 Series is designed for cordwood and module applications. This configuration has 8 terminations for easy connection above and below the capacitor substrate.

Write for Bulletin MT-65-2.

Capacitance manometer uses digital readout

MKS Instruments, 45 Middlesex Trnpke., Burlington, Mass. Phone: (617) 272-9255.

This instrument employs solidstate logic circuits and a tapped bi-nary-ratio transformer to achieve automatic high-accuracy, ac-nullbalance readout of a variable capacitance sensor. Absolute or differential pressures, to as low as 1 $x 10^{-5}$ torr, are directly displayed on a 5 -place Nixie readout, with a sixth place provided for overrange indication. Parallel electrical outputs are supplied in either BCD or 18 -bit straight binary form. The series 100 features a repeatability of 0.02% of reading plus 1 digit. Maximum resolution, including use of a residual voltage interpolator meter, is one part in 10°. The instrument is capable of preselected sampling speeds, manual command, or remote electrical command operation. Multiplexers are separately available for automatic multichannel scanning of many sensor heads.

$$
\text { CIRCLE NO. } 610
$$

Electrostatic voltmeter ranges 1 to 2000 V

Monroe Electronics, Inc., Vernon St., Middleport, N. Y. Phone: (716) 735-3721.

This all solid-state voltmeter utilizes a non-contacting probe to permit drift-free measurement of dc electrostatic potential on a small area with an accuracy of 0.1%. The instrument's measurement range is ± 1 to $\pm 2000 \mathrm{~V}$ full scale at $>10^{18} \Omega$ input impedance. Applica-. tions are in materials research and evaluation, including voltage acceptance and decay voltage measurements in electrophotography, and radioactive effects.

CIRCLE NO. 611

Current sensor to 150 A

ADC Products, 6405 Cambridge St., Minneapolis. Phone: (612) 9297881. P\&A: \$41; stock.

This dc-current sensor is designed for industrial control applications and provides a proportional dc-voltage output from a dccurrent signal with complete isolation. One basic unit permits you to choose and valve up to 150 A -dc for full-scale current by simple adjustment. The output linearity of this device is $\pm 1 \%$ over the full-scale current range. The unit will accept a current carrying conductor inserted through a physical orifice in the device case. This provides a complete physical and electrical isolation between the monitored and monitoring circuits.

CIRCLE NO. 612

Digital, BCD printers wth 10 -line feedback

Hecon Corp., 31 Park Rd., New Shrewsbury, N. J. P. O. Box 247, Eatontoun, N. J. Phone: (201) 5429200. Price: $\$ 232$ and up.

This complete serial pulse count printer is available with or without 10 -line feedback. The parallel-entry printer is completely interfaced for coupling to most electronic counters and digital voltmeters. Special printers with BCD-to-ten-line conversion are also available.

CIRCLE NO. 613

Voltage standard has 8 outputs

The Bailey Co. 5919 Massachusetts Ave., Washington, D. C. Phone: (301) 656-2625. Price: $\$ 30$.

The model 303113 is designed for checking calibration and scale shape of voltmeters, VTVM's and oscilloscopes. No potentiometer or accessory circuits are needed as it has eight calibrated outputs from 1.35 to 10.8 V and can supply small currents whenever the calibration of a meter may be suspect. Accuracy without corrections is within 0.5% for at least three years and its useful life is 10 years or more.

CIRCLE NO. 614

IC tester uses lamps and meter

Microdyne Instruments Inc., Waltham Engineering Center, 225 Crescent St. Waltham, Mass. Phone: (617) 893-8210. Price: $\$ 995$.

This integrated tester may be used as a manually operated instrument or as a programed functional tester. The analyzer is used for incoming inspection, small-run production, and laboratory and failure analysis. All dc parameters of micrologic circuits and most microlinear circuits may be tested, using the front panel controls of the model 710. Functional tests may be made by patch-plug programming.

Teflon test sockets for A/D converters

Both of the units are 40-lead sockets with $\mathrm{Ni} / \mathrm{Au}$ plated beryllium copper contacts on a 0.1000 inch grid. The MGX-101 socket is designed for chassis mounting and has tubular contacts embedded in a body which has been over-sized in order to provide mounting holes. The smaller MGSX-101 socket is designed to be incorporated into printed circuit boards and features flat ribbon-type contacts. Both models are constructed of DuPont TFE teflon for continuous operation over the range of $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ and utilize low resistance wiping-type contacts for easy device insertion or removal without lead damage. Contact resistance is less than $10 \mathrm{~m} \Omega$ and typical insertion life exceeds 50,000 insertions. Both sockets feature a polarization notch and will accept leads with diameters from 0.016 to 0.24 -inch with a minimum length of 0.140 inch.

CIRCLE NO. 616

Time-interval generator with up to 6 channels

Electronic Counters, Inc., 235 Jackson St., Englewood, N. J. Phone: (201) 567-5300. $P \& A: \$ 1500 ; 6$ to 8 wks.

This unit uses 3 sets of thumbwheel switches to generate intervals of from $1 \mu \mathrm{~s}$ to 10 seconds in duration on 3 separate channels. Associated with each of the 3 output channels are 2 banks of thumbwheel switches. Settings of these banks of thumbwheel switches determines the length of the output pulse, as well as the point in time in which the time-interval starts. The unit is housed in a 19 -inch rack mounted chassis.

CIRCLE NO. 617

and a half-ounce

but....what a pot for performance

When paramount performance in restricted space is the trimmer-pot problem, the JP/2 could well provide an easy answer! Built to Waters exceptional standards, this little pot in the 100 ohm to 10 K ohm range has every fine characteristic developed at Waters to insure accurate resistance control throughout a phenominally long operational life.

Need a Particular Pot?

If you have a worthwhile need for the potentiometer that doesn't exist . . . Waters has the engineering know-how and shop facilities to fulfill that need. Like to talk it over?

EXPORT

Charles H. Reed, Export Director Waters Manufacturing, Inc. Wayland, Mass. 01778 U. S. A.

Frequency meters to 100 kHz

Solid-State Electronics, 15321 Rayen Street, Sepulveda, Calif. Phone: (213) 364-2271.

A series $400-\mathrm{M}$ panel-mounted frequency meter. provides a means of obtaining a visual readout of the frequency of electrical signals over any range from zero to 100 kHz . A solid-state silicon semiconductor design is used. Four standard models are available in the $100-\mathrm{kHz}$ range.

The units are insensitive to variations of supply voltage.

CIRCLE NO, 618

Carrier and contactor for flatpack IC's

Barnes Development Co., $24 N$. Lansdowne Ave., Lansdoune, Pa. Phone: (215) 622-1525. $P \& A$: $55 ¢$ to $\$ 6.25$; stock.

The carrier and contractor, both precision molded of temperature resistant polysulfone, allow long period aging and burn-in applications for environmental and ambient testing of flat-packs over $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ temperature ranges. The carrier has notches for alignment with the polarization studs of the new contactor. The contacts are wiping type $\mathrm{Ni} / \mathrm{Au}$ plated copper with a service life in excess of 50,000 insertions.

CIRCLE NO. 619

Multifunction test unit covers 27 MHz to 18 GHz

Rantec, 24003 Ventura Blvd., Calabasas, Calif. Phone (213) 347-5446.

This line of automatic multifunction test equipment, has interchangeable broadband coaxial and waveguide rf units for frequency coverage from 27 MHz to 18 GHz .

The equipment measures the swept frequency transmission/reflection characteristics (scattering matrix) of a microwave device in terms of its phase, amplitude (insertion loss or gain and return loss), and impedance or admittance (Smith chart or polar reflection coefficient). Meter, oscilloscope, and recorder displays of all parameters are provided simultaneously or in succession with no connection changes to the device under test.

CIRCLE NO. 620

Low-current meters use MOS FETs

EG\&G, Inc., 680 Sunset Rd., Las Vegas. Phone: (702) 736-8111. P\&A: $\$ 3945 ; 90$ days.

A series of solid-state instruments for measuring extremely low current with repeatability is capable of being calibrated internally. The picometer, with digital readout and automatic-polarity indicator, is for use by standards and calibration laboratories. An optional feature is a current suppressor for discrimination of signals from fixed off set currents. The model ME-1035 of the series has a MOS FET input, temperature-controlled feedback resistors and selectable summing point voltage-current offset monitors and adjustment. The internal calibration procedure requires no external standards or sources.

CIRCLE NO. 621

Rate-of-turn table has a million to 1 range

Genisco Technology, Systems Div., 18435 Susana Rd., Compton, Calif. Phone: (213) 774-1850.

This unit is a test instrument for calibrating and evaluating rate gyros, accelerometers, inertial guidance systems, rate sensitive servos and other instruments. The system is available in a MIL-packaged version qualification tested to MIL-T21200. The digital servo-controlled electronic drive allows the operator to pre-select table rate through use of a direct reading thumb-wheel switch that reads directly in degrees of angular rotation per second. The hydrostatic bearing allows the entire rotating member to float in a film of oil.

CIRCLE NO. 622

Leak detector sensitive

 to $10^{-10} \mathrm{Atm}$. cc/second

Varian, 611 Hansen Way., Palo Alto, Calif. Phone: (415) 326-4000.

A portable helium leak detector, capable of a sensitivity of $10^{-10} \mathrm{Atm}$ $\mathrm{cc} / \mathrm{sec}$, is composed of a lightweight control module connected to an analyzing tube by a 7 ' cable. The analyzing tube attaches to any vacuum system by means of an O-ring sealed or customer-specified metalgasket flange. The unit can be used for the leak detection of vacuum systems or components, furnaces, and helium-pressurized components. Long filament life is assured in the self-cleaning ion gun by use of pure rhenium as the filament material. The portable electronics module contains all operation controls.

CIRCLE NO. 623

Data simulator with 16 -bit cycle lengths

Datapulse Inc., Subsidiary of Sys-tron-Donner Corp., 10150 W. Jefferson Blvd., Culver City, Calif. Phone: (213) 836-6100. P\&A \$1075; stock.

This digital data-simulation system is capable of producing variable parameter return and no-return to zero format.

