

## SPECIILL

 fliters TO YOURAmost thirty years of experience in the design and production of special filters have resulted in UTC being a first source for difficult units. Present designs incorporate a wide variety of core structures, winding methods, and capacitors to provide maximum performance, stability, and reliability. The units illustrated show a few of the thousands of specials produced by UTC, to customers' requirements, and only slightly indicate the possibilitios in present special filter design. Range of frequencies on special units is from . 1 cycles to 400 MC .


Power line filter from sources of 50 to 400
 ... 29 cubic inches.


## UNITED TRANSFORMER CORP. <br> IS土 VARICK STREET, NEW YONK 18, M. Y.

PACIAC MFG, DNISION, 4008 W . JEFFERSON BLVD, LOS ANGELES 16 , CAMS BxOOR DIVSIOM, 13 EAST AOHD STREET, NEW YORK 16, M. Y. CABLSS "AMM


COVER: Old Sol boils electrons off the cathode of an advanced thermionic converter. Dr. Fermis energylevel diagrams remind us of the phenomena that produce the usable flow of electrical energy.

## Selected Topics In This Issue

Communications
Portable troposcatter system

## Components

Component manufacturers
warned of falures in assembly
Designers need high-volfage
Thermionic converter develops
hermionic converter develops

Compulers
Pneumatic and hydraulic logic devices
Announced at Western Joint Computer Conference

## Design

A check list for designers
Fluorochemical cooling for high
heat dissipation
High-density electronic
packaging
44
A filing system for design ideas 150

## Instruments

Solid-state electrometer
Ultra-fast switching time meter
8
48
57
Relative humidity sensor
52
Servomechanisms
Servos designed corner by corner

## Telemeiry

New pcm system syncs missile telemetry data .............. Minuteman gets high-data-rate telemetry
< CIRCLE I ON CAREER INQUIRY FORM


## ELECTRONIC DESIGM-ONE DAY SERVICE use befone jull sti, 1961 <br> $\qquad$



## For Change of Addree <br> Oid Compoay Nome

[^0]Oid Compeny Addrees.
Cily
Zons


## presenting 130 high quality

## EULL-PANGE microwave measuring instruments

Your (4p) representative offers two very important advantages
the world's most complete (and rapidly expanding) microwave linecomplete assurance that the equipment will perform precisely as specified or better
4. makes sure you get what you pay for by rigid quality control plus $100 \%$ electrical testing using ${ }_{q}$ developed methods including reflectometer and swept frequency techniques. if knows when a parameter is out of spec : never gambles your money and time that 3 or 4 sample measurements taken across an instrument's range truly indicate its full-range performance.
See your ty rep now for FULL-RANGE TESTED microwave equipment. . . get what you pay for.


Free Test Method Description Interested in awept frequency testing? Ask your rep, or write direct for "Application Note 42," 9416 A Ratio Meter. describing reflectometer systems and owept frequency measuring techniques.
(4p) NOISE FIGURE MEASURING EQUIPMENT


- 340B/342A Noise Figure Meters General-purpose instruments making possible, in minutes, receiver and compoinent alignment jobs that once took hours. Simplifies accurate alignment; encourages better maintenance, performance.

Basic test, power and impedance measuring equipment
4. 340B automatically measures, continuously displays IF or receiver noise fig. ure at 30 or 60 MC ; other frequency on order. $\$ 715.00$ (cabinet). $\$ 700.00$ (rack). 342A, similar operates on $30,60,70$. $105,200 \mathrm{MC} .30 \mathrm{MC}$ and 4 other frequencies between 38 and 200 MC on order. $\$ 815.00$ (cabinet), $\$ 800.00$ (rack). (Note: Models 340 B and 342 A available only in the U.S.A. and Canada.)
-343A VHF Noise Source,temperature limited diode broadband source, 10 to 600 MC, 5.2 db excess noise, $\$ 100.00$.
4 345B IF Noise Source, 30 or 60 MC (others to order) : 4 impedances. 5.2 db excess noise. $\$ 100.00$.

- 347A Waveguide Noise Source, Argon gas discharge tubes in waveguide section: frequencies 2.6 to $18.0 \mathrm{GC}, 15.2$ db excess noise. $\$ 200.00$ to $\$ 300.00$.
\& 349A UHF Noise Source, 400 to 4,000 MC, wider with correction. 15.2 excess noise. $\$ 325.00$.

© 344A Noise Figure Meter
Quickly, accurately measures noise fig. ure of operating radar sets. Automatic operation; simple front panel calibration. Militarized, transistorized, reliable in extreme environments, minimum size and weight. Continuous noise figure and weight. Continuous noise figure Extremely high sensitivity permits decoupling noise source up to 20 db from main transmitter line to minimize aystem degradation. Provision for automatic alarm, remote noise figure monitoring, modulating. Meter scale/excess noise options: 25 or 30 MC input frequency, 1 MC bandwidth, 75 ohms input impedance. Approx. $\$ 1,600.00$ (depending on options, modifications).


## Call your top engineering representative today for data demonstration of these time-saving, precision, advanced instruments

Your 9 representative is your headquarters for sales, service and parts on the industry's most complete-coverage Instrument array. (\%) Indicates factory-level field repalr stations.

Eastern Seaboard
Asbury Park. New Jersey
 AEbury
Baltimere 15, Marylane Horman Associates. Inc.
3006 west Coid Soring Lane

MO 4-8345
Eurlington, Mass.
Eurlington, Mass.
Yewell Associates, inc.

- Bridgeport e, Cenn. Yewell Associates. Inc
110 E. Main St., $F 0 \begin{gathered}6.3456\end{gathered}$ camp mill, Pennsylvania The I. E. Robinson CaBox 187, RE 7-6791 Englewoes. New Jersey R. M. C. Associates 91 Grand Ave., LO 7-3933
© Mew Yark 21, Mew York 236 E. M. C. Asth St. TR TR-2023
- Philadelphia Area West Conshohocken, Penn. The 1. E. Robinson Co. CH 8.1600 and TA 8.6200 Pittsaurgh 27, Pennsylvania S. Sterling Company

Poughteepsie, M. Y. Yewell Associates, Inc
806 Main St., GR i.3456

- Rochester 25, Mew York Edward A. Ossmann \& Assoc

Syracuse. Mew Yort
Edward A. Ossmann \& Assoc.
GL 4.2461
Vestal, New Yort Edward A. Ossmann \& Assoc 149 Front St., ST 5-0296
C. Washingten, D. C. Area

Reckville, Marylana
Horman Associates, Inc
941 Rollins Ave... HA 7.7560
Southeastern States
atlanta S, Georgia
Bivins \& Caldwell. Inc

- Mish Peint, Merin Carolina Bivins \& Caldwell. Inc. 923 N. Main St., 882-6873 Nuntsville, Alabama Bivins \& Caldwell. Inc 534.5733 (Dir. line to Atlanta) Corlande, Flerida Stiles Associates, Inc.
michmend 30, Virginie aichmend 30, Virginia Bivins \& Caldwelt, inc.

1219 High Point Ave. | EL 5.7931 |
| :--- |

St. Petersburg 1, Fil. Stiles Associates. Inc.
$410-150$ th Ave. Madei. 410-150th Ave. Maderra
Beach, WA $1-0211$

Central, South Central States - Chicage 45. Illinois Crossley Associates. ${ }^{\text {inc. }}$
2501 W . Peterson. BR $5-1600$ - Cleveland 24, Ohie 5827. Maytield Rd., HI 2.80 - Dayton 19, Ohie Crossley Associates, Inc
2801 Far Hills'Ave.; AX $9-3594$ - Detroit 35, Michigan S. Sterling. Company
153:0 W McNichols Ra. 153:0 W. McNichol
BR 3-2900 -Indianapalis 20, Indiana Crossley Associates, Inc 5420 N. College Av., CL $/-9255$ Ransas City 30, Misseuri Harris-Hanson Company 910 Pasen Blvd., HI 4.9494 St- Levis 17, Missourl Harris-Hanson Company
2814 S. Brentwood Blvo. 814 S. Brentwood Blva. MI 7.4350

- St. Paul 14, Minnes ota Crossley Associates, Inc. 42 Raymond Ave., MI 6-7881 - Dallas 9, Teras Earl Lipscomb Associates FL 7.1881 and ED 2.6667 - Heuston 5, Texas Earl Lipscomb Associates
P. D. Box 6646 , M0 7.2407

Western States - Albuquerque, New Mexice Neely Enterprises
6501 Lomas Bivd.. N. E AL 5.5586 - Denves 10, Colorado 1886 S. Broadway, PE 3.3791 Las Cruces. New Merice Neely Enterprises 14 S Water SL., JA 6-2486 - Les Angeles, California 3939 Lankershim Blud. N. Hollywood, TR 7.0721 - Pheeniz, Arizena 641 E Missouri, CR 4.5431 Portland 9. Orezen 1238 N.W. Glisan, CA 2-7337 - Sacramente 14, California Neely Enterprises
$317-15$ th $\mathrm{St}, \mathrm{GI} 2-890$ 1317-15th St. G1 2.890) Salt Lake City 15, Utah 1482 Major St., HU $6-8166$ - San Diege 6, California 1055 Snafter St., AC 3-8106 - San Francisce Area San Carles, California 501 Neely Enterprises - Seattle 9, Washington 320 ARVA
1320 Prospect St. MA 2.0177 Tucsen, Arizena 232 S. Tucson, MA 3-2564


## World's largest line of FULL

## BASIC TEST EQUIPMENT

- 382A/B/C Broadband Precision Waveguide Attenuatora Dielectric loading in new S832. X382 produces long electrical length for high
 accuracy with short physical dimension. provides hitherto unknown convenience. Calibrated range, 0 to 60 db . Degree of. rotation acale allows accurate small changes at high attenuation and accurate resetting to high values of attenuation. 4. 382 B models calibrated to 0.1 degrees; 382 C models to 0.01 degrees. 382 A series rotary-vane attenuators, 3.95 to 40 GC, attenuation 0 to $50 \mathrm{db}, \$ 275.00$ to $\$ 800.00$; $382 \mathrm{~B} / \mathrm{C}$ models, $\$ 295.00$ to \$650.00.

422 High flat fre and ac acteris new " (pictu! to 40 GC. 422A matched pairs for refle a pair. also offers covering a wide freque GC, $\$ 75.00$ to $\$ 130.00$ lines, 10 MC to 12.5 GC as 420A in matched pa


## - 532/636A Prequency Meters

Comparable wide band, direct reading convenience are offered by 632 series. 3.95 to 40 GC, and 536A. Ito 4 GC coaxial, Frequency Meters. Comprise high $Q$ resonant cavity tuned by choke plunger: no sliding contacts. Transmit virtually full power at resonance. 532 series, $\$ 175.00$ to \$325.00; © 536A. $\$ 500$.

## - 914A/B, 906A Moving Loade <br> Fill frequency coverage, 1 to 40 GC frequency to is available from waveguide or coaxial moving loads. Model 914 series. 2.6 to 40.0 GC, are waveguide sections containing sliding. tapered, low-reflection loads. Plunger controls load position, travels $1 / 2$ wavelength at lowest load reflectic GC, coaxial Type N ma Type $N$ ma $914 A / B$ seri $906 \mathrm{~A}, \$ 250.0$

POWER MEASURING EQUIPMENT


4434 A Calorimetric Power Meter
Connect and read powers 10 mw to 10 watts, de to 12.4 GC. No barretter thermistor needed. no external terminations or plumbing. Measures CW or pulsed power. Two simple controls. DC input impedance 50 ohms approx.: input SWR less than 1.7 full range, less than 1.3 to 5 GC. Accuracy within $5 \%$ full scale. $\$ 1.600 .00$ (cabinet): $\$ 1.585 .00$ (rack mount)

431A Microwave Power Meters. 478 A/486


Now end tedious zero se Power Meter (pictured). A full scale in 7 ranges, al accuracy all ranges, drift ero setting for all ranges, good for hours. Provide 10 db over previously available instruments. Oper MC to 10 GC without tuning, is truly temperature c thermistor pairs for use with dual bridge of 431 A . accuracy, drift-free operation $\$ 145.00$. New \$ X486 temperature compensated, gives high accuracy. GC without tuning. SWR less than 1.5 . $\$ 145.00$.
IMPEDANCE MEASURING EQUIPME


- 809B/814B Universal Probe Carriages

Models 809B and 814B are precision built mechanical assemblies operating. respectively, with 9810 B and 815 B series alotted sections.
Combination of the 809 B carriage and 810 slotted sections covers 2.6 to 18.0 GC. Combination of 814 B carriage and 815 B series sections covers 18.0 to 40.0 GC.

On either carriage, waveguides can be interchanged in seconds. Only one probe (for each carriage) covers ful irequency range. Manufacture is of highest qualiy, assures positive mechanical positioning of interchange able waveguides and precise installation of mating 9 probes, 809B has vernier scale reading to 0.1 mm , is equipped for dial gauge mounting. 814B has dial read directly to 0.01 mm . 809B. \$175.00, 814B, $\$ 225$.
ing: sel rate sir Range one. Carria to 40.0 446 B , el 440 Type

## L-RANGE TESTED waveguide and coaxial equipment

## $422 \mathrm{~A}, 421 \mathrm{~A}, 420 \mathrm{~A} / \mathrm{B}$

 ystal Detectorsigh sensitivity ( $0.05 \mathrm{v} / \mathrm{mw}$ ). ffrequency response ( $\pm \mathbf{2} \mathrm{db}$ ) d accurate square-law charteristics ( $\pm 1 \mathrm{db}$ from -3 to 40 dbm ) are available with w 422A Crystal Detectors ictured), K and R hands, 18 $4, \$ 200.00$ each, available in A, $\$ 200.00$ each, available in
refectometer systems, $\$ 420.00$ ers high sensitivity detectors equency range: 421 A .7 to 18 0.00 ; 420A for Type N coax 5 GC. $\$ 50.00$ each; 420 B same d pairs. $\$ 150.00$ pair.
cy to reverse phase of residual lection. Model 906A. 1 to 12.4 axial. includes adapters for male, female connectors. series, $\$ 50.00$ to $\$ 250.00$; 250.00 .

486A Thermistor Mounts

## $(x)$

setting with new 431 A d). Measures $10 \mu \mathrm{w}$ to 10 mw 3, also reads in dbm. $\pm 3 \%$ drift less than $2 \mu \mathrm{w} /{ }^{\circ} \mathrm{C}$ ! One drift less than $2 \mu \mathrm{~W} /{ }^{\circ} \mathrm{C}$ ! One Operates with 478A, 486A 178A (center, above) covers 10 ure compensated, contains two 31A. SWR less than 1.5, high X486A Waveguide Mount, also new convenience. 8.2 to 12.4


## - 752 Multi-Hole Coupler

Precision directional couplers provide coupling factors of 3,10 or 20 db . Coupling accuracy $\pm 0.4$ db or 0.7 db . Directivity better than 40 db full range, SWR less than 1:1 (752A), 1:05 (752C/D). Cover frequencies 2.6 to 40 GC. Cover irequencies
$\$ 100.00$ to $\$ 375.00$.


## -372 Precision Attenuators

Rugged, broadband fixed attenuators retaining precise calibration regardless of humidity, temperature or time. Invariant attenuation assured by permanent. "multi-hole coupler" joining of two waveguides. 10 and 20 db models, 2.6 to $\mathbf{1 8 . 0}$ GC. $\$ 110.00$ to $\$ 400.00$.


Dual Directional Coupler
Ideal for reflectometer systems, these coaxial couplers are flat to $\pm 0.5 \mathrm{db}$ over 4-to-1 frequency range. Directivity is 35 db (760D) and 30 db (761D). Feature high power capacity, low insertion lose and SWR. 760D, 250 MC to 1 GC. \$200.00: 761D, 1 to 4 GC. $\$ 185.00$.

## S75A

Variable Flap

## Attenuatore

Simple, convenient for adjusting wave. guide power or isolating source and load. Max. SWR less than 1.15 full range: attenuation variable 0 to 20 db , dissipates average powers up to 0.5 or 1 watt. S through $R$ bands, 2.6 to 40.0 GC. $\$ 90.00$ to $\$ 190.00$.


4870A/872A Blide Screw Tunere
For waveguide, coaxial (872A shown) applications, Probe position, penetration sets up reflection cancelling existing reflection. Lead screw or micrometer varies probe insertion for 870A Tuners, 2.6 to 40 GC, $\$ 125.00$ to $\$ 300.00$ Micrometer drive varies insertion on 872A, 500 MC to $4 \mathrm{GC}, \$ 525.00$.


- 362A Low Pase Filter

Compact models increase SWR measurement accuracy by suppressing harmonics; feature low insertion loss, broad stop band. 8.2 to 40.0 GC (includes N . band model). \$325.00 to \$385.00.


487 Waveguide Thermistor Mounts Models covering 2.6 to 40.0 GC . Each covers full range of guide: no tuning. SWR 1.35 to 2.0 10 mw max power. Uses permanently installed 100 ohm negative coefficient thermistor 18.0 to 40 GC models use 200 ohm thermistor. $\$ 75.00$ to $\$ 225.00$. Coaxial Thermistor Mount, 10 MC to 10 GC without tuning, $\$ 75.00$. 485 Detector Mounts available in three basic series: S485A 2.60 to 3.95 GC, no tuning: $485 B, 3.95$ to 12.4 GC: 485D. 2.6 to 8.2 GC. 485 models, $\$ 75.00$ to $\$ 185.00$.

- 810/815B Slotted Sections -810B Slotted Sections. 810B, for 809B carriage. flanged. waveguide section with accurately machined slot. Slot tapered at ends to minimize reflection. 3.95 to 18.0 GC . $\$ 90.00$ to $\$ 125.00$.
-8810A. Complete slotted section assembly including probe carriage. In 2.6 to 3.95 GC (S-band) size only. $\$ 450.00$.
815 B Slotted Sections. For mounting in 814B carriage. Available in two bands, 18.0 to 40.0 GC. Accurately machined: easy interchange, precise positioning. $\$ 265.00$.
- 808B Coarial Slotted Section. 3-12 GC. fits 809 . Type N connectors. $\$ 200.00$.


## - 805C/D Slotted Lines

Utmost mechanical rigidity, less leakage, greater accuracy, SWR 1.02 or 1.04 . Range 500 MC to 4 GC , reads in cm and mm to 0.1 mm . 805C, for 50 ohm Type N , 805B. for 46.3 ohm RG $44 / \mathrm{U}$. 805C. $\$ 525.00$; 805D. $\$ 600.00$.

## 415B/C Standing Wave Indicators

 415B operates with all waveguide and coaxial slotted sections, gives readings in SWR or db. Low noise level, 0.1 . full noise level, 0.1 . IV full db calib. attenuator. 8200.00 (cabinet). $\$ 205.00$ (rack). New 415 C (pictured) offers similar characteristics but is transistorized, incorporates revolutionary four-times expansion of readings at any point on any scale. Price on request.


- 416A Ratio Meter
Displays ratio between two signals, irre. spective of common amplitude variations Especially useful for swept frequency measurement of VSWR, reflection coefficient, gain, insertion loss and other microwave parameters. Calibrated in VSWR, \% reflection, db See offer for Application Note 42 elsewhere in this advertisement $\$ 550.00$ (cabinet). $\$ 535.00$ (rack)


## HEWLETT-PACKARD COMPANY

1074K Page Mill Road Palo Alto, California, U.S.A.
Cable "HEWPACK" DAvenport 6-700n
Field representatives in all principal areas
HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1 Geneva, switzerland


With information yours for the asking, you can set the repeatability of production welds before production begins. And repeatability is the essence of weld reliability. The basis for this technique is the weld schedulethe heart of controlled production welding. Full information is obtained in a new technical report now available from Weldmatic. This is another example of Weldmatic leadership-in precision welding technolony as well as in the manufacture of resistance welding systems/ 45() Royal Oaks Drive/Monrovia, California

WELDMATIC DIVISION/UNITEK

CONTENTS FOR MAY 24, 1961 VOL. 9 NUMBER
ELECTRONIC DESIGN News ..... 4
Pneumatic and Hydraulic Logic Devices PushedNew PCM System Syncs Missile Telemetry DataAir-Portable Troposcatter System to Aid Missile ControlSolid-State Electrometer Offers Design VersatilityOptical-Computer Design Under Study at SylvaniaMinuteman Gets High-Data-Rate TelemetryLand and Sea Tests for Latest Air AidsWashington ReportComponent Firms Warned of "Failures" in AssemblyDesigners Depending More on High-Voltage ComponentsHigh-Altitude Electron Density to Be Studied at Penn StateComponent Firms Warned of Failures in Assembly .4
6
8
8
10
12
16
20
22
24
27
Needed: Reports of Negative Results; Wanted: A Reliable Potentiometer ..... 31
An Editorial
Servos Can Be Designed Corner by Corner32A quick "once-over of the concepts used by many practicing servo designers-J. A. Rudisill, Jr.
A Check List for Design Review-Part 1A very thorough check list to remind the designer of those all important, easy-to-forget design factors-B. D. Smith. I. M. Aptaker
Fluorochemical Cooling for High Heat Dissipation40Evaporation and condensation of fluorochemicals can dissipate a lot of heat-W. H. Drexel
High-Density Electronic Packaging—Resistance Welding44
The techniques and equipment required for
Ultra-Fast Switching-Time Meter Reads Six Parameters Simultaneously ..... 48
New meter speeds accurate time measurements of transistors and diodes
Thermionic Converter Develops 23 W ..... 50
Arc-mode vapor converter has efficiency of 15 to 17 per cent
Relative Humidity Sensor Measures Full Range ..... 52
Single-element device is accurate to within $\pm 3$ per cent
Ideas for Design ..... 134
Antenna Axial Radio Is Read Out Automatically ..... 134
Square-Wave Generator Has 3.3-10 Mc Range ..... 134
Scope Measures Propagation Delay in Asynchronous Logic ..... 136
Grind Your Own "Precision" Capacitor ..... 137
Short-Cut Squares Numbers Rapidly on Sight ..... 138
Bistable Switch Gates Clock Pulses to Counting Circuitry ..... 138
Ideas-for-Design Entry Blank ..... 135
ELECTRONIC DESIGN ..... 330 Third Avenue, New York 22, N. Y.
German Abstracts ..... 140
Locus Plotter Network Displays Transfer Function ..... 141
ELECTRONIC DESIGN Digest ..... 144
Why Do Relay Contacts Fail? ..... 14
Stop Hunting for Lost Design Hints! ..... 150
when you want them-R. W. Crawford
New Products ..... 54
Letters ..... 145
Careers ..... 150
Advertisers' Index ..... 156

## Coming Next Issue: A Report On Today's Supersystems

The supersystems of today-ballistic defense systems, Iunar probes, air traffic control. integrated data processing system: for industrial giants, and communications satellites to name a few-are making new demands on electronic engineers. The challenge is not one of 'how to design' but 'what to design' so that the system, as a whole, works. The problems are not technical but conceptual states one industry expert. Sys tem design is neither a cut-and-dry nor a cut-and-try process. What is demanded of the electronic engineer building today's and tomorrow's systems is the subject of a special report next issue June 7.
NB


[^1]

CIRCLE 5 ON READER-SERVICE CARD

# Pneumatic and Hydraulic Logic Devices Pushed 

## Component Stage Passed in Drive to Develop Computer Systems For Special Applications. Some Units Have No Moving Parts

PRESSED by the need for computing systems able to operate in extreme environments and in industrial control applications with high efficiency, designers are pushing development of pneumatic and hydraulic logical devices. In many applications these would become subsystems of


Pneumatic digital computing element in plastic lab model form is built to contain six flip-flops. Two chambers near right end of Kearfot-designed unit contain ball valves that move from one end of chamber to the other, culting off flow of gas to one of two readout channels. Black box at right illustrates microminiaturization possible in 6 -flip-flop unit.


Structure of Kearfott pneumatic digital element shows how ball valves fit in chamber drilled in plastic plates sandwiched between end-plates. Horizontal grooves etched in plastic permit gas flow. Electrical pickoff would be made by coils or capacitor plates imbedded in the channel walls or ends.
electronic systems, requiring interconnection.
Advantages claimed for pneumatic and hydraulic logic elements are their ability to pack a lot of computational capacity into a small volume, their resistance to extremes of temperature and radiation, and their low manufacturing cost.
Their disadvantages are the unfamiliarity of their technology to electronic designers who would have to work with or design them, and their relatively low speed. However clock rates of 10 to 100 kc appear to be feasible, depending on operating pressures needed. For many industrial control applications and some computing functions this speed is adequate.

So far, developments in this area have been announced by Diamond Ordnance Fuze Laboratories, Washington, D.C., Moore Products Co., Philadelphia, Minneapolis-Honeywell Regulator Co., Minneapolis, Kearfott Div., General Precision Inc., Little Falls, N.J., and International Business Machines Corp., Yorktown Heights, N.Y. In addition, researchers in the Soviet Union are known to be well along in development of both pneumatic and hydraulic logical circuitry.


Scale-of-two counter built at IBM's Zurich laborotories has four stable states, operates hydraulically with moving sleeve valves. IBM has designed a series of logic components that operate hydraulically.

In the systems under development, either a gas or fluid is made to flow through a network of channels and orifices in such a way that differences in pressure give solutions to logical problems. In some potential applications the gas or fluid pressure would do actual work, like moving parts.
Two approaches are being pursued by researchers in this area. At DOFL, Moore Products, and Minneapolis-Honeywell, circuit elements with no moving parts are under development. Both companies are working under licenses from DOFL.

Kearfott is building pneumatic elements, and IBM is making hydraulic elements, in which moving parts aid circuit operation and simplify connection of the components to electrical systems. Both the moving-parts and no-moving-parts systems offer similar possibilities of realizing advantages inherent in the basic systems.
In 1959, DOFL scientists built analog fluid amplifiers that provided substantial gain. They have since built digital amplifiers and fip-fops, they have added feedback to their units, and


Hydraulic flip-flop built by IBM incorporates miniature sleeve valve to block orifices and vary fluid pressure thus indicating one of two stable states.


Dimensional gaging switch for commercial use built by Moore Products under DOFL license indicates pass. age of workpiece when if blocks orifice and changes gas pressure.


Pneumatic Logic-Two Approaches
A bistoble element or flip-flop to implement digital logic can be made in two basically different ways-with and without a moving element. In drawing at left, supply of gas injected from bottom is deflected to either left or right fork by jets from sides to indicate either a " 1 " or " 0 " Geometry of chambers can be designed so that flow will remain diverted even though control pulse stops. No moving parts ore needed, but boundry-layer phenomenon on which the approoch is based is not completely understood

In drawing of right, ball able to move freely is kept at $A$ if gas is supplied through orifices 1 and 2 , which are connected to common supply, and connections 3 and 4 to atmosphere are open. If 3 is closed, forces acting on ball will send it rapidly to position $B$.
have built oscillators and counters. In all. about 60 different elements have been designed. A counter having substantial gain has been built. It is capable of 64 counts in 7 stages.

Moore products is developing a commercial high-speed dimensional gaging switch from one of the DOFL designs. The company has announced that five other "solid-state pneumatic elements" are under development.

Minneapolis-Honeywell has also taken out DOFL licenses to produce pneumatic logic elements with no moving parts. Both M-H and Moore Products have been producing pneumatic control equipment with moving parts

The 1BM and Kearfott systems are essentially valving systems. A moving sleeve value is used in the IBM logic elements; a ball valve moves freely in the Kearfott components. An experimental half adder designed at Massachusetts Institute of Technology, incorporates a pushbutton valve.

An elaborate, full-scale liydraulic analog computer has been in operation at Southwest Research Institute for some time; it solves pipeline and chemical processing problems. - -

## RaYTHEON RAYSISTORS

offer outstanding advantages in 5 important applications


Raytheon Raysistors enable improved circuit designs for switching, controlling, chopping and commutating. This electro-optical device can turn signals on and off with virtual isolation from switching transients and carriers to provide high signal-to-noise ratio, wide dynamic range, and long life. Here are 5 applications in which Raysistors can be used for improved operation:

1. Relars In place of a relay or switch it can provide long life with no contact wear or pitting.
2. POTENTIOMETER: As a potentiom eter it can control an AC circuit with a

DC signal or vice versa with no contact noise.
3. CMOPPER: Isolation of Raysistor elements assures low noise operation.
4. commutator: Freedom from switching transients makes it ideal for low-level signal commutation.
5. mign voltage control: Signal to control insulation of up to 25,000 volts assures Raysistor's efficiency in controlling high voltage circuits.
For complete technical data and design assistance please write: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Mass.

## -trademark

For Small Order or Prototype Requirements See Your Local Franchised Raytheon Distributor

TYPICAL RAYSISTOR OPERATIMG CHARACTERISTICS


RAYTHEON COMPANY


Picture this self contained, automatic system working for youthe compact Beckman $4011.01 \%$ dvm; together with converters for measuring low millivoltage DC, AC and ohms; a scanner which allows automatic readings of 29 sources of information; and finally, the Beckman solid-state, digital printer to make a permanent, indexed record of all the readings.
Price for the complete system about $\$ 4800$
For detailed specifications on all these
instruments and their use
together, write for Brochure A4011.

## NEWS

## New PCM System Syncs Missile Telemetry Data

Matched-Filter Techniques Will Be Used With Pseudo-Random Code

ANEW type of synclironization for pulse-codemodulation telemetry has been developed for the Atlantic Missile Range telemetry system. Ca led Ultraloc by its designers at Texas Instruments. Dallas, the system is said to permit ground receiving equipment to lock onto incoming signa!s in minimum time and with high dependahility. T! is is done through use of matched-filter techniques and a pseudo-random onde.

In many telemetry systems frames of identifying, coded pulses are transmitted at the start of each message to allow ground receivers to synclironize with the transmission. The synchronization codes usually consist of alternating " 0 "s and "1"s. According to Texas Instrument engineers, this type of code does not provide minimum o: wen satisfactory frame acquisition time.
To reduce this confusion and to mininize fram- acquisition time, the new design has a pseudo random corle of 31 hits that is processed by matched-filter type of logic circuitry. A psendo-random code was chosen because it has a desirable correlation function, permitting a receiver threshold to be set high enough so that relatively many errors will be tolerated before synchronization is triggered, but still low enough so that the desired pulses will be recognized.
In operation, incoming signals are stored in a shift register large enough for the code to be detected. The system, to be delivered to the Atlantic Missile Range later this year, has a 64 -bit register to accommodate codes of various types. The synchronization subsystem is part of a telemetering system designed by Texas Instruments to supplement or possibly replace the basic system now at the range, the company reports.
Each position of the shift register is connected to a two-position programing switch on a corre-lator-the positions signifying " 0 " and " 1 ." The correlator output indicates when a synchronizing code is detected and registers the interval between synchronizing codes. If an incoming frame matches a programed frame, the correlator signals the beginning of synchronization, and a pulse is sent to peripheral circuitry checking.
The peripheral equipment-flip-flop and gating logic circuitry-operates in two main modes: acquisition and lock-on. Definite lock-on is indicated only after two synchronized pulses out of

## How Ultralock Works

A frame synchronization subsystem based on the Ultraloc technique has a shift register large enough to accommodate various codes. The register feeds pulses to a correlator that delivers a pulse signifying lock-on to logic circuitry. This circuitry establishes the certainty of lock-on.

In the acquisition mode, search circuitry detects the output of the correlator, which may be a pulse signifying that a desired frame of pulses has been received. Acquisi-tion-test circuitry determines whether the desired pulses are present in two out of three consecutive periods. If this is so, lock-on is indicated and probability testing starts.

In this mode incoming signals are sampled regularly to maintain synchronization.


Sync subsystem comprises shitt register, correlator and peripheral logic circuitry.
three in succession have been identified. The program of the peripheral logic keeps the circuitry checking after lock-on to detect frames missed because of atmospheric conditions or other disturbances that affect good reception.
Texas Instruments believes that the Ultraloc synchronization technique is applicable in radar and communication systems. Matched-filter radar systems based on "optimum" pseudo-random codes would be able to discriminate a main peak from clutter more easily than now possible with normally coded pulses, the company says.

Matched-filter communications systems for military uses are another application envisioned by the company. It says that receivers would lock onto signals in secure-communications-type networks faster and more reliably with an Ultraloc system. The company has proposed a tactical anti-jam communication system to the military. It calculates that use of the pseudo-random corle would give its proposed receiver 30 db of extra gain, even though system design calls for bit redundancy of 1,000 . -


New digital computer techniques for network synthesis have enabled Burnel] \& Co. to produce filters possessing the special time and steady state properties so essential to today's high precision, communication, data and guidance systems. An example of this achievement is the Burnell Type LTR-1 which overcomes problems formerly insoluble through the use of standard design procedure.

More than $n$ linear phase band pass achievement, this new Burnell "low ringing" filter combines the center frequency, band width, rise time and attenuation characteristics that insure minimum phase distortion and low transient response. Hermetically secure, the LTR-1 easily shrugs off shock, vibration, acceleration and
other hazards encountered in extreme
environments.

## TECHNICAL DATA

Center frequency: 400 cps
Pass band width: ( 3 db ) down +20 ; $-16.5 \%$ of center frequency
Attenuation: $\quad 30 \mathrm{db}$ at one-half and twice center frequency Overshoot: ("low ringing") $1 \%$ Rise time: ( 1 \% $/$ to $99 \%$ ) 6.25 ms . Meets MIL-F 18327A specifications.

If your circuit needs can not be met by the LTR class of filters or our stock of more than 15,000 specialized filter designs, Burnell engineers will, of course, manufasture to your specifications.
Write for Filter Bulletin.
$\qquad$

With the aid of our new Guillemin Research Laboratory, we are now able to solve your network problems in an even wider range than ever before.
frequency cps


Write for your membership card in the Space Shrinkers Club.

## Air-Portable Tropo Unit To Aid Missile Control

1-Kw Communications Set To Be Used With Pershing

COMMAND and control of the Army's Pershing tactical missile will be aided by a $1-\mathrm{kw}$ tropospheric-scatter communications terminal designed to go on the air 10 min after arriving at a site. Exactly how the air-transportable system will be used with Pershing is classified. Its range, however, is said to be up to 100 miles.

Pershing's range is given as 500 miles. Six of the terminals. designated AN/TRC-80, have been delivered to the Army for tests of the Pershing weapon system. They were designed and built by Collins Radio Co., Dallas.

The extremely compact terminal measures 100 $\times 8(0) \times 65 \mathrm{in}$. and weighs $3,300 \mathrm{lb}$. Transmitter output is 1 kw ; total power drain, 10 kw . The terminal uses a highly directional inflatable parabolic antenna of aluminum-coated plastic and operates in the $1,700-2,400-\mathrm{mc}$ hand. Collins reports that the system can be adapted to operate


Designed for rapid starting and operation by field troops, communications terminal has two receivers to assure reliable performance and to permit operation in diversity nets.


Microwave communications terminal for Pershing missile weapon system is air transportable and completely contained in $65-\mathrm{in}$. high shelter. Range is up to 100 miles via tropospheric scatter. Antenna is inflatable, aluminum-coated plastic.
at frequencies as high as those in the $4,400-5,000-$ mc band. The terminal is designed to operate in a diversity net. Each unit contains two fre-quency-modulated receivers, which can simultaneously receive signals separated by 18 mc or more. Post-detection combining is used.

An unusual feature of the AN TRC-80 is said to be its high degree of self-testing. This capability was built in to provide fast start-up and reliable operation by field troops. Monitoring data are displayed in go no-go form. Power sent to the antenna is displayed on one meter by a pointer, which crosses another that shows power reflected from the antenna. The vswr can be read where the pointers cross.

A signal generator is built into the receiving circuitry, so that a received signal is not needed for alignment. A button is pushed to generate the alignment frequency.

A special power tube is used in the power amplifier. It is a permanent printed-magnet focused klystron designed by Varian Associates, Palo Alto. Calif. The four-cavity tube weighs 350 lb and is said to provide a minimum power gain of 45 db when synchronously tuned and 35 db when tuned for maximum efficiency. Bandwidth in the synchronously tuned mode is about 3 mc . Solid-state rectifiers are used.

Collins says the transmitter carrier freguency is accurate to within $\pm 1$ part in $10^{6}$ for any of the 77 channels of the transmitter. - -

## Solid-State Electrometer

## New Circuit Configuration Uses Vibrating-Capacitance Principle

ASOLID-STATE version of a mechanically vibrated capacitance electrometer was one of the few new devices discussed at the National Aerospace Electronics Conference in Dayton, Ohio

The electrometer was described by its author as "uniting the two fastest-known semiconductor junctions into a high-input-impedance, low-out-put-impedance device which has the low intrinsic noise characteristics of a parametric amplifier." It illustrated how clever rearrangements of available components can produce radically new circuits. Low-input capacitance should result in high-frequency applications for the new configuration.

The basic circuit was developed by Charles F. Pulvair, Solid State Research, Electrical Engineering Dept., Catholic University of America, Washington, 1). C.

As shown in Fig. 1, two back-to-back solid state voltage-variable junction capacitors are in series with the load and an ac driving generator. The input of the electrometer is the center point of the back-to-back junction capacitors, which are electrically "vibrated" by the generator.

If the generator is a tunnel diode, it, too, can


Fig. 1. B̄asic circuit of new solid-state mechanicaily vibrated capacitance electrometer.


Fig. 2. Schemaric of a device built with new solid-state electrometer circuit design. Frequency response approaches 10 mc .

## Offers Design Versatility

be integrated with the capacitance junctions into one solid-state functional block. Mr. Pulvair pointed out.

## Device Built With Circuit Has

Frequency Response Approaching 10 mc
Fig. 2 shows the schematic of one of the devices actually built. It has a frequency response from 12 ens to almost 10 mc . The back-to-back junction capacitance's are Pacific Semiconductor PC115 High Q Varicaps, and the transformer is a small Ferroxcube core. The centerpoint of the two junction capacitors is connected to the pickup electrode. To avoid a large drive voltage on the output. the drive voltage is balanced out by a simple bridge. The junction capacitors, the two halues of the driving coil $L_{2}$ and $L_{3}$, and the adjustable capacitor form the arms of the bridge

When a 30 -me generator excites the bridge circuit, comprising the variable capacitance semiconductor capacitors, through a coupling coil. $L_{1}$, the sensing electrode acts as a vibrating capacitor probe. The capacitance of the center point of the two junction capacitors vibrates at twice the frequency of the driving oscillator${ }^{60} \mathrm{mc}$. When the sensing probe is brought into an electric field. the vibrating capacity at the center point of the junction capacitors is alter nately charged through the field acting on the sensing probe, and an ace signal is generated in the bridge circuit.

Mr. Pulvair said a later model was built with a frequency response that extends out to $10^{n}$ eps. In this case, Microwave Associates type MA460) junction capacitors are used with a 400 -mc drive.
These devices have input impedances in the kilohms and megohms, while their output impedances are less than 100 ohns. They have sizable current gains, but, like the cathode fol lower that they resemble, they have less than unity voltage gains.

Uses proposed by Mr. Pulvair for these devices included detection of electrostatic recordings, contactless Hall Effect measurements, mechanical motion transducers, sonar pickups, infrared detection and very high (megavolt) voltage measurements.

He also suggested they might perform novel functions in the functional blocks of molecular electronics. - -

## Heres wny -

## "FAST LINE"

WORLD'S ONLY FULLY-AUTOMATED PRODUCTION LINE!
A revolutionary equipment development patented by Philco. Provides unequalled control over all production phases. Results in an inherent reliability possible only through automated production. To you concerned with reliability this means a constant output of reliable transistors.

## „J"PROJECT VIRTUE"

most advanced
OUALITY ASSURANCE PROGRAM?
A widely acclaimed 5 million dollar transistor reliability assurance program. Surveys quality and reliability from initial design to final release of the finished product. A key factor in this project is the most advanced test equipment found anywhere . . . eliminates all test variables induced by operator techniques or errors. To you concerned with reliability this means the constant checking and eliminating of the factors that result in unreliable transistors.

## EXPERIENCE

MORE THAN 500 MILLION
LOGGED HOURS OF LIFE TESTS!
Currently, more than two million test hours are being run weekly . . . new equipment being
installed will run the logged hours of life tests to 21.2 billion by 1963! Provides a history of transistor operation under maximum stress conditions. This is important in determining the effectiveness of present production techniques and in developing new ones. To you concerned with reliability this means that you not only receive the optimum in reliability now, but are assured of it in the future.

## RESPONSIBILITY <br> EVERY 4TH EMPLOYEE'S SOLE CONCERN <br> is REHABHITY!

Right! 25\% of our working force is employed full time at improving our product. But it doesn't stop there. All personnel including operators, engineers, supervisors and managers attend comprehensive training programs designed to educate them with the need for reliability and the steps necessary to achieve it. To you concerned with reliability this means that we are highly concerned with it too

## そ"BLAST TESTER"

the extra msurance of 100\% testing OF All PRODUCED UNITSI
Tests and sorts at the incredible speed of 3600 transistors per hour. To you concerned with reliability this is extra insurance that you receive unmatched quality and reliability.

When you require reliability specify transistors having the industry's strongest record of performance and reliability...specify


PD Famous for Qualily the World Over
LANSDALE DIVISION•LANSDALE, PENNSYLVANIA

## BEST SHORT WAVE LENGTH RESPONSE

## SCOTCH ${ }^{\circledR}$ BRAND High Resolution Tapes

offer superior high frequency results


SCOTCH bramd magnetic tape
FOR INSTRUMENTATION
Minesseta Minine and Manuracteaine company
.... Whist nebtanch is the key to tomoreow
In instrumentation Tapes, a good bit may well depend on the character of the magnetic coatingand the uniformity with which it is applied. At short wave lengths, the head responds only to the flux nearest it-thus, the thinner the coating, the more it concentrates flux in that narrow region next to the gap where the head can use it best.
"Scotch" brand High Resolution Tapes 457, 458 and 459 testify to the great skill "Scotch" brand experts have in laying duwn a thin uniform coating that results in intimate head-to-tape contact. as shown in the diagram. This famous trio of tapes reproduces the critical short wave lengths. offers the superior response and resolution that lets you pack more information to the inch.
Much of their fine performance at high frequencies rests with the famed "Sсотсн" brand high potency oxides and their higher magnetic retentivity. At optimum bias setlings, the coating is about $50 \%$ more sensitive to short wave lengtis than ordinary coatings.
These tapes give you three great bases on which to build toward miniaturization. No. 458, with a 1.5 mil polyester base. offers
 standard recording time and maximum strength. No. 459 , with a 1.0 mil polyester base, gives $50 \%$ extra recording time. No. 457 , with a .65 mil base of tensilized polyester, delivers twice the standard recording time. One of the key factors in the consistent performance of the "Scotch" brand High Resolution Tapes is their uniformity-from reel to reel and within the reel. All three tapes offer a uniformity in magnetic coating and base that goes far to eliminate errors in performance.
In producing uniform tapes for all applications, nothing replaces the years of experience offered by the "Sсоtch" brand research and manufacturing team-the same team responsible for most tape advances. So check the entire "Sсотсн" brand line: Heavy Duty Tapes 497, 498 and 499 outwear ordinary tapes 15 times, even under adverse operating conditions. High Output Tape 428 offers top output at low frequencies. Sandwich Tapes 488 and 489 wear 30 times as long as ordinary tapes, cut head wear and oxide ruboff. And more reels of Standard Tapes 408 and 403 have been sold than any other kind.

Your nearby 3M Representative serves as a convenient source of information in all major cities. Contact him or write Magnetic Products Div. 3M Company, Dept. MBQ-SI, St. Paul 6, Minn. © 1961 зм со




## NEWS

## Optical-Computer Design

 Under Study at SylvaniaConference Hears System May Use Glass-Fiber Transmission Lines

0PTICAL computers, possibly using glassfiber transmission lines and quantum-electronic storage elements, are now under consideration, according to L. C. Clapp of the Computer Development Laboratory, Sylvania Electric Products, Inc.
The Sylvania researcher discussed a number of approaches to optical computer design at the Western Joint Computer Conference in Los Angeles. Important new advances in memory design were reported by other speakers.

Mr. Clapp speculated that transmission lines in optical computers might be long glass fibers, which are extremely flexible and easy to use.
"The low cost of these fibers," he said, "compares favorably with the expensive wave guides needed for microwave computers."

The attenuation of light passing down such a fiber is due only to the absorption of the glass and is less than 1 per cent of energy per inch, Mr. Clapp said. Cross-talk between neighboring transmission lines would be eliminated by coating the optical fiber with a thin glass film of lower refractive index.

To store information, quantum-level memory devices might be used. Mr. Clapp said.
"Electrons can make transitions from one quantum level to another in very short times-on the order of $10^{-8}$ or $10^{-9}$ second at optical frequencies," he explained.

Three kinds of memories were discussed: gaseous, solid-state and maser. The difficulties with gaseous models include the fact that metastable states in gases are not permanent, and technological and production problems associated with making very small gaseous items are undesirable.

Masers, as they exist today, are large, bulky devices often requiring considerable external equipment, such as cooling systems and magnets.

Solid-state material, however, appears very promising for storage, he said,

## Three Now Computer Memories

## Stir Wide Attention at Parley

Announcement of three new computer memories at the conference captured the attention of visitors. Described were memory systems using tunnel diodes (Bendix), multiple-aperture reluctance switches (IBM) and quantum transition devices (Sylvania).
According to E. R. Beck, D. A. Savitt and A. E. Whiteside of Bendix Corp., tunnel diodes were favored as the basic elements in high-speed random-access memories because of their fast switching speed and good environmental tolerance. The Bendix approach is based on destruc tive sensing of the current level in simple bistable elements, consisting of one tunnel diode and one resistor connected at the cross point of a rectangular matrix.
Coincident selection of a particular element is achieved by applying opposite-polarity pulses to the two appropriate coordinate lines. Any result ing permanent change in the current in a selected line is detected by means of a transformer and is used to indicate readout of a " 1 ."
"We have proved the feasibility of the device with a trial system which simulated a memory of 64 words of 24 bits each," Mr. Beck said. Two words of active memory elements were used, he asserted, and the rest were simulated by resistors. Tests showed a 200 -nsec cycle time.
"By replacing the transistor drivers with tun-nel-diode circuits, drive pulses of the required amplitude can be obtained with a single diode switching between its low- and high-voltage states," Mr. Beck said. "It should be faster-and in particular should greatly decrease the delay in the rewrite loop. We could build a 64 -word memory with a 100 -nsec cycle time which would operate between -55 and +125 C . ${ }^{.}$

A transfluxor type of device called the mul-tiple-aperture reluctance switch was said by A. W. Vidal of IBM Space Guidance Center to be a very substantial improvement of the state of the art.
"It is similar to the classic transfluxor in that it comprises square-loop magnetic material embodying two apertures," Mr. Vidal said, "but both apertures have the same inner diameter instead of one being much larger than the other." This permits the development of a practical threc-dimensional coincident-current, non-destructive readout memory; he asserted.

Two tangible results of the study were mentioned: a Keyhole Mars component consisting of a bit of pressed ferrite with two holes in its thickness, and a three-dimensional, random-access memory configuration. The Keyhole Mars is designed for convenience in automatic production, testing, handling and array assembly. - -


## Powerlytic* Capacitors are packed with capacitance!

Designed specifically for applications requiring maximum capacitance in small physical size, Sprague Type 36D Aluminum Electrolytics find wide use in power supplies for digital computers, industrial controls, high-gain amplifiers, and allied equipment. Furnished in case sizes ranging from $1^{3 / 81}$ dia. $x$ $2^{1 / 8} \mathbf{z}^{11}$ long to $3^{\prime \prime}$ dia. $\times 4^{5 / 811}$ long, Powerlytic Capacitors are available with capacitances which were previously impossible to obtain in the various case sizes.

## Engineered for as COperafion

In Powerlytics, Sprague's many years of research, design, and production experience have produced a capacitor which allows the equipment designer maximum space economy for operating temperatures up to 65 C . This encompasses the great majority of applications in transistorized digital equipment and similar apparatus.
Outstanding Performance Characteristics
Powerlytic Capacitors have not only low ESR and low leakage currents but offer extremely long shelf life as well. Furthermore, they have the ability to withstand unusually high ripple currents.
Superior Seal and Safety Vents
Type 36D Powerlytics use the most reliable seal that Sprague has developed for aluminum electrolytic

## - -rademark

SPRAGUE COMPONENTS

## CAPACITORS

transistors magnetic components resistors
interference filters pulse transformers piezollectric cerramics PUISE-FORMING METWURKS
high temptrature magnet wire CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES functional digital circuits
capacitors. This consists of crimping a beaded aluminum can onto a rubber gasket recessed in a rigid molded cover. Pressure-type safety vents employing silicone rubber are used on all case covers.
Choice af Terminal and Insulating Tube Styles
Tapped terminal inserts, often preferred for strap or bus bar connections, are available as well as solder lug terminals for use with permanently wired connections. In addition to the standard bare case, Powerlytic Capacitors may also be obtained with a new clear skin-tight plastic tube which adds very little to the bare case dimensions. They are also available with a Kraftboard tube.
Broad Range of Standard Ratings
Sprague's standard line of Powerlytic Capacitors includes 183 ratings covering capacitance values from 45 to $150,000 \mu \mathrm{~F}$, in voltages from 3 to 450 WVDC . Each rating is the maximum capacitance available for a given case size.

Fur complete technical data on Type 36D Pouerlytic Capacitors, urite for Engineering Bulletin 3431 to Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

the voltage of this ultra-high regulation power supply never varies regardless of load or line fluctuations!

Now you can be assured of a constant voltage source over the entire operating range of 0 to 500 V . 0 to 200 ma , dc. Even if the load is varied - even if the line voltage fluctuates - you're still sure of load
regulation to less than $0.001 \%$, and line stabilization to less than $0.003 \%$ !

With this unusually high regulation over the entire range, the Model UHR-220 power supply lends itself to the most exacting applications, such as powering many high-gain stages in parallel. Ripple 8 less than 0.1 milivoits. Bon 0.01 ohms and less than 0.1 imp up un 100 kc . Drift in 10 hours - 300 ppm.

So when you need a power supply you must depend on for constant voltage - a supply you can set and forget investigate the UHR. 220. The ultra-high regulation, extremely low ripple, and stability vs line voltage free you to concentrate on the rest of your design work.

Krohn-Hite ultra-high regulation power supplies offer a total range coverage of 0 to $1200 \mathrm{v}, 0$ to 1000 ma , dc. Other fine Krohn-Hite instruments include Amplifiers, Filters and Oscillators. Write for full information.

580 Massachusetts Avenue - Cambridge 39, Mass.

Pioneering in Quality Electronic Instruments

## NEWS

## Minuteman Gets High-Data-Rate Telemetry

## Standard 215-260-Mc Equipment of Pcm System Is Modified To Provide 350,000 Bits Per Sec With Bandwidth of 1.4 Mc



Airborne telemetry system for Minuteman missile is a redesign of basic telemetering hardware, yet has a data rate of 350,000 bit per sec with a $1.4-\mathrm{mc}$ bandwidth. A reflectometer and signal processor had to te added.

Alan Cornerefto
News Editor

STANDARD $215-260-\mathrm{mc}$ telemetry equipment has been modified for the Mimuteman ballistic missile program to provide a data rate of 350,000 bits per sec. The bandwidth of the pulse-code-modulation system is only 1.4 mc .
Minuteman is the nation's planned solid-fuel intercontinental ballistic missile. Some of its requirements met by the airborne portion of the control telemetering system are:

- Rf power output- $-15 \mathrm{w} \pm 2 w$ under all environmental conditions.
- Bandwidth-1.4 me for all signal content less than 60 db down
- Modulation-True fin with less than 1.0 per cent linearity.
- Environment-Severe combined environment of 1.3 g , random vibration to 2 Omc . (\%),(K) ft altitude, and $700-\mathrm{F}$ radiant heating from chamber walls within 2.5 in. of the system.
These details were revealed by D. W. Lang of United Electrol)ynamics. Pasadena, Calif,, at the Seventh Aerospace Instrumentation Symposium. Dallas. This meeting was formerly called the National Flight Test Symposium.


## System Modifications Include Adding

Refiectometer and Signal Conditioner
One of the modifications necessary to achieve the high data rate. Mr. Lang reported, was insertion of a reflectometer between the power amplifier and antenna of the airborne transmitter. This was necessary to keep output power within tolerance, which was $\pm 2 w$ at a vswr up to 2: 1. Merely incorporating an input regulator was not enough to maintain output power at the level needed for the data rate.
The reflectometer is essentially a probe and a diode, Mr. Lang said. Potential across it is fed back as a voltage to a differential amplifier that controls the power supply's input regulator.
Another modification was the addition of a signal conditioner. In addition to providing de and ground isolation, this specially designed unit assures that neither a pulse train of varying duty cycle nor one of varying symmetry has any effect on the transmitter center frequency.

The Minuteman telemetry system is one of the first designed according to the MIL-I-26600 standard, which contains stringent provisions to control radio-frequency interference. Mr. Lang said a heavy design effort would probably have to be made on all systems to make them conform to the new standard

## PCM Titan II Telemetry System

## Has Data Rate of $\mathbf{1 7 2 , 8 0 0}$ Bits Per Sec

Details of the Titan II telemetry svstem were also revealed at the meeting. J. P. Randolph of the Applied Physics Laboratory, Silver Spring Md., reported that the liquid-fuel ICBM had 192 analog and 5 digital channels in its system The bit rate, he said, is 172.800 per sec, and the word length, 8 bits. Titan II use's pulse code modulation.

The airborne portion of the system, designed by Epscro, Inc., Cambridge, Mass., weighs 35 lb and has a volume of 0.8 cu ft . Maximum cumu lative error of the system is $\pm 0.4$ per cent. (For more details, see story, p. 19.)

Mr. Randolph said be thought pem was clearly superior to all other modulation systems. New techniques are making design of pem systems more feasible than previously, he said, and new requirements are making the use of pem manclatory for some missile and satellite applications

He also said the transfer of some telemetry operations to the microwave portion of the spectrum had been slowed by lack of suitable components. He said component developments should be stepped up if reliable hardware for whf telemetry is to be available by 1970.

## Needed Soon Are 25-Cu-In. Transmitters And 2-Db Receivers for Telemetry

Mr. Randolph quoted some requirements for microwave telemetry equipment first listed by T. B. Jackson of the Natal Ordnance Laboratory, Corona, Calif. Neederd are transmitters smaller than at present-ultimately 25 to 50 cu in. for a $2-$ to 3 -w unit. They should be fm units, capable of modulation by pam, pcm, and pdm.

Receivers should have a noise figure of 2 db or less, a local oscillator stability of $\pm 0.005$ per cent of received frequency, and a preamplifier gain of 25 db . They should be equipped for optional phase-lock operation and should have an if output after the limiters and ahead of the discriminator for predetection recording.

Receiving antennas should have high gain, narrow beam, circular polarization and full hemispherical coverage. They should provide automatic target acquisition and tracking with switchable beamwidths appropriate to each mode. Gains in the two modes should be 10 and 28 db at 1.485 mc , and 12 and 32 db at $2,250 \mathrm{mc}$. Reflector diameters should be limited



## PLANAR

- GREATEST RELIABILITY, STABILITY AND UNIFORMITY
- LOWEST GUARANTEED ICBo


## EPITAXIAL

- LOWEST GUARANTEED VCE (sat)
- higher maximum ic
- no sacrifice in voltage breakdown


## COMBIINE IN ONE TRANSISTOR FAIRCHILD SILLCON 2 N914

This combination means extremely fast propagation time in digital circuits, excellent high-frequency response in amplifiers, high-speed performance in current drivers. Typical $f_{T}$ is 400 mc .
To the EPITAXIAL advantages, PLANAR adds extreme stability, reliability, low leakage and low noise figure. PLANAR and EPITAXIAL TOGETHER achieve usable current gain over a broader current range than either alone.


545 WHISMAN ROAO, MOUWTAN VEW. CALIF.YORKSHIRE 8.8161-TWX: MN WW CAL 85 A wholly owned subsidiary of fairchild Camare and Instrument Corporation

## NEW!

## AC/DC digital voltmeter

EXCLUSIVE FEATURES:
remote (programable) control
up to 10 times more AC and DC resolution industry's highest AC accuracy


The Model 502B AC/DC Digital Voltmeter measures DC between $\pm 100$ microvolts and $\pm 1000$ volts, $A C$ from 30 cps to 10 kc between 1 millivolt and 1000 volts. The readout displays 4 digits plus a 5 th over-ranging digit ( 0 or 1 ) that gives 10 times greater resolution at the decade points ( $1,10,100$ volts). The 502 B is unique among digital voltmeters in providing AC over-ranging on the two lower manual range scales -00.000 to 19.999 volts and 000.00 to 199.99 volts.
DC measurements are accurate within $0.01 \%$ of reading $=1$ digit. AC accuracy is the highest in the industry - within $0.1 \%$ of reading or $\pm 3$ digits from 30 cps to 10 kc for inputs up to $10.000,100.00$, or 1000.0 volts on the respective range scales, within the same tolerance for signals from 50 cps to 7 kc up to 15.000 and 150.00 volts on the respective scales.
The 502B is the only digital voltmeter controllable by remote contact closures. With the AC converter control set to REMOTE, contact closures can select any of the following ranges (1) 10 -volt range, $A C_{i}(2) 100$ volt range, $A C$; (3) 1000 -volt range, $A C$; (4) autorange, $A C$; or (5) auto range, DC.
Write for detailed literature or a demonstration of this outstanding instrument.
Price $\$ 4245.00$. Delivery from stock.
Representatives in all major cities.

5725 Kearny Villa Road, San Diego 11, California - BRowning 7.6700
KINTEL
OOHII cohy

## NEWS

to 12 ft for ground-based operation and 4 ft for shipboard operation.

## New Oceanography Instrumentation

 For Measurements also soughtOther challenges to designers were laid down by Dr. D. W. Pritchard of Johns Hopkins University, Baltimore. In discussing instrumentation problems in oceanography, he said there were requirements for high-precision determination of salinity through measurement of conductivity. Involved in this may be temperature measurements accurate to $\pm 0.002$ C. Salinity measurements accurate to 0.002 per cent are required in water with salinities ranging from 3.3 to 3 !) per cent.

Wanted also are field instruments able to make direct measurements of water density to an accuracy of $\pm 1 \times 10^{-5} \mathrm{gm} / \mathrm{cm}^{3}$. Field measurement of pH with an accuracy of 0.01 pH units appears feasible now, Dr. Pritchard reported, but no single instrument for measuring current velocity has gained general acceptance among oceanographers.
A. T. Snyder of the Boeing Airplane Co., Seattle. sounded a call for a systems approach in instrumentation design. He said that too often designers were asked to develop an experimental test-data system for obtaining performance data on an experimental vehicle-they are asked to measure an unknown with an unknown.

If a systems approach were taken, Mr. Snyder said. adequate test-data systems could be developed before they were put into a test program. This could also be made easier, he stated. if more attention were paid to getting the "real answers" during testing, not merely the detailed data traditionally collected.

## Instrument Classification Matrix

## Said to Reveal Missing Devices

What appear to be missing links in the spectrum of instruments that designers have made available to science and industry were reported by Dr. K. S. Lion of the Massachusetts Institute of Technology, Cambridge. Mass. He reported on a survey he made of the entire field of instrumentation and gave details of a systematic description of the instrumentation spectrum. All instruments, he said, can be described as either input transducers, output transducers, or modifiers. The modifiers were described as information processing systems, such as amplifiers or integrators.

Dr. Lion has constructed a seven-by-seven matrix of the types of instruments possible in terms of their input and output characteristics.

The chart indicates where design effort should be directed, he said.
The seven classes of transducers that make up the top- and side-column headings of the matrix are mechanical, thermal, magnetic, electric, optic, nuclear and molecular. Thermal inputelectric output transducers exist, for example, and so do electric input-thermal output transducers. But in trying to find instruments to fit in the matrix, Dr. Lion was unable to discover any magnetic-thermal, mechanical-nuclear, mag-netic-optic, magnetic-nuclear and nuclear-mechanical transducers. He said this might indicate that instruments should he designed. - a

## Satellite Microwave Transmitter To Be Solid State and Give 2.5 W

An all-solid-state transmitter designed for the Navy's Transit IV-A navigational satellite has an output in the 2- to $5-w$ range at a frequency higher than 3.50 mc .

Power gain is 26 db . Transistorized stages of the transmitter are operated in the grounded collector mode so that transistors may be set in a case, which acts as a heat sink.
The transmitter case is coated with a special white paint that resists changes caused by ultraviolet radiation. Because the transmitter is the greatest power user and heat gencrator in the satellite, it will be mounted externally above the main vehicle, where it will support a piggyback satellite.
The transmitter was designed by Texas Instru ments, I allas, Tex.


Telemetering transmitter for Novy's Transit satellite will be mounted externally. Stages, from left to right, are output filter, frequency quadrupler, power amplifier, matching network, preamplifier and frequency doubler, and first if amplifier.


## Sign up for the Magnetics self-improvement course:

Here's free help to enable you to improve yourself-and your position as a magnetic circuit designer. You need it if: You don't know how to work with $\mathrm{E}=\mathrm{n} \frac{\mathrm{d} \phi}{\mathrm{dt}}$ to reduce the size of magnetic amplifier circuits. Most men who design amplifiers for cramped operation in missiles have found it invaluable.
What's more, you may only vaguely remember $\mathrm{H}=.4 \pi \frac{\mathrm{NI}}{\ell_{\mathrm{m}}}$, so how can you use it to cut circuit size by two to ten times, and shorten response time proportionately?
It's quite possible that you, like many engineers, may have bypassed or been bypassed by magnetic circuit theory as a working tool while you were in school. Yet this science has opened frontiers of static control which makes an understanding imperative if you are to do your job-and further your career. For your sake (and for ours, too, because we manufacture and sell high perme-
ability tape wound cores and bobbin cores which are used in amplifier circuits), we have started this course. Lesson 1, "How to Reduce Magnetic Circuit Size and Response Time," will be on its way to you immediately if you use the coupon below.

## MAEMETICS inc.

## : MAGNETICS INC., DEPT. ED-SO $_{3}$ BUTLER, PA

Plocse enroll me in your froe self-improvement course, and send me "How To Reduce Magnelic Circuir Size and Rosponse Time."
nome
rine
compony
service caro

## Land and Sea Tests for Latest Air Aids

## Shipborne VORTAC, Flexible Radar and Digital Communications Designed to Help Federal Agency Control Civil Jet-Age Traffic



Air-route surveillance radar system under test at Federal Aviation Agency's National Aviation Facilities Experimental Center near Atlantic Cily. N.S., is intended for both FAA and Air Force use, L-band AN/FPN-34 system built by Bendix Corp. has range of 0 to 120 nautical miles and can reach to $60,000 \mathrm{ft}$. Staggered pulse repetition frequency is 516 and 602 pps using pulses of 1,938 and $1,662 \mu \mathrm{sec}$. Peak power is 2 megawatts; average power, 2 kw . Radar has linear and circular polarization and four types of video: normal, integrated normal, logarithmic and moving-target indication. Elevation angle is from 0 to 30 deg. Transmitter uses QK470A magnetron, tunable from 1,280 to $1,350 \mathrm{mc}$.


Test facility for AGACS experimental ground-air-ground communication system at FAA proving grounds. When punched by operator, keyboard transmits preprogramed digital messages to aircraft. System, under development by Radio Corp. of America, is capable of handling 500 round-trip messages in 2 min al a dala rate of 750 bits per sec. Console and cabinets contain message-display and insertion equipment, program and data-storage equipment, multiplexing equipment, landline coupling equipment and radio equipment. On aircraft, received messages are displayed by cockpit printer.


Shipborne VORTAC direction-finding and ranging system is being lested aboard Coast Guard cutter Androscoggin. Disk on forward mast is $15-\mathrm{ft}$ diam counterpoise. Over it is a slotied cylinder VOR antenna. Rear mast holds a standard Navy Tacan antenna. VOR transmitter power is 200 w , and Tacan power, 7.5 kw . Tests so far indicate sea states have negligible effect on system efficiency.


Transceiver under development permits air-traffic controller to move about freely in operations rooms and towers. Completely transistorized, it operates at 406 to 420 mc , providing 20 channels, so that 20 units can be used in same facility. Transceivers would work through signaling system linking controllers to all parts of trafficcontrol facility. Waveguide cavity type of filter rather than lumped-constant type is used in receiver circuit. ITT-Kellogg Div. designed the units, which are scheduled to be evaluated this summer.

ELECTRONIC DESIGN • May 24, 1961

## Miniaturized Packaging Facilitated by Space-Saving Crimp-Type Modular Connector



A miniature modular terminal block, cmploving crimp type comtacts with a varicty of hissing arrangements, has been annownced by Burndy Corporation as an new product development.

