

Fast-switching silicon epitaxial transistors, now "off-the-shelf"...p 74

| R | 0 | \mathbb{N} | 1 | C |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{E} | \mathbf{S} | \mathbf{I} | \mathbf{G} | \mathbf{N} |

NEW $\begin{gathered}\text { SIZE } 8 \text { INTEGRAL } \\ \text { GEARHEAD MOTRS }\end{gathered}$

3 Times Torque Load Capacify*

of comparable slze 8 gearheads
Hall sustain 20 un-02 tiviqut lase fer 1,000 houns opseation
and 200 in-0z momenterf everlend of the maximue raties.
CPPC one-prece gearhead housing eliminates separate gear plates and fastening posts, improves and maintains accuracy through exact alignment of gear clusters, assures smoother operation and more expedient inspection and servicing.

Gearhead and motor are select able. individual parts enclosed in the same common motor housing

PERFORMANCE CHARACTERISTICS
SIZE E INTEGRAL GEARHEAD MOTOR

Cuifon Preaision, pioneers in postless gearhead construction, intro. duces the finest in gearhead design-cage type one piece gearhead houring machined from a single block of metal. In these units, exact duplica on of gear centers is accomplished through simultaneous boring of permanently integrated bearing plates (patent pending) Positive and persmanent alignment of gear clusters composed of AGMA procision Closses II and III hardened-steel gears integral with shafts tournaled at both ands in ABEC class 5 bearings, minimize defiection ano dacklash, maximize torque load capacity, insure smoother opera f on and conti-ued reliability of performance beyond normal endur ance life requirements. Cage-type construction facilitates inspection and irbrication while gearhead is mounted simply by removing motor CPPC motors will stand greater heat than ever before due to the use of new materials. See box at lower right
Write for our free pamphtet which gives detailed specifications of our entire gearhead motor and motor-tachometer line. sizes 8, 10 and 11 .
 Notes: 1. Hay ratio $(\pm 3 \%)$ is available within the limits of the ratio range at additional cost and may require longer delivery time 2. Max. Lacklash $=30$ minutes at 2 in -oz reverse gauge load in above units Inquire it special tolerance is required

CLIFTON PRECISION PRODUCTS CO., INC.
CLIFTON HEIGHTS

SERVO MOTOR TYPE AICS

MOTORS

The following CPPC standard motors, electrical character istics of which can be tound in the current CPPC Rotary Size g are oftered with our gearheads:
SIZE 8 SIZE 10
ACH . 8 - 1 AMH 8 ACH 10 ALH $10 \square 1$ ACH 8 ALC 8 ACH 10 ALH- 10
AMH 8 ALC 8 -
CURRENT LEAKAGE

Superiority of insula tion in CPPC motors tualcomparative curves shown at the right.

COVER: A perspective drawing of the new, fast-switching silicon epitaxial transistor appears in the fore. ground Gas used to create one of the layers in the transistor and the rise and fall of a typical pulse out. put are graphically represented in the background. For details of the transistor, now off the shelf, see story on p 74

Selected Topics In This Issue

Circuit Design
Graphical Procedure for Tran-
sistor Switching Circuit Design
Nefwork Design
All-Pass Networks-Part 3: Their Use in Delay Lines

44

Components

How to Specify Noise in Precis.
ion Linear Potentiometers ...
Epitaxial Silicon Transistor Now
in Mass Production
Low.Cost Thermoelectric Spot

Power Sources
Batteries-Workhorses of Porta.
ble Equipment
Fuel Cells
Silicon Solar Cells-Tapping
Power from the Sun
MicroWaves
New Concepts in Antenna Research Promise Unusual Control of Radiation Pattern 175 Designing Cavities for the 500Mc Range
TWT Periodic.Permanent-Magnet
Stacks Evaluated Automati-
cally

Compony

ELECTRONIC DESIGN• ONE DAY SERVICE USE EEFORE MARCH 2914, 196

Compeny

Compony Address

VIA	FIRST CLASS
A\|R	Pormir No. 725
M A IL	New York. N Y.