The system consists of a Model201 data generator and a Model-101 pulse generator. The system provides 16 -bit cycle lengths, bit rates to 10 MHz and outputs to 10 V .

CIRCLE NO. 624

X-Y recorder in fiberglass

Texas Instruments, 3609 Buffalo Speedway, Houston. Phone: (713) 526-1411. $P \& A: \$ 1600 ; 90$ days.

Either vertical or horizontal mounting of this recorder is possible. When the instrument is used as a tabletop unit the recording surface may be angled to 45° or 90°. Both 8-1/2-x-11-inch and 11-x-17inch charts can be used. Either X or Y axes may be geared to time function, while the interchangeable "function modules" permit modification for the job at hand. Three modules are available: a sin-gle-range signal input module, a time-sweep/signal attenuator module and a multirange attenuator module. Terminals for remote control of time sweep are standard, as are pen-lifters. Inking is provided by disposable plug-in ink cartridges. A nonconductive case of mar-resistant fiberglass encloses the recorder.

Who makes card packaging kits? Scanbe does:

Now available in economical kit form, from Scanbe, a new Card-Mate circuit card mounting drawer kit and a new Card-Mate circuit card mounting file which offer these exclusive advantages:

- Easy to assemble into a complete unit
- Card spacing variable in $1 / 8^{\prime \prime}$ increments from .500 min .
- Precision molded nylon and rugged aluminum parts
- Mounts any type connector
- Adjustable to fit most card sizes
- Prices - Drawer Kit from $\$ 80.00$ - File Kit \$23.45
Write Scanbe, the specialist for electronic packaging hardware and get our new and complete kit literature.

SCANBE

SCANBE MANUFACTURING CORP.
1161 MONTEREY PASS RD., MONTEREY PARK, CALIF. 91754 TELEPHONE (213) 264-2300

TWX 910-321-4336
Distributor Inquiries Invited

Resonant-gate transistor spans 3 to 30 kHz

Westinghouse Electric Corp., P. O. Box 2278, Pittsburgh. Phone: (412) 391-2800. Price: $\$ 67 \mathrm{ea}$.

A solid-state device, called a reso-nant-gate transistor, is now available in evaluation quantities. The unit is a frequency-selective device capable of $Q \mathrm{~s}$ from 20 to 200 and its availability offers a solution to the problem of building tuned circuits without depending on inductors. The operation results from a mechanical resonating beam or "tuning fork" of minute proportions actuated by electrostatic forces,
which are provided by an input signal voltage. This signal voltage, when superimposed upon a larger, constant polarization voltage, sets in motion the resonating, cantilevered beam. Vibration of the beam is sensed by a conventional MOS fieldeffect transistor for which the beam serves as the gate. The applicable frequency range of the units is presently limited to about 3 kHz to 30 kHz , but higher frequencies can be obtained by using an over-tone mode of vibration.

CIRCLE NO. 626

Westinghouse plans production of its resonant-gate transistor, a microcircuit filter element. As its biased gold beam moves, the MOS channel depletes the current path, causing an output. Evaluation units are available.

Hybrid op amp ranges to 200 kHz

EG\&G, Inc., 160 Brookline Ave., Boston, Phone: (617) 267-9700.

The model HA-100 is packaged in a TO-5 configuration and is specifically designed for low-current-high-gain amplification with good linearity at low current. A feedback resistor is externally connected facilitating resistance selection for the application. The resistor is also available mounted in the same package as the SGD-100 photodiode. This combination, referred to as the HAD-130, results in a compact pho-todiode-amplifier. Major uses for the units include most medium frequency, low light'level detection and measurement applications.

CIRCLE NO. 627

Plastic transistors to 300 mA

Sprague Electric Co., North Adams. Mass. Phone: (413) 664-4411. Price: $\$ 1.00$ ea. 1000 or more.

Dual, low-cost plastic transistors in a one-piece molded package will be offered as PNP and NPN differential amplifiers or complementary dual transistors (NPN/ PNP types). The differential amplifiers will be known as the TD100 with NPN polarity and as the TD-400 family with PNP polarity. The units feature a base-to-emitter voltage match within 2.5 mV and the base-to-emitter voltage will temperature track within $6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Minimum beta gain is 120 at $100 \mu \mathrm{~A}$ current. The complementary dual transistors, designated as the TD600 series, are similar to the 2N2222 and 2N2907 metal-clad types in their electrical characteristics. They are specified for use over the range of $10 \mu \mathrm{~A}$ to 300 mA .

CIRCLE NO. 628

DC STANDARDS for

Germanium transistor carries 25 A

Solitron Devices, Transistor Div., Riviera Beach, Fla. Phone: (305) 848-4311.

This 25-A pnp germanium power transistor is available in a TO-3 to TO-41 package. This high-current device is capable of 106 W . Typical specifications for the series include minimum gain of 10 at $25 \mathrm{~A}, V_{C B O}$ of 40 to $80 \mathrm{~V}, V_{C E X}$ of 40 to 80 V and $V_{\text {CEO }}$ of 30 to 50 V . This device is a general-purpose transistor for use in military and industrial inverters, converters, switches, regulators, control circuitry and audioamplifier applications.

CIRCLE NO. 629

Power transistors to 50 W

ITT Semiconductors, 3301 Electronics Way, W. Palm Beach, Florida. Phone: (305) 842-2411. P\&A: \$2.05-22.80; stock.

These silicon planar epitaxial transistors cover the rf-amplifier range from one mW to fifty W. Four interdigitated geometry transistors (devices that utilize diffusion patterns more complicated than ICs) include the $2 N 3632$, 2N3732, 2N3866 and 2N4012. The 2N3732 offers 10 W output at 400 MHz and a common emitter power gain of 4.0 dB . The 2 N 3632 has 13.5 W at 175 MHz and a gain of 5.8 dB . The 2 N 4012 provides 2.5 W output to 1002 MHz as a tripler : and 3 W typical output as a doubler to 800 Hz . It comes packaged in a TO-60 case.

The 2 N 3866 is packaged in a TO39 case and has 1 W output at 400 MHz , a common emitter power gain of 10 dB , and a gain-bandwidth cut-off frequency of $>800 \mathrm{MHz}$.

CIRCLE NO. 630

that is portable laboratory calibration equipment designed for field environment \square operational in $\mathbf{3 0} \mathbf{~ s e c}$ and \square traceable to NBS.

All solid state . . . calibration and stability guaranteed for 1 year.

- Calibration Accuracy (Basis for Absolute Accuracy statement): 20 PPM RSS of tolerance of primary calibration system, including 1000 volts.

OTHER FEATURES: Instant operation (30 sec), no zeroing, no balancing, short-circuit and overload protection (automatic recovery). Ideal for production line, laboratory and field service applications; for use as a voltage calibrator/source and a differential voltmeter.

Available for standard rack mounting . . . delivery from stock. Other standard models and ranges available from $\$ 619$.

- Instruments available for no charge evaluation. Contact local sales representative or factory direct.

COMPONENTS

Liquid-cooled thyristor handles 630 A

Westinghouse Electric Corp., P.O. Box 2278, Pittsburgh. Phone: (412) 391-2800.

Featuring a thermodynamicallydesigned water-cooled heat sink, this type 224 thyristor is used for welding applications, power supplies, and large motor controls. The heat sink creates low-velocity eddy currents for transfer of heat away from the device. This design permits high-current capability in a 3 -in.-sq. by 6 -in. high package. This high-power thyristor, or SCR, is rated at 400 -A half-wave average, 630A rms through 1200 V. The liquidcooled heat sink requires a water flow of 1-1/2 gallons per minute.

CIRCLE NO. 631

Edgewise meter

 is $1 / 2$-inch high

Voltron Products, 1020 Arroyo Parkway, Pasadena, Calif. Phone: (213) 682-3377. $P \& A: \$ 12.50$; stock.

The meters measure $1.75 \times 0.50 \times$ 2.51 -inches and have flush sides to permit stacking of two or more. Models are available for ac or dc volts, amps and milliamps. The dc meters are D'Arsonval type movements; ac meters use a rectifier. The units are enclosed in a plastic case with snap-off cover. Scale length is $1-5 / 16$ inches. Accuracy is $\pm 2 \%$ in standard versions or $\pm 5 \%$ in expanded scale models. An illuminated version will soon be marketed.

CIRCLE NO. 632

V-to-I transducer handles picoamps

Washington Technological Associates, Inc., 979 Rollins Ave., Rockville, Md. Phone: (301) 427-7550.

This picoammeter is a 6-decade (120 dB) current-to-voltage transducer capable of processing currents in the micro- to picoampere range. Output is 0 V at minimum input current and 5 V at maximum. Maximum rise time is 9 ms and noise is less than $50 \mathrm{mV} \mathrm{p-p}$ at 1 pA . Current drain of 3.1 mA is typical, using $\pm 1 \%$, positive and negative $12-\mathrm{V}$ power supplies. Used in measurement and control applications having current sources that include photocells, photomultiplier tubes and electron and ion probes, the unit is suitable for flight and oceanographic applications.

CIRCLE NO. 633

Low-volt lamps square and round

Mura Corp., 380 Great Neck Rd., Great Neck, N.Y. Phone: (516) 487-0430.

Both shapes come in assorted colors of red, green, white and amber and the round lamp also comes in blue. Temperature rating for both is $120^{\circ} \mathrm{C}$. Lamps ranging from 2 to 28 V in various currents, are sold as a complete unit with caps and leads. Free samples may be obtained.

CIRCLE NO. 634

Multifunction meter has many scales

API Instruments, Inc., Chesterland, Ohio, Phone: (216) 729-1611.

A versatile panel meter allows measurement of many different variables simply by changing scales. It need not be dismantled when scales are changed. Scales are inserted in the slide after removing two screws. Alignment and fastening of the slide are so positive that a meter with 0.5% tracking will maintain its precision when scales are changed. A glass dial capsule seals off the movement from contamination and damages.

CIRCLE NO. 635

Power supplies for digital IC's

RO Associates, 917 Terminal Way, San Carlos, Calif. Phone: (415) 591-9443. P\&A: \$125-157; stock.