Occupying only $1 / 8$ of the space required previonsly, the MINIIOK. provides density of $\mathrm{I}(\mathrm{x})$ connections in only 212 inches. Top and side feed nylon modules may be casily interlocked on a PVC: rigid plastic track which may be cut to any desired length.

A varicty of bussing configurations permit the electronic design engineer unusual flexibility as well as the advantage of truly miniaturi\%ed electronic packaging. Snap-in IIYTIP contacts simplify wiring assembly and circuit changes. Sockets emboly tip plated, heat treated, beryilium copper springs for contact retention.

Reliability is heightened by the use of hasic parts that have already been proven by extensive field use For economical production runs, with maximum reliability, contacts are installed by high-speed tooling of a type already in successful operation.

For further information contact Burndy Corp., Norwalk, Connect.
circle io on reader-service card
CIRCLE 17 ON READER-SERVICE CARD $>$


Water. mud, ice, snow, heat and humidity... weather extremes are no problem with the '891' series plugs and receptaclesboth HYFEN.TYPE and SOLDER-TYPE. Present early warning radar systems and fir. ing systems prove outstanding performance-efficiency and dependability in any climate.

## AQUALOK PLUGS AND RECEPTACLES

SOLDER-TYPE-Available in 22, 28, and 32 shell sizes with many insert configurations tooled for production. Shell, insert, and contact materials selected for excellent performance characteristics.

HYFEN-TYPE-Single conductor, miniature coax, and standard coax con-tacts-all crimp-type, snap-locked and individually removable-are available in 22, 28, and 32 shell sizes. Insert configurations available for power applications.


## DIGITAL MODULES

## building block or plug-in card

Which package fits into your design? Packaged either way, Delco Radio Digital Modules meet or exceed all MIL-E-5272D (ASG) environmental requirements. Continuing life tests on these computer circuits now exceed four and one-half million transistor hours without a failure. The modules perform all the standard logic functions and come in many basic types and variations. Delco modules in the transistorized building block package are ideally suited for airborne guidance and control because of their extreme ruggedness, compactness and reliability. All miniature building block modules employ three dimensional welded wiring techniques and are vacuum encapsulated in epoxy resin. Delco Radio can offer you off-the-shelf digital circuits packaged as building blocks or plug-in cards, or can supply circuits to meet your specific needs. Our Sales Department will be happy to send you complete engineering data. Just write or call. Physicists and electronics engincers: Join Delco Radio's search for new and better products through Solid State Physics.

PIONEERING ELECTRONIC PRODUCTS THROUGH SOLID STATE PHYSICS

Division of General Motors - Kokomo, Indiana
CIRCLE 18 ON READER-SERVICE CARD

## NEWS

## Battery Industry Reports Gains In Product Life and Reliability

Battery-industry improvements in watt-hour operation. shelf life and reliability were reported at the 15th Annual Power Sources Conference in Atlantic City, N.J. Delegates noted that advances were being made despite the attention being focused on such exotic energy-conversion scheme's as thermionic converters and thermoelectric devices.
Steps to meet military battery requirements for missile app! ications were outlined by A. R Riedel, quality control manager of the Power Sources Div. of Telecomputing Corp., Denver. Engineers developing missile batteries are particularly concerned with such factors as five to 10 years' shelf life and reliability exceeding 99 per cent. The requirements for the Air Force Minut man program include 99.7 per cent reliability at a 60 per cent confidence level

## Reliability Program Is Set Up

For Primary Zinc-Silver Batteries
Mr. Riedel said attempts were being made to achieve such reliability with primary zinc-silver batteries. Among the major steps in the program are:

- Designation of critical parameters
- Determination of probability of occurrence of critical defects.
- Reliability allocation and prediction based on process steps.
- Process control
- Preventive and corrective action.
- Process and design changes based on failure analysis.
Automatically activated silver-rinc oxide batteries, such as the BA-472/U, use an electrically. fired gas generator to supply the force needed to drive the electrolyte into the battery assembly From studies of the thermal stability of such batteries in missiles, it has been concluded that the gas generator is the only potentially unstable component limiting the battery shelf life. Thus the minimum shelf life of the battery package is equal to the shelf life of the gas generator.


## Satisfactory Operation Predicted After Five Years' Storage of 130 F

Commenting on the progress of reliability for the gas generator, N. T. Wilburn of the Army Signal R\&D Laboratory, said that extrapolation of data indicated that the BA-472/U generator could be expected to operate reliably after five
years of continuous storage at 130 F or below. Indications point to the possibility of a generator having a shelf life of at least 10 years, well be yond the normal obsolescence period of a missile.
Although fuel-cell research has been intensified in the last eight years, there is little optimism for the application of these devices for at least a year more, according to a spokesman for the Signal Corps Power Sources Div. Obstacles include the ligh cost of such fuels as hydrogen, oxygen and hydrogen peroxide plus the complexity and weight demands imposed by the fuel container and control equipment. At best, fuel cells appear to be reaching a stage where they can be examined for possible use in military equipment that now uses chemical batteries or power-driven mechanical generators.
Copies of the proceedings of the 15 th conference are available from the TSC Publications Committee, P.O. Box 891, Red Bank, N.J. The cost is $\$ 10$ for the first cony and $\$ 5$ for each additional copy. Publication is scheduled for October.

## Telemetry Micro-Multiplexer Eliminates Signal Conditioner

The airborne portion of the Titan II telemetry system will incorporate a micro-multiplexer that accepts low-level signals directly, eliminating the need for a signal conditioner.
The multiplexer, designed by Epsco, Inc. Cambridge, Mass., is all-solid-state, operates at 40 mv full scale, and is capable of 20,000 switch closures per sec. It consists basically of two sets of matched transistors.

By eliminating the signal conditioner and by using transistorized components, the company kept the volume and weight of the 200 -channel airborne package to 0.8 cu ft and about 50 lb .
The system, scheduled for delivery to the prime contractor, Martin Co., in about one month, incorporates analog signal input filters to reduce on-line differential noise and to prevent highfrequency fold-over. For flexibility in handling different input signals, sampling rates of from 20 to 400 per second are available. A sophisticated five-pole, low-pass filter, designed for optimum transient response, is used in the ouput premodulation stage. The response is flat to 95 kc with 30 db /octave attenuation above 95 kc . This assures that square pulses going to the transmitter do not overmodulate it.


## The Avnet System

## created a new Concept of Readiness- 5 years ago!


#### Abstract

Ihe dols ahove represent Alnetis stack of different types in I particular line of components (in) this care. connecturn). There are over 70,000 dots. Avnet's assembly facilities enable them (1) upply wer $70.0(11)$ different tupes of connectors in any quantities, to meet emergency and prototype requirements. This Hextbility is what The Avnet System means by "Readiness" to fill an order. Any order. Is this a new state of Readiness at Avnet? Did Avnet recently stock all their Centers? Did Avnet rush to xet up Assembly Facilities for Bendix Connector Prototype Requirements? vo' This state of Readness at Avnet is 5 years old. 5 years ago Avnet foresaw today's electronic requirements and hegan stocking in depth. Then assembly facilities were set up to maintain a stock in breadth Depth Breadth $\times$ Flexibility $\times 8$ Service-Stocking Centers $\times$ On-the-spot quality control $\times$ Thorough knouledge of assembly operations for prototype needs $\times 5$ years experience actually doing it = Readiness. It's an old story at Avnet. And each neu day brings more and more companies who want to benefit by Avnet's unique, historic Readiness. Is your company among them?


AVNET
THEAVNET BYBTEM Men methode Materials Management AVNETELECTRONICS CORP.


CIRCLE 19 ON READER-SERVICE CARD

Now! Voltage Controlled Oscillator ...for FM with CRYSTAL STABILITY.

vcxo. Model 10M WA measures vcxo. Model
only $3 / 4^{\prime \prime} \times 2^{\prime \prime} \times 2 \frac{1}{2 \prime \prime}$ with cover on


Control Characteristics of Model IOM WA ( 10.7 mc )

The new VCXO is a crystal oscillator directly frequency modulated by a control voltage. Direct frequency modulation may be had at any center frequency from 10 kc to 30 mc without frequency multipliers. This all solid-state device produces frequency swings of $\pm 0.2 \%$ of its crystal stabilized center frequency while maintaining excellent linearity. Center frequency stability is constant over wide temperature changes.
The standard VCXO. Model 10M-WA, has a center frequency of 10.7 mc . Available off the shelf in sample quantities, the Model $10 \mathrm{M}-\mathrm{WA}$ has a deviation of $\pm 20 \mathrm{kc}$, linear to within $\pm 200 \mathrm{cps}$. Measured temperature drift is less than 1 kc from $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. Output power is 5 mw .
Other VCXO's with similar specifications and with center frequencies as indicated above, are available on special order for both commercial and military system requirements.

If you have a frequency modulation problem, call on Itek Electro-Products engineering specialists to assist you in the design of your circuitry and in the selection of a VCXO best suited to your needs.

Write for Bulletin No. 10M-WA
Itek Electro-Products Co. 75 Cambridge parkway. cambridge 42. massachusetts

## WASHINGTON

J. J. Christie

Washington Editor

## the satellite communications issues

Industry's eagerness to develop and operate a commercial satellite communications system has posed a string of knotty policy issues for the Federal Government.
Testimony before the Ilouse Committer on Space and Astronautics indicates that the most serious of these issues relate to technology and timing. There is strong industry pressure for prompt Government authorization of a private operational system. but countering this is a school of thought that favors making haste slowly to permit competing concepts to mature.

The matter of ownership and control, while still touchy: is now less acute as a result of unanimous acceptance of the joint-venture concept expressed in industry briefs filed with the Federal Communications Commission. The prime issue is whether a joint venture should consist exdusively of communications carriers or be open also to participation by aerospace and communications manufacturers.
Leading proponents of an all-carrier venture are ATd T , RCA. ITがT and General Telephone and Electronics. Pushing for mixed ventures are GE. Western Union and Lockheed Aircraft. The weak point in the allcarrier position is that companies backing it also have manufacturing divisions.

Differences Over Technology and Timing are brought into sharp focus by approaches recommended by (iE and RCA. CE seeks immediate authorization for a joint-venture enterprise to develop and operate an interme-diate-altitude active satellite system. RCA. champion of the high-altitude synchronous satellite, pleads instead for a joint industry-Government group to coordinate and guide current and planned $\mathrm{R} \& \mathrm{D}$ ) activities as an interim measure.

The GE system calls for putting 10 satellite units into equatorial orbit at an altitude of $6,(\mathrm{OK})$ feet and holding them in fixed relation to one another. The company argues that a demonstration satellite can be placed in orbit within 12 to 1.5 months after authorization is received. An initial operational system of 10 satellites and 90 ground stations is projected for mid-1965.

Symbolic of its eager-beaver approach. CE already has formed a unit known as Communication Satellite, Inc. (ComSat) as a nucleus for the proposed joint venture and has filed an application on ComSat's behalf with the FCC.

It is proposed that ComSat's basic ownership interest be in the satellite facilities and that ownership and operation of ground stations be included only "when a particular need arises." Carrier and manufacturer participants would be limited to 10 per cent equity. ComSat would market its services to the common carricrs on a nondiscriminatory basis and would itself be subject to FCC regulations governing common carriers.

RCA's opposition to a satellite communications enterprise at this time is predicated on its belief that the high-altitude, synchronous, or 24 -hour,
satellite system stands a good chance of becoming the optimum one-but not until the late 60's. It is striving to persuade the Government not to authori\%e a venture that might frec\%e out consideration of its system of two or three very-high-capacity synchronous repeaters, positioned 22,300 miles above the equator.
Both economic and technical factors are cited in justification of this position. On the eeonomic side, RCA contends that the projected volume of international communications traffic will not require the capacity to be gained by use of satellites until the late 60's.

From a technological standpoint. RC.A argues that more time is needed for test and evaluation of many aspects of satellite communications problems. RCA would have its proposed industry-Government research coordinating group carry the ball at least until a U.S. position were drafted for the 1963 Conference of the International Telecommunications Union.

Projects ADVENT and RELAY of the Defense Dept. and the National Aeronautics and Space Administration, respecetively, are acknowledged as possible influences on the timetable for establishing a commercial satellite communications system. ADVENT, an equatorial synchronous satellite, is scheduled to be launched later this year. RELAY, a low-altitude experimental system that will test the effecets of the Van Allen radiation belt on solar cells and other components, is due for mid-1962 launching.

RCA notes that both projects should yield highly valuable data and experience that may well affect the course of current and planned indus-try-government R\&D). Morcover (EE concedes that its proposed undertaking could be advanced on the basis of the ADVE.NT program

U'nder a Western Union proposal for an industry-carrier type of joint venture, similar to that recommended by GE. NASA would assume a commanding role. In fact. it would be "the final anthority on the satellite technology adopted, such as the number and kind of satellites launched."
Interestingly enough. both RCA and Plileo have raised the possibility of Defense Dept. or NASI developments providing a direct basis for a commercial system.

## IN AID (OF SMALIL BUSINESS

A Defense Dept. commitment to increase contract awards to small firms by at least ${ }^{10}$ per cent in the coming fiscal year is being pursued in much the same way as a sales or production drive in a private company.
The Secretary of Defense has assigned quotas to all major commands responsible for procurement, with a further breakdown by departments and installations. And he's requiring monthly progress reports.
One effort is directed toward increasing the "breakout" of components from large systems for compertitive subcontracting. This can be achieved either by breaking out selected components from systems already under contract for direct Defense Dept. procurement or by forcing prime contractors to engage in maximum subeontracting before approving their make-or-buy plans during contract negotiations. The defense agency also has taken steps to provide advance notice on more of its hardware and R\&D) procurement through the medium of the Commerce Dept.'s daily publication, "Synopsis of U.S. Ciovernment Proposed Procurement. Sales and Contract Awards.

NASA likewise has taken steps to reorient procurement in the direction of small firms. One step has been to reguire prime contractors to submit make-or-buy plans for consideration in contract negotiations. The agency also will make use of the Commerce 1) 'ptt's synopsis to tip off small companies to fortheoming R\&D) contracts of $\$ 1(0),(1) 00$ or more. It will list firms that have been invited to submit proposals, so that subcontractors can scout business in advance of awards.

## semiconductor products news

## | Which switch switches

 which?Hopelessly confused trying to determine switching speeds using your own condiwitching speeds using your own condi-
tions, currents and voltages when you look at a spec sheet that gives you $t_{1,1} t$., $t_{\text {t. }}$ and $t_{\text {a }}$ at only one current and one voltage? (Or are you just hopelessly confused by the question?) You have ou ympathy, because if you change just one
 you can't be sure of your switching time.
Know why we brought up the subject? Know why we brought up the subject You're, right, General Electric has done something about it! The new specifica-
tion sheets for the 2 N 396 A PNP high frequency alloy and 2N1289 Meltback transistors are now available with flexible switching time specifications for application to their drive conditions. This gives you a system which indicate witching speed over the principle rang of application. The new 2N396A 3pe sheet, for example. permits calculation o typical and maximum det from 3 to volts and any I from 3 to 100 ma . Al you need is your slide rule.
If you'd like a couple of copies of the new spec sheets, drop us a line at Section 23E98. (Or ask your friendly G-E Semiconductor Products District Sales Manager.)

Just a reminder: GE's improved 2N497A, 498A, and 2N656A, 657A are the industry's most thoroughly characterized and tested medium power silicon Mesa transistors. With peak pulse power of 20 watts, 5 watts dissipation at $25^{\circ} \mathrm{C}$ case temp., saturation resistance of 10 ohms (max.) and input impedance of 200 ohms (max.), you've got yourself some transistor. And the standard types are blood brothers.

## - Algebraically speaking...

The boys in the back room have come up with an idea for a Reliability Index (RI) to provide you with important assurance
of stable life performance. It is now in use on the specification sheets for our use on the specticauency 2N1924. 1925, 1926 transistors. A factor of 3.0 or greater for RI indicates excellent extended life performance, as you will plainly see when you first peruse said spec sheets.
But how do we determine the RI? First, compute the percentage shift in forward current gain of each unit in each lot during life test. Then determine the 10th, 50th and 90th percentiles in a distribution of the udivicual poth percentile to the magnitude of the algebraic difference between the 90 th and 10 th percentiles, AND THEN multiply the reciprocal by 100 .

Expressed algebraically :


WHERE $\alpha_{i 0} \alpha_{0}$, and $\alpha_{10}$ are the particular percentile values of a distribution of : AND

$$
i=\frac{h_{\mathrm{FE}}-h_{\mathrm{FE}_{\mathrm{li}}}}{h_{\mathrm{FE}_{\mathrm{li}}}}
$$

WHERE $h_{\mathrm{FEPF}_{1}}$ is the final and $\mathrm{h}_{\mathrm{FE}_{4},}$ the initial value of forward current gain of the ith transistor

Expressed in English: RII includes in one number the shift in median and the change
of time
So you ask a silly question.

The important point is that the RI indicates excellent life performance. These PNP lows, incidentally, also boast of a $100 \%$ hermeticity test and military environmental specifications.

## TD also means touchdoun .. .

and our germanium tunnel diodes have scored a big one. Absolutely no indication 000 hours of life characteristics during the chart below for the evidence in black and white. We have some new applicaion notes for you, too. Write to Section 23 E 98.


Semiconductor Producis Deparment, Electronic Park, Syracuse, Now York. In Canada: Canc dian General Electric, 189 Dufferin St., Toronto, Onf. Export: Intornational General Electric,
150 E. A2nd S., N.Y. N.Y.

# Electronic Products NEWS by carborundum ${ }^{\circ}$ 

## Photo-electric street light controls protected against transient voltages by Carborundum's Varistors <br> Millions of street lights are now Lumatrol unit made by Micro Bal-

switched on and off automatically by ancing Inc., Garden City Park, Long photo-electric controls such as the Island, N. Y.

Basic components are a cadmium
 ulphide cell in series with the heater winding of a thermally actuated snap switch. Resistance of the cell, which changes with light, controls current in the heater winding around a bimetal strip and thus operates the switch.

While cells are quite rugged, they are extremely sensitive to over-voltage caused by switching transients or static discharges. To guard against damage, Lumatrol controls make use of the voltage-sensitive resistance characteristic of Carborundum's globar varistors. These are silicon carbide resistors which exhibit an instantaneous decrease in resistance with an increase in applied voltage.


Precision łuners use CARBORUNDUM CERAMIC SHAFTS

Shown above is a rotor of a precisionRF tuning device used in a military transmitter-receiver unit. It is manufactured by the Radio Condenser Company, Camden, N. J.

The ceramic shaft with attached brass bands, nose piece and bearing sleeve is supplied by Carborundum's Latrobe Plant.

Proper meshing of the gears requires that concentricity between the nose piece and the bearing surfaces be held to .0015 T.I.R. and concentricity
between the rotor sleeves be held to . 002 T.I.R. The ball race must have an eight micro inch finish to meet Government requirements. Extreme precision must be maintained to avoid changes in capacitance during operation of the unit.
Precision ceramic or ceramic-tometal assemblies like this are a specialty of our Latrobe Plant. If you have any problems of this kind, write to Dept. EDC-51, Latrobe Plant, Reto Dept. EDC-51, Latrobe Plant, Re-
fractories Division, The Carborundum fractories Divisio
Co., Latrobe, Pa .

Latrobe, Pa
Circle 244 on Reador-Service $C$


Connected across the cadmium sulphide cell and from line to neutral. they effectively bypass harmful transient voltages.
If you have any application requiring surge voltage or similar protection, maybe Carborundum varistors can help. For information on types and sizes, write Dept. EDV-51, Globar Plant, Refractories Division. The Carborundum Co., Niagara Falls, N. Y.

Circle 243 on Reader-Service Card

NEW BOOKLET AVAILABLE ON GLOBAR ${ }^{\text {© }}$ Type BRN VARISTORS


Non-linear, voltage sensitive resistors are finding many applications for stabilization or voltage contro in electrunic circuits. This bookle copy, write Globar Plant, Refractories Division, Dept. EDV-51, Carbnrundum Co., Niagara Falls, N. Y. Circle 245 on Reader-Service Card

## NEWS

Component Firms Warned Damaging Units in Subsystem Stage Said to Be Cause of Missile Losses

## M

 ISSILE failures often attributed to unreliable components may really be caused by poor handling of the components in the assembly stage, a Lockheed official has charged.Addressing an Electronic Components Conference luncheon in San Francisco, Clare W. Harris, director of quality assurance and test services at Lockheed's Missiles and Space Div., advised the component makers to check on what happens to their products "after they leave the shipping dock.
"You component manufacturers must engage in some good old-fashioned applications engineering," he said. "Send engineers into the subsystem designer's plant and see how your component is being treated-out of self-defense, if for no other reason. If a missile failure is traced to a malfunctioning component, the component maker may be blamed."

Minimum Handling of Components
By Systems Assemblers Urged
Mr. Harris urged that consideration be given to the problem of minimizing the handling of components once they left the plant.
"To help systems assemblers," he said, "component manufacturers should ship their products in packages designed not only to support the units during shipment but also to permit in-package testing on receipt, storage in stock rooms and finally transfer to the production lines.'

Other aids to systems assemblers, the Lockheed official continued, might include "reliability specifications for processes," training of systems assemblers by components makers and a rejection evaluation system.
"Systems managers find," he said, "that when a failure occurs, it is always in a black box that has been giving the most trouble during production. The culprit is always the component that has caused the highest rejection rate."

The production line should be stopped right there, Mr. Harris said. "Components application engineers should investigate to see if the unit is being properly applied, and corrective action should be taken," he suggested. "This will be a lot cheaper than a missile failure."

## Improper Soldering or Poor

Potting May Be af Fault
The causes of failures, Mr. Harris said, include poor handling of components, poor solder-
ing and welding, and the use of poor potting compounds.
"When a module is subjected to 10 " mm of mercury pressure-equivalent to about $1: 30$ miles up-any bubble or gas void comes to the surface and outgasses. The potting compound deteriorates and in several cases has shrunk enough to separate terminals, causing a failure," he explained.
"But there was nothing wrong with the components themselves. The systems maker took your very excellent and reliable components and treated them carelessly."

Mr. Harris pointed out that the problem of circuit assembly was fast becoming one of the component manufacturers direct problems.
"You people will note that you're rapidly getting into the circuit business," he said. "With thin-film microcircuitry and chemtronic research coming along so fast, you're going to have to direct your attention to some of the problems that have been plaguing systems designers."

## Quality-Control Suggestions

Hailed by Component Makers
Reaction to Mr. Harris' address was highly favorable.

One component maker said, "Itll cost money but we've got to send out field engineers."

Another complained that some projects were highly classified and that while subsystems mannfacturers could discuss the application of their products in the entire system, the component maker sometimes ran into a problem demonstrating his "need to know."

The approach, Mr. Harris advised, is to confer with the buyer, but if that doesn't work, discuss the problem with quality assurance personnel.
"We are always very sympathetic to this particular problem," he said. - -

## New Mesa Transistor Line Introduced in West Germany

A new line of mesa transistors for use in whf-fm equipment has been introduced in West Germany by Siemens \& Halske A.G.

The frequency ceiling for the transistors is given as 250 to 300 mc , depending on type. The semiconductors have a maximum dissipation of 100 mw at 50 C and 300 mw with special cooling. The collector currents have a maximum of 12 ma .

Additional types now being developed by Siemens \& Halske will have maximum collector currents of 50 ma .

The transistor case is 6.5 mm high and 9.4 mm in diameter.


## FEATURES

SHOWN 2/3 ACTUAL SIZE

A Base has elongated mounting holes and other features which give the VT20 universal mounting capabilities. Can be used as a direct replacement for other popular transformers of comparable size.

- Radiator plate is counterbalanced in conjunction with the brush assembly for smooth operation and stability under vibration. A $A=$ Unusually fast heat dissipation results from carefully designed base and radiator plates.
- Adjustable shaft extends from either end of the transformer as required for panel or horizontal surface mounting. Unique, collcttype lock permits repositioning without scoring or defacing the shaft. D Extra large brush assembly gives a big margin of heat dissipation . . . is accurately counterbalanced by radiator plate design.

- Terminal panel allows quick arrangement of clockwise or counterclock wise increase of voltage for "line" $(120 \mathrm{~V})$ or "overvoltage" ( 140 V ) maximum output.
vt20 Variable transformers currently stocked

| Cat. <br> No. | Input (Sing. Ph.) |  | Output |  | Rot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volts | cps | Volts | Amps | Ang. |
| VT20 | 120 | $50-400$ | $0.120 / 140$ | 20 | $317^{\circ}$ |
| VT20B |  |  |  |  |  |

WRITE FOR BULLETIN 165 ohmite manufacturing company


CIRCLE 23 ON READER-SERVICE CARD

# Designers Depending More on High-Voltage Components 

## Conference Mirrors High-Power Trends in Radar, Dielectric And Induction Heating, Communications, Control Systems

## Thomas E. Mount

West Coast Editor

INNCREASING USE of high-power, high-voltage equipment was recognized at the Electronic Components Conference in San Francisco by the inclusion of a Hish Voltage Compo-


According to General Chairman Hugh C. Ross, the trend toward high-power radar, dielectric and induction heating devices, power generators and high-power communication and control make high-voltage components more important to the designer than they have been in the past.
Several important developments in this rising field were described at the special session. Reports on solid-state klystron modulators, a nondestructive technique for measuring insulation breakdown, high-voltage dc fuses and special relays for the SAGE system highlighted the session.
Pnpn three- and four-electrode solid-state thyratrons to replace hydrogen thyratrons and thermionic devices like klystron modulators were described by Harry G. Heard of Radiation Inc., at Stanford, Palo Alto, Calif.
For use with line-type pulsers, cascade-pulse generators and klystron circuits, the solid-state modulators have significant advantages, Mr Heard reported. These include size, weight, low stand-by power, no warm-up time, low forward voltage drop; very high peak-current, short-pulse capability, high reliability and high efficiency.

The most pertinent disadvantages of the devices include high cost, low forward blocking voltage and slow response, he said.
"The availability of solid-state thyratrons enables designers to make a complete system to convert ac power into triggered-pulse power at megawatt peak-pulse-power levels."

A simplified design of a typical $250-\mathrm{kw}$ modulator is shown in an accompanying diagram. According to Mr. Heard, circuit efficiencies are typically 92 to 95 per cent, but "somewhat greater care must be exercised in the design of all-solid-state modulators than vacuum-tube de-
vices, in that holding currents, triggering, signal shape and amplitude, diode junction thermal fatigue, fuse rating and device response time must be considered.'

Special problems arise in the use of this modulator since direct output voltages of 350 or 400 cannot be obtained with single solid-state thyratrons, Mr. Heard said. Higher-than-normal turns-ratio pulse transformers are required if output voltages of 5 to 20 kv are needed.

## Nondestructive Test Described

## For Forecasting of Insulation Breakdown

Borrowing from the power-engineering field, G. Leslie Hill of Hill Research Co., Oakland, Calif., told the conference of a technique he has perfected for forecasting the dielectric level of insulation without destroying it.

High-voltage, alternating-current acceptance tests and maintenance over-voltage tests, he said, can damage the insulation under test without the knowledge of the engineer.
"Puncture of the insulation may occur a few seconds prior to and/or at the termination of the 1 -minute test period," Mr. Hill reported.

It is generally accepted, he added, that the ac high-pot test is a go or no-go test. "No method of predicting the dielectric strength of the insulation without puncturing it has heretofore been found," he went on.
But for several years, Mr. Hill said, power
engineers have known of a high-voltage de insulation test that calls for rectifying increasing increments of ac to dc and applying the dc to the insulation under test.
"By means of a high-voltage voltmeter and a microammeter," he explained, "the voltage applied and the current passing through the insulation are indicated for each increasing increment of impressed voltage."
Plotting the measured values of conduction current through the insulation or the calculated values of megohms resistance against the measured values of applied dc in a suitable system of coordinates permits the indication of dielectric strength of insulation before its puncture. The accompanying graph shows typical curves ohtained in this way. Mr. Hill said the de pa is de kv technigue was more comenient than the megohms is dc kv technique.

A New, Fast-Acting Fuse For High-Voltage DC Noted

Basic to the high-voltage ficld are fuses for short-circuit protection, and a new, fast-acting fuse for high-voltage dc was disclosed at the conference. LeRoy H. Franklin of Franklin Engineering Design Co., Palo Alto, Calif., described his company's line of fuses with current ratings from 1 to 32 amp and voltage ratings from 10 to 150 kv de.


NOTE $C R_{1}$ TMROUGH CR, ARE INIZOS
Simplified diagram of a $250-\mathrm{kw}, 360$-pps- $10 \mu \mathrm{sec}$ pulse width, all solid-state modulator shows principle of operation. Device can be used to module klystron.


Typical curves obtained when testing electrical insulation with high voltage dc show (1) solid homogeneous insulation in good dry condition, (2) foulty insulation, (2a) faulty insulation with a stepladder curve due to vo ds and (3) insulation in damp condition.

Mr. Franklin asserted that standard high-voltage fuses did not clear under dc conditions until the voltage or current approached zero externally. They cannot be used for such applications as capacitor bank protection, or to insert in the line between a bank of capacitors and a klystron, he said.

The Franklin line was said to offer fast clearing under short-circuit conditions, such as a flashover, capacitor breakdown, insulation failure or cable failure, and to require only small amounts of energy to blow. Clearing time under highoverload conditions may be as short as $1 \mu \mathrm{sec}$. Mr. Franklin said.

## SAGE Vacuum Coaxial Relays

Described Publicly for First Time
Vacuum coaxial relays for the high-speed high-power switching that make the SAGE air-craft-detection system possible were described publicly for the first time at the conference.
Ted N. Tilman and Wes N. Lindsay of Jen nings Radio Manufacturing Corp., San Jose, Calif., said that vacuum relays for switching any one of 18 antennas in a SACE system to either of two $20-\mathrm{kw}, 400-\mathrm{mc}$ transmitters literally make the SAGE system possible

The vacuum relays offer several advantages over air switches, Mr. Lindsay told the conference. The high dielectric strength of the vacuum and consequent short gaps permissible between open switch contacts allow switching in $12 \mu s e^{\prime} \mathrm{c}$ at a repetition rate over 30 transfers per sec.
"Vacuum contacts are oxide-free and have very low resistance-between 250 and $5(0)$ microhmsand stable contact resistance for indefinitely long periods of time," Mr. Lindsay said. "The shelf life of vacuum contact devices is completely independent of environmental conditions, provided


The only contacts you pay for in an AMPin-cert printed circuit edge connector are the ones you actually use for your specific circuitry, and here's why: AMPin-cert contacts are not fully pre-loaded into the housing. The unique AMP design, crimping wire directly to the contact, permits you to attach conductors to contacts before you load them. When you don't need two or three or six or seven of the available contact cavities, or a complete row of cavities in the case of one-sided boards, you don't load the contacts and you don't pay for them!
So much for economics. What about contact versatility? The AMPin-cert line has five distinct types of contacts: Type I, AMP.leaf तrim, a configuration which guarantees contact forces even on minimum-thickness boards. Type II. AMP-blade male tab housing to insure proper tab alignment, and a crimped type snap-in female receptacle offering three long, positive contact areas. Type III, DUO-Tyne , affords extremely high density, has four contact areas. Type IV, the right-angle AMP-flag DUOTyne $v=$, allows conductors to come out of con. nector at right angles, for easy cabling. Type $V$, AMP-taper in , ideal for quick jumpering, circuit change-over applıcations, accepts AMP taper pins.
 Quality? AMPin-cert is quality, in the contacts and the housings:

Contacts are phosphor bronze, gold over nickel plating
Contacts accept single, multiple leads, and "snap-in"
the housing without insertion tools

- Contacts are recessed in housing-no post insulation required
AMPin-cert connectors will accept one-sided and two. sided boards

Ask us for the full AMPin-cert printed circuit connector story.

## AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA AMP products and ongineoring assistance are available through subsidiary componies in: Australia. Canadi. England - france - Holland - Italy - Japan - Mesico - West Germany CIRCLE 24 ON READER-SERVICE CARD

## NEWS

## the highest, the coldest,

## the hottest

... IN THE smallest SPACE!


## Tenney-mite STRAT environmental chamber

Altitudes to $200,000 \mathrm{ft}$., temperatures from $-100^{\circ}$ F to $+350^{\circ} \mathrm{F}$, in only 4 square feet of floor space. Now, any company can own a combined altitude and temperature test chamber . . . without sacrificing much valuable floor space. And the investment, too, is reasonable.

Only Tenney Engineering, world's largest and most experienced creator of environmental equipment, could produce the Tenney-mite Strat. Write for further information.

Write for a descriptive catalog and complete information on Tenney's research and development, engineering consultation, and design services.
the vacum emvelope is mot so serionsly attacked as to be perforated."
The hasic switch comprises a eopper tee switch body with concentric center conductors saaled into the three legs of the tee by vacuumtight ceramic disc insulators. The connection is made from the common center conductor to the two others by switch blades that move 0.125 in . toward or away from the center conductor.

Early actuators for the relay were simple elec-tro-magnets. These, according to Mr. Tilman and Mr. Lindsay, worked fine at slow speeds, but when overpowered to increase the actuation speed to the $10 \mu s e c$ leve', led to disaster in the form of bent contacts, bent switch blades and fractured bellows.

## Required Inpur Power Reduced

By Spring-Loading Approach
The present actuator is still operated by elec-tro-magnets. The input power needed to obtain high-speed operation has been reduced markedly: however, by spring-mounting the moving parts so that the combination of springs and moving parts tends to oscillate of its own accord with a period corresponding to the desired time of transfer, Mr. Lindsay said. In effect, a large portion of the required actuation power is stored within the mechanism.
"In the case of a relay design where it is desired to move the contacts from open to closed position in, say, $8 \mu \mathrm{sec}$, the oscillation period will be twice the desired transfer time, namely 16 $\mu s e c, "$ Mr. Lindsay said "This corresponds to a frequency of about 63 cycles a sec. For this particular switch, we found by standard methods that a total spring constant of about 200 lh per in. is required to give this resonant frequency."

Owing to the vacuum construction, Mr. Lindsay said, the Jennings vacuum coaxial relay has been tested satisfactorily to 3 -megawatts pulse power at an average power of 6 kw at 400 mc . It has also been tested to 20 kw cw at 600 mc at a 2:1 vswr load and at an ambient temperature of 52 C .
No forced-air cooling was used, Mr. Lindsay said. The housing reached a stabilization temperature of 67 C , and the common terminal inner conductor reached 90 C . No ill effects were said to be suffered by the relay.
Mr. Lindsay believes the relay to be unusual in its small size, speed of operation and good electrical characteristics. "Its development brings to the communications engineer a new component for high-speed antenna and transmitter switching in random, simultaneous or sequential systems," he said. - -

CIRCLE 26 ON READER-SERVICE CARD $>$


## How to establish rating values for power transistors

by RICHARD F. MOREY, JR.

Monager, Applications Engineering, Clovite Transistor Division of Clevite Corporation

Every manufacturer of power transistors provides information on the various circuit valves within which a given transistor will satisfactorily perform. These valves or "ratings" are established on the absolute maximum system and are defined so that "the rating values, if exceeded, will cause permanent impairment of the device." Since permanent damage can occur as a result of exceeding rating limits or as a result of an unqualified rating, Clevite Transistor exercises great care in the development of ratings and the proof of their validity.

Clevite places particular emphasis on ratings for junction temperature, power dissipation, collector current, and collector voltage. Each of these ratings is independent and it is not generally possible to approach more than one rating simultaneously. Therefore, specific tests are performed such as "thermal resistance" to establish maximum power dissipation and collector diode leakage current $1_{\text {cro }}$ at both room temperature and high operating temperature to establish maximum rated collector to base voltage. Figure 1 is a diagram of the Thermal resistance test, while Figure 2 indicates the testing configuration for establishing essential collector to emitter voltage ratings.
Other tests are performed to determine collector current and junction temperature. High-temperaturestorage life tests to establish maximum junction temperature are further supplemented by Clevite's process of aging transistors at temperatures in excess of the eventual maximum rating.


Perhaps the most important tests are the collector to emitter breakdown tests ( $\mathrm{V}_{\mathrm{cxs}}$ mom and $\mathrm{V}_{\mathrm{cma}}$, ) which are used to determine the maximum collector to emitter voltage. Figure 3 indicates a typical germanium power transistor operating in breakdown region. Observe that the bias applied between emitter and base differs for each of the seven curves. This bias differential causes the


Fig. 2. Collector to emitter voltage test
curves to differ significantly. Curve 1 breaks down sharply at 45 volts, while curve 6 breaks down initially at 118 volts, but upon transversing the curve, the voltage drops and another breakdown occurs at a point slightly greater than 60 volts. Curves $2,3,4$, and 5 are somewhere between.
Curve 7 is simply the curve of the collector to base diode and is shown here for reference purposes.


It may be noted in a particular instance, such as curve 1, that at some voltage (in this case 45 volts) collector current increases without limit. This is the voltage at which collector multiplication causes the overall current gain (alpha) to equal unity.

The remaining curves serve to indicate the effect of a change in bias at different voltage and current conditions.

The tests and data shown here are only a segment of the total program undertaken by Clevite Transistor to assure a continuous high standard of product quality . . "reliability in volume."

Detailed Technical Data Bulletins are available on all Clevite's Power Transistors and Diodes. To obtain technical information, please request Application Bulletins 1 \& 2.

CLEVITE TRANSISTOR • Waltham, Massachusetts

## High-Altitude Electron Density To Be Studied at Penn State

A new method of measuring electron densities in the upper atmosphere will be investigated by the Ionosphere Research Laboratory of Pennsylvania State University.

The laboratory will study the feasibility of using a "mother-daughter" rocket system to measure electron densities at up to 1,500 miles into the ionosphere. The method, being tested under a grant from the National Aeronautics and Space Administration, is expected to be particularly valuable in determining the rate at which the local electron density decreases with altitude above the maximum $F$ layer.
In the proposed mother-daughter system, a 15 - Ib capsule will be ejected from a rocket after burnout of the final stage at an altitude of about 250 miles. The capsule and the main rocket will follow similar trajectories with a maximum separation of about three miles.
Radio-wave velocity measurements will be used to gage the electron density. The ejected capsule will contain three phase-locked radio transmitters operating on 6,12 and 72 mc , a matching system and an antenna. Signals from this capsule will be received at the main rocket, amplified and compared in phase. The phase differences and signal strengths will be telemetered to the ground from the main rocket. The velocity of the radio waves is dependent on the frequency, ambient electron density and the local values of the earth's magnetic field.

Supplementary instrumentation will provide exact data on the distance betweer the capsule and the rocket, as well as rotation data required to reduce the measurements to high-resolution information of the ambient electron density.


Breadboard model of $72-\mathrm{mc}$ receiver in main rocket of proposed "mother-daughter" ionosphere rocket. < CIRCIE 26 ON reader-service card
ELECTRONIC DESIGN • May 24, 1961



## in automatic logic circuit testing

Production of packaged module circuits gains new impetus with this major achievement! Now you can automatically test the operating characteristics of logic circuit modules, memory boards, component cards and similar units -with speed, precision and dependability.

The new Tape Programmed DIT-MCO Model 720 rapidly performs static and dynamic tests on active and passive modular circuits.

Tests that can be performed with the new Model 720 include:

- Logic circuit response to all logical combinations of DC input levels.
- Marginal tests to evaluate logic modules under conditions of lowered or raised supply levels in combination with low. ered or raised signal input levels.
- Complete tests of conversion matrices for proper logic, levels.
The Tape Programmed DIT-MCO Model 720 will accurately test variables which are required to maintain $=0.5 \%$ ascuracy, and 3 digit tolerance values can be programmed. Provision is made for programming AC or DC sources and external signals through the tester.

Performance of this entirely new circuit analyzer is backed by the experience and reliability of DIT-MCO, Inc.-the nation's leader in automatic circuit testing.


## DIT

DIT-MCO, INC
 MCO

Kansas Cily 5, Missouri
911 BROADWAY

Denver Area
Los Angeles Area New York City Area Palo Allo Area Seattle Areo attle Area HArrison 1-0011

AComa 2.1202 ORegon 8.6106 MUrray Hill 2.50ิ44 DAvenport 5.0180 MA in 4.3780



## Becco Ammonium Persulfate etches cleanly!

For etching printed circuits, Becco's ammonium persulfate process offers important advantages. As one large producer of printed circuits puts it: "Ammonium persulfate is better all around. We have experienced little trouble and far fewer rejects. It is more easily dissolved than ferric chloride, and can be safely
handled in large volumes, with resultant cost savings. "Moreover, the persulfate solution etches cleanly with u minimum of undercut and can be used with all conventional resists, and on all laminates. A 'natural' for solder-plated resist.'

Switch to Becco ammonium persulfate and get thesc advantages:

1. Various types of circuits can be etched in one system.
2. Etchant is relatively non-corrosive.
3. Etchant remains clear and transparent in use
4. After-treatment is simplified.
5. Sludge formation is avoided during etching
6. Waste solution can be easily disposed of.
7. Copper can be recovered from spent etching solution.
8. Venting of the etching area is unnecessary
9. Equipment corrosion is minimized.
10. Cost of etching solution is low.
11. Conversion from other etching processes is simple and inexpensive.

Want more information? We'll be glad to send full details. Just write us at Department ED-61-18.

## BECCO Ammonium Persulfate



Putting ldeas to Work

FOOD MACHINERY AND CHEMICAL CORPORATION
Becco Chemical Division
C1 EAST Genoral Bales Oplicee
161 EAST 42nd STREET. NEW YORK 17, N. Y
CIRCLE 28 ON READER-SERVICE CARD

## NEWS

## Radio Astronomy Session Slated for August WESCON

A radio astronomny session will be held jointly with the International Astronomical Union at WESCON Aug. 22-25 in San Francisco.

This year's WESCON will also give speccial atten ion to the generation. detection and application of coherent infrared and optical electromagnetic radiation, using the latest quantum-electronic techniques.

Authors participating in any part of the technical program are asked to submit papers to WESCON headquarters in reproducible form by July 1.

## Missile Checkout Techniques To Help Army Test Aircraft

Electronic checkout techniques similar to these used in missile launchings will be used by the Army to test its aircraft for safety
Known as Project ALARM (Automatic Light Aircraft Readiness Monitor), the system is under development by Bendix Corp.. York. Pa., under a contract with the Army Transportation Research Command. Fort Eustis, Va

The concept envisions the use of strategically placed sensors to forecast electronically the conditions of critical structural components, thus saving valuable manhours in carrying out maintenance inspections.

## Eta Kappa Nu To Honor Leading Young Engineer

The Eta Kappa Nu Association is again searching for an outstanding young electrical engineer to honor with its annual achievement award.
The qualities sought are achievement in the profession, leadership in church and civic affairs, evidences of cultural development and participation in professional activities. Recognition may be all or in part in any field, including industrial, educational, political, research, artistic, athletic, etc.
Eligible engineers must be under 35 by May 1 and must have been graduated not more than 10 years ago from an American college or university with a BS. EE or its equivalent.

Engineers, managers and teachers are being urged to help select candidates by May 31 from among their associates and acquaintances.

Further information may be obtained by writ ing to W. B. Groth, Chairman, 158 Oakland Ave., Eastchester, N.Y.

## FAA to Test 'TV Marker' System

 That Pinpoints Aircraft in TrafficA new system to facilitate identification of aircraft by different radar controllers is scheduled for delivery to the Federal Aviation Administration for evaluation this fall
The system identifies aircraft as control of their movements in a traffic pattern is passed, or "handed off," from one radar operator to another.

Called TV Marker Hand-Off Equipment by its developer, Hazeltinc Corp., Indianapolis, the system allows one radar controller to place an identifying number over a particular radar tar get. The coordinate's of this target are translated to controllers of adjacent sectors in a manner that identifies the same target, but on a different radar indicator. or on a different radar system.

Two numerical characters are associated with each hand-off. These are written directly on the radlar display and are intended to tell the radar operators which adjacent sector or neighboring facility is initiating the hand-off

According to Hazeltine, the system should have application at every high-density traffic hub.

Gas Furnace Uses TE Power Source


Electric power from a built-in thermoelectric generator drives the blower in this new gas furnace under test at the C. A. Olsen Manufacturing Co., Elyria, Ohio. The 130-w generator, which converts heat directly into electricity without moving parts, is positioned around the combustion chamber of the furnace. The generator consists of four modules $8 / 14 \mathrm{in}$. high by $4-1 / 4 \mathrm{in}$. wide by $2.1 / 2 \mathrm{in}$. deep, one of which is being installed here. The blower and motor, powered by the generator, are at the base of the furnace.


## Encapsulation with

 putty-type Alkyd satisfies need for reliability by resistor maker and customers.Today's creative engineers design with PLASKON Alkyd in mind for the man. ufacture of delicate electronic components. Here are reasons why electronic engineers prefer PLASKON putty-type Alkyds as the encapsulation medium:

* Simple to fabricate . . . molds quickly at extremely low pressures... permits rapid production cycles.
- Clean to handle . . . nothing to mix.
- Dimensional stability prevents distortion or damage to delicate inserts.
* Coefficient of linear thermal expansion is similar to that of popular wire alloys . . . reduces strain in service... aids the functioning of encapsulated units.
- Thermal conductivity helps to dissipate heat faster, resulting in less change in resistance value before and after encapsulation.
* Available in colors, for coding.
- More economical than most encapsulating processes.

PLASTICS DIVISION
AO RECTOR STREET, NEW YORK G. N. Y.

CIRCLE 29 ON READER-SERVICE CARO



Tantalum Capacitors . . . industry's broadest line of wet slug, solid and foil types.

Ceramic disc capaciłors . . . made by Radio Materials Company, a Mallory division.

Subminiature Snap-Action Switches
Milli-Switch line, with varied actuators.

Selector Switches . . . dozens of models.
Heavy-Duty Electrolytics . . . high capacity HC type and non-polarized NP type.
Vitreous Enamel Resistors . . . 5 to 200 watts, including MIL types.

Get them all . . . get them fast . . . get them at factory prices from a Mallory Industrial Distributor near you. Call him now. He's stocked to handle your hottest order.

Distributor Division
Indianapolis 6, Indiana
MALIORY

## See your Mallory Industrial Distributor

These Mallory Industrial Distributors stock the limes indicated by numerals:

Key: 1-Tantalum capacitors 2-Selector switches 3-Vitreous enamel resistors 4-Ceramic disc capacitors 5-Snap-action switches


|  |  |  |  | Electronic Indus. Sales 12 | Washingion, D.C <br> Miami. Fla. Orlando, Fiz. Tampa. Fla |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Electronic Equipment East Coast Radio Thurow Distributors | 1 | 3 | 4 |  |  |
| Allied Radio Chauncey's. Inc Newark Electronics Melvin Electronics Bruce Electronics | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | 3 | 4 | 6 | Chicago, III. Chicago. III Chicago. III Springtieid. III. |
| Graham Electronics | 2 | 3 | 4 | 56 | Indianapolis, Ind. |
| Radio Supply |  |  |  | 5 | Wichita, Kansas |
| P. I. Burks 8 Co. | 2 |  |  | 6 | Louisvilie. Ky. |
| 08 H Distributing Kann Ellerl Electron. Radio Elec. Serv. | $8^{2}$ |  |  | ${ }_{5}{ }^{5}$ | $\begin{aligned} & \text { Batt,more, Md. } \\ & \text { Baitimore, Md } \\ & \text { Baltimore, Md. } \end{aligned}$ |
| Cramer Electronics DeMambro Rad Sup Lalayelte Radio Radio Shack |  | 3 |  | $5{ }_{5}^{6}$ | $\begin{aligned} & \text { Boslon, Mass } \\ & \text { Bosion. Mass } \\ & \text { Boston. Mass } \\ & \text { Boston. Mass } \end{aligned}$ |
| Radio Speciallies | 2 |  |  |  | Detroit, Mich. |
| Northwest Radio | 12 |  | 4 |  | Minneapolis, Minn |
| Burstein-Applebee Walters Radio Interstate Indus. Elec. Olive Electronics | ${ }_{1}{ }^{2}$ |  |  | ${ }_{5}^{6}$ | Kansas City, Mo Kansas City, Mo St. Louls, Mo. St. Louls, Mo |
| General Racio | $\frac{2}{2}$ |  |  | 6 | $\text { Camden } \mathrm{N}_{1} \text { I }$ Clifton, N. 1 |

CIRCIE 30 ON READER-SERVICE CARD


## EDITORIAL

## Recognize False Pride: Report Those Failures

Of the hundreds of thousands of different $\mathrm{R} \& D$ projects currently funded in the United States, many are destined to produce negative results from a utilitarian standpoint. Will such failures be publicized for the benefit of future researchers or will everyone faced with similar questions have to find out for himselfand spend millions of dollars doing it?
Scientists and engineers pride themselves on their apparent opell-minded attitude which permits them to abandon a hypothesis if tests prove the assumption wrong. There is also a sense of honor which compels a scientist to publish his findings -if they are successful. What is it, except false pride, that makes researchers, engineers and their organizations hide, or mask, misses and negative results.

Could it be that we are so inured with the philosophy of utilitarianism that we find it evil to discuss something that does not pass the test of utility. Is success equated only with producing something of utility or can it not also be measured in terms of thoroughness and objectivity? Let's have more forthright reporting which assumes that untrue assumptions proved untrue are as valuable and as good as proved true assumptions.

## Wanted: A Gold-Plate Special Pot

A common sight in almost every lab is a set-up consisting of a motor-pot-counter-meter. The sound emanating from the set-up is also familiar-running dry gears and clicking counters. A typical conversation between a visitor and the lab engineer goes like this:

Visitor: "Life testing?"
Engineer: "Yes."
Visitor: "I thought it wasn't good design to use pots in equipment that has to have the reliability you are seeking.'

Engineer: "That's right, but what can one do?"
Visitor: "Can you buy a good pot? I hear some systems producers are building their own.'

Engincer: "I've been tempted to make my own. I can't buy a good cnough one."

It seems to us it is high time for an all-out effort on the part of potentiometer manufacturers to make a truly superior, highly reliable unit.

To not rise to this challenge is to lose one's reputation by forfeit. Certainly such an ignoble demise should not occur in this era of scientific achievement.


Complete GUARDED WHEATSTONE Resistance Measuring System


- Designed to meet an industry need. A complete matched system combining the high accuracy needed for today's precision equipment with the versatility and simplified operation essential to production-line economy
- Initial accuracy, $=0.005$-long term stability better than $=0.005$; $;$ Ten microhm per dial division on lowest range, internal guarding permits accurate, high resolution measurements to twelve gigohms (kilomegohms). Error-free, in-line readout including decimal point and resistance units. Bridge can be easily connected for two, three and fourterminal resistance measurements.
- Matched generator-detector features a null-indicator that can be easily calibrated (o) provide direct deviation readings in percent or resistance units. Bridge connected to detector at all times so) that ther mal einf can be balanced out before the generator is connected. Six output values to match a wide range of bridge input resistances. Gen erator output power limited to 1 watt for bridge protection
- Complete matched system-Model 230 Resistance Bridge, Model 800-R Generator-Detector in metal cabinet-\$1875, f.o.b. factory. W'rite for Catalog C. 21


Impedance Bridges and Accessories Decade Voltage Dividers Decade Resistors and Capacitors ESIAC Computers

Electro Scientifio Industries
7524 S.W. MACADAM • PORTLAND I9, OREGON
CHerry 6-3331
formerly ELECTRO-MEASUREMENTS, INC.

## Servos Can Be Designed Corner by Corner


#### Abstract

An outgrowth of a lecture for fellow engineers, "Servo in a Nutshell," author Rudisill's advice is aimed at the designer who suddenly finds he must design an instrument serco and wants to know the basic design steps. He rapidly covers the practical "thinking" used by practicing servo designers in specifying components and testing out systems.


## John A. Rudisill, Jr. <br> Bell Telephone Laboratories Burlington, N.C.

T IS possible to design and test all the elements of a servo system in terms of "corner frequency."
"Comer frequency" is of course that point (or points) on a db vs log frequency plot where the straight line approximations meet. (See Fig. 1 for definition.) The phase shifts associated with the "comers" are what caluse servo stability problems.
The concepts described here can be used for practical servo design and laboratory breadboarding, even without a deeper understanding of the underlying mathematics. These principles are especially useful in complicated servos because they permit the designer to keep his head above the details. The graphical nature of the principles makes them a natural design tool.

## Spot the Troublemakers

## Among the Component Corners

The components around a servo losp can be rated according to the flexibility of their corner frequencies. In Fig. 2, a typical position servo schematic, what are the critical components? The feedback transducer and the error generator can be eliminated because they are not frequency sensitive, at least in the servo's frequency spectrum. In addition, the tach loop will be overlooked for the time being. Of the remaining components, note that the equa izing network and the servo amplifiers are more flexible than the servo motor. It is easy, for example, to construct RC networks with corner frequencies placed over a range of frequencies extending far beyond the spectrum of any electromechanical system.

Amplifiers, though less flexible than networks. are still much more adaptable with respect to
corner frequency location than the servo motor. The servo motor is the least flexible of the components. Despite many fine designs now available, this "necesary evil" of an electromechanical system has definite bandwidth limitations. As a consecquence, most of the servo designer's time is spent trying to compensate for the motor's inherently low corner frequency:
Servo components will be described in terms of their corners, starting with the servo motor.

## Servo Motor Corner

## Pinpoints the Design Problem

Fig. 3 shows how the (l) ratio varies with frequency for the popular two-phase servo motor. The input is the voltage modulation of the motor's control phase and the output is the resulting mechanical oscillations of the shaft.

At low frequencies, the motor acts as a single integrator and the gain falls at 6 lb per octave, with the accompanying $-90-\mathrm{deg}$ phase shift. But at ( 1 ) there is a corner determined by the amount of inertia, rotor resistance, friction, and the developed torque. After corner (1), the gain falls at 12 db per octate and the phase shift increases to -180 degrees.

As with feedback amplifiers, it is the -180 -deg phase shift following the corner which creates the problem. In a closed-servo loop, the shift would cause instability

The corner frequency of even the best servo motor, when delivering useful power, is unfortunately low. Values range from 0.01 to 50 cps for modern designs with the higher frerguency units less capable of delivering torque. Therefore the designer's problem is to work around this corner on the system level. As will be shown, a tichometer loop around the motor is one way of doing this.

Fig. $\&$ shows the response for a typical servo amplifier. Servo amplifiers are available which procluce pure gain with negligible phase shift over the complete servo operating range. To eliminate low frequency corners, direct-coupled amplifiers are used (or as is more common, ac amplifiers are used in conjunction with a carrier frequency).

All amplifiers do have upper corners (2) caused by capacitance effects, beyond which the gain drops at 6 dl per octave. Since this corner can be designed to be a given amount beyond the motor's crorner, it can sometimes be used to goorl advantage. If not used properly, this drooping characteristic can caluse untold problems.

Equalizers, like the servo amplifier, are familiar to all electronic designers. A typical circuit along with its response plot has already been shown in Fig. 1. In a servo system, this type of equalizer would be used as a simple means of introducing comers (.3) and ( 4 ) to offset the effects of other corners.

## Combining the Elements

To Form the System
Stepping from the component level to the system level of analysis is fairly simple with the corner frequency concept. It is merely a matter of adding (or properly combining) the individual responses, which are usually conveniently in series with each other, and then knowing how this will relate to the desired closed-loop response.

Fig. 5 is a brief summary of the familiar feedback amplifier. To the basic amplifier with gain $A$, has been added a feedback circuit $E_{f /}$, which may be either a gain or loss according to its sign. Since the open-loop gain. AB. contains all the elements in the closed loop, but is relatively simple to measure, it is used as the basis of both feedback amplifier and servo design. The loop is broken at a convenient point, usually " $x$," and the test frequencies and voltages are fed into the "foruarel" side of the break and the $A B$ response read from the other side.
(Note: It may be extremely difficult to calculate the open-loop gain, $A B$. In many high-per-
formance servos it is exen difficult to aceurately measure the open-leop) gatin because of amplifier saturation from drift. Many new servo techmíques center about the incasurement of open-loop gain under closed-lonp conditions.)
Fig. 2 has already shown a servo composed of all the components discussed so far plus a tachometer. The transducer would be a potentioneter (or one of a pair of synchros). The equations for the feedback amplifier will hold for this system. Further, neglecting the tach loop for the time being, the combined response plots of the elements around the loop can be obtained by direct graphical addition.
Fig. fia (solid line) shows the combined openloop) response for the servo motor and amplifier. The limitation on system frefuency response im-
posed by the motor corner (1) is obvious; with the amplifier gain shown, the system would be unstable if the loop) were closed.

## Tach Modifles

## Motor Corner to Extend Response

The value of putting a tachometer in in "inner" feedback loop around the motor is that it creates a new "black box" to replace the motor in the main servo loop (see Fig. 2.). This new "black box" has a higher frequency comer.

A tachometer (Fig. 7) has no corner frequenc! From a position servo's standpoint, a tachometer is a differentiator ( +6 db ) per octave) which. when in series or open-loop with the motor, reduces the motor's integrations by one level. That is (see dotted line in Fig. 6a), the tach's open-
loop effect is to reduce the -6 db per octave slope to 0 db per octave and the -12 db per octave slope to -6 db per octave.

Closing the tach-loop to see what the "black box" means to the system cannot be done by simple graphical addition as for series components; it must be done according to the feedback equations of Fig. 5. Without going into the mathematics imsolsed (since in many cases the closed tach loop response would be found by laboratory testing) the tach adds electrically simulated damping to the motor's own damping. Since the motor damping created the original corner (1), the tach's additional damping understandably moves the motor corner out to (Ia).

Corner (1a) falls at the frepuency at which the $o_{i}$ )en tach loop (Fig 6at) crossed unity gain. The


Fig. I. RC network offen used for servo equalizer indicates (in its responso curve, below) the relationship between corners (3) and (4) and the phase shits accompanying these corners. A vittue of this network (for example) is that while corner (3) couses a signal attenuation at higher frequencies, corner (4) brings the phase shift back to zero


Fig. 2. Position servo's main louter) loop is limited in bandwidth by the motor's corner until mod. ified by the tach loop.


Fig. 5. Familiar
feedback amplifier and its equations.
The loop is usually
broken of " $x$ " for open-loop tests.
reason that the tach can only move the motor corner out to (la) is that beyond this point the tach loop gain is less than 1 and the tach does not receive sufficient signal from the motor to be effective.
But, even though the system's lowest frequency corner has been brought out to (1a), the resulting system curve (solid line in Fig. 6b) is still unstable when the amplifier gain is turned up for good low-frequency response.
The addition of the equalizer network's corners, (3) and (4), solves this final problem. Corner (3) lowers the main loop gain (dotted line in Fig. 6 b) as the frequency approaches corner (la) while corner (4) keeps the gain up at unity gain frequencies so that the open-loop phase angle will not drop too snon to -180 deg.

## Corners Can be Juggled

to Optimize Final System
The beauty of the corner frequency approach is that the individual curves for the components are relatively easy to obtain, and once in hand, are easy to juggle for the best final system.
The corners for the networks can be obtained by calculations, those for amplifiers by inputoutput tests, and those for motors from manufacturer's data. The open- and closed-loop responses for the tach and main loops can be obtained by successive laboratory breadboard tests as the servo is built up. These corners should be combined on a single graph (Fig. 6a and 7b) and this graph used as a progressive guide for further system improvements.

Fig. 7. Tach response is an electrical signal proportional to shaft velocity (which amounts to a +6 db per octave slope with respect to motor shaft position). It does not have a corner.


Fig. 8. Output of final should "closed" servo hove this shape response for step inpul.

Typical design improvements would be shifts of the network corners (3) and (4) to increase the reliability of the servo with variations in the components due to aging or temperature.

Three points may be picked off the final openloop curve, Fig. 6b, which can be used by the servo designer as handy figures-of-merit for his system:
$\omega_{a}$ - If the initial portion of the open-loop curve is extended to zero $\mathrm{db}, f_{o}$ is obtained. Multiplied by $2 \pi$ this becomes $\omega_{0}$, a point which is easily measured and provides a direct indication of system gain. If the rate at which the servo is moving is divided by $\omega_{0}$, the lag or tracking error is obtained.
$\omega_{1}$ - If the straight line between the equalizer's corners (3) and (4) is similarly extended to the zero db axis, point $f_{1}$ is obtained. This is approximately the natural frequency of the servo. Multiplied by $2 \pi$, it becomes $\omega_{1}$, a direct measure of the speed of response of the servo. ( $1 / \omega_{1}$ is the minimum time for the servo to respond to an input).
$f_{c}$ - The point at which the main open-loop curve itself goes through the zero db axis is $f_{r}$, the system crossover frequency. It indicates the upper limit of servo response after the loop has been closed.

## Rules-of-Thumb

## For Adjusting Corners

The following rules-of-thumb are the goals of the working servo designer:

1. $\omega_{0}$ (or $f_{0}$ ) should be held high by the am-
plifier gain to keep the servo error small 2. Corners (3) and (4) should be used to limit the gain at frequencies betow $f_{1 .}$. The resulting $f_{c}$ will be a compromise between maximum band pass and low noise.
2. Corners (3) and (4) along with fo dictate $f_{1}$. $f_{1}$ must be kept as high as possible for rapid servo response.
3. The final tach loop corner (lai) showild oceur in the main lonp between -10 and -20 dh. This will allow for design variations and it will give a phase margin of 30-60) deg at $f$. (Phase margin is the "safety factor" between the system crossover phase shift and the unstable -180 deg situation).
4. f. should be 1/10th the tach loop corner frefuency (fa) to ensure that the phase margin o! step 4 is obtained.
It is assumed that the engineer will provide the isolation between the components needed to maintain the straight line rellationships deseribed in this analysis. Deviations from the ideal rela tionships may introduce distortion, jitter, oscillations. slow responses, large errors, and overshoots.

## Closing the Loop

Puts Analysis Back Into the Time Domain
When the break " $x$ " in the main loop is finall! connected. what happens when a step input is applied?
The result is shown in Fig. 8 which is a time domain plot. (The eorner plots hase been of conerse in the frepuency domain.)
Fig. 8 is what the previous comer plots have beem leadine up to. Ideally, the output should wershoot the command by 1.- -1.5 times. under shoot, then settle down to the crommanded value Both the overshoot and the undershoot are in herent in a system "tuned" for fast response. (Yee engineers have been known to bun the midnight oil trying to eliminate the undershoot!)

Adjustments to the servo's final closed-loop re sponse may be made through adjustments of the amplifier's gain, the tach long gain or the equalirer.

An overdamped response: (sluggish response) can be cured by increasing the gain or decreasing the frequency of the tach loop corner (1a). An underdamped response (too large an overshoot with subsequent oscillations) can be cured by decreasing the gain or increasing the frequency of the tach loop corner.

Thus by following the concerpt of comer frequency from compenent level, through tach loop and equalizer adjustments, to total system, a simple, unified, "working" approach to the design of servo systems has been achieved. -


# YOUR BEST BUY FOR APPEARANCE AND PERFORMANCE WESTON 301 PANEL METERS 

Now...modern 3½-inch meters<br>with time-tested Weston movements

You'll find new design advantages in the familiar, reliable Weston 301 panel instruments. Case and mechanism are redesigned for modern needs-more reliable than ever before-at no increase in cost!

The exclusive Cormag ${ }^{\text {® }}$ mechanism makes the 301 immune to the effects of stray magnetic fields. Instruments can be mounted on magnetic or nonmagnetic panels, close to other instruments, without special adjustments. Choose between round or rectangular case. modernistically styled in phenolic plastic.

Another design advantage... New $2^{1 / 2}$-inch Weston panel instruments-the 201 series-are designed with matching cases and incorporate the same advanced features!

For specifications...information... or the address of your nearest distributor, contact your local Weston representative, or write to: Daystrom, Incorporated, Weston Instruments Division, Newark 12, New Jersey.
International Sales Division, 100 Empire Street,
Neuark 12, New Jersey. In Canada: Daystrom Led., 840 Caledonia Rd., Toronto 19, Ontario.

Weaten 201 Sories is avallable in oc, de, and Bf typer . . . volthetorn ammotors, milli- and miero-am. epters . . . in dozens of rengos. Both round and rectangular metor fluch aounted 301 serie are flush mounted. 301 Sorion Series requires a $2.22^{\prime \prime}$ cutout.

## DAYSTROM, incorporated

WESTON INSTRUMENTS DIVISION Reliability by Design

CIRCLE 32 ON READER-SERVICE CARD

## A Check List for Design Review



Very fare of us learn amplhing new from a check list. But a good check list can help prevent some accully costl! errors. This one was mot reall! created h!! an!! one persom. It wess started in carly 195\% b!! RCAB Sirhorne S!gstems Division. Since then it has been revised and refined through use.