No Postage Siamp Necessory if Mailed in $U S$
POSTAGE WILL BE PAID BY

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE
830 Third Avenue
New York 22, New York

New York 22, New York

Highlights of the Issue

Energy to Burn

Ever since lost fall, when Electrionic: Desigis got hot, so to speak, on the subject of energy conversion ("Converting Heat to ElecIricity," Sept. 28), an energetic editor in our office has kept in close touch with developments and outhorities in the field. The result is a new Staff Report in this issue, analyzing three more techniques of energy conversion: batteries, fuel cells and solar cells. The four experts who join in the report worked in close cooperation with our technical editor How. ard Bierman.
C. K. Morehouse and J. R. Thomas offer a rundown on the structure and operation of primary and secondary electrochemical cells. It is a good re view plus details of the latest developments and applications. Are batteries obsolete in the light of new energy-conversion schemes? Don'। you believe it, the outhors argue. See p 52.
Maybe you think fuel cells are exotic. It could be that E. M. Cohn could change your view. The ideo for a fuel cell, he notes, appears to have originated in 1801. For a wide angle view of advances since then, start reading on $p 62$. You ll find out about fuel-cell construction and applications, and what the future holds for this energy source.
Solar energy has been used in the past as a signal generator; now it is finding wider and wider use as a power generator. For a glimpse at the present state of the art, turn to p 58 for an illuminating article by J. Kalman.

On the Microwave Front
An entire section on microwaves -from radically new antennas through cavity design to field measurements of TWT permanent-magnet stacks. It starts on p 175.

Ideas, Anyone

Watch for an important announcement in the next issue on an expanded Ideas for Design Section. CIRCIE 2 ON READER-SERVICE CARD

RAYTHEON FRAME GRID TUBES... Outstanding for High Gain Bandwidth Product and Low Noise!

Raytheon frame grid tubes provide your designs with greater performance and re-liability-higher gain bandwidth product and lower noise than available from types with conventional grid construction. These tubes feature perfect pitch frame grids with high uniformity of spacing and characteristics, manufactured by the most precise equipment in use today. For example, tolerances are held to an almost unheard of $\pm 0.0002^{\prime \prime}$!

Rigidity is attained through optimum de-
sign, making the Raytheon frame grid construction highly reliable. The results are better uniformity and a reduced spread of characteristics-important contributions to the improvement of your circuit designs.

Bring to your circuit designs the many important advantages offered by Raytheon's growing family of frame grid tubes. For technical data, please write to Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

Raytheon Frame Grid Types-Gm					
CK6842	CK5847	CK6688	CK6922	CK6938	
25,000	13,000	16,500	12,600 per section	10,600 per section	

For Small Order or Prototype Requirenients See Your Local Franchised Distributor

ELECTRONIC DESIGN News
New Redundancy Schemes Promise Higher Reliability4
Design Approaches Vary for Commercial Satellites 6
Two Synchronized CRT's Used in Character Generator8
Hughes IR Peltier Cooler Operates on Low Current 10
Skybolt Using Magnetic Shift Register 12
Guidance Computer Also Directs Ground Checks 14
Radar-Beacon Tracking Used for Discoverers 16
R Maser Offers First CW Source of Coherent Light 20
Washington Report 22
Japanese Continue Push for More New Products 30
IBM Associative Memory Uses Masking Cores 34
The Rootless Engineer 39
An Editorial
Graphical Procedure for Transistor Switching Circuit Design 40
A simple approach to optimize selection of resistance values in switching
circuits-S. J. Osler
All-Pass Networks-Part 3: Their Use for High-Quality Delay Lines 44
Use of the all-pass network as a delay line or as a corrective network to improve existing lines-Y. J. Lubkin
How To Specify Noise in Precision Linear Potentiometers 48
Providing graphs, equations, and examples, the authors show how to do it realistically-J. Damast, M. Marro
Chemical and Solar Power Sources-An ELECTRONIC DESIGN Staff Report 51
Batteries-Workhorses of Portable Equipment 52
Primary and secondary cell construction, performance character-istics, latest developments, and applications are detailed-C. KMzorenouse, J. R. Thomas
Fuel Cells 62
State of the art of fuel cells, their construction, pros and cons,applications, and future-E. M. Cohn
Silicon Solar Cells-Tapping Power From the Sun 68
State of the art, construction, and merits of photovoltaic conver-ters-J. Kalman
Epitaxial Silicon Transistor Now in Mass Production 74
Ultra-fast-switching transistor now available as "off-the-shelf" item.
Low-Cost Thermoelectric Spot Cooler For Sale-Off the Shelf 78Thermoelectric coolers, down to practical price levels, are now availablewith immediate delivery.
MicroWaves 173This issue's section on microwaves spans the microwaves front from exoticantennas research to designing cavities and measuring fields of permanent-magnet stacks for TWT's.
New Concepts in Antenna Research Promise Unusual Control of Radiation Pattern 175
A rundown of contemporary antenna research by the Hughes experts-
L. A. Gustafson, L. N. Shestag, L. Stark
Designing Cavities for the 500-Mc Range 180
A thorough analysis of coaxial and flat plate cavities in the $500-\mathrm{mc}$ range is reduced to equations and presented in convenient table form- Dr. A. Kiriloff
TWT Periodic-Permanent-Magnet Stacks Evaluated Automatically 184
The Hall effect is cleverly employed in this technique to measure magnet field-J. Jacobs