Two power supplies specifically designed for digital IC's produce 5 and 10 A respectively with adjustable outputs from 4.5 to 5.5 V . Ripple is 1 mV peak to peak; regulation is 0.25% zero to full load, and $\pm 0.1 \%$ for $\pm 10 \%$ change in input. Crow bar overvoltage protection and current limiting short circuit protection are built in. Construction is open frame and cooling is by convection only. Card cage mounting units are also available.

CIRCLE NO. 636

Photocontrolled resistors use 12-V lamp

Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-7000. $P \& A: \$ 6.80-8.00$; stock.

This resistor uses a cadium-sulfoselenide photocell to obtain stability in a changing temperature environment. The photocell resistance, when illuminated, changes by a factor of 1.5 with a change in temperature from 25° to $65^{\circ} \mathrm{C}$.

It contains a $12-\mathrm{V}$ incandescent lamp that illuminates the photocell. The illumination level controls the cell resistance over a 5 -decade range, from $100 \mathrm{~m} \Omega$ with the lamp dark to less than $1 \mathrm{k} \Omega$ with the maximum permitted input power of 12 V at 45 mA . Photocontrolled resistors are useful wherever high isolation is required between controlled and controlling circuits, such as current monitoring in high-voltage power supplies, or silent swtching of channels in a communication system. Electrical isolation between lamp and photocell in the unit is greater than $10^{12} \Omega$ and coupling capacitance is less than 0.01 pF . For low speed switching applications the incandescent lamp responds to on-off signals at rates up to 10 Hz . The lamp has an operating life of 40,000 hours at 10 V .

CIRCLE NO. 637

Ac-dc power source has twin outputs

Elasco Inc., 33 Simmons St., Boston. Phone: (617) 442-1600. Price: $\$ 95$ and up.

Op-amp power supplies featuring twin outputs incorporate two separate sources in a $3-5 / 16 \times 3-7 / 8 \times 4$ $1 / 2$-inch case. Fully automatic recovery from any overload or short is guaranteed. The units may be obtained with either of two options. The first has individual output voltage adjustments, while the other, with a voltage-tracking option, permits a single control to operate bnth.

CIRCLE NO. 638

Decade counter runs on 5 V dc

United Computer Co., Unit 8, 930 W. 23rd St., Tempe, Arizona 85281. Plone: (602) 967-9122. P\&A: \$90; 2 wks.

The Model F1850E decade counter combines a segmented display with a $5-\mathrm{MHz}$ IC counter. It requires a single supply voltage of 5 V dc. The input is +1 V level change. The outputs include a 4 -line BCD and drive line for other counters. The removable lamps are rated at 5 V for 100,000 hours. Its size is $7 / 8 \times 1-3 / 4 \times 2-3 / 8 \mathrm{in}$. Six front and six side $4-40$ inserts are provided for mounting. It weighs 2 oz .

CIRCLE NO. 639

Bandpass filters vary $\pm 0.01 \mathrm{~dB}$

Electro-Mechanical Research, P. O. Box 130, Van Nuys, Calif. Phone: (213) 782-1974.

The small variation of less than $\pm 0.01 \mathrm{~dB}$ in passband amplitude response suits these filters to reference system and signal conditioning applications requiring amplitude fidelity. Filters are available with center frequencies in the range of 100 Hz to 50 kHz and passband of $\pm 5 \%$ of center frequency. These filters meet applicable portions of MIL-F-18327.

EXCEPT FOR PRICE NEW D ALLSILICON R-C ロSCILLATDR holds PERFORMANCE but LOWERS PRICE

MODEL 4100, brand new R-C Oscillator with push-button frequency control. Sine- and Square-Wave simultaneously from 0.01 Hz to 1 MHz . Price $\$ 550$. Provides performance of higher priced units. $5 \mathrm{~K}_{6}{ }^{\prime \prime} \mathrm{H} \times 8 \frac{5}{} / \mathrm{s}^{\prime \prime} \mathrm{W} \times 141 / 2^{\prime \prime} \mathrm{D}$.

Using advanced circuit techniques, Krohn-Hite has produced a new R-C Oscillator, at a medium price, with traditional K-H Quality.

SIMULTANEOUS SINE AND SQUARE-WAVE outputs pack real power (up to $1 / 2$ watt into 50 ohms). Photos show open circuit output voltages at 1 MHz .

These outputs typify the performance of the Model 4100. Add to this half-watt output, 0.5% frequency accuracy, 0.03\% distortion, 0.02\% hum and noise, 0.02 db frequency response and $0.02 \% / \mathrm{hr}$. amplitude stability and you get a clearer picture of what we're talking about.

There's much more in KH Data Sheet 4100
 Write for a copy

Circuit-board guides are all steel

Taurus Corp., Academy Hill, Lambertville, N. J. Phone: (609) 3972390.

These all-steel pc-boards guides provide a positive grip for either vertical or horizontal mounting. They are supplied in a wide variety of sizes in increments of one inch. These guides are available with one, two, or three wires and with an extra mounting hole in the center. The effective grip is two or three inches per wire. The finish is cadium plate. Other finishes are also available. Snap rivets can be supplied. Samples are available.

CIRCLE NO. 641

Mini oscillator uses microcircuits

Fork Standards, Inc., P. O. Box 177, W. Chicago. Phone: (312) 231 3511. P\&A: $\$ 90$ to $495 ; 4$ wks.

Frequencies as low as 0.1 Hz can now be supplied in a case 1.5 -inch square by 0.6 -inch for PC board mounting. A frequency accuracy of 0.01% is maintained over a 0° to 65° temperature range. Greater accuracies or wider operating temperature ranges are available. Longterm frequency accuracy is assured by a temperature-compensated bimetallic tuning fork operating between 1 and 10 kHz . Supply voltage is $5-\mathrm{V}$ dc and the output is a square wave.

CIRCLE NO. 642

Tantalum capacitors to $1000{ }_{\mu} \mathrm{F}$

Union Carbide Corp., P. O. Box 5928, Greenville, S. C. Phone: (803) 963-7421.

Offered with ratings of $100 \mu \mathrm{~F}, 6$ V dc, 10 V -dc, $300 \mu \mathrm{~F}, 15-\mathrm{V}$ dc, and other ratings, these capacitors come in standard military style a, b, c and d cases. The a series is produced in capacitance values ranging from 0.82 to $1000 \mu \mathrm{~F}$ and in working voltages from 6 to 60 V . They meet the environmental and mechanical requirements of MIL-C39003 A . In addition, the devices display low impedance characteristics from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and can be used for de power supply filtering and decoupling.

CIRCLE NO. 643

Potentiometer conforms to MIL R-39002

 Post Rd., Wayland, Mass. Phone: (617) 358-2777.

The type JP/ 2 potentiometer conforms to the requirements of MIL-$\mathrm{R}-39002 / 1 \mathrm{~A}$. The type $\mathrm{JP} / 2$ is $1 / 4 \mathrm{x}$ $1 / 2$ inch and weighs $1 / 2$ ounce. Resistance ranges are from 100Ω to $10 \mathrm{~K} \Omega$ with resistance tolerance $\pm 10 \%$. It comes encased in corro-sion-resistant metal. Custom shafts and bushings are available.

CIRCLE NO. 644

Film capacitors from 0.01 to $0.1{ }_{\mu} \mathrm{F}$

Aerovox Corp., New Bedford, Mass., Phone: (617) 994-9661.

The V170 capacitors use a welded lead construction. They can be subjected to 100% relative humidity for 72 hours at $75^{\circ} \mathrm{C}$ and suffer $1 / 3$ loss in insulation resistance after exposure and drying. The units meet the moisture resistance test of MIL-STD-202, method 106A. The largest capacitor measures 0.413 x 0.669 inches and is available in six types with capacitances ranging from 0.01 to $0.1 \mu \mathrm{~F}$ and dissipation factor not exceeding 1% (at $25^{\circ} \mathrm{C}$). Standard tolerance is $\pm 10 \%$, although $\pm 5 \%$ units can be supplied.

CIRCLE NO. 645

Overvoltage protector up to 45 V

Power/Mate Corp., 163 Clay St., Hackensack, N. J. Phone: (201) 343-6294.

This solid-state device, connected across the dc output of a power supply, prevents damage to the load caused by excessive voltage. With this protector, improper adjustment, improper connection or failure of the power supply are no danger to equipment. The OVP-1 has two voltage ranges; 3 to 24 and 24 to 45 V , both adjustable throughout the range. Continuous rating is 12 A when used with a heat sink and 2 A in free air. Response time is $3 \mu \mathrm{~s}$. CIRCLE NO. 646

MOS shift register handles 1,024 bits

Philco-Ford Corp., 3939 Fabian Way, Palo Alto, Calif. Phone: (415) 326-4350.

The unit features a standard voltage amplifier with a very high input impedance and a transfer characteristic similar to that of a pentode vacuum tube. It has 1,024 bits of delay with interface and a clock register. It has an operation range from 10 kHz to 1 MHz .

CIRCLE NO. 647

Unattended transmitter to 1200 bits per second

 Avenue, Albertson, N. Y. Phone: (516) 484-1000.

Designed to read and transmit data from magnetic-tape cartridges prepared on any Data-verter digital recorder, the Model-802 transmitter sends data over the standard dial telephone network, using a Bell System 202E Data Set. The 802 may be operated manually to transmit data, or may be placed in the unattended mode to enable automatic, unattended transmission of data when called. The transmitter is available in two versions: 802-1 and 802-2. Except for speed (the 802-1 transmits at 600 bits per second; the $802-2$ at 1200 bits per second) the two units are identical.

Digital system measures 4 ways

Electronic Associates, Inc. West Long Branch, N. J. Phone: (201) 229-1100. P\&A: \$340, modules $\$ 210$ to \$250; stock.

A choice of mix-and-match modules allows this unit to function as a digital voltmeter, a digital frequency, period, or time interval counter or an ac converter. Two modules can be plugged in simultaneously. The desired measurement is selected by a switch on the front panel.

CIRCLE NO. 649
Vibration system uses 2.5 force pounds

Agac-Derritron, 600 N. Henry Street, Alexandria, Va. Phone: (703) 836-4641. Price: $\$ 448$.