The first part, cotering Electrical Inesign, is presconted here. The second and comeluding part. cotering Mechanical Design. Human Ensincerings and Value Engincering, will appear


## Bruce D. Smith, Irving M. Aptaker Radio Corp. of America <br> Aerospace Communications and Controls Div.

 Burlington, Mass., and Camden, N.J.ACIIECK LIST alone cannot lead to better equipment. But it is a tool that can help designers meet the challenge of making better equipment. In a design review, no attempt shou!d be made to redesign the equipment being reviewed; the primary objective should be to review the design. It should be emphasized, of
course, that the design, not the designer, is under review.

For maximum benefits, design reviews should be conducted at the proper times in a design cycle. Reviews should minimize the possibility of repeating errors made in previous designs and, in general, should assure more reliable, reproducible, and maintainable products while minimizing cost of parts, materials, and processes. The following check list should help engineers evaluate and improve their designs.

## Electrical Design

## Prarts Selection and Evaluation

1) Have appropriate standards been consulted for selection of standard electrical components:
2) Can ar redesign omit a nonstandard part or replace it with a standard part?
3) What parts are nomstandard?
4) Have nonstandard parts been appron ed?
5) Have emsirommental tests been started on momstandard parts?
6) Have potted circuits been subjected to envirommental testing?
7) What are the parts hating highest failure rates?

## P'arts Application

## RESISTORS

1) What is operating ambient temperature?
2) What power dissipation is estimated?
3) Is the resistor properly derated?
4) What tolerance limit is required for satisfactors crcuit operation?
5) What tolerance buiklup (due to) tomperature. aring, electrical stress, etc.) can be allowed?
6) Has rated wattage been adjusted where short monnting leads are used?
7) Can any potentiometers be replaced by fixed resithor:?
8) Has the voltage limit been exceeded on atns fived componsition resistors?

## CAPACITORS

1) What is operating ambient temperature?
2) What working voltage is expected?
3) Is the capacitor properly derated?
4) Is the capacitor subject to surge voltages that exceed the rated operating voltage?
5) What tolerance limit is reepuired for satisfactory (ircuit operation?
(i) What tolerance buildup can be athowed?
-) What derating factor wats used for ace ripple on pulse voltages on MIL-E-2.5A paper capacitors?
s) Have capacitors with adequate temperature ratings been used whenever possible?
6) Have temperature-compensating or low-temperature-coefficient (apacitors (mical or ceramic) been used wherever high stability is required?
7) Have high-dielectric ceramic capacitors been restricted to bypass usage?
8) Are tantalum capacitors bypassed for high frequencies (above 100 kc )?
9) Are all capaciturs heavier than $0.50 \%$ securely mounted in accordance with specification MIL-E 5400. paragraph 3.1.3.5?

## TUBES

1) Does the specification of the tube type define the required characteristics?
2) Does the operation of the tube approach any absolute rating under any usual variation of supply coltage or load?
3) What is the operating ambient temperature?
4) What electrode ratings are critical in this application?
5) Is the heater voltage within ratinge? What variations are expected?
6) Is the heater-to-cathode voltage within rating in this application?
7) Are the plate and screen grids properly derated?
8) What tolerance buildup can be allowed?
(9) Has (in variation been considered?
9) Were maximum grid-resistance ratings observed?
10) What cariation in iuput and or ontput capacity can be tolerated?
11) Does circuit operation depend on a tube parameter not controllable by the designer?
1:3) What is the maximum rated is maximum ex pected bulb temperature?
12) Will the circuit perform satisfactorily with randomly selected tubes? - with tulxes operating at their upper or lower MIIL limits?
1.5) Have tube-approval data been taken?
13) If a printed-cirenit lxard is used, have adequate coroling measures (comsection to conoling air or comduction to a heat sink) been taken to prevent damage to the board or components mounted on it? 17) Have standard tube shiedd been used?

## TRANSISTORS

1) Doen the sperification of the transistor type de fine the required characteristics?
2) Deses the operation of the transistor approach any absolute rating under any usial variation of supply voltage or load?
3) What is the operating ambient temperature?
4) What is the maximum rated power dissipation? What is the maximum power dissipation expected in this application?
5) What is the maximum rated collector voltage? What is the maximum collector voltage in the present application?
(i) What is the maximum rated collector current?
6) What deviation in beta is tolerable?
7) How much deviation in beta is expected due to tolcrance buildups?
8) Will the circuit pertorm satisfactorily with ram-
domly selected transistors? - with transistors operating at their upper or lower MIL limits:
(10) What deviation in power gain is tolerable:
9) What deviation in pewer gain is expected due to tolerance buildup?
10) Is the moise figure tolerable at the ojerating ambient temperature?
1:3) How much leakage current is expected at the operating ambient temperature?

## SEMICONDUCTOR DIODES

1) Does the specification for the dioxle type define the refuired characteristics?
2) What is the operating ambient temperature for each dience:?
3) What is the power dissipation within the diencle? What is the maximum rated power dissipation?
4) How much reverse recosery time deres the dioche require?
5) What is the rated peak inverse voltage?
6) How much reverse current can be tolerated?
7) How much reverse current will How at the oper ating ambient temperature?
8) Does the circuit perform satisfactorily with randomly selected dindes? - with diokles operating at their upper or lower MII, limits?
9) What Zener voltage reference is required? What Zener reference voltage is expected?

## TRANSFORMERS, CHOKES, COHLS

1) What is the aperating ambient temperature:
2) What deviation in $Q$ call be tolerated?
3) What deviation in $Q$ is expected due to tolerance. buildup and to temperature changes?
4) What is the maximam current-carrying cap:at abilit! of the choke or coil? What is the maximom current expected?
5) How close is the highest operating frecpuenc! to the resonant frepuency of the choke or conil? 6) Has a recpuirement for shickling been established?
6) When a hum problem exists, has special consideration beeol given to core constraction? 8) Do transformer specifications conform to MIL, standards:?

## RELAYS AND SWITCHES

1) What "quality level" does each relay or switch represent?
2) How many acthations per hour are expected?
3) How many actuations per mission are expected?
4) What per cent of rated current does each contact carry?
5) Is relay closing time or opening time critical: It so, how much increase is tolerathle?
fi) What are the pull-in and drop-out voltages or currents?
6) What is the manutacturer's tolerance for initial coil resistance?
S) How much change in coil resistance is tolerable: 9) Has are suppressiom beeth used?
7) Has the possibility of dry-circuit operation been considerect?

## ELECTROMECHANICAL DEVICES

1) Have the adverse effects on brushes at high altitudes been considered?
2) What consileration has bern given to variations of de moter speecd-torgue characteristics due to temperature and altitude?
3) How eritical to proper operation is the speedtorcgue characteristic?
4) Can the associated circmity tolerate increased loads cansed be tariation in motor characteristic?万) Have appropiate specialists been consulted on the use of rotary soldnoids and timing motos?
f) Has the designer depended solel! o:a matnutacturer's data for determinisig the force movement characteristics of solemoids?
i) Are meter windows sealed to prevent moisture formation:?
(b) las the possibility of charge formation on mete: "indows been insestigated?
(9) Are resolvers chacked for accuracy and phase shift at ellevated temperatures?

## CONNECTORS AND PLUGS

1) Does the unmber of active pins per eomector contorm to the recommended limit?
2) Is a sulficient number of spare pins available on each comector?' At least four spares for commectors wer ${ }^{2}$ fins per MIL-E-5tooc: paragraph 3.1.5.3.1

## miscellaneots parts

1) Has the current rating of wire been reduced in cases where voltage drop is important?
2) Is wire color coeding rerpuired, and. if so, is it in accordance with proper standards or specifications? 3) Has placement of components on printed-circenit boards been considered from the crosstalk point of vicw?
3) Does a heat-dissipation problem exist on printed. circuit boards?
万) Is a keying scheme employed to prevent interchanging printed-circuit boards?
(i) Are transistors, diodes, and tantalum capacitors properly polarized on printerl-circuit lowards?
4) Are large potential gradients possible between adjacent pins of connectors on printed-circuit boards? 8) Do circuit breakers conform to MIL-(-.-9) 9 9R?

## System and Circuit Considerations:

1) What variations in input signal cam be tolerated? What bariations are expected?

2) What variations in impedance presented to the input terminals can be tolerated? What is expected? 3) How does the input circuitry contribute to input tolerances:
3) Is ac-power-supply distortion critical?
4) What percentage of distortion can be tolerated? What is expected? What tests have been performed to confirm the answers?
fi) What variation in B + voltage can be tolerated?
5) What tariation in bias voltage can be tolerated?
6) What design features protect the circuit against excessise variations in line voltage?
7) What design features protect the circuit against loss of $B+$ or bias-voltage supplies?
8) How much change in the assumed cable length of inputs and outputs can be tolerated?
9) Is over-all protection provided against over-load, excessive heating. pressure changes, etce?
10) Do self-test features of a mit meet applicable reguirements?
1:3) What problems were observed when the circuit was tested ion conjunction with other mits?
11) Has the unit been subjected to emsirommental testing? What problems were observed with respect to temperature. moisture, vibration, shock, altitude? 15) What alternate circuits or systems were considered!?
12) Have "preferred circuits" been used wherever possible?
13) What factors influenced the chovee of this particular circuit or system?
14) Are there firm specifications for this circinit. including test specifications?
15) Can any unreasonable or unusually difficult requirement be relaxed?
16) Cann a simulation study be of assistance?
17) What marginal testing has been performed? Was marginal operation indicated in any case? What are the critical parameters affecting marginal operation?
18) Hanc heat rans been made on clectrical components which are either thermal emitters or heat semsitive?
2:3) Hawe phase-margin checks been performed on all feedlatek lomps?
19) What decompling or nentralization schemes have been implemented to avoid regencrative feedback loops:
20) What analysis have been made to determine the existence of teedback loops and their effects on other cirenits?
21) Is circuit operation contingent on the proper

positioning of more than one switch or control; i.e., are several adjustable components necessary in the circuit?
22) Can any circuits be simplified and still operate within requirements?
23) Can the unit operate satisfactorily after the minimum reguired warm-up time?
24) What system adjustments are required when a muit is replaced?
25) What means are used to decouple the power supply?
26) What design features have been incorporated to suppress parasitic oscillations?
27) What are the required tolerances on output signals? What are the expected variations?
28) How does the circuitry contribute to output tolerances?
29) Do weight-reduction considerations affect reliability?
30) Have static and dynamic power drains been determined?

## Reliability Analysis

1) What is the estimated required mean life of this circuit?
2) What is the calculated mean life?
3) What is the mean life, based on bench or other tests?
4) Is there a history or record of bench failures? 5) Have random-failure rates and wearout rates been established for all parts?
5) What parts have an excessive failure rate?
6) What assumptions were made in calculations with respect to derating and temperature?
7) Are any parts operating near or above recommended ratings?
8) Has a statistical analysis been conducted to determine effects of drift in component parameters and of component-tolerance buildups?
9) Has a fail-safe design philosophy been used? 11) Is protection against secondary failures (resulting from primary failures) incorporated where possible?

## Safely Factors

1) Is there adequate protection against dangerous voltages?
2) Are high-voltage waming plates necessary?
3) Have interlocks, safety switches, and grounding bars beell considered?
4) Are all external metal parts at ground potential?

万) Are discharging rods mecessary to discharge large capacitors:?
6) Are bleeder and current-limiting resistors used in power supplics?
7) Are there burning hazards?
8) Are "hot" terminals exposed when plugs or connectors are not connected?
9) Are adjacent plugs or connectors keyed to prevent interchanging connections?
10) Can maintenance or adjustment be performed safely?

## Vaintenance

1) Are maintenance and test-equipment requircments compatible with the concept established for the system?
2) Does the unit require special handling?
3) Can the unit be readily installed and connected to the system?
4) Are factory adjustments such that they do not require readjustment when units are replaced in a system or when parts are replaced in the unit in the field?
5) What adjustments are necessary after a unit has been installed in the system?
6) Are adjustments capable of compensating for all possible tolerance buildups?
7) Is periodic alignment and/or adjustment recommended? How often?
8) Are all requirements for maintenance tests such that the specified time limitations can be met?
9) Has the number of factory and field adjustments been minimized?
10) Are interconnected circuits in the same package thus providing minimal inputs and outputs at each maintenance level?
11) Is the interaction between adjustments and other circuit paramcters minimized?
12) Is the design such that damage to the circuit cannot result from careless use of an adjustment or combination of adjustments?
13) Are all adjustments and indicators of the "center zero" type where possible?
14) Is periodic testing necessary? How often?
15) Are the test points adequate? Are they accessible in the installed condition?
16) What overhaul testing is required?
17) What specific test equipment is necessary?
18) Have factory and maintenance test equipment requirements been minimized and coordinated with the requirements for other units?
19) What special techniques are required in the repair, replacement, or alignment of the unit?
20) Are parts, assemblies, and components placed so there is sufficient space to use test probes, soldering iron. and other tools without difficulty?
21) Are testing, alignment and repair procedures such that a minimum of knowledge is required on the part of maintenance personnel? Can trouble shooting of an assembly take place without removing it from a major component?
22) What special tools and/or test equipment are required?

23) Can every fault (degrading or catastrophic) which can possibly occur in the unit be detected by the use of the proposed test equipment and standard test procedures?
24) Have parts subject to early wearout been identificd? Have suitable preventive maintenance schedules been established to control these parts?
25) Are the components having the highest failure rates readily accessible for replacement?
26) Are parts mounted directly on the mounting structure rather than stacked one on another?
${ }^{27}$ ) Are units and assemblies mounted so that replacement of one does not require removal of others? 28) Are limiting resistors used in test-point circuitry; i.e., is any component likely to fail if a test point is grounded?
27) (Can panel lights be easily replaced? (Panel lights should not be wired in series.)
28) Have voltage dividers been provided for test points for circuits carrying more than 300 v?
29) Will the circuit tolerate the use of a jumper cable during maintenance?
30) Are controls located where they can be seen and operated without disassembly or removal of any part of the installation?
31) Are related displays and controls on the same face of the equipment?
32) Are all units (and parts, if possible) labeled with full identifying data? Are parts stamped with relevant electrical characteristics information?
33) Are cables long enough to permit each functioning unit to be checked in a convenient place?
34) Are plugs and receptacles used for connecting cables to equipment units, rather than "pigtails" to terminal blocks?
35) Are field-replaceable modules, parts, and subassemblies plug in rather than soldered?
36) Are cable hamesses designed for fabrication as a unit in a shop?
37) Are cables routed to preclude pinching by doors. covers, etc.?
38) Is each pin on each plug identificd?
39) Are plugs designed to preclude insertion in the wrong receptacle? Are plug-in boards keyed to prevent improper insertion?

## Lilectrical Interference

1) Do all the provisions of MIL-I-26600 apply, or should some waivers be sought?
2) What tests have been performed for electrical noise?
3) Has the chassis or frame been grounded? Have
shock mounts been bypassed with ground straps? Has the insulated protective finish been removed where a metal-to-metal contact is required?
4) Are openings (such as those for access, ventilation, and case-mounted components) shielded to prevent case leakage? Are access doors of the metaltextile or finger-strip type?
5) Are heaters wired with twisted or isolated leads? 8) Are oscillators isolated from other stages and from antennas? Is oscillator power kept to n minimum? Is the oscillator heater decoupled from B-supply sources?
6) Do parasitic oscillations exist, and is suppression necessary?
7) Is undesired signal transfer reduced by interstage decoupling networks and link or parallel-tuned circuits?
8) Are pulse networks and transformers isolated? Are the leads associated with the pulse networks decoupled? Are these leads kept as short as possible? 10) Is pulse energy fed to succeeding stages in coaxial leads where possible? (Guard against waveform distortion caused by coaxial cable capacitance.) 11) Are sharp projections avoided in high-voltage circuits?
9) Are sharp bends avoided in high-voltage wiring? 13) Are the magnetic fields associated with indicators adequately isolated? Are indicator control and power leads decoupled by the use of feed-through bypass capacitors?
10) Are blower motors of the ac noncommutating type?
11) If it is necessary to use dc rotating equipment, is the design such as to minimize the effects of the commutation process? To this end, does the equipment employ such devices as interpoles, laminated brushes, as large a number of armature coils and commutator bars as possible, and good mechanical design and construction?
12) Is relay or switch operation likely to create power-supply transients in other units or circuits? 17) Has consideration been given to arc suppression during the making or breaking of switches or contacts?
13) Are gas-tube heater supplies and output leads well decoupled and isolated?
14) In power supplies using gas-tube rectifiers, is use made of line filters, electrostatically shielded transformers, and hash-suppression chokes in the plate and cathode leads?
15) Are electronically regulated power supplies provided with decoupling circuits to prevent oscillations in the regulator? Are long leads avoided in the plate and grid circuits? - -


In PRECISION FILM RESISTORS if it's news, expect it first from IRC

## now... a METAL FILM resistor for commercial as well as militiary applications

You and others in the industry have made increasing performance demands on deposited carbon and other film resistors because metal film has been too costly for many applications.
To continue our leadership as suppliers of precision film resistors, we set an objective-to produce a metal film resistor at a price comparable to deposited carbon resistor. We have mel our obiective!

IRC has invested nearly $\$ 2,000,000$ in plant, automated equipment and engineering to achieve this new dimension in Metal Film Resistors.
A new technical production breakthrough makes it economically feasible to specify premium performance Metal Film Resistors for commercial as well as military applications.
T-O Metal Film Resistors are available . . . now! Write for Bulletin B-3. International Resistance Company, 401 North Broad Street, Philadelphia 8. Pennsylvania.

mIL-R-10509:
CHARACTERISTIC B-exceeds all requirements.
CHARACTERISTIC C-Meets or exceeds all requirements except for $\pm 50$ ppm. T.C
CHARACTERISTIC D-meets or exceeds all requirements.
CHARACTERISTIC G-meets or exceeds all performance requirements without hermetic sealing
TEMPERATURE COEFFICIENT: within $\pm 150$ ppm.
DESIGN TOLERANCE: approximately 5 times tighter than deposited carbon (MIL-R-10509. Characteristic B) resistors and 20 times tighter than carbon composition (MIL-R-11) resistors.
RESISTANCE TOLERANCE: $0.5 \%$ and $1 \%$.
COST: Same as molded deposited carbon resistors.

## Fluorochemical

 Cooling for High Heat DissipationFluorochemical cooling, especially when implemented with forced diffusion, can often save an apparently hopeless situation. Werner Drexel, an associate engineer at Sperry Gyroscope Company's Air Armament Div., has had lots of experience in cooling electronic equipment. In most cases, he has found that conventional cooling techniques are perfectly adequate. But there are often situations, especially with airborne equipment and electronic equipment for orbiting vehicles, where the usual techniques are far from adequate.


## Werner H. Drexel

Sperry Gyroscope Co.
Div. of Sperry Rand Corp.

Great Neck, L.I., N.Y.

WHERE electronic equipment requires tight packaging and high heat dissipation per unit volume, fluorochemical cooling represents an important step forward. It often allows for space and weight savings that would be impossible with the use of conventional cooling methods and materials. Its advantages are particularly marked in cooling airborne electronic equipment.
How to cool with fluorochemical evaporation and condensation using forced diffusion can best be shown with an example of a typical design. We can take, as an example, a cooling problem with a regulated, high-voltage power supply.

Assuming densely packed equipment for airborne application, one must then cope with intense power dissipation as well as high voltage. It then becomes necessary to use boiling heat transfer and voltage protection with a coolant that offers high dielectric strength.
Such an approach requires a pressure vessel, partially filled to allow room for expansion and condensation. The space above the liquid should be filled with an inert gas to eliminate the vacuum that would result at very low temperatures ( -65 F ). At such low temperatures liquids have very low vapor pressures.
The coolant selected for such an application should have some of the following fluid properties:

1. Boiling point of about 200 F to permit ramair cooling.
2. Freezing point below -65 F to permit very-low-temperature operation.
3. Low viscosity, high density, and high volumetric expansion rate to provide good fluid convection.
4. Low surface tension so vapor bubbles boil off the hot surface readily, producing smaller


bubbles and promoting nucleate boiling.
5. High thermal conductivity and high specific heat for good heat absorption.
6. Self-healing properties, so liquid and gas will leave no decomposition products as a result of an electric arc.
7. Noncorrosive, nontoxic, and nonflammable properties for the liquid and gas within the temperature range of the equipment.

Table 1 compares several fluorochemicals with Coolanol, a widely used transformer oil, and lists some of their important applicable properties. Only the FC-75 liquid meets all the requirements specified for the high-voltage power supply. The $\mathrm{SF}_{8}$ gas is suitable for filling the space above the liquid in the equipment container. The $\mathrm{SF}_{6}$ gas may become toxic at temperatures beyond 300 F , but since the electronic equipment cannot tolerate ambient of 300 F , the toxicity is of no particular concern.

Where toxicity does present a problem, Perfluoroethane should be chosen if price and availability can be tolerated. The gas selected to fill the space above the liquid should remain a per-
fect gas over the entire temperature range of the equipment.

## High-Heat Components

Below Liquid Level
The power supply to be cooled should be packaged in a pressure vessel. About 40 per cent of the volume of the vessel should be filled with the fluorochemical liquid. The remaining space should be filled with $\mathrm{SF}_{8}$ gas as shown in Fig. 1. The $\mathrm{SF}_{\mathrm{B}}$ provides the dielectric medium at low temperatures. All the high-heat-dissipating components should be placed below the liquid level.

The heat transfer takes place as follows:

- The FC-75 evaporates due to local boiling at the heat-dissipating components.
- The generated FC-75 vapor is forced to diffuse through the $\mathrm{SF}_{\mathrm{B}}$ gas atmosphere and the $\mathrm{SF}_{8}$ gas film on the condensing surface.
- The FC-75 vapor on the cover cold plate condenses.
- The heat of condensation is conducted through the cover material into the primary coolant circulating through tubes in the cover.

Low-dissipation components are located above the liquid level. They transfer their heat to the gas-vapor mixture according to convection laws. As a result, the vapor passing such components receives a slight amount of additional heat.

## Boiling Mode of Heat Transfer <br> Occurs in One of Two Forms

Boiling is a mode of heat transfer which can transfer millions of BTU per hour per square foot. Two general forms of boiling exist-nucleate boiling and film boiling.
In nucleate boiling, the liquid is in direct contact with the hot surface. The liquid at the surface becomes superheated and remains in this unstable condition till something triggers a phase change. Formation of vapor bubbles is evidence of such a phase change.

The bubbles are born at distinct locations on the hot surface. These locations are called nucleation sites. They consist of microscopic surface imperfections some of which hold entrapped gases. It is believed that one or more molecules of such an entrapped gas starts the formation of bubbles. The entrapped gas usually lasts for many days of continuous boiling, after which the site is dead. Gas may come in contact with the pit again, or new sites may appear, and nucleation may begin again.

## Film Boiling Involves

Large Temperafure Differences
No bubble formation appears in film boiling. Instead, a blanket of vapor covers the entire hot surface. Large temperature differences are associated with film boiling since the vapor film acts as an insulating medium.
The transition region between nucleate boiling is not clearly understood, largely because a steady-state condition cannot be achieved. A decrease in heat flux with an increase in temperature difference is experienced during this transition period. Fig. 2, which plots heat flux vs temperature difference, shows the regions of nucleate and film boiling as well as the transition.

## Nucleate Boiling

## Cools Hot Components

In the cooling system under discussion the components located in the FC-75 liquid dissipate their heat by means of nucleate boiling. The general equation for this heat-transfer mode is:

$$
\begin{equation*}
Q=K S(\Delta T)^{n} \tag{1}
\end{equation*}
$$

A component dissipates an amount of heat $Q$ (BTU/hr), and has a surface area S. The terms $K$ and $n$ are constants for a given liquid under a given condition. They are functions of the properties of the liquid and its pressure, and are
somewhat dependent on the geometry and surface character of the component.
The term $\Delta T$ is the difference in temperature between the component surface and the vapor or liquid. For a typical component immersed in FC-75 liquid, representative values of $K$ and $n$ are as follows: at a system pressure of 26 psig, $K=18$ and $n=1.3$; at a system pressure of 8.5 psig, $K=11$ and $n=1.4$.

## Boiled-Off Vapor <br> Diffuses Through Gas

The boiling action around the components generates FC-75 vapor which escapes the liquid and enters the $\mathrm{SF}_{8}$ gas region above the liquid. The FC-75 vapor diffuses into the $\mathrm{SF}_{6}$ gas and is in part carried by the convective flow of the gas. A mixture of condensable vapor and noncondensable gas results. To complete the heattransfer cycle the generated vapor must condense on the cover surface and return to the liquid. However, in a mixture of vapor and gas, the noncondensable gas hinders the movement of the vapor and impairs condensation. First the vapor must diffuse through the $\mathrm{SF}_{8}$ gas and then through the $\mathrm{SF}_{8}$ gas film located on the condensing surface.

As the vapor particles reach the condensing surface, condensation occurs and a condensing film is established. The heat liberated by condensation must be transferred across the condensing film into the cover heat exchanger. Heat is transferred across the condensing film as a function of the heat transfer coefficient, as expressed by:

$$
\begin{equation*}
h_{e}=0.725\left(\frac{k^{3} \lambda \rho^{2} g}{d \mu \Delta t}\right)^{\frac{1}{t}} \tag{2}
\end{equation*}
$$

where $k=$ conductivity of condensate, $\lambda=$ latent heat of condensation, $\rho=$ density of condensate, $g=$ acceleration due to gravity, $d=$ diameter of tubes, $\mu=$ viscosity of liquid or condensate, and $\Delta t=$ temperature difference across the condensing film.

## Vapor Diffusion Rate

Controls Condensation Rate
After some of the vapor has been removed in the form of condensate, the mixture of the vapor and noncondensable gas near the condensing surface will have a lower concentration of vapor than the main body of the mixture. As the rising vapor diffuses through this vapor-lean layer it is condensed on the cold cover surface.

The rate of condensation is therefore controlled by the rate of vapor diffusion. For steadystate condition the rate of evaporation must equal the rate of condensation. The rate of evaporation sets the pace. The rate of diffusion is forced to adjust itself to the rate of evaporation,

Table 1. Important Properties of Popular Coolants

| Name | Boiling Pt. (F) at 1 Atmosphere | Freezing Pt. (F) | Dielectric Strength at 70 F Relative to Air |
| :---: | :---: | :---: | :---: |
| Perfluoroethane | -115 | - | 1.5 |
| Sulphur Hexa- <br> fluoride (SF ${ }_{6}$ ) | -85 | * | 2 |
| Freon 115 | -39 | * | 2.8 |
| Freon 11 | 75 | -168 | 3.1 |
| Freon 113 | 117 | -31 | 2.6 |
| Freon 112 | 199 | 79 | - |
| FC. 75 | 213 | -171 | 7.5 |
| FC-43 | 350 | -87 | 8.0 |
| Coolanol 45 | > 600 | $<-85$ | 5.4 |



Fig. 2. Heat flux vs temperature difference for nucleate boiling, for film boiling, and for the transistion region.
a condition that may result in high pressure and temperature.

Free diffusion includes molecular diffusion and thermodiffusion. Molecular diffusion of vapor particles into gas molecules results from the energy level of the vapor. Thermodiffusion results from gas convection.

The basic action of molecular diffusion is described by Fick's Law:

$$
\begin{equation*}
W=-D \frac{d c_{v}}{d x} \tag{3}
\end{equation*}
$$

where $W=$ weight llow of vapor in pounds per unit time per unit cross section, $D=$ the diffusion coefficient in unit area per unit time, $c_{v}=$
 responding positions.
vapor concentration in $\mathbf{l b} / \mathbf{f t}^{\mathbf{3}}, \boldsymbol{x}=\mathbf{a}$ length coordinate.
From the universal gas law, vapor concentration is:

$$
\begin{equation*}
c_{0}=\frac{W_{v}}{V}=\frac{p_{v}}{R_{v} T} \tag{4}
\end{equation*}
$$

so that Fick's Law becomes:

$$
\begin{equation*}
W=\frac{-D}{R_{v} T} \frac{d p_{v}}{d x} \tag{5}
\end{equation*}
$$

where $W_{v}$ in Eq. 4 is the mass of vapor in pounds. The molecular diffusion as expressed by Eq. 5 indicates an upward movement of vapor caused by a high partial vapor pressure near the liquid and a low partial vapor pressure near the condensing surface. The partial pressure rela-
tionship of the mixture of FC-75 vapor with $\mathrm{SF}_{6}$ gas is shown in Fig. 3.

## Free Thermodiffusion <br> Helps Vapor Rise

The second part of free diffusion, thermodiffusion, occurs with a large temperature difference between the fluid and the condensing surface. This causes a difference in partial pressure which, in turn, causes a mass flow of $\mathrm{SF}_{6}$ gas in the downward direction since the partial pressure of the gas is higher near the cover (Fig. 4).
Since no gas can leave the container, an equal and opposite upward flow of $\mathrm{SF}_{\mathrm{B}}$ must exist. It is the flow that carries part of the FC-75 vapor.

If this upward gas flow is designated $v$, then the quantity of vapor transported by this upward gas flow will be $v c_{v}$ in pounds per unit time per unit cross section. The total diffusion will then be the sum of the molecular diffusion and the thermodiffusion as represented by

$$
\begin{equation*}
W=\frac{-D}{R_{v} T} \frac{d p_{v}}{d x}+v \frac{p_{v}}{R_{v} T} \tag{6}
\end{equation*}
$$

The basic diffusion expression leads to Stefan's Law, expressed as:

$$
\begin{equation*}
\mathrm{H}^{\cdot}=\frac{-D}{R_{\mathrm{v}} T} \frac{\cdot P}{P-p_{v}} \frac{d p_{\mathrm{v}}}{d x} \tag{7}
\end{equation*}
$$

For a container with constant cross section, integration of Eq. 7 between $x=0$ and $x=L$ gives:

$$
\begin{equation*}
W=\frac{D P}{R_{0} T} \frac{P-p_{v 1}}{P-p_{02}} \tag{8}
\end{equation*}
$$

where $V=$ volume (in Eq. 4), $\mathbf{v}=$ velocity of $\mathbf{S F}_{8}$ gas carrying $\mathbf{F C}$ - 75 vapor (in Eq. 6), $\boldsymbol{D}=$ diffusion coefficient, $x=$ distance from fluid to condensing surface in feet, $P=$ total internal pressure of system, $\boldsymbol{R}_{v}=$ gas constant of FC-75 vapor, $\boldsymbol{T}=$ average absolute vapor temperature, $p_{v 1}=$ partial pressure of FC-75 vapor at the condensing surface, $p_{\mathrm{v} 2}=$ partial pressure of FC-75 vapor at the liquid level, $p_{0}=$ partial pressure of FC-75 vapor.

## Diffusion Rate is Function <br> Of Partial-Pressure Ratio

Eq. 8 shows that the rate of diffusion is a function of the partial pressure ratio. The partial pressure of the FC-75 vapor at the condensing surface is controlled by the temperature of the condensing surface.
However, the partial pressure of the vapor at


Fig. 4. (Left) Heat-transfer rate as a function of vapor-diffusion rate with FC. 75 coolant and SF $_{6}$ gas. Curve $\mathbf{A}$ is for a polished cover and two vaneaxial fans. Curve B is for a polished cover and one vaneaxial fan deliver. ing 10.5 cfm at 1.5 lb per cu ft at 25 psig. Curve C is for a rough cast over cover with no fans.

Fig. 5. (Right) Module pressure as a function of vapor-diffusion rate (which is proportional to fon speed).

the liquid level will build up to such a magnitude that it satisfies the partial pressure relationship of Eq. 8. Total pressures can go as high as 85 psi with liquid temperatures up to 440 F . A temperature gradient of 230 F exists from liquid level to condensing surface.
This large temperature gradient causes the initially unsaturated vapor to be cooled as it rises to the condensing surface. The mixture will reach its dew point and the vapor will condense without being in contact with any surface. This phenomenon, "fogging," is undesirable because the heat of condensation must now be absorbed by the $\mathrm{SF}_{6}$ gas and in turn transferred to the cover by free convection.

## Forced Diffusion Necessary <br> For High Dissipation

Since free diffusion is inadequate for high dissipation, it is necessary to force the diffusion. The complete vapor diffusion expression in Eq. 6 consists of the molecular diffusion term

$$
\frac{-D}{R_{R}, T}\left(d p_{0} d x\right)
$$

and the thermodiffusion term

$$
\nu(p, / R, T)
$$

The thermodiffusion term can be manipulated by increasing the gas velocity $v$ by some external means. By doing so, the previous free diffusion becomes forced diffusion with the relationship:

Vane-axial fans with propellers specially designed to handle the high-density gas-vapor mixture can be used to pick up the saturated vapor as it leaves the liquid and to drive it against the condensing surface, forcing the vapor through the $\mathrm{SF}_{\mathrm{e}}$ gas film.

The partial-pressure relationship shown in Fig. 3 indicates that the partial pressure gradient along the distance $L$ (from liquid level to cover) is practically eliminated. Fig. 3 also shows how the thickness of the gas film is reduced.

This reduction decreases partial pressure drop as well as temperature difference. All this results in a lower component temperature.

For example when two vane-axial fans are used, each having a vapor-gas delivery of $11 / \mathrm{cfm}$, the heat transfer can be increased from 17 BTU per hr-F-ft ${ }^{2}$ for free diffusion, to 140 BTU per hr-F-ft ${ }^{2}$ for forced diffusion. This eightfold increase in heat transfer decreases pressure from 85 to 27 psig with a corresponding temperature reduction from 440 F to 230 F as shown in Fig. 4. A plot of module pressure vs gas-vapormixture velocity is shown in Fig. 5 =

## ancorayg <br> AMAZING CORDLESS RADIOS made by world-famous manufacturers!

 less radio sets.

Yov'll see cordless radios and "Eveready" batteries fectured on these TV showsl


NAKED CITY

duwsurvast


WEILS PARCO


ASPMALT WNGUE


OUTLAWs

Network TV creates consumer demand! Cash in! Order today!

## 3 (1)

# High-Density Electronic Packaging-_Resistance Welding 


#### Abstract

Resistance spot welding, used throughout the High-Density Electronic Packaging (HDEP) program, requires close control of process parameters and special lead materials. The techniques developed for reliable welds are outlined. (The basic philosophy of HDEP was outlined in the April 12 issue and layout procedures described in the May 10 issue).


P. J. Gray, R. Steigerwald, P. N. James The Sippican Corp.<br>Marion, Mass

WELDING is gaining acceptance throughout the electronics industry as a fundamentally sound connection technique that will meet the increasingly stringent demands for ultra-reliable systems equipment. Some of the country's largest electronics interests (Convair, Lockheed, Sylvania, Hughes, General Electric) have established welding programs for use in packaging projects, including High-Density applications. Welding is also readily adaptable to component manufacture and various microminiaturization concepts.
Experimental and production work has demonstrated two outstanding features of the welding process:

- Welding produces a sound electrical joint. A fusion of conductive materials is inherently a better conductor than a bond between conductive interfaces.


Fig. 1. Seven separate resistance zones encountered in the resistance weld process.

- Welding produces a rugged mechanical joint. Greater unit strength is achieved by a fusion of metals than by a bonding of metallic interfaces.


## Problem Areas Particular to

## Resistance Welding

The main problem in establishing welding as a production technique for electronics is the control of weld variables. Until recently, it has been difficult to define what is acceptable as an electrically and mechanically sound weld. as well as to properly accommodate, via suitable equipment, all of the variables in the welding process. Advances in weld equipment design have resolved the latter phase of the problem, while materials research and establishment of weld margins have evolved a clearer concept of what constitutes a good weld.

Ideally, a welded electrical connection exhibits fusion of the joined materials. The sound fusion process must produce a good diffusion, with no voids, gas pockets, porosity or material expulsion. Fusion can only take place where appropriate materials, proper electrodes, and correct weld heat and pressure values are employed. These factors must be correlated with the melting temperatures and alloying properties of the materials involved.

Joints where the weld is forged or mechanically bonded can, for some types of materials and applications, be classed as acceptable. The use of such "forge welds" is not recommended as a normal procedure because the hot working temperature of metals is relatively hard to define and is a narrow region as compared to the range of melting temperatures. Consistently obtaining the temperatures required for forged welds in the time allotted by a 1 - to 2 -msec welding pulse is a less tolerant process than obtaining a true coalescence of metals. The further fact that electronic conductor materials force the process to be heterogeneous metallurgically, as well as involv-
ing many surface chemistry problems (e. g oxides), demands that the joint not rely on surface phenomena but penetrate to the region of a true diffusion.
When welding similar materials, i.e., materials with like chemical composition, the weld is performed simply by melting the metals at the interface and allowing the melts to run together and recrystallize. When welding dissimilar metals, the problem becomes more complex. Some met als, such as copper and nickel, alloy in any proportion; other metals, such as lead and aluminum, do not alloy at all, while still other metals alloy only in fixed proportions.
Concerning the best case, that in which metals alloy in all proportions, two major factors must be considered: First, there is usually a relatively great difference in the melting points of the constituents. Copper and nickel have a difference in melting temperature of nearly 700 F ; consequently it is somewhat difficult to get them to simultaneously reach their melting temperature when they are in contact. Second, because copper is a much better thermal conductor, it tends to conduct heat away from the nickel, the latter metal having the higher melting point. Therefore, proper heat balance must be insured when attempting this weld.

Welding those materials which do not alloy at all is difficult. A mechanical mixture of metals may be created, but this is usually a poor bond of low mechanical strength and poor electrical conductivity. Therefore, the metallurgy of a weld should be carefully analyzed before proceeding with a metallographic investigation.

In the case of metals which alloy in fixed percentages, it is possible to weld them by maintaining very close tolerances on the weld variables. Again. however, there is the possibility that an alloy has been formed or even precipitated, which can be detrimental to the joint.
The use of cladding in highly conductive ma-
terials enables heat to be concentrated in an extremely small area and reduces the heat-affected zone without lessening the strength of the weld. By varying such factors as the electrode material, tip design, heat and pressure, good welds are obtained which demonstrate the characteristics of both high tensile and high peel strength.

While nickel-clad copper has produced a reliable weld with good margins to such materials as heavily tinned copper leads, it still does not answer the ultimate requirement of a single material to bridge between the two basic families of component leads. Therefore, there is still a requirement to use intermediate welds which would not be required if a complete system of compatible leads were available. Investigations are being continued in an attempt to develop new welding materials.

## Mechanics of Resistance Welding and

## Control Procedures

In a resistance spot weld, coalescence is prouced by the heat obtained from the resistance to flow of electric current through the workparts which are held together under pressure by electrodes. In making a resistance weld, current is passed from one electrode through the base material to the other electrode. During this passage, it encounters seven separate resistance zones, as shown in Fig. 1. Zones (1) and (7) are areas of electrical resistance of the electrode material; (2) and (6) represent the contact resistance between the electrode and the base metals. This is a point of high heat generation. but due to the high thermal conductivity of the electrode material, the surface of the base metals does not reach fusion temperature. Zones (3) and (5) are areas of resistance of the base metal itself. Zone (4), the base metal interface, is where the weld formation starts. It is the point of highest resistance and, therefore, the point of greatest heat generation. Since the hot spots at (2) and (6) lie between (4) and the electrodes, the heat generated at this interface is not readily lost to the colder electrodes.
Power Supplies: There are two basic types of power supplies, the stored energy type and the ac welders. This latter type welds with ac line current, modulated by the power supply into various pulse configurations. This machine was designed with vacuum tube welding principally in mind, and for High-Density Packag. ing has a serious drawback due to its long pulse width which allows excessive heat to be transferred to the components. However, it can provide an upslope or preheat cycle which can be used to burn off dirt or oxides.

Stored energy welders of the capacitive discharge type are also employed. In these ma chines, a charge is maintained on a bank of


Fig. 2. Various sizes and shapes of electrodes are needed for the close work involved with HDEP.
Table 1 - Typical Weld Data

| Lead Dimension (in.) \& Mat. | Electroda (Lead) | Conductor Dimen. \& Mater. | Electrode (Conductor) | Press* (lb) | $\begin{gathered} \text { Heat* } \\ \text { (W/Sec) } \end{gathered}$ | $\begin{gathered} \text { Pull } \\ \text { Test (lb) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pincer-type |  | Pincer-lype |  |  |  |
| 0.018 Kovar (gold flashed) | RWMA Grp. A, Class 2 | 0.020 Ni . Wire | RWMA Grp. A, Class 2 | 3 | 6 | 18.5 |
| 0.025 Kovar (gold flashed) | RWMA Grp. A, Class 2 | 0.020 Ni . Wire | RWMA Grp. A, Class 2 | 3 | 9 | 17.5 |
| 0.025 Brass (tinned) | RWMA Grp. A, Class 2 | 0.020 Ni . Wire | RWMA Grp. A, Class 2 | 4 | 13 | 15.2 |
| 0.021 Ni . <br> (electrotin plated) | RWMA Grp. A, Class 2 | $0.010 \times 0.031$ <br> Ni. Rib. | RWMA Grp. A, Class 2 | 4 | 22 | 18.5 |
| 0.020 Ni Fe Alloy \#42 (gold flashed) | RWMA Grp. A, Class 2 | 0.020 Ni. Wire | RWMA Grp. A, Closs 2 | 3 | 7 | 16.9 |
| 0.033 Ni Fe Alloy \#42 | RWMA Grp. A, Class 2 | 0.020 Ni. Wire | RWMA Grp. A, Class 2 | 4 | 20 | 35.0** |
| 0.019 Cu Weld | RWMA Group B | 0.020 Ni. Wire | RWMA Grp. A, Class 2 | 3 | 11 | 22.4 |
| $\begin{aligned} & \text { 0.020 Dumet } \\ & \text { (finned) } \end{aligned}$ | RWMA Grp. A, Class 2 | 0.020 Ni. Wire | RWMA Grp. A, Class 2 | 3 | 10 | 17.6 |
| 0.020 Dumef (gold floshed) | RWMA Grp. A. Class 2 | $0.016 \times 0.016 \mathrm{Ni}$. Clad Cu Ribbon | RWMA Grp. A, Class 2 | 3 | 10 | 9.0 |
| 0.016 Cu (finned) | RWMA Grp. A, Class 2 | $0.016 \times 0.016 \mathrm{Ni}$. Clad Cu Ribbon | RWMA Group B | 2 | 26 | 9.5 |
| 0.025 Cu (finned) | RWMA Group B | $0.016 \times 0.016 \mathrm{Ni}$. Clad Cu Ribbon | RWMA Grp. A, Class 2 | 4 | 45 | 10.5 |
|  | Vertical-type |  | Vertical-type |  |  |  |
| 0.015 Ni . | RWMA Grp. A, Class 2 | 0.015 Ni . Wire | RWMA Grp. A, Class 2 | ${ }^{4}$ | 4 | 9.2 |
| 0.015 Ni . | RWMA Grp. A, Class 2 | 0.020 Ni . Wire | RWMA Grp. A, Class 2 | 4 | 5 | 9.6 |
| $\begin{gathered} 0.016 \times 0.016 \\ \text { Ni. Clad Cu } \end{gathered}$ | RWMA <br> Group B | 0.020 Ni. Wire | RWMA Grp. A, Class 2 | 4 | 14 | 10.5 |

**Limit of test machine.
"These seflings apply to specific machines at The Sippican Corp. and may require modification, even for machines of the same model.


Fig. 3. Pholomicrograph showing the areas which should be present in a good weld.
capacitors which is discharged through a pulse transformer to create the welding current. Pulse widths of the order of 1 msec can be achieved with these machines, thus avoiding thermal damage to components. These supplies are presently available with capacities from 3.6 up to 500 w sec. Power supply size selection is made in accordance with the weld settings to be used.
Weld Heads: Although manufacturers of power supplies produce small welding heads, most heads are not designed with the requirements of high density packaging in mind. Therefore, several electronic packaging groups have designed special equipment characterized by low inertia, exactly reproducible pressure settings (as measured by an accurate external gage), high electrode-arm stiffness, and a mode of operation which allows the operator to handle the work easily in the normal horizontal reference planes.

Cabling: Since welding pulses are on the order of thousands of amperes, inductive losses in the cabling between the power supply and the head are quite significant. While the exact amount of loss in a particular set-up is not serious, the variations in losses due to difference of cable length and arrangement between stations can seriously affect reliable welding. Cables may be used, if necessary, if they are of specified length and are bound together to minimize these variations, however, rigid bus bars provide the best solution, when accompanied by proper head and power supply design.

Electrodes: There are three basic configurations of electrodes; vertically opposed. pincer, and the vertical and spade type. They are listed in order of desirability from a weld technology point of view; Fig. 2 shows an array of electrodes developed by Sippican.

These configurations utilize several different kinds of electrode tips, including tapered, cylindrical neck, beveled. spade bottom and blunt shapes. Electrodes are generally about two inches long by $1 / 8 \mathrm{in}$. in diameter.


Fig. 4. Photomicrograph showing the effect of insufficient weld pressure.

Various materials can be used in the composition of electrodes to achieve operating factors such as limited wear, ease of sticking action and low or high conductivity.
Variables in Welding: Aside from operator error. most of the variables encountered in welding are controllable. Such items as heat and pressure are capable of being closely regulated within the limits determined by the design of the welding head and power supply; the degree of regulation can be determined by metallog. raphy.

A major factor in the control of variables is the mechanical means by which heat and pressure are applied to the joint. This mechanical arrangement or configuration may be the difference in whether or not a reliable weld can be made.
Vertically opposed electrodes provide the ideal combination from the standpoint of flexing and follow-up and this configuration is used whenever possible. It is used, for instance, in welding of matrices of the large wiring module and the smaller circuit module type. The vertical and spade configuration is often employed where welds are made at the edge of a package.
The pincer electrode configuration was developed: (a) to provide a way to make the welds which must be made from one side, as opposed to being welded through as in a matrix; (b) to allow wiring in more than one direction, and (c) to facilitate operator handling.

Welds of this nature had been done with the vertical and spade configuration, but two major drawbacks were apparent in that the work had to be held in the vertical plane and the operator could not properly view the welds as they were being made. Also, because the electrode and the work piece were in the same plane and necessarily close to one another, it was difficult to get the electrode through the leads which are in the horizontal plane and to add more than one level of wiring at a time.


Fig. 5. Photomicrograph showing the effects of improper heat balance.

With the pincer configuration, the work piece is held in the horizontal plane and is viewable. Wiring may be led anywhere without fear of interfering with access to another joint. In addition, this configuration allows welds to be made closer to the surface of the matrix film.

Choosing a Setting: To determine a weld setting for unknown materials, a series of steps is performed:
(a) Thermal conductivity of the materials to be welded is considered first. If the material conductivities are vastly different, then electrodes of equally different conductivities must be employed. If there is a great difference in size between the two constituents, this must also be considered.
(b) The mechanical arrangement is reviewed to insure that the electrodes chosen for the work can be fitted into the configuration desired.
(c) Using this configuration, a series of welds is performed on sample pieces. Heat and weld force are varied in steps of 10 w -sec and 1 lb , and sample welds are made. A "schmoo diagram" is drawn which plots pressure on the ordinate and weld heat on the abscissa.
(d) The upper and lower limits, as derived from the diagram, are metallographically examined to insure a good metallurgical bond. If they prove to be sound, then physical tests are made to obtain a comparison figure for future quality control work. If not sound, a different sample is analyzed. Typical weld data is contained in Table 1.

## Analytic Techniques

To Analyze Welds
Metallography: The use of metallography as an analytic technique depends largely on experience and interpretation. Even a skilled metallog. rapher can be led astray by having improperly etched or polished a specimen, thereby creating pseudo-defects such as inclusions. Therefore, caution must be exercised in inter-


Fig. 6. Photomicrograph showing a nugget contained within a clad section, a result of improper heat balance.
preting metallographic samples.
Typical of the information sought in viewing a specimen are the direct cffects of poor control of the welding variables. For example, when welding pressures are insufficient to hold the mating surfaces or the welding interface together, examination will often show that the point of contact between the electrode and the parent metal is a heat-affected zone or even a recrystallized area. On the other hand, too much pressure may be evidenced by expulsion of the weld metal or excessive deformation in the crosssection.

Insufficient heat is apparent from the lack of a fusion zone. Too much heat may cause defects such as gas pockets, porosity or ton large a nugget, or possibly a molten zone across the entire width of the two metals to be joined. It must be kept in mind that lowering the pressure effectively raises the heat generated at the interface. Consequently, many of the defects described above are very much dependent on both heat and pressure.
The areas which should be shown in a good weld are outlined in Fig. 3. The area market " $A$ " is of parent metal, as it is shown cold worked from the drawing or forming process. Examinaing in toward the weld, the area at " $B$ " shows some evidence of being heat affected. The cast structure, area " $C$ " is the result of the metal having melted and recrystallized. The dendriticlike appearance is because the metal, in cooling from the outside toward the inside, grows long crystals at an equal rate from both sides, thereby causing a "cast" structure.

The size of the nugget in itself is not a valid criterion for evaluating a weld. A small nugget may often be more desirable than a nugget which encompasses too great a percentage of the area of the weld. This is because the nugget inherently lacks ductility, and the area immediately surrounding it (the heat-affected zone) is likewise relatively brittle. Although the nugget depicted


Fig. 7. Weld showing where clad is broken through at interface.
in Fig. 3 appears to encompass about 80 per cent of the cross-sectional area, it is shown in only two dimensions. If viewed from the top, it would be seen that this nugget is also footballshaped in the third dimension, leaving a large portion of ductile parent metal around the weld area. It is, nevertheless, larger than optimum and is used here only to illustrate the appearance of the metal in the areas referred to.

Note that in this weld there is no evidence of expulsion, no gas pockets or inclusions are seen and no defects exist at the grain boundaries in the area surrounding the weld. In physical tests, this weld showed excellent properties.

When metals are heated to melting temperature, they tend to expand. Because the welding pulse is so short, pressure must be maintained when applying force at the melting temperature, or the metal will shrink as it solidifies and create a shrinkage cavity (Fig. 4). This is usually a problem of too little pressure, but when trying to compensate for it by increasing the pressure at the weld, it may be found that as soon as the shrinkage cavity disappears, the situation wherein the metal deforms and expulsion occurs may be encountered. If this happens, a condition is sought where inertia of the welding configuration is reduced.

There are often cases which indicate improper heat balance, i.e., heat sinking through the electrodes (Fig. 5). Proper selection of electrode materials overcomes this condition. Fig. 6 shows a nugget contained entirely in a clad section. Fig. 7 shows the same materials where the clad has broken through the nugget at the interface, indicating proper heat balance. These welds were made with virtually the same energy settings and the same pressure; however, the weld shown in Fig. 7 was made with a large unbalance in conductivity of electrodes.

Physical Testing: The physical testing employed in evaluating a weld is used primarily as a quick check and quality control tool. When


Fig. 8. Photomicrograph showing proper nugget formation between nickel wire and nickel ribbon.
a sound metallurgical bond is achieved, as evidenced by the metallographic investigation, predetermined sample sizes are used to obtain physical strength data.

To determine physical strength, a "pull test" is employed. In reality, it is a combination tension and shear test. The test is applied in tensile fashion, but due to the mechanical holding problems, a shear stress is imparted to the joint. Because this is probably akin to the stress which may be induced in a weld due to severe mechanical vibration or, especially, to temperature cycling, the test has some validity.

The criterion for accepting results of physical tests, pertinent to weldable base metals, is that the weld must have a tensile strength equal to or greater than the tensile strength of the lesser of the two materials. This is not unreasonable, even in high-tensile materials, because in forming a weld there is a certain amount of coldworking in the parent metal. Cold-working a material does of course, increase its tensile strength while decreasing its ductility; therefore, the unaffected, more ductile parent metal "necks down" under tensile load, and failure occurs at the lesser cross-section.
As stated previously, physical tests are not used as an analytical tool. It is impractical to attempt to qualitatively analyze the alloy or phase metal which is likely to have formed in the weld nugget or at the weld interface. Consequently, there is no means for accurately evaluating what the tensile strength should be. This is the reason why welds are evaluated metallographically, and then sample lots physically tested for average comparison figures.

Environmental Factors: The welding process requires materials which are free of oil, dust and other impurities. All components are ultrasonically cleaned prior to incorporating them in an assembly. Certain materials-brass, for exam-ple-must be treated with care to prevent formation of oxide films. - -


POWER • PROTECTION • REGULATION ALL THREE IN ONE TRANSFORMER!

Does your power transformer protect semiconductor rectifiers?

How do you protect the silicon and germanium rectifiers in that advanced design power supply? Do you use elaborate circuitry or -like many power supply designers-are you using a Raytheon 2020 Voltage Regulating Transformer?
These versatile units provide stabilized voltages within $\pm 1 \%$ and are available in any of 2,020 standard models for solid-state and vacuum-tube rectifiers. You match your exact requirement from a full range of standard designs and ratings from 10 to $10,000 \mathrm{VA}$.

Write today for Catalog 4-265 with convenient Selection Guide and Power Supply Design Data. Raytheon Company, Commercial Apparatus \& Systems Division, Keeler Avenue, South Norwalk, Connecticut.

RAYTHEON COMPANY
RAYTHEON
COMMERCIAL APPARATUS A SYSTEME DIVIBION
Raytheon vomage rogutatore are also avalleble from your local Rayetieon distributor CIRCLE 35 ON READER-SERVICE CARD


## Ultra-Fast Switching-Time Meter

## Reads Six Parameters Simultaneously

ANEW, completely transistorized instrument can measure six transistor switching times and provide simultaneous readout of all six channels of information. The instrument reads delay, rise, fall, turn-on, turn-off, and storage times to an accuracy within 2 per cent $\pm 0.1$ nsec.
Manufactured by E-H Research Laboratories, Inc., 163 Adeline St., Oakland, Calif., the instrument can be used to test diodes in most accepted test circuits including the JAN 256 and the IBM "Y." For diodes, it can measure delay time,
storage time, stored charge, and turn-on time, as well as forward and reverse recovery.

The switching-time meter, model 140A, can resolve time differences down to 50 psec and can provide all readout information in less than 50 msec . Its frontpanel meter can be switched to any of the information channels or individual outputs for each channel, available at the rear of the instrument, can be monitored by separate meters, relays, or other analog devices. Each channel provides 0 to 1 v full scale for each range.


The 140 A includes the power supplies and drive circuits needed for any device under test. These include a collector supply, which can deliver up to 20 v and up to 200 ma , and a base-drive pulse generator. The latter is available in two forms to suit various test conditions. It is available as a fast-rise, voltage-pulse generator or as a pure current generator with a rise time of 5 ma per nsec for use in base-charge tests. The width of pulses available from the generator can be reduced from $10 \mu \mathrm{sec}$ to as low as $0.2 \mu \mathrm{sec}$ by changing a single timing capacitor.

The component-test socket for the instrument is mounted on a printed-circuit card which is inserted into the front of the instrument. This allows one to change components on a card or to keep several cards on file for different test-circuit types.

Using tunnel-diode discriminators to detect a point of interest on a transient waveform, the 140 A measures time differences directly. The instrument starts a gating pulse at the instant that the base pulse arrives at the transistor under test. The amplified output of a tunneldiode discriminator turns off the gate pulse when the collector goes through a 10 per cent point. The width of the constant-amplitude gate is proportional to the time difference being measured. The measurement is repeated over a few cycles (at a $10-\mathrm{kc}$ repetition rate), integrated, and amplified to yield an analog voltage calibrated directly in units of time.

The 10 per cent discrimination point is established either as an absolute voltage or current level or as a percentage of the collector swing. In the latter mode it is particularly useful in testing transistors not operating to saturation or transistors whose saturation voltage varies over a wide range.

The 140A costs $\$ 3,750$. It is available on 30-day delivery.

For more information on this fast switching-time meter, turn to the ReaderService Card and circle 252.

HOW WOULD YOU
MEASURE THE DELAY THROUGH THIS

CABLE?

Until now it was impossible to measure this short a time interval with sub-nanosecond accuracy.

Now, this measurement can easily be made with Eldorado's new Model 1060 Time Interval Meter plus a digital interpolator. Solid state throughout, the Model 1060 measures time interval with 10 nanosecond resolution. The interpolator improves the resolution to better than 0.1 nanosecond.
Using this equipment. the delay introduced by the 10 -inch cable plus its connectors was measured as:

$$
1.43 \pm .05 \text { nanosecond }
$$

This resolution is the equivalent of a $20,000 \mathrm{Mc}$ direct counting time interval meter!
The Model 1060 Time Interval Meter is an independent unit suited for all time interval measurements in the 10 nanosecond range or counting in the 100 Mc range. The interpolator accessory is available at modest extra cost.
Even though your time measurement problems are not in the area of cable delays, but rather in the fields of radar ranging and calibration. high speed velocity measurement,


BASIC DATA MODEL 1060 COUNTER-TIME INTERVAL METER Time Interval Meter

MAX. TIME INTERVAL: 10 seconds. RESOLUTION: 10 nanoseconds TYPICAL START/STOP PULSE REQUIREMENT: -4 volts into 50 ohms OSCILLATOR STABILITY: $0.0001 \%$ - READOUT: Nixie inline and output for printout Counter

STORAGE: 109 counts - MAX. COUNTING RATE: $100 \mathrm{Mc} / \mathrm{s}$ TYPICAL INPUT PULSE REQUIREMENT: +4 volts into 50 ohms DELIVERY: 45 days.
rocket sled timing. shock waves. ultra-high speed photography. satellite tracking. ballistic missile studies, or any field where data is gathered in the form of a time interval measurement, this new technique may offer the solution you have been seeking.
For specific details on the Model 1060 and the interpolator, and for assistance in applying them to your problems. contact your Eldorado engineering representative or drop us a line at the factory. Please address Dept. 36.

## \#ldorado <br> leotronics

2821 TENTH STREET
BERKELEY 10, CALIFORNIA
PHONE: THORNWALL 1-4613

## 1931 ... Birth of AGASTAT ${ }^{\circledR}$

 reliability
|96|
...traditional quality in the new solid state AGASTAT

The AGASTAT time/delay/relay principle dates back to 1931, when the first night airmail flight from New York to Chicago was preparing for take-off. When runway lights failed due to old-style time delay relays, necessity fostered a new design. Thus, through a need for reliability, the electro-pneumatic AGASTAT was born-first in a distinguished series of time/delay/relays. Solid state AGASTATs meet today's needs for reliability. Countless hours of engineering, research and development have produced a static timing relay with the reliability essential for critical missile and computer use. Modular construction using selected semiconductor components permits flexibility and uniformity. Rigid quality control and component matching assure dependability.
Solid state AGASTAT time/delay/relays are supplied in six basic types for delay on pull-in or drop-out, with fixed or adjustable timing ranges from 0.01 sec. to 10 hours. Special circuitry protects against polarity reversal, provides immunity to voltage variations and transients. Operation- $18-32$ vdc; -55 c to 125 c ; load capacity up to 5 amps . Write Dept. S2-45 for technical data or immediate engineering assistance on your special requirements.

IN CANADA: E8NA CANAOA, LTO., 12 OOWER ET., TORONTO 16. ONTARIO. CANADA CIRCLE 37 ON READER-SERVICE CARD


# Thermionic Converter Develops 23 W 

AVAPOR thermionic converter, operating with 15 to 17 per cent efficiency, provides a power output of 23 w at $1,530 \mathrm{C}$. Useful life of $10,000 \mathrm{hr}$ steady operation is predicted for the device in applications where seal temperatures can be kept below 500 C .

Pilot production studies by the manufacturer, the Power Tube Dept. of General Electric Co., Schenectady, N. Y., indicate that the device is suitable for production in quantity. The converter was developed to operate in a cathode temperature range of 1,200 to $1,500 \mathrm{C}$ for applications in space vehicles. Power output is 12 w at $1,330 \mathrm{C}$.

Cesium contained in a reservoir is used to adjust the work functions of the anode and cathode surfaces as well as to create a plasma or interaction space between the anode and cathode. The reservoir is a long, narrow tube, sealed at the tip, extending from the anode side. The tube serves to maintain optimum temperature differential between anode and reservoir; tip temperature is about 300 C , while anode temperature is in the area of 600 C .


Diagram shows cesium atom and electron flow in vapor thermionic converter. Long reservoir tube serves to drop cesium temperature from abour 600 C at anode to 300 C . Cesium vapor collects at far end of reservoir fube.

In operation, a rather small spacecharge limited current is drawn between cathode and anode until the voltage applied across the internal cathode-toanode region is sufficient to cause breakdown or initiation of $u$ hot cathode arc. Breakdown is followed by an increase in current at practically constant voltage up to the point where saturation emission is drawn from the cathode. Depend ing on cathode-anode spacing and the vapor pressure conditions, there exist a number of electron mean free paths between the cathode and the anode. In this condition a low-voltage arc is formed in the space between the cathode and anode if their contact potential difference is great enough to initiate and maintain a discharge.
Power density of the thermionic converter is 4.6 w per sq cm , or twice that of the best previous vapor converter and far greater than the $1 / 2 \mathrm{w}$ per sq cm performance limit of vacuum converters.

The major factor in development of the high-temperature converter is the achievement of a metal-ceramic seal, compatible with cesium vapor for extended periods of time, operating at temperatures up to 700 C . A seal capable of withstanding up to $1,000 \mathrm{C}$ is under development.

For more information on this arc-mode vapor thermionic converter, turn to the Reader-Service Card and circle 251.


## ten-milliamp circuit breaker? You have

 now. This Heinemann hydraulic-magnetic circuit breaker is rated at exactly 0.010 amperes. We could just as easily have made its rating 0.5 or 1.7 amps or, for that matter, any integral or fractional current value you might spec, up to 100 amps. A simple change in the winding of the solenoid overload coil would do the trick. - When you need precise overcurrent protection, even at very low current levels, think of the possibilities of the Heinemann breaker. It is temperature stable (no de-rating or trip-point juggling); it is available with any of several inverse time delays (or instantaneous-trip action); and it can be had in models ranging in size from subminiature on up. The Heinemann Engineering Guide, Bulletin 201, will give you detailed information. Write for a copy.HEINEMANN ELECTRIC COMPANY 156 BRUNSWICK PIKE, TRENTON 2, N.J.

this astronaut whttidid breathe...


## THAMKS TO A FAIRCHLLD PRESSURE TRAHSOUCER

At the heart of the Capsule Pressurization System, built by Garrett Corporation's AiResearch Division for the McDonnell Aircraft Corporation - as part of NASA'S Project Mercury Space Vehicle - is a miniature ( $1.75^{\circ}$ Diameter) FAIRCHILD TPH-175, PRESSURE TRANSDUCER. It monitors the pressure of oxygen remaining in the storage tank under the most severe environmental conditions.
A dual output transducer: One output goes to the astro naut's control panel, reassures him that plenty of oxygen is still available. The second output goes to the telemetering system for relay to ground control stations
Another example of how Fairchild draws on the engineering skills that make them the foremost manufacturer of highperformance precision sensing devices.

Fairchild TPM-175 Miniature (1.75" Dia.) Pressure Trans. ducer has a dual output. can take pressure from 0 to 10,000 psi and up to $100 \%$ over pressure without damage. It is hermetically sealed and filled with silicone oil. Takes 756 shocks and accelerations in each of three axes without damage. Twin spring design eliminates all linkages and pivots. Also available in $\mathbf{2}^{\prime \prime}$ and $3^{\prime \prime}$ sizes with linearities as low as $0.5 \%$.

Fairchild components . . . luilt and tested beyond the specs for Reliability in Performance.


RAPID and accurate sensing of changes in relative humidity is provided by a single hygrometric circuit element. Surface resistivity of a conducting layer varies precisely over the entire range from 0 to 100 per cent relative humidity.
Under development for some time by Phys-Chemical Research Corp., 40 E. 12th St., New York 3, N. Y., the device is now made available in large quantities. It is useful wherever a readout of relative humidity is necessary, and in the control of humidification and dehumidification equipment.
Substrate material is a chemically treated styrene copolymer, rugged and heat-resistant. A conducting surface layer, integral with the nonconducting substrate, is affected by moisture to a depth of only a few microns. Ohmic resistance of the sensing element varies from 40 megs at 0 per cent to 1,000
ohms at 100 per cent relative humidity. Operating by adsorption rather than absorption, the device has a response time of 30 sec for a 63 per cent change in relative humidity under conditions of no ventilation. Response time is shorter for increasing than for decreasing relative humidity excursions, as water is adsorbed rapidly but released rather slowly; ventilation will improve the response speed.