Hayden Publishing Co. Ine
Design Decisions 204
Novel Techniques Boost Performance, Cut Size and Power of Tape
Recorders
Recorders 204 204
Solid-State Carrier Amplifier Improves Control With Square Waves 209
Low-Impedance Lines Minimize Voltage Spikes In DC Transmission 209
Ideas for Design 216
Demodulator Helps Measure Distortion in AM Transmitters 216
A Random Pulse Generator 218
Separate Lamps Controlled Over Single Line 218
Metal Foil Sticks to Tube, Conducts Heat 219
German Abstracts 228
Using Junction Transistors As Switches 228 228
ELECTRONIC DESIGN Digest 232
High Counting Rates From Swiss Decade-Counter Tube 232 232
Cutting Your Reading Time in Half—Part 4 244
How to be critical reader and a rundown on what you should have learned from the series-M. Q. Herrick
New Products 80
Production Products 166
Services for Designers 202
Now Literature 210
Patents 220
Books 224
Report Briefs 234
Standards and Specs 238
Letters 240
Careers 244
Your Career 246
Advertisers' Index 254

TEN MEGACYCLE

PULSE GENERATOR

FEATURING...HIGH REPETITION RATE WITH A LOWER THAN 8 MILLIMICROSECONDS RISE AND FALL TIME

Rutherforid

MODEL $1=3=1$

This unit features an electronic pulse delay that can be set to zero or is continuously variable from .030 microseconds to 500 microseconds in five ranges. Pulse width is continuously variable from . 02 to 12.5 microseconds in four ranges.

SPECIFICATIONS: Amplitude: 40 volts positive, 45 volts negative - Attenuator: 60 db in $1 / 2$ steps. Polarity: Both positive and negative pulses simultaneously available - Output Impedance: 185 ohms Output Decay Constant: 750 microseconds when terminated in 185 ohms - Synchronizing Pulse Out: 10 volts, positive - Rise Time: Less than 02 microsecond . Width: 03 microsecond • External Trigger: Pulse required: 10 volts minimum with rise time less than .05 microsecond - Pulse Repetition Rate: Continuously variable from 1 cycle $/ \mathrm{sec}$ to $10 \mathrm{mc} / \mathrm{sec}$ in seven ranges. Delay: A fixed delay of . 1 microsecond occurs between the synchronizing pulse out and the main pulse. $\$ 2,400.00$ F.O.B. Culver City, Calif.
Also available in 10 MC double pulse version $85-2$

TIME DELAY GENERATOR

EXTREME ACCURACY: After calibration: $\pm .1 \%$ of full scale. Long term: $\pm 1 \%$ of full scale. FEATURES: 8 to 100,000 microseconds in

5 decimally related ranges.
Low jilter - Linear scales - Small repetition rate effects - External connector provided for deloy volloge so that unit moy be externally time modulated - Easily read dial controls.
\$750.00 F.O.B. Culver Gity, Calif.
ENGINEERS: If your lield is Pulse Circuitry Design, a bright fufure awaits you at Rutherford Electronics Company. Send resume to Glen Stout, Industrid Relations Manoger.

Majority Voting, Adaptive and Quad Techniques Being Designed to Meet Demands of Military

Manfred Meisels

News Editor
R
ELIABILITY demands of military electronics are forcing development of advanced concepts of redundant circuit design. Majority voting, network and adaptive concepts are com-
manding the interest and winning the support of the armed services, now saddled with the "put in two of everything" approach to redundant design.
Typical of this approach, which only doubles reliability, is the SAGE FSQ-S air clefense sys-

Quadded multivibrator continues to function despite random removal of 45 of 128 components. Circuit failed after removal of 46th component, which was replaced for this photo of demonstrator. Although situation is extreme, at least two components must fail before the circuit can fail.

Complex transistor Quad conlinues to operate despite failure of any single component. Certain combinations of multiple foilure will also permit operation. In some instances degradation of performance coused by one combination of component failures is remedied by subsequent bination of component failures is re
failure of additional components.

a 2

(b) Single component

(b) parallel-series ouad

(c) series - parallel ouad

Simple component Quads, said to offer up to 600 times decreose of unreliability, compared with single components. Parallel-series configuration is preferable if components tend to fail in open-circuit mode. Series-parallel Quad favors components prone to short-circuit failure.