A sine-wave vibration system with a wide-band, sine-wave oscillator, 25-W amplifier, and an exciter is suited for component testing, structure-resonant studies and transducer calibration. The VP-2 system is capable of delivering 2.5 force pounds over the frequency range of $5-10,000 \mathrm{~Hz}$ as limited by its maximum displacement of 0.2 in . double amplitude and a maximum acceleration of 60 g . Other features include over-current limiting, out-put-current metering, thermal protection of the output transistors and a provision for use with an ex-ternal-signal source.

You read about the Mark Ten in the April issue of Popular Mechanics!
Now discover why even Detroit has finally come around. In 4 years of proven performance and reliability, the Mark Ten has set new records of ignition benefits. No wiring. And works on literally any type of gasoline engine. Buy the original, the genuine, the real McCoy - Mark Ten. From Delta. The true electronic solution to a major problem of engine operation.

ready for these benefits?

A Dramatic Increase in Performance and in Fast Acceleration

- Promotes more Complete Combustion

A Points and Plugs last 3 to 10 Times Longer
© Up to $\mathbf{2 0 \%}$ Mileage Increase (saves gas)
literature sent by return mall
BETTER YET-ORDER TODAY!
 Ship prepaid. Please send: \square Ship C.O.D.
Mark Tens (Assembled) @ \$44.95 Mark Tens (Delta Kit) @ \$29.95

MICROWAVES

Low-VSWR slotted line spans 0.395 to 8.5 GHz

Narda Microwave Corp., Plainvieu, N. Y. Phone: (516) 433-9000.

The model 6235 can be used for precise measurements of the impedance, VSWR and reflection coefficient of distributed and lumped elements of rf frequencies from 0.395 to 8.5 GHz . With an impedance of $50 \Omega, \pm 0.1 \%$, it meets all requirements for testing of missiles, space vehicles and similar advanced coaxial systems employing $50-\Omega$ components. It converts quickly to type N, TNC or NPM line with low-VSWR adapters. The line is fitted with a movable carriage and a detector probe mount. The probe has a $37.5-\mathrm{cm}$ travel and is driven by a fixed-position knob.

CIRCLE NO. 651

Double-balanced mixer to 200 MHz

Relcom, 2329 Charleston Rd., Mountain View, Calif. Phone: (415) 961 6265. $P \& A$: $\$ 70$ to $\$ 90$; stock.

This double-balanced mixer has MIL reliability and RFI shielding. It is a component for a-m with suppressed carrier, PCM, PPM, phase detection, frequency converting, etc. in radar, communications and test equipment. It has a noise figure of 5.5 dB (SSB) at $50 \mathrm{MHz}, 45-\mathrm{dB}$ isolation between ports at 200 MHz , conversion loss of 5 dB (SSB) at 50 MHz , and a $120-\mathrm{dB}$ dynamic range. The unit is $0.6 \times 1.95 \times 0.94 \mathrm{in}$. and meets environment requirements of MIL-E-16400F, Class 1.

CIRCLE NO. 652

C-band magnetron rises to 1 MW

SFD Labs., 800 Rahway Ave., Union, N. J. Phone: (201) 687-0250.

The SFD-313 is a mechanically tuned coaxial magnetron which develops 1 MW of peak power over a range of 5450 to 5825 MHz . Efficiency is 50% minimum. Weighing 56 pounds and cooled by forced air, the tube resists damage from waveguide arcs or high VSWR, because the outlook window is ceramic. Dimensions of the unit are 14.625 x $13.75 \times 13.75 \times 7.062$ inches, including the tuning shaft and the rf waveguide output flange.

CIRCLE NO. 653

Fm oscillators to 380 MHz

RHG Electronics Lab., 94 Milbar Blvd., Farmingdale, N. Y. Phone: (516) 694-3100. $P \& A: \$ 995,30$ days.

This wideband fm oscillator can be frequency-modulated at baseband rates to 12 MHz . The oscillators are designed for use as the basic exciter unit in wideband microwave relay systems. They are available from 250 to 380 MHz and can be deviated over 9 MHz with a linearity of 2%. Operating in the uhf region, they contain a varactortuned oscilloscope, a buffer stage and output pad.

Waveguide switches operate to $\mathbf{2 0 g}$

Transco Products, Inc., 4241 Glencoe Ave. Venice, Calif. Phone: (213) 391-7291.

A family of solenoid-operated, light-weight waveguide switches is now available in type WR-62, WR102 , and WR-112. They are designed for high performance in extreme environmental conditions. VSWR is $1.1: 1$, with an isolation of 60 dB . The insertion loss is 0.2 dB with a -54° to $100^{\circ} \mathrm{C}$ operating temperature. The switches can withstand a $20-\mathrm{g}$ vibration. These units are pressurized and have an antibounce braking device for switching action.

CIRCLE NO. 655

X-band mixer uses barrier diodes

Sylvania Electric Products, 730 Third Ave., New York. Phone: (212) 655-2173.

This microwave IC balanced X band mixer has two matched beamleaded Schottky barrier diodes mounted in a hybrid configuration. Developed for airborne and space radar and communications applications, the unit contains an IC formed on a ceramic wafer, 0.7 inch long x 0.5 inch wide and 0.02 inch thick, that can be removed from the holder and replaced.

CIRCLE NO. 656

Fundamental oscillator

 spans 1200 to 1500 MHz

Consolidated Airborne Systems, Inc., 115 Old Country Rd. Carle Pl., N. Y. Phone: (516) 741-1500.

This 1.2 to 1.8 GHz range fundamental oscillator is voltage-tunable over half an octave. The model ETS 3152 offers 50 mW of output power. Its control voltage is $0-20 \mathrm{~V}$. It measures $1 \times 1-1 / 8 \times 2-1 / 4$ inches. The product will meet specifications in -50 to $70^{\circ} \mathrm{C}$ environments.

CIRCLE NO. 657

HeNe gas laser radiates 6328 A

Electro-Nuclear Labs., 115 Independence St., Menlo Park, Calif. Phone: (415) 322-8451. Price: $\$ 285$.

This HeNe gas laser provides highly collimated radiation at 6328 angstroms. This output is still in the visible range. The model LS- 32 features a plasma tube based on the coaxial principle, externally mounted Brewster windows that adjust yet remain securely in place during operation, and a stable output typically 1.5 mW single mode. The laser housing, measuring 13 by $1-3 / 4 \mathrm{in}$. is drilled and tapped for mounting either on an optical bench or on an accessory tripod, available at extra cost. The power supply occupies 8 x $4-1 / 2 \times 7$ in. The unit including the plasma tube is waranteed for oneyear shelf life or 2000 hours actual operation.

Hydrogen thyratron rises to 14 kV

EG\&G, Inc., 160 Brookline Ave., Boston. Phone: (617) 267-9700. P\&A: \$250; 2-4 wks.

This hydrogen thyrstron is for spark-chamber and linear-accelerator applications. The HY-62 will operate up to $14-\mathrm{kV}$ (\max) anode voltage with less than a $40-\mathrm{ns}$ delay time when driven by a $600-\mathrm{V}$ peak $15-\mathrm{ns}$ rise-time-grid drive pulse. The unit is $2 \times 1-3 / 8 \mathrm{in}$. Shorter delay times can be achieved by operating tube at higher reservoir voltages.

CIRCLE NO. 659

Ultraviolet laser

responds in $1{ }_{\mu} \mathrm{S}$

Avdo-Everett Research Laboratory, A Div. of Avco Corp., 2385 Revere Beach Parkway, Everett, Mass. Phone: (617) 389-3000. P\&A: \$12,000; 90 days.

This ultraviolet-pulsed nitrogen laser has a peak power output of 20 kW and a pulse repetition rate of 1 to 10 pps and an average power output of 20 mW . It operates in the second positive band of molecular nitrogen and produces $10-\mathrm{ns}$ selfterminating pulses in the near ultraviolet at 3371 A.

CIRCLE NO. 660

You'll never speaify another welded lend

when you chack the methanisal and alextrial aduantages of one-piare leads

One-piece leads have:

- lower electrical resistance.
- higher resistance to corrosion.
- greater resistance to mechanical and thermal shock.
- higher resistance to vibratory loads.

Art Wire one-piece leads are available in all alloys (including glass sealing) from $.020^{\prime \prime}$ to $.080^{\prime \prime}$ dia., necked down to as much as 50% of original diameter.

Send a print or a sample for an estimate.

Write for catalog.
ART UIRE \& STRMPINE COMPAMY
17 Boyden Place, Newark, N. J. 07102

Industry's Most Complete Buying Guide
Over 70,000 items-500
Standard Brand lines
700 Pages
Over $\$ 7,000,000$ Industrial Electronics Inventory - your assurance that NEWARK has it now.

Cost saving answer to many industrial timing applications. Dial setting reference scale; operating temperature range of $-10^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ with $\pm 10 \%$ accuracy. Reset time in 100 milliseconds and repeatability is $\pm 2 \% .24$ types in stock.

Immediate delivery from stock-factory OEM prices -fast efficient service from 10 Newark warehouses.

New Main Office \& Warehouse

WEWARK ${ }^{500}$ North Pulaski Chicago, Illinois 60624
ELECTRONICS CORPORATION AUTHORIZED P\& B WAREHOUSES IN

为 (31 3) (312) 638-4411 Cincinnati, Ohio (513) $421-5282$ (303) 757-3351 Grand Rapids, Michigan
4. New York City (212) 255-4600

教 Dallas, Texas (214) BR $2-357$

Detroit, Michigan (313) 548-0250 Los Angeles Area (213) OR 8-0441 (616) 452-1411

Warehouses in
New Orleans, Louisiana (504) 834.9470

Houston, Texas Opening Soon

Plug-in package has 18 leads

American Lava Corp., Manufacturer's Rd., Chattanooga, Tenn. Phone: (615) 265-3411.

Designed for monolithic circuits, the ceramic plug-in features a good inside device area in relation to overall size. The notched, high-alumina ceramic substrate accurately matches the inside area of the package. Since leads can be soldered directly to conductor lines which run into the notched areas, it is possible to eliminate wire bonding from device area to leads. This direct soldering also holds the substrate to base. The plug-in package is 0.75 x 1 in . and has 18 leads. The matching substrate is $0.51 \times 0.855 \mathrm{in}$. and the area is almost 100% useable.

$$
\text { CIRCLE NO. } 661
$$

Foam fluxes speed PC manufacture

Alpha Metals, Inc., 56 Water St., Jersey City, N. J. Phone: (201) 434-6778.