The sensor is used in a low-level ac circuit, typically in conjunction with a temperature transducer for complete atmospheric control. Supply frequency of more than 20 cps is required for calibration stability. Maximum current is 200 $\mu \mathrm{a}$; power dissipation is approximately 0.05 w . For elements calibrated at 77 F , temperature coefficient is about 0.2 per cent per degree, linear over a wide range of temperature and relative humidity. Manual or automatic compensation of


Standard characteristic curve shows sensing element resistance change in relation to per cent relative humidity. Curve extends to 40 meg at $0 \%$.
the read-out or control device is necessary only if large temperature variations are encountered.
Standard accuracies of the elements ranges from within $\pm 3$ per cent on model PCRC-11 to within $\pm 7$ per cent on model PCRC-19. Hysteresis effect amounts to $2-1 / 2$ per cent at the widest deviation point, 50 per cent relative humidity, and can be ignored except in the most critical applications. Circuit compensation for the effects of hysteresis, temperature change, impedance, and response time will provide measurement accurate to within $\pm 1$ per cent relative humidity

The sensor is unaffected by environmental conditions that are not detrimental to polystyrene. allowing operation in most gases and with liquids that are nonionic. Dust settling on the sensor surface will not affect performance beyond a possible slight decrease in speed of response. The absence of surface coatings or emulsions enables the element to operate unaffected by condensation or water immersion.

A military adaptation of the device, model PCRC-M, is manufactured to meet MIL-H-14410 Sig C. It will be used for humidity sensing of the atmosphere in sealed packages.

Dimensions on all models are $7 / 8 \mathrm{x}$ $1-5 / 8 \times 1 / 18 \mathrm{in}$. excluding terminals. Gold-plated solder lug terminals are standard, with other terminal types made to customer specification. Useful life of the device will exceed 10 years with proper usage.

Unit price in quantities of 1 to 5 is $\$ 12.50$, model PCRC-11. $\$ 10.00$ for model PCRC-15, and $\$ 8.00$ for model PCRC-19.

For more information on this relative humidity sensor, turn to the ReaderService Card and circle 253.

ELECTRONIC DESIGN • May 24, 1961

## $85^{\%}$ sumam lighter


"comparea with electrical counterparts
in TO.5 peckees in T0.5 package.


## 

Increased packaging density! Mil-min .100" lead-to-lead spacing!
Now available in - Epitaxial Germanium Mesa - Epitaxial Silicon Mesa Germanium Alloy-Junction - Germanium Drift-Field
.100" lead-to-lead spacing for automatic and direct insertion in Mil-atandard 275A printed circuit without reforming leads - mechanically indexed for positive and permanent lesd identification - eliminute solder bridging problems - 070" max for Mesa. 100 mw for Alloy und Drift-Field unit. - max. Junction temperature : $100^{\circ} \mathrm{C}$ for Germanium and $175^{\circ} \mathrm{C}$ for Silicun - meet all environmental tests in accordance with Mil.S. 19500 H - hermetic neal reliability tleak rate lower than $1 \times 10^{" \mathrm{ec}}$ "eer verified by Radifu equipment. - withetand $200 \mathrm{p} . \mathrm{i}$. g . presure.

Sylvania originated the "Pancake" package to provide a practicable solution to a vital engineering challenge-end-product miniaturization with high operational reliability. The tabulation of 15 types is a clear indicator of the industry's acceptance of the "Pancake" package.
If you are working with microminiaturization to improve "payload factors" or to enable "redundancy for reliability." call in your Sylvania Sales Engineer now. to help you determine the best device fur your specific requirements. He or your Sylvania franchised Semiconductor Distributor can provide you with "Pancake" transistors-fast!' For tech data on specific types, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 185, Woburn, Mass.


## NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.


Recorder Mark 200 has accuracy of $1 / 2 \%$, the system offers error-free rectilinear presentation, complete absence of overshoots, and a trace width of 0.010 at all velocities. The eight-channel system has sensitivity of 50 mv per chart line. Push-buttons control eight-step attenuation per channel and the 12 chart speeds from 0.05 mm to 200 mm per sec . Brush Instruments Div. of Clevite Corp., Dept. ED, 37th and Perkins, Cleveland 14, Ohio Pも A: $\$ 8,500 ; 90$ days.


Silicon Diode

## Has Improved Characleristics

Laminar diode type PS9013 has faster reverse recovery and higher forward conductance characteristics than types IN690, IN691 and IN920, 1N921 which it replaces. Capacitance is 7 pf at 9 v reverse. Forward eurrent at 0.9 v is greater than 500 ma: saturation voltage is greater than 80 v at 2.5 C . Reverse recovery time is less than 0.2 usec.

Pacific Semiconductors, Ince, Dept. ED, 129.95 Chadron Ave., Itawthome, Calif.
PéA: $\$ 4$ ca, 100 to 999; immediate.


Multi-Range DC Volimeter
Offers High Input Impedance
Servo-driven de voltmeter model HV-160 has 100 meg impedance on ranges from 3 mv to $1 \mathrm{v}, 10 \mathrm{meg}$ on ranges from 3 to 300 v . Accuracy is $0.15 \%$ on 11 selectable scales. Double-regulated Zener reference is used, eliminating reference cells. Indication is provided by knife-edge pointer on a 14 -in. mirror scale. Servo gain is automatically adjusted for each scale by the range switch. The instrument may be mounted in case or rack.

Houston Instrument Corp., Dept. ED, P. O. Box 22234, Houston 27. Tex. P\&A: $\$ 54.5$ to $\$ 575$; stock after June 1 .


Semiconductor Heat Sink For Bread-Board Use
Water-cooled heat sink accommodates most power transistors and rextifiers including those in the diamond-shaped TO-3 case, TO-36 case, and types having $8-32,10-32$, or $1 / 4-28$ monnting studs on nonterminal faces. Semiconductor is clamped to a silver-plated copper sheet. Water flow of 1 pint per min at room temperature will result in typical stud temperature rise of 0.5 C per w. Test leads and clips are furnished
Owen Laburatories. Inc., Dept. ED, 5.5 Beacon Place. Pasadena, Calif P'́a: S 3.5 ca, 14 days


Magnetic Digital Assemblies Implement Subsystem Construction

Magnetic digital circuit assembly series SRA-10 can be used for store, delay, count, time, control. program, and convert functions. There are 18 types. operating over 6 frequency ranges from 0 to 10 through 0 to $\mathbf{7 5 0} \mathrm{kc}$. The $\mathbf{1 0}$-bit basic format may be extended. Elements have low power drain. Maximum operating temperature is 70 C for germanium units, 125 C for silicon.

Di/An Controls, Inc., Dept. ED, 944 Dorchester Ave., Boston 25, Mass.
PUA: \$16:3 to \$322 ea; stock to 2 weeks.
ELECTRONIC DESIGN • May 24, 1961

## fepoó

## mates power supply news for'GI

with a design for general purpose, continuous duty applications:

| MODEL | $\begin{aligned} & \text { DC OUTPUT } \\ & \text { ROLTS AE } \end{aligned}$ |  | RIPPLE | $\begin{aligned} & \mathbf{D}_{\mathrm{ol}}^{\mathrm{N}} \end{aligned}$ |  | Ons | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PR 15-10M | 0.15 | 0.10 | 4 | $31 / 2$ | 19 | 137/8 | \$345.00 |
| PR 38-5M | 0.38 | 0.5 | 2 | $31 / 2$ | 19 | 13\%/8 | \$325.00 |
| PR 80-2.5M | 0.80 | 0.2 .5 | 1.5 | $31 / 2$ | 19 | 13\% | \$325.00 |
| PR 155-1M | 0.155 | 0.1 | 1 | $31 / 2$ | 19 | 13\% | \$325.00 |
| PR 310.0.6M | 0.310 | 0.0 .6 | 0.5 | $3{ }^{1 / 2}$ | 19 | 13\%/3 | \$345.00 |
| PR 15-30M | 0.15 | 0.30 | 4 | 7 | 19 | 137/8 | \$495.00 |
| PR 38-15M | 0.38 | 0.15 | 2 | 7 | 19 | 13\% | \$475.00 |
| PR 80-8M | 0.80 | 0.8 | 1.5 | 7 | 19 | 137/8 | \$450.00 |
| PR 155-4M | 0.155 | 0.4 | 1 | 7 | 19 | 137/8 | \$430.00 |
| PR 310-2M | 0.310 | 0.2 | 0.5 | 7 | 19 | 13\% | \$430.00 |

## REGULATION

LINE: $\pm 1 \%$ for $115 \pm 10 \mathrm{vac}$ line change at any output voltage within specified range.
LOAD - at maximum output voltage
Less than $2 \%$ output voltage change for $50-100 \%$ load change $(3 \%$ for PR $15-10 \mathrm{M}$ and PR $15-30 \mathrm{M}$ ). Less than $\mathbf{4 \%}$ output voltage change for $\mathbf{2 5}-100 \%$ load change ( $\mathbf{6 \%}$ for PR $\mathbf{1 5 - 1 0 M}$ and PR $\mathbf{1 5 - 3 0 M}$ ). (See Graph below for typical load characteristics)


## PR GROUP FEATURES:

## "FLUX-O-TRAN"

CONSTANT VOLTAGE TRANSFORMER: Delivers regulated square-wave voltage to rectifier improving rectifier utilization, and reducing output ripple.
ADJUSTABLE WIDE-RANGE OUTPUT:
Continuously variable voltage control permits output settings from 0 to maximum rating

## OVERLOAD PROTECTION:

Special "Flux-O-Tran" transformer and DC overload circuit breaker allow output to be shorted without damage to unit. Ideal for lighting lamps and charging capacitive loads.
SILICON RECTIFIERS:
Reliable, efficient, full-wave rectification.
CAPACITIVE FILTERING:
Provides excellent ripple reduction and minimizes transient response characteristics.
NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn-on, turn-off or power failure.

## NEW 32 PAGE POWER SUPPLY CATALOGI

 Featuring:- 11 Kepco design groups including new "SM", "HB", and "PR" models.
- Separate listing and description of programmable current/voltage regulated models.
- Special nomograph of voltage drop vs. wire size and supply current.
- Dual index to all models.
by DESIGN GROUP (inside front cover) ;
by OUTPUT VOLTAGE (inside rear cover).

- © : 131-36 SANFORD AVENUE • FLUSHINE 52, N, Y. . IN 1-7000 • TWX \# NY 4-5196

CIRCLE 41 ON READER-SERVICE CARD

NEW PRODUCTS

Power Transistors


Dissipate 40 w at 25 C . Diffused silicon mesa transistors types 2N2018 and 2N2020 operate at 150 v collector-to-base, 6 v emitter-to-base. Types 2 N2019 and 2 N 2021 operate at 200 v collector-tobase and 0 v emitter-to-base. Operating current range is 50 ma to 2 amp .
Transitron Electronic Corp., Dept. ED, 168 Albion St., Wakefield, Mass.
PUA: $\$ 52.00$ to $\$ 66.00,1-99 ; \$ 34.00$ to $\$ 44.25,100$ 999; 3 weeks.

Timing Terminal


For tracking systems. The all-transistor model 90,000 receives remotely generated timing signal inputs and provides local outputs for telemetry recorders and associated equipment. It generates 60 v pulses at 200 ma with less than a 5 -usec rise time into $0.1 \mu$ f, driving up to 20 lines in various combinations of requirements. Unit operates at ambient temperatures to 65 C .
Vitro Laboratories, Dept. ED, 200 Pleasant Valley Way, West Orange, N.J.

Silicon Rectifers
587


Piv is 5 to $\mathbf{1 . 2 0 0}$ v. Double-diffused, axial silicon rectifier handles up to $B \mathrm{amp}$. It has a hermetically sealed, insulated body and can be supplied with lugs on both ends or with stud base. Size is 0.425 in . long $\times 3 / 8 \mathrm{in}$. diam. All requirements of MIL-STD-E/ 1084 are met.

Solitron Devices, Inc., Dept. ED, 500 Livingston St., Norwood, N.J.
PGA: $\$ 0.40$ to $\$ 8.00$ ea; immediately.

Power Supply
572


Provides constant current. Solid-state power supply PS-120 has a programed current range of 1 ua to 1 amp. Regulation is $0.2 \%$ in the lowest range to $0.1 \%$ or better in all other ranges, no load to full load. Line regulation is $0.1 \%$ from 105 to 125 v . Ripple is $0.1 \%$ or less.
Casa Electronics Co., Dept. ED. 2333 Barry Ave., Los Angeles 64, Calif.
P\&A: $\$ 1,975 ; 4$ to 6 weeks.

## IF Transformers

593
For transistor sets. A complete line of if transformers and oscillator coils offers 4 models in $1 / 4 \times 1 / 4$-in. size and 4 models in $3 / 8 \times 3 / 8$-in. size comprising the input, interstage, output and oscillator transformers. All models are completely shielded and are iron core tuned.
Vidaire Electronics Manufacturing Corp., Dept. ED, 365 Babylon Tumpike, Roosevelt, N.Y.

## Gyro

592
For aircraft and missiles. Model 58.4 has a high gradient, linear inductive pickoff. Output axis bearings are unloaded; damper design obtains a null repeat ability of $0.04 \%$ of full scale. Gyros are available with self-checking features and in all-attitude, 3-gyro assemblies. Power is 400 cps .
Summers Gyroscope Co., Dept. ED. 2500 Broadway, Santa Monica, Calif.

Ulirasonic Cleaner


For general cleaning. Model SG-3 can be used with tanks up to 8 gallons capacity. It develops a power of 400 w and will operate effectively in fluids up to 400 F . It can also be used as an aid in blending or homogenizing solutions, accelerating organic reactions, removing oxide deposits, and similar processing.
Will Corp., Dept. ED, Box 1051, Rochester 3, N.Y.

Circuit Breaker


Rated at 15 to 100 amp . Maximum voltages are 500 ac and 250 dc , with interrupting ratings of $15,000 \mathrm{amp}$ ac and $10,000 \mathrm{amp} \mathrm{dc}$. Thrce pole breaker AQB-A101 is a plug-in type for use with single or double mounting blocks, front or rear connected. It is furnished as a thermal-magnetic and magnetic only device. It weighs 6 lb ; size is $3-7 / 8 \mathbf{x}$ $4-1 / 8 \times 6-1 / 2 \mathrm{in}$. deep.
Westinghouse Electric Corp. Standard Control Div., Dept. ED, Beaver, Pat.

## Silicon Rectifiers

588
Piv is 200 to 600 v. Types 1 N 1612 through 1N1616 have rectified forward currents of 15 amp , at 25 C and 5 amp at 50 C ; recurrent peak forward currents of 50 amp at 25 C , and 15 amp at 50 C . Units are temperature cycled 5 times over an 8 - hr period from -60 C to 150) C and meet MIL-S-19500/ 104 (Navy). Units are supplied in welded case with glass-to-metal hermetic seal between case and anode lead. Weight is 4.36 g .

Texas Instruments Incorporated, SemiconductorComponents Div., P.O. Bex 5012. Dallas 22, Tex.

Wave-Pulse Generator


For digital testing. Model 5SP supplies 2 sspuare wave outputs, 180 deg out of phase from each other and 2 pulse outputs, one positive and one negative. Square wave spacing is adjustable from $2 \mu \mathrm{sec}$ to 2.5 sec . Pulse width is adjustable from 0.5 to 500,000 $u s e c$, while pulse amplitude can be varied from 0 to $11 \mathrm{v} \pm 1 \mathrm{v}$. Output can be continuous, or pulsed manually at random. It may be triggered from an external source.
Wang Laboratories, Inc., Dept. ED, Natick, Mass. P\&A: \$149.50; from stock.

Delay Lines


For coding use. A series of delay lines, made for use in transponders, meets all applicable military specifications. Model D170 has these characteristics: time delay $20.3 \mu \mathrm{sec}$, tapped at $1.45-\mu \mathrm{sec}$ intervals; rise time 0.50 usec, delay tolerance $\pm 0.05 \mu \mathrm{sec}$. Temperature stability is less than 40 ppm per deg $\mathrm{C}_{i}$ attenuation is 3 db . Potted in epoxy foam and hermetically sealed, size is $4 \times 2 \times 1 \mathrm{in}$.
Computer Devices Corp., Dept. ED, 6 W. 18th St., Huntington Station, N. Y.
Acailability: 2 to 3 weeks.

## Ulitrasonic Cleaner

For general cleaning. The system thirty develops a power of 30 w avg and a peak power output of 120 $w$. It is fused for 2 amp and requires $117 \mathrm{v} \mathrm{ac}, 50 / 60$ cps. It has a 1-pint capacity, with a working compartment measuring $3-5 / 8 \times 3-5 / 8 \times 3 \mathrm{in}$. deep. A $220-\mathrm{v}, 50 / 60-\mathrm{cps}$ model is also available.

Ultrasonic Industries, Inc. Dept. ED, Ames Court, Engineers Hill, Plainview, L. I., N.Y. Price: $\$ 69.95$

## Induction Mofor

For hydraulic pump. Made for military and commercial applications, induction motor EF-30-1 operates continuously at $5,500 \mathrm{rpm}$. Power required is $208 \mathrm{v}, 400 \mathrm{cps}, 3$ phase; output is 1 hp , torque 15.3 oz-ft. Motor conforms to military specifications. Weight is 17 lb 15 oz.

General Precision, Inc., Kearfott Div., Dept. ED, Little Falls, N. J

Snap-Action Switch


Rated at 10 amp . Series E33-00A uses a simplified coil spring construction for long life. Overtravel is $0.0 .50 \mathrm{in}, \mathrm{min}$. Rating is $10 \mathrm{amp}, 1 / 2 \mathrm{hp}, 125 / 250$ $v$ ac. Case is $1-3 / 32 \times 5 / 8 \times 13 / 32 \mathrm{in}$. Switches can he ganged for multiple cam operation. Screw, quickconnect, and solder lug terminals are available.

Cherry Electrical Products Corp., Dept. ED, 1650 W. Deerfield Road, Highland Park, Ill.

## A MAJOR BREAKTHROUGH - ALL-GLASS MICROMINIATURE COMPUTER DIODES FOR NANOSECOND SWITCHING. HIGHEST RELLABILITY• LOWEST LEAKAGE • HERMETCC SEAL

 $\mu$ cro glass silicon mesa computer diodes provide optimum miniaturization and highest reliability. Direct fusion of hard-glass to junction, and use of bonded contacts produces mechanically rugged diodes with exceptionally stable electrical characteristics. Excellent reverse current characteristics are combined with switching speeds of typically 2 nanoseconds. Higher allowable junction temperature of $200^{\circ} \mathrm{C}$ -true hermetic seal (kovar to hard-glass) - and solid mass-of-glass construc-
tion, recommend these diodes for all military-severe applications.

mu.

| TME |  | bagardomen Vot TaGE | chacitinace | REVRES CLINEMT (a) |  | $\begin{aligned} & \text { REMC } \\ & \text { RECOENR } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fifue mat | -100.a inter | this | ${ }^{2} 5^{\circ} \mathrm{C}$ | $130^{\circ} \mathrm{C}$ | (minoce |  |
| M-4303 | 100 | 500 | 15@-6v | . 225 © - 400 | 25.0 @ - 40v | 40 | 15 |
| ma3304 | 100 | 500 | $1.5 @-6 v$ | 025 @-400 | 250@ - . 10 v | 4.0 | m |
| W-6305 | 10.0 | 50 n | 1.5 © - 60 | .025 © - 20, | 25.0 e-200 | 40 | TR |
| - m-400 | 100 | 500 | 150-6v | 025 - 200 | 25.0@ - 200 | 4.0 | 30 |
| m-3030 | 300 | 1000 | 20@ o | OSU@-75v | 50.0 - 75v | 4.0 | 13 |
| - m-308 | 30.0 | 100.0 | 2.0 @ or | ASOC - $-15 \%$ | $50.0{ }^{\text {c }}$ - 75 | 40 | 3 |

## MICROWAVE ASSOCIATES, INC.

SEmiconeuctor ilvision.
Burlington. Massachusotts, BRowning 23000 Western Union FAX - TwX Burlington. Mass. 942

## NEW PRODUCTS

## High-Temperature Resin

594
Stable from -60 to +280 C. Isochemrez 460 is used for potting, casting, dipping and coating. It is used with the firm's No. 16 harderner and is available in a variety of colors.

Isochem Resins Co., Dept. ED, 221 Oak St. Providence 9, R. I.
Price: $\$ 7.50$ for sample kit

Power Supply


Electronically regulated. Type 132 powers an internal amplifier and one Tektronix letter-series plugin. The internal amplifier has a frequency response of dc to 22 mc , rise time of 15 nsec , noise level less than 0.5 mv peak-to-peak. Front-panel terminals permit push-pull or single-ended, positive or negative input
Tektronix, Inc., Dept ED, P.O. Box 500, Beaverton, Ore.
Price: $\$ 390.00$.

## Telemefry Receiver

590
For predetection recording. Type 1450 receiver operates in the 215 - to $260-\mathrm{mc}$ band and is fitted with connectors for recorder output and playback input. Function switching is accomplished from the front panel. Frequency is determined by plug-in crystal units or plug-in variable frequency oscillator. Noise figure is less than 8 db . Outputs are provided for signal strength recorder, spectrum display, frequency monitor and video. Power requirement is 117 v ac. 60 cps .
Vitro Electronics, Dept. ED. 919 Jesup-Blair Drive, Silver Spring, Md.

## Silicon Rectifiers

589
Piv is 200 to 600. Types 1N2069, 1N2070, and 1N2071 have 750 ma avg rectified forward current at 25 C , and rms voltages of 140 to 420 v . Average rectified current at 100 C is 500 ma , and recurrent peak current at 25 C is $\mathbf{6} \mathrm{amp}$. Rectifiers weigh 0.5 $g$ and are supplied with standard epoxy encapsulated bodies with silver leads. Ambient operating temperature is -65 to 100 C .
Texas Instruments Incorporated, SemiconductorComponents Div., Dept. ED, P.O. Box 5012, Dallas 22. Tex.

The
industry's most thoroughly characterized and tested PNP high frequency transistors



| Tent | Failures | \% Foilures |
| :---: | :---: | :---: |
| Tomperature Cyeling Moisture Rosistanco Constent Accel. (50006) Vibration Fatigue (100) 150 mw Lifo- 1000 hrs . $100^{\circ} \mathrm{C}$ Sterage- 1000 hrs. | $\begin{aligned} & 0 / 335 \\ & 0 / 235 \\ & 0,331 \\ & 0 / 321 \\ & 0 \% / 435 \\ & 0 / 435 \\ & 0 / 545 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.6 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$ |

RATINGS AND CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$
 - Vea

## come from General Electric



G-E spec sheets give you the complete story of built-in performance. 2N404, for example, provides the most thorough characterization ever published. And restrictive life testing is your assurance of reliability and electrical stability. In addition to dozens of electrical and mechanical tests during production, every General Electric PNP high frequency transistor lot is subjected to a minimum of three separate life tests before warehouse acceptance, and then sampled again before shipment to you: operating at maximum rated dissipation, storage at maximum rated storage temperature, and room temperature storage. All operating life tests are performed under maximum rated power conditions with a duty cycle of 50 minutes "on" and 10 minutes "off."
For complete technical information and more of the impressive life test data on the 2N404, 2N396A, 2N428, or any of the types listed, call your G-E Semiconductor Products District Sales Manager, or write to Semiconductor Products Department, Section 23E97, General Electric Company, Electronics Park, Syracuse, New York. In Canada: Canadian General Electric, 189 Dufferin St, Toronto, Ont. Export: International General Electric, 150 E. 42 nd St., N. Y. 17, N. Y.
FOR FAST DELIVERY OF G-E PNP HIGH FREQUENCY TRANSISTORS AT FACTORY.
LOW PRICES, CALL YOUR G-E SEMICONDUCTOR DISTRIBUTOR

## Progress /s Our Most Important Product GENERAL ELECTRIC CIRCLE 43 ON READER-SERVICE CARD



For low-level signals. Unusually stable gain characteristics are featured in a dc differential amplifier designed for airbome instrumentation. Measuring $1 \times 3-1 / 2 \times 5 \mathrm{in}$., the unit operates from -50 to +70 C with $\pm 1 \%$ gain change, or $\mp 0.2 \%$ from 25 to 31 v dc supply.
Magnetic Research Corp., Dept. ED, 3160 W. E! Segundo Blvd., Hawthome, Calif.

Phase Meter

Suitable for field use. Model 1010 phase meter features 0.1 deg absolute accuracy over the entire 0 to 360 deg phase range without ambiguity. Direct reading of phase difference is provided over a frequency range of 30 to $20,000 \mathrm{cps}$. The rugged unit is useful in test and inspection of polyphase systems, feedback amplifiers, etc.
. Maxson Electronics Corp., Dept. ED, 475 10th Ave., New York 18, N. Y.
P\&A: $\$ 3,990 ; 30$ days.

Constant-Voltage Batteries


Complete series is offered. From 17 basic types of mercury cells a wide variety of multiple-cell batteries can be designed to meet various specifications for space, weight, voltage or battery life.

Burgess Battery Co., Div. of Servel, Inc., Dept. ED. Freeport. Ill.
 and alloys is a wise move. many material problems. performance realities.

## On land, under the sea, and in space... BERYLCO BREAKS DESIGN BARRIERS

Extraordinary properties and performance characteristics of beryllium metal and its alloys have enabled Beryco to assist designers in practically every industry. Creating new products or re-designing existing products, you'll find, as many others have, that checking into the possibilities of Berylco metals

Key parts like bolts for the individually-powered wheels of LeTourneau equipment, components in guidance systems for missiles like the Atlas. and heavy-duty springs in submarines provide higher part performance because of properties found only in beryllium alloys. Good conductivity, formability, high fatigue life, corrosion resistance, and heat resistance are a few of the advantages found in Berylco alloys that offer the solution to

Write for latest technical information on how Berylco beryllium alloys can help you break design barriers. Berylco specialists have for over 30 years been helping to turn design possibilities into


General Dynamics Photo
Bearlco beryllium copper springs helped solve a design and perform. ance problem in modern submarines.

## NEW PRODUCTS

Commercial Thermostat


Operate to 176 F. Type GP thermostats are enclosed in a polypropylene boot filled with epoxy resin. Bimetal disk thermal element provides rapid, positive action. The UL-listed device is rated for 100.000 cps and will handle 15 amp resistive at 120 v ac
Stevens Manufacturing Co., Inc., Dept. ED, P. O. Box 1007, Mansfield, Ohio.

Coil-Wound Chokes
573


For military and commercial use. Fixed inductances of six chokes in series 29.52 range from 1 to $1,000 \mathrm{mh}$ Units have good self-resonant frequency and current-carrying capacity. They are useful where environmental stresses are moderate.
Cambridge Thermionic Corp., Dept. ED, 45 Concord Ave., Cambridge 38 Mass
PGA: $\$ 0.34$ to $\$ 0.53 \mathrm{ea}, 100$ to 249, stock.

Curve Tracer


For diode characteristics. Recording curve tracer model 558 plots forward and reverse characteristics of all diodes, including Zeners, automatically or manually with better than $\pm 1 \%$ accuracy. Forward voltage is 1.0 v full \& CIRCLE 44 ON READER-SERVICE CARD
scale, with 5 forward current ranges from 0.5 ma to 50.0 ma per in. There are 7 reverse voltage ranges from 1.0 to 100.0 v per in. and 3 reverse current ranges of $1.0,10.0$ and $100 \mu \mathrm{a}$ per in. Diodes are protected from high reverse currents. Panel height is 21 in.
Aerotronic Associates, Inc., Dept. ED, Contoocock, N. H.

## Transducer



For angular position. The model GM 9060 includes transformer and rotary-to-linear converter in the same housing. It has a temperature range of -65 F to +300 F . Linearity is $\pm 0.5 \%$; sensitivity 5 v full scale; input 28 v at 400 cps ; phase shift 3 deg max with an external capacitor. Transducers in this series are available with full scale displacements from $\pm 40 \mathrm{deg}$ to $\pm 10$ revolutions or more.
Vinson Manufacturing Co., Dept. ED, 8044 Woodley Ave., Van Nuys, Calif.

Power Supply


Eliminates storage batteries. Models BE-6 and BE-12 are designed for use with electrornedical instruments. The BE-6 supplies a $6-\mathrm{v}$ dc output at 1 amp max. Line regulation is $0.05 \%$ for 100 to 125 v ac input and ripple content is less than 1 mv rms. The BE- 12 supplies a $12-\mathrm{v}$ dc output at 1 amp max, with a line regulation of $0.02 \%$ and ripple voltage less than 2 mv ms . Both models feature automatic recovery from short circuits and overloads.

The Waters Corp., Dept. ED, P.O. Box 288, Rochester, Minn.
Price: $\$ 135.00$
CIRCIE 45 ON READER-SERVICE CARD >

## Reduce costs.



PRE-WIRED Dawen switch assemblies

Daven has established a completely new Packaged Assembly Department. This group assembles various components on Daven rotary switches, does all internal wiring, any external cabling necessary, and pre-tests the entire package. In switch wiring, it is very often easier and less time consuming to wire and make connections to switch decks before they are stacked as a complete unit.

Thus, you can now have a completely tested sub
assembly, instead of a mixed group of components and switches which ordinarily would have to be individually checked, assembled, soldered, and tested. Daven takes complete responsibility for the design, fabrication, testing and overall reliability of this assembly package.

For more information about Daven's new Packaged Assembly Service, write today.

TODAY, MORE THAN EVER, THE DAVEN (D) STANDS FOR DEPENDABILITY


## NEW PRODUCTS

Cable Tester
544


With digital readout. Cable tester model 50 meas ures resistance to 0.1 ohm for continuity and up to 100 meg for leakage. Sequencing is manual or automatic, ] circuit per sec. Tester handles 50 or more conductors. The accepted or rejected wire is identified through a clear digital readout.
Automation Dynamics Corp., Dept. ED, 255 County Road, Tenally, N. J.

## Body for Vacuum Tubes

595
Uses high alumina. Designated Body 207, the material is suitable for use in high-power, highfrequency vacuum tubes. It has a high mechanical strength and u high dielectric constant.

Centralab, Electronics Div. of Globe-Union, Inc., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis.

## Tape Reader

596
Capacity is $\mathbf{5 0 0}, \mathbf{0 0 0}$ bits. Model 90 photo-electric tape reader is suitable for on-line use in computer, communication and control applications. It accommodates 5, 6. 7 and 8 -level codes punched 10 holes per in. Tape speeds up to 80 ips can be furnished
Cook Electric Co., Data Stor Div., Dept. ED, 2700 Southport Ave., Chicago 14, Ill.

## Variable Resistors

597
Power rating is $3 / 4 \mathrm{w}$. Series 300 resistors now have a resistance range of 250 ohms through 2.5 meg. They surpass MIL-R-94B style RV 6 in moisture resistance and thermal cycling. A metal-ceramic heat sink provides full power rating at 70 C with derating to zero at 150 C

CTS Corp., Dept. ED, Elkhart, Ind.

## Multi-Range Recorder

Chart speed is to 8 ips . The recorder has four groups of four points with any group on these ranges: $1,2,5,10,20$ or 50 mv dc. Each group has a separate zero suppression circuit with ar range of $\pm 50 \mathrm{mv}$ in steps of 1 mv . All equipment is contained in a portable cabinet.
The Indikon Co., Dept. ED, 76 Coolidge Hill Road, Watertown 72, Mass.

## Computer

546


Lists 91 instructions. Packaged in an office desk computer 160-A is useful for general data processing. It has a magnetic core memory of 8,192 twelve-bit words, buffered input and output, and program interrupt. Memory can be expanded in modules up to 32,768 words. A variety of peripheral equipment can be added.

Control Data Corp., Dept. ED, 501 Park Ave., Minneapolis 15, Minn.
Price: $\$ 90,000$ : lease, $\$ 2,2.50$ per month.

## Telemetering Preamplifier

Range is $\mathbf{2 2 5}$ to $\mathbf{2 6 0} \mathbf{~ m c}$. For the transmission of meter or gage readings to remote locations, model 3010 has a noise figure of 4.5 db avg and a gain of $20 \mathrm{db} \min$. It is available in an rf chassis without power supply, in rack and panel design with power supply, or in a weatherproof case,
Community Engineering Corp., Dept. ED, 234 E. College Ave., State College, Pa

## Cabinet Fastener

Single-hole mounting. The grip is in increments of 0.06 in . Having push-button operation, the device provides rapid access to panel assemblies, cabinets and components.
Camloc Fastener Corp., Dept. ED, 61 Spring Valley Road, Paramus, N. J.

## Electrolytic Copper Foil

Standard thicknesses offered. It is produced in a continuous strip 78 in. wide on hard surface drums. It has maximum bond strength when cured to plastic boards and is compatible with all commercially used adhesive systems.
Clevite Corp., Dept. ED, 540 E. 105 th St., Cleveland 8, Ohio.

## Time-Delay Relays

Accuracy is $\pm 3 \%$. The T series relays have preset delays of 0.1 to 300 sec and fast recovery. Having no moving parts, they stand 20 g vibration at 2,000 cps and 50 g shock. Input is 22 to 32 v dc. They meet military specifications.
Curtiss-Wright Corp., Electronics Div., Dept. ED, 35 Market St., East Paterson, N. J.

CIRCLE SGI THRU B69 ON READER-SERVICE CARD $>$ ELECTRONIC DESIGN • May 24, 1961

New miniature ceramic trimmer-the smallest ceramic disc trimmer
on the market . Style 538 - $3 / 8^{\prime \prime}$ diameter
Ideal for missile and other high temperature applications, this \%-inch diameter trimmer operates through a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
ERIE's new Style 538 is designed for printed circuitry as well as conventional circuitry-

N300; 2.5pf-11 pf and 7pf-25pf
WORKING VOLTAGE: 200 VDCW
ALSO AVAILABLE: ceramic trimmers with capacities ranging from 1.5 to 50 pf ; custom designed assemblies containing up to 25 or more trimmers (for printed or conventional circuitry); and self-locking ERIE tubular trimmers in ceramic and high temperature polystyrene dielectrics.



## New Erie

Gold Seal Button ${ }^{*}$ mica capacitors the world's finest UHF capacitor

At $200^{\circ} \mathrm{C}$, this exciting new capacitor far exceeds requirements of MIL.C 10950. Finest in design and quality to assure maximum freedom from in ternal contamination. Welded full hermetic seal plus gold-plating assure maximum conductivity and resistance to leakage even under the most severe environmental operating conditions Operates perfectly at temperatures from $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ at 500 VDCW . Capacities: 15 pf to 2500 pf .
Also standard ERIE BUTTON MICA CAPACITORS in capacities from 5p to 8200 pf. Wide range of stand-off and feed-through types, mountings, and styles. Exceed MIL•C-10950 specs.

Circle 862 on Reader Service Card.


NEW additions to the line of

ELEOTRONIG GOMPONENTS

> New miniature radial-lead tubular Ceramicons ${ }^{\circ}$
Two recent additions to the wide variety of ERIE's radial-lead capacitors are Style 374 and 375. Style 374 is an enamel coated capacitor only $.320^{\prime \prime}$ long and capacitor only
$.125^{\prime \prime}$ diameter.
Style 375 is a dipped phenolic coated capacitor only $.330^{\circ}$ long and $.140^{\circ}$ diameter.
Both styles are available in the full range of Temperature-Compensating and HI-K dielectrics. Capacitance: 2pf-5600pi Working Voltage: 200 VDCW Circle 863 on Reader Service Card.


## Erie Axial-Lead Tubular Ceramicons*

Seven types available: 309, 310 (lacquercoated), $312313,314,315$, and 316 (molded). Full range of TemperatureCompensating and General Purpose dielectrics, with capacitance range from 0.5 pf to 0.01 mf . Operate in $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ambient range.
FOR AUTOMATED ASSEMBLY methods
all axial-lead CERAMICONS can be supplied in reel or ribbon pack, as well as in bulk pack. Exceed MIL.C-20 and MIL-C-11015 specs., EIA RS-198, RS-165, SMC-1 and ERIE high-reliability spec. 900 where applicable
Circle 864 on Reader Service Card.


## Erie Semiconductor Devices

NEW! The high-conductance, fast-switching, low-cost ED 1813 and ED 1904 ger. manium diodes are for both military and industrial computer and control applications. These units join the select group of Erie Specialized Application Diodes that have been custom designed to precise customer requirements and later have found industry-wide acceptance. This group includes the ED 1806, 1825, 2015, 2016. 2017, 201 x and many others. Information regarding the special application types is available by return mail
Circle 865 on Reader Service Card
COMING SOON-A 1500 volt, 1 amp. glass package silicon rectifie
MIL DIODES - JAN IN126A, IN127A,

1N128A, 1N198, IN270, 1N276, 1N277 and 1N281 are avallable to MIL-E-1D. Also avail. able are types 1N198E, 1N933 and R-275. Electron Research, Inc.. Division of Erie Resistor Corp. manufactures over 600 individual types of germanium and silicon diodes and rectifiers. Also available is a standard line of silicon diode packaged assemblies with ratings of 3 to 4.0 amperes at working voltages between 200 and 1500 volts. Further special assemblies of germanium and/or silicon diüdes and rectifiers are available packaged as matched pairs, quads. half and full wave rectifiers, doublers, etc., designed to specific customer requirements. Circle 866 on Reader Service Card.


apy Gedit Bumpet tonde.

## NEW Erie Wee-Cons

Sub-miniature plate capacitors.
Sub-miniature size and rectangular shape allows a higher component density on printed circuit boards.
Dipped Phenolic Coated
IC and Hi-K Dielectrics
WOREING 'YOLTAGE: 200 VDCW CAPACITANCE: 6 pf to .05 mf

Circle 867 on Reader Service Card.


| Style | 4805 | 4815 | 4825 | 4835 | 4845 | 4855 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. Size | $\begin{aligned} & .150 x \\ & .150 \end{aligned}$ | $\begin{aligned} & .200 \times \\ & .200 \end{aligned}$ | $\begin{aligned} & .300 \times \\ & .300 \end{aligned}$ | $\begin{aligned} & .400 x \\ & .400 \end{aligned}$ | $\begin{aligned} & 500 \times \\ & .500 \end{aligned}$ | $\begin{aligned} & .600 \times \\ & .500 \end{aligned}$ |
| Thickness | .100" | .100" | .100" | .100" | .150" | .150* |
| Capacitance | 6pf to 3300pf | 11 pf to 6200pf | 25 pf to $13,500 \mathrm{pf}$ | 48pt to $25,000 \mathrm{pf}$ | 76pf to 40,000 pf | 90 pf to 49,600pf |

## Erie Capacitors

STANDARD DISC CERAMICONS* - Your choice of wire leads. Wil-lok or plug•In terminals, or kink leads. Operating temper ature range available: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MIL.C.20, MIL-C.11015 qualification approvals. Conform to EIA RS-198, RS-165. SMC. 1 and ERIE high.reliability Spec. 900 where specified.
Circle 868 on Reader Service Card.

## NEW Super NPO Discs... <br> - Twice the capacitance for given diameter - ì 20 PPM temperature coefficient tolerance

- Migher life-test voltage endurance at $85^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$

Designed around a revolutionary new dielectric developed by Erie, SUPER NPO Ceramicons provide electronic performance superior to dipped silvered mica capacitors, yot are generally lower in price . . . and may be only half the size. CAPACITY: 1.4 pf through 270 pf.
CAPACITY TOLERANCE: 10 pf and below $\pm 0.1 \mathrm{pf}, \pm 0.25 \mathrm{pf} . \pm 0.5 \mathrm{pf}, \pm 1.0 \mathrm{pf}$, and $\pm 2.0 \mathrm{pf}$, Above $10 \mathrm{pf} \pm 5 \%, \pm 10 \%$, and $\pm 20 \%$
Q FACTOR: 1000 Min., 30 pf and above. Below 30 pf , Q decreases in a straight line function from 1000 at 30 pf to 400 at 1 pf
INSULATION RESISTANCE: 10,000 Megohms Min.
WORKING VOLTAGE: 500 VDC through 6000 VDC.
FLASH TEST: 1500 VDC for 500 VDC rated capacitors.
$2 \times$ VDC rating for 1 MOO VDC or higher rated capacitors.
LEADS: Heavy soider coated meeting the requirements of EIA RS178. INSULATION: Phenolic, vacuum wax impregnated.

Circle 169 on Reader Sorvica Card.

Temperature-Controlled 849 Ovens


Have stability to $\pm 0.003$ C. A complete line of 87 different design tem-perature-controlled ovens to hold crystals, diodes, transistors and other electronic components has stabilities to 0.003 C. They meet MIL specifications. Special ovens with or without modifications are available.
Monitor Products Co., Dept. ED, 815 Fremont Ave., South Pasadena, Calif.

## Tape Reader

Rate is $\mathbf{1 , 0 0 0}$ characters per sec for scanning. Model 322 handles 5, 6 or 7 -level formats. A parity check assures accuracy. The unit is especially designed to detect genuine perforations, distinguishing them from oil spots.
Radio Corp. of America, Dept. ED 30 Rockefeller Plaza, New York 20, N. Y.

## Nonlinear Potentiometer

With six taps and 10 -deg separation between each, the $200-\mathrm{M} 46$ is available in these values: $100,200,500$ ohms; 1, 2, 5, 10, 20, 50 and 100 K Standard tolerance is $\pm 5 \%$. Case is 1 in . long and 2 in . in diameter.

Maurey Instrument Corp., Dept. ED, 7917 S. Exchange Ave., Chicago 17, Ill.

## Brushless Alternator

For airborne applications. Electromagnetically excited brushless alternator has a 1 -piece rotor design, eliminating rotating windings, rectifiers, and slip-rings, limiting cooling requirements to the stator. Gas or liquid may be used for cooling. With a weight of about 2 lb per kva, harmonic distortion is $3-1 / 2 \%$ max.

Thompson Ramo Wooldridge Inc., Tapco Group, Dept. ED, 1845 E. 30th St., Cleveland 14, Ohio.

CIRCLE 47 ON READER-SERVICE CARD $\geqslant$ < CIRCLE E6I THRU B69
on reader-service card

DIFFERENT
SIZE SAME PERFORMANC-


| NEW T0.18 TYPES NOW AVAILABLE | TO-5 EQUIVALENT |
| :---: | :---: |
| 2N935 | 2N327A |
| 2N936 | 2N328A |
| 2 N 937 | 2N329A |
| 2N938 | 2N1025 |
| 2N939 | 2N1026 |
| 2N940 | 2N1469 |
| 2N941* | 2N1917* |
| 2N942* | 2N1918* |
| 2N943. | 2N1919* |
| 2N944* | 2N1920* |
| 2N945* | 2N1921* |
| 2N946* | 2N1922* |

SPERRY SEMICONDUCTOR DIVISION

OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

More than just another transistor available now, a full line of PNP Alloy Junction Silicon Transistors in a smaller case (TO-18) with the same high performance as TO-5.

The engineering problem of getting the exact performance from a substantially smaller unit has for years faced engineers using silicon transistors. Now Sperry offers you PNP Alloy Junction Silicon Transistors in a higher density package than the popular TO-5. These new TO-18s have the same electrical characteristics, are smaller in size, lighter in weight than TO-5 . . . and at no increase in price.

THESE PNP ALLOY

- Medium frequency digital switching circuits SILICON TRANSISTORS, IN EITHER CASE, ARE PARTICULARLY WELL-SUITED FOR - Airborne and missile instrumentation
- Nuclear instrumentation
*Chopper Transistors - for single use or matched pairs that have the best cambination of chopper characteristics availsble - high breakdown ratings 50 to 80 volts. Two point control of current/voltage offset parameters. Matched pairs to standard tolerance of $100 \mu \mathrm{~V}$.

SEMICONDUCTOR IS OUR MIODLE NAME, (SEMI-NETS*), MESA AND ALLOY SILICON TRANSISTORS AND DIODES
alke orfices chicago, hlimois: los anaeles, califonnin: westwood, new jersey tewks. sunv, massachusetts: sykesville, marylano.
EEMICONDUCYOR OPPORTVMITIE:
AVALLANLE TO QUALIFIED ENGINEENE

## NEW PRODUCTS

## Static Frequency Changer



Output is $\mathbf{4 8}$ to 90 cps , fixed or variable power for loads of 0 to 4 kva . Input is 115 v at 400 cps , three phase. Model SV-1 complies with MIL-E-5400 and uses silicon semiconductors throughout. Frequency stability is $\pm 1$ cps.

Kidde Electronic Laboratories, Walter Kidde $\bar{\alpha}$ Co., Inc., Dept. ED, 9 Brighton Road. Clifton, N. J.

## Nuvistor Tubes

580
For critical applications, type 7587 ceramic-andmetal tube is $1 / 3$ the size of a conventional tetrode. Able to resist shock and vibration, it is suitable for airborne uses. Over-all length is 1.05 in . Maximum diameter is 0.44 in .
Radio Corp. of America, Electron Tube Div., Dept. ED. Harrison, N. J.

Glass-Seal Subassemblies
553


For use in the manufacture of diodes, these beaded leads and subassemblies are produced to fit individual specifications. Both moly and dumet studs with hard glass packages can be supplied.
Alloys, Unlimited, Inc., Dept. ED, 21-01 43rd Ave., Long Island City 1, N. Y.
PUA: 2 to 3 weeks.

## Temparaiure Probe

400
Is noise-free. Passive probe model 300 is designed to provide noise-free remote location of electronic monitoring equipment without signal loss while monitoring extreme environment tests. Temperature range is -200 to +500 F ; the device comes in any length with about $2 \%$ signal loss per 100 ft .
United Aerotronics Corp., Dept. ED, Box 239, Burlington, N. J

## Here's new convenience, versatility in 1 to $\mathbf{4 G}$ measurement



Here are seven new coaxial instruments to simplify your microwave work and give you greater measuring flexibility in the important 1-to-4 GC frequency range. Look at the increased versatility of measurements possible with these instruments, each carrying the assurance of quality, versatility, dependability and value which make Hewlett-Packard's one of the world's most widely used lines of microwave instrumentation.


## w Tuner

With the $\$ 872 \mathrm{~A}$ Coaxial Slide-Screw Tuner, insertion of the precision probe carriage into a specially
developed slab line is quickly and easily varied with a micrometer drive, and position along the line may be read directly on a recessed scale. Probe travel is at least $1 / 2$ wavelength at 0.5 GC so that any phase tion and position of the probe makes repetition of settings simple, and the probe can be withdrawn so

## 906A Coaxial Load

This sliding coaxial termination is a movable, low reflection load for terminating 50 -ohm systems in least is wavelength at its lowest rated frequency, features a movable center conductor which insures proper seating in the mating conductor. Included are

## (761D Dual Directional Couplers

re especially useful for power monitoring, mixing and power sampling with requency response make them ideal for reflectomkw peak.

HEWLETT-PACKARD COMPANY
1072K Page Mill Road
Cable "HEWPACK"
Palo Alto, California, U. S. A.
Sales representatives in all DAvenport 6-700
HEWLETT-PACKARD S. A.
Rue du Vieux Billard No.
Cable "HEWPACKSA"
Genevn Switzerland
CIRCLE 48 ON READER-SERVICE CARD

Dual Receiver


Range is 10 kc to 54 mc in this combination of types SP-600-VLF and SP-600JX. Sensitivity is uniform over the entire range. The units are suited for laboratory use in seeking, measuring or receiving information.

Hammarlund Manufacturing Co., Inc., Dept, ED. 460 W. 34th St., New York 1, N. Y.

Telemetering System


Is all-electronic. Telemetering system uses few moving parts, requires no synchronization. Transmitter uses a photo-diode detector for noncontact input. Receivers are panel-mounted recorders with plug-in components. Link may be telephone or twowire line, high-tension power lines, audio frequency or microwave channels.

The Foxboro Co., Dept. ED, Foxboro, Mass

Temperafure Transducer
469


Resists radiation. Designed for nuclear energy applications, temperature transducers have a range of -325 to +500 F with an accuracy of $\pm 1 / 2 \mathrm{~F}$ Repeatability is within $\pm 0.05 \%$; resistances up to 1 K at 32 F are available. Time response is about 0.4 sec for $63 \%$.

Winsco Instruments \& Controls, Dept. ED, 11789 W. Pico Blvd., Los Angeles 64, Calif.

## High-Temperature Dielectric

Temperature limit is $\mathbf{4 0 0} \mathbf{F}$. Loss tangent is less than 0.001 from 20 mc to 10 kmc . The material has an adjusted dielectric constant of 3 to 10 in steps of 1 and a volume resistivity of $10^{13}$ ohm-cm. Designated type CMD-3048, uses include waveguide ferrite supports.
Custom Components, Inc., Dept. ED, P. O. Box 248, Caldwell, N. J.
Availability: from stock.


## BENDIX SPARK GAP TUBES SPECIALLY DESIGNED TO PROTECT RADAR

AND OTHER ELECTRONIC CIRCUITS These versatile tubes do two major jobs in electronic circuits: first, protect radar and other electronic circuits against voltage overload, keeping high voltage surges from getting through to damage circuit components; second, act as a "triggering" switch in such applications as jet ignition systems. These tubes pass high currents with relatively low voltage drop, handle high voltages in small space. If this spark gap line-ranging from 750 V to 50 KV DC breakdown voltagesdoesn't meet your needs, we'll design and produce special units for you. Write for details.

## NEW PRODUCTS



Three-terminal device. Type 180D is a tantalum. three-terminal capacitor. The line current is carried directly through the tantalum pellet from terminal to terminal of the capacitor while the case is the ground terminal. Units are hermetically sealed and available in ratings from 60 uf at 6 v to 6.8 uf at 35 v dc. Max current is 5 amp dc at 25 C and 2 amp dc at 125 C .

Sprague Electric Co., Dept. ED, North Adams, Mass.

Liquid Cooler


Drops to - 120 F. Model W-120 liquid cooler may be used with low-temperature convection fluids such as trichloroethylene, acetone, and methylene chloride. Refrigeration capacity is 120,000 BTU per hour at -100 F . Accuracy is said to be $\pm 0.2 \mathrm{~F}$
Webber Manufacturing Co., Inc., Dept. ED. P.O. Box 217, Indianapolis 6, Ind.

## PNPN Diode



In glass package. Type E silicon pnpn diode is capable of handling $10-\mathrm{amp}$ pulses or 1.50 ma of continuous current. Weight is 2 g , length 0280 in . Typical turn-on time is less than 0.1 usec . Package improves environmental stress resistance. Diodes are made in commercial and military types with switching voltages ranging from 20 to 200 v .
Shockley Transistor Unit of Clevite Transistor Dept. ED, Stanford Industrial Park, Palo Alto, Calif.


Now available from Helipot at the loweat price in hintoryl Model 70 with Tefion leads, 85.35 and down; Model 71 with pins, 85.85 and down.

Take your plck: Model 70 with leads ... Model 71 with pins. They'il solve your trimming and space problems and see you through adverse environmental conditions, too!
They're the best pair of square trimming pots on today's market at this or any price!
The reasons?
Elementary...they offer apeElementary. . they offer spo-
cial features (such as Teflon cieal reatures (the 70 as standard! And both atandard models incorporate a unique slip clutch atop that positively prevente the wiper positively prevente the wiper
from going off the end of the coll rom going orr the end of the cou and intodead apace. (Continuous The apecs tell the story! Btand-
The apecs tell the story ! Standard renistance ranges of 10 to 50,000 ohms ... resolution from $1.01 \%$ at 10 ohms to $0.083 \%$ at 50 K ohma $\ldots 1$ watt power input at $50^{\circ} \mathrm{C}$ derating to zero at $150^{\circ} \mathrm{C}$ ! And all this performance is packed into a $1 / 2^{\circ}$ aquare allmetal housing that's sealed againat humidity.
Your local Hellipot representative carries these pots in stock for immediate dellvery. Call him.

## Beckman $/$ Hellpot*

POTS : MOTORS : METERS
Hellipot Division of
Beckman Instrumenta, Inc.
Fullerton, Californin

CIRCLE ast on reader-service card
ELECTRONIC DESIGN • May 24, 1961 ture is $+200^{\circ} \mathrm{C}$.

For minimum size and weight applications


Model 9005-1502-0 Ser omutor is designed for applications calling for minimum size and weight. The Size 5 weighs 0.6 ounces, is $0.865^{\prime \prime}$ in length. Powered by 26volt, 400 -cycle reference voltage, the servomotor has a no-load-speed of $10,000 \mathrm{rpm}$. Torque-at-stall registers $0.1 \mathrm{oz} . \mathrm{in}$., while rotor inertia is $0.18 \mathrm{gm} . \mathrm{cm}$.' providing
an acceleration-at-stall of $39,000 \mathrm{rad} / \mathrm{sec}^{2}$. Stainless steel an acceleration-at-stall of $39,000 \mathrm{rad} / \mathrm{sec}^{2}$. Stainless stee
bearings, shaft and housing, and Teflon for insulation bearings, shaft and housing, and Teflon for insulation permits operation over an ambient temperature range of
$-.55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$. Maximum unit operating tempera-

Beckman Instruments, Inc., Helipot Division Technical Information Survice, 2500 Harbor Blvd., Fullerton, Calif.

Single-Turn A-C Potentiometer 858
Reduces quadroture and loading effects


Morlel 580:3, a $3^{\prime \prime}$ diameter single-turn A-C potentiometer, has high input impedance and low output impedance
to substantially reduce quadrature and loading effects. New design minimizes the chance of catastrophic failure antl provides stable linearity throughout the life of unit. Impedance range is 1,000 to 75,000 ohms, with frefurency range of 400 to 1.000 cps . This is the first of a scries of precision potentiometers for A-C excited circuits. Beckman Instruments. Inc, Helipnt Division Technical Information Service, 2500 Harbor Blvd., Fullerton, Calif

## All-Metal Panel Meter Line

859
Gasket sealing keeps movement trouble-free


These all-metal panel meters are gasket sealed to keep out dust, moisture and foreign particles. Steel movement
enclosures protect against the effects of magnetic paned materials or stray RF. Pictured is $4^{\prime \prime} \times 8^{\prime \prime}$ meter, with scale length of 4.7 " for maximum visibility and reading ease. The $4^{\prime \prime} \times 6^{\prime \prime}$ meter mounting configuration matches other meters of similar size. Standard meter finish is flat black with bezel available in any color.
Availability: 30 days.
Beckman Instruments, Inc., Helipot Division Technical Information Service, 2500 Harbor Blvd., Fullerton, Calif.

HERE'S WHY VELOCITY DAMPING IMPROVES SERVOSYSTEM RELIABILITY... The velocity-damp servomotor is a replacement for complicated rate-feedback loops -it achieves stability by simple and self-contained electromagnetic means.
For example, the asciman Size 8 Velocity-Damp Servomotor offers up to 25 dyne-cm.-sec./rad. additional damping, and can replace damping generators in $80 \%$ of present applications. In addition to elimination of phase shift and null voltage problems inherent in rate feedback systems, the velocity. damp unit is shorter, lighter, and consumes less power.
In azciman Velocity-Damp Servomotors, damping is a direct function of velocity. A low-inertia dras cup, inte gral with the motor shaft rotates in a magnetic fleld generated by a pair of permanent magnets. Polarity of one magnet is variable with respect to the other, so that total force due to induced currents may be externally adjusted during operation.
In addition to Size 8 Velocity-Damp Servomotors, beckman offers similar units in their Size 11, 15 and 18 lines.
For a complete delineation of servomotor damping theory ...including transfer functions to help you deter mine damping needs... write for our Servo Brief entitled, "Electromagnetic Damping:'


POTS : MOTORS : METERS
Helipot Division of
Beckman Instruments, Inc.
Fullerton, California

CIRCLE 860 ON READER-SERVICE CARD

## TASK FORCES

## FAST RESPONSE!

Three regional amphenol Connector Divisions offer industry a new kind of service. Each Division is a fast-response facility, staffed by creative engineering and production specialists, equipped to meet any requirement in interconnecting devices and assemblies. Your needs give these technical task forces their directives on design, prototypes and delivery. And delivery is the fastest ever available!
If you are in a hurry, call amphenol!



$$
\begin{array}{ll}
\text { AMPHENOL-MIDWESTERN } & \text { AMPHENOL-EASTERN } \\
\text { CONNECTOR DIVISION } & \text { CONNECTOR DIVISION } \\
\text { 2837 South 25th Avenue } & \text { Fair Lawn Industrial Park } \\
\text { Broadview, Ilinois } & \text { Fair Lawn. New Jersey } \\
\text { Telephone: COlumbus } 1.2000 & \text { Telephone: SWarthmore } \\
\text { TWX: MAY-1192 } & 1.0303
\end{array}
$$

AMPHENOL CONNECTOR DIVISION-CENTRAL OPERATIONS supports its three regional Divisions with na tionwide engineering and manufacturing service.

## NEW PRODUCTS

Variable Delay Line


Has no tap interference. Sliding taps in model VLR 15 variable lumped constant delay line are designed so that they may pass one another, permitting independent settings. Each of the 3 taps has a resolution of 0.025 $\mu \mathrm{sec}$. Delay is variable from 0 to 1.5 $\mu \mathrm{sec}$, with $0.072 \mu \mathrm{sec}$ rise time max.

Allen Avionics, Inc., Dept. ED, 255
E. Second St., Mineola, L.I., N. Y

Tape Reader
Meets military requirements. Punched tape reader model 84 is inade for on-line service in computer, communication and control applications. It photoelectrically reads data at a preset speed up to 60 in . per sec. The self-contained unit uses no gas or vacuum tubes. Tape capacity is 500 ft .

Cook Electric Co., Public Relations Dept., Dept. ED, 2700 Southport Ave., Chicago 14, Ill.

## Silicon Transistors

847
For industrial use. Diffused mesa silicon transistor line, made especially for industrial users, contains 5 types ranging from audio amplifier to highspeed switching. A Nixie driver is also included. Lots up to 50,000 units may be ordered.
Rheem Semiconductor Corp., Dept. ED, 350 Ellis St., Mountain View, Calif.
Price: $\$ 1.60$ to $\$ 3.85 \mathrm{ea}, 1,000$ units.

## Light Source

843
For optical maser studies, model 511 provides close optical coupling between the flash tube and the crystal. Xeon-filled, U-shaped tubes are used providing greater efficiency than spiral flash types. The power needed is 110 or $220 \mathrm{v}, 60 \mathrm{cps}, 2 \mathrm{kw}$.

Edgerton, Germeshausen \& Grier Inc., Dept. ED, 160 Brookline Ave., Boston 15, Mass.
< circle So on reader.service caro


CIRCLE 51 OI READER-SERVICE CARD CIRCLE 52 ON READER-SERVICE CARD $>$

## GENERAL ELECTRIC SEALED RELAYS — UNMATCHED FOR RELIABILITY

New Unimite relays are only $1 / 3$ rd the height of crystal cans, make boards "wafer" thin

With new General Electric Unimite relays, you can lay out a switching circuit $.374^{\prime \prime}$ thin, including mounting! Mount Unimites on their $.900^{\prime \prime}$ side, and they stand only $.320^{\prime \prime}$ off the board- $1 / 3$ rd the height of "stand-up" crystal-can types.

And there's no performance compromise! Rated one amp, 28 vdc , spdt, Unimites switch in a fast 1.5 milliseconds. They weigh only .105 ounce.

In addition, Unimites offer characteristic G-E
high reliability. General Electric's exclusive allwelded construction eliminates solder- and fluxcaused malfunctions. Internal contamination is eliminated by isolating the contact chamber, and by using chemically inert materials.

Best of all, Unimites are available now! Call your G-E Sales Engineer. Or, write for Bulletin GEA-6822, to General Electric Co., Schenectady, New York. Specialty Control Department, Waynesboro, Va. ${ }_{292}-20$

## Progress is Our Most Imporrant Product

 GENERAL ELECTRIC
## ELEVEN DOZEN ZENERS



## NEW PRODUCTS

Adjustable Resistor


With screw adjust. Power resistor model OX eliminates heat or shock hazard during adjustment. Power rating is 10 w in still air at 25 C . Temperature coefficient is low; resistance range is 25 to 100,000 ohms. Adjustment range is $95 \%$ of total resistance with 36 turns. Resolution is $0.7 \%$ to $0.07 \%$. Size is $2.30 \times 0.77 \times 0.36 \mathrm{in}$.

Invar Electronics Corp., Dept. ED,
1723 Cloverfield Blvd., Santa Monica, Calif.

## Two-Part Epoxy Adhesive 363

Setting is in $\mathbf{4 5}$ sec. Type X-305 is recommended for repairing printed circuits, sealing electronic components, replacing soldering as well as laminating purposes. Tensile shear strength is over $2,000 \mathrm{psi}$.
Mereco Products Div., Metachem Resins Corp., Dept. ED. 530 Wellington Ave., Cranston, K, I.
PdA: \$10 up for 3 oz; from stock.

## Acoustic Noise Generafors 853

Range is $\mathbf{5 0}$ to $\mathbf{1 0 , 0 0 0} \mathbf{~ c p s}$ in the Acousti-Dyne units. Model 825 has a sound pressure level of 164 db ; model $830,168 \mathrm{db}$ : model $835,174 \mathrm{db}$. The units have adjustable operating characteristics to produce a single-frequency tone or an am tone.

American Measurement \& Control, Inc., Dept. ED, 240 Calvary St., Waltham 54, Mass.

## Variable Capacitors

854
High-vacuum types, these units have capacitances of 5 to 30,8 to 50 , 16 to 80 and 5.5 to 206 pf . Peak voltage is 15 kv for the first three units. Units in the last range can have 8 or 10 kv . Dimensions of the largest unit in the series are $9.5 \times 3.5 \mathrm{in}$.
English Electric Valve Co., Lid., Dept. ED, Chelmsford, England. - circle s3 on reader-service card


FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LSTED BELOW.
bactimore, Maryland 2319 Maryland Ave...
eoston, Massachusetts
168-182 Albion St.
..CHesapeake 3-3220
168-182 Abion SL.
$\qquad$ 245-5640
camden, New Jersey
227 S. Sixth S..
........WOodlawn 6-2877
chicaco, Illinois
s6ll W. North Ave.
Oak Park, III. .
............. VIIlage 8-5556
cleveland, Ohio
14625 Detroit Ave.
Lakewood, Ohio.
dallus, Texas
511 Braniff Airways Bldg
Dallas 35, Texas. . . . . . . . . . . . . FLeetwood 7.948
DAVTON, Ohio
379 W. First St. . . . . . . . . . . . . . . . . BAIdwin 4-9651 denver, Colorado
first National Bank Bldg
621 Seventeenth St. .
DETROIT, Michigan
2842 West Grand Blvd.
..........TRinity 5.2440
kansas citr. Missouri
Wirtham Bldg.
31st and Troost Sts.............. VAlentine 1-1819 los amaeles, California
6362 Hollywood Blvd.
Hollywood 28, Calif. .
newark. New Jersey
1060 Broad St.
.. HOllywood 2.2381

ORLANDO. Florid
\$10 Jacklind Bidg.
205 E. Jackson St. .
phoemix, Arizona ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave.
sAN DIEGO, California
3620 30th St...
.......MIdway 6.1891

SAN FRANCISCO, Caliform
535 Middiefield Rd.
Palo Alto, Calif..
....DAvenport 1-2064
SEATTLE, Washington
3466 East Marginal Way . . . . . . . . . . . MA Min 4-0783
srracuse, New York
2360 James St...................... HOward 3-4502
winstom.salem, North Carolina
Nissen Building
310 W. Fourth St. . . . . . . . . . . . . . . . . PArk 3-0363

## Transitron

actronie corporation 1 wakeliold, meseechucotts
 cille atiden: Trite

## ACTUAL SIZE

NEW FROM Transitron

(A MESA MICRO-TRANSISTOR)


| Type |  | Miminam DC Deta (hres) |  | $\begin{aligned} & \text { Morimumum } \\ & \begin{array}{c} \text { saturation } \\ \text { Resintance } \\ \text { (Onmes) } \end{array} \end{aligned}$ | Mandmum Pome Olasipetion at $25^{\circ} \mathrm{C}$ Ambient (mW) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 45 | 2 | 45 | 120 | 150 |
| TMT 23 | 45 | 45 | 45 | 120 | 150 |

- SILICON DIFFUSED
- HERMETICALLY-SEALED
- ALL-GLASS PACKAGE


## INTRODUCING THE FIRST SERIES IN A

 COMPLETE LINE OF MICRO-TRANSISTORSDevelopment of the micrort - first silicon difused mesa micro-transistor in an hermetically sealed all-glass package - represents a major step forward in microminiaturization. As compared with conventional "metal can" configurations, the micno-T's hard glass packaging embodies a significant improvement in the hermetic seal between leads and package. Reliability is substantially increased; possibility of leakage is sharply reduced.
This new series of 45 -volt micro-transistors is the first designed for amall-signal low-level applications, with current operating range from 50 microamps to 20 milliamps. Other electrical characteristics include an Res of 100 to 200 ohms; minimum Betas from 20 to 80; cut-off frequencies of over 50 megacyclen. Perfectly compatible with present circuitry, micro-T's will facilitate microministurizing in such critical areas as airborne, space vehicle and missile application. They are $1 / 20$ th the size of the TO-5, and $1 / 5$ th that of the TO- 18 .
The first five types of micRo-T's are available now. For full information, write for Bulletin No. PB-78, (Amplifier types) and PB-79, (Switching types).