Network redundancy, perhaps best described as the "put in more of everything approach," multiplies the penalties of weight, cost and complexity inlerent in any redundant circuitry. It has the virtue, however, of reducing or eliminating the switcling problem. Leading exponents of this techniqe include Magnavox Research Laboratories of Torrance, Calif.; Sylvamia; the National Burean of Standards and Gencral Electric. A redundant power supply designed by (EE will be described at this week's Solid State Circuits Conference in Philadelphia. The unit cm ploys network redundancy in critical areas, with some components duplicated up to eight times.

An unusual and rather fully developed technique of achieving ultra-reliable circuitry through network redundancy is the Quad principle being proposed for the military by Magnavox.

Each Quad las a characteristic terminal impedance identical to the impedance of the equivalent single component. Failure of one or more components through short-circuit or opencircuit will alter the terminal impedance of the Quad. Through proper design, however, the circuit can survive a wide variation of impedance among its individual quadded components.
The reliability afforded by quadding depends, of course, on the impectance variations that can be tolerated by the circuit. Each Quad has 81 (3^{4}) possible modes of operation. Excluding total failure of all the components in the Quad, impedance will tary over a range of t to 1 . If a reasonable variation of 3 to 1 is specified, the Quad exhibits 35 successful modes of operation.

The unreliability for a single Quad with these limitations is reduced to 2.4 times the square of the unreliability of the individual components in the Quad. Thus, for a resistor having a failure rate of $0 .($ OKO $)$ per year, the life expectanc: of the Quad is increased approximately 600 times.

A similar analysis was performed for a quadded multivibrator built with a total of 128 components. Again assuming reasonable failure rates for individual components, the quadded multivibrator has a one-year reliability of 0.99965 , compared with 0.9 gesy for a conventionally designed unit.

Company spokesmen admit that the increased complexity of the Quad concept poses serious obstacles to its acceptance.

Similar reactions have been elicited from the military: but the Quad concept has by no means been ruled out. One spokesman for the Rome center indicated that "A subtler form of Quad might prove acceptable."
"In any event," he added, "with present component reliability, redundancy appears the only method available in the near future for achieving the desired reliabilities in our systems." -

Less than $2 \mu \mathrm{v}$ of drift for over 400 hours of contin. uous operation! That's just one of the many outstanding features of Kin Tel's new 112A wideband DC amplifier - the unit that is the successor to Kin Tel's 111 series DC amplifiers. Frequency response is from DC to beyond 40 kc , output capability up to 45 volts. It has an integral power supply, fits the same cabinets and modules, and can be used to replace any Kin Tel Model 111 amplifier.
high accuracy. The 112A amplifies microvolt-level signals from DC to 2 kc with a gain accuracy of $\pm 0.5 \%$ on any gain setting, better than $\pm 0.01 \%$ accu racy on individual gain settings by means of the Micro.Gain adjustment.
reliability. Overall dissipation has been reduced and reliability enhanced by replacing the tubes used in the 111 amplifier power supply with silicon rectifiers in the 112A. Special heat-conducting shields, heat sinks, and an improved mechanical layout further
improve cooling efficiency. Polystyrene capacitors are used in all critical areas. Rugged, militarized components are used wherever compatible with required performance characteristics. Write today for technical information or demonstration.

```
PRICLS:
112A Amplifier with a 112A A plug in unit that
permits }10\mathrm{ gain steps from 20 to }1000\mathrm{ with 1
to ztimles veimier adjustment at each step.. $625
112A Amplifier with a I12A B plug in unit that
converts the amplifier to a }+1\mathrm{ unit having
an input impedance over 10,000 megohms, a gain
accuracy within 0.001 %..$$15
195 Single amplifter cabinet . . $125
193 A Single amplifer 19" rack module . . $150
190 Six amplifier 19" rack module .. $295
```

Immediate delivery from stock in reasonable quantities. Representatives in all major cities.

5725 Kearny Villa Road, San Diego 11, California, Phone: BRowning 7-6700

Transision:ㅈILR: HHE VOLIAGE SPIKE TAMED BY PERKIN MTR DC POWER SUPPLIES

The "turn-on" transient above could destroy the transistors in your circuit in microseconds. Protect transistorized equipment against treacherous line and load transients with Perkin MTR tubeless power supplies. Combining the best of two solid-state regulation principles, they use magnetic amplifiers for high efficiency and transistors for instantaneous suppression of transients and ripple. No tubes, no moving parts, no trouble! Units sustain shorts and overloads indefinitely, resuming normal operation automatically. Ideal for continuous-duty and unattended operation. Prompt delivery anywhere.
HERE ARE JUST A FEW OF OUR MANY OFF-THE-SHELF UNITS