This foam flux permits the "trimming" and electronic balancing of radio and TV PC boards immediately after soldering while they are still warm. The flux produces a steady foam that does not break when it contacts hot surfaces. This characteristic eliminates any need for pallet or fixture cooling. Reliafoam $811-13$ is a rapid, high-rising foam flux requiring low air pressures for a constant, adjustable head of white bubble foam. It consists of a stable, homogeneous solution of pure, water-white rosin in a multicomponent solvent to which a small amount of activating agent has been added. It provides instant wetting, excellent capillary properties and leaves only small residues. It maintains its foaming, fluxing and wetting properties during continuous exposure to aeration.

CIRCLE NO. 662

Silicone encapsulant withstands $600^{\circ} \mathrm{F}$

Emerson \& Cuming, Inc. Canton, Mass. Phone: (617) 823-3300. P\&A: $\$ 3.50$ to $\$ 4$ per pound; stock.

Eccosil 4966 is a pourable, room temperature curing, red silicone encapsulant that has service temperatures up to $600^{\circ} \mathrm{F}$. Its viscosity of about $21,000 \mathrm{cps}$ renders it capable of filling complex cavities. This behavior coupled with its flexible character makes it ideal for encapsulating or coating electronic components whose performance is altered when subjected to pressure. Where adhesion to metal, glass or other substrates is desired, surfaces should be treated. For unit use above $250^{\circ} \mathrm{F}$ a post cure is recommended.

CIRCLE NO. 663

Copper-filled epoxy has low resistance

Ablestik Adhesive Company, 833 W . 182 St., Gardena, Calif. Phone: (213) 321-6252.

A copper-filled conductive epoxy adhesive exhibits a resitivity of less than $0.01 \Omega-\mathrm{cm}$ with electrical properties comparable to most silver conductive adhesives. Although copper is an excellent conductor, epoxy compounds filled with pure copper powder have been electrically nonconductive. This is due primarily to an insulating oxide layer on the exposed surface of the copper powder.

This adhesive requires no pretreatment of the copper powder and retains much of the conductivity of solid copper. When cured 2 hours at $150^{\circ} \mathrm{F}$, resistivity it is only $0.007 \Omega-$ em. Since copper is the filler, the compound eliminates the migration problem encountered in silver compounds. This compound is designed for use in conductive joints, rf shielding, and other conductive adhesive applications.

CIRCLE NO. 664

Design Aids

Lamp calculators

This calculator is designed to assist the designers of circuits when they use any incandescent lamp. It is now possible to determine lamp life, brightness and current at applied voltages from 70% to 130% of rated voltage. With this new calculator, the life of an incandescent lamp can be doubled by a 5% reduction of applied voltage. Precision Lamp Engineers.

Transformer laminations

A comprehensive 144-page cata\log provides complete electrical and mechanical data on high-performance electromagnetic transformer core laminations. The catalog includes dimensional diagrams of available shapes, magnetic design formulas, magnetic path dimensions, and indicates the various materials and gauges in which each lamination type is available. In addition cross-references of lamination types and shapes are provided as well as technical information and data of value to design engineers involved in the specification of laminations for assembly of magnetic cores. Magnetic Metals Company.

CIRCLE NO. 666

Microwave wall chart

This is a 30×40-inch three-color wall chart of engineering reference information. It is useful for engineering departments, test labs and drafting rooms. The chart covers often-used spectrum analysis data, signal and transmission data and receiver and RI/FI information. The offering contains tables, nomographs and charts. Polarad.

CIRCLE NO. 667

Evaluation kit

A free sample kit for evaluation of wire-cable harnesses and markers is available for engineers, draftsmen and contractors. It includes: the Cradleclip, Spiroband, Strapping, Cable-Tie and Adjustable P Clip Harnessing Systems ; three different types of markers for coding of wires and cables; and GrommetStrip, the "snip-n-fit" grommeting material. Because there is no one best method of solving all wire and cable harnessing and marking problems (individual requirements will determine the approach utilized) users will find this kit an indispensible aid in the selection of a product to meet their specific requirements. Electrovert.

CIRCLE NO. 668

Conversion factors

A reference table in wall chart form is useful for engineers and shop men. Included are common conversions such as inches to centimeters or watts to H.P. as well as many conversions that are difficult to locate in reference manuals. Some such examples are atmospheres to $\mathrm{Kgs} / \mathrm{sq}$. cm., $\mathrm{cm} / \mathrm{sec}$ to miles/hr., cu. ft. to liters, microns to meters, quintals to pounds, etc. Precision Equipment Co.
glass enclosed Thermostatic DELAY RELAYS AMPERITE
 hermetic sealing-- assure maximum stability and life!
Delays: 2 to 180 seconds
Actuated by a heater, they operate on A.C., D.C., or Pulsating Current ... Being hermetically sealed, they are not affected by altitude, moisture, or climate changes . . . SPST only - normally open or normally closed Compensated for ambient temperature changes from -55° to $+80^{\circ} \mathrm{C}$. ... Heaters consume approximately 2 W . and may be operated continuously. The units are rugged, explosion-proof, long-lived, and inexpensive! TYPES: Standard Radio Octal
and 9-Pin Miniature..... List Price, $\$ 4.00$ PROBLEM? Send for Bulletin No. TR-81.
 BALLAST
REGULATORS

Hermetically sealed, they are not affected by changes in altitude, ambient temperature $\left(-50^{\circ}\right.$ to $+70^{\circ} \mathrm{C}$.), or humid. ity . . . Rugged, light, compact, most inexpensive.
List Price, $\$ 3.00$
Wrife for
4-page
Technical Bulletin
No. AB-5I

AWPFRITR
600 PALISADE AVE., UNION CITY, N.J. 07087 Telephone: 201 UNion 4-9503 In Conada: Allas Radio Corp., Ltd., 50 Wingold Ave., Toronto 10

CIRCLE NO. 669

UNANNOUNCED
NEW
ELECTROMETER
-TR- 8651
FOR EASY AND
HANDY
MEASUREMENT

FEATURES:

-TR-8651 ELECTROMETER is conveniently used for:
Measurements of Semiconductor resistivity - Insulation - Piezoelectric charge - Photo-electric current

-TR-8651 ELECTROMETER measures:

- Voltage from 1 mV to 100 V f.s. (11 range) with $\pm 0.5 \%$ accuracy \bullet Charge from $\overline{10^{-12}}$ to 10^{-5} coulomb f.s. - Current from 10^{-14} to 0.3 A f.s. Resistance from 100 to $10^{14} \Omega$ f.s.

SPECIFICATIONS:

RANGE:

- Voltage: $1,3,10,30 \mathrm{mV}, 0.1,0.3,1$, $3,10,30$ and 100 V f.s. Charge: 10^{-12} to 10^{-5} coulomb f.s. ($1 \times$ and $3 \times$ overlapping ranges) © Current: 10^{-14} to 0.3 A f.s. ($1 \times$ and $3 \times$ overlapping ranges) Resistance: 10^{2} to $10^{14} \Omega \mathrm{f}$. s . on linear $1 \times$ and $3 \times$ over. lapping ranges.

For furthor dotalls, write fo:

Application Notes

OI-PNP GERMANIUM POWER TRANSISTOR RI - BIAS RESISTOR

NiCad battery tips

The rechargeable, sealed nickelcadmium battery cell . . . How is it made? What are its electrical characteristics? How fast can you charge it? How do you specify? These questions and many more are answered in the booklet, "The Sealed Nickel-Cadium Battery Cell." The booklet has packaging ideas, charging and discharging curves, and a table of Sonotone's line of sealed cells, listing all physical and electrical data. To aid the engineer in specifying and designing, simple charging circuits are illustrated. Included is the anti-reversal circuit shown above. This system utilizes a single transistor and base-bias resistor. Only one transistor is required for each multicell battery. Sonotone Corp.

CIRCLE NO. 670

Thermoelectric cooling

The principles, applications, and design possibilities of thermoelectric cooling are discussed in this booklet. Like conventional refrigeration, thermoelectrics obey the basic laws of thermodynamics, and in the latter section of the booklet, these laws are more fully discussed. Both in result and principle, then, thermoelectric cooling has much in common with conventional refrigeration methods-only the actual system for cooling is different. The difference between the two refrigeration methods is that a thermoelectric cooling system refrigerates without use of mechanical devices, except perhaps in the auxilliary sense and without refrigerant. Borg-Warner.

CIRCLE NO. 671

Complementary transistor

A four-page bulletin describes how complementary circuits operate using matched pairs of npn and pnp transistors. It gives examples of practical amplifier and powerconverter circuits using complementary pairs. Some of the characteristics that make use of complementary power transistors practical and economically desirable are pointed out and illustrated with curves. KSC Semiconductor Corp.

CIRCLE NO. 672

Precious metals

A 24-page brochure shows how precious metal materials and fabricated products are providing greater efficiency and economy to today's industrial processes. The brochure presents the story of the platinum metals, and devotes individual pages to the platinum group metals, gold and silver with illustrations and descriptions of different uses. Tables listing the properties of each of the precious metals are included, along with information on research and development, refining activities and a products guide. Engelhard Industries.

CIRCLE NO. 673

Encyclopedia of connectors

The second edition of the Enccyclopedia of connectors has been expanded to include physical drawings of connectors to dimensions and includes additional manufacturers and additional types of connectors. Directed to engineers, planners, buyers, expediters, etc., the publication contains illustrations and cross referencing charts with Bendix, Cannon, Amphenol, Flight, Deutsch, Winchester, Continental, and U.S. Components. The encyclopedia of connectors is designed to assist in the selection of connectors and enables quick cross reference. It explains nomenclature and illustrates Mil-C-26482 and Mil-C-5015. It also explains how to select connectors and contains an index of all inserts and contact configurations plus other information. Spacecraft Components Corp.

CIRCLE NO. 674

The

micro-miniaturetuned-circuit package.