## Transitron

## NEVV low cost Transistorized DC Power Supply



## (width: $\mathbf{8 "}^{\prime \prime}$, height: 4-1/2", depth: $\mathbf{1 4}^{\text {" }}$ )

| NJE answers the engineers' quest for a low cost transisterized pawer supply that is fully | Check these specs! | MODEL TR-18-3 | MODEL TR-36-2 |
| :---: | :---: | :---: | :---: |
| - | Voltage Range | 0-18 VDC | 0-36 VDC |
| gramming - a power supply impervious to | Current Range | 0-3 amps | 0-2 arnps |
| series or parallel operations. | Load Regulation | $\pm 0.03 \%$ or $\pm 1 \mathrm{mv}$ | $\pm 0.03 \%$ or 1 mv |
| hese compact, fiexible NJE power supplies | Line Regulation | $\pm 0.05 \%$ or $\pm 2 \mathrm{mv}$ | $\pm 0.05 \%$ or 2 mv |
|  | RMS Ripple | 2 millivolts | 2 millivolts |
| in rack installations as a component part of your equipment. | Internal Impedance (DC-20KC) | 0.1 ohm max. | 0.1 ohm max. |
| Component derating and construction conform | WRITE FOR COMPLETE TECHNICAL SPECIFICATIONS |  |  |

Models in stock subject to prior sale - \$249 each net; quantity discounts available Suitable front panels for rack mountings are available on order (single supply panel, Model RP1, \$15 each net; dual supply panel, Model RP2, $\$ 15$ each net).


## CORPORATION

20 Boright Avenue . Kenilworth, New Jersey BR. 2.6000 - TWX Cranford, NJ 51 - FAX-FFP

## NEW PRODUCTS

Pressure Switch

Life is $\mathbf{1 0 0 , 0 0 0}$ cycles. Different models have pressure settings of 1.500 to 3,550 psi. Typical data for an spdt unit: cut-out pressure, 3,000 psi; cut-in pressure, $2,600 \mathrm{psi}$; proof pressure, 4.500 psi; burst pressure, 7,500 psi. Testing is per MIL-E-5272A.
Walter Kidde \& Co., Inc., Dept. ED, 675 Main
St., Belleville 9, N. J.

## Color Display Tube

Resolution is $\mathbf{1 . 0 0 0}$ lines in type C-74329. It is suitable for critical industrial and military systems. Measuring 25 in . long, the tube is similar to type 21FBP22, but provides higher brightness through the use of sulfide phosphors.
Radio Corp. of America, Electron Tube Div., Dept ED, Lancaster, Pa.

Power Supply


Output is $\mathbf{5 0 , 0 0 0} \mathbf{v}$. Model 6VT6B has $0.005 \%$ regulation. Carrier ripple is negligible, 60 -cps ripple is under $0.005 \%$. Resettability is $0.1 \%$ with output current drains to $500 \mu \mathrm{a}$. Output is variable from 1.5 v . The unit is for laboratory applications.
California Magnetic Control Corp., Calmag Div., Dept. ED, 11922 Valerio St., North Hollywood, Calif.

## Radar Control Unit

Range is 1 to 49 mc . This switching device is for use with the firm's ionospheric sounders and radars and may be adapted for other equipment. It provides rapid scanning through the necessary frequency bands in increments of 100 kc .

Philips Electronics Industries Ltd., Industrial and Medical Div., Dept. ED, 116 Vanderhoof Ave., Toronto 17, Ont.


Unit has seven time-code outputs. Model 275, for WWV synchronizing, has six outputs for high- and low-speed analog magnetic tape recorders or oscillographs. The seventh is a 42 -bit parallel output for digital acquisition systems or line-computers.

Hermes Electronics Co., Div. of Itek Corp., Dept. ED, 75 Cambridge Parkway, Cambridge 42, Mass.

## Terminals and Connectors



Series offers large sizes. Elongated ring terminals as well as regular ring terminals, butt and parallel connectors are offered. Made from annealed pure electrolytic copper and electro-plated with pure tin, they come in wire sizes 8, 6, 4 and 2.
ETC, Inc., Dept. ED, 990 E. 67 th St., Cleveland 3, Ohis.

Slide Switches


Design is compact. For instrument use, units are single pole, two-hole mounting, ac. The 1940 and 1942 units are rated at 10 amp for $250 \mathrm{v}, 15 \mathrm{amp}$ for 125 v and $1 / 2 \mathrm{hp}$ for 120 to 240 v . The 1960 and 1962 units are rated at 3 amp for $25 \mathrm{v}, 6 \mathrm{amp}$ for 125 v and $1 / 4 \mathrm{hp}$ for 120 to 240 v .
Circle F Manufacturing Co., Dept. ED, Trenton 4, N. J.

## Wire Strippers

405
Pincer type, single loop types are offered. The Thermo-Strip device can be used for all thermoplastic insulations and is suitable for use with missile and computer equipment. It operates continuously; no foot switch is needed.

Ideal Industries Inc., Dept. ED. Sycamore, III.

The only
true measure of eyelet price

## and United helps you cut IC all four ways

lower tooling costs...
because of United's system of Standardized Eyelets-with only 7 sets of tools needed for all 65 eyelet sizes!
because United offers you a complete design and application engineering service. In addition, United Standardized Eyelets keep your specification time to a minimum.
lower down-time costs . . .
lower acquisition costs . . .
for all the dollar-saving facts

because United's lines of eyeleting machines, setting tools and high-precision eyelets form an integrated production team that cuts your losses from stoppages and re-works. And with only 7 sets of tools needed to handle all 65 sizes of United Eyelets, down time for tooling changes is greatly reduced.
because United's system of Standardized Eyelets greatly simplifies specifying and ordering procedures. United's local service and prompt deliveries avoid costly delays and eliminate the expense of maintaining large eyelet or tool inventories.
in United's Installed Cost story, ask today for your free copy of the new bulletin "Eyelets and Price Buying." Simply phone the United office in your area or write direct to Shelton Division, United Shoe Machinery Corporation, 1552 River Road, Shelton, Connecticut.

## \& 17 United Eyelets

## Sholton Division UNITED SHOE MACHINERY CORPORATION Shelton, Conncetient

## 

## IWPROVED "0"subminature connectors

## ELIMINATE SOLDERING



## MARK II GOLDEN "0"

FEATURES CRIMP-ON. SNAP-IN.
REMOVABLE PINS AND CONTACTS

- Monobles Insulators of diallyl phthalate Type MDG per MIL.M.14E
- Pins \& Contacts are copper base alloy gold plated for high reliability
- Probe-proof, closed.entry socket con tacts . - designed to MS 3190
- Individual Contacts can be easily re moved and replaced
- Fully interchangeable with Standarn ${ }^{\text {D }}$
- Golden Iridite finish-per QQ-P-416A Type II Class 2
- Insertion. Extraction and Crimp tools are also available from Cinch

For further information contact our sales office in your area

## Cinch Manufacturing Company

1026 South Homan Ave., Chicago 24. III. Division of United Carr fastener Corporation. Boston Massachusetts

Centrally located plants at Chicago, llinois: Shelbyvilie, Indiana: City of industry, Calitornia, and St, Louis, Missour -Manutacturea by agreement with Cannon Electric Company-Saleslimited to U.S A

## NEW PRODUCTS



With side connections. The UniMount is a heat dissipator for 7- to 10-w power transistors. Made for TO-3 and TO-6 units, mount configuration keeps electrode connections and transistor on same side of mounting wall. Accel Electronic Products, Dept. ED, P. O. Box 467, Monterey Park, Calif.
P\&A: Less than $\$ 1$ ea; 30 days.

## Antenna Mount

Supports $\mathbf{1 , 1 0 0} \mathbf{l b}$. Model 10 antenna mount is a servo-controlled pedestal, for shipboard and ground applications, with an assembly weight of less than 600 lb . Mount will support $1,100 \mathrm{lb}$ of antennas of parabolic, end-fire array or horn type. All servo components are within the pedestal. Maximum speed is 5 rpm .
Temec, Inc., Dept. ED, 7833 Haskell Ave., V'an Nuys, Calif.

## Germanium Transistors

Have high beta. Greatest current gain for TO-36 device is claimed for the 2 N1980 series of germanium highbeta transistors. Types 2 N 1980 , 2 N 1981 and 2 N 1982 , operating at 50 , 70 and 90 v , have collector current of 15 amp . Major uses for the highbeta units include voltage regulators, high-current switching, oscillators, and amplifiers.

Texas Instruments, Incorporated, Dept. ED, P. O. Box 5012, Dallas 22, Tex.

## Electrolytic Capacitors

845
For communications applications, the BMT and BMTU units have axial leads and miniature design. The BMTU has an upright mounting. They are offered in a wide range of capacities and voltages, have low leakage and can have an operating temperature to 105 C
Illinois Condenser Co., Dept. ED, 1616 N. Troop St., Chicago 22, Ill.
< circle se on reader-service caro

Double Stand-Off Terminal 423


Design is miniature. Type DST-900 is for wiring both above and below a chassis with complete electrical isolation by means of a single-terminal installation. The two lugs are separated by sotid Teflon.
Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N. Y.

Electronic Counter 418


Rates are up to 1 mc . Units are offered in 3, 4, 5 and 6 -place models. Preset count detection capability is up to 250 kc . The units can be used for time-interval generating and frequency dividing as well as control and test applications.
Schlumberger Corp., Ridgefield Instrument Group, Dept. ED. Ridgefield, Conn
Price: $\$ 740$ to $\$ 1,200$.

Printed-Circuit Cleaner 416


Operation can be automatic. Using Freon cleaning agents and ultrasonic energy, the system removes activated and nonactivated fluxes and other contamination. It can be used on metals, plastics and insulation materials.
National Ultrasonic Corp., Dept. ED, 95 Park Ave., Nutley, N. J.
circle sq on reader-service card >

# New ruggedized CBS Ceramic mike offers higher output, choice of narrowband or improved wideband response 

New button design and novel element suspension of ruggedized CBS Ceramic deliver nearly twice the output of conventional ceramic microphones . . . provide more than many crystal microphones, while eliminating their heat and humidity problems. Specially vented acoustic cell also provides flatter response with improved lower frequencies and minimized peaks. And the CBS Ceramic offers these advantages at low cost.

Frequency response of the CBS Ceramic can be supplied to match: 1. Narrowband requirements of mobile and fixed communications, 2. Wideband needs of entertainment equipment. For communications, the microphone is designed to attenuate sharply frequencies below 200 cycles.

Note the comparative frequencyresponse curves and the variety of models. For complete details on standard or special models, call your local CBS Electronics sales office.

## FOUR STANDARD MODELS

Mark III . . . lightweight metal case, chrome finish. Mark III-L... adds gooseneck for language labs. paging. bank drive-ins, etc.
Mark VI-A ... lightweight, plastic case. built-in stand. Mark VI-B . . . adds push-totalk, coiled cord.



CBS Ceramic microphone compared with crystal and conven. tional ceramic microphones.


Frequency response of CBS Ceramic designed for high-fidelity (A), and for communications (B) use.

## CBS ELECTRONICS <br> Danvers, Massachusetts <br> A Division of Columbia Broadcasting System, Inc.

 aUdio Components - tubes - Semiconductors - microelectronicsSales Dffices: Danvers. Mass., 100 Endicott St., SP 4-2360 • Newark, N. J., 231 Johnson Ave., TA 4-2450 Melrose Park, III. 1990 N. Mannheim Rd., ES 9-2100 • Los Angeles, Calif., 2120 S Garfield Ave.. RA 3-9081 Minneapolis. Minn., The Heimann Co., 1711 Hawthorne Ave.. FE 2-5457.


THE BENDIX LINE FEATURES SIX GYRO TYPES


- Bocitrolyic awichos for prociso arocion and long sorvice lifo.
- Operating life of 1000 mowr.
- The Tru-Gyro Inreo Auls Control araction rate is $1.3^{\circ} / \mathrm{min}$ Otrer aypos
shown have normal ecoction rofe of $2^{\circ} /$ min. with fost trection up $12120^{\circ} /$ min.
- Etimer floziblo or hord mounline.
for fell details on Bendia Gyros for upecific opplications, write.


## Eclipse-Pioneer Division

Tetorbera, N. $\delta$.




## NEW PRODUCTS

Static Inverter


Able to power a synchronous motor for use in magnetic-tape recorders, model S13 converts 22 to 28 v dc to 220 v ac at 60 cps . Transistor powerswitching devices are used. Extemal synchronization is permitted from 55 to 65 cps .
Kidde Electronic Laboratories, Walter Kidde \& Co., Inc., Dept. ED, 9 Brighton Road, Clifton, N. J.

## Copper-Clad Micarta



Is fire-retardant. Two cold punch, paper-base phenolics of XXXPC grade are made for printed circuitry: Grade 65MO5, with high bond strength and solder resistance, is recommended for small circuits. Grade 65 MO is warp-free and has high impact strength. Blister time at 500 F is 2.5 sec.
Micarta Div., Westinghouse Electric Corp., Dept. ED, Hampton, S. C.

## Miniature Accelerometer



With low cross-sensitivity. Accelerometer model 106, weighing 0.3 oz , is capable of measuring $10^{\circ} \mathrm{g}$ with \& linearity of $2 \%$ from 1 to 15 kc . Sensitivity is 15 mv per g , with cross-sensitivity of $3 \%$ Temperature range is -65 to +360 F . Standard model has insulated mounting, hermetic connector and stainless steel case.

United Aerotronics Corp., Dept. ED, Box 239 Burlington, N. J


## CAM COMPENSATOR

ITiclone compensating dovice for cerve ayifem errer.


The type CP-20-A1 is a simple, entirely mechanical means of correcting an out put data shalt in relation to either servo loop errors, sensing errors, or the system. Eliminates need for adjusting remotely placed or inaccessible units. Ask for full details.

## CONTROL TRANSFORMER

Chenges meshenkel alworentlel lapuss io elocirkal eutpurs.


Here is a corrosion-resistant unit that features a rotatable housing construc tion along with a standard synchro mounting. Because housing, as well as shaft, can be rotated, an additional output can be introduced into control system circuitry. Stator housing assembly is driven by a gear accessible through a slot in the housing, thus puts into electrical outputs.

Manvfocturers of
OYROS - ROTATINO COMPONENTS
RADAR DEVICES - INSTRUMENTATION PACKAGED COMPONENTS

Eclipse-Pioneer Division


CIRCLE 61 ON READER-SERVICE CARD ELECTRONIC DESIGN • May 24, 1961

Triple Decade Capacitors


With direct in-line readout. Triple decade capacitors types 283 W and 284 W have direct in-line readout. Two basic ranges are available in each type; 0.0001 to $0.1099 \mu$ f and 0.001 to $1.099 \mu$. Type 283 W is a standard bench decade while 284 W is for panel mounting. Applications are for wave filter design as well as in timing and integrating circuit work.

Sprague Electric Co., Dept. ED, North Adams, Mass.

## 400-Cps AC Motor

412
Rating is $\mathbf{1 . 8} \mathbf{~ h p ~ a t ~} 3,750 \mathrm{rpm}$. Model 1300 con-tinuous-duty unit has a brush holder that permits constant brush pressure, low noise interference Winding insulation is rated for temperatures to 260 F. Units can be furnished for use up to $150,000 \mathrm{ft}$. Hoover Electric Co., Hanger 2, Dept. ED, Port Columbus, Columbus 19, Ohio.

Solid-State Relay


Pickup time is $10 \mu s e o$. Dropout time is $100 \mu \mathrm{sec}$ For missile and aircraft use, model SSR-4-2.00 switches a $4-\mathrm{v}$ dc source. It carries $2-\mathrm{amp}$ load current continuously. It may be used as a timing or timedelay relay with the addition of external circuitry. Curtiss-Wright Corp., Inter-Mountain Branch, Dept. ED, P. O. Box 8324, Albuquerque, N. Mex.

## Prinfed-Circuir Kit

406
All necessary equipment is included. The Scribe ' N ' Peel kit permits the coated Stabilene film to be marked with a sharp steel instrument and to be photographically processed onto a "peelable" film. The finished work can be transferred to copper laminate.

Keuffel \& Esser Co., Dept. ED, Third and Adams Sts., Hoboken, N. J

## NOW. .stretch your rushrak to <br> with the

addition or combination of any of these restrak accessories


## NEW PRODUCTS

Power Supplies


For plug-in use. The Trypack series of modular, transistorized power supplies has units with outputs of 0 to 20 v at 0 to 2 amp , and 0 to 50 v at 0 to 750 ma . Output voltage is regulated to better than $0.05 \%$ with less than 0.5 mv ripple. Voltage and current are adjustable.

Trygon Electronics, Inc., Dept. ED, 111 Pleasant Ave., Roosevelt, L. I., N. Y.
P\&A: \$184; stock to 3 weeks.

## Push-Pull Connector



Operates to $3,000 \mathrm{psi}$. The Inst-O-Matic series of couplers sustain operating pressures up to 3,000 psi. Coupling connects at 50 psi and disconnects at 3,000 psi; an entry seal prevents leakage and spillage. Sizes range from $1 / 4$ to 2 in . inside diameter.

Wiggins Connectors, Dept. ED, 3424 E. Olympic Blvd., Los Angeles 23, Calif.

Telegraph-Message Generator


Transistorized and selfcontained, types DT-101A and DT-101B are for shortstop systems. Three types of messages are supplied: an 80 -character fixed message, two alternating repeated characters and reversals. The A unit generates signals at 4.5, 50, 56.9 and 74.2 baud

Digitech, Inc., Dept. ED, 382 Danbury Road. Wilton, Conn.
Availability: 12 weeks.

from Hughes
-an

## advanced

## nef "hard" rectifiers

HUGHES semiconductor techniques bring you stud package rectifiers with these superior characteristics:

Hughes new silicon power rectifiers provide a major advantage in their "hard" or sharp forward and advantage in theirs characteristics. They feature extremely low reverse characteristics.
reverse leakage (typically less than one microampere reverse leakage (typically less than one microampere
at rated voltage), low voltage drop (less than one volt at rated voltage),
at rated current), and extremely low dynamic impedance (. 0035 ohms at rated current).
Other advantages of Hughes rectifiers are controlled capacitance, fast reverse recovery time, and high surge current capability (typically a 12 amp unit can withstand 240 amps for one cycle at 60 cps ).
Hughes rectifiers provide the shortest package on the market. Furthermore, we can supply any stud length desired and we can supply any unit on a
ceramic insulated stud.
And Hughes rectifiers are reliable. All manufacturing lots are subjected to 1000 -hour acceptance operational life tests.
Typical family groups of Hughes rectifiers now available are as follows: $3 \mathrm{amp}-1$ N1124 to 1 N1128. 6 amp similar types are available for all requirements in the Similar types are available
above range of current.
For Hughes silicon power rectifiers call or write the Hughes Semiconductor Sales Office or Distributor nearest you. Or. for complete power rectifier data, write Hughes Semiconductor Division, Marketing Department, Newport Beach, California.
Watch for the announcement of the new Hughes higher current rectifier series


Digital Readout

Unit is self-decoding. It mounts in a panel space 1 x 3.1 in . and extends 2.5 in . behind the panel. Alphanumerical characters are displayed at rates to 50 characters per sec. Operation is on 12 or 28 vdc . Units can be gang mounted.

Datascope Corp., Dept. ED, 4023 Irving Place, Culver City, Calif.
P心A: $\$ 20$ up; 4 weeks.

## DC Power Supplies

Output is 2 to $200 \mathbf{v}$ dc. The 30 -series offers 35 different modular units. Input is 105 to 125 v de at 60 or 400 cps . For most models, line regulation is 10 mv and load regulation is 10 mv . Units have an external potentiometer for output adjustments. Dressen-Barnes Electronics Corp., Dept. ED, 250 N. Vinedo Ave., Pasadena, Calif.

Price: $\$ 140$ to $\$ 160$.

Switching Tirre Meter


Unit measures diode recovery time. Model 140 A, also for measuring switching characteristics, provides six channels of time-difference information. Completely self-contained, the unit includes a collector supply and base drive pulse.

E-H Research Laboratories, Dept. ED, Oakland, Calif.
PUA: $\$ 3,750$; 30 days.

## Materials Tester

Unit determines physical properties. In testing elastic, metal, plastic and other substances, this instrument predicts their behavior when exposed to vibration, shock, wear and other kinds of stress. It provides for testing, a temperature range of -50 to +150 C and a frequency range of 25 to $5,000 \mathrm{cps}$. Chesapeake Instruments Corp., Dept. ED, Shadyside, Md.


## "ANSWERING SERVICE" IN SPACE

AEF TRAMBISTORIzED MADAR EEACOMS greatly extend the range to which ground radar can track satellites and missiles accurately and effectively. As a pioneer in the development of long-range Radar Beacons, ACF designs, manufactures and tests its own components and sub-assemblies. This "in-plant" capability eliminates long-lead procurement time for critical components and assures reliable, controlled performance of flight-ready units off the ACF shelf.

## ELECTRONICS DIVISION

ACF INDUSTRIES

## NEW PRODUCTS

Isolated Power Supplies


Outputs are 6.8 to $200 v \pm 5 \%$. Noise introduced by these units into the circuits to which they are connected is less than 10 mv , peak-to-peak, per kil ohm impedance to ground. Insulation voltage is 2,000 v dc. Type is A4S.
Elcor, Inc., Dept. ED, Falls Church, Va P\&A: \$36.50; one week.

Card Reader


Unit is for automatic control systems. Type CR201 transports cards from a card hopper past two read stations and into a card stacker at a rate of 30 cards per min. It can be userl for continuous scanning, automatic stop at any reguired row and continuous readout, or individual selection of any required row.

Datex Corp., Dept. ED, 1.307 S. Myrtle Ave Monrovia, Calif.

Metal Cone for Shielding

## $\operatorname{mim}_{\rightarrow}^{\infty}$

Device is self-centering, self-aligning. These Covers can be used in mechanical computers to protect shafts and ball screws. Having cone shape and spring tension, they can be placed over any shaft, rod or screw. Sizes are from $5 / 8 \mathrm{in}$. in diameter and $1 / 2 \mathrm{in}$. in shut height, up to 48 in . in length.
Elasticone Div., Central Safety Equipment Co., 6601 Marsden St., Philadelphia 35, Pa.

For tochnical date, write or call Paramue Plent. Free beacon range nomographe on request 11 Park Place, Paramus, N. J. Telephone: COifax $1-4100$ CIRCLE 64 ON READËR-SERVICE CARD


Yes!Schweber can sell any model of BOURNS TRIMPOT at factory prices.
Sizeable quantities are available for immediate shipment from stock from Schweber's warehouse.


ELECTRONICS
©o mermicks road. mineola. lit. n.t.
PIONERR ©-8320. TWX e-Cr-Wr-bsou CIRCLE $6 S$ ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 24, 1961

## Now-A High-Performance Potentiometer For As Little As \$3

Never before could you find a low price tag on this kind of potentiometer performance. Now-for as little as $\$ 3$ a unit in quantity orders - you can buy a single-turn $1 / 2^{\prime \prime}$ wirewound rotary that meets the highest standards for computer and industrial control applications.

Weighing in at a scant .05 ounce, the $1 / 2^{\prime \prime}$ dia. Trimpot (8) Model 3367 dissipates 0.5 watt, operates in $105^{\circ} \mathrm{C}$ heat, and holds residual end-setting resistance from 0 to $1.0 \%$. It meets requirements for steady-state humidity and Mil Specs for sand, dust, salt spray and fungus. Designed for convenience, too, it has index points that let you check your setting at a glance.

Reliability well beyond the expected is made possible by the exclusive Bourns Silverweld $\odot$ termination. Alloyed with multiple turns of the resistance wire, Silverweld eliminates vulnerable single-wire terminations, is virtually indestructible under thermal or mechanical stress. Units are $100 \%$ inspected, and subjected to the rigid double-check of the Bourns Reliability Assurance Program.
Model 3367 is available immediately from factory and distrib utor stocks with resistances of $100 \%$ to 20 K . Your choice of printed circuit pins (spaced for interchangeability with more expensive devices) or soider lugs with bushing mount. Write for complete data and list of stocking distributors.


Exclusive designers and manufacturers of Trimpot8 potentiometers. Pioneers in transducers for position, pressure and acceleration. CIRCLE 66 ON READER-SERVICE CARD



Has high sensitivity. Model 301 industrial control relay operates with input signal of 1 mv at 1 ua . Output relay controls up to 1.8 kw of $60-\mathrm{cps}$ power. Input stage is a high-gain toroidal magnetic amplifier; second stage is a transistor trigger amplifier which drives the output relay.

Acromag, Inc., Dept. ED, 22515 Telegraph Road, Southfield, Mich. P\&A: $\$ 98.75$ ea, 1 to 5; stock

Dual Lamp


With single base. High reliability lighting is provided by 2 MS lamps mounted in a base normally used for one T 1-3/4 bulb. The Siamlamp is rated at $5 v$, but may be operated intermittently at high voltages in alarm and warning service.
Jay-El Products, Inc., Dept. ED, P. O. Box 25, Gardena. Calif,

Transistorized Chopper


Noise is $0.01 \mu v$ per ohm. The unit performs as an spdt switch for use in servo-mechanisms, low-level voltage measurements and telemetering. Selfcontained, it has an integral drive transformer. It meets MIL-E-5272.

Telecomputing Corp., Dept. ED, 603 Main St., Westbury, N. Y. Availubility: from stock.

New B/A model NC-1 performs transistor tests up to 50 amps at peak power levels!


- Minimizes heat sink requirements
- Under optimum conditions, requires only 8 10ths of $1 \%$ of the input power used in conventional DC current tests. - Permits 750 watts max. power with max. current of 50A or max. voltage of 250 V .
- Provides DC meter readings of $\mathrm{V}_{\mathrm{aE}}$. $I_{8}, V_{c E}$ and $I_{c}$ common emitter configuration under pulse conditions
- Measures leakage currents and $I_{c o}$ and $I_{E}$ by standard techniques.
- Allows breakdown measurements to be performed under variable bias conditions.
- Evaluates switching capabilities of device under dynamic conditions.

Here's the only direct reading, variable duty cycle test set for non-destructive measurement of medium and high-power transistors. The B A Model NC-1 applies suitable pulse drive signals to the transistor under test and then peak detects the resulting current pulses at the same measuring value as steady state DC. Because the average pulse signal power is considerably lower than that of steady state DC. less stress is put on the transistor. This permits power tests to be made at a level many times that of rated device dissipation. W'rite today for additianal information and mame of your nearby Baird-Atomic representative
Engineers and scientists - investıgate challenging opportunities with Baird-Atomic.


## plan ahead!

To be really sure of getting your pot deliveries on time, you could assemble your own! But just when you're counting on sub-contractors to deliver the necessary parts - you might find they're tied-up on someone else's jobl So if you must be sure. lay in a good supply of raw materials in quantity lots - metals, glass, wire, plastics, bearings -the work!

But before you load up the living-room with bar stock. check with Ace. You'll find. to your relief, that Ace abundantly warehouses all their own raw materials - just for the express purpose of being able to make everything they need - when it's needed, for controlled delivery! So if delivery of precision pots is a prime consideration. talk to the company that does its own sub-assembly manufacture - see your Acerep!


From raw materials to completed pot - within the plant - our servo-mount AIIA. size $7 / s^{\prime \prime}$ ACEPOT ${ }^{\text {. As with all the others, }}$ Jrom ${ }^{1 / 22^{\prime \prime}}$ to $6^{\prime \prime}$.

A electronics associates, inc.
1 Dover Strool, somorvile w, Marr.


## NEW PRODUCTS

## Recorder Confrol



Unit has 15 voltage, 15 current ranges. It converts any fixed-span recorder to a universal multirange recorder. It can be used with potentiometric recorders and d'Arsonval recorders with vacuumtube preamplifiers.
Cahn Instrument Co., Dept. ED, 14511 Paramount Blvd., Paramount, Calif.
Price: $\$ 75$.

Tube-Pin Straighteners


Two types are offered. Type SH-79 is a hand tool with a 7 -pin straightener on one end and a 9 -pin straightener on the other. Type SH-97P offers a separate pair of 7 - and 9 -pin straighteners, for mounting on a chassis in cutouts for miniature sockets. CBS Electronics, Dept ED, Danvers, Mass.

Data-Acquisition System


Output is 1-2-4-8 binary. The DAS-22 system reads dc outputs from pressure, temperature, strain, depth and displacement transducers. Output is on punched tape. It accepts transducer outputs of $\pm 0.001$ to $\pm 1.000 \mathrm{v}$ in four ranges.
Electronic Controls Inc., Dept. ED, Magee Ave., Stamford, Conu.

388
MEASURE
NOISE FICURE
with
$\pm 0.08$ dh ACOURACY


Extremely accurate meas. urement of low noise figures is provided by the AIL Type 70 HOT-COLD BODY STAND ARD NOISE GENERATOR.

Utilizes two precision matched resistive elements. one immersed in liquid nitro gen and one contained in a temperature controlled oven to provide accurate tempera ture references for noise fig. ure measurement of

PARAMETRIC AMPLIFIERS

## MASERS

LOW NOISE PREAMPLIFIERS
Frequency Range $\quad 0$ to 2000 mc Relative excess
noise output $\quad 683 \mathrm{db}$ Output Impedance 50 ohms VSWR 1.15 maximum Price $\$ 675$
For full information write:

## (1) <br> AIRBORNE INSTRUMENTS LABORATORY

DEER PARK, LONG ISIAND, N Y
a division of cutier-hammer. inc CIRCLE TO ON READER-SERVICE CARD ELECTRONIC DESIGN • May 24, 1961

Subminiature Lamp


Dimensions are $3 / 16 \times 1 / 8$-in. in diameter. The design allows light to be taken directly from the end of the lamp without the distortion found in tipped models. Ratings are $1.5 \mathrm{v}, 0.01$ amp to $5 \mathrm{v}, 0.11 \mathrm{amp}$. Uses are transistor circuitry, missile and aircraft applications.

Los Angeles Miniature Products, Dept. ED, 17000 Western Ave., Gardena, Calif.

## Digital Modules

Clock rates are up to 16 mc . Series H logic elements perform gating. clocking, gain and delay functions. Gain is 6 at $16 \mathrm{mc}, 10$ at 10 mc . Signals transmitted between elements are dc levels. A master oscillator and clock amplifiers generate synchronizing pulses to control the logic elements and active delay circuits.

Computer Control Co., Inc., Dept. ED, 983 Concord St., Farmingham. Mass.
P\&A: \$66 up; from stock.

## Shielded Room

364
With 120 db from 15 kc to $3,000 \mathrm{mc}$ and better than 80 db at $10,000 \mathrm{mc}$, this shielded room is constructed of $3-o z$ solid copper. Inside and outside bolting includes friction as well as pressure contact.

Erik A. Lindgren \& Assoc., Inc., Dept. ED, 4515-17 N. Ravenswoorl Ave., Chicago 40, Ill.

## Pulse Modifier

360
For low-level pulses. Available in fixed or variable models, pulse modifier drives standard devices such as counting units from a high-speed, light-duty pilot contact. With an input pulse of $50 \mathrm{mw}, 1 \mathrm{msec}$, the unit will provide outputs to 15 w and 10 to 100 msec at 24 v dc .
Programation Div., Guardian Electric Manufacturing Co., Dept. ED, 1621 W. Walnut St., Chicago 12, Ill.

NEW G.E FOIL TANTALYTIC CAPACITOR
'A CASE' (POLAR)

SOLID TANTAIUM CAPACITOR

NEW G-E FOIL TANTALYTIC CAPACITOR
"A CASE" (NON-POLAR)

## NEW smaller size foil Tantalytic* capacitors pack foil advantages in near solid dimensions

No longer can limited space prevent your specifying a foil capacitor with its superior characteristics. General Electric now offers an 85C Tantalytic "A Case" capacitor $.131^{\prime \prime}$ diam., $47^{\prime \prime}$ long almost as small as the smallest solid!

The General Electric foil "A Case" is available at higher voltages, and is inherently more reliable than solids inherently more reliable than
when operated at rated voltages. It is available in non-polar as well as polar ratings. Further, it matches solids for volumetric efficiency.

But there's no compromise on electrical characteristics. The lower leakage currents of the "A Case" actually decrease during operation, while leakage currents in solids normally increase.

The "A Case" comes in single-end, .47"-long. .131"-diam., polar type: or double-end. $.54^{\prime \prime}$-long. . $131^{\prime \prime}$-diam., polar or non-polar types-rated $6 v$ (12uf) to 50 v ( 1.4 uf ), and to higher voltages.

For data, call your G-E Sales Engineer. Or write for Bulletin GEA-7226, General Electric Co., Schenectady, N. Y., Capacitor Department, Irmo, S. C.

## Progress is Our Most Important Product GENERAL (86) ELECTRIC

General Electric also offers these reliable Tantalytic capacitors


## 125 CKSR TAMTALYTIC CAPACITORS <br> Bulletin GEA-6766



125C CYLINDRICAL
TANTAYTIC
CAPACITORS CAPACITORS
Bulletin GEA-7085

## NEW PRODUCTS



Ranges are to $600 \mathrm{v}, 150 \mathrm{amp}$. Model 113 is equipped with test leads for measuring voltages or currents using a clamp-on current transformer. It is useful in checking motor loads and monitoring. The over-all accuracy is $3 \%$.
Rustrak Instrument Co., Dept. ED, 130 Silver St., Manchester, N. H. Price: $\$ 19.5$.

Compression Amplifier


For command consoles. (jeneralpurpose compression amplifier, made for command consoles has input of -20 dbm . output of +33 dbm - Input impedance is about 10 K . Distortion at rated output is less than $3 \%$. Frequency response is within 3 db from 300 to $5,000 \mathrm{cps}$, and signal-to-noise ratio is 50 db .

Westrex Recording Equipment Dept., Dept. ED, 6601 Romaine St., Hollywood 38, Calif.

## High-Vacuum Ovens

Temperatures are to $\mathbf{4 5 0}$ C. Regulation is to $\pm 2 \mathrm{C}$. Pressures are as lou as $10^{-4} \mathrm{~mm} \mathrm{Hg}$. A vacuum of $10^{-8} \mathrm{~mm}$ Hg can be maintained with a tempera ture of 350 C . Sizes are 2.5 cu ft with 3.8 sq ft of shelf area and 1.2 cu ft with 1.5 sq ft shelf area. Designation is model $236-\mathrm{H}$
F. J. Stokes Corp., Vacuum Processing Div., Dept. ED, 5500 Tabor Road, Philadelphia 20, Pa.


For research work. The $502-\mathrm{A}$ is a general purpose neuro-physiological stimulator designed for rescarch and clinical work in human vision. Light source is a glow tube Operating in cw, gated cw , and gated pulse modes, the set controls flicker frequency, intensity, and light-dark ratio.

Industrial Control Co., Dept. ED, Central Ave. at Pinelawn, Farmingdale, L. I., N. Y.

Low-Noise Fan
419


Unit provides 24 cfm . It is 2.25 in deep and 3 in . in diameter; it operates at $3,500 \mathrm{ppm}$. Lubrication is sealed in. Life expectancy is $10,000 \mathrm{hr}$ at is C continuous duty. It requires 115 v at 60 cps . single phase.
Rotron Manufacturing Co., Inc. Dept. ED. Woodstock, N. Y.

Freezing-Point Standard


NBS freezing point-samples are furnished. This apparatus reproduces primary and secondary points in the international temperature scale for calibration of temperature-sensing devices. Freeze-out time is 15 to 20 min . Temptron, Inc., Dept. ED, 70.30 Darby Ave., Reseda, Calif.

Crimp-type Connectors


These solderless, coaxial connectors are available in a variety of mounting configurations, including snap-locking versions. Male and female connectors may be mounted interchangeably. Mated length is $1^{13 / 18^{\prime \prime}}$. Working voltages: 1.000 V . maximum, at sea level; 500 V . maximum, at 60,000 feet. VSWR; less than 1.2 up to 2.000 mc . Life; 5.000 matings, minimum, without electrical deterioration.Tensile strengths of the crimps exceed the breaking strength of the cable. Hard gold plated Beryllium copper and TFE plastic are extensively used to assure optimum reliability.

Microdot, Inc., 220 Pasadena Avenue, South Pasadena, Califormia circle 247 ON reader-service caro

## Coaxial Switch



SPDT miniaturized switch features a case volume of $1 / 2 \mathrm{cu}$. in and weight of 1\% oz. Design allows direct insertion into miniaturized circuit without cumbersome adapters. Toggle action is positive, rf characteristics are highly efficient. VSWR is less than 1.25 to 2.0 kmc . Insertion loss is 0.8 db at 2.0 kmc . Contact rating is $\frac{1}{2} \mathrm{amp}$ at 150 V . resistive. Operating is 50,000 operations, minimum. Special stripline manufacturing technique provides low loss, wide frequency band properties.

Microdot, Inc., 220 Pasadena Avenue, South Pasadena, California CIRCLE 248 ON READER-SERVICE CARD CIRCLE 249 ON READER-SERVICE CARD $>$


Microdot's Cable Facilities specialize in precise metallic braiding of microminizture coaxial cables. in a new, ultra-modern plant, special advanced techniques of cylindrical weaving are combined with the utilization of highest quality materiais and rigid quality control methods, to produce a wide range of miniaturized RF irequency eabies.... cubles dasigned and produced to yield the same matched impedance as required for larger cables.
"Mini-Noise" cable, a result of Microdot research, is spe cially processed to minimize self-generated noise-prevents noise interference with low strength signals These cables also offer high performance in extreme temperature ranges.

P洜

Twinax cable produced by Microdot is a shielded. twisted pair if conductors utilizing prime dielectrics for low loss, featuring controlled capacitance and impentrolled Shield is and impedance. tion ind conded after insula. tion and conductors are arranged in a balanced to ground configuration.

Triax cable by Microdot offers of leakage below the level experienced with Double Shielded Coax. Three active conductors permit feedback to cancel a known noise source. Capacitance cancelling hook-ups are pos. sible for cathode followers.

## MICRODOT INC.

220 Pasadena Avenue. South Pasadena. Calı! MUrray 23351 SYcamore 99171

Use reader service card in this publica tion. or write today for 4 -page folder of performance charts, design characteristics, and specifications on the follow. ing cables: Coax 50, 70, 75, 93, 95 ohm. Twinax 125 and 160 ohm Triax 50 and 93 ohm.



Complete RCA MEMORY SYSTEMS

## with specified extra wide safety margins

Standard or cuatom systems, incorporating Here are some of the outatanding features RCA ferrite and semiconductor devicen, are denigned, built, and teated by memory-circuit opecialistlu-at RCA newly expanded memory products operation in Needham. Mas
 of complete RCA Memory Systems:

- Specified Wider Margina of Operations ..Up to 8 percent...to cope with broad
variations in power levels. - Custom Design Service.
neering staff will custom-design as engi eystem to your specifications.
- Superior Reliability... Components and circuits proved by the long, dependable service of over 100 systems now in use. - Complete Information Retention...even wide Temperatere Ras. Wide Temperature Range... $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. For Sy items Engineering Service-Call your RCA Office. For technical informaterials Division, Commercial Engineering, Section E18NN-2.Somerville, N. J.
Here is the new answer to memory-system design and production, offering new latitude to the computer engineer, new solutions to your system production problems - complete RCA Memory Systems. signed and produced by RCA from ferrite signed and producee to entire packaged systems, these cores to entire packaged tested to broad operating limits and are delivered ready
for immediate use in computer designs.
> atcent mea memort stsiem smipmen Casexity 4096 words. 18 Dits per word. spees Complete Read-write cyclo tume of 5 monss ol Read-Regenerate/Read-Modify/Write. Rolizility Acceptance tests made with all power supply voltages varied both plus ond
minus g percent from their nominal values whe the system is being tem-
perature cyceed. stamoare aca memony stbteme

The Most Trusted Name in Electronics adio corporation of america






## NEW PRODUCTS

## Concentric-Scale Dials



Diameter is 1 in . With the addition of a finger-tip brake, series 3000 dials have a $1-5 / 32$ in. diameter They extend $15 / 16 \mathrm{in}$. from the panel. Standard units accommodate $1 / 8$ or $1 / 4-\mathrm{in}$. shafts. They can be used for positioning potentiometers or shaft-controlled devices of 10 turns or less.

Amphenol-Borg Electroncs Corp, Burs Equip ment Div., Dept. ED, 120 S . Main St Janesville, Wis.

Heaf-Sink Clip


Construction is of aluminum. The device protects semiconductors during soldering. It fits around the wire running between the semi-conductor and the joint to be soldered. It absorbs and dissipates the heat that runs up this wire.

Avtron Manufacturing Inc., Dept ED, 10409 Meech Ave., Cleveland 5, Ohio.
Price: $\$ 19.80$ per 100.

Pulse-Generating Module


Units drive $45-\mathrm{amp}$ pulses. This is at 250 v and lasts 40 usec when a magnetostrictive transducer is used. Voltage input for the 28 A series is $6,12,28$. 350 or 500 tdc . Construction is epoxy molding and dimensions are $1 \times 2-5 / 8 \times 3-1 / 2$ in.
ACR Electronics Corp., Dept. ED, 551 W, 22nd St., New York 11, N. Y.
P心A: $\$ 58.50$ to $\$ 198.50$; 30 days.

## ADVAILABLE FROMSTOCM3 <br> C．I．C． PRECISION FILM POTS

You can have any of these precision film pots on their way to you within hours．No need to wait for＂custom＂pots．

LINEAR SINGLE TURN FILM POTENTIOMETERS

| $\begin{gathered} \text { Diomefor } \\ 1 / \mathbf{2}^{\prime \prime} \end{gathered}$ | Resizoonco |
| :---: | :---: |
|  | $1 \mathrm{~K} \quad \pm .5 \%$ |
|  | 10K $\quad$ ． $5 \%$ |
|  | 50K＿－．．．．． 5.5 |
| 7／8＂ | 1K |
|  | 10K＿＿－．．．． |
|  | 50K－． |
|  | 1 K －－－ |
|  | 10K $\quad$－$\quad \pm .25 \%$ |
|  | 50K－士 ．25\％ |
| 1．3／32＂ | 1 K －$\quad \pm .5 \%$ |
|  | 10x |
|  | s0k |
|  | 1 K ＋$+.25 \%$ |
|  | 10K $\quad \pm .25 \%$ |
|  | 50K $\pm .25 \%$ |
| 2＂ | 5k $\pm .25 \%$ |
|  | 20K $\ddagger .25 \%$ |
|  | 50K $\ddagger .25 \%$ |
|  | 5k |
|  |  |
|  | 20k－ |
|  | 50k |
| 3＂ | 5k ——士．1\％ |
|  | 20k－－－士． $1 \%$ |
|  | 50k－－－．．1\％ |
|  | $5 \mathrm{~K} \quad$－ |
|  | 20K $\quad \pm .05 \%$ |
|  | Sok |
|  |  |

SINE－COSINE SINGLE TURN FILM POTENTIOMETERS

| Diamotor | Resistanco | Conformily |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1－3／32＂ | 10K | ．$\pm .75 \%$ |  |  |
|  | 20K | ． $\mathrm{} 5 \mathrm{5} \$.  \hline ${ }^{\prime \prime}$ | 10k | $\pm .25 \%$ |
|  | 20k | $\pm .25 \%$ |  |  |
| 3＂ | 10k | －．15\％ |  |  |

LINEAR MOTION FILM POTENTIOMETERS
size Rosistence strote tineority 10k 1 ＇Stroke $\pm .5 \%$ lok $2^{\text {＂Stroite }} \mp 25 \%$ 20k ${ }^{\text {＂}}$ Stroke $\pm \pm .25 \%$ 10K 3＂Stroke $\pm 1 \%$ 20K $3^{3 \prime}$ stroko $\pm .1 \%$

WRITE OR CALL IN YOUR ORDER！POTENTIOMETERS WILL BE IN YOUR PLANT WITHIN 24 HOURS！


COMPUTER INSTRUMENTS CORPORATION 92 MADISON AVE．，HEMPSTEAD，L．I．，N．Y．

## How To Improve Response Speed of Servos Using Wire－Wound Pots．．．



High starting torque Wire．Wound pot（A）stalls Servo Motor（B）． Motor overheats．Frying Pan（C）becomes hot and proceeds to pop corn（Note Popcorn Hopper（D）designed for slow，continuous flow of top quality corn．）As corn pops，Turbo Jet Popcorn Aimer（E）directs stream of popped corn to Funnel（ $\boldsymbol{F}$ ）．Corn is then directed into Auxiliary Power Treadmill（G），causing popcorn－loving mice to start Power Treadmill revolving as they begin to chase falling popcorn． Revolving Power Treadmill then turns Pulley（ $\mathbf{H}$ ）which turns Gears （ $1 \&$ J），in turn revolving Pulleys（ $K \& L$ ）．Pulley（L）spins Fly－Ball

Governor Grabber（M）．As momentum is increased Governor－Grabber causes spinning Clutch Hands（ $\mathbf{N} \& \mathbf{O}$ ）to engage Wheel（ $\mathbf{P}$ ），supply ge the additional torque necessary to start servo rotating Reversing input signal llips Solenoid $(\mathbf{O})$ to reverse position，slidin funnel（F）to Mouse－Reverse position．As popcorn is then directed into other side of Power Treadmill，the mice reverse their running action so as to continue catching falling popcorn．Periodic replacement with fresh mice and／or use of cheese－flavored popcorn can be used to ncrease efficiency of this system．

BUT THE BEST WAY YET．．．Use C．I．C．Low－Torque Film Pots！
Low torque is an inherent property of C．I．C．Film Pots．The smooth，unbroken，mirror－like surface of film offers minimum friction to the wiper and requires low brush pressures for continuity．As a result，C．I．C．Film Pots have multi－million cycle life．＊Write for your free C．I．C．catalog facts today．

Ask for list of missiles and aircraft
currently using C．I．C．Film Pots．
imherent reliability infinite resolution PRECISION LINEARITY
－multi－milion crcle life LOW OPERATIOMAL MOISE VIDEO FREQUEMCY OPERATIOM

COMPUTER INSTRUMENTS CORPORATION
92 MADISON AVENUE－HEMPSTEAD，L．I．．NEW YORK


C 1

## TOPS in the fieldTarzan TUNERS



Television and radio manufacturers are quick to appreciate the outstanding qualities and characteristics of the Tarzian Tuner. It's a precision-built unit engineered and produced to assure unexcelled reception . . . especially in fringe areas.

That's why most engineers and designers specify and rely on the trouble-free Tarzian Tuner for the best performance of their sets. After all, the TUNER is the "brain" of any receiver.

Sarkes Tarzian, Inc., the pioneer in the industry, offers manufacturers the Hot Rod (turret type) Silver Sealed (switch type) . . . as well as the Hi Fi FM Tuner. All with built-in High Quality . . . Dependability . . . Unexcelled Performance . . . and at Low Cost!
manulacturers of TV and FM Tuners - Closed Cirruiet TV Systems

## NEW PRODUCTS

Capacitance Monitor


Output is on punched tape. Model 10001 mediumspeed digital system automatically measures capacitance, dissipation factor and leakage current. Preset timing allows capacitors to be charged for 1 min and measured at a rate of 10 per min.

Electro Instruments, Inc., Dept. ED, 8611 Balboa Ave., San Diego 11, Calif.

## Cabinet Cooling Panel



Unit provides vertical air flow. Model PF-5, for cooling rack-mounted equipment, pressurizes the entclosure slightly above atmospheric pressure. Over 2 kw of heat is dissipated with a temperature rise of 10 C . Rate of air movement is 400 cfm

Deltron Inc., Dept. ED, 4th \& Cambria Sts. Philadelphia 33, Pa.
$\boldsymbol{P}$ \& A: $\$ 52.90 ; 90$ days.

## Buffer-Consrol



Unit drives rotary-bar printers. Series RBP offers capacities of $24,36,72,120$ and 160 characters. Characters of up to 6 bits are accommodated. They are loaded at rates up to 100,000 per sec. Inputs can be from magnetic tape, magnetic drum, shift register or other devices.
DI/An Controls, Inc., Dept. ED, 40 Leon St., Boston 15, Mass.
P\&A: $\$ 1,980$ to $\$ 22,410 ; 8$ to 12 weeks.

380
$600 \mu$ seconds
switching of
VOLT SIGNALS
THE
JAMESS RELAY SPDT DPDT



A high speed low level relay for switching and samoling in computer, multiplexing, integrating and instrument applications.

- LIFE-1 billion operations
- SPEED-600 $\mu \mathrm{sec}$. maximum pull in and drop out
- LOW NOISE-2 $\mu \mathrm{V}$ in 100 K ohms
- LOW THERMALS-Less than $1 \mu \mathrm{v}$
- POSITIONING-Non-critical
- VIBRATION AND Shock reSISTANT
- MODELS FOR ALL SWITCHING SPEEDS AND CIRCUITS


A PACKAGE FOR EVERY INDUSTRIAL OR MILITARY APPLICATION


The dependable technique for instrumen switching. A complete technical bulletin on request. JAMES solicits your engineerin inquiries on the application o! MICRO-SCAN hin your ayatom.
 ELECTRONIC DESIGN - May 24, 1961

Rating is 250 kv . Designed for industrial and research applications, model 2-TR-250-21-21 provides dc isolation from the secondary to the primary and ground. Secondary connections are brought through a single insulator. A terminal strip is provided within the corona shield for 220 - or $110-\mathrm{v}$ output.

Del Electronics Corp., Dept. ED, 521 Homestead Ave., Mt Vernon, N.Y.

## Module Fastener

408
Device is for multiple-pin connectors. The assembly is composed of a variable-length stud shank, a nylon guide bushing, and a standard $1 / 4$-turn Airloc recepttacle. Steady pressure is exerted laterally across the connector. Various heads are offered.

Monadnock Mills, United-Carr Fastener Corp., Dept. ED, San Leandro, Calif.

Thermistor Thermometer


Two types are offered. Both have scale ranges of 20 to 45,10 to 45 or 0 to 4.5 C . Typical accuracy for the 20 to 45 C range is 0.25 C for the MultiLead model and 0.1 C for the Esophageal model.

Electro-Medical Engincering Co.. Inc., Dept. ED, 703 Main St., Burbank. Calif
Availability: stock to 2 weeks.

## Sealed Precision Bearings

404
Life is $\mathbf{3 , 0 0 0} \mathbf{~ h r}$ at $\mathbf{8 0 , 0 0 0} \mathrm{rpm}$. The Flexeal devices are suitable for use in missile electric power units and in computers. The seal is of fiber-aluminum laminate. They tolerate lineal speeds of $6,000 \mathrm{ft}$ per min and temperatures to 300 F .
The Barden Corp., Dept. ED, 200 Park Ave. Danbury, Conn.
when airborne radar requires the very best: Ku BAND

Designers of radar equipment will find Bomac Laboratories' new BLM-071 Ku-band pulse magnetron meets exacting requirements for airborne systems: lightweight, rugged, powerful. This newest contribution from Bomac is a fixed-frequency tube ( $15.9-16.1 \mathrm{kMc}$ ) rated at 100 kW peak, at 0.001 duty cycle.

Cathode structure is greatly improved over similar magnetrons. Operable at high ambient temperatures, with input/output terminals permitting pressurization to 30 psia. Special construction minimizes leakage current. High power output and low operating voltage are combined in a compact, ruggedized unit. Long life. Weight: less than $81 / 2 \mathrm{lbs}$.

The many advantages
to Bomac's BLM-071 magnetron make it readily adaptable to navigation. high-altitude mapping. airport surveillance, and similar applications. Write for full technical details.


FEATURES: Frequency 15.9-16.1 kMc.
Peak Power 100 kW .
Normal efficiency $30 \%$.
Duty cycle 0.001 Max
Pulse wiath 0.06 to 1.2 usec .

## ЗOMAC Iabopatoples. inc.

BEVERLY 21, MASSACHUSETTS A Varian Suboidiary
Other Subsidiariss of Varian Associates:
Other Subeidiarics á Varien Assoc.
VAFIAN ASEOCIATES OF CANADA, LTO.
BEMICON AEBOCIATEE. INC.
BEMICON AESOCIATEE, INC.
VARIAN A.C. (EWITZERLAND)

## NEW PRODUCTS

Add-Subtract Counter


Rating is $\mathbf{5 0} \mathbf{k c}$. Series F1503 miniature decade counter features in-plane display, modular printed circuitry and computer-type transistors. Grounding one of two control lines reverses the count direction.
Robotomics Corp., Dept. ED, 2422 E. Indian School Road, Phoenix 16, Ariz.
PGA: \$139; 4 wceks.

## DC Servo Molor

Unit operates at high altitudes. Ratings are: 0.5 hp ; voltage-field, 27 $v$ dc; armature 0 to 90 v dc; speed, 10,000 rpm; duty, intermittent. Explosionproof, the unit meets MIL-MS609A and MIL-M-5272. It weighs 1.5 $\mathrm{lb}, 8 \mathrm{oz}$. Type designation is VI-20-1.
Kearfott, Div, of General Precision,
Inc., Dept. ED, Little Falls, N. J.

## Large-Screen Scopes

435
Linearity is $1 \%$. Resolution is 40 lines per in. at center to 20 lines per in. at scale limits. Plotting accuracy is 0.2 in . Drift is less than 0.05 in . per hr for models 1735D and 2135D and less than 0.5 in . per hr for 1740 D and 2140D.

ITT Industrial Products Div., Dept. ED, 15191 Bledsoe St., San Fernando, Calif.

## Tape-io-Tape Converter

428
Speed is $\mathbf{3 0 0}$ characters per sec. The TMTC is offered in models to convert perforated paper tape to magnetic tape, magnetic to paper or paper to paper. Conversion accuracy is assured by continuous self-checking at each step in the process.
Daystrom Inc., Control Systems Div., Dept ED, Miramar Road, La Jolla, Calif.

## When does it pay to pay more for a



WHEN RELIABILITY is of uncompromising importance. consider NLS Series 20 instruments with advanced transistorized logic and mercury-wetted relays. The M24, above, which measures DC voltage, DC voltage ratio or resistance in $1 / a$ second, has been selected by major missile manufacturers after thousands of hours of competitive life testing.


WHEN SPEED, in the order of 200 measurements per second, is required. specify the NLS V44 All-Electronic DVM. Here is an instrument specifically designed to solve the special problems encountered in high-speed measuring and data logging.

## ! : <br> (3)

WHEN ACCURACY-full five-digit accuracy - is demanded by your application, use the NLS V35A. This instrument features resolution of $0.001 \%$ over the entire range. a result of mathematically perfect "No-Needless-Nines" logic.


WHEN EASE OF SERVICING is of vital concern, you will find it in any NI.S premium instrument. The higher-priced $V 44$, M24, V24. R24 or the medium-priced V35A and V34A (shown above)-all feature $99 \%$ plug-in modular construcfion for spotting and correcting malfunclions in minutes instead of hours or days.


You can buy an NLS Digital Voltmeter for as little as $\$ 1,125 \ldots$
.. but there are many times when it pays to pay much more! When accuracy, reliability, speed, servicing ease or versatility cannot be compromised. you'll gain far greater long-term economy by specifying one of these premium NLS instruments:
(1) M24 Multi-Purpose InstrumentMeasures DC voltage from $\pm .0001$ to $\pm 999.9$ and DC voltage ratio to $\pm .9999$ $1 \pm 0.01 \%$ accuracy). resistance from 0.1 ohm to 1 megohm...1/3 second balancing time.... with accessories, measures AC voltage or AC ratio, low-level DC... completely automatic... output for data
$\$ 5,650$
logging.

55,650
V24 Voltmeter-Ratiometer - Similar to A124 except it does not measure resistance. R24 Ratiometer-Measures DC ratio 4ith ranges of =.9999/9.999. $\quad \$ 4,650$
(2) V44 All-Electronic Voltmeter-200 readings per second... measures DC voltages from $\pm 0.001$ to $\pm 999.9 \ldots$ output for data logging . . input impedance 10 meg ohms on all ranges without internal or external preamplicat...recommended or mum reliability and dependable $\pm 0.01 \%$ accuracy... there are no decade or amplifier potentiometers to trim; the V44's "NO POTS AT ALL" stability is designed in. not trimmed in. $\$ 6.150$
(3) V35A Transistorized Voltmeter Ratiometer - This all-transistorized instrument is the fastest, most versatile. true Figure, full 5 -digit resolution of $0001{ }^{5}$ : measures DC voltage from $\pm 0.000$ - $\pm 999.99$ DC voltage ratio from $=00.001 \%$ to $\pm 99.999 \% \ldots$ with accessories, measures AC voltage, low-level DC . features No-Neediess-Nines logic, plug in oil bath stepping switches...output for data logging.
\$3,750
(4) V34A Transistorized Voltmeter Ratiometer - 4 -digit quality and performance companion to V35A. $\$ 3,150$ NLS offers a complete line of digital voltmeters... hoth by purpose and hy price. In addition to these premium instrumems, six low-cost models in the Industrial Series are offered by NLS pioncer of low-cost DVMs. To sec any NLS invtrument in action or receive more information, write NLS or contact any NLS office or representative
non-linear systems, inc del mar, California
circle ob on reader-seavice card ELECTRONIC DESIGN • May 24, 1961 sistorized. ton, N.J.


Rate is one point per sec. The unit scans up to 200 variables. It records the alarm condition measurements and their location, actuates an alarm lamp and energizes any external alarm system. It is tran-

The Bristol Co., Dept. ED, Waterbury 20, Conn

## Minialure AC Amplifier

461
Gain is 100. Frequency response is flat within $\pm 0.5 \mathrm{db}$ from 30 cps to 100 kc . The noise level is often so low that two units may be used in tandem, providing a total gain of 10,000 . Designated model 203, the unit is transistorized.
Quan-Tech Laboratories, Inc., Dept. ED, Boon

Constant Voltage Transformer


Completely automatic. The Permavolt constant voltage transformer is designed for close control of filament, plate and transistor voltages. Standard models have an output voltage tolerance of $\pm 3 \%$ for line variations of $\pm 15 \%$. Tolerances as low as $\pm 0.5 \%$ can be obtained. Models for applications up to 1.5 kva may be custom designed

Permavolt Transformers, Dept. ED, P.O. Box 252, Grand Haven, Mich.

## Multifurn Potentiometers

460
Resistances are 25 to 200 K . Best lincarity tolerance is $=0.1 \%$. Model DV is rated at 2 w at 40 C model AV', 3 w and model RV, 5 w. End resistance is as low as $0.015 \%$ of total resistance. End covers are of anodized aluminum.
Voak Enginecring Cu., Dept. ED, 129 "A" St. Upland, Calif.
Pט́A: \$9 up; from stock.


MODEL 74C

- 100 KC Test Frequency
- 0.0002-11,000 $\mu \boldsymbol{f}$ Generally $0.25 \%$
- 1000 ohms to 1000 megohms Shunt Resistance
- 0.001 to $1000 \mu$ mhos

Conductance
Price $\$ 935$

MODEL 74C-88 (shown)

- With -5 to +100 V DC Bias for Diode Testing

Price $\$ 995$
MODEL 7EA-8B

- With -5 to +100 VDC Bias for Diode Testing

Price $\$ 1050$

Boonton ELECTRONICS Corp.
MORRIS PLAINS, N. J. • Phone JEFFERSON 9-4210

## Now


stability and reliability are realized in practical large percentage bandwidth crystal filters

## With Midland type NB Miniature $1.8 \%$ wide band pass 10.7 MC crystal filters

The Types NB-1 and NB-1B are four-crystal networks contained in a hermetically sealed package with a volume less than 1 cu . in. and 2.5 cu . in. respectively. The center frequency of both types is $10.7 \mathrm{MC} \pm 3 \mathrm{KC}$ with a 6 db bandwidth of $200 \mathrm{KC}+10 \mathrm{KC}$, -OKC and an ultimate minimum rejection of 100 db . Singly used they exhibit a maximum $60 \mathrm{db} / 6 \mathrm{db}$ bandwidth ratio of $2.25: 1$. Because they are small in size, two of the same type can be used in cascade with an active network between filters to produce an 80 db 6 db bandwidth ratio of better than 1.7:1, with an ultimate rejection of over 120 db . Small quantities for engineering evaluation are available immediately from stock. Midland invites consultation at any time for potential crystal filter users.


## NEW PRODUCTS

## Printed-Circuit Layout Machine



Operation is high speed. The ART-MECH converts free-hand sketches into accurate transparencies. It can be used for drilling the etched circuits. A 0.1 -in. grid reference template with a tolerance of $\pm 0.001$ or $\pm 0.003 \mathrm{in}$. is used.
Melpar, Inc., Special Products Div., Dept. ED, 3000 Arlington Blud., Falls Church, Va.
P\&A: \$2,950; from stock.

## DC, Light-Duty Capacitors

Minimum life is $\mathbf{1 , 0 0 0} \mathrm{hr}$. Uses include: dc powersupply filter in X-ray and radar equipment, in small surge generators or linear accelerators for intermittent duty pulse forming, for capacitor discharge welding and energy-storage applications.
Line Materials Industries, McGraw-Edison Co., Dept. ED, Milwaukee 1, Wis

## Precision Capacitors



Range is $\mathbf{0 . 0 0 1}$ to $\mathbf{1 0 0}$ uf. Accuracy is $+0.1 \%$. Tpye 282 W , for use as a standard in bridge measurements, permits accurate measurements of highcapacitance capacitors in digital power supplies. Type 280W has a rectangular case with integral banana plug and pack terminals. Type 281W with BNC connectors is for 3-terminal measurements.

Sprague Electric Co., Dept. ED, North Adams, Mass.

## Dust-Free Cabinet

410
Particles of 0.5 micron are removed. A plunger switch starts positive pressure of 50 cfm . Four-tube fluorescent lamps provide interior light. Interior dimensions are $21.5 \times 19.25 \times 33.5 \mathrm{in}$. Model 1801 has a plastic face plate; model 1901, glass.
Plastigage Corp., PlastiCo Div., Dept. ED, 915 E. South St., Jackson, Mich.

## CANNON IPLUGS

 Solweber Cannon - UTHORIZEP


Scliwhter

ELECTRONICS

onennicho man wintoca, L.i.n.r. circle al on reader-seqvice caro ELECTRONIC DESIGN • May 24, 1961



## Avco and... satellite signal selection

Space vehicles are constantly exposed to many signals as they orbit the earth. Electronic interference, false messages . . these are but two of the problems they contend with.
To receive correct commands, a new coder-decoder was developed by Avco's Electronics and Ordnance Division working with NASA. Built around a singleconversion concept, the Avco unit ignores stray signals, shuns radio noise and interference
Miniaturized to save weight and space this uniquely selective radio device will pull in only proper information, feed it to the decoder, and actuate the correct on-off controls and other satellite equipment as ordered.

Communications capabilities are among the many contributions of the Electronics and Ordnance Division's experienced engineering talent and skill. For more information on this new satellite receiverdecoder, or answers to your own communications problems, write: Director of Marketing, Communications Operation, Electronics and Ordnance Division, Avco Corporation, Cincinnati 15, Ohio.
unusual caner oppoptumities ion oualified scientists ano encineres ....ercandiess or
RACE CRELO. COLOR OR MATIOMAL ORIGIN. . WRIIE AVCO/GLECTROMICS AND ORDNAMCE TODAY.

## 4130/f ELECTRONICS <br> AND ORDNANCE

## NEW PRODUCTS

Flow-Actuated Switches


Design is spdt. These units provide remote indication of preset rates of flow in both liquids and gases. Standard bellows rating is 600 psi. Types NT and ET can have up to 1,500 psi. Other types are EPS, EPF and VPS

Power Equipment and Engineering Co., Inc., Dept. ED, 1836 213th St., Torrance, Calif.

## Temperafure Recorder



Ranges are to 2,500 F. Minimum span is 0 to 500 F and accuracy is $2 \%$. Operating on a pyrometer principle, the device uses the output of a thermocouple junction through a temperature compensator to cause deHection of a sensitive galvanometer. Rustrak Instrument Co., Dept. ED, 1.30 Silver St., Manchester, N. H. Price: $\$ 1.39 .50$.

## Plastic Wiring Ducl

438
Rounded edges provide insulation. Type E, replacing type B, is available in an extended range of 25 different sizes. Molded from vinyl plastic, it comes in 5 - and $6-\mathrm{ft}$ lengths. It can be cut with a fine-tooth hand or power

Panduit Corp., Dept. ED, 17301 Ridgeland Ave., Tinley Park, Ill.