WRITE FOR COMPLETE CATALOG

$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$	D.C. Output		Static Reguiation		Dynamic Regulation		A.C. Input 60 cps , 1 Phase	Ripple RMS
	Voils	Amps	Line	Load	Line	Load		
MTR036-5	0.36	5	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{MV}$	$\pm .2 \mathrm{~V}$	105-125V	IMV
MTR036-15	0.36	15	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{MV}$	$\pm .2 \mathrm{~V}$	105-125V	1MV
MTR636-15	6.36	15	$\pm 25 \mathrm{MV}$	$\pm 50 \mathrm{MV}$	$\pm 25 \mathrm{MV}$	$\pm .75 \mathrm{~V}$	105-125V	SMy
MTR636-30	6-36	30	$\pm 25 \mathrm{MV}$	$\pm 75 \mathrm{mV}$	$\pm 25 \mathrm{MV}$	$\pm .85 \mathrm{~V}$	105-125V	5mV
MTR28.5	24.32	5	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm .3 \mathrm{~V}$	105-125V	5MV
MTR28-10	24-32	10	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm .4 \mathrm{~V}$	105-125V	2MV
MTA28-30	24.32	30	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm .5 \mathrm{~V}$	105-125V	5MV
ELECTR 345 Kansas	$\begin{aligned} & \text { sICS } \\ & \text { eet, E } \end{aligned}$	CO	PORA o, Calif	$\overline{\mathrm{ON}}$	$2-2171$	matio	in Princip	Citie

PERKIN SALES REPRESENTATIVES

ataucenaue, N. m

 Brooks-Feeger Assoc.5510 Domingo Rd. N. AM 8-1724
AMCOLA, IMD Law Instrument Co. 80 x 95
$21788101-\mathrm{R}$

ATLAMTA 5, GA.

E. G. Holmes \& Assoc. 4969 Roswell Rd., N.E. 8L 5-6660

BALTIMORE, MO

Gawler-Knoop Co. 807 E. Seminary Ave Tows on 4. M

CMICACO 25, ILL.
Salfro 8 Assoc. 5209 M Kımbali Ave JU 8-0905
clevelame, owio Electro Sales Assoc. 281 E. 216 th
Euclid
23 RE 2.7444
DALLAS 20, TEXAS Wallace Assoc. P. 0 Box 13203 FL 7.7080
DAFTOM 20, OMIO Electro Sales Assoc Electro Sates Assoc.
Dabel Station Boz 143 CH 4.5551
DENVER, colo. Brooks-Feeger Assoc 3041 S. Broadway Englewood, Colo.

DES MOINES, 10wA
Design s Sales Eng. Co. 270241 st PI.
815.4584
eetmoit 24, micn. Electro Sales Assoc. 15324 Mach Ave TU 6.2280

EREEMSAORO, M. C. E. G. Molmes \& Assoc 440 W . Market St. Suite 8-1
BR 2.0855
IMDIANAPOLIS, INB. Law Instrument Co PO Box 27062

RANSAS CITY ©, MO.

Design Es Sales Eng. Co. 2600 Grand Ave GR $1-1640$
LAWAENCE, MASS. Richard D. Frinh Assoc 46 Amesbury St. MU 3-3252
lOS AMBELES, CALIF. Instruments for Measurements 3455 Cahuenga Bivd.,
Suite F
Hollywood, Calif
HO 9.7294
MIMMEAPOLIS, MINM. Morthport Eng., Inc. 1729 Selby Ave. St. Paul 4, Minn Mi 6.2621°

MEW YORK CITY AND MOATMEAN MEW JERSEY
Gawler-Knoop Co.
178 Esgle Rock Ave.
Roseland, M. I
N. Y. Tele. DI 4-2997

Roseland pele. CA 6.4545
ORLANDO, FLA.
E. G. Holmes 8 Assoc 1220 Edgewater Dr. CH 1 -2128

Miladelpmia, Pa.
Gawler-Knoop Co.
835 Glenside Ave.
Wyncote, Pa.
Phila. Teile. WA 7-1820
Wyncote Tele. TU 4.8805
CIRCLE 7 ON READER-SERVICE CARD

NEWS

Design Approaches Vary

ITT Details PCM-FM System; Low-Cost Launching Planned

PRIVATE industry has already begun competitive design approaches toward development of useful commercial communications satellites.

Many details of a proposed PCM-FM system for an intercontinental television link were disclosed by International Telephone \& Telegraph Corp., New York, at the annual meeting of the Institute of Aeronautical Sciences in New York. General Electric Co. engineers also outlined in broad terms their company's planned approach to design of a communications satellite.

Previously Hughes Aircraft Co. moved into the field with the display of an experimental synchronous, or stationary-orbit, type satellite at an American Rocket Society conference in Washington (ED, Dec. 21, 1960, p 4). This Hughes experimental satellite model, weighing only 32 lb could be launched with present missile booster capabilities.