JFD TO-5
 Enclosed MTLC Tuners

Capacitors shown enlarged 20%
JFD MTLC tuners enable circuit designers to shrink various LC circuits into TO-5 configurations completely compatible with today's miniaturized or hybrid circuitry. The tuning element is a subminiature variable ceramic capacitor measuring: $.208 \times .280 \times .120$ inch thick. These variable ceramic capacitors offer high capacitance plus a choice of wide $\triangle \mathrm{Cs}$ in extra small, ultra stable units.

JFD builds these miniature circuits with high quality ferrite and iron inductor toroidal cores, providing maximum Q for any given frequency. Where necessary, special JFD Uniceram fixed capacitors are used with Modutrim units to yield lower center frequencies or to satisfy special circuit requirements.

Ten standard tunable LC networks are available for a wide range of applications. Variations of these standard units, or special designs, will satisfy most other requirements. Write for bulletin MTLC 65-2.

TODAY'S COMPONENTS BUILT FOR TOMORROW'S CHALLENGES:
JFD ELECTRONICS CO. / COMPONENTS DIVISION 15th Avenue at 62nd Street Brooklyn, N Y 11219 I Phone 212-331-1000. Sales Oftices-Arcadia Calif Chi., lll. , Balt. Md / Saxonville, Mass / Bklyn Sales Offices-Arcadia, Calif. Cinn., Ohio / Phila., Pa. / Pitts., Pa. / Paris, France / Azor, Israei

Dates shown are seminar starting dates. Schedules are subject to change and additions.
Special in-plant seminars can be arranged. For full information and registration, call Mr. Bradford Daggett, 212, 247-5700 or use coupon below.

Electrolytic listing

This six-page brochure lists all color electrolytics by capacitance value. The listing includes over 250 wide-range lytics of the single, dual, triple and quadruple section types. These units are designed to replace over 2500 different exact replacements according to the wide-range principle of broad capacitance tolerances. The listing provides a blank space beside each rating which is useful for inventory and price notations. Cornell-Dubilier Electronics.

CIRCLE NO. 675

Cinch-Jones catalog

This 12-page illustrated catalog lists PC connectors, rack and panel connectors, sockets, terminal blocks and accessory hardware. About 1400 individual items are listed. The catalog shows suggested prices for quantities from 1 to 499. Essential electrical information is included for every part. The catalog includes a quick-reference tube socket chart which lists dozens of sockets in a new format showing, at a glance, construction materials, mounting type, mounting centers and applicable MIL specs. Sockets and accessories for all transistor types are also featured. CinchJones.

CIRCLE NO. 676

Ceramics in electronics

The article is a review of a number of technical ceramics and compares relevant electronic properties in a number of graphs and charts. Beryllium oxide is compared to alumina, fosterite, magnesia and steatite. The Brush Beryllium Co.

CIRCLE NO. 677

Vibration testing of relays

This treatise deals with terminology and parameters of the various functions of random vibration testing. It discusses in particular the test equipment and related philosophies and methods that might be employed by a relay user or manufacturer. The paper is illustrated with explanatory diagrams and equations. Potter \& Brumfield.

CIRCLE NO. 678

"Doorbell" modules

A four-page data sheet covers Unitrode's larger UG series of high voltage, high-current silicon "doorbell" rectifier modules as well as its older, smaller UD series. These modules are listed in both regular and fast-recovery versions, with current and voltage ratings given at typical operating temperatures. Unitrode Corp.

CIRCLE NO. 679

Dc measuring

A 12-page brochure describes JRL's instrumented concept for measuring dc resistance, voltage, current, and ratio with accuracies on the order of a few parts-per-million. Included is data covering measuring systems and devices such as bridges and potentiometers, precision current and voltage sources, voltage dividers and null detectors, voltage references and calibrator systems, and primary standards such as resistors and resistor networks. A full line of computer, instrument and production resistors, resistor networks and other components are also described. Julie Research Labs. Inc.

CIRCLE NO. 680

Microwave catalog

A 44 page catalog contains over 1000 models of directional couplers, circulators and isolators, RF loads and terminations, power and VSWR meters, switches, filters, and integrated devices. Bendix Microwave Devices.

Hybrid microcircuit

"The Making of a Hybrid" is the title of a new thin microcircuit brochure. The 12 pages tell the story about the making of a hybrid microcircuit, step-by-step, from the engineer schematic to the final package. The Wems manufacturing process is covered in detail as you are guided pictorially through the plant. Wems, Inc.

CIRCLE NO. 682

Ceramic magnet material

This bulletin presents demagnetization and energy product curves, discusses applications, temperature resistance and magnetization. Typical magnetic properties are listed, and such material characteristics as dimensional tolerances, ring-magnet tolerances and density are described. Indiana General Corp.

CIRCLE NO. 683

Name-plate catalog

Showing more than 100 different identification products, this 32 -page catalog is designed to offer helpful layouts, technical data and price information. Special pages are devoted to advertising posters, truck signs, decals, name plates, warning tags, employee and visitor badges, parking-control labels, property identification tags and other identification products. Requests should be made on your company letterhead. Seton Name Plate Corp.

CIRCLE NO. 684

COULD YOU SLICE THIS ANGLE

INTO 300 EQUAL PARTS?

OR MAKE A CRYSTAL FILTER HAVING 0.1\% PHASE LINEARITY OVER 1500° PHASE SHIFT?

OR MAKE AN OSCILLATOR ACCURATE TO .001\% OR $\pm .00001 \%$ AT AMBIENT TEMPERATURE?

MCCOY DOES IT EVERY DAY!

M^{C} Coy makes precision crystal oscillators-in a variety of designs-covering the $400 \mathrm{~Hz}-150 \mathrm{MHz}$ range.
One example is the completely-packaged HC-6 crystal oscillator shown above. Designs vary from economical commercial units for use in limited environments to highest reliability components and techniques for use in severe aerospace environments. $\mathrm{M}^{\mathrm{C}} \mathrm{Coy}$ oscillators give optimum performance even under severe changes in temperature, shock and vibration.
M^{C} Coy engineers and production people apply years of experience to give you many types of oscillators without expensive engineering costs. $\mathrm{M}^{\mathrm{C}} \mathrm{Coy}$ offers
oven-oscillator assemblies...controlled thermostatically or proportionally; crystal oscillators...tempera-ture-compensated (TCXO's) or voltage-controlled (VCXO's).
M^{C} Coy also makes the most complete line of precision crystal filters covering 5 KHz to 125 MHz , withstanding severe shock and vibration at ambients of -55 to $+105^{\circ} \mathrm{C}$.
Precision of these oscillators and filters results from using MCCoy-made quartz crystals with proper combinations of inductance, capacity, Q and frequency stability. Specify M^{C} Coy and get the highest quality available! For full details, write for new catalog.

MCCY ELECTRONICS CDMPANY
A Subsidiary of OAK ELECTRO/NETICS COAP
Mt. Holly Springs, Pennsylvania 17065

Miniature High Q Air Capacitors!

> SIZE: $.220^{\prime \prime}$ dia. $15 / 32^{\prime}$ length
> Q @ 100 mc: >5000
> CAPACITANCE RANGE: $0.4-6$ pf NON-MAGNETIC

New miniature series features high quality materials and workmanship typical of all Johanson Variable Air Capacitors.

Write or Phone

MANUFACTURING CORPORATION
400 Rockaway Valley Road, Boonton, N. J. Phone (201) DEerfield 4-2676
ON READER-SERVICE CARD CIRCLE 58

'II'S GOOD BUSINESS to hire the handicapped."

ISN'T THAT A GREAT IDEA, SNOOPY?

THE PRESIDENT'S COMMITTEE ON EMPLOYMENT OF THE HANDICAPPED, WASHINGTON, D. C.

Temperature test chambers

To assist the potential user in choosing the test chamber ideal for his particular purpose, Statham his produced a package entitled "Temperature Test Chambers and Accessories," which sets forth the qualities peculiar to each chamber, features of particular interest, suggestions for general, and specialpurpose applications, and accessories available for each model. A reference chart summarizes the features of each chamber, and includes such specification data as temperature range, test area, control accuracy, heating and cooling rate, coolant used, outside dimensions, and weight. A temperature conversion chart is also included. Statham Instruments, Inc.

CIRCLE NO. 689

Temperature transducers

This 32 -page illustrated catalog covers temperature measurements in the range of $-452^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}$ for fluids, gases, and surface measurements. The brochure provides resistance versus temperature graphs for nickel, balco, tungsten and platinum element materials, as well as resistance versus temperature tables for platinum both in centigrade and fahrenheit. Scientific Engineering \& Mfg. Co.

CIRCLE NO. 690

Solid-state converters

A 30-page catalog describes a line of frequency-to-dc converters and oscillators. Coverters cover a frequency range from 0 to 100 Hz and oscillators range from 25 Hz to 20 MHz . All units are of solid-state design and modular construction, and can be utilized for military and industrial applications. Solid State Electronics Corp.

CIRCLE NO. 691

Solderless terminals

Nearly 50 new solderless wiring devices have been incorporated in this 28 -page catalog containing complete descriptions, electrical and mechanical specifications, and dimensional data for the product line. The products described include straight and right-angle receptacles, tabs, insulating sleeves, splices, multi-position connectors and special-purpose items. The terminals described in this catalog can be crimped individually or automatically applied at rates up to 11,400 per hour. AMP Inc.

CIRCLE NO. 692

Electrical connection terms

This 10-page glossary will help you to understand the language peculiar to connectors in the aerospace industries. The terms are from the SAE aerospace recommended practice specifications Schweber Electronics.

CIRCLE NO. 693

Digital building blocks

This 100-page two-color booklet describes the functions, testing, over-all reliability and support hardware of the many modules available. It contains more than 40 pages of specifications of modules in such family types as flip-flops, passive gates, active gates, lamp/relay drivers and multifunctional types. The booklet is useful to circuit engineers who are designing systems in the areas of numerical control, machine tool, highway traffic control, railroad control, biomedical, chemical and water and air pollution. PhilcoFord.