## Silicon Mesa Transistors 432

Units are for medium-power use. Types 2N497, 2N497A, 2N498, 2N498A, 2N656, 2N656A, 2N657 and

[^2]2N65\%.A are for audio to medium frequency use. Average dissipation is 4 and 5 w , continuous. Saturation resistance is 25 ohms. Base input resistance is 500 ohms.
General Electric Co., Semi-Conductor Products, Dept. ED, 11840 W. Olympic Blud., Los Angeles 64, Calif.

## Arc Switch

414


Rating is $\mathbf{7}$ to $\mathbf{2 0} \mathbf{~ k v}$. Capacity is 2,500 J. Model AS-2.5 facilitates controlled discharge of stored electrical energy in laboratory and production applications. It is actuated by spark ejection. Provision is made for four coaxial connectors.
RHD Research, Inc., Dept. ED, P. O. Box 1815. Newport Beach, Calif. Price: $\$ \$ 00$.

Aviation Electrical System 433
Temperature range is -6.5 to +600 F. It is applicable to requirements of Mach 3 and low-level attack vehicles. Gas diode rectifiers rated at $0.125,2$ and 10 amp operate to -9.32 F. Mag. netic amplifiers operate to -752 F . General Electric Co., Dept. ED, Schenectady 5. N. Y

Epoxy Laminate 426


Sheets, strips, coils are offered. Able to meet MIL-P-18177B, this glasscloth epoxy laminate is $0.015,0.022$, 0.032 or 0.062 in . thick. Designation is X6G-280. Also offered, type X6G278 has thicknesses of $0.00 \bar{i}, 0.01$, $0.02,0.032$ and 0.062 in.
Swedlow, Inc., Dept. ED, Box 2324, Youngstown, Ohio.
circle at on reader-service card >

## ENGINEERING NEWS - \#10

## LIGHTED PUSHBUTTON SWITCHES

| CHECKED HEA | ENGR. W. $\Sigma-M$. | CONTROL SWITCH DIVISION |
| :--- | :--- | :--- | :--- |

These five models indicate only a part of the full line of SWITCHLITES made by Control Switch Division.
These units combine both switch and indicator light in a single rugged, compact assembly. They are available with momentary, push-push, or push-pull snap-action, having a positive feel. There are eight basic case styles, 20 circuit arrangements. Switch ratings from 2 to 20 amps , ind. or 10 to 20 mps . res. at 28 VDC-depending on switch type, circuit, and required operating life. Switchlites use a midget flange base MS25237 lamp. 6, 14 or 28 volts. Choose from five styles of plastic pushbuttons in standard transparent and translucent colors.

In other words, almost any requirement you may have for a compact lighted pushbutton
A3341
Momentary No
OrNC (A3312)
 is available in a standard SWITCHLITE from Control Switch Division. For more technical data write for free literature.

lights in 2 colors Here is a low cost lighted pushbutton containing two lamps
 and comes in one solid color. two-color split, engraved or with a nemeplate slot. Select double pole or triple pole switching with push push, momentary, or solenoid held action. TWiN.
LITE mounts individually with barriers, in rows, or a matrix.

Manulacturers of a full line of switches. controls and indictiors Tor all mirsay a full hia surches.

CONTROLS COMPANY


## OF AMERICA



## JOY FAN COOLS AMPEX WIDEBAND TAPE RECORDER

 ... new unit records 4 channels-occupies just 3.5 cu. ft.The Amper Wideband Tape Recorder, with frequency range of 10 cps to 4 mc , displaces only 3.5 cubic feet. With this size limit and rigid internal temperature specs of $104^{\circ}$ to $140^{\circ} \mathrm{F}$, Ampex designers specified Joy Axivane fans for cooling.
Operating at $23,000 \mathrm{rpm}$ on 400 cycle AC, the Joy blower circulates 60 cfm at $10^{\prime \prime}$ static pressure through a built-in heat exchanger system. The straight-through vaneaxial design permits integral mounting directly on
the heat exchanger. The system maintains the internal temperature specified regardless of wide variations in ambient temperature.

With long experience in design problems of this kind, Joy can design small blowers of high pressures or high volumes to suit your exact electronic cooling need. And literally thousands of designs are available off-the-shelf. Let our cooling experts work with you. For more information write for Bulletin 2565-57.

AIR MOVING EQUIPMENT FOR ALL INDUSTRY


JOY
Joy Manufacturing Company Olivor Building, Pmsburgh 22, Pa.
in Canodar toy Manufocturing Company (Canada) Limitod, Gath, Ontario

## NEW PRODUCTS



Range is 0.5 to 5 mh . Having fixed inductances, series 2953 units are for military and commercial applications. They have high self-resonant frequency, thereby increasing the useful frequency range.
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.
P\&A: \$0.58 ea; from stock.

Shaft Locks


Devices fit $1 / 8$ and $1 / 4$-in shafts. They are for use of potentiometers, capacitors, coils and other shaft-type controls. Knurled hand nut or wrench hex nut types are offered. Construction is of passivated stainless steel or black anodized aluminum.
PIC Design Corp., Dept. ED, $47 \%$ Atlantic Ave., East Rockaway, L.I., N. Y'.
Acailability: from stock.
Lug-Type Resistor

Rating is 10 w . Wound on ceramic cores $5 / 8 \mathrm{in}$. in diameter, units have resistance values from 0.51 to 51,000 ohms. Vitreous enamel anchors the turns and protects the windings. Mounting centers are 2-3/16 in.

Ohmite Manufacturing Co., Dept. ED, 3670 Howard Ave., Skokie, Ill.

## Analog Computer

Design is simple. Designed mainly for educational purposes, this computer is assembled by unit construction. The basis is a module of 10 operational amplifiers which can be expanded up to 20 . Other elements such as servo multiples can be added.

Redifon Ltd., Computer Div., Dept. ED, Gatwick Road, Crawley, Sussex, England.


## UNVARYING HIIGH-QUALITY PERFORMANGE



## MOTOROLA POWER TRANSISTORS

The parameter distribution shown in these 1000 hour $100^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$ storage life tests exhibits a high degree of stability... the key to product reliability and dependability in your circuits Even after extended life testing at an elevated temperature of $120^{\circ} \mathrm{C}\left(20^{\circ} \mathrm{C}\right.$ above the suggested maximum rating ), these units continue to exhibit tight distribution within originally stated limits . . positive assurance of unvarying high quality performance of Motorola power transistors.
This data. taken on random samples of production lots of Motorola 2N174 transistors. is tvpical of the $100 \%$ lot life-tests conducted on all Morla pure transists. wou ve btaining outstanding product reliahility.

Complete technical information is available from your Motorola Semiconductor Products Inc... Technical Informafion Department. 5005 East McDowell Road, Phoenix 10 Arizona.

OTOROLA DISTRICT OFFICES



MOTOROLA IS YOUR MOST COMPLETE POWER TRANSISTOR SOURCE

You'll find a standard power transistor that meets your specific design requirements from the wide selection of field-proven devices available from Motorola.
T0-36 "Doorknob" Package. 15 types in "low silhouette" case 150 watts power dissipation; $0.5^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal esistance: $100{ }^{\circ} \mathrm{C}$ maximum junction tomperature, 15 mps; 2 to 1 gain spread and voltage combinations to 100 volts: 3 Mil type units.

0-3 "Diamond" Package. 118 types in "low silhouette" case 90 watts power dissipation: $0.8^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal resistance; $100^{\circ} \mathrm{C}$ maximum junction temperature: 3,5 , combinations to 120 volts; 3 Mil-type units.


MOTOROLA
Somiconaluctor Product= Inc.

## High selectivity,

 attenuation and precision matching of ...
## NEW HILL FILTERS ASSURE FAST, PRECISE MEASUREMENT OF INTER-MODULATION DISTORTION



These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

## WRITE FOR BULLETINS 34800/900

Thay contoin doterisk and sperifretions concoming the filsess dexcribed above.


## HILL ELECTRONICS, INC.

## NEW PRODUCTS

Step Control System 395


Circuitry is solid state. The Marc IX provides select-before-command control for electric power substations, pipelines and other systems. Timedivision multiplex control and coded information is transmitted as dc pulses over telegraph-grade lines, or signals can be sent over carrier, microwave or vhf links.

Moore Associates, Inc., Dept. ED, 893 American St., San Carlos, Calif.

Phase Generafor Shifter


Accuracy is 0.1 deg. Type 208A offers continuously variable phase angles from 0 to 360 deg and direct reading in degrees at any frequency from 50 to $1,000 \mathrm{cps}$. Variation of load impedance has no effect on phase-shift accuracy.

AD-YU Electronics Lab., Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N. J. P'́A: $\$ 64.5 ; 1$ to 2 weeks.

High-Mu Triode
454


Can deliver 10 to 20 megawatts. Operating as a switch tube in hard pulse modulators, the ML-8038 high-mu triode can deliver a pulse power output of 10 to 20 megawatts. The tube has concentric construction and when operating in oil or equivalent dielectric liquid has a maximum plate voltage rating of 125 kv . The anode is capable of dissipating 5 kw when cooled by free convection in oil.
The Machlett Laboratories, Inc., Dept. ED, Springdale, Conn. PもA: $\$ 3,100 ; 30$ days.


Now-faster service on complete line of top quality Hipersil ${ }^{(8)}$ cores
Eight stocking locations for Hipersil cores give fastest posaible service: Greenville, Pa.; Boston; Chicago; Cleveland; Dallas; Hillside, N.J.; Los Angeles; Minneapolis. Line includes new EIA, Rs- 217 sizes.

- Type C: 12, 4, 2 and 1 mil sizes, in single- and 3 -phase, fraction of ounce to 300 pounds.
- Ring Cores: Untreated, edge - Ring Coress: Untreated, edge
bonded, impregnated and epoxy resin-coated Polyclad.
- Spectal Cores: To any specification and shape requirements. Top quality: Performance of Hipersil cores in "iron-core" components is guaranteed to meet or exceed apecifications.
Write Westinghouse Electric Corporation, P.O. Hox 868, Pittsporathon, P.O. Rox 868 , Pitts-
burgh 30, Pa., for new catalog. You can be sure... if it's

Westinghouse


CIRCLE 91 ON READER-SERVICE CARO


Frequency range is $\mathbf{2 0} \mathbf{~ c p s}$ to $\mathbf{1 2} \mathbf{k c}$. Morlel 101 audio oscillator module is designed for use as a frequency standard or a fundamental tone generator. Specifications are: frequency range, 20 cps to 12 kc ; output voltage, 4 v into a resistive load of 250 K at an input of 20 v ; frequency drift, less than $1 \%$ from -25 to +50 C , less than $0.2 \%$ at input voltages from 18 to 21 v

Henry Francis Parks Laboratory, Dept. ED, P.O. Box 1685, Lake City Station, Seattle 55, Wash. P\&A: $\$ 15$ ea; immediate.

## Silicon Rectifiers

464
Piv range is $\mathbf{5 0}$ to $\mathbf{6 0 0} \mathrm{v}$. Types SLA 536, 537, $.538,539,540,1095$ and 1096 are diffused-junction miniature units requiring no heat sink. Ambient temperature is as high as +165 for some units. These replace the previous I.X units.
Slater Electric Inc., Industrial Div., Dept. ED, 45 Sea Cliff Ave., Glen Cove, L.I., N.Y'.

## Digital Recording System



Has built-in converter. Model 1150R digital re cording system converts analog voltages, in the range. of 0 to $9.9 \mathrm{v}, 10$ a two-digit. binary decimal code. This eight-line bde is available from parallel outputs. Range of driving currents is 0 to 30 ma . Conversion time is 20() usec max. Stacking will give 36 complete channels in a single 6 -ft relay rack.

Navigation Computer Corp., Dept. ED, Valley Forge Industrial Park. Norristown, Pa.
P\&A: §.9.97; 30 days.

## Insulation Sleeving

458
Temperature range is -90 to +600 F . SR-398 silicone rubber-coated fiberglass meets MIL-I-3190B and MIL-I-18057. The dielectric strength at 23 C for 96 hr at $50 \%$ RH is $8,000 \vee$ for grade H A-1, 4,000 v for grade H B-1 and 2,500 v for H C-1. Insulation exceeds $1,000 \mathrm{~K}$ per ft .
L. Frank Markel \& Sons, Dept. ED, Norristown, Pa .

## In your sealing orbit!

## GLASS-TO-METAL

## SEALS

## SEALS FOR ALI. APPLICATIONS

MOIVIDUAL

Ruggedized E-I Glass-to-Metal Seals have demonstrated their complete reliability in severe environments in thousands of critical commercial and space age applications. From individual terminals to sub-miniature closures, E-I offers widest possible design flexibility, plus the economy of standardized production on every type of seal.
Complete "on-the-spot" engineering service is available nationwide, in Canada and abroad. A large, strategically located staff of qualified sales engineers provides the assistance needed to help solve your hermetic sealing problems. Call or write for literature or recommendations on specific applications

## ELECTRICAL INDUSTRIES



Patented In Canada, No. 523.390;


MURRAY HILL, NEW JERSEY

## NOW rapid analysis of recorder frequency response 20 cps200 kc

## PANORAMIC SWEEP <br> GENERATOR

mode SG-1R

Plofs recorder's relative amplifudo response vs. frequency on oscilloscope screen. Trace repeats each second.

An optional vanion of tho vorsatile Modol SG-1, thil now Panoremic Swoop Gonoretor combinos the swopt signal with e rynchronizing pulse. Swoop frequoner tosi Callibrated CRT seroon furnished.


Block diagram shows recordor rest sotup with ascilloscope and sc-in

 CERTIFIED AND PRICES AND frices
Ask for the cuv-
reat liseve of "Tho Pono

## NEW PRODUCTS



System includes magnetic amplifier. Model 1797, composed of solid-state devices, actuates a relay when a control rod of an atomic reactor is in the safe position. No physical contact or coupling with the control rod is necessary
Lumen, Inc., Dept. ED, P. O. Box 905, Joliet, Ill P\&A: \$672; 7 weeks.

## Tantalum Capacitors



Range from 0.01 to 150 mf . Tantalum wire electrolytic capacitors have a tantalum wire anode in a silver case insulated with Mylar sleeving. They are intended for coupling, filter and by-pass uses in nonresonant, low-voltage, de circuits. Range for the 13 case sizes is from 0.01 to 1.50 mf and voltages are to 150 v . The size $\mathbf{E}$ case ranges from 150 mf at 1.25 v dc to 25 mf at 16 v dc.

Ohmite Manufacturing Co., Dept. ED, 3671 How ard St., Skokie, III.

Pushbution Switchlights


Units have built-in, lead-lag zeroing. The 6BR dpdt units are for use where two switching functions are needed. They are rated for 25,000 cycles at 28 v de with a 7 -amp resistive load. MIL specs are met. Case is anodized aluminum.
Eldema Corp., Dept. ED, 180.5 Belcroft, El Monte, Calif.

375

omant speto me/aco.


## 5000:1 CHART SPEED CHAMGE RATIO WITH AO TRACEMASTER

The AO Tracemaster 8-channel Direct Writing Recorder provides 5000:1 chart speed change ratio... $21 / 2$ times greater than any other recorder. A simple push. button control panel provides 10 chart speeds from $0.1 \mathrm{~mm} / \mathrm{sec}$. $t 0500 \mathrm{~mm} / \mathrm{sec}$. Chart drive response is virtually instantaneous. You can go from a dead stop to full $500 \mathrm{~mm} / \mathrm{sec}$. in less than $1 / 10$ of a second ... there's no need for adapters or gear shifting ... no loss of record and no slack while chart speed stabilizes.
1000 ft . chare roll lets you do high chart speed recording at length with fewer interruptions for reloading. Accurate, easy-to-read "Remaining Footage" indicator prevents accidental loss of record due to unexpected chart shortage.
This unequalled chart speed change ratio of $5000: 1$ is just one more example of the overall superiority of the remarkable AO Tracemaster ...the world's newest and finest 8 -channel difect writing recorder. Write for complete information ... Now! 32 -page, 2 -color catalog is yours for the asking.

American Oplical Company
Instrumant Division - Buffalo 15, Now York
circie of on reader-seavice card ELECTRONIC DESIGN • May 24, 1961


For simple or complex constructions, Royal has the know-how and capacity to fill your multi-conductor cable requirements. Royal Multi-Conductor Cables are designed, made, and quality-controlled to give you the cable characteristics you want misis on the job easy workiability, foot-after-foot quality, topmove dependability. Send us your cable specifications... or ask to have our representative call.
ROVAL ELECTRIC CORPORATION 301 Saratoge Avenue
PAWTUCKET, RHODE IBLAND
In Canada: Royal Electric Company (Quebee) Lid.

## ROYAL



Actuator Motor


Diameter is 1 in . Available in permanent magnet or reversible series this compact motor is $1-\mathrm{in}$. in diameter and 2-1/2 in. in length, including gear train. It weighs only 4 oz . Designed to operate 1.000 hr without maintenance, it meets the environmental requirements of MIL-M-8609 (ASG). Duty cycle is intermittent; 20 sec on, 40 sec off. Speed is 270 to 280 rpm with normal rated load of $13 \mathrm{oz}-\mathrm{in}$. Omega Precision, Inc., Dept. ED, 757 North Coney Ave., Azusa, Calif.
Acailability: Four to six weeks.

DC Power Supplies


Outputs are to $\mathbf{1 5 0} \mathbf{v}$. Units can be furnished with outputs of 0 to 36 v at $1.5,3$ or $15 \mathrm{amp} ; 0$ to 50 v at $1.5 \mathrm{amp} ; 0$ to 60 v at 1 or $7.5 \mathrm{amp} ; 0$ to 150 v at 3 amp . Scveral units have dual outputs. They are suitable for lab use.
Deltron Inc., Dept. ED, 14 th \& Cambria Sts. Philadelphia 33, Pa.
Price: $\$ 240$ up

Shielded Coil Forms


Devices mount horizontally. They are available with polypenco, Kel $\mathbf{F}$ or paper-base internal form. Suitable for use in if stages, the forms can be mounted with $2-56$ screws. Mounting assembly measures $3 / 8 \times 3 / 8 \mathrm{in}$.
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.

How round wire helps make GOOD POTENTIOMETERS

BETTER!



The rounder the wire the easier it is to obtain greater uniformity of spacing in winding potentiometer mandrels...
and the more uniformly wound the mandrel the easier it is to achieve
closer independent linearity and lower equivalent noise resistance in your finished potentiometers.

This enlarged photograph shows typical uniformity of winding that is readily obtainable with

## HOSKINS

## Chromel-R

## Premium Potentiometer Grade Wire

- A new nickel-chromium alloy that is quality. controlled from melt to spool to assure superior roundness and surface finish-closer linearity of resistance, within $.012 \%$ maximum total deviation in every 250 feet of wire-plus lower electrical noise level, unconditionally guaranteed to be leas than 40 ohms of ENR when received at your plant.

Sample spools with supporting technical data are now available to potentiometer manufacturers for immediate teating and evaluation. Your request on company letterhead will receive prompt attention.

## HOSKINS

MANUFACTURING COMPANY
4445 Lawton Avenue - Detroie 8, Michigan in Conese: Hostins Allors al Conneoa, Lle.. Toronto, Ontario

CIRCLE OS ON READER-SERVICE CARD

## the Counter with a memory

## No Flickering Lights

## No Waiting for Answers

-Continuous Display from dc to 10 Mc... another G-R first

With the turn of a switch this instrument can be converted from one with conventional intermittent display to one that is continuously counting and indicating. In the "Continuous" mode, four of the instrument's decades are used for storage and display of any four consecutive digits, while the remaining four decades count simultaneously. At the end of each counting interval, the accumulated count is transferred automatically and quickly (only $100 \mu \mathrm{sec}$ ) to the storage and display decades.

Continuous counting and display offers many advantages - information is sampled more often; pertinent data is always ready for you when you want it; analog recording is simplified; and operator eye fatigue induced by the "dancing lights" of intermittent displays is eliminated.

* Measures frequency, period, ten-period, timeinterval, frequency ratios, pulse durations, and events without special plug-in units.
* You buy only the time-base-oscillator stability you need. Three plug-in oscillators with different stabilities are available; counter can also be used with frequency standard for maximum accuracy.
* Input trigger-level controls permit user to minimize effects of noise on the input signal.
* Display interval is independent of counting interval . . . No longer is it necessary to have long display times when using long counting intervals.
$\star$ Simplified graphic recording . . . Data held by internal storage circuits is ready-made for conversion to dc for all-electronic, analog recording at low cost with the Type 1134-A Digital-to-Analog Converter.



## HIGH RELIABILITY BY DESIGN

$\star$ This instrument uses a decade code unlike that in other commercial counters. Counting circuits are practically unaffected by changes in tube characteristics, component values, and supply voltages. This counter will not "go soft" or give erroneous readings. $\star$ Circuits operate properly under the worst possible combination of cumulative tolerances imposed by tubes, component values, and voltage levels. An extra margin of reliability is gained by designing well below plate dissipation limits and by derating circuit components substantially. This counter will perform properly even when its tubes approach the half-dead state.

* Proven "hard-bottoming" multivibrator dividers make for exceptional stability - eliminate need for periodic adjustments of time-base circuits.
$\star$ No critical voltages. Neither plate nor filament supplies are, or need be, regulated. Even abrupt line changes do not introduce false counts.


Easy to malntaln
Down time is reduced to a minimum by simplified mechanical design and accessible circuitry.
Every tube circuit is on an etched-ci -uit board or plug in decade that can be quickly removed and replaced. You can stock spare pre-tested boards for maximum speed in repair and minimum down time.

MEW roan. worth 4-2722
MEW IERSEV, Ridgelield. WHIney 3 -3140 CHICAGO PHILADELPHIA WASHIMGTOM. O.C
 SAM FRAMCISCO LOS AMGELES
LOS Altos
LOS


II CAMADA, Toronto. CMerry 6-2171

## SPECIFICATIONS

Frequency Measurements Range: dc to 10 Mc
Sensitivity: sine waves, 0.25 v rms ; pulses, 0.4 v peak-to-peak
Counting Interval: 1 msec to 10 sec extendable by Multiple Interval Switch Accuracy: $\pm 1$ count $\pm$ time base accuracy

Perlod Measurements
Range: $10 \mu \mathrm{sec}$ to 10 ' sec for
single-period measurement
$330 \mu \mathrm{sec}$ to 10 sec
for ten-period measurement
Sonsitivity: sine waves, 0.1 lvms pulses, 0.3 v peak-to-peak
Counting Interval: 1 period, 10 periods, extendable by Multiple Interval Switch Counted Frequency: $10 \mathrm{Mc}, 100 \mathrm{kc}, 1 \mathrm{kc}$, 10 cps , of external 100 cps to 10 Mc Accuracy: $\pm 0.1 \%$
for single.period measurements $\pm 0.01 \%$ for ten-period measurements

Time-Interval Measurements Range: $1 \mu \mathrm{sec}$ to $10^{\prime} \mathrm{sec}$
Sensitivity: 0.3 v peak-10-peak
Counted Frequency: $10 \mathrm{Mc}, 100 \mathrm{kc}, 1 \mathrm{kc}$ 10 cps . or external 100 cps to 10 Mc
Accuracy: $\pm 1$ period of frequency counted $\pm$ accuracy of frequency counted.
Count Measurements
Range: dc to 10 Mc
Sensitivity: sine waves, 0.25 v rms
pulses, 0.4 v peak. 0 -Deak
Capacity: 10 counts
General Specifications
Display Time: variable from 0.1 to 10 sec infinite, or continuous display Input Impedance: 1 M $: 2$ shunted by 40 pf Input Attenuator: $\times 1$ or $\times 10$
Input Triggering Level: variable $\pm 10$ volts Input Triggering Slope: Positive or Negative going, ac or dc coupling
Internal Checks and Monitors: 10 cps .1 kc .
100 kc . or 10 Mc can becounted for 1 msec to 10 sec . Lamp monitor automatically indicates lack of time base or improper indicates lack of time-base or improper
Time-Base Drive Required: $5 \mathrm{Mc}, 1$ into 50 ohms. Plug-in time-base oscillators are available. providing performance indicated below. All accept external 5-Mc signals from frequency standards.
aVAILABLE WITH SEVERAL PLUG-IN TIME-BASE OSCILLATORS

| ComoletelySell Contained | Complete Instiument Type - Price |  | Short-Term Stability Better Than | Long. Term Stability Better Than |
| :---: | :---: | :---: | :---: | :---: |
|  | \{ $1130-\mathrm{AA}$ | \$2950 | $\begin{aligned} & 1 \text { patt in } \\ & 10^{\circ} \text { per mın } \end{aligned}$ | $\begin{aligned} & 5 \text { oarts in } \\ & 10 \text { per week } \end{aligned}$ |
|  | 1130 A3 | \$2670. | $\begin{aligned} & 1 \text { part in } \\ & 10^{\circ} \text { per min. } \end{aligned}$ | 2 parts in $1^{\prime}$ ' per week |
| Specitically |  | 52,750 | Also operates 1. MC and S.MC | $1130 \cdot \mathrm{A3}$ 1 outs. |
| fior Use from <br> External <br> Standards | 1130.A1. | 32.585 | Requrres S.MC IIIJ.A 5 Mic Stan $10^{20}$ Der min | rivine sirnal G-R dard fequency os stacmity of I patt in aris in $10^{\circ}$ Del week. |

For Digital Recording 1132-A Data Printer.... $\mathbf{\$ 1 4 5 0}$. pints a digits from counter plus 4 digits trom other sources Printing rate is adiustable rom one pint every 20 se
punch avaliable as option
For Graphic Recording 1134-A Digital-to-Analog

## Converter . . . $\$ 595$

Converts any three adjacent digits or the last two digits of counter reading to dc for sraphic recording. No intermediate data printer required for conversion. Over-all名
For Measurements to 500 Mc 1133 -A Frequency Converter and Video Amplifier (under dovolopmentl Extends frequency range. Increases counter sensitivity from I kc to 10 Mc

## NEW PRODUCTS

Lead-Sulfide Photo Cells
367


Units are hermetically sealed. These infrared cells are for use in computers, guidance systems, temperature measuring devices and other applications. Environmentally stable, they have pins for socket mount or flexible leads.
Cetron Electronic Corp., Dept. ED, 715 Hamilton St., Geneva, Ill.

## Vapor Degreaser



Unit has automatic feedback device. It is for cleaning intricate aircraft and electronic equipment. The chamber is $12 \times 12 \times 8 \mathrm{in}$. Liquid level is controlled by an instant-responding, hermetically sealed unit. Recirculation and filtering are automatic.
Powertron Ultrasonics Corp, Dept. ED, Garden City, L.I., N. Y.
Price: $\$ 2,900$ to $\$ 6,000$.

Inferrogafor


Unit operates remotely with computer. Model 2502 sends and receives information in a few minutes. The keyboard contains 40 alphanumeric keys. A 6or 7 -bit binary code may be used. Bit rate is 1 mc ; character transmission rate is 15,800 characters per sec.

Information Products Corp., Dept. ED, 156 Sixth St., Cambridge, Mass.

* CIRCLE 81 ON READER-SERVICE CARD


Wyle Model C-106 Miniature Chamber

## Offering You .

CLOSER TEMPERATURE CONTROL COOLER OUTSIDE SKIN - BETTER OPERATING ECONOMY - GREATER FLEXIBILITY - FASTER HEATING \& COOLING RATES

Revolutionary NEW "Sensor" The new Wyle liquid $\mathrm{CO}_{2}$-cooled Model C- 106 Miniature Temperature Chamber is the first to use a revolutionary new type electronic resistance bulb controller that "anticipates" temperature changes and thus effects minimum variation over the full range.

Extra thick layers of new, improved insulation retard flow of heat to outside skin... skin stays cooler. Interchangeable plug.in doors, with various provisions for specimen mounting, instrumentation, specimen operation, and observation, assure minimum downtime. All features lead to greater economy of operation.


640 Cu . In. Capacity $-100^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$ Range ${ }^{\circ \prime \prime} \times 8^{\prime \prime} \times 10^{\prime \prime}$ Test Volume Dimensions • Weight . . . Approx. 55 Lbs. © Heating \& Cooling Rates ... Up to $100^{\circ} \mathrm{F}$ per Minute
Write TODAY for Full Information!
Vi
128 marylano Street. el Segundo, California OTHER FACILITIES A T WESTBURY, NEW YORK.. NEW HYDE PARK, NEW YORK. AND AT NORCO, CALIF. CIRCLE $\operatorname{sa}$ ON READER-SERVICE CARD


Standard Controls' Flow Transducer Accurate to $2 \%$ from 0 Flow to Full Scale. Available in Ranges of $0-0.5 \mathrm{gpm}$ through 0.200 gpm .

Based on the cantilever reed principle. Standard Controls' new flow transducer produces a linear output with less than 2\% full scale deviation. from 0 to full rated flow. Dynamic response is faster than $90 \%$ of step function input in less than 10 milliseconds. NO MOVING PARTS. Mechanically simple. the new transducer has no rotating parts, no bearings, no hinge action. All movements are cantilever bending.


Actual linearity curve for Standard Controls

## Flow Transducer

wiof ance LINEAR STRAIN GAGE OUTPUT

BONDED STRAIN GAGE DESIGN. Electrically, the de sign consists of a 4 -active-arm. bonded strain gage bridge which senses flow against a cantilever reed in he flow stream. Sensitivity is $4 \mathrm{mv} /$ volt. Flow is uni-directional. Repeatability errors are less than $0.25 \%$ of full scale. Environmental range is $-65^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$.
DIMENSIONS AND OPTIONS. A typical unit weighs 8 ounces and occupies a volume of $11 / 4$ " D x $1^{\prime \prime} \mathrm{W} \times$ $4^{\prime \prime} \mathrm{H}$. For telemetry purposes. a signal conditioning amplifier is incorporated to provide a 5 volt full scale output. Electrical and mechanical configurations can be modified for specific applications.
NEED MORE
INFORMATION?
Call your nearby Standard Controls engineering representative whose name and phone number is listed below, or write to:


STANDARD CONTROLS

1130 Poplar Place So. - Seattle, Washington Phone: EAst 4-8888
STANDARD CONTROLS' REPRESENTATIVES: CEDAR RAPIDS, Iowa, Engineering Services Co., Phone: EMpIre 5-6183 - CIRCLE PINES, MINNesota,

 Californie, Egbert Engineoring of California. Phone: DA 6-1387. SEATTLE, Washington, Soatronics. Inc., Phone: EAst 3-8545. ST. LOUIS. Missouri, Enginearing Services Co., Phone: PArkviow 6-2233 - WEL
Kansas. Engineoring Sovices Co., Phone: MUrray 5.3751

NEW PRODUCTS
Temperałure-Humidity Chamber


Temperature range is $\mathbf{0}$ to $\mathbf{2 0 0} \mathbf{F}$. Humidity range is $20 \%$ to $95 \% \mathrm{RH}$. Suitable for testing components. the Enciron-Cab meets JAN and Mil specs. A 1/4hp motor-driven blower supplies air circulation. Interior dimensions are $19 \times 19 \times 15 \mathrm{in}$.
Hudson Bay Co., Dept. ED, 3070 W. Grand Ave., Chicago 22, Ill.

## Irradiated Wire

Material is polyolefin. The wire provides radiation resistance, temperature and dielectric characteristics suitable for the environments of satellites and ballistic missiles. It is $\mathbf{5 0 \%}$ lighter than plastic Radiation Materials, Inc, Dept. ED, a Div. of Loral Electronics, 825, Bronx River Ave., New York 72, N. Y.

## Telemetry Receiver

467
Range is $\mathbf{2 1 5}$ to $\mathbf{2 6 0} \mathbf{~ m c}$. Mordel 14.55 is for am-fm use in this range, has plug-in if demodulator modules for bandwidths from 100 kc to 1.5 mc and incorporates a video filter with 6 db per octave from 20 kc to 1.2 mc . Bandwidth modules may be changed without calibration readjustment.
Vitro Electronics, Div. of Vitro Corp. of America, Dept. ED, 919 Jesup-Blair Drive, Silver Spring, Md. Price: $\$ 800$.

## Voltage Dividers



Three types are offered. Model DV-4003 has three dials and decades. DV-4004 has four and DV4006, six. Called Dial-a-Viders, the units have dial switches and in-line readout. Input impedance is 10,000 ohms. Resolution is 0.001 to 0.000001 . Phase angle is 10 kc in 0.1 deg .
General Resistance, Inc., Dept. ED. 430 Southern Blvd., New York 55, N. Y. PGA: \$108, \$144, \$289; 30 days.

## Pressure Tester-Calibrator

Range is 5 to $\mathbf{1 0 . 0 0 0}$ psi. A pneumatic-hydraulic inspection device, morelel 1372 is a companion unit to the precision differential pressure tester-calibrator Units are suitable for military use.

Americaln Rescarch \& Mamufacturing Corp.. Dept ED, 92() Halpine Ave., Rockille, Md Availability: mude from stock.

Power Supplies


In three models. All models contain a single 27 full scale accuracy meter to monitor voltage or current. Line regulation is $\pm 0.1$ \% : load regulation is $\pm 0.2 \%$; ripple is 1 mu rms. Model TM-03-1A has four output voltages ranging from 6 v dc at 1 amp to 28 v de at 0.25 amp . Model TM-03-20 is rated for 5 to $32 v \mathrm{dc}$ at 0 to $(0.25 \mathrm{amp}$. Model TM-03-50) is rated 0 to 36 v de at 0 to 0.5 amp .

PRL Electronics. Inc., Dept. ED, 232 Westcott Drive, Rahway, N.J.
P\&A: From $\$ 100$ to $\$ 145$ ea; stock subject to prior sale.

Clutches and Brakes


Sizes are 6 and 8. The Clutch-Neutral-Brakes and Clutch-Neutral Clutches stand hi-pot test of 750 v ac rms and environmental extremes. Power consumption is 2.5 to 3 w at 24 v dc. Miniature and lightweight, the units can be used in computer, control and servo-positioning.
Guidance Controls Corp, Dept. ED, 110 Duffy Ave., Hicksville, L.I., N.Y. bUCKBEE MEARS IS VERSATILE!

## MASKS, GRIDS, SIEVES... Components etched and electroformed

MATERIALS<br>Glass, Metal

SIZE
From Transistor Evaporation Masks to 20 Ft . Radar Screens

ACCURACY
$\pm .000039$ Inches
PRODUCTION KNOW HOW
When volume warrants we design and build automatic equipment. One such machine emulsifies cold rolled steel strip, prints, washes and etches 441,222 perfect holes in 21 inch color TV masks at the rate of 120 per hour-automatically


Photo-mechanical etchings on glass have been mass produced at BMC to an accuracy that was unbelievable just a few years ago. Configurations, scales and calibrations are etched to specified depths and widths to tolerances of .0001
Evaporation masks in micro miniature sizes, micro mesh sieves and screens are standard production at BMC.
Anything that can be drawn can be reproduced. Because the master is made photo-mechanically small runs are made at moderate cost.

To test the accuracy of our production and the Rexibility of our thinking, just send us one of your problems.

## buckbee mears

247 E. 6 th STREET . ST. PAUL 1, MINNESOTA

## SIMPLIFY YOUR SWITCHING CIRCUITS

 with the new Shockley 4-layer diode (Type E)*If simplicity and speed can improve your switching circuits, talk to our engineers about the capabilities of the Shockley 4 -layer diode. A few of these circuit applications are shown here.


For other applications and for specific information,
our engineering sales representatives are listed in EDC and EEM.

## Shockley transistor

## UNIT OF CLEVITE TRANSISTOR

CLEVITE
BTANFORD INDUsTRIAL PARK. PALO ALTO. CALIF.
CIRCLE 102 ON READER-SERVICE CARD

## NEW PRODUCTS

High temperature type. Model 50-100 miniature, transistorized servo amplifier occupies a volume of $0.86 \mathrm{cu}-\mathrm{in}$. It can deliver up to 3.5 w at 40 v rms into a center-tapped size 11 servo motor. Nominal gain is 6.500 at $10-\mathrm{K}$ input impedance. Silicon transistors are used to insure operating temperatures to 100 C .

Servo Development Corp., Dept. ED, 2 Willis Court, Hicksville, L.I., N.Y.

## Variable Capacitors

443


Range is $\mathbf{4}$ to $\mathbf{1 4 3}$ pf. Units have 500.600 or 700 wvic. Type CT12 is screw-driver operated, CT13 is screw-driver operated with a locking hex nut on the front end, types CT14 and CT15 are shaftoperated for knob control.
Hammarlund Manufacturing Co. Inc., Dept. ED, 460 W. 34th St., New York 1, N. Y.

## Heater-Cathode Tubes

463
Warm-up time is 5 sec . Type QV112 is a mediummu triode and QV113, a sharp cut-off pentode. For missile use, they have the T-3 envelope, operate in the vhf region and have bulb temperatures to 220 C . Type QV112 has a 1-amp per cathode peak current for pulse applications.
Raytheon Co., Industrial Components Div., 5.5 Chapel St., Newton 58, Mass.

## Silicon Rectifiers

Piv range is 100 to 600 v . The rms voltage is 70 to 420 v . Peak one-cycle surge current is 1.5 to 3.5 amp . Types SLA440, 441, 442, 443, 444, 444B. 445 and 445 B are for operation at 150 C ; types SLA440B, 441B, 442B and 443B, for 165 C . These diffused-junction units replace the series prefixed IN.

Slater Electric Inc., Industrial Div., Dept. ED,
45 Sea Cliff Ave., Glen Cove, L.I., N.Y.
ELECTRONIC DESIGN • May 24, 1961


For servo read-out. The basic high speed, addsubtract printing counter, designed primarily for servo read-out, has three digits. Additional digits or decimal points may be incorporated. An automatic indexing mechanism, printing ribbon drives and a printing solenoid are available. Printing speed is up to 5,000 counts per min; starting torque is 0.05 in.-oz.

Radson Engineering Corp., Dept. ED, Macon, Ill.

## Transisfor-Transformer Kit

456
Transformers cover to $\mathbf{2 0 0 , 0 0 0}$ ohms. They range in size from $3 / 8 \times 3 / 8 \times 3 / 8$ in. to $3 / 4 \times 3 / 4 \times 1$ in. Nine units, for servo, audio, instrumentation and control, are furnished.

Microtran Co., Inc., Dept. ED, 145 E. Mincola Ave., Valley Stream, N.Y.
Pd.A: \$27.50; from stock.

## Radioisotopes

Radiochemical purity is $99 \%$. Bismuth 207 and Barium 133 are offered. Both can be used as standards. Cyclotron standards, requiring A.E.C. license for use, can also be furnished.

Nuclear Science \& Engineering Corp., Dept. ED, Box 10901, Pittsburgh 36, Pa.

Vibration Machine


Acceleration is $\mathbf{5 0 g}$ max. Designed to drive three tables simultaneously, type RVP-16-50 has a $50-\mathrm{lh}$ test load and operates in the range of 5 to 60 cps with total excursions of up to 0.1 in . It is suitable for military use.
L.A.B. Corp., Dept. ED, 501 Onondaga St. Skaneateles, N. Y.

ELECTRONIC DESIGN • May 24, 1961


Miniaturization, close control and inherent stability are the outstanding characteristics of Edison's new model 292 miniature thermostat. Designed specif. cally to meet the requirements of solid state electronic packages, this thermostat is ideal for use in small crystal and oscillator ovens, computers and electronic packages of all types.

Only $0.317^{\prime \prime}$ in diameter and $1.325^{\prime \prime}$ long, this Edison thermostat features long operational life with little drift from the original temperature setting-prolonging the useful life of the electronic components it
controls. Set to a manufacturing tolerance of only $\pm 1^{\circ} \mathrm{C}$., it has an operating differential of less than $2^{\circ} \mathrm{C}$ at a rated load of $1 / 2$ ampere at 115 V . a.c. or 28 V. d.c. Available either unset or factory preser to a specified temperature, Edison's new model 292 miniature thermostat will control temperatures from $0^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$.

Edison's mass production techniques and many years' experience permit producing this superior thermostat at a remarkably low cost. For complete information write for publication 3009C.

Thomas A. Edison Industries
INSTRUMENT DIVISION
55 Lakeside avenue, west orange, n. J. CIRCLE IO3 ON READER-SERVICE CARD

## solderless terminals and connectors

## OVER 800 TYPES AND SIZES FOR EVERY INDUSTRIAL WIRING APPLICATION

- Including Mil Spec., Heavy Duty, High Temperatures.
- Wire Ranges: No. 22 thru No. 2 A.W.G.

Fast Delivery thru your Electronic Parts Distributor

## WALDOM

ELECTRONICS INC.


4641 West 53rd Street, Chicago 32, Illinois


CIRCLE 104 ON READER-SERVICE CARD

## Originators

of Welded
Electronic Packaging


Engineers: Sippicon's pockoging progroms combine electronic mechanical, thermal and metallurgical disciplines Engineers of sufficient breadth to operate simultoneously in these fields ore invited to write
Sippican has demonstrared a unique capability for the resolution of difficult electronic pockaging problems in ground. oirborne, bollistic missile ond spoce- vehicle systems. Sippicon's High Density Electronic Pockoging concept H DEP. has furnished oerospace interests with-

Design of electronic and electromechanical system packages for rigorous military environments.
Experimanfal Fabrication and Protofype Production of complete systems, circuit elements, wiring modules and structural-thermal systems.
Consultation on High Density design rechniques,
weld melallurgy and anolysis, encapsulation techniques and High Density production processes.
Welding Equipment and Tooling for
High Density package production.
Sippican's H D E P developments include-

- All-welded multi-layer matrix cabling
- New high-reliability unit connectors
- Integral conductive heat-transfer mechanisms
- Prelooded mechanical structures



## NEW PRODUCTS



Is accurate and versatile. Model 710A impedance bridge is useful in measuring capacitance and dissipation factor of capacitors, inductance and storage factor of inductors, and the ac and dc resistance of resistors. Bridge measures 0 to 12 meg in 8 ranges. 0 to $1.200 \mu \mathrm{f}$ in 7 ranges, and 0 to $1,200 \mathrm{~h}$ in 7 ranges. Accuracy is $\pm 0.1 \%$ to $\pm 2 \%$.
John Fluke Manufacturing Co., Inc., Dept. ED. Mountlake Terrace, Wash
Price: $\$ 525$

## Aircraft Instruments

479


In vertical design. Instrument indicators built in separate vertical housings offer compactness and readability. Included are a Mach speed indicator. acceleration, rate of climb. and altitude indicators. Units measure 1-1/8 in. wide.

Kollsman Instrument Corp., Dept. ED, Elmhurst, N. Y.

RFI Equipment
480


Covers $\mathbf{2 0}$ to $\mathbf{4 0 0} \mathbf{m c}$. Model NM-30A is a sensitive, frequency-selective, calibrated whf microvoltmeter and receiver covering 20 to 400 mc with a constant impulse bandwidth of about 200 kc . Set has if output for panoramic display, and power supply with $0.5 \%$ regulation. It is approved for military use.

Stoddart Aircraft Radio Co., Inc., Dept. ED, 6644 Santa Monica Blvd, Hollywood 38, Calif.

## Impulse Counter



Is surface-mounted. A rectifier incorporated in impulse counter type TCeBZ5A provides reliable de operation from a $110-\mathrm{v}$ ac source. The 5 -digit monter is rated at 667 counts per min. Reset is providerd Landis \& Gyr, Inc., Dept. ED, 4.5 W. 45th St. New York 36, N. Y

## Proximity Switch

482
With latching action. Proximity switch performs a latching, maintained-contact or 2-position switch function. Switch is actuated by motion in the side or top sensing areas. It has spdt contacts rated at $1,250 \mathrm{w}, 120,240$ and 480 v ac. Enclosed in a hermetically sealed hrass housing $1-1 / 2 \times 1-1 / 2 \times$ $4-1 / 2 \mathrm{in}$., it is shock resistant, mounts in any position. and operates from -50 to +250 F
(ieneral Equipment a Manufacturing Co., Dept. TPR. Dept ED, 116 S. Camphell St. Louisville 6, Ky.
Price: S.39 2.5

Pust-Button Switch


Meets MIL-S-674.3. Duuble-break, momentary contact push-button switch is return-spring operated. Case, cover and button are diallyl phthalate. Life is 100.000 cps min ; temperature range is -70 to +190 C. Designed for 28 v de or $115 \mathrm{v}, 400 \mathrm{cps}$, switch has resistive or inductive capacity of 10 amp , motor current rating of 6 amp .

Cencral Electric Co., Dept. ED, Schenectady 5, $\therefore$ …

## Isolation Switch

484
Protects against shock, vibration. The ISO-SKID consists of one or more shock pads attached to a shelter or container. It is re-nsable and can be loadmatched to any configuration. Temperature range is -6.5 to -160 F .
Craig Systems, Inc., Dept. ED, Lawrence, Mass.

## COMINCO

ELECTRONIC MATERIALS

ULTRA-PURE<br>METALS AND<br>AlloYs<br>ALUMINUM<br>ANTIMONY<br>ARSENIC<br>BISMUTH CADMIUM<br>GOLD<br>INDIUM<br>LEAD<br>SILVER<br>TIN<br>ZINC<br>\section*{*}

## COMPOUND

 SEMICONDUCTORSINDIUM
ANTIMONIDE
*
STANDARD
FORMS
INGOTS
BARS
RODS
RIBBON
SHEET
SHOT
POWDER
WIRE
*

## PREFORMS

DISCS
DOTS
SQUARES
SPHERES
WAFERS
WASHERS

CHEMICALS
SALTS
SOLUTIONS


### 99.9999\% PURE

Can purity of this order be comfrolled
Yes. COMI八CO (i) Grade High Purity Metals hane specifici impurities controlled to less then 1.1 paris per million. We offier a range of metals of the above order of purity on a production basis.
Our ultri-purc' mectul prochtucts are widely ateented by leading firms throughout the electronics indurtre who benctit from

- Metals and allons with vecerific imphrifies controlled to the lowest levels possible in the indusiry today.
- Alloys with atecurately controlled constituent coment
- tabricatiom, shapes and preforms of precisely controlled phystaal dimenvions - metallurgicilly uncontaminated.
- Compound semiconductors with controlled net carrier concentrations to $10^{14 /} / \mathrm{mm}$ :
 Will) tewer rajecti.
There is a great deal of hacherround evperience hehund (ommen metals and it particular. the prection reinuly procenee required th reath the exate spect-

 on adianced pectiliations.

Send for inlomation today
COMINCO PRODUCTS, INC.
ELECTRONIC MATERIALS DEPARTMENT
Spokane, Washington
933 W. Third Ave. Phone: RIverside 7-7103 TWX: SP311 CIRCLE 106 ON READER-SERVICE CARD

## New

## Sonic Energy

 Cleaning Systems
## REDUCED INITIAL COST

25\% less cost
LESS FLOOR SPACE up to $40 \%$ less
maximum rellablity
proven design-field tested
IMPROVED EFFICIENCY
compact power generation
LIFETIME WARRANTY
on new Omnimite* transducer
SYSTEM INTEGRATION
improved filter, rinse \& dryer
RESTYLED CABINETS
for maximum adaptability
From Bendix . . . pioneer and largest producer of Sonic Energy Cleaning equipment


## NEW PRODUCTS

Multiple Sockets


Mounted on strip or plate. Multiple arrangements of lamp sockets are supplied assembled with sockets spaced and wired to specifications. A variety of bracket materials, socket types, and lead terminations is available. Prototype samples can be supplied against a submitted sketch or drawing
Leecraft Manufacturing Co., Inc., Dept. ED, 58 Greene St., New York 12, N. Y.

## Displacement Gyro

457
Unit has two-axis design. It is for use in missile programs requiring flight guidance for short durations. A spring device runs the gyro to a maximum speed in 0.1 sec . Hermetically sealed, the gyro resists environmental conditions.
U.S. Time Corp., Dept. ED, Middlebury, Conn.

Printed-Circuit Connector


Take over 40 g. Printed-circuit connectors will sustain prolonged vibration of over 40 g from 5 to $2,000 \mathrm{cps}$ without circuit discontinuity. Positive pressure and moisture seals are provided; temperature range is -60 to $+\mathbf{4 5 0} \mathrm{F}$. Contact spacing is 0.156 in . Single and double connectors provide circuit combinations for boards, tape and wiring with 5 to 86 contacts.
Matrix Science Corp., Dept. ED, 3311 Winona Ave., Burbank, Calif.

## Silicon Rectifiers

466
Piv range is $\mathbf{5 0}$ to $\mathbf{1 , 0 0 0} \mathrm{v}$. The rms voltage is 35 to 700 v . Peak one-cycle surge current is 300 amp at 25 C ; forward voltage drop is 1.2 vdc . Units are SLA5, 10, 20, 30, 40, 50, 60, 80 and 100. Temperature range is -65 to +175 .
Slater Electric Inc., Industrial Div., Dept. ED 45 Sea Cliff Ave., Glen Cove, L.I., N.Y.

Why TEKTRONIX Specifies FML Series "TEC-Lite" INDICATORS!


Tektronix engineers needed more than a pilot light when designing their new, portable Type 321 Oscilloscope. Their solution? Compact "TEC-Lite" FML Series Front Mounting Lites with neon lamps working in the high voltage CRT circuit! "TEC-Lites" gave them

- Minimum Power Consumption
- CR Tube Voltage Regulation
- Insulation From Ground
- Minimum Space Requiremen

Your indicator requirements-from low cost display lites to sensitive transistor driven units-will find a practical solution with versatile "TEC-Lites." Write today for Bulletin 107.
Transistor Electronics Corporation
3357 REPUBLIC AVENUE - MINNEAPOLIS 26, MINNESOTA
CIRCLE 108 ON READER-SERVICE CARD

picture of a happy engineer


For printed circuits. A series of lumped constant delay lines features compact design. The delay lines display low distortion, excellent thermal stability, and fast rise times. Units can be cascaded to obtain delays from 0.1 to $10 u s e c$, and beyond, and can be stacked in any required multiples. They are completely sealed.

Vanguard Electronics Co., Dept. ED, 3384 Motor Ave., Los Angeles 34, Calif.

## Cathode Follower

Has output impedance of $\mathbf{3 0 0}$ ohms. Model 301 has an input impedance in excess of $1,000 \mathrm{meg}$, and frequency range from 0.1 cps to $500 \mathrm{kc} \pm 1 \%$ Noise level is less than $20 \times 10^{-6} \mathrm{v}$, gain is 0.98 . A built-in test signal is provided; the unit is rack mountable or portable in its own case. Weight is 9 lb and size is $2-7 / 8 \times 5-5 / 8 \times$ 10-5 8 in.

United Aerotronics Corp., Dept. ED, Burlington, N.J.
Price: $\$ 266.00$.

Digital Display


Has lamp driver card attached. Digital decade display has 2 transistors per lamp, one for accepting binary coded decimal inputs and the other to amplify the signal to provide the correct power for driving. The lamps operate on a signal level between -6 and -12 vdc . Sizes 2-1/8 x 1-1/4 $\times 9-1 / 2 \mathrm{in}$. decp.
Wang Laboratories, Inc., Dept. ED, Natick, Mass.
P\&A: \$80.00; from stock.
circle 109 on reader-service card


Something's come


It's Eimac's new 4CX3000A... the tetrode that fills the power gap between Eimac's 1 KW and 5KW tetrodes by providing plate dissipation of 3 KW ! It's ideal for Class AB, SSB rf amplifiers or other high linearity, high efficiency applications with low drive requirements. And a breech block socket maintains the excellent isolation already built into.the tube. You'll find both tube and socket at Eimac, plus the most complete line of tetrodes anywhere. For more technical data, write: Marketing, Power Grid Tube Division, Eitel-McCullough, Inc., San Carlos, California.
between us!
funable RF AMPLIFIER
300-1000 MC8


- 10 mes Bandwidth

This versatile and dependable UHF RF amplifier permits the user to vary the frequency of the amplifier up to $\pm 10 \%$ of nominal center trequency
(not Tuning is done by means of a slofted shaft accessibie through the front panel.
The amplifier is supplied complete with power supply, mounted on a 31/2" hish panel to fit a standard rack.
GENERAL SPECIFICATIONS - MODEL UH-2 (AT)

```
Center frequency
Freq. Range (tunable)
Bandwidth
Nolse figure
Nolse
Source and Output Impedance
```


## 300 mcs to 1000 mcs

``` Up to \(\pm 10 \%\) of nominal Fo
(not to exceed 150 mcs ranse) (not to exceed 150 mcs range) 10 mcs nominal
5.5 db at \(400 \mathrm{mcs} ; 9.0 \mathrm{db}\) at 1000 mcs is
(representative values) 50 ohms
```


## Write for further information:

CIRCLE 110 ON READER-SERVICE CARD


NEW $3^{\prime \prime}$ "SPACE SAVER" DC OSCILLOSCOPE
industrial. medical and general service fields for computer "read out" and for voltage, frequency and phase shift measurement. It features identical vertical and horizontal AC or DC coupled amplifiers. external sync terminal, external capacity binding posts for sweep rates lower than 5 cps , transformer-operated power supply, voltage-regulated $\mathbf{B}+$ and bias and excellent specifications. 3RP-1 CR tube included. Send for free Heathkit catalog or sec your nearest Heathkit dealer.

## HEATHKIT' PAZETmom

HEATH COMPANY Benton marbor 60. Mienigan
Please send the Free Heathkit catalog.
NAME
ADDRESS
cirr

_ZONE _- STATE

CIRCLE 111 ON READER-SERVICE CARD

## NEW PRODUCTS

Control Switch


Reacts to 1.8 ua or less. Up to 15 amp can be switched. The unit operates solenoids, heaters, regulators, instruments and contact meters. The current is amplified by a vacuum-tube circuit which energizes the control relay

Central Scientific Co., Div. of Cenco Instruments Corp., Dept. ED, 1700 Irving Park Ruad. Chicago 13, III.

Filter Chokes
491


For series or parallel. High-current chokes ard rated at 1 v rms, 60 cps , and have dual windings. C-2690) is rated at 0.3 h at 1 amp dc with a dc resistance of 3 ohms, for series operation; it is rated at 0.075 h at 2 amp with 0.75 ohm dc resistance for parallel operation. Model C-2691 is rated at 80 mh at 2.5 amp dc.
Chicago Standard Transformer Corp., Dept. ED, 3.501 W. Addison St., Chicago, Ill.

Landing Instrument


Provides ILS information. Model 334D-2 provides localizer indication, to-from information, reciprocal bearing, left-right VOR, VOR course selection, glidescope needle and warning flags. It is transistorized and weighs 2.6 lb .

Collins Radio Co., Dept. ED, P. O. Box 1891, Dallas 21, Tex.
P心A: $\$ 1,18.5$ from stock.

## THINK SMALI

PYROFILM'S NEW MICRO-MINIATURE $1 / 10$ WATT RESISTOR IS ONLY $090^{\circ} \times 156^{\circ}$
Glass envelope - true hermetic seal wrive for complata dotails
PYROFILM RESISTOR CO., INC.
U. S. Highway \#46, Parsippany, N. J.

CIRCLE 114 ON READER-SERVICE CARD

he used to search for new products in almost a dozen separate publications.


Delay is 1.5 usec. Rise time of this lumpedconstant delay line is $0.03 \mu \mathrm{sec}$. Impedance is 500 ohms. Morlel L966C occupies 6 cu in . and is housed in a can $6 \times 2 \times 1 / 2 \mathrm{in}$. for printed-board mounting. Attenuation is 0.2 db , delay accuracy is $\pm 1 \%$ and temperature coefficient is 25 ppm per deg C .
Columbia Technical Corp., Dept. El), Woodside, $\therefore$ Y.

## Miniafure Diodes

In glass package. Six diffused silicon mesa diodes, MA-4303 through MA-4.308, use an all-glass package with hard glass fused directly to the junction. The rugged diodes have low leakage; switching time is typically 2 nsec. Power dissipation is 200 or 125 mw in a size of $0.060 \times 0.125 \mathrm{in}$., with slightly less dissipation in a $0.060 \times 0.090$ case size. Allowable junction temperature is 200 C ; operating temperature range is -61 to +200 C .

Microwate Associates, Inc., Dept. E.D. Burlington. Mass.

High-Voltage Regulators


Range is $\mathbf{4 0 0}$ to $\mathbf{2 , 0 0 0} \mathbf{v}$. Long-term stability is $0.5 \%$, temperature stability is better than $0.01 \%$ per deg C. Voltage tolerance is $\pm 2.5 \%$. The CS 3, a lowcurrent. gas-discharge type, is for supply circuits, comoter tubes, photomultipliers and general voltagereference use.

Connolly \& Co., Dept. ED, P. O. Box 295, Menlo Park, Calif.

## Prinfed-Circuit Press

Operation is automatic, continuous. Roll-feed system provides for dry printing of a thermoplastic in a wide range of widths and lengths of impressions. It can be fitted for conventional production or varied according to customer specs.

Dry Screen Process, Inc., Dept. ED, 1020 Madison Ave., Pittsburgh 12, Pa.

## NEW PYRMY-FILM CAPACITORS SAVE SPACE...CIRCUITS...COST

When the equipment you manufacture requires miniaturized film capacitors with highest reliability and extended life, specify Pyrmy-Film capacitors with fortified film dielectrics. Made to meet the most critical standards, these capacitors will match the strictest demands of your quality control.
Pyramid Pyrmy-Film capacitors maintain high insulation resistance and extreme moisture resistance when operating at wide temperature ranges. Because these capacitors fit into the smallest
spaces, design engineers can successfully incorporate them into tiny circuit models. Order Pyramid Pyrmy-Film capacitors and confirm these advantages.
For full details call or uriuc for Engetneering Bulletin Mr-3B

## PYRAMID ELECTRIC <br> DARLINGTON <br> SOUTH CAROLINA

Canada: Wm. Cohen, Ltd., 8900 Park Avenue, Montreal Export: Morhan Exporting Co., 48513 roadway, N. Y. 13, N. Y Export: Morhan
DER-SERVICE CARD CIRCLE 112 ON READER-SERVICE CARD


## NEW PRODUCTS

Trimmer Capacitor


Range is I to 18 pf. Four models are offered. Each has one wire lead and one tab lead. Other features are: fixed-cavity tuning, linear tuning curve, thermal stability and combination of glass and hardware for low inductance. Units are designated Mini-Trimmers. Corning Class Works, Dept. ED, Corning, N. Y. Availability: Samples.

X-Band Isolators
498


In 108 models. Isolators are available in $600-\mathrm{mc}$ or 1.1 -kmc bandwidth increments. Over a $500-\mathrm{mc}$ band, forward and reverse vswr is 1.1 max; over an extended band, it is 1.22 max. Temperature range is -40 to +85 C . Lengths are $1,1.25$ and 1.5 in . E \& M Laboratories. Dept. ED, Van Nuys. Calif. Price: $\$ 125$ to $\$ 145$.

## Carbon-Film Resistors

499


Power ratings are $1 / 8$ to 8 w . Voltage rating is as high as $1,000 \mathrm{v}$. Coaxial type L and axial types $\mathbf{P}$ and S have resistances of 5 ohms to 2 meg. Type V is subminiature in design for printed circuit use. Type $F$ is microminiature for the most stringent space requirements.
Fi-Ohm Co., Dept. ED, Suite 1417A, 360 N. Michigan Ave., Chicago 1, Ill. Price: $1 / 2$ to 3 cents each.

## YOUR JOB LACK CHALLENGE?

it's probably not as bad as cutting paper figures. Bu Its probably not as bad as cutting paper figures. But salary that your ability dictates, then it's time to contact Cadillac. Cadillac is retained by over 520 top electronic firms-both large and small-from coast-to coast. As an applicant with Cadillac, you will be repre sented by the nation's largest electronic placemen firm and can hand pick from thousands of positions now open.
Cadillac's service is COMPLETELY CONFIDENTJAL and available to you ABSOLUTELY FREE OF CHARGE

FREE-Monthly Opportunities Bulletin If you wish to receive a monthly bulletin of the finest available electronics opportunities, simply send us your name and home address (and, if you wish, a review of your quali fications). Our services are without cost to you through our Chicago office and our Los Angeles subsidiary, Lon Barton Associotes.

JACK L. HIGGINS
Vice President
Cadillac
ASSOCIATES, INC.
29 Eost Madison Eida, Chicege 2, ill.
"Where Moro Electronic Executives find Their Position Then

CIRCLE 174 ON READER-SERVICE CARD

but now he tinds them All
in ONE publication: Electronic Debion

## Synchro Simulator

500


Provides synchro transmitter signal. Model SO-102 Dator synchro signal simulator is suitable for introducing precise angular position data into servo systems for test and evaluation. Models are available to simulate a broad range of synchro types of 50 to $1,000 \mathrm{cps}$; $3-\mathrm{min}$ accuracy is maintained with up to 3 synchro control transformers connected to the unit at once. Size is $5-1 / 4 \times 19 \times 8-1 / 2 \mathrm{in}$. deep. Weight is 10 lb .

Angler Industries, Dept. ED, 3 Lexington Drive, Metuchen, N. J.
Price: $\$ 28.5$.

## Motor Alternator

Provides 50-cps power. Motor alternator BC-4-2 operates on $26 \mathrm{v}, 400 \mathrm{cps}, 3$ phase and provides $15-\mathrm{v}, 50-\mathrm{cps}, 2$-phase power. Harmonic content is less than $4 \%$ in each phase. Unit conforms to MIL-E5400.

General Precision, Inc., Kearfott Div., Dept. ED, Little Falls, N. J.

Calibration Tester


Stimulates transducer output. Calibration tester BH153 is a direct-reading adjustable voltage source, simulating de output of transducers with a setting accuracy of $0.05 \%$. Scale can be graduated for direct or indirect reference, with up to 1,000 scale divisions. Size is $4 \times 2-3 / 4 \times 2-1 / 4 \mathrm{in}$., weight 8 oz .
Howell Instruments, Inc., Dept. ED, 3479 W. Vickery Blvd., Fort Worth 7, Tex.

## Silicone Insulation

503
For wire and cable. Silicone rubber compound SE-9007 is designed for aircraft, hook-up, motor lead and similar wire applications. Tensile strength is 1,200 psi, elongation 425\%. Material has high moisture resistance. Dielectric constant is 3.0.
General Electric Co., Silicone Products Dept., Dept. ED, Waterford, N. Y.


## MULTI-STAGE BLOWER THIS SMALL?

New Globe multi-stage blowers drive cooling air against the extreme pressure resistance you encounter in heat exchangers, tightly packed black boxes, and crammed transistor circuitry. They deliver 39 cfm against $14^{\prime \prime}$ $\mathrm{H}_{2} \mathrm{O}$ back pressure! ( 65 cfm free air.) With STAX.3.FC blowers you can design right past costly devices and heavy centrifugal air "pumps" (that use $1 / 4 \mathrm{hp}$ or more for comparable volume/pressure). And you can keep the whole package small. A limited number of units are stocked for proto. type quantity delivery to you in 24 hours.

With a low specific speed ( $\mathrm{Ns}=15,000$ ) STAX blowers perform far past the stall regions of other axial blowers. Unique dynamically balanced rotor design permits the use of one, two, or three stages in the same size package. Motor operates on 200 v.a.c., 400 cycle, three phase power. Units are designed to meet applicable MIL specs; nominal continuous life is 1000 hours. Weight: 29 oz. (3-stage). Production tooling keeps the price within reason. If you need more performance, different power, etc., Globe will design the exact multi-stage blower you require.

The powerful STAX is one of hundreds of miniature blowers made by Globe and engingered for your application. Request Bulletin STX, or call direct: Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio. BAldwin 2.3741.

GLOBE INDUSTRIES, INC.
GLOBE



CIRCLE 115 ON READER-SERVICE CARD
 indium Corporation and used extensively in printed circuit work, are tomperatures ore important, flowability and workability Indium ${ }^{\text {s }}$
ovalubic in many forms and can be toilor-made for ANY aDplicotion. Wi 'ie todoy for' reseorch help. - 21 THIN METAL FILMS - 18 NON-METALS
Write Dept E-6 for new Indium bullef in


CORPORATION OF AMERICA 1676 LINCOLN AVENUE - UTICA, NEW YORK he Development and Apolication of Indium
CIICLE 139 ON READER-SERVICE CARD

shows how Ramco's total solves your toughest problems!


SINOLE TURN RINGS • MULTI-TURN RINGS - SELP-LOCKING RINGS


MAMSEY CORPORAYION a subsidiary of Thompsen Rame Weoltrideo lac. Box 313 , Dept. P St. Louls 66, Missourl CIRCLE 140 ON READER-SERVICE CARD

NEW PRODUCTS

## Chopper

Electro-mechanical type. Model 40 low-noise chopper is designed for $400-\mathrm{cps}$ drive. It withstands 100 g shoek and vibration in any direction. Lwell time is 150 to 185 deg . Phase angle is $60 \pm 15 \mathrm{deg}$, and signal level is 10 vdc max at 2 ma . It has a working temperature range of -6.5 C to 100 C , with a rated life exceeding $2,000 \mathrm{hr}$. Weight is 9 g .