American Telephone \& Telegraph Corp. has received approval from the Federal Communications Commission for launching of an experimental communications satellite within a year. This planned system would use wide-deviation fm with feedback to achieve commercial quality signal-to-noise ratios with a satellite in a $2,200-$ mile orbit (ED, Nov. 9, 1960, p 4).

FCC has granted ITT Laboratories, Nutley, N. J., permission to use this $40-\mathrm{ft}$ steerable antenna for narrow-band transmission into space. Moon and passive satellites will be used for studying interference problems as well as checking some performance details of a planned PCM-FM active satellite communicalions system.

For Commercial Satellites

Low-cost launching, which may result from two present Navy projects also discussed at an IAS session on commercial satellites, could act as an added spur to development efforts. Al though the government has offered industry the use of National Aeronautics and Space Administration launching facilities at cost, the "cost" can easily amount to far over the $\$ 1$ million mark with present boosters.

Navy Developing Aireraft Launching, Considering Use of Polaris-Scout Combination

One of these Navy projects, named Project Caleb, is an effort to develop methods for launching light-weight satellites from high performance aircraft. A launch of this type might put a 25 to $50-\mathrm{lb}$ satellite into orbit at a cost of about $\$ 75,000$, according to John D. Nicolides, technical director for astronautics, Navy Bureau of Weapons.
A second approach being considered by the Navy is the use of the first two stages of the Polaris missile, and the top two stages of the Scout rocket. This vehicle, which would be called the Polaris-Sea Scout, might launch a 100 lb satellite, such as the Navy's Transit, for an estimated $\$ 750,000$, according to Mr. Nicolides

The extent of interference that might be encountered if space and ground services operate in the same frequency bands is another problem that has not yet been thoroughly explored. To make actual tests under these conditions, the FCC has granted ITT Laboratories, Nutley, N.J., a license to operate an experimental space research station. Since these experiments, using the moon and passive satellite reflectors, will be performed in the high-density New Jersey area, much valuable information on interference conditions should be gathered.
Tests of timing accuracy, and other important factors in the ITT PCM-FM system will also be performed with the new antenna, Louis Pollack, associate laboratory director, space communications group for ITT, told Electronic Design.
The PCM-FM approach to satellite communications should require only about half the bandwidth to get the same signal-to-noise ratio that might be obtained with a wide deviation fm with feedback system operating at the same power levels, according to Mr. Pollack. He said that ITT's Standard Telephone \& Cables, Ltd., subsidiary in England has developed a four-level PCM multiplexer suitable for use in such a system. Test results have been excellent. - -

ELECTRONIC DESIGN • February 15, 1961

NEWS

Two Synchronized CRT's Used in Character Generator

Microfilm Computer Output System Operates at 15,000 Characters/Sec

M
ICROFILM computer print-out at high speed is accomplished with a new character generator in the DACOM system designed by Recordak Corp. of New York.

In DACOM, (Datascope Computer Output Microfilmer) characters displayed on the face of a cathode-ray tube are photographed on microfilm. Up to 64 lines of 126 characters each can be printed on each microfilm frame. A Datascope character generator is used to convert magnetic tape data to characters on the face of the display tube. DACOM is designed for use with seven-track magnetic tape at rates up to 75 ips if packing density of 200 characters per in. or less is used, giving a print-out rate of up to 15,000 characters per sec.

If high-density tapes are used, a slower tape drive speed is required.

The DACOM system can be rented at about $\$ 7,000$ per month or bought for $\$ 285,000$ without subsidiary equipment. Delivery will be in 18 to 24 months, according to Recordak, Subsidiary of Eastman Kodak Co.

The Datascope character generator used to perform the binary-to-display conversion in

DACOM makes use of a pair of cathode-ray tubes with synchronized deflection plates. One of these tubes is the display tube, which is photographed on microfilm. An electrostatic deflection plate system is used in this tube to form characters, and a separate magnetic deflection system positions the characters on the screen. The second tube, which displays an unmodulated 16 -line raster, might be termed a character generating tube.
In operation the digital data on magnetic tape is fed into a decoding logic section. In this section the character is identified. When the identification is made, a gate associated with that character is selected from a group of 64 gates. With the selected gate a conducting path is set up between one of the photocells in a 64 -cell array and the video amplifier of the display tube.
Two sets of 64 optical lenses between the photocell bank and the generating tube form a separate optical path between each photocell and the 16 -line raster on the face of the crt. An aperture plate, with 64 characters on it, is inserted between the photocells and the raster. The opaque portions of each character on this
aperture plate cut off the light from the raster display to the phototube, and the transparent portions of each character transmit the light.