CIRCLE NO. 694

Trying to increase flat-pack production rates or speed-up testing and board mounting? Then keep up with competition by using Barnes flat-pack Carriers for high-speed automatic handling, test and P.C. board insertion. Barnes Contactors accept $1 / 8^{\prime \prime} \times 1 / 4^{\prime \prime}$ to $3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$ flat-packs with up to 14 leads, and facilitate quick and easy test and breadboarding. Write today for full information and ask for a free Carrier sample.

bernes/THE FIRST WORD IN CARRIERS, CONTACTORS AND SOCKETS FOR I.C.'S

ON READER-SERVICE CARD CIRCLE 60

ON READER-SERVICE CARD CIRCLE 62

NEW LITERATURE

Fuzzphase computer

When at a loss for words use this semi-automatic device for generating striking or memorable phrases in memoranda, telephone conversations, proposals, spec negotiations, or other occasions requiring obfuscatory capability. Take any random 3 -digit number, and choose from columns A, B, or C, respectively, the words corresponding to each digit (e.g. the number 792 is optimal third-generation flexibility). Signetics Corp.

Waveguide reference

This brochure describes the product line and includes a waveguide reference chart and flange guide. The waveguide reference chart covers the frequency range from 0.490 to 260 kHz and includes M85/1 MIL spec. cross-reference information. All products are described in detail-waveguide-towaveguide transitions, waveguide terminations, waveguide-to-coaxial transitions, flanges, straight sections, twists, waveguide bends, accessories and special configurations. Specialty Waveguide Corp.

Wiring systems

This bulletin presents the basic elements and techniques of Signaflo wiring systems as well as applications for signal transmission, control wiring, flexing wires, and interconnection and structural systems designed for memory devices. Illustrated are wiring systems designed for controlled impedance valves, propagation velocity, crosstalk, capacitance, and other physical and electrical parameters. Also shown are single and multi-layered systems as well as systems shielded on one or two sides with various shielding materials such as metal foil, deposited metal, wire mesh, and special dielectrics. ACI division of Kent Corp.

CIRCLE NO. 697

Servo designs

The 16 -page publication carries product descriptions of servo-assemblies functioning as data converters, computing servos, incremental servos, function generators, and as indicating/display devices. The booklet is illustrated with black diagrams and photos of representative devices for each of the above functions, with the test indicating the types of components used and their specific operation in the system. Weston Instruments.

CIRCLE NO. 698

Semiconductor catalog

Jam-packed with part numbers and engineering specifications, a 20 page catalog contains condensed listings of thousands of semiconductor devices. The catalog lists 1 to 350 A silicon avalanche rectifiers, 2 to 500 A silicon rectifier assemblies, tube replacement silicon rectifiers, high voltage silicon rectifiers, 0.25 to $50-\mathrm{W}$ zeners and superconductive seleniums for up to 4000-A output and Klipvolt surge suppressors. The devices shown have voltage ratings from 5.6 V to $30,000 \mathrm{~V}$.

The pages of engineering information feature dimension and mounting data on rectifier styles and configurations, as well as detailed electrical specifications. Sarkes Tarzian Inc., Semiconductor Div.

CIRCLE NO. 699

Unbelievable! Unavailable!

Until now.

Next time someone walks up to you and asks, 'Does Redcor/Modules' new 770-440 give you instrumentation amplifier performance at module amplifier prices?" look him right in the eye and say yes. You might also mention that its unique patented dynamic bridge design principle means great closed-loop specs like differential input impedance of 10 megohms; common mode input impedance of 1000 megohms, from dc to 60 cps ;
differential gains of 20 to 1000; and a gain accuracy of $\pm .02 \%$ FSR 20 V . Then tell him all this performance costs less than one-fifth a kilobuck per each. There. You did a fine job. Now request complete data so you can really sock it to the next guy that asks.

New high efficiency, high frequency Photochopper Modules

- High stability from -25 to +75 C , efficiency varies less than 5% over temperature range
- 50% efficiency at 1000 Hz
- Internal electrostatic shielding
- CaS cells for fast warm up Write for new Bulletin 201 / ITD3-67

CLITRET EIERTIDILCS

Elmat Four-Point Resistivity probe

specifically designed to measure resistivity of slices or ingots of semiconductor materials

SPECIFICATIONS:

- Manufactured to precision tolerances - $\pm 1 \%$ for point spacing and tip radii
- Special alloy points are coilspring mounted to specified gram load displacements (85,150 , or 200) to assure long life and test reproducibility.
- Outstanding ohmic contact characteristics.
- Two and three-point assemblies available; non-standard custom resistivity probes on special order.

FLAT PACK \& CIRCUIT PROBES:

- Flat pack probe assemblies for evaluation of integrated and thin film circuits encapsulated in flat packs available; special probe designs with up to 48 points custom fabricated for flat packs or circuit boards.

APPLICATION:

May be used in manual or automatic test stations. Manual probe applicator stand available.
For complete descriptive literature and the name of the Elmat representative nearest you, write to:

NAVAN INCORPORATED, Dept. 799 1320 E. Imperial Highway. El Segundo, California 90245
name
title
FIRM
ADDRESS

STATE

Advertisers' Index

Advertiser Page

Dale Electronics, Inc
Cover III
81
Dearborn Electronics. In
60. 61
elco Radio. Division of Genera
Delta Products. Inc
111
ESI/Electro Scientific Industries, Inc. . T115 Ebauches SA
Elco Corporation
Fidre Components. Inc
Electronic Development Corporation
Electronic Measurements, Division of The
Rowan Controller Co.
Fairchild Instrumentation
A Division of Fairchild Camera and
Instrument CorporationT12 T1
Fairchild Semiconductor
A Division Fairchild Camera and
Instrument Corporation
8. 9

Fluke Mfg. Co., Inc., John T79
General Atronics, Electronic Instruments
Division
Division T39
General Cable Corporation 112
General Radio Company T113
Gordos Corporation
109

H P Associates . T67
Hammel Riglander \& Co. Inc
110
Hayden Book Company. Inc.
Hayden Publications
Haydon Switch \& Instrument Inc 64
Heath Company $\&$ Instrument Inc
Hewlett-Packard
T36
Hewlett-Packard II, 5, 71, T41, T63 T69, T8
Honeyweli, Computer Control Division .. 28
Honeywell Test Instrument Division.
Annapolis Operation T58. T59
IMC Magnetlcs Corp
T71
"IT JUST SLIPPED

Or maybe it got knocked off the table . . . Don't worry. If it's a Netic and Co-Netic magnetic shield, it won't be significantly affected by dropping, shock or vibration. Never needs periodic re-annealing so there are no maintenance problems. Retentivity is minimal.
Over 80% of all magnetic shield designs currently used were engineered and designed here. Netic and Co-Netic are the recognized world standard for industrial, military and commercial magnetic shielding applications. Delivery, $3-4$ weeks in most instances. Request Short Form Catalog No. 67.
Fabricated to your specs . . . or Sheet Stock available.

ON READER-SERVICE CARD CIRCLE 67

Don't Risk Distortion or Erasure of Valuable Magnetic Tape Data!

 Store or Transport your tapes in Netic Containers. Immediate delivery on many convenient sizes and shapes. In world-wide service since 1956.

Request Catalog TP-1.
MAGNETIC SHIELD DIVISION
Perfection Mica Company
1322 N. Elston Ave., Chicago. III. 60622
Phone 312, EV 4-2122
ON READER-SERVICE CARD CIRCLE 68

Do You Use A SPINNER?

If not, we can fill your needs with other BUCKEYE Matching Instrument Knobs

- Complete stock maintained to provide samples and prompt delivery.
- Available in three stock series in choice of designs and types.
- Molded of high-impact styrene - with aluminum bushing and two set screws.
- Wide range of specials and modifications.
- Six basic sizes in four stock colors.

Write for catalog and prices

the BUCKEYE stamping co.
555 MARION RD., COLUMBUS, 0. 43207 "QUALITY PRODUCTS SINCE 1902"

Electronic Design

Design Data from

Schweber Offers New Motorola Guide

Abstract

This new 40-page guide covers the widest range of Zener devices in the industry. The cross reference section lists all EIA Zener and temperaturecompensated reference diodes in numerical sequence, along with their nearest Motorola equivalent and/or recommended replacement type. Another section provides an easy method for quickly selecting a specific device type when the desired voltage and power rating, package and application is known.

Schweber Electronics

Westbury, N.Y. 11590
(516) 334-7474

Laminated and Molded Bus Bars For Power Distribution

A 16 page Technical Bulletin is now available, describing a new concept in power distribution. Basic mechanical and electrical design principles, along with descriptive pictures and diagrams, are included in this bulletin. These compact buses can replace bulky cable harnesses and repetitive wiring for computer or modular application. This method of construction satisfies the demanding requirements of low inductance and resistance of high speed, solid state systems while controlling electrical noises.

Eldre Components, Inc.

1239 University Avenue
Rochester, New York 14607
175

Your New Electronics Hand Tool Catalog

The finest Peer Swiss made tweezers for all mi-cro-miniature work. 42 different patterns in all alloys. SWEDISH PLIERS that feature the "Box Joint" construction by Lindstrom, for all your precision work.
CUTTING TWEEZERS, NIPPERS AND SCISSORS
for special wire cutting problems in different areas.
Many other useful tools.
Write today-for your Catalog 167.
Hammel, Riglander \& Co., Inc.
P. O. Box 222

New York, N. Y. 10014

Quality Fasteners For All Design

This 8-page catalog provides design data on the complete group of DZUS $1 / 4$-turn self-locking fasteners for standard, high speed and panel applications, as well as universal high strength multiple thread fasteners for high tensile and shear stresses. Dzus stud assemblies, wire forms and receptacles offer an exceptional, wide variety of combinations from stock to fit specific fastening requirements. Diagrams and tables give full details for rapid, unlimited design selection. Condensed Catalog No. S-2 or comprehensive Cata\log No. D-3 are available on request.

Dzus Fastener Co., Inc.