Airpax Electronics Inc., Cambridge Div., Dept ED, Cambridge, Md.
P山A: \$49.00 ea, 1-6; 2 to 3 weeks.

## Silicon Transistor

567
Beta is $\mathbf{1 0 0}$ to $\mathbf{3 0 0}$. Double-diffused mesa transistor 2 N 1507 , housed in TO-5 package, dissipates 2 w at 25 C case temperature. Operating collector junction temperature is 175 C ; collector-to-base voltage is 60 v . The npn device has 10 -ohm max saturation resistance.
Texas Instruments, Incorporated, Dept. ED, P. O. Box 5012, Dallas 22, Tex.

Azimuth Theodolite


Accurate to 1 sec . Model 23-210 azimuth alignment theodolite permits precise angular alignment to known geographical references and measures or monitors rotation of remote objects. It has a built-in telescope for sighting small or remote targets and an optical micrometer with which the instrument can be zeroed and precise angular measurements made. It is for all-weather use.

Barnes Engineering Co., Dept. ED, 30 Commerce Road, Stamford, Conn.


TUNING FORK OSCILLATOR

- HERMETICALLY SEALED - SILICON TRANSISTORS - flexible operating voltage

High precision custom built oscillators also available

Write for information or phone MErrimac 7.1805

TWX CGI-4668
OPERATING FREQUENCY-240 to 2400 cps .forks ground to your exact

FREQUENCY ACCURACY
\#. $3 \%$ from $-55^{\circ}$ to $125^{\circ} \mathrm{C}$ $\pm .05 \%$ at $25^{\circ} \mathrm{C}$
INPUT-12 to 32 V DC
OUTPUT-at Min. Input Voltage: 2 V . RMS min. into 5.000 Ohms minimum with essentially square waveform SIZE-11/a' square $\times 2^{1 / 20}$ high TERMINATION-Octal plug PRICE-\$49.50

## JORK STANDARDS, INC.

917 North Hariem Avenue - Chicago 35. mininois
CIRCLE 141 ON READER-SERVICE CARD

thats one reason why engineers are sending inquiries to ED at the rate of nearly ONE MILION per year with each forwarded to advertiser within one day of receipt!

is kept on the alert with the help of an Eastern pressurizer dehydrator system. This compact unit feeds a flow of controlled, dry air to the wave guide of the powerful acquisition radar - at pres. sures higher than the atmosphere, so that the ambient can't sift in through leaks. As a result. moisture can't condense on high-voltage elements: dangerous arc-overs are eliminated. The dehydrating pressurization pack is completely self-contained. circulates air through alternate. self regenerating capsules of silica gel which need never be replaced. For additional information, write for Bulletın 370.

EASTERN INDUSTRIES, INC.
100 Skiff Street, Hamden 14, Conn.
West Coast Office: 4203 Spencer SL. Torrance, Calif.
Circle ia3 on reader-service card


CIRCLE IS4 ON READER-SERVICE CARD ELECTRONIC DESIGN • May 24, 1961

HF Relay


General purpose type. Model RF utilizes low-loss diallyl phthalate molded plastic insulation. It is also available in plastic or metal-covered plug-in types. Suitable for hf current, it has UL type terminal boards; two-piece latches are also available.
Artisan Electronics Corp., Dept. ED, 171 Ridgedale Ave., Morristown, N. J.

Power Amplifier


RF output up to $\mathbf{4} \mathbf{w}$. Type 230-A employs three tuned, cascaded stages of grounded grid design for a power gain of 34 db min over the range of 10 t ) 500 mc . It will reproduce $\mathrm{am}, \mathrm{fm}$, and pulse modulation signals. With a regulated power supply and uf output voltmeter. the unit is designed for either rack or cabinet mounting.
Boonton Radio Corp., Dept. EI), Boonton, X. J

Relay Module


For switching, gating. This relay building block consists of two transistor-driven relays. Speed of operation is 1 msec , power is 300 mw and life is $200,000,000$ operations. It is for use in digital systems where solid-state switches are unsuitable.

Control Equipment Corp., Dept. ED, 19 Kearney Road, Needham Heights 94, Mass.


Their reliability assures your products performance N.E.I. procision potontiomotors, both Conductive Plastic end Wire Wound, ombody every desirable design and ongineoring feature tnown to potentiometor menufacture. Because wo manufacture both typas, our ongineers can analyze your specific requiroments from both sides and produce the propor solution. Remomber, N.E.I. procision potentiomotors are unsurpassed for reliobility.

## Condrefiva Mostics

- Unsurpassed roliability
- Negligible noise lovel
- Standard resistance
values $1 K, 2 K, 5 K$, 10K.
and $20 K, 1$
0.5
- Spocials from 500 ohms
to 1 megohm
$-0.1 \%$ linearity

Wine Wound Meet performance
pecs of MIL5272A.
MAS710 NAS710 ond applicbal
portions of JANR-19 pornions of Jank-19 - Maintain oscallont char-
actoristics from - $55^{\circ}$
. actaristics
to $150^{\circ} \mathrm{C}$

- Available from $\begin{gathered}1 / 2 \cdot \\ \text { singlo and } \\ \text { turn }\end{gathered}$ types to $3^{\prime \prime}$
- Standerd resistances



## Send tor complets catalog

New Eingland Snstrument Oompany CIRCLE 145 ON READER-SERVICE CARD

Now Available from Aderhold Ceramics

## ALUMINA

## TUBING AND SHAPES

Pilot or volume production on lengths up to $5^{\prime}$. O.D. sizes from $.025^{\prime \prime}$. Tolerance limits $- \pm .005^{\prime \prime}$. Glazing and color, if desired. Engineering service and testing facilities provided.
Other high-temperature materials also available Additional data supplied on request.


## ADERHOID CERAMICS

 soo brd avenue saxonburg. pennsyivaniaSpecialists in Nuclear Ceramics
CIRCLE 120 ON READER-SERVICE CARD


ELECTRIC DEVELOPMENT CO., WNC. Movir ovoratome om mecul omarven 1873 EASTERN PARKWAY, BROOKLYN 33, N. Y. CIRCLE 121 ON READER-SERVICE CARD

## NEW PRODUCTS

## Accelerometer



Output is 250 mv per g. Model 2219 accelerometer, for measuring low vibration levels, provides a signal-to-noise ratio of 10 db for 0.0002 g peak. Resonance frequency is 12 kc . Temperature response with 100 -pf capacity is $\pm 8 \%$ deviation from +32 to +230 F .

Endevco Corp., Dept. ED, 161 E. California Blvd., Pasadena, Calif.
Price: $\$ 200$.

## Cooling Units



Range from 50 to $\mathbf{5 0 , 0 0 0} \mathbf{w}$. The units transfer heat from locations where high temperature is harmful to components, to remote locations. Completely self-contained, they consist of liquid circulators, liquid-to-air heat exchangers and interlocks as required.
Electro Impulse Laboratory, Inc., Dept. ED, 208 River St., Red Bank, N. J.

## Power Supply

513
Provides 10 amp . Rack-mounting power supply model TR 10160 has output of 15 to $160 \mathrm{v}, 0$ to 10 amp. Regulation is $0.1 \%$ or 150 mv , ripple 3 mv rms . Transient response is 50 usec; ambient operating temperature range is 0 to 50 C at full load. Panel height is $10-1 / 2 \mathrm{in}$.

Anders Electronics, Inc., Dept. ED, Brook Road, Needham Heights, Mass.

## Helical Anfenna

514
Lengths to 60 in . This antenna is wound of flat ribbon steel, forming its own spring tension. It can be designed into citizens band and commercial twoway communication systems so that it becomes vertically self-aligning when released. Collapsed, it occupies $1 \times 2 \mathrm{in}$.
Elasticone Div., Central Safety Equipment Co. Dept. ED, 6601 Marsden St., Philadelphia 35, Pa.

## Here's what you

 can buy for cancer researchScan the list below. Read the actual prices of equipment purchased with American Cancer Society funds. You'll see that there are never any bargains in cancer research.
Decide what you can afford to buy. Then mail your contribution with the coupon below to CANCER, c/o your post office.

## RESEARCH PRICE LIST

5 dozen tissue culture tubes. . . 85 Foud and care of 1500 mice for 1 day . .................... 815 1 micrometer. . . . . . . . . . . 819 1 mouth rebreathing apparatus and nebulizer ............. 820 1 instrument sterilizer . . . . $\$ 50$ 1 blood cell calculator, used in leukemia studies ..........880 4 days maintenance of a cancer research bed ............ 8100 1 kymograph manometer . . . 8134 1 isotope scanner . . . . . . . $\$ 250$ 2,000 millicuries of radioactive iodine ................ 8750 1/2 gram of cobalt for radiation research . . . . . . . . . . $\mathbf{8 6 , 0 0 0}$
1 grant for the study of the role of hormones in growth, including the cause, prevention and treatment of cancer . . . . . . $\mathbf{8 7 0 , 0 0 0}$ 100 medical training fellowships for 1 year . . . . . . . . . 8500,000 Grants to 5 scientists, each heading a cooperative five-year cancer research program . . $81,000,000$

## Mail this coupon to:

CANCER
c/o Your local post office
Attached is my donation of 8
to fight cancer.
My Name
Address
City
State.
american cancer society
 SCFH at dewpoints to - $100^{2} \mathrm{~F}$.

- Maximum dust elimination. 5 micron filter built in. Also avail-able- 3 micron accessory filter
- Gas taken off for tower regen eration is saved and recirculated . . . completely eliminates gas dumping
- Even heat, automatically cycled
- Shock mounted blower
- Price: $\$ 3960$ F.O.B. Riverton. N. J.
- Other recirculating and in line models with capacities from 250 SCFH

Write for complete technical information

## Eempaeratrira

ENGINEERING CORPORATION
Manufacturors of
Constant Tomporaturo. Vacuum
pme
600 Tempeor Boulevard, Riverton, N. J.


For cryogenic applications. Weighing 4-1/2 oz, type $17-4 \mathrm{H}$ steel solenoid delivers $10-3 / 4 \mathrm{lb}$ force at $0.02-\mathrm{in}$. stroke, at 24 v dc. Temperature range is -420 to +500 F. Missile fuels, oxidizers and other corrosive media do not cause corrosion or contamination in the solenoid cavity

Electroid Corp., Dept. ED, 95 Progress St., Union, N. J.

Availability: from stock.

## Reactor Tubing

516
With $1 \%$ zirconium. Small diameter tubing of zirconium-columbium alloy provides higher oxidation resistance and greater strength at high temperatures than reactor grade columbium tubing. It is made in seamless form, sizes from 0.012 to 1.125 in . OD, lengths to 24 ft .
Superior Tube Co., Dept. ED, 1521 Germantown Ave., Norristown, Pa.

Thermal Conductivity Detector
517
rs are tors are made for gas chromatography, thermal conductivity analyses and other related applications. Units operate in any temperature range up to 500 C . Flow shiclds are interchangeable; cell arrangements include 4 -element, 2 -element and microvolume types. Loe Engineering Co., Dept. ED, 2092 N. Lincoln Ave., Altadena, Calif.

## Induction Motors

518
Torque is $\mathbf{0 . 8}$ to $\mathbf{3}$ oz-in. Series $\mathbf{M}$ motors, for use alone or with u geared motor, are designed to resist heavy shock. No-load speed is about $3,350 \mathrm{rpm}$. Die-cast bearing brackets, with projections anchored in the field laminations, are used.
Brevel Products Corp., Dept. ED, 601 W. 26th St., New York 1, N. Y.
first from rxiolab...
a new standard of precision in AC VTVMS


## now measure both complex and sine waves with $0.25 \%$ accuracy

'Til now, no VTVM has been able to measure complex waves with high laboratory standard accuracy. Average-reading and peak-reading instruments are subject to significant distortions created by spikes and harmonics.
New triplab Model 120 achieves direct-reading, true RMS values of both sine and complex waves with deflection directly proportional to the square of the current-by use of a special dynamometer movement.


- DIRECT-READING

No knobs to twist or tedious balancing.

- INSTANT MEASUREMENT

No sluggish, thermo-couple response

- highest legibility

Full $7^{\text {¹ }}$ custom-calibrated, mirror scale.

- CONSTANT OVERALL GAIN

For long life.

- DIAMOND BEARINGS

For perfect balance, smooth scale motion.
Ranges: 10 MV to 500 V rms, full scale. Input impedance: 1 meg. Fundamental freq. response: pedance: 1 meg. Fundamental freq. response:
$50-2000 \mathrm{cps}$. Accuracy (above $50 \%$ electrical $50-2000 \mathrm{cps}$. Accuracy (above $50 \%$ electrical
deflection): $1 / 4 \% \mathrm{f.s}$. at $400 \mathrm{cps} ; 1 / 2 \%$ f.s. at all defiection): $1 / 4 \%$ f.s. at $400 \mathrm{cps} ; 1 / 2 \%$ f.s. at all
other frequencies. Power: 115 VAC, $50-400 \mathrm{cps}$.
AVAILABLE RACK-MOUNTED OR PORTABLE
triplab other laboratory and build-in miniature pre-
cision instruments can help you. Write for Catalog.ED.5

## 1 1 iopiab

TRIO LABORATORIES, INC., Plainview, L. I., N. Y. Export Dept: EMEC, 127 Grace St., Plainview, N.Y.


## Ultek

 ELECTRONIC high-vacuum SYSTEMS
## NEW PRODUCTS

Piezoid Ceramic


For transducers. Composition KE-14 is a piezoid ceramic material with electrical properties useful in transducer applications. Disks, tubes, cylinders, plates and blocks, and unsymmetrical shapes can be supplied. Dielectric constant is stable from 55 to 300 C. Elements can be supplied with electrodes and leads.

Centralab, The Electronics Div. of Clobe-Union Inc., Dept. ED, 900A E. Keefe Ave., Milwaukee 1, Wis.

## Dust-Free Cabinet

520
Filter unit can be removed. Model A cabinet provides a controlled environment for assembly, test and research. Dust particles of 0.08 to 80 microns in diameter are arrested. The filter stops dust particles of 0.5 to 1 micron at an efficiency of $99.25 \%$. The work chamber is $36 \times 28 \times 18 \mathrm{in}$.

Cambridge Filter Products Corp., Dept. ED, 738 Erie Blvd., E., Syracuse 1, N. Y.

## General-Coverage Receiver

high-vacuum applications ...

- vacuum tube processing
- thin film deposition
- space simulation
- environmental lesting

> - general physics research

## complete vacuum line...

- standard and custom systems, with pumps from 5 to 2000 liters/sec
- sorption roughing pumps
- mefal-sealed fittings
- high-vacuum valves
- ambient foreline traps
- vacuum chamber feed-throughs and view ports


## Write Today -

FREE Reprint of technical article, "Ionic
Vocuum Pumps," by Dr. Lowis D. Hall

920.0 Commectillt. Paranto. ULTEK SALEE ENGINERIMG OFFICEE:
BOTTON. CLEVELAND. PMILADELEMIA


For ssb, am or cw signals. Model 51S-1 provides continuous coverage of 2 to 30 mc in 30 bands, supplemented by a range of 0.2 to 2 mc for broadcast monitoring and laboratory use. A direct-reading frequency presentation uses a counter-type dial for megacycles and a linearly calibrated dial for kilocycles.
Collins Radio Co., Dept. ED, Cedar Rapids, Iowa.

Capacitance Tester


For semiconductors. Model $1827 \mathrm{C}_{\mathrm{cb}}$ test set provides direct meter readings of collector capacitance. Ranges are: 0 to 3,0 to $\mathbf{1 0 , 0}$ to 30, and 0 to 100 pf . The unit can be used with diodes when reversed biased or with transistors. Accuracy is $5 \%$.

Dynatran Electronics Corp., Dept. ED, 178 Herricks Road, Mineola, N. Y. P\& A: $\$ 425$; 30 days.



FREQUENCY STANDARD

owar suppit .-. 115 valts, 60 CPS OTMER MODELS AVAILABLE
 OW FREQUEMCY racies at frequencies below the
STAMDARD
range of precision funing for AUTOMATIC HI-POT TESTER Model A LECTRIC ACCURATE,
 DEVICES
DESCRIPTIOM: The function of this instrument is to apply in voltage Detween the various conductors under test for :
specifice period of time and to indicato breskdowns when and
where they occur.

 | TEST TIME |  |
| :--- | :--- |
| MUMBER OF TEST TERMIMALS | $\quad 2.120$ |
|  | 11 |



A sensitive battery operated null detector ideal fop
shering bridges or othe: apolications where comshering bridges or othe? applications where com-
plete isalation from power lines is desirable. - Long Battery Life - High Harmonic Rejection SENSIIIVITY: i micrevalt fer 1\% deflection
ITECO Write Tor Catalogs

INDUSTRIAL TEST EQUIPMENT CO.

CIRCLE 127 ON READER-SERVICE CARD ElECTRONIC DESIGN • May 24, 1961 ton, Ore. Calif.

1961

Shock Accelerometer


Resonance frequency is 80 kc . Model 2225 , for measuring shock and impact transients, has a nominal sensitivity of 0.6 mv peak per g with $300-\mathrm{pf}$ external capacity. Dynamic range is a maximum sinusoidal $10,000 \mathrm{~g}$ and maximum shock is $20,000 \mathrm{~g}$ with $75-$ usec half-sine pulse. The unit weighs 0.46 oz
Endevco Corp., Dept. ED, 161 E. California Blvd., Pasadena, Calif.
Price: \$175.

## Scope Cart

524
With tilt tray. The 200 series of scope carts provide convenient mobile support for oscilloscopes and auxiliary equipment. Tray can be tilt-locked in 9 positions. A plug-in carrier is optional. Type 201 is $10-1 / 2 \mathrm{in}$. wide, type 202 is 14 in . wide.
Tektronix, Inc., Dept. ED, P. O. Box 500, Beaver-

## Induction Motor

525
Drives axial-vane blowers. Motor may be used in aircraft equipment and can operate at altitudes to $30,000 \mathrm{ft}$. Class H temperature insulation is used. Ratings include: $0.5 \mathrm{hp} ; 200 \mathrm{v}$ at 400 cps , three phase; $11.4(00 \mathrm{rpm}$; continuous duty.
Kearfott Div., General Precision, Inc., Dept. ED, Little Falls, N. J.

Filament Transformer
526


Has low capacitance. Transformer type NT-341 is made for $20-\mathrm{kv}$ continuous-duty pulse applications. Secondary is supported on an insulating boss while both the primary and secondary coils are individu ally shielded and encapsulated. Total capacitance of the 75 -va secondary is 20 pf to primary and ground. Maximum dimension is 6 in . Other sizes are available. Ḱnopp Inc., Dept. ED, 1307 66th St., Oakland 8,


THESE "WIRE-WOUNDS" ARE CIRCUIT SHRINKERS newly
expanded line lets $A X I O H M^{\circledR}$ power resistors go into smaller circuits!

Ward Leonard AXIOHM power resistors are now available in scven sizes-down to 2 watts, up to 12.5.

They're ideal for miniaturization in printed-circuits, industrial instrumen tation and automation circuitry. But they're recommended for any electrical or electronic application where the highest stability and maximum overload capacity are required.
The seven AXIOHM sizes come in a


Less leads.
Get complete details in Supplement C to Catalog 15. Write for your copy and a list of stocking distributors today. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)
 RESULT-ENGINEERED CONTROLS SINCE 1892

## WARD LEONARD ELECTRIC CO. <br> RESISTORS • RHEOSTATS • RELAYS • CONTROLS - DIMMERS

 CIRCLE 128 ON READER-SERVICE CARD

## NEW PRODUCTS

## Semiconductor Bases



Steel rings are brazed in place. The base material is copper alloy with electrical and thermal conductivity comparable to oxygen-free copper, Standard sizes are 7/16, 9/16 and 11/16 in across-flat hexagon dimension. Units have an annular projection for welding.

Standard Pressed Steel Co., Dept. ED, Jenkintown, Pa .

## Aircraft Test Device

439
Margin of error is $\mathbf{0 . 0 2 5 \%}$. This analog-to-pressure converter simulates flight conditions to insure accurate altimeter and air-speed readings when
the plane is in the air. The unit can also serve in industrial applications, indicating pressure.
Motec Industries, Dept. ED. 6344 Arizona Circle, Los Angeles, Calif

## TV Pickup Tube

Resolution is $\mathbf{6 0 0}$ lines. The 7037 Vidicon is for use in film scanning. studio broadcasting and industrial applications. It permits live pickup from scenes with 100 to $200 \mathrm{ft}-\mathrm{c}$. It may be used with $2 \mathrm{ft}-\mathrm{c} \mathrm{min}$ face-plate illumination.

English Electric Valve Co. Ltd. Dept. ED. Chelmsford. England.

## Induction Motor

Rating is $\mathbf{1 5 . 5} \mathbf{~ h p}$. Other features of the F-30-3 include: power, 200 v at 400 cps , three phase; speed, 11.600 rpm: duty, continuous. It is designel to drive an axial-vane blower but is adaptable to other military and commercial uses. It is thermally protected.

Kearfott, Div. of General Precision, Dept. ED, Little Falls, N. J.

An Important Reference Book from ARINC Research Corporation
. . to provide you with the latest specifications for transistors on the Military Preferred List. TRANSISTOR

In addition to other valuable information,
the manual includes: -mIL-S. 195008 (the basic spocliciction for u. s. milar ory in $A$ ammendmentil. -Lotosal esvalleble milltary spocitications for
 Prepared in convenient looseleaf form and durability, the manual comprises 609 pages of accurate, vital engineering information.
Supplements to the manual will be made avallable periodically to keep th current $\$ 10.00$ per copy (post-paid.)
Send check, money order or company purchase order. Specify Publication No. 184.
ARINC Resarach core.
artontion: Contract Administrator
1700 K Street. N.W., Washington 6. D.C.


It is for continuous use at 155 C . Type XR-5029 low-viscosity resin is stable at room temperature. Pot life is 7 days at 65 C or 4 days at 95 C . Curing is 8 to 16 hr at 150 C ; extended curing increases electrical and high-temperature properties.
Minnesota Mining \& Manufacturing Co., Dept. ED, 900 Bush Ave., St. Paul 6. Minn.

## Semiconductor Tester

429
Unit measures six parameters. The ACE-700 is primarily for transistor and other semiconductor measurements but is adaptable to many other two- or three-terminal network measurements. It accepts up to 50 trans-
sistors or diodes. Design is modular. Cook Electric Co., Dept. ED. 2700 Southport Ave., Chicago 14, Ill.

## Induction Mofor

Resists severe environments. Type $\mathrm{E}-10-1 \mathrm{~A}$ is suitable for military as well as commercial applications and meets MIL-M-7969 and MIL-E-5272. Ratings are: $1 / 7 \mathrm{hp}$; 208 v at 400 cps , three-phase; $5,500 \mathrm{rpm}$; continuous duty. It weighs 6 lb 10 oz .
Kearfott Div., General Precision, Inc., Dept. ED, Little Falls, N. J.

## Computer

528
Processes test data. Binary data is entered directly into the computer, where it is automatically converted to decimal form. Designated 7072, the system is available with a magnetic core of 5,000 or 10.00010 -digit decimal words. It is tape-oriented with speeds of 7,200 or 20,000 characters per sec.
IBM. Data Processing Div., Dept. ED. 112 E. Post Road, White Plains, N. Y.

Price: $\$ 860,550$.


ELECTRONIC DESIGN • May 24, 1961

## Reliability Accuracy Economy



## CURTISS WRIGHT TRANSISTORIZED ELECTRONIC Time Delay Relays

Curtiss-Wright "T" series relays employ advanced solid state circuitry providing better than $\pm 3 \%$ accuracy on standard models. Adjustable or preset time delays available from 0.1 to 300 seconds... fast recovery following deenergization at any time. "Wearever" control circuit with no moving parts withstands 2000 cps 20 g vibration, 50 g shock and acceleration. Input voltage 22-32 VDC reverse polarity and transient protected. Complies with applicable MIL specifications. Fast delivery on standard units. Custom designs available.


Write for latest components catalog \#512.
time delay relays - delay lines - rotary solenolds - dicital MOTORS - TIMING DEVICES - DUAL RELAYS SOLID STATE COMPONENTS
CURTISS-WRIGHT CORPORATION
ELECTRONICS DIVISION
EAST PATERSON, NEW JERSEY CIRCLE 132 ON READER-SERVICE CARO

## hEEP AHEAD WITH HAYEG HAVELEX

Haveg's Precision Molded Rigid Inorganic INSULATING MATERIAL


Havelex's unusual combination of properties coupled with Haveg's broad experience in cussom molding intricate shapes offers unlimited design of how Haves solved an important problem with Havelex.
A major transistor manufacturer wanted thinwalled metal subes precision molded into an inorganic material for high temperature tessing of
his product. The tubes were contoured to facilitate lead insertion and removal - yet insure electrical contact during the teating period.
Haveg engineers will be happy to wort with you on your particular project - to help you "Keep ahead with Haveg."

Mavelox effers all

- Dimonalonal

Stabilify

- $1000^{\circ}$ F. Continueus

Tomperature
Rosistance

- Dielectric Strengeth
- Mochanical

Strengeth
Low Less, Low

- Are Resistanco
- Ne Molature

Absorpilon

- Infegrally mouldod Moral Inserti
- Mormoficully
sealod Inserts



CIRCLE 133 ON READER-SERVICE CARD


## NEW PRODUCTS

DC Amplifier


Gain is $\mathbf{1 0}$ to 3,500. Model $\mathbf{1 1 3 0 0}$ uses model I1300 second-harmonic modulator at an excitation frequency of $2,000 \mathrm{cps}$. Output is bidirectional. Current input is 0.1 to 30 ua. Gain stability is $0.5 \%$ of span. Linearity is 10 mv for $2 \%$ of span.

Coldstream Engiveering Co., Dept. ED, Box 1893, Tulsa, Okla.
PGA: \$375; 4 weeks.
AC Coupling Card


Has 10 circuits. Compatible with the firm's 200-kc digital modules, the solid-state AC-1 allows reduction in the number of basic cards used. It also triggers one-shot delays. The circuits provide collector-controlled steering of shift signals. Dimensions are 4-3/8 x 4-1/2 in.
Computer Logic Corp., Dept. ED, 11800 W. Olympic Blvd., Los Angeles 64, Calif.

## Induction Motor

Rated at $1 / 25 \mathrm{hp}$. Made for military and commercial use, motor D-10-9A operates on 208 v , $400 \mathrm{cps}, 3$ phase. Speed is $7,200 \mathrm{rpm}$, weight 3 lb 2 oz . The totally enclosed motor conforms to military requirements.
General Precision, Inc., Kearfott Div., Dept. ED, Little Falls, N. J.

Battery Regulator
Regulation is $\pm 1 \%$. Voltage variation in the battery can be up to $20 \%$ at 5 to 50 amp and at temperatures to +120 C . Silicon-controlled rectifier circuitry is used.
Crydom Laboratories, Inc., Dept. ED, 128.50 Western Ave., Garden Grove, Calif.

531

532

## LATEST <br> DATA ON <br> ULTRASONIC DELAY LINES!



## THIS

 NEW
## CATALOG

gives you up-to-date specs on the industry" most complete line of ultrasonic delay lines for missiles, MTI, radar countermeasures and computer applications. Send for it today.

## LES

LABORATORY FOR ELECTRONICS,IMC. Computor Products Division 1079 Commonwoallh Avonve Circle iss on reader-senvice cand ELECTRONIC DESIGN • May 24, 1961

## sub-miniature

## as you like them, when you want them

- 189 standard capacity-voltoge ratings, 2 to $2000 \mu$ F, to 50 WVDC
- Custom-designed Polar and Non-Polar unirs - Multiple section units with common negofives or common posifives
- 13 microsize axial lead encasements, 14 microsize single end encosements, each fully utilized to sove space
- Extremely low D.C leakage ... half the EIA allowance
Reliable long life, stable capacity, proved in 1000 hour load tests at $65^{\circ} \mathrm{C}$
Whatever your reasons for specifying iel sub-miniature Aluminum Foil Capacitors, you will be right every time. Only iel, the pioneer manufacturer and long-time specialist in miniature electrolytics for transistor applicafions, can give immediate attention to your needs for long runs, short runs, standards and specials. Iel olso offers expedited shipment of stock items when needed. Write for Product Dato Bulletin 2641

International Electronics Industries, Inc. Box 9036-12, Nashville, Tennessee

u'here reliability replaces probability CIRCLE 136 ON READER-SERVICE CARD ELECTRONIC DESIGN • May

## Compression Accelerometer



Range is 0.5 cps to $2 \mathbf{k c}$. Response is flat within $\pm 5 \%$ throughout range and over an acceleration range of 0.0016 to $1,000 \mathrm{~g}$. Resonant frequency is 1.5 kc , cross sensitivity is $5 \%$ max and capacity is 750 pf nominal. Designation is 410 .

Columbia Research Laboratories, Dept. ED, MacDade Blvd. \& Bullens Lane, Woodlyn, Pa P'A: \$185; 2 weeks.

## Slip-ring Assembly

With brush lifter. Sealed, 1()-circuit slip-ring has a manually operated brush lifter to avoid wear when measurements are not being made. The ring is encased in stainless steel with permanently lubricated bearings and sealed for operation in the presence of contaminants. The unit, model SR10M, is 2 in . in diameter by $1-5 / 8 \mathrm{in}$. long.
Michigan Scientific Co.. Dept. ED, 7.30 Bellevue, Milford, Mich.

Moisture Meter
535
Accurate to $=\mathbf{5 \%}$. A portable laboratory moisture meter, the Hygromite continuously monitors water vapor in gas. Ranges are 0 to 10, 30, 100, 300, and 1.000 ppm . A special electrolytic cell is used in monitoring gases having hydrogen concentrations greater than $50 \%$.

Technical Information Dept., Beckman Scientific and Process Instruments Div., Dept. ED. Fullerton, Calif.

Terminal Board Assembly
536


All hardware is furnished. No. 1422 assembly is made of CiSC; laminated silicone cloth as per MIL-P-997B and measures $2 \times 13-1 / 8 \mathrm{in}$. Springloaded diade clips for quick-disconnect use are furnished. The terminal board is suitable for use with all types of components.

Cambridge Thermionic Corp.. Dept ED, 445 Concord Ave., Cambridge 38. Mass.

## A PROBLEM OF TUBE OR COMPONENT RETENTION?

Birtcher produces more than 10,000 types and styles of tube and component retention and cooling devices. The solution to your tube, transistor and component cooling and retention problems can probably be found in the new Birtcher catalog. If not, send us your problem and we'll design number 10,001 .
avallable from
authorized Birtcher distributors
NEWI
Write soday for your comprehensive Birtcher Retention/Cooling Devices Catalog.

## THE BIRTCHER

 CORPORATION INDUETRIAL DIVISION745 South Monterey Pass Road, Monterey Park, California

## TELREX LABORATORIES

Designers and Manufacłurers of


## Sensitive Relays at Sensible Prices



Price Electric Series 1000 Relays Now Feature
Sensitive Operation - Solder or Printed Circuit Terminals Open or Hermetically Sealed Styles - Low Cost
These versatile sensitive relays are designed for applications where available coil power is limited. They retain all the basic features, such as: small size, light weight and low cost, that make the Series 1000 General-Purpose Relays pace setters in their field.

Typical Applications
Remote TV tuning, control circuits for commercial appliances (including plate-circuit applications), auto headlight dimming, etc.

## General Characteristics

Standard Operating Current:
1 to 7 milliamps DC at 20 milliwatt sensitivity
Maximum Coil Resistance: 16,000 ohms
Sensitivity:
20 milliwatts at standard contact rating; 75 milliwatts at maximum contact rating. Maximum coil power dissipation 1.5 watts.
Contact Combination: SPDT
Contact Ratings:
Standard 1 amp; optional ratings, with special construction, to 3 amps. Ratings apply to resistive loads to 26.5 VDC or 115 VAC. Mechanical Life Expectancy:

30,000,000 operations minimum.
Dielectric Strength: 500 VRMS minimum.

For Additional Information, contact:
PRICE EORPORATION
302 Church Street - Frederick, Maryland MOnument 3-5141 • TWX: Fred 565-U Circle 116 on reader-service card

## NEW PRODUCTS

Remote Switch


Has 8pdt contacts. Remotely operated selector switch has contacts rated at 5 amp . Actuating voltage is 115 v ac; continuous actuating power is not required in any switch position. Life is 40,000 actuations, switching time 100 msec .

Bay-Roy Electronics, Inc., Dept. ED, P. O. Box 7503, Cleveland 30, Ohio.

## Dual-Trace Preamplifier



For Memo-Scope. Preamplifier model $05-2$ is made for use with model 105 oscilloscope. It uses a blanked writing beam during switching time when operated in the chopped mode. Chopped displays are provided simultaneously, alternately or singly. Pass band is dc to 10 mc , chopping rate 270 kc .
Hughes Aircraft Co., Industrial Systems Div., Dept. ED, P. O. Box 90904, Airport Station, Los Angeles 45, Calif.

## Transponder



For fight testing. Transponder unit consists of a receiver, transmitter and transistorized power supply. It receives on 37 mc and transmits on 74 mc . Input voltage is 5.5 to 10 v ; output is $175 \pm 2.5 \mathrm{v}$. Ripple does not exceed $0.5 \%$ of output.

Frequency Standards, Dept. ED, P. O. Box 504, Asbury Park, N. J.
P\&A: $\$ 400$ to $\$ 900 ; 60$ days.

505

## DID YOU KNOW OWEN

SEMICONDUCTOR TEST SETS CAN SAVE YOU DESICN TIME AND IMPROVE QUALITY CONTROL?

FOR SMALL
TRANSISTORS
Designed to measure basic characteristics of all types of small transis tors to 7 ma and 75 volts. Write for product bulletin 210A.
$\$ 550.00$

## BEFORE M FOR SMALL AND

 BEFORE MEDIUM TRANSIITTRSS Designed to measure basic characteristics of all types of small and medium transis. tors, diodes. and zeners to 1 600 volts. Write for product bul. Yor product bulletin 310 . FOR MEDIUM
AND LARGE
 TRANSISTORS YOU USE IT

Designed to Designed to
measure basic characteristics of all types o medium and large transis tors to 30 am peres and 300 volts. Write for product bulletio
300 300.
$\$ 760.00$
TEST IT!
SWITCHING
DEVICES

Designed to measure basic
characteristics of all types of SCR's, UJT's switching de. switching defiers to 100 amperes and 600 volts. Write for product bul letin 320. $\qquad$
WORTH WRITING FOR:
TWO PAPERS DISCUSSING QUALITV CONTROL IMPROVEMENT AND SAVING DESIGN TIME


OWEN LABORATORIES, Mc
55 beacon place
PASADENA CALIFORNIA
CIRCLE 117 ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 24, 1961

## ... for efficlent transmission of

 infrared and microwaves desplte heat and shockKodak has developed a new class of "optical" materials for missiles, radio. meters. space vehicles, laboratory instruments. and other infrared and microwave applications. They keep much of their high transmittance when hot, $600^{\circ} \mathrm{C}$ and beyond. Thermal shock, humidity. abrasion, weathering. organic solvents, $0.5 \mathrm{NHNO} \mathrm{H}_{1}$. IN $\mathrm{H}_{3} \mathrm{SO}$. $0.5 \mathrm{NKOH} .0 .5 \mathrm{~N} \mathrm{NH} . \mathrm{OH}$ do not injure them. The curves look like this:


Irtran-1 material seems to provide the best present answer to the "dual-mode" problem Infrared and microwave guidance can look through the same window. At 9.4 kmc its dielectric constant is around 5 and its loss tangent $10^{-\bullet}$. One untuned sample $.012^{\prime \prime}$ thick we tested in the X -band intro. auced an attenuation of less than 0.3 db . with a maximum standing wave ratio of 1.5. In the infrared at $1 \mu$ its refractive index is only 1.38. No need for ant-reflection coatings, you see.
Intran 2 material, in contrast, has the relatively high infrareo refractive index ol 2.2.
Both of these materials we form and polish into lenses, domes. prisms, and flats. We also use them as substrates for infrared band pass filters. Currently our limiting diameter is $61 / 2^{*}$ : the thickness limit for Irtran 1 materials is $3^{\prime \prime}$ and for Intran-2. 1"
Of course, our connection with infrared echnology doesn't end with Irtran optics. We also make Kodak Ektron Detectors and build complete infrared systems. Details on all these subjects from-

## EASTMAN KODAK COMPANY

Apparatus and Optical Division
Rochester 4,
N.Y.

Kodalk
circie 118 on reader-service card


Offer high torque. Model L is a $117-\mathrm{v}$ shadedpole induction motor rated at 6.5 oz -in. starting torque, $0.025 \mathrm{hp}, 3,250 \mathrm{rpm}$. Weight is 4 lb . Model H has starting torque of $1.0 \mathrm{oz-in} ., 0.003 \mathrm{hp}, 2,500$ rpm. Both motors operate on 117 v .
The Alliance Manufacturing Co., Dept. MJ. Dept. ED, Alliance, Ohio

## Single-Axis Accelerometers

508
Are highly accurate. Pendulum single-axis accelerometers, employing fluid damping and a torsion-bar restraint. feature high accuracy, large electrical output, and low null shift with temperature change. Typical use is in low-cost inertial systems where output is integrated to provide velocity and distance information. Types are C70 2408001 and C70 2408000 .

General Precision, Inc., Kearfott Div., Dept. ED, Little Falls, N. J.

Wire Stripper


Handles AWG sizes 6 to 36. Model TS 400 thermo-electric stripper provides switching from high heat for teflon to low heat for nylon, vinyl and other materials. It has an adjustable wire-stop which may be set to any strip length. Power needed is 30 w .

Flite Electronic Wire \& Components, Inc., Dept. ED, 120 S. Hewitt St., Los Angeles 12, Calif.

## Gallium Arsenide

510
In single and polycrystal form. Gallium arsenide is available in wide ranges of restivity and carrier concentration. It can be supplied undoped, or doped with zinc, cadmium, manganese, tellurium, or tin. It is made in single crystals, polycrystalline ingots, and microcrystalline powders.
Alloys Unlimited Chemicals, Inc., Dept. ED, 42-73 Hunter St., Long Island City 1, N. Y.


## how to measure ac ratios to one part per million... at a sensible price

In fact, any of North Atlantic's field engineering representatives can quickly demonstrate how the Models RB-503 and -504 Ratio Boxes will meet all your requirements for high accuracy at lowest cost.
Designed for either bench or rack mounting, both models provide rated accuracy over their full ratio range, with six-digit, in-line window readout for best readability. Both incorporate heavy duty switches with transient suppression. fold-away legs, easily removeable end plates and voltage dividing transformers to MIL-T-27A. Abridged specifications are given below:

|  | RB. 503 | RB.504 |
| :---: | :---: | :---: |
| Ratio Range | 0.000000 to 1.111110 | -0.111110 to +1.111110 |
| Aceuracy of Ratio For All Ratios (at 400 epa) | $\pm\left[0.001+\frac{0.0001}{(R a t i o)}\right] \%$ | $\pm\left[0.0001+\frac{0.000025}{(\text { Ratio })}\right] \%$ |
| Frequency Range (Useful) | 50 to 10,000 cps | 50 to 10,000 cps |
| Nominal Input Impedance (at 400 eps ) | 50K-60K | > 250K |
| Max. Input Voltage | 0.5I, Volts, (f in cps) (not to exceed 350 V .) | 1.0f, Volts, (f in cps) (not to exceed 350 V .) |
| Maz Effective Series Resistance | 3.5 ohms | 8 ohms |
| Resolution | 5 decades plus 1 turn potentiometer | 5 decades plus <br> 1 turn potentiometer |
| Size | $13^{1 / 2}{ }^{\text {" }}$ h. $\times 19^{\prime \prime} \mathrm{w} . \times 8^{-1} \mathrm{~d}$. | $3^{1 / 2} 2^{\prime \prime} \mathrm{h} . \times 19^{\prime \prime} \mathrm{m} . \times 8^{-1} \mathrm{~d}$ |
| Price | \$295.00 | \$450.00 |

Also from North Atlantic: Model RB-510 for high precision at 10 kc and RB-520 for MIL Spec applications.

If you're up against critical jobs of ac ratio measurement - in the laboratory. on the production line, or in the field - it will pay you to talk to the North Atlantic man in your area. For his name, call or write today. Or request Bulletin RB 503.504 for complete data.

NORTIATIANTIC industries, inc. TERMINAL DRIVE, PLAINVIEW, L. I., NEW YORK - OVerbrook 1-8600


## KEEP YOUR FINGER ON THE PULSE with CINTEL 3352

 Pulse Generator 3352 has fast rise, no overshoot or till, unlimited duty cycle, double pulse and high reliability.With external trigger 3352 exceeds 2Mc. Frequency, width, delay and amplitude are all variable and calibrated, $5 \%$. Marconi is proud to offer this exceptional instrument.

Frequency leps to $1.1 \mathrm{Mc} \quad$ Rise time $10 \mathrm{~m} \mu \mathrm{sec}$
Width $90 \mathrm{~m} \mu \mathrm{sec}$ to 105 m sec Output 50V 1000 , 5V 75
Delay $\quad 90 \mathrm{~m} \mu \mathrm{sec}$ to 105 m sec Also pre-pulse and sawtooth sweep Exelusive U.S. Soles \& Service:
 CIRCLE 146 ON READER-SERVICE CARD
 highly reliable ovens have no mechanical contacts. There are no spark producing gaps. Radio interierence is eliminated Although it is difficult to measure tem perature excursions beyond $\pm .01{ }^{\circ} \mathrm{C}$. it is reitably esumated hat Reeves-Hoffman oven provide control in the ord
ure control, contact Reevestofman for addional information.
WRITE FOR EULETIN O-160.
Division or
DYNAMICS CORPORATION OF AMERICA CIRCLE 147 ON READER-SERVICE CARD

## NEW PRODUCTS

Test Vibrator


For vibration fatigue. Model 150 -HLA-T subjects equipment weighing up to 150 lb to horizontal vibration on selected cycles or through the full frequency band of 5 to 100 cps . Acceleration and deceleration are electronically controlled. It has an overload safety factor of $50 \%$.

All American Tool and Manufacturing Co., Dept. ED. 8021-C Lawndale Ave., Skokie, Ill.

## Ferrite RF Switch

Range is $\mathbf{2 2 5}$ to $\mathbf{4 0 0} \mathbf{~ m c}$. Insertion loss is less than 0.2 db , isolation greater than 50 db . Power rating is 12 kw avg and 20 kw peak, switching time is 3 msec. Uses include antenna switching, lobe-shifting and time-division multiplexing.
Cook Electric Co., Dept ED, $2 \overline{7} 00$ Southport Ave., Chicago 14, Ill.

## Servo Repeater

Accuracy is 6 min . Servo repeater C70 9752001 receives analog voltages and provides readout in degrees and minutes. Readout error is $\pm 6 \mathrm{~min}$, with full scale response in 14 sec. Unit can be modified to indicate virtually any information.
General Precision, Inc., Kearfott Dis., Dept. ED, Little Falls, N. J.

Rack Cooler


For integral mounting. Rack air-conditioning unit model AEC;-4003, conforming to RETMA and military standards, provides $1,225 \mathrm{w}$ cooling at 110 F ambient and 80 F return air temperature. Static pressure is 0.50 in . of water. Panel height is $\mathbf{1 0 - 1 / 2}$ in., weight 1.50 lb . The unit runs continuously to avoid voltage fluctuations.
Budd Electronics, Inc., Dept ED, 43-22 Queens St., Long Island City 1, N. Y.

552

555


## CETRON GASEOUS RECTIFIERS

* Better Peak Inverse Voltage!
* Better Peak Current Ratings!

The Cetron 6013/3B and 5892/6B xenon rectifier tubes shown here are full and half wave rectifiers.
Meet Your Requirements with the Full Line of Dependable Cetron Xenon. Mercury Vapor and Vacuum Rectifiers

Peatinverse vatate 601338589268 Pertin $1000-1250$ $\begin{array}{lll} & 6.4\end{array}$ Filament Current $\quad 90 \quad 210$

Celion Rectiliers are capable of meating all requirements of JAN Military specifications Cetron Enyineen are ovailable to owiut in
your tube teovirements.
be ceriain with cetran - for thyaataons, rectifiers. tridos and photo ceils

## CETRON



Plastic Tubing


OD range is 0.75 to 6.625 in . Wall thicknesses are 116 to $1 / 4 \mathrm{in}$. Type 200 transparent butyrate tubing has an impact strength of $2 \mathrm{ft}-\mathrm{lb}$ per in. of notch at 73.4 F. Specific gravity is 1.2 . It can be drilled, sawed, tapped, lathe-turned or cut.

Busada Manufacturing Corp., Dept. ED, 32-21 Downing St., Flushing 54, N. Y'.

## Switch Coils

For magnetic reed switches. Stock coils are made in three types for operating switches in any code group. Types S, M, and T are wound on nylon bobbins, and accommodate single-reed to 4 -reed switches. They are available in a variety of de voltages and coil ratings.
Coto-Coil Co., Dept. ED, 69 Pavilion Ave., Providence, IR. I.
Price: $\$ 2.00$ to $\$ 0.59 \mathrm{ca}$.
Crestive enginooring by NAV. COR has successtully developod
the 100 Series transistorined the 100 Series transistorizod ment and prototype develop. ment, ond the newer 300 Series card modules for constructing complete data handling systems. Delivered complete and attractivaly packaged, these econom. ical systems modules are ready to operate with a minimum of inter-unit wiring.
NAVCOR can engineor and manfocture complete systems to your requiroments. Yoars of oxsomiconductor digital systoms dosign. have produced hundreds of thousands of operating logic stoges.

FREE
Sond for complote dote ond spocificotiont on the 300
systoms blocks.

## Kaunco

MAVIGATION COMPUTER CORP. valley forge industral park NORRISTOWN, PA. Glondale 2-6531

## Epoxy Adhesive

548
Cures in $\mathbf{6 0}$ sec at room temperature. Cure can be accelerated to 4.5 sec with the use of infrared heat. Minit-Cure can be used to bond metal to metal, plastic to metal, plastic to plastic, or any other porous or nonporous surfaces.

Allaco Products, Dept. ED. 238 Main St., Cambridge 42, Mass.
Price: $\$ 6.10$ for 8 -oz trial kit.

Tape Handler


Speeds to 50 in . per sec. Unidirectional model 4544 is able to handle 500 ft of 5 . to 8 -level tape interchangeably. It is designed to be used with the firm's model 3500 tape reader. Dimensions are 10.5 $\times 19 \times 8.25$ in.

557
561

handy guide to

## TRANSISTOR COOLER

selection!

* Forced air-flow models
* NEW natural convection models

Modine now offers transistor coolers in two types. seven models . . . all available from stock. These pre-engineered compact. brazed aluminum units are predrilled for the five slandard transistor con figurations. Choice of two fin ishes: MIL C- 5.541 CHROM. ATE or MIL-A 8625 BLACK ANODIZED. New Bulletin 1D. 159 has comprehensive se. lection data. For your copy write direct

## (自) Modine Manufacturing Company

CIRCLE ISO ON READER-SERVICE CARD

Digitronics Corp., Dept. ED, Albertson, N. Y.


## CRT OF THE MONTH

Newl Large-area, bright display-22" magnetic deflection. eledrosatic TC Type M 1003 tube

Pattern distortion is minimized through rigid production controls that permit holding a nominal $165^{\prime \prime}$ radius of curvature on the large flat face of this new metal shell display tube. Designed for unusually high brightness. the tube produces up to 95 foot-lamberts with excellent light output linearity at 18 KU , while maintaining a high 1500 to 2000 line resolution over the useable screen area.

Similar new ETC display tubes are available in glass up to $16^{\prime \prime}$ in diameter or in glass-to-metal in $12^{\prime \prime}, 16^{\prime \prime}, 19^{\prime \prime}$, and $22^{\prime \prime}$ sizes with either magnetic or electrostatic focus.

## pacing <br> trends <br> IN CATHODE RAY TUBE DESIGN since 1937

Over 100 standard types . . . many specials . . . produced for oscilloscopes and critical display instrumentation. 1 to 10 guns; square, round, or rectangular faces; high resolution; spiral band for radar, fire control, counter-measures, guidance-where quality control counts most. Submit your application details for an engineering review.

## NEW PRODUCTS

## Power Transistors

Dissipate $\mathbf{1 5 0} \mathbf{w}$. Alloy-junction pnp germanium transistors 2 N 174 and 2N1358 operate at 80 v , collector to base, and 60 v , emitter to base. Emitter current is 15 amp , collector junction temperature 100 C max. The 15.3-transistors are enclosed in standard TO-36 packages.

Texas Instruments, Incorporated, Semiconductor-Components Div., Dept. ED, P. O. Box 5012, Dallas 22, Tex.

## High-Voltage Resistors

565
For radar power supplies. Highvoltage resistor is a visual and audible corona-free voltage dropping unit. Modular design makes it possible to stack modules to conform with voltage requirements in a compact assembly. In addition, the spring-loaded assembly eliminates internal resistor wiring and provides positive continuity.
Westinghouse Electric Corp., Dept. ED, P. O. Box 2099, Pittsburgh 30 Pa.

## Asbestos Teflon

550
Useful from - 425 to 500 F. Material has a high thermal expansion coefficient. The asbestos Teflon is inert to most chemicals and it is completely unaffected by solvents, hydraulic fluids, lubricants, or any of the common fuels. It also shows good dielectric properties.

Auburn Manufacturing Co., Dept. ED, Middletown, Conn.

## Multiplier Photofube <br> 564

For low-level signals. Tube operates under extreme environmental conditions. Type WL 7908 has a flat, $1 / 2-\mathrm{in}$. diam photocathode having a S-1l spectral response. It has a voltage divider network potted in the base and can be mounted in any position. Maximum ratings include a peak cathode current of $10 \mu \mathrm{a}$, average anode current of 1 ma , and peak anode dissipation of 2 w

Westinghouse Electronic Tube Div., Dept. ED, P. O Box 284, Elmira, N. Y.


## Single-Crysfal Silicon

With controlled properties. Controlled float zone silicon is offered in crystal diameters ranging from $1 / 8$ to $3 / 4 \mathrm{in}$. Material is free from lineage and gross defects. Dislocations may be had in low ranges of 5,000 per $\mathrm{cm}^{\text {; }}$; close resistivity tolerances are held.

Allegheny Electronic Chemicals Co., Dept. ED, 207 Hooker-Fulton Bldg., Bradford, Pa.

## Printed Circuits



For multi-layer stacking. Made to customer specifications, high component density may be achieved with Intercon circuits because sections of the pattern can be left bare on both sides thus allowing direct welding of conductor ends from one section to another. They are supplied with nickel conductors for welding; gold-plated
and copper conductors are available for soldering.
Amphenol-Borg Electronics Corp., Packaged Electronics Div., Dept. ED, 2863 S. 25th Ave., Broadview, Ill.

## Electric Boiler



Used for steam cleaning. It produces high quality steam. using regular tap water or distilled water. One series is available with aluminized heating surfaces and either stainless steel or brass controls, while another series offers complete stainless steel assemblies, thus eliminating ferrous contamination of components.
Automatic Steam Products Corp., Hot Shot Div., Dept. ED, 142 W. 31st St., New York 1, N. Y. Arailability: Immediately.


LOGIC DIAGRAMS TO PROTOTYPES IN HOURS . . . WITH NEW LOGIC PANELS Epsco's 16 compact new Logic Panels put the entire range of digital circuits at your fingertips, for simple, rapid patchcord connection. Save time and money in logic bread-boarding ... small system construction... programmable rest. control and timing equipment. .. Iogic demonstration and instruction. One ba sic
set of panels can be used again and again. Complete flexibility allows designer to change or update his circuitry at any time. All circuits are labelled with bold logic symbols. Instant access to inputs, outputs, and power connections. Once a system is proved out, identical circuits can be ordered oft the Shelf from Epsco. For full details, contact Epsco. Ask for Bulletin TDC-LP1.

COMPONENTS
A Division of Epsco, Incorporated. 275 Massachuselts Ave. Cambridge 39, Mass.
CIRCLE 155 ON READER-SERVICE CARD

## IDEAS FOR DESIGN

## Vote for the Ideas Most Valuable to You

Vote for the Ideas you feel merit the $\mathbf{\$ 5 0}$ Most Valuable of Issue award. You may vote for one or more by circling the corresponding numbers on the Reader-Service card.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are just plain clever.
The Most Valuable of lssue Ideas will be eligible for the $\$ 1000$ Idea of the Year award.
And after you've voted, why not send in an Idea of your own?

## Antenna Axial Ratio

## Is Read Out Automatically

Pcak-detecting circuits and an ordinary ratio meter can be used to read out the axial ratio of an elliptically polarized antenna automatically.
The output response of the antenna, a measure of its axial ratio, is fed into the circuit at point A. The axial ratio is given by the quotient $E_{1} / E_{2}$.

Diode 1 allows the pe positive voltage $E_{1}$ to be stored in capacitor C1. Amplifier 1, a cathode follower, reproduced the voltage $E 1$ at point $B$.
As the input voltage begins to decrease, diode 2 begins charging capacitor $C 2$. Point $C$ will then charge to the value $\boldsymbol{E}_{2}$.
The voltages at points $B$ and $D$ are applied to the ratio meter $M$. The meter divides two voltages and the quotient is read directly from the dial. Therefore the meter will indicate the ratio


Axial ratio, determined from antenna response characteristics and given by $E_{1} / E_{2}$, is read out automatically on the standard radio meter $M$.
$E_{1} / E_{2}$, which is the desired result. The amplifiers shown are operational amplifiers connected as cathode followers.

George O. Thurman, Project Test Engincer, Hughes Aircraft Co., Tucson. Ariz.

Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.

## Square Wave Generator Has 3.3-10 Mc Range

A relatively simple variable frequency square wave generator, using a Hartley oscillator and Schmitt trigger combination, was designed for a frequency range of 3.3 to 10 mc .

The oscillating frequency is set by a variable capacitor in the tank circuit of the Hartley. The
sine wave then feeds into the Schmitt trigger circuit.
Emitter followers are used to match impedance between stages. The output signal has a peak-topeak amplitude of 10 v .
Nicholas Marchese, Assistant Electrical Engineer, Lockheed Electronics, Metuchen, N.J.
Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.


## How You Can Participate

Rules For Awards
Here's how you can participate in Ideas for Design's Seventh Anniversary Awards: All engineer readers of Electronic DeSIGN are eligible.
Entries must be accompanied by filied-out Official Entry Blank or facsimile. Ideas submitred must be original with the author, and must not have been previously published lpublication in internal company magazines and literature excepted).
Ideas suitable for publication should deal with:

1. new circuits or circuir modifications
2. new design techniques
3. diesigns for new production methods
4. clever use ol new materials or now components in design
5. design or drafting aids
6. new methods of packaging
7. design short cuts
. . cost saving tips

## Awards

1. Each Idea published will receive an honorarium of $\mathbf{\$ 2 0}$.
2. Ideas judged Most Valuable of Issue will receive $\$ 50$.
3. The Idea judged to be Idea of the Year will receive the Grand Prize of $\$ 1,000$ in cash.
The Idea of the Year will be selecteci from amongst those judged to be Most Valuable of lssue.
Most Valuable of lssue and Idea of the Year will be selected by the readers of Elec. tronic Design. Votes will be cast by circling keyed numbers on Reader-Service Cards. Payment will be made aight weeks after Ideas are published.
Exclusive publishing rights for all Ideas will remain with the Hayden Publishing Co.

For Addifional Entry Blanks, circle 750 on Reador-Service Carel.

## IDEAS-FOR-DESIGN

Ideas-for-Design Editor<br>Electronic Design<br>830 Third Ave.<br>New York 22, N. Y.

Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea acroes.)

## (Uw epparete choes iे meccavary)

Here is my Idea for Design for possible publication in Erecrnonic Disign. I understand that it will be cligible for the Seventh Anniversary Awards- $\$ 20$ if published, $\$ 50$ if chosen Most Valuable of Issue, $\$ 1,000$ if chosen Idea of the Year.




$\qquad$

## Aldress

MICRO 8 WITCH

momivwell intermatiomal
solese and dervice oriceo in all prinneipel cillies of the
meid. Manulacturing in United stricia, United King
136

## IDEAS FOR DESIGN

## Scope Measures Propagation

Propagation delay time in asynchronous, high-speed logic stages can be rapidly measured with only an ordinary oscilloscope. The use of a pulse generator or sampling scope is not at all necessary.
Most asynchronous logic circuits, whether they be DTL, RTL, DCTL, etc., are essentially inverters, with the general configuration shown. To measure the propagation delay time in a cascaded series of such stages, a jumper wire is connected from the output of the $n^{1 / h}$ stage to the input of the $l^{\text {st }}$ stage. With $n$ constrained to be an odd number, a wavefront is initiated as soon as the jumper is added. This wavefront is self-sustaining. This is because whell it propagates through the chain a second time, its polarity is opposite to that of the first pass. The wavefront circulates endlessly through the chain at a rate exactly determined by the propagation delays through each stage.
The output of any given stage is a square wave whose period $T$, or frequencl $f$, can be measured with either an oscilloscope or electronic counter. By inspection we see that:

(b)

Propagation delay time in asynchronous logic stages can be measured by connecting output to input and observing recurring square wove on an oscilloscope. (a) Typical DTL stage, (b) cascaded stages shows jumper wire, connecting output to input, and the generated square wave.

ELECTRONIC DESIGN • May 24, 1961
where $f=$ frequency, in cps
$T=$ period, in sec
$n=$ number of cascaded stages $t p d=$ propagation delay/stage, in nsec
Rearranging Eq. 1 we get

$$
|p| \left\lvert\,=\frac{10^{9}}{2 \cdot \int \cdot n}\right.
$$

By. measuring the frequency of the square wave we can now substitute in Eq. 2 and solve for the propagation delay per stage.
There are a number of additional advantages to be sained from using this measuring technique. By making $n$ small, very narrow pulses can be propagated through the circuits and the effects studied. By making $n$ very large, high speed phenomena can be studied with conventional test equipment. Also, when placing logic circuits in ovens to make heat runs, the number of leads entering and leaving the chamber can be held to a minimum.

Warren E. Milroy, Supervisory Electronic Engineer, U. S. Navy Eloctronics Laboratory, San Dicgo, Calif.
Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.

## Grind Your Own <br> "Precision" Capacitor!

Everyone knows you can "adjust" the resistance of a common carbon-composition resistor by filing through the body into the carbon until the precise resistance value is obtained. This is a helpful trick for experimental breadboarding.


Value of ceramic disk capacitors can be trimmed down by grinding the capacitor away with a file or grinding wheel.

However, rather few realize that ceramic-disk capacitors can be ground down in the same way. The capacitors can be easily trimmed with a file or grinding wheel.

Thus, their capacitance can be trimmed down just as the resistance of a resistor can be trimmed up.

Al de la Lastia, Project Engineer, Universal Transistor Products Corp., Westhury, Long Island, N. Y.

Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.


BREAKTHROUGH $=-2-10$

To fill the exacting requirements of airborne operations, Bryant announces a complete family of magnetic storage drums for general and special purpose applications in aircraft, missile, and satellite systems. Incorporating rugged, lightweight, shock-resistant construction, Bryant airborne drums qualify to military specifications by independent laboratory tests. Features include:

- Capacities to one million bits.
- Minimum weight and package size.
- Bit rates to one megacycle.
- Speeds to 18,000 RPM.
- Qualified to MIL-E-5400.

For details, contact your nearest Bryant representative, or call direct.
COMPUTER PRODUCTS
Disc File and Magnetic Drum Memories for Every Storage Application 852 Ladd Road. Walled Lake, Michigan . MArket 4-4571
a division of ex-cell-o corporation

## Hi-Voltage...

 $\mathrm{E}_{0}=$ Constant
sophisticated results
from simple circuit


- regulation and stabilization
- 400 to 25,000 volts
- reduces ripple
- higher reliability
- economy of cost, weight and space


CIRCLE 158 ON READER-SERVICE CARD

## IDEAS FOR DESIGN

## Short-Cut Squares <br> Numbers Rapidly on Sight

 738Here's how any three digit number ending in 25,50 or 75 may be easily and accurately squared on sight. The correct answer can be written directly to the sixth significant figure.
To square any two-digit number ending in 5 , multiply the next lower whole number digit by the next higher whole number digit. Write down the product and, following it, write down 25 . Determine the placement of the decimal point by the usual method.

Examples: To square 7.5, multiply 7 times 8 and write down 5625 . The answer is 56.25 . To square 950, multiply $\theta$ times 10 and write down 9025. The answer is 902,500.
To square any three digit number ending in 25 or 75 , multiply the next lower half-pumber digits by the next higher half-number digits. Write down the product and, following it, write down 625.

Examples: To muaye 2.75, multiply 25 times 3 and write down 75625 . The answer is 7.5625 .

To squaze 0.825 , multiply 8 times 85 and write down 680625. The answer is 0.680625 ,
This process can be extended to straight multiplication of similar numbers having different magnitudes.

Examples: To find the product of 125 and 0.125 , multiply 1 times 15 and write down 1562.5. The answer is 15.625 .

To find the product of 8.5 and 850 , multiply 8 times 9 and write down 7225. The answer is 72,250 .

Leo A. Skoubo, Avionics E. E., AiResearch Manufacturing Co., Los Angeles, Calif.
Vote this Idea the Most Valuable of lasue by circling its Reader-Service number.

## Bistable Switch Gotes 747 Clock Pulses to Counting Circuitry

In many digital counting and control applications it is necessary to measure the elapsed time between controlling pulses. This can be done by counting the number of recurring clock pulses in the time interval. A simple circuit which can start and stop the counting interval is shown in
the Savoie LA-BO ELECTRONIC COUNTER HAS Greatest overrall STABLLITY
LA-80 is shown
with LA-901B
time interval
time interval
plug-in unit


## TRUE DECADE SYSTEM ELIMINATES BIMARY CONVERSION

The versatile LA-80 features the only direet-coupled in.line readout available in 10 megacycle counters. Beam switmanium diodes, keeping mainte nance and down time to an absolute minimum.
Time base stability of $\pm$ one part in $10^{8}$ per day, count down time base for additional olug-in heads give the LA-80 broad capsbilities for sophisticated applications.
Frequency Range:
10 cyclos to 10 megacycles
10 cyclos to 10 mogacyclos Ging-in mints for oxt
1 mierasecond to 10 million secomets $1 \pm 300$ velt trise rer rase merter outurt on each chanaeli

NINE STANDARD FREQCENCY
OUTPUTS IN DECADE RMMES
FOR OSCILLOSCOPE CALIBRATLOA AND PRECISION TIMINE

- Antomatic Reset
- Silicen Rectifiers
- Automatic Decimal Point
- Digital Voltmeter Converter
- Militarized Censtructien

> UNPARALLELED RELIABILITY MINIMUM MAINIENANCE for SUpERB PERFORMANCE IN LABORATORY, PRODUCTION militart dipotio and

> Lerers Solemateriss Ine. morganville. new jersey

## Casting Engineers

Gave us the right component weight with greater strength.... and helped us into a new market... says William C. Croft

## President.

The Pyle-Naflonal Company
"Before we offered our miniature connectors to the aircraft/missile industry, we searched for a lightweight alloy, easily castable, which would withstand high ambient temperatures. Casting Engineers lirnished a stainless steel casting for our products which allowed us to compete very favorably with aluminum in weight. with tremendous in. crease in strength and corrosion and corrosion resistance--a
metallurgical metallurgical
breakthrough breakthrough.


## MINICAST Proved

Feasibility of Thin Walls, Close Tolerances

Section thickness is critical in airborne connectors where weight is a liability and strength is essential. Plastic patterns, pioneered at Casting Engineers, assured uniformity in detailed configurations, met all MIL interchangeability specifications for toleran
tricity.
Casting Fingineers can make a significant contribution to your com ponent design and production. MIN ICAST parts slash machining costs,
eliminate secondary operations.
MINICAS'T means precision, de pendability .... and economy

Send for this new brochure loday See us at Booth 460 Deslon Engincerlng Show Dotroif... May 22-25.


Castirng Engineers
planta in Cricago and Now York city
2328 N, Boadere inaulries to
BUckingham 1-5940
CIRCLE 160 ON READER-SERVICE CARD ELECTRONIC DESIGN • May


Pulses applied to base of Transwitch control counting interval by gating clock pulses to counter.
the figure. It uses a bistable, semiconductor switch, such as Transitron's Transwitch.

In effect, the circuit AND-gates the clock pulses to the counting circuitry. Its operation is based on the fact that once turned on, the Transwitch will remain on until pulsed off. The unit can be switched in less than $1 \mu \mathrm{sec}$.