Thus as the beam scans the face of the generating tube, the phototubes associated with each character will receive or not receive light depending on the shape of the character aperture in the character plate.
Since the deflection plates of the generating tube and the electrostatic deflection plates of the display tube are controlled by the same deflection generator, a character is traced out on the face of the display tube.

Reverse Technique Also Considered

 For Microfilm Computer InputComputer input directly from microfilm might be accomplished with a system like the Datascope character generator operating in reverse. Although some thought has been given to this approach, no actual development work has been done, according to a company spokesman.
In the reverse system, characters printed on microfilm would be enlarged by some optical system and then scanned with light. The charac-

One of the characters in the aperture plate used with the Datascope character generator is enlarged in the diagram to show how it alternately transmits and cuts off the light from the 16 -line raster to the photocell. The photocell output is fed to the video amplifier for the display tube, thus intensity-modulating the display elec tron beam.

Character generator portion of the Datascope system consists of a 16 -line raster cathode-ray tube and several optical and electronic units. The optics set up 64 separate optical centerlines to the 64 photocells. The character plate contains apertures for 64 characters. As the beam sweeps over the face of the crt, light from the tube face to the photocells is alternately blocked and transmitted according to the operture shape.
ter itself would act as the aperture. The photocell output waveform generated by this scanning process could then be matched in a set of matching circonits and the character identified by finding the "best fit.
When the identification was made, a gate could be triggered and the binary representation for the character could be written onto magnetic tape or directed into a computer.

Aside from printing of alphanumeric data, 1)ACOM can be used for plotting data points or for drawing horizontal and vertical axes. If a standard form is being used for the microfilmed decuments, this can be added to each microfilm frame by putting a display format into the photographic path between the display tube and the film. A coded transparency is also put into the photographic path, so that each microfilm frame is corded according to some data classification. This allow's an automatic scanning machineto retrieve data using to some classification.

Such retrieval machines, and also machines to print full-size documents from the microfilm. will be available as subsidiary (equipment to the basic I)ACOM system. - -

Glass aperture plate used in the Datascope charac. ler generator contains 64 characters. The center of each character is lined up with the optical centerline io an associated photocell.

PHILCO ANNOUNCES 85^{*} A COMPLETELY NEW FAMILY OF PNP SILICON TRANSISTORS WITH HIGH VOLTAGE.. . HIGH BETA IN TO-18 PACKAGE

Produced by the Exclusive New Philco Strip Alloying Process

TYPE NO.	MAX. RATIMES		CHARACTERISTICS		
	$V_{\text {eao }}$	$P_{\text {oise }}$	$\begin{aligned} & I_{\text {ceo }}(10 v) \\ & \text { MAX. } \end{aligned}$	$h_{\text {fo }}(6 v, 1 m a)$ MIN. MAX.	$\mathrm{f}_{\mathrm{T}}(6 \mathrm{v}, \mathrm{Ima})$ MIN.
2N858	40v	150 mw	0.1 u	1575	5 mc
2N858	40v	150	0.1	30120	6
2N880	25v	150	0.1	1545	6.5
2N861	$25 v$	150	0.1	30100	7.5
$2 N 862$	15v	150	0.1	2060	8
2N863	15v	150	0.1	$40 \quad 120$	10
2N884	6 v	150	0.1 (8v)	25125	18
2N865	10v	150	0.1	100350	24

Immediately available in quantities 1-999 from your Philco Industrial Semiconductor Distributor

Completely new to the industry, these Philco Silicon Precision Alloy Transistors meet a widespread need for medium frequency, high voltage, high beta silicon transistors for both switching and amplifying applications. An exclusive new production technique . . . strip alloying . . . permits accurate measurement of the diode voltage rating and beta of every transistor during the manufacturing process. Never before has such close control in production been possible.

The new SPAT family offers low saturation voltage and bigh emitter base diode voltage rating. For complete information, write Dept. ED21561.

World's Largest Selection
 BIZES - VALUES • STOCK UNITS - SPECLAL FHATURES

OHMITE offers the largest and most varied assortment of power rheostats ever developed.

You can choose from 413 slock commercial sizes and types ranging from $121 / 2$ to 1000 watts . . . or from over 400 stock MIL-R-22A sizes and values, with "special fast delivery" on all other MIL units. You can find, for example, scores of different shaft styles, sizes, configurations-already engineered and waiting. Literally, hundreds of other special features take care of any rheostat application envisioned today.