Division 32
425 Union Boulevard
West Islip, L. I., N. Y. 11795

Free Electronic Circuit Symbol Catalog

Save artwork and drafting time cut costs with thousands of electronic drafting aids and symbols featured in the new 28 -page Catalog No. 102 from Bishop. In it are the industry's only selection of predawn complete circuit component symbols; integrated circuits, logics, semiconductors, flatpacks, transistors, printed circuits, welded modules, etc. Also: tapes, pads, corners, connectors, schematic symbols, reference numbers and more. Included are illustrations, range of sizes and complete price information. Send today for your free copy.

Bishop Industries Corp.

11728 Vose Street
North Hollywood, California 91605

Adjustable 0-34V, 1.5A Power Supply

\square Regulation: 0.005% or 1 MV \square Ripple: $250 \mu \mathrm{~V}$ \square Output: Adjustable 0-34V, to $1.5 \mathrm{~A} \square$ Completely short circuit proof \square Designed to meet environment MIL-E-5272 All silicon semiconductors Operate to $71^{\circ} \mathrm{C} \square$ Compact $31 / 4^{\prime \prime} \times 37 / 8^{\prime \prime} \times 67 / 8^{\prime \prime}$ size \square Top quality components \& construction \square Units operate in series or parallel \square Temp. Coef: $0.01 \% /{ }^{\circ} \mathrm{C} \square$ Response: less than 20μ S \square MTBF: greater than 100,000 hrs. per MIL HDBK $217 \square$ Remote sensing \square Universal 3-position mounting \square Three year warranty \square Only $\$ 88.00$ F.O.B. Hackensack, N. J. \square Write today.

Advertising Representatives

New York 10022
Robert W. Gascoigne
Thomas P. Barth
Samuel M. Deitch
Byron Adams
850 Third Avenue
(212) PLaza 1-5530

TWX: 867-7866
Philadelphia
William C. Repetto
P. O. Box 206

Merion Station, Pa. 19066
(215) MO 4-1073

Boston
Richard Parker
7 Redstone Lane
Marblehead, Mass. 01945
(617) 742-0252

Chicago 60611
Thomas P. Kavooras
Berry Conner, Jr.
720 N. Michigan
(312) 357-0588

Cleveland
(216) 247-7670

Los Angeles 90303
Stanley I. Ehrenclou
Terrence D. Buckley
W. James Bischof

2930 W. Imperial Highway
Inglewood, Calif.
(213) 757-0183

San Francisco
Ashley P. Hartman
175 South San Antonio Rd.
Ste. 243
Los Altos, Calif. 94022
(415) 941-8084

Southwestern 75206
Tommy L. Wilson
6200 North Central Expressway
Dallas, Tex.
(214) EMerson 1-2311

London W. 1
Brayton C. Nichols
44 Conduit Street
Verviers, Belgium
Andre Jamar
1, Rue Mallar, 1
(087) 253.85

Tokyo
Yoshihiro Takemura
International Planning
Service, Inc.
Room 231 Tokyu-Mita Bldg.
1, Shiba-Mita Koun-cho
Minato-ku, Tokyo

BPA
BPA

Here's a quick and easy way to eliminate a sticky problem forever. Cover the problem with Teflon ${ }^{\text {® }}$, the wonderful plastic that won't let any. thing stick to its own surface. It is heat and moisture resistant... has tremendous impact resistance and high dielectric strength. The fastest way to apply Teflon is with Gen/ Stik.

Gen/Stik is an adhesive-backed. Teflon-coated glass tape that will stick to just about any surface. It will lend all the advantages of Teflon to
your product. It's a permanent way to solve sticky problems with cable bundles, harnesses, and thousands of other design applications.

Gen/Stik tape is available in $1 / 4$ " to 36 " widths, in any length. Also in non-adhesive-backed forms such as glass fabrics, tapes, yarns, cordage and laminates.

Just tell us your needs and we'll gladly send samples. General Cable Corporation, 730 Third Avenue, New York, New York 10017.
G

Teflon® is a DuPont Trademark.

Dale's expanded D Series combines heat sink housings already proven by Dale Wirewounds with precision power metal film elements. The result:

1. As FILM RESISTORS, Dale's D Series offer power/size ratio unmatched by conventional parts (see chart).
2. As HOUSED RESISTORS, Dale's D Series offer higher maximum resistance values and low reactance at high frequencies.

D SERIES SPECIFICATIONS

- Resistance Range: 50Ω to 1 Megohm (D5), $50 \Omega 2$ to 2 Megohms (D10), 50Ω to 2.6 Megohms (D15)
- Tolerance: $\pm 0.1 \%, 0.25 \%, 0.5 \%, 1 \%$ and 2%
- Power Rating: D5 $=4$ watts, $\mathrm{D} 10=8$ watts (mounted on 4" $\times 6$ " $x .040$ " aluminum chassis) $D 15=12$ watts (mounted on 5"x7"x.040" aluminum chassis).
- Temperature Coefficient: ± 25 and $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ($-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$). Higher T.C.'s on request.

FILM RESISTOR POWERISIZE COMPARISON

CHARACTERISTIC	D SERIES			2-WATT METAL FILM	$\begin{gathered} \text { 5-WATT } \\ \text { CARBON FILM } \end{gathered}$	$\begin{aligned} & \text { 4-WATT } \\ & \text { TIN OXIDE } \end{aligned}$
SIZE						
	$\begin{gathered} \text { D5 } \\ .334 \mathrm{~W} \\ \times .600 \mathrm{~L} \end{gathered}$	$\begin{gathered} D 10 \\ .420 \mathrm{~W} \\ \times .750 \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{D15} \\ .550 \mathrm{~W} \\ \times 1.062 \mathrm{~L} \end{gathered}$			
Power Rating	4 Watts	8 Watts	12 Watts	2 Watts	5 Watts	4 Watts
Volume	0.064 in. ${ }^{3}$	0.123 in. ${ }^{3}$	0.320 in. 3	0.242 in. ${ }^{3}$	0.600 in. 3	0.145 in. 3
Power Density ($\mathbf{2 5}^{\circ} \mathrm{C}$)	62.0 w/in. ${ }^{3}$	65.0 w/in. ${ }^{3}$	37.5 w/in. ${ }^{3}$	8.3 w/in. ${ }^{3}$	8.3 w/in. ${ }^{3}$	27.6 w/in. ${ }^{3}$
Power Density ($125^{\circ} \mathrm{C}$)	20.4 w/in. ${ }^{3}$	21.4 w/in. ${ }^{3}$	12.4 w/in. ${ }^{3}$	8.3 w/in. ${ }^{3}$	2.1 w/in. ${ }^{3}$	13.8 w/in. ${ }^{3}$
Life Stability (Typical) *	. 1%	.1\%	. 1%	0.5\%	0.5\%	3\%
Temp. Coefficient		or $50 \mathrm{ppm} /{ }^{\circ}$		$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Max. Operating Temp.	$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$

*Maximum resistance shift in 1000 hours of operation at rated power.

- Maximum Working Voltage: 500 (D5), 600 (D10), 700 (D15)
- Dielectric Strength: 1000 VAC (D5), 1500 VAC (D10), 2000 VAC (D15)
- Construction: Aluminum screw-mount radiator housing with resistance element molded inside for complete environmental protection. Meets all applicable requirements of MIL-R-18546C and MIL-R-10509E.

When ${ }^{5} 2.00^{8}$ can buy solid-state reliability with zero offset voltage... ${ }^{-1}$

who needs a mechanical chopper?

RCA's new 3N138 insulated-gate MOS transistor features extremely low feedthrough capacitance (0.25 pF max.)...works equally well with either positive or negative incoming signals!

This new full insulated-gate, N -channel, depletion type MOS transistor can offer performance advantages of mechanical choppers with none of their drawbacks. The inherent zero offset voltage (see chart) means that you have none of the tracking problems of matched bipolar devices, caused by temperature changes and extended operation. Compared to a mechanical chopper, the 3N138 offers the additional features of solidstate reliability, superior frequency response, lower driving power, and small size.
Among other important advantages, the insulated gate provides a very high value of input resistance (10^{14} ohms typ.). Forward transconductance is also exceptionally high ($6000 \mu \mathrm{mho} \mathrm{typ}$.). So for outstanding performance and reliability in chopper and multiplex applications and industrial instrumentation and control circuits, ask your RCA Field Representative for complete information on the 3N138 MOS field-effect transistor. For additional technical data, including Application Note AN-3452, "Chopper Circuits Using RCA MOS Field-Effect Transistors," write RCA Commercial Engineering, Section EG9-2 Harrison, N. J. 07029. See your RCA Distributor for his price and delivery.

"Price in 1,000 up quantities

[^0]: ELECTRONIC DESIGN is published biweekly by Hayden P blishing Company, Inc., 850 Third Avenue, New York, N. Y 10022. James S. Mulholland, Jr., President. Controlled-circulation postage paid at Chicago, III, and New York,
 N . Y. Application to mail at controlled postage rates pending at St. Louis, Mo. Copyright © 1967 . Hayden Publishing Company, Inc. 63,304 copies this issue.

[^1]: 1. Frederick F. Morehead, Jr;, "Light-Emitting Semiconductors," Scientific American, CCXVI, No. 5 (May, 1967), 108-122.
[^2]: Howard J. Gannes, Development Engineer, General Electric Co., Binghamton, N. Y.

[^3]: Malvin L. Shar, Electronic Engineer. U.S. Army Electronics Command. Fort Monmouth. N.J.

[^4]: ALBANY (518) 436-9649, BINGHAMTON (607) 723.9661, BUFFALO (716) 632-2727, MT. VERNON (914) $968-2200$, NEW HARTFORD (315) 732.3775 / ONIO, CINCINNATI (513) 761-5432. CLEVELAND (216) 884.2001, DAYTON (513) 277.8911/ OXLA., TULSA (918) 835-2481/ ORESON, PORTLAND (503) 292.8762 / PENN., PHILADELPHIA (SEE CAMDEN. N.J.), PITTSBURGH (412) 243-6655 / TEXAS, DALLAS (214) $363-1671$. HOUSTON (713) $928-5251$ / UTAH, SALT LAKE CITY (801) $466-8709$ / VIRGINIA, (SEE MARYLAND) / WASH., SEATTLE (206) 622-0177 / CANADA TORONTO (416) 293-7011, VANCOUVER (604) 736-6377