A positive pulse, applied to the base of the histable switch, turns it on. The collector-toemitter voltage $V_{C E}$ drops to about 1 v , with the voltage difference $V_{R 3}$, between $E_{c c}$ and $V_{\text {CEOn }}$, appearing across the emitter resistor $R 3$. Since $V_{R a}$ is greater than $E_{p}$ the diode $D 1$ is reverse biased, effectively opening the circuit between R3 and the junction of R1 and R2. The output voltage across $R 2$, in this state, is the clock pulse voltage. Its maximum amplitude is $E_{\rho} R 2 /(R 1+R 2)$, and for $R 1=R 2, E_{\text {eut }}=E_{p} / 2$.

Thus, the clock pulses will appear at the output as long as the bistable switch is on.

If a negative pulse is applied to the base of the bistable switch, the device turns off. $V_{C E}$ rises to $E_{\text {cr }}$ and VR3 goes to zero. In this state the diode $D 1$ provides a high conduction path to $R 3$ and since $R 2 \rtimes R 3$, the output voltage is closely approximated by $E_{\text {out }}=E_{\rho} R 3 /(R 3+R 1)$.
R. Goldstein, Project Engineer, Keartott Dic., General Precision, Inc., Little Falls. N.J.

Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.

## Block Diagram in Error

An error inadvertently crept into the block diagram of J. A. Webb's Idea for Design. "Servo Loop Frequency Modulates Oscillator Outside Deviation Range," (No. 746), which appeared in our April 26 issue, $p 161$.

The output from the block labeled "AC Loop Compensation" actually goes to the "Phase Modulator." instead of to the "Frequency Modulator" block as shown.
dynamic new concept of vibration testing produces

## 

# NEW PRIME ACGELEROMETER CALIBRATOR 

Here's further proof of the adrantages of ITT's dramatic new approach in air-suspended, lateral motion accelerometer calibrators: the ST-200 vibration exciter. Developed at the request of a major Government facility for their mime standard, the ST-200 will provide double the uccurucy of other known standards.
The unique concepts of air-suspension and lateral motion that provide the performance features of the new ST-200 are also an integral part of other ITT vibration exciters for secondary and routine accelerometer calibration. These same techniques are easily adapted to other special vibration and shock testing requirements.
For complete information, applications data and performance curves, contact your ITT representative or write for Data File ED-1469-2.

Other ITT vibration exciters for accelerometer calibration may be integrated into your present system design or can be ordered as part of complete, self-contained ITT testing systems.


ST-110 for secondary standards
ST-115 for routine calibration

> IIU
> Industrial Products Division nternational Telephone and Telegiaph Corporation 15191 Bledsoe Street - San Fernando, Calif - EMpire 7.6161


## the strong case for Centricores

When you're considering magnatic cores It pays to get down to cases. The sturdy aluminum case for Contricores assumes special importance whore impact, vibration, heat or mechanical pressure could cause trouble In a control loop you're designing, or whore you want to miniaturize an inductive component.
The case is ruggodiy rigid, so that you can apply your circuit windings without danger of distorting the core's magnetic properties. And the case is absolutely leakproof. You can vacuum-impregnate Centricores without danger of their damping oil leaking out or foreign matter leaking in. The tightly sealed case also guards against leakage in applications where high ambient temperatures are present, or where Centricores are used in rotating equipment.

Here's a tip on minlaturization. The rugged design of the Centricore case permits use of a thinne gage aluminum that shaves fractions of an inch off their size-fractions that can add up to precious inches where you want to scale down component dimensions. Centricores are the slimmest magnetic cores on the market.
Contricores are the most uniform. They give the exact performance you want, from core to core and lot to lot. Their remarkable consistency in insulation, dimensions, squareness, thermal stability and gain is the product of unique quality controls that begin with the very selection of raw materials and extend through final testing.
Write for complete data. Centricores are available from stock from our East and West Coast plants in all standard sizes and magnetic qualities, and in both aluminum and phenolic cases. We will match them within 5 per cent over the entire voltage-current loop, in sets, units or in multiples up to twelve. Write for detailed specifications today.

GERMAN ABSTRACTS
E. Brenner

## Locus Plotter

Network Displays Transfer Function

TTHE COMPLEX impedance or transfer function of networks can be expressed as the (complex) quotient of two voltages, $V_{2} / V_{1}$. A basic scheme for performing this operation with phase sensitive detectors is shown in Fig. 1. However, the use of an intermediate frequency makes it possible to design a large part of the apparatus for a comparatively narrow band. In Fig. 2 the coupled generators G1 and G2 produce frequencies $f$ and $f_{n}$ respectively. The difference, $f-f_{n}$, remains constant. The voltage $V_{1}$ and $V_{2}$ originating in the circuit under test are frequency-translated in the modulators M1 and M2 to the constant if. The voltage $V_{2}$ is fed directly to the phase sensitive detectors $D 1$ and $D 2$, while $V_{1}$ is applied directly to D1 but is shifted in phase by 90 deg before being fed to $D 2$. The detected voltage $V_{d 1}$ and $V_{d 2}$ are fed to the deflection plates of an oscilloscope.
To determine the maximum speed with which frequency can be varied, allowance must be made for transient build-up. Changes must be sufficiently slow so that the steady state is approximated. Reasonable estimates can be made by considering tuned circuit measurements.
Assuming a frequency swing $F$ in a time $T$ the applied frequency is within the band $B$ (cycles) for $T B / F \mathrm{sec}$. The build-up time of the circuit is estimated at $2 / \pi B$ sec. If the ratio of the build-up time to the time the source is within the band is to be (not more than) 0.1, the band is related to $F$ and $T$ by:

$$
B=2.5(\boldsymbol{F} / \boldsymbol{T})^{1.2}
$$

Assuming a voltage current relationship of the form:

$$
V \cos \left(\omega_{\nu} t\right)=I \cos (\omega, t+\phi)
$$

where:

$$
\omega_{v}=\omega_{\mathbf{t}}+d \nabla / d t
$$

it can be shown that in tracing out the locus a maximum frequency change, $b$, occurs where:

$$
2 b=0.25(F / T)^{1 / 2}
$$

Tolerating a phase error $\phi_{1}$ the $3-\mathrm{db}$ band ( $2 b_{1}$ ) of the if is required to be:

$$
2 b_{i}=2 b / \tan \phi_{1}
$$

Correspondingly, if an error $\phi_{2}$ is allowed, the low frequency portion has the required band $b / \tan \varphi_{2}$.


Fig. 1. Block diagram of locus plotter using phasesensitive detectors.


Fig. 2. Block diagram of locus plotter using frequency heterodyning.

By way of example, using $F / T=300 \mathrm{mc} / \mathrm{sec}$, $B=43 \mathrm{kc}$, and $2 b=4.3 \mathrm{kc}$, the required if bandwidth, allowing 5-deg error, is 50 kc; allowing a 20 -deg error in the low frequency portion, its band is 6 kc .

The original paper includes a complete description of all circuitry as well as numerous photographs of loci. The over-all accuracy is esti mated at 20 per cent in the band 0.5 to 200 mc and 10 per cent in the band 1 to 100 mc .

Abseructed from an article by P. Thilo, Fre quen\% Vol. 14, No. 12. Dec. 1966). pp 40.3-412.

## Tables Compare

German and Japanese

## Exports

COMPARISON of West German and Japanese international trade in electrical equipment reveals several interesting facets. Both countries started at virtually the same (zero) level at the end of World War II. Statistics on their industrial recovery have been compiled by K. Schröder, a West German Industrial consultant.
At present, the German Federal Republic is the second largest exporter of electrical equipment (in first place: the U.S.). Two thirds of

## How Raytheon can offer you <br>  10 times better Semiconductor Reliability Assurance <br> By: Rialility Pratt

 Semiconluchr DivisionRaythern Company

Most of the commonly used quality control procedures fo semiconductors follow MIL Std 105 and normally result in a wide spread of customer risk, directly dependent on the quantities purchased. (See curves X. Y, and Z below (or risk points.) Now, Raytheon offers reliability protection (under MIL-S. 19500B. Method B - defining the I.ambda [ $\lambda$ ] concept). which specifically limits customer risk. This $[\lambda]$ concept). Which specifically limits customer risk. This means that for the first time, you. the customer. can speci-
fy reliability assurance at a fixed confidence level, to a iy reliability assurance at a fixed confiden
fixed low value, in terms of a lambda number.

To explain further, reliability assurance is generated by the manufacturer's life test procedures. These life test procedures, or plans, are best described by operating characteristic curves (see below), which describe the ability of each particular plan to discriminate between good and unacceptable product.


## Who Takes The Risk?

Under most current procedures, the A.Q.L. (Acceptable Quality Level) and Lot Size determine the operating characteristic curves. Typical of such curves are $\mathbf{X}$. $\mathbf{Y}$, and $\mathbf{Z}$. Note how the customer risk point shifts.
In contrast, curves A and B are typical of the new plan now in operation at Raytheon. Note that not only is the customer risk point fixed, but fixed at industry's lowes! specified failure rate.

The first transistor types offered by Raytheon incorporat ing this new method are the Raytheon 2N404 and Raytheon 2 N428 germanium PNP switching transistors. These products, now available in quantity, carry a reliability as surance of lambda $(\lambda)=2 \% / 1000$ hours: equivalent to 0.02 failures/1000 hours.

## Here's The Difference

The essential difference is that a reliability specification, under the older system, carried implied customer risk fail. ure rates varying from 15 to $25 \% / 1000$ hours, depending on lot size. The lambda $(\lambda)=2 \% / 1000$ hours quality assurance (customer risk failure rate), now offered by Raytheon, averages a 10 fold reduction in failure rate. Stated positively, you can be 10 times more sure of getting good product. A truly important advance in product quality.
Ask your local Raytheon sales engineer about this program.

A new nomograph, relating lambda ( $\lambda$ ) to sample size and accept number, as well as process average requirement. is now available. For this, along with the paper "A.Q.L - What Is It?", by J. M. Gilbey, write or call your local Raytheon Semiconductor Sales Office.

## RAYTHEON COMPANY

SEMICONDUCTOR DIVISION
RAYTHEON

SILICON AND GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS • CIRCUIT-PAKS





CIRCLE 163 ON READER-SERVICE CARD

## General Electric "slug" leads

## put a punch in your glass diode products

General Electric designs these lead wires for your semi-conductor soft or hard glass diodes. For soft glass applications the slug is made from time-proven G-E Dumet, so you can count on quality glass-to-metal sealability.

You can order slugs in any length and diameter. The lead wire is attached to the slug by a small, strong weld knot (it passes the industry's current, exacting tests) and can be made from borated or unborated Dumet, nickel, copper or copper-clad iron, to name a few materials. General Electric also provides these materials with such platings as tin, gold, silver, platinum.

If your applications involve hard glass, try the

G-E welded lead package with a Kovar or molybdenum slug. You can get the same lead wire variations that are available in G-E Dumet slug leads.

General Electric offers a complete line of lamp, electronic and semi-conductor welded lead wires. To get full details on slug leads and other welded assemblies-or quotes on your requirements - write General Electric Company, Lamp Metals and Components Dept. ED-51, 21800 Tungsten Rd., Cleveland 17, Ohio.

## Progress /s Our Most Important Product GENERAL (76) ELECTRIC

## GERMAN ABSTRACTS

German exports go to other European countries (See Table I).

Almost one third of Japan's electrical equipment exports are sent to the U.S., Table II. In 1958, of 3.78 million radio receivers exported by Japan, 2.5 million went to the U.S. at an average per unit price of $\$ 7.01$. Of 4.74 million transistors exported in 1959, 2.39 million were imported by the United States at an average per unit price of \$0.70. It is Mr. Schröder's opinion that "pricedumping" is no longer Japanese trade policy.

Import-export trade of electrical equipment between West Germany and Japan has reached significant proportions only in the last few years. In 1959 German electrical equipment exports to

Table 1.
Most important customers of the German Federal Republic listed by percentage of electrical equipment exports.

| Counity | $\begin{gathered} 1956 \\ \% \end{gathered}$ | $\begin{gathered} 1957 \\ \% \end{gathered}$ | $\begin{gathered} 1958 \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Netherlands | 12.3 | 10.3 | 9.1 |
| Sweden | 7.8 | 8.2 | 9.6 |
| Belgium-Lux. | 6.6 | 6.7 | 5.9 |
| Italy | 6.6 | 6.4 | 5.8 |
| Switzerland | 5.8 | 5.9 | 5.9 |
| Austria | 4.7 | 5.1 | 5.4 |
| U.S. | 3.9 | 5.1 | 4.1 |
| India | 2.5 | 3.1 | 4.4 |
| Great Britain | 2.4 | 2.8 | 3.4 |
| Venezuela | 2.0 | 1.7 | 1.8 |
| European Countries | 66.1 | 64.5 | 65.3 |

Table 2.
Most important customers of Japan by percentage of electrical equipment exports.

| Couniry | $\begin{gathered} 1956 \\ \% \end{gathered}$ | $\begin{gathered} 1957 \\ \% \end{gathered}$ | $\begin{gathered} 1958 \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| U.S. | 26.9 | 32.4 | 29.6 |
| Formosa | 9.5 | 10.0 | 7.4 |
| India | 6.6 | 4.0 | 5.8 |
| Thailand | 3.7 | 3.5 | 4.4 |
| Ryukyus Islands | 3.4 | 3.1 | 2.6 |
| Hong Kong | 3.5 | 2.4 | 2.7 |
| Burma | 1.4 | 5.0 | 5.7 |
| Korea | 1.9 | 3.0 | 2.7 |
| China | 3.5 | 1.6 | 0.4 |
| Philippines | 2.3 | 2.8 | 2.3 |
| European Countries | 5.3 | 4.7 | 7.3 |

Table 3.
Volues of electrical equipment exports and im. ports compared on a yearly basis.

| Year | Japan <br> Exports Imports millions DM |  | Germany <br> Exports Imports millions DM |  |
| :---: | :---: | :---: | :---: | :---: |
| 1951 | 83.2 | 17.3 | 732.0 | 61.2 |
| 1953 | 79.3 | 58.5 | 1272.6 | 103.2 |
| 1955 | 154.3 | 76.4 | 2136.4 | 211.4 |
| 1956 | 263.7 | 100.3 | 2606.4 | 248.9 |
| 1957 | 378.9 | 95.4 | 3115.2 | 303.8 |
| 1958 | 478.6 | 135.5 | 3317.4 | 525.5 |

Table 4.
Most important electrical equipment products exported are listed as percentages of total electrical production.

| Product | Japan |  |  | Germany |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1956 \\ \% \end{gathered}$ | $\begin{gathered} 1957 \\ \% \end{gathered}$ | $\begin{gathered} 1958 \\ \% \end{gathered}$ | $\left\lvert\, \begin{gathered} 1956 \\ \% \end{gathered}\right.$ | $\begin{gathered} 1957 \\ \% \end{gathered}$ | $\begin{gathered} 1958 \\ \% \end{gathered}$ |
| Cable and Wire | 15.3 | 19.4 | 6.1 | 10.9 | 8.0 | 5.6 |
| Light Bulbs | 10.2 | 11.3 | 9.4 | 1.3 | 1.2 | 1.2 |
| Electrical Machinery | 9.2 | 9.1 | 7.6 | 15.2 | 17.3 | 17.0 |
| Radio and TV | 7.7 | 12.5 | 309 | 10.3 | 12.1 | 12.6 |
| Telephone Equipment | 6.3 | 7.0 | 6.7 | 6.1 | 5.6 | 5.2 |
| Household and Trade | 6.4 | 5.6 | 5.7 | 10.8 | 11.0 | 10.6 |
| Measuring Instruments and Test Equipment | 2.3 | 1.6 | 1.5 | 3.9 | 4.0 | 4.9 |

Japan amounted to 12.6 million Deutsche Marks while Japanese exports to Cermany were valued at 6.3 million 1). M.
V'alue of export-import trade of Cermany and Japan are shown for the last several years in Table III.
Table IV presents the percentage of production exported, by product type. It is worthwhile noting that the fraction of total production exported by the Federal Republic in each category remained substantially constant over the years. However, the corresponding figures for Japan show greater variation, especially in the case of radio and TV equipment.
Abstracted from an article by Kurt Schröder (Zentralverband der Elektrotechnischen Industrie e.V., Frankfurt a.M.) Electrotechnische Zeitschrift (ETZ), Edition B, Vol. 12, No. 24, Jan. 28, 1960, 1p 591-593.

## GUARD AGAINST SIGNAL DROPOUTS WITH RELIABLE TAPES OF MYLAR



Signal dropouts can make the data from critical tests completely useless. That's why the reliability of your magnetic tape base is so important. Tapes of Mylar*, because they're dimensionally stable, resist cupping which may cause signal dropouts from loss of contact with the recording or playback heads. They also resist swelling and shrinking which can cause track displacement.

Tapes of "Mylar" also resist stretching and breaking from sudden stops and starts, edge nicks, and are unaffected by humid storage and aging. They have 7 times the initial tear strength of ordinary plastic tapes!

The tremendous cost of gathering data demands reliability. Get it with tapes of "Mylar". Send coupon for free booklet of comparative test data and judge for yourself. Du Pont Company, Film Department, Wilmington 98, Del.
*Du Pont's registered trademark for its polyester film.
${ }^{\text {OUfont }} \boldsymbol{Y} \boldsymbol{L} \boldsymbol{A R} R^{\circ}$

$$
\begin{aligned}
& \text { E. I. du Pont de Nemours \& Co. (Inc.) } \\
& \text { Film Department, Room \#13, Wilmington 98, Delaware }
\end{aligned}
$$

Please send free, 12-page booklet of comparative test data to help me evaluate mag-netic-tape reliability.
Name_Position.
| Company
Address
City__Z_Zone_State
CIRCLE 165 ON READER-SERVICE CARD


ELECTRONIC DESIGN • May 24, 1961
looking for a special potentiometer?

...reach for

EDC
Your copy of EDC lists 157 different types of potentiometers in its PRODUCT LOCATOR. 27 categories from "AC" to "Wirewound" are included. Each ub-listing such as "Clutch,"," "Linear Motion," "Microminiature," "Preci ion," or "Self-trimming" gives manufacturers' name and thumb nail specs to aid in rapid selection. 52 items are further described by special literature bound in sections 2 or 3 of EDC.
This is only one example of the more than 7,000 products from 2,212 companies which are displayed.
Handy Inquiry Cards or Application Data Forms are bound in to make it easier for you to obtain ad ditional data - and manufacturers reps are also listed if you wish t phone for quick price and delivery information.
Electronic Designers' Catalog is one more service provided by the publishers of Electronic Design.


ELECTRONIC DESIGN DIGEST
of recent papers and literature

# Why Do Relay 

Contacts Fail?

POOR relay performance is often traced to the lack of understanding concerning the specific application involved and the operating conditions. Furthermore, two basic errors in relay specifications are usually encountered: 1) one level of quality is specified for all relays in u system even though some are subjected to more severe conditions than others and 2) high performance in all requirements for a relay is demanded where greater gain in reliability could be achieved by relaxing one requirement and tightening another.

Among the variables which affect relay operation are spring tension, gap width between contacts, magnetic strength, contact shape and characteristics of the contact metal. Field test data and lab examinations indicate that 75 per cent of relay failures can be traced directly to contact failure. To minimize faulty operation, careful attention must be given to the following factors:

- Contamination-often introduced into a relay during assembly. Other forms of contamination include frictional polymer, during contact closure, due to platinum rubbing against another metal in the presence of some organic vapor, static polymer as a reaction product of organic vapors, transfer of base metal from the relay structure to the contacts and, finally, adhesion film resulting from physically absorbed oxygen molecules when a clean contact is exposed to air. Sufficient contact pressure must be present to penetrate the deposit for reliable operation.
- Constriction-when a round surface mates with a flat surface, the load-bearing area is small
and the current density at the point of contact may be very large. The high resistive ( $I^{2} R$ ) loss can generate sufficient heat to melt the metal. As with contamination, increased contact pressure is nceded to combat constriction; however, mechanical wear and permissible size of the magnet structure and available electrical power limit contact pressure.
- Melting-the $I^{2} R$ heat generated during relay operation may be sufficiently high to melt the metal at the point of contact. When the metal cools quickly, the contacts may be welded together or stick, sometimes permanently and other times momentarily. A deep pit may be left on the hot contact (anode) while a bridge is built up on the cooler contact (cathode)
- Arcing-as contact pressure is reduced and the relay contacts separate, the area of current conduction is rapidly lowered; current density increases. raising the temperature of the metal and the voltage drop across the contacts. When the conduction area is small enough, the current first melts and then vaporizes the contact material. Physical contact is lost between contact surfaces but conduction continues by virtue of an ionized metal vapor or arc. The arc may cause loss of anode material, loss of cathode material or transfer of material from cathode to anode.
- Mechanical wear-after a given number of cycles, a set of contacts experiences sufficient wear to require relay replacement. Excessive contact pressure to reduce constriction and contamination effects are often causes of short contact life. For optimum electrical and thermal conductivity: soft contact materials are desirable; however, long life could not be expected. The wear problem is of particular concern in subminiature and microminiature relays where changes in contact dimensions, due to wear, are large compared to the gap.


## Specifying Parameter <br> To Reduce Contact Failure

The relay user should specify a quantitative requirements list (not loaded with safety factors) of the following parameters:

1. Load current and circuit impedances.
2. Open circuit voltage.
3. Coil current.
4. Number of operations per unit time.
5. Number of total operations.
6. Response time.
7. Ambient temperature.
8. Military specifications, if involved.
9. Atmospheric pressure and composition.
10. Shock, vibration and acceleration factors. 11. Permissible size, shape, weight and cost. Digested from "Why Do Relay Contacts Fail," by Leon D. Carr, Sperry Engineering Review, Vol. 13, No. 4, Dec. 1960, pp 36-40.

TME RAW MATERIALS OF PROGRESS

## KEL-F ${ }^{\text {s }}$ Plastic coats wires to defeat heat, shock, in airborne electronic gear



The Surprenant Mfg. Co., Clinton, Mass., has relied on KEL-F Brand Plastic for over 10 years to provide outstanding wire insulation that conquers difficult environments. Melpar, Inc.-a Falls Church, Va., manufacturer of the airborne electronic equipment shown - specifies Surprenant wires coated with KEL.F Plastic because this plastic resists extreme shock and vibration, withstands heat as high as $275^{\circ} \mathrm{F}$.

KEL-F Plastic has excellent compressive strength and resistance to cold flow, diminishing the effects of "cut-through." In addition, coatings are easily achieved because KEL-F Plastic is melt-processible and extrudes with excellent concentricity. And Surprenant provides these wire coatings clear, white, and in 8 colors to simplify identification coding.

Look to the right for additional problem-busting properties of KEL-F Plastic that are helping electronics manufacturers overcome extreme environ-


PROPERTIES PROFILE

## REL-F PLASTIC BRAND

Excellent dielectric strength ! Wire insulation of KEL-F Plastic affords dielectric strength of 37 KV , arc resistance greater than 360 seconds, plus these characteristics at $23^{\circ} \mathrm{C}$.

| Froquency <br> (eycles) | Dieloctric <br> eonstant | Dissipation <br> Sactor |
| :---: | :---: | :---: |
| 100 | 2.63 | .0206 |
| 1,000 | 2.59 | - |
| 10,000 | 2.56 | - |
| 100,000 | 2.38 | .0164 |

Zero moisture absorption! Impermeability to moisture minimizes surface flashoverpermits use under high-humidity conditions.

350-degree stability! Temperature range of $-75^{\circ}$ to $275^{\circ} \mathrm{F}$. for this nonflammable material.

Resists shock and wear! This dense, tough plastic retains flexibility and tensile strength -resists extreme vibration, acceleration, cut-through and cold flow, even at $-69.5^{\circ} \mathrm{F}$. Smooth surface is not easily abraded mechanically, or by abrasives in slurries or in the atmosphere.

Resists chemicals! Unaffected by corrosive chemicals-resists organic solvents, strong caustics, oxidants, concentrated acids, even fuming nitric.

Other electronic applications! Other typical applications for this easily molded and machined plastic include slip ring assemblies, coil forms, connector covers, printed circuits, radome covers, molded antennas.

How can KEL-F Plastic help you? Just ask the nearby 3M Chemical Representative. He will provide complete information and technical assistance on KEL-F Plastic products, other 3M specialty chemicals. Or write 3M Chemical Division, Dept. KAP-51, St. Paul 6, Minn.

CHEMICAL DIVISION Minnesota Mining ano Manufacturing company .. Where research is the key to tomorrow


NEWS! API NOW HAS A CONTINUOUS READING METERRELAY. No signal-sampling interrupters necessary. The CRMR indicates continuously, controls continuously, resets automatically. Built around an unrestrained D'Arsonval movement, it will monitor and control any variable translatable to analogous voltage or current values. Sensitive enough to operate on inputs as small as 5 millivolts or 10 microamps full scale, it will accept low-level signals without amplification. Compact as a panel meter, it needs only a power supply and load relay (both of which API can furnish) to make a complete little control system. Or, you can build it into an equipment control network. Bulletin S-2.1 will give you details on operation, along with specifications and price information. A copy is yours for the asking.

## FOM ASSEMBLY PRODUCTS, INC. ChESTERLAND 17, OHIO



## LETTERS

Misled by Soviet Statistics?

Dear Sir:
"The Soviet Engineer," in your Feb. 1 issue, is most interesting. Author Amatneek is to be commended for the interesting report about his threeweek observations in Riga, Latvia. As a Lithuanian and somewhat of a student of Soviet life, I cannot refrain from offering this commentary.
The reference to Riga's high schools implies that Soviet Latvia progressed in education from four high schools in 1928 to over 40 in 1960. It is a standard Bolshevik dodge to employ statistics to create misleading impressions.

In this case, comparison is made of two different things: The 1928 Latvian High School (gymnasium) was an eight-year school. carrying the pupil from his seventh through fourteenth year of education, while the Soviet high school, by Mr. Amatneek's admission, comprises a threeto four-year program. Inasmuch as Latvia was an independent republic from 1918 through 1940, the credit for the growth of schools over the comparison period is not due to the Soviet regime.

A fair comparison would require growth statistics on the number of high schools and pupils between 1928 and 1940 , on the number of pupils completing the fourth year of the Latvian gymnasium in 1940 and the number of graduates from Soviet high schools in Riga in 1960).

It must also be borne in mind that admission to Soviet universities requires 10 to 11 years of schooling, while admission to pre-war Latvian University called for 14 years. Therefore let us have a comparison of the total of 1939 or 1940 diploma engineering graduates with the 1960 total of Soviet Latvian engineers who received degrees after apprenticeship and qualifying examinations.

The two-year work assignments prior to admission to the university and apprenticeship assignments upon the completion of the Soviet university are handled on a union-wide basis. That is, the Latvian youth and engineers have little choice in location and often serve outside Latvia.

Such "voluntary" training assignments represent nothing but another form of forced labor and are part of the Russianizing program to which non-Russian captive nations are subjected.

It should be mentioned that a form of universal military training is also mandatory for all male youths for three or more years, depending on the branch of service.
Job changes are not free and require a release, acceptance and official approval, though this bureaucratic red tape can be overcome when personal contacts or good Communist Party affiliation are exploited.


For example. on page 3 you ll find part of the story about types of insulation Rome Cable Division can supply e.g., Rome Synthinol, a thermoplastic material, compounded mainly of polyvinyl chloride that is available in forms to cope with temperatures from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Or you might find that your needs are best met by Rome Rolene, a lightstabilized polyethylene that can stand up to weathering, oxidation, oils, and most chemicals.

Of course, insulation is only part of the story. In the other pages of "RCD400 Instrumentation Cable", you'll find other relevant descriptive material, photos, and tables about cable for telemetering, data recording, circuit control testing, and electronic computers.

For your copy, or answers to specific questions about cable, write to Rome Cable Division of Alcoa, Dept. 11-51, Rome. New York


CIRCLE 169 ON READER-SERVICE CARD
IC DESIGN • May 24, 1961

## Why Die Stamped

Circuits by
Dytronics?

## EXACT CIRCUIT

 DUPLICATION. . . 25,000 or $5,000,000$ units

One of the major prol. lems in printed circuitry is exact duplication of the circuit pattern from unit to unit. The Dytromico die stamped prowes elimi. nates this headache hy utilizing a metal-cutting die to delineate the com ductor pattern exactly whether $2 . \overline{5},($ O() or $5,(\%)$ ( $)$. (\%) (irsuits ate produced.
A new booklet, "De. signing with Dytronics Die Stamped Circuits," gives other important reasons for specifying these quality circuits and provides information that will help you design them. W'rite for a free copy.

## DMTHOMİCS

ROCHESTER 48, MICH.
A subsidiary of Taylor Fibre Co., Norristown, Pa.

It is interesting to note the author's observation regarding job security, advancement and the role of labor unions. I must agree that job security does exist; perhaps this is attributable to the shortage of professional personnel.

On the other hand, the engineer in the Soviet Union is placed in an unenviable position between management and labor. Often he incurs the wrath of both, either for inability to fulfill the production quota; or not being able to improvise designs in spite of facility inadequacy; or for placing production demands upon labor (quality control, tolerances, etc.). Considerations for promotion take into account the above, but Communist Party membership and a favorable evaluation of the individual's concepts and "proletarian" attitude's form a strong, if not a determining, influence on the engineer's position.
Inasmuch as most factories operate under a production plan, pay and privileges to individuals are commensurate with fulfillment of guotas. Fringe benefits in the way of housing provisions. plant recreational facilities and resort accommodations are primary incentives for workers.

Leo L. Grinius
Motorola. Inc.
Military Electronics Div Riverside, Calif.

Dear Sir:
With great interest I read Mr. Amatneek's artide "The Soviet Engineer" in Electronic I)esigis.

Having experienced the conditions in Latvia throughout its existence as a free country up to 1940. as well as the conditions under German and Soviet occupations until 1944. and also being relatively well informed about the present standards under Sovict occupation in Latvia, I feel compelled to add the following to the article.

Not quite understanding the intentions of the article, I cannot quite understand the meaning of the footnote: "An indication of the growth of education in the USSR-in 1928 there were four city high schools in Riga, now there are more than 40." Could it be construed from this that the number of schools has increased from 4 to 40 under the Soviet rule?

In my opinion this statement is untrue, not to use the word distorted. Interpreted in this manner it unduly and mistakingly points to the virtues of Soviet government in increasing the number of schools in Latvia and apparently increasing the educational level

Why this comparison with the conditions of 1928 and not with the last years of independent Latvia? Already in 1935-36 there were 48 high schools (29 general and 19 special) in the city of Riga attended by 11,150 students.
If in 1920-21 there were 90 high schools with 12,842 students in Latvia, then in 1936-37 there


CIRCLE 171 ON READER-SERVICE CARD

## and look at the variety WRIGHT MOTORS offer...



## quality Servos and

 Rotating ComponentsWright of Sperry Rand offers design engineers faced with new challenges an exceptional source for meeting the most exacting demands. A wide variety of standard models plus superior engineering and production capabilities bring you assured quality.

Write today for technical data and the name and address of
your nearest Wright Motors representative.


Thatr
Durham, North Carolina Tel. 682-8161

## LETTERS

were already 112 high schools with 22,620 students, the number of students almost doubled. As the statistics prove, in 1914 there were 67 students per 1,000 population, in 1939 there were 137 for every thousand-the number had doubled. With 30 university students per 1,000 population, Latvia occupied the first place among European nations.
It is more than wrong to assume that an increase in number of students and schools and the resulting rise in the nation's educational level is the result of Soviet domination

Whoever has experienced the Soviet slave-state regimented school system, cannot have any misgivings about its attractiveness. These schools are preparing the badly needed personnel for the state and the party. The students of today will be only small wheels in the Soviet machinery tomorrow-exactly where the government and party want them to be.

It is known to me that the free choice of employment you mention in your article, is only so on paper. I can name cases and names in which as late as 1960 the engineers were appointed to the jobs as far as behind the Lake of Baikal, against their will. But, as you may know, in the Soviet-ruled countries this generally is called "volunteering for jobs"-quite similar to that recently heard from Red China-starving Chinawhere the Youth Organizations are begging to reduce the food rations!

I fully agree with you about job security, the guarantee to work in the Soviet Union. True enough, no one can be relieved of employment If someone is not needed or wanted, he is transplanted into one of the numerous slave camps in Siberia, where everyone is accepted.

Robert Lidums
E. I. duPont de Nemours \& Co. Wilmington, Del.

I appreciate the comments on my article by Mr. Grinius and Mr. Lidums. In turn, may I reminisce a bit?

In 1928 I receive: Imy "certificate of maturity" from the First Municipal Riga High School. This was a "realskola" leading toward engineering and sciences, not a Latin-oriented "gymnasium." I was then 16, and I had just completed the fouryear high school course following the six-year course at Riga P. S. 23. So I know that the requirement for entering the Latvian State University then was 10 years of schooling. Now, I am told, it is 11 years.

I fancy myself as sensitive to propaganda as any man. I was exposed to it by some of the brass in Latvia last summer. But, to repeat, my report was not a "bird's eye view"; it was rather


> 8686 POTENTIOMETER features central readout of $\mathbf{- 1 0 . 1}$ to $\mathbf{1 0 0 . 1} \mathbf{~ m v}$

With central readout (digits and scale) of measurements over the range -10.1 to +100.1 mv without input reversal, this portable millivolt potentiometer -one of a family of brand-new L\&N instruments-brings marked operating convenience to industrial and lab measurements: thermocouple temperatures, calibration of millivoltmeters and potentiometer indicators and recorders, standard cell checking.

Ronges-(1) -10.1 to +100.1 mr ; (2) 1010 to 1(12) mo for standard cell calibration. Limits of Error - Without res. jel. compensation, $\pm(0,05 \%$ of reading $+3 \mu \mathrm{v})$. With ref. jct. compensation, $\pm(0.05 \%$ of reading $+6 \mu \mathrm{v}$ ).
Measuring Diols - "A" Suitch: $9 \times 110 \mathrm{mb}$ plus additional slep of 1010 mo and a "-" position. "B" Suritch: $9 \times 1 \mathrm{mp}$. "C" Slideurire: ot to 1.1 mo on circular scale $12^{\prime \prime}$ long. Smallest division, $5 \mu \mathrm{v}$, adjustable $t o \pm 1 \mu 0$.
Galvonometer-Sensitivity, (0.1) $16 \mu^{\prime}$ ) per $m m$ Coil resistance, 25 ohms; CDRX, 1 (1) ohms. Funclion Switch-9-poxition suritch selects (1) "Galo. OFF"' (2, "STANDARDIZE". (9) "EMF MEASLRE", (4) "EMF OUTPUT"', (5) "'STANDARDIZE, (6) (8) "STANLARUIZE"', (9) "REF JCT"'.

Case-Metal with vinyl finish, $14^{5} 16^{\prime \prime} x$ $111 / 2^{\prime \prime} \times 7^{3 / k^{\prime}}$. Weight, 21 lb .
Price-\$485 (subject to change uithout notice), f.ob. Phila. or North Wales, Pa. Specify List No. 8686 when ordering from neareat L\&N Office or 4908 Stenton Ave., Phila. 44, Pa

CIRCLE 173 ON READER-SERVICE CARO ELECTRONIC DESIGN • May 24, 1961


## new, low-cost electrometer

The line-operated Model 621 Keithley Electrometer measures broad spans of de voltage. current and resistance. Examples of its versatility are voltage measurements of piezoelectric cristals and charged capacitors: currents in ion chambers, semiconductors. photocells, and vacuum gages: resistance measurements of insulation. The 621 is useful as a dc pre-amplitier and has outputs for driving oscilloscopes and recorders. Input resistance may be varied from $10^{6}$ ohms to over $10^{14}$ ohms. permitting voltage measurements with an optimum balance of low circuit loading versus minimum pickup. This electrometer can also be supplied for rack mounting.

Voltage Ranges: 0.1 to 100 volts f.s., 2 ec accuracy on all ranges.

Curront Ranges: $10^{-11}$ to $10^{-3} \mathrm{amp}$ f.s., $3^{\text {el }}$, accuracy to $10^{-9} \mathrm{amp} .4 \%$ to 1011
Resistance Ranges: 10 to $10^{13}$ ohms f.s., $4^{4}$ " accuracy to $10 \%$ ohms, $5^{c}$ ce to $10^{1 t}$.

Amplifier: gains to 100; bandwidth dc to 200 cps ; output 10 volts or 1 ma.
Price: 621 cabinet model or 621R rack model . .................. $\$ 390.00$
for details write

KEITHIEY INSTRUMENTS

12415 EUCLID AVENUE CLEVELAND G. OHIO CIRCLE 174 ON READER-SERVICE CARD ELECTRONIC DESIGN - May 24, 1961 Russian.
a "worm's eye view." gathered in the grass roots; it was "inside dope," if you will.
I did not pick up any information about military training. However, in 1928 there was compulsory military training-three years at age 21 , if memory serves me right.
On Russianization: Russianization is officially denied. But I was there, and this is what I observed. Riga has become a bilingual city in place of the trilingual one that it was in 1928 (Latvian. German and Russian). Most, if not all, of the signs and marquees on the streets are first in Lattian. then Russian. By and large, about lialf of the conversations in public were in Russian.
On the other hand, I got the impression that the government can't be working very hard at Russianization. I was told by a relative I visited that Russian language study is no longer a prescribed subject in his son's public school. The pretty stewardesses aboard the Moscow-Riga turboprop made their announcements in Latvian, then Russian. After 20 years of Soviet government, Riga and its culture obviously retain a wholly Latvian character. The opera, movies. theatre were in Latvian. (Needless to say, no translations except in program notes.) And so was the magnificent. spectacular, quintennial Song and IDance Festival, at which a chorus of Y(OX) voices by my count (propaganda had it at 10.000). dressed in newly woven, colorful, na tional costumes, sang two long programs of Latvian songs, of which only one or two were in

On the question of involuntary job assignments. I have no doubt that Mr. Girinius is right so far as the past is concerned. I gathered as much when I was there. I was also told that in this as in many other respects there lias been substantial improvement-in general "since the old man died," and in particular in the last year or two.
Regarding my implication that the number of city high schools in Riga rose from four to over 40 during the Soviet regime-that was my own personal observation, not a government handout. The numbers quoted by Mr. Lidums evidently include private schools. Surely we don't consider the preponderance of private schools a credit to the public education system of a country. There are no private schools in Riga today, of course.
Regarding the merits of their educationSoviet engineering achievements in recent years have aroused the interest of the world in the Soviet educational system. The younger Latvian engineers that I met are products of that system -products of the University and the Polytechnic Institute at Riga. It is their background that I attempted to describe as an eyewitness.

Karl V. Amatneek 8603 Hull Drive Philadelphia, Pa.

## M Ex insulated power resistors <br> Welvyn

- hANDLE MORE WATTS PER SIZE. This is particularly so in the higher resistance values.
- Offer higher resistance ranges per size. for example, up to 47 K in the 4 W F32 size.
- ARE VIRTUALIY NON-INDUCTIVE.
- INSURE RELIABILITY. Comprehensive tests have proved that operating these resistors under the most arduous conditions will not cause failure.
- have superior surge and overload performance. The application of ten times the rated load for 5 seconds results in a typical resistance change of less than $0.5 \%$
- A PRICE AS COMPELLING AS THE PERFORMANCE Resulting from control and efficiency in manufacture.


## UNIQUELY DIFFERENT AND RADICALLY NEW !

The Welwyn f Seres power esisiors are composed of a meral oxide elemen, bonded to a porcelain rod at red heat. This process results in a resistor which is extremely rugged, both electrically and mechanically. The durable coating is intended to provide an insulating cover rather than to protect the element which in itself is highly resistant to mechanical damage and effects of moisture.

| WELWYN TYPE <br> DESIGNATION | MAXIMUM <br> LENGTH | POWER <br> RATING | RANGE OF <br> VALUES |
| :---: | :---: | :---: | :---: |
| F32 | $27 / 32$ inches | 4 Warls | $20 \sim 1047 \mathrm{~K}$ |
| F33 | $1.5 / 16$ inches | 6 Walls | $30 \sim 1056 \mathrm{~K}$ |
| F34 | $1.23 / 32$ inches | 8 Walls | $40 \sim 1068 \mathrm{~K}$ |
| F35 | $2.3 / 32$ inches | 10 Walts | $50 \sim 1075 \mathrm{~K}$ |

-Rated Wattage may be dissipated up to that resistance
value set by a potential limitation of 500 V /inch
Where less than full Wattage is involved, potentials up 10
$1000 \mathrm{~V} /$ inch may be applied.
(w) elwyn INTERNATIONAL INC.
for further infermation write for data sheet W-1014. 3355 EDGECLIFFE TERRACE, CLEVELAND 11 . OHIO factories in Canada and Engiand CIRCLE 175 ON READER-SERVICE CARO

Stop Hunting Figr Lost
Design Hinfts．

Fativantion

## ッN コロ

## R．Wayne Crawford

Ohio Semiconductors
Div．of Tecumseh Products Co
Columbus，Ohio

DESIGN engineers must keep abreast of de velopments in their fields，and one of the best ways to do it is by clipping the design arti－ cles that appear in trade magazines．
Using current design information eliminates duplicate effort，and it permits the user to bene－
fii from an effort someone else las paid for． But to be of use，the design information has to be available when needed．A vague recollec－ tion of having seen a particular article，followed by a＂brute force＂search through a stack of magazines，is all too often the method of re－ trieval．It is an expensive one．

The problem is：What to file？How to file it？
It is doubtful if one reader is very keenly in－ terested in every design article in a magazine．A


How a typical file should look，viewed from the bottom up．The main subject headings are arranged on the left guide tabs，with the sub－ headings in the middle．The subjects themselves should spring from the engineer＇s own interests and be expanded as those interests expand．


Author R．Wayne Crawford， who has been filing circuit diagrams according to his filing system for more than three years．He makes about 100 entries a year．

Thousands of electronic
hints，thousands of circuit diagrams are published each year．How does the engineer keep track of those
that interest him？Author
R．Wayne Crauford explains a
filing system that
is simple，yet flexible．
simple rule to follow is to file only those articles that are of interest to you．

## Don＇t Wait！Choose Articles <br> For Filing As You Read

Choose your articles as you read．This is wry important，or else the whole system breaks down．The articles to be filed should be remored as soon as the magazine has been read．Once a backlog of magazines lias built up．it is a tre－ mendous task to go back through them sorting out articles．
How should the articles be filed．＇There arr a great many filing systems and cataloging tech－ niques．Filing by subject is particularly stited to a technical file，because related material is brought together and searching time is rednced． Another advantage of the＂Subject＂technique of filing is the ease with which the file can be ex－ panded while still keeping the related material together．Subheadings for main subjects permit larger quantities of material to be handled in this way．

The following points should be kept in mind when selecting the subjects for a file：
1．Select the most important subjects of interest， keeping the number to a minimum at the start． Add subheadings as the material expands．
2．Keep the subject titles as short as possible－ one or two words wherever possible．
3．Put related subjects together under one major subject heading whenever this is logical．
The range of subjects will vary widely with the interests of the individual．What may be a

## Keep File Simple and Compact

The following sample subject outline shows how related material can be drawn together simply and compactly under main subjects:
$\left.\begin{array}{ll}\text { Amplifiers: } & \begin{array}{l}\text { General } \\ \text { af } \\ \text { f }\end{array} \\ \text { Choppers: } & \begin{array}{l}\text { General } \\ \text { Applications } \\ \text { Mechanical } \\ \text { Transistorized }\end{array} \\ \text { Diodes: } & \begin{array}{l}\text { General } \\ \text { Power }\end{array} \\ \text { Tunnel }\end{array}\right\}$
major subject in one individual's file might be a subheading in another's.
The table accompanying this article shows how related material is drawn together under main subjects. Each of the subheadings represents a heading on the tab of a file holder (See accompanying representation.) Main subjects and subheadings are arranged alphabetically.

Note that the first folder in each main subject grouping is marked "general." This is the folder out of which all of the subheadings grow. Articles concerning a particular main subject are accumulated in this general folder until there are three or more articles concerning a particular subtopic. Then a separate subheading folder is set up to store these articles. An extremely large, bulky article that would crowd the general folder may also be filed in a separate subheading folder.

Accumulating the material in the general folder until there is enough to warrant a separate subheading folder avoids having folders set up and then not used. When the material in a subheading folder becomes so great that that folder is bulky and hard to handle, one of two courses


Meets Signal Corps SCS. 30 and other applicable MIL Specs. Small, rugged, lightweight connectors with unparalleled reliability. Weather resistant or hermetically-sealed types for military-end use only in ground support signal equipment, portable radios. radar detectors, radiation sensing devices; aircraft communication equipment: etc. Provides easier. positive mating: clean, uncluttered exterior: closed entry, l-piece female contacts; fully enclosed equal pressure cable and wire grip for straight and right angle connectors. Send for Bulletin EM at once!


ELCO CORPORATION: M Street below Erie. Philadelphia 24. Pa., CU 9.5500
ELCO Pacific: 2200 Centinela. West Los Angeles 64. Cal., GRanite 8.0671 Enternational ELCO A. S.. Lindealle 42. Copenhagen. Vanlose. Denmark Elco Australasia. Bradberry House. 55 York Street. Sydney. Australia CIRCLE 176 ON READER-SERVICE CARD


## Circuit designs made simpler and

 more economical with new Elcor ISOPLYS ${ }^{\circ}$
write for full information
Isoplys (isolated power supplies) can be used ungrounded. Unlike conventional power supplies, Isoplys have low shunt capacitance to ground and low noise in ungrounded applications. They are relatively insensitive to power line fluctuations and give excellent frequency response.

Many components once thought essential in conventional circuits can be eliminated. Design and assembly time can be speeded. Troublesome interaction between circuits is substantially reduced. This also helps simplify maintenance as well as solve difficult circuit problems.
Let Isoplys help simplify a circuit design you are working on now. Be prepared for design problems in the future.


Subsidiary of Welex Electronics Corporation
Sales / R \& D Laboratory / Manufacturing 1225 W. Broad Street / Falls Church, Virginia
JEfferson 2-8850

may be taken: the material may be broken down further into sub-subheadings, or additional folders carrying the same subheading and numbered $1,2,3$, etc., may be set up.

## Mark Articles Clearly <br> So They Can Be Spotted

To facilitate quick and correct filing and refiling of articles, underline the appropriate filing word or words in the title or in the first paragraph, or write this information in the upper right hand corner of the article. A heavy colored underline is most easily seen. The underlined words are the main heading or subheading under which the articles are filed.
When an article refers to more than one major subject, make a simple cross reference on an 8-1/2-by-11-in. sheet of paper showing:

Title.
Author(s).
Publication.
Date.
Where article is filed.
Where this cross reference is to be filed.
Make the appropriate underlining on the cross reference sheet, showing where it is to be filed.

The folders for filing are merely the standard 8-1 2-by-11-in. manila ones, probably available from your company's office supply.

Many design magazines use a page size that will not tit in a standard file folder. Simply fold the pages of surch articles to $8-1 / 2-b y-11-i n$. size.

Articles of more than one page should be stapled together to prevent loss of pages. Small one-column articles may be pasted on standard 8-1 '2-by-11-in. sheets of paper to prevent their loss in the file. Occasionally articles of interest appear back-to-back in a magazine. The best way to handle these, if a duplicate magazine is not available, is to make a photocopy of one side of the page. If copying facilities are not available (and one doesn't have the time to drop a card to the magazine to ask for a tearsheet), the cross reference technique may be used here, too.

A stiff cardboard guide tab at the upper left

## Don't Be a Loser

The engineer with a haphazard informationretrieval system is a loser.
He loses time hunting for an article that could be at his fingertips. When time is worth monev, his company loses, too.

Electronic Desicn's Reader-Service Dept. is all too aware of this. Some of the 200 to 500 requests is received each week go like this:
"Gentlemen-I am interested in obtaining a copy of an article on transistor multivibrators, which I believe was in one of your early 1960 issues (though it may have been in one of your late 1959 issues). I am sorry to say I can't recall the exact title of this article or the name of the author, though I do believe he was with a West Coast aircraft firm. I hope you can help me with this request, for the information will be very helpful in my present design project. Thank you. . .

ED's Reader-Service Dept. works as fast as it can to answer elusive requests like this. But when it has a backlog of similar ones, the process, understandably, takes time.

Meanwhile the engineer who could have helped himself-and his project-waits.
of the file is best for indicating the main subject headings (see accompanying representation). Subhead folders should have both the main heading at the left and the subheading at the upper center.

## A Small Abstract File <br> Can Also Be Useful

An extremely useful supplement to the main file, especially after it has grown, is an abstract card file. It is a great deal easier to look through a stack of abstract cards than to look through the articles themselves. If an abstract card is desired and the article does not contain one, it is best to abstract the article at the time of reading. The abstract cards may be 3 by 5 in. or 4 by 8 in. and can be stored in boxes or small file drawers of corresponding size. They should be filed in exactly the same manner as the articles, with the same headings, subheadings, etc.

A cross-reference card file of authors may also be valuable. An author card need carry only the name of the author, the title of the article, the publication and the date.

A touchy problem that always arises when one has a good technical file is the borrowing of articles by others. It is a sad but true fact that when it comes to articles, one's fellow engineers do not seem to know the difference between a loan and a gift. If an article is lent, it should be signed out with a definite time limit on its use. Others should respect your file. - -


THE SUPREME TEST

Yesterday, Polaris was an idea on a drawing board-today, it is an accomplished fact. In the interim all of its components had to meet-and pass-the supreme test; reliability of the highest degree.

Metal film and carbon film resistors made by Electra meet the critical specifications of Polaris and other missiles because, continually improving resistor reliability is a standard procedure with us.

When unusual and extreme environments are encountered, select the new Electra Metal Film and/or Carbon Film "High Reliability" series.
Load life studies and other data available upon request.


Take a twenty-minute trip through our plant Without leaving your office. "RESISTOR RELIABILITY, 16 mm . color film with sound, is available for showing, upon request.

ELECTRA MANUFACTURING COMPANY, 4051 Broadway, Kansas City, Missourl CIRCLE 178 ON READER-SERVICE CARD

for Stimulating Space Technology Programs Our Space Sciences Staff offers individual and team efforts in the areas of

- MANNED SPACE STATIONS
- space rendezvous
- LUNAR LANDING \& EXPLORATION
- manNed lunar spacecraft
- REENTRY FLIGHT SIMULATION
to the man who can tiring "way out" isfeas into the realm of reality Our Space Sciences Stalf will be most interested in discussing present and future programs with you.
Experience in one or more of the following specialties is essential.
- PLANETARY MID-COURSE \& TERMINAL GUIDANCE \& CONTROL
- SPACECRAFT PRIMARY POWER GENERATION
- SATELLITE \& LUNAR COMMUNICATIONS
- MANNED SPACECRAFT DISPLAY \& DATA PROCESSING
To arrange an immediate interview send your résumé to Mr. Henry C. Kline, Electronics Space Staff En. gineer, Department GR 75.

GRUMMAN
aircraft engineering corporation Bethpage - Long Island - New York


## DIRECTOR, PRODUCT DEVELOPMENT

International firm with corporate offices in Colifornios seeks outstonding individual to heod up product research and development in is slectronic divition.

The man we wont should hove o Ph.D or Masters Degree in Electronic Engineering or Physics. Opportunity for mon with vision and imagination to expond our present copobilities.

Position ofers outslonding growth potentiol in solory, petsonol, technical, ond monogement oreos with a company currenty realizing a a dry nomic exponsion, Reply in confidence to vice president.

Box 524. Eloctronic Dasign, 830 Third Ave., New York 22, Now York


ENGINEERS
PHYSICISTS
MATHEMATICIANS

$S$
YSTEMS
EV ALUATION
POLARIS SYSTEM
The Applied Phisics Lahoratory of The Johns Hopkins University has responsi-
bilities in the evuluation of the Polaris Missile System. We invite you to consider

Senior Mathematiclans
Duties will involve statistical anulysis of
complex rest dara for performance. reli ability and operation evaluations. A hackground in physics or electrical enktneerink
is desirable.

Project Engineer
For field lest operations involving a $\quad$ eum
eftort of Contractor. Navy and APL Personnel. Work will include launch and toring of shiphoard activisies reluted to the Polaris Missile System. Preler enki-
neers with considerahle backpround of protect level responsibilities.
Systems Engineers
APL has several positions available on
the associale and sention levels for men with experience in electrical enxineerning. ics, or computer enkineering. Will per lorm systems work related to fire control.
navipaton. missiles.and summarine controls. Assignmet involves tield work und
contact with the Naly and Contructor
Personnel.

Systems Analysts
Respondents must have heavy theorerical
backpround and ability to read and understand relemerry records. Will perform hasit analysis of s) stems, related to fire
control. navilation. missiles, and subina-
rine controls. May. also be reaured tion rine controls. May also be required to
simulure and solve orbir and doppler
equations, Assoclate and senior level equations.
pointments.
Data Requirements Instrument Emgineers Positions require a physicist or electrical
enkineer with experience in evaluation.
 ation installations. Will analyze suh-sys-
cems such as guidance, propulsion controls, hoossers, and inerial systems in.
dividually and as integral parss of over-all dividually and as infegral parts of over-alt
systems to derive data requirements and instrumentation. Duries involve some held
work. APL will provide you with a prolessional atmosphere conducive to creative eflort equired to tackle these and relared problemis. Our lacilities are located in Silver
Spring. a residential suburb of Washing on, D. C. oflering you a chooice of coun

## For additional detalls direct your inquitry to Professional Staff Appolmement

The Applied Physics Labortory The Johns Hopkins University 8635 Georgia Avenue, Saver Spring, Md.

## Advancement Your Goal?

## Use COMFIDENTIAL

## Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Siudy the employment opportunity ads in this section. Then carcle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your application and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.

Painstaking procedures have been set up to ensure that your application receives com. plete, confidential protection. We take the following precoutions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "cirele number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in con. fidential files at ELECTRONIC DESIGN. and after a reasonable lapse of time, they are destroyed.
If you are seeking a now job, acl now!


## electroomic oestian CAREER INQUIRY SERVIICE

USE before July 5,1961

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)
Name $\quad$ Telephone $\qquad$
Home Address _ City __ Zone__ State $\qquad$
Date of Birth $\qquad$ Place of Birth $\qquad$ Citizenship

Position Desired

| College | Dates | Educational History |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Degree | Major | Honors |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Recent Special Training $\qquad$

| Compony | Cily and Slate | Employment History | Tiute | Enginering Seceitly |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Outstanding Engineering and Administrative Experience $\qquad$

Professional Societies

## Published Articles

$\qquad$
Minimum Salary Requirements (Optional) $\qquad$
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you



## ADVERTISERS' INDEX

May 24, 1961
Advertiser Page
ACF Industries
AMP. Incorporated
Ace Electronics Associates, Inc
Airbome Instrumen
Allied Chemical. Plastics Ditory
American Optical Company
Amphenol-Borg Electronics Corporation Applied Research, Inc.
Arinc Research Corp.
Assembly Products, Inc .............. 12
*A vco/Electronics and Ordnance IDiv. ... 96
Annet System. The
-Baird-Atomic, Inc.
.................
\& Chemical Corp. . .................. .
Bendix Corporation, The, Eclipse Pioneer
Div.
Bendix Corporation. The, Pioneer-Central
Bendix Corporation, The, Red Bank Div
Berkeley Division of Beckman Instruments
Beryllium Corporation. The
Birtcher Corporation, The
Birtcher Corporation, The

- Bomac Laboratories, Inc

Boonton Electronics Corp. ......... 91
Borg Warner Controls, A Div. ..... 1
Warner Con

- Boums. Inc. .
Bryant Computer Products Div.
Buckbee Mears Co.
- Burndy Corporation
Burnell \& Co., Inc

Burnell \& Co., In
Cadillac Associates, Inc
Cannon Electric Compan
Carborundum Co. The
Casting Engineers
Cetron Electronic Corp-

| Cinch Manufacturing Company | 139 |
| :--- | :--- |
| 74 |  |

-Clevite Transistor. A Div, of Clevite 26 A-B
Corp.
Cominico Products, Inc. .................. 111
Corsolidated Molded Products Corporation 147


- Daven Co., The

Daystrom. Inc., Weston Instrument Div. 35
Delco Radio, Div. of General Motors
Corp. ........................ 18
Diamond Antenna \& Microwave Corp. .
DIT-MCO, Inc. .........................
Durpont de Nemours \& Co., E. I.,
Film Dept.
Dytronics. Inc.
ESI/Electro Scientific Industric.

- Eastern Industries, Inc.

Eastman Kodak Company
Edison Industries. Thomas
Eitel-McCullough, Inc.
Elastic Stop Nut Corp. of America
Elco Corporation

- Elcor Incorporated

Eldorado Electronics
Electra Manufacturing Company
Electrocraft Products
3

Electrocraft Products
Electronic Design .......ars Catalo
Electronic Tube Corp.
Epsco, Inc.
Erie Resistor Corp.
$\bullet$ Fairchild Controls Corporation
-Manufacturers catalog, appears in 1980-1961
Electanic Desicners
Catalog
ELECTRONIC DESIGN • May 24, 1961



CIRCUIT IDEA FILE

New Transistor Applications

## Looking for simplicity in a servo amplifier?



This Class B push-pull servo amplifie using Honeywell's medium power transistors features

- Temperature compensation-the ger manium diode compensates for the transistor emitter diode temperature characteristic.
- Negligible crossover distortion-the same diode applies a slight forward bias so that the transistors are operating Class AB.
- Medium power-rated at 6 watts out. put into a size 15 servo motor.
- Simplicity - permits a package size limited only by the heat dissipators.
Honeywell's medium power transistors are packaged in a compact case for ease of mounting and versatility of wiring. For specifications and additional information, send the coupon below to: Honeywell, Dept. ED-5-134, Minneapolis 8 Minnesota.


## COMPONENTS

$Q_{1} Q_{2}$-Honeywell 2N 1658 $R_{1}-50 h m s-R_{2}-1000$ ohms $\mathrm{C}_{1}-25 \mu \mathrm{I}-\mathrm{D}_{1}-1 \mathrm{~N} 91$ or equivalent $\mathrm{V}_{1}-28 \mathrm{VDC}$ - M -size 15 servo motor $T_{1}$-UTC SSO-14 or equivalent
$\mathrm{E}_{\mathrm{g}}$ - 400 cycle generator with $\mathrm{Rg}_{\mathrm{g}}=1500$
$\mathrm{H}_{1} \mathrm{H}_{2} 5^{\prime \prime} \times 5^{\prime \prime} \times 1 / 16^{\circ}$ aluminum plates

## Honeywell H Fut in Control

Sales and Service offices in all principal cities of the world.

KINDLY CHECK ONE OR BOTH OF THE FOLLOWING:
$\square$ Please send mie vurer $2 N 1658$ and $2 N 1659$ specification shice: which include

- Please hate a Honeyuell field engineer call on me at my contenjence.

Name
Address
Company
City
-


Adecrtiser

Septems Div. ....................
48
Ray theon Co., Industrial Components Div.
5 Raytheon Co., Semicrnductor Div. ..... 141
 Rome Cable. Div. of Alcoa Royal Electric Corp. .......
Rustrak Instrument Co., Inc. Rustrak Instrument Co., Inc.
Rutherford Electronics, Inc.
-Sarkes Tarzian, Inc.
Sches Tarzian, Inc. .................. 90
Shockley Transistor, Div. of Clevite C9, 81, 95
Sippican Corsoration. The Clevite Corp. 108
Sperry Semiconductor Div, of Sperry
Sprazue Electric Company
Standard Controls. Inc
Standard Press Steel.
Stevens Mfg. Co., In

| Sylvania Electric Products. Inc. |
| :--- | ---: |

Telrex
Temperature Engineerink
Tenney Engineering, Inc.
Tensor Electric Dev. Co. Inc.
-Transistor Electronics Corp.
Transitron Electronic Corporation
Trio Lahoratories, Inc.
Ultek Corporation
Union Carhide Consumer Products Co.
United Transformer Corp. ...............
Varfles Corporation
Victoreen Instrument Co.
Waldom Electronics, Inc.
Waldom Electronics, Inc.
Ward Leonard Electric Co
Ward Leonard Electric Co.
Weldmatic Division /Unitek
Welwyn International, Inc.
Western Transistor Corp. .
Westinxhouse Electric Corporation
Wios)
122
 Wyle Latoratories

- Manufacturers' Catalor appears in 1960-1961


## Advertising Representatives

Adv. Sales Manager: Bryce Gray, Jr.
Sales Service Supor.: Alvin D. Ross
New York: Robert W. Gascoigne,
Richard Parker, Blair MeClenachan,
Berry Conner, Jr., James P. Quinn,
Donald J. Liska.
Charles J. Stillman, Jr
M. George, John N. Weber

830 Third Avenue, Plaza 1-5530
Chicago: Thomas P. Ravooras,
Fred T. Bruce, 664 N. Michigan
Avenue, Superior 7-8054
Los Angeles: John V. Quillman. Wayne Stoops, 3275 Wilshire Bivd,
Dunkirk 2-7337
Sen Franciseo: Stanley 1. Ehrenclou,
292 Walter Hayes Drive, Palo Alto,
Davenport 1-7646
Southeastern: Pirnie \& Brown. Morgan Pirnie, Harold V. Brown G. H. Krimsier, 1722 Rhodes-Haverty Bldg., Atlanta,
Ga., Jackson 2-8113
London EC4: Brad Nichols, 151 Fleet Street
Tokyo: Karl H. Bachmeyer Associates,
${ }_{\text {Azabu, Minato }}$ Minato, 1 -chome,
ELECTRONIC DESIGN • May 24, 1961

$\qquad$



Publisher: Robert E. Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G. H. Rostky, ${ }_{\text {H. }}^{\text {M. Wierman. R. H. Cushman, }}$
Ners Editors: R. Haavind. Chief: A. Corneretto, R. N. Ross

Neve Products Editors: A W. Solda Chief; C. H. Farley, E. G. Farrell Washington Editor: J. J. Christie West Coast Editor: T. E. Mount Consulting Editor: R. N. De Floria Contributing Editors: J. G Adashko. E. Brenner, B. Bernstein

Editorial Production: D. S. Viehis. Aditorial Pro
Art Director: R. A. Schulze
Art Assislants: O. Mitch. J Aruegu Technical Illustrator: P. Rios Production Manager: T. V Sedita Abst, Prod. Mgr.: H. De Polo Production Assistants: P. Bergang. M. Spector

Circulation Manager: N. M. Elston Asst. Circ. Mgr.: H. A. Hunter
Reader-Service: L. Blair

Hayden Publishing Company. Iuc
Chairman of the Board:
T. Richard Gascoigne

President: James S. Mulholland. Jr

## Accuracy Policy

Recognizing the power of the printul word to influence, it is El.ectrona
Design's policy: To make all
To make all reasonnble efforts to insure accuracy of entitorial maller. brought to our altention.
To not knowingly publixh mislealing advertisements.
To reserve the right to reluse any adrertisement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

## Subscription Policy



## ee Frankly, we ve been first in High-Power Signal Generators but last in advertising 99



New design capabilities unfold as RCA's amazing nuvistor tube family grows in number. You now have at your fingertips five commercial nuvistor types which permit you to nuvistorize your critical equipment designs for greater efficiency and extreme compactness.
RCA-7587 general-purpose sharp-cutoff industrial tetrode RCA-7588 general-purpose medium-mu industrial triode RCA 7895 high-mu industrial triode ( $u=64$ )
RCA-6CW4 TV and FM tuner triode
RCA-2CW4 TV and FM tuner triode
Design features responsible for the fast-growing popu larity of nuvistor tubes include.

- Low heater drain - Very high transconductance at low plate current and voltage - Exceptional mechanical ruggedness from ceramic-and-metal construction - Exceptional uniformity of characteristics from tube to tube - Operation at full ratings at any altitude - Extremely low interelectrode leakage - High sensitivity and stability - Very small size and light weight

Nuvistorized circuits are currently in use or under de velopment for:

- Jet engine wave and vibration analyzers
- Radar air traffic controllers
- Sonar systems, sonobuoys
- Electrometers and vacuum-tube voltmeters
- Research satellite
- Scintillation counters
- FM tuners, VHF TV tuners
- Pulse-width discriminators, frequency multipliers
- IF amplifiers in airborne weather radars
- Cascode amplifiers in radar beacon IF strips and literally scores of other applications.

Discover for yourself what nuvistor tubes can do in your own critical circuits. For information, contact your RCA Field Representative, or write: Commercial Engineering, Section E-18-DE-4, RCA Electron Tube Division, Harrison, New Jersey.


[^0]:    I] I Do Deviga Work
    II Suporite Deviga Worl
    1 Do Mo Danig Wor

[^1]:    
     Coprright © 1961, Hoydon Publishing Compony. Ince, 38.202 copies this isve.

[^2]:    < circle so on reader-service card