Stocked by the Factory and Electronic Distributors Everywhere
 OHMITE RHEOSTATS
 OHMITE MANUFACTURING COMPANY 3643 Howard Stroet, Skokie, Illinois
 OHMITE

But Ohmite rheostats give you more than just "largest selection." Ohmite wire-wound units of all ceramic and metal construction represent the highest degree of operational reliability ever attained in rheostats. They bring you the backup of industry's greatest reservoir of engineering talent in rheostat design and application.

Because of this, you find more Ohmite units in use than all other makes combined. On your next project calling for rheostats, make your selection from the smooth, close control units preferred throughout industry.

Rheostats
Power Resistors Precision Resistors Variable Transformers Tantalum Capacitors Tap Switches Relays Relays R.F. Chokes
Germanium Diode Micromodules

NEWS

Hughes IR Peltier Cooler

3-Stage Device, Using BiTe Reported at Military Conference

Thomas E. Mount

West Coast Editor

APELTIER cooler for infrared detectors, operating at 2 amp and 2 v to achieve a temperature drop from 25 C to - 77 C , has been developed by Hughes Aircraft Co.

The new bismuth telluride cooler, described at the IRE Winter Convention on Military Electronics in Los Angeles, provides the same temperature drop as most previous high-current coolers requiring about 20 amp at 0.2 v . Peltier coolers, according to Hughes, will be useful in satellite and missile applications, which require low-current devices.

The Hughes device is a threc-stage cooler, using cell loading of about 125 mw . Conventional BiTe is used, however the junctions are cut so that the length over area $(L A)$ ratio increases. Current required by a Peltier device depends on L / A as follows: $I=\alpha \times T_{c} / \mp \times L / A$.

In this equation α is the Seebeck coefficient, T_{c} is the cold temperature in $\operatorname{deg} \mathrm{C}$, and ρ is the resistivity of the material.

Most former coolers have used BiTe rods about $0.194-\mathrm{in}$. diam and $1 / 4 \mathrm{in}$. long, giving an L / A ratio of 3.24 . To obtain a ΔT of $78.6 \mathrm{C}, 15.5 \mathrm{amp}$ at 0.135 v , or 2.1 w , were needed. In the Hughes unit the BiTe is cut to $0.138 \times 0.055-\mathrm{in}$., and three of these pieces are connected in electrical series and thermal parallel. This configuration requires only 3.9 amp at 0.56 v -again 2.1 w to obtain the same cooling. The L / A in this case is 12.95 .

The key to the Hughes device is the cutting of the material. New fabrication techniques, not revealed by Hughes, permit brittle, sensitive BiTe to be cut smaller than was previously feasible, according to the company. In addition to brittleness, the material is extremely susceptible to poisoning and degradation by acids during processing.

Temperature-Controlled Crystal Oven
 Also Under Development By Hughes

Other applications under way at Hughes for the new device include crystal and discriminator ovens for satellites and missiles. One tempera-ture-controlled crystal oven already built maintains 20 C by using the Peltier unit to heat or cool as needed. A switching circuit reverses the current direction when necessary. Heating is

Operates on Low Current

more efficient than cooling because an $I^{2} R$ loss is added to the heat in the material. The currents required for this type of temperature control are significantly lower than those needed with conventional Dewar flasks.
Currently under development by Hughes is a discriminator oven that must maintain a stable 20-C temperature in an environment that may change from 85 to $-40 \mathrm{C} . ■$

Sylvania Germanium Epitaxials

 Reduced 25 Per Cent In PricePrice reductions of approximately 25 per cent on epitaxial germanium mesa transistors have been announced by Sylvania Electric Products, Inc., a subsidiary of General Telephone and Electronics Corp.
The SYL2300 and SYL2301, improved versions of the 2N705 and 2N711 mesa switching devices, are available from more than 40 franchised distributors throughout the country.
The SYL 2300 has been cut from $\$ 27$ to $\$ 21$ in $1-99$ quantity and from $\$ 18$ to $\$ 14$ in lots of 100.999. The SYL2301 has been reduced from $\$ 18$ to $\$ 13.50$ in 1.99 and from $\$ 12$ to $\$ 9$ in 100 999 lots.

The Start of a Computer

Tiny germanium tunnel diode wafer (upper left) is a part of basic circuitry designed by Radio Corp. of America, Camden, N. J., as the first step toward an ultra-swift electronic computer under the Navy-sponsored Project Lightning. Electronic switching speed is 0.25 nsec . Four of the midget units will perform the same job as the circuit hoard (center), but 1,000 times faster.

AVAILABLE NOW IN MASS

PRODUCTION

- the highest r-f operating frequency
- the fastest switching time
- cadmium junctions for cooler operation, greater reliability
- storage temperatures up to 100 C

YOU CAN GET SPRAGUE* MADT ${ }^{\circledR}$ TRANSISTORS AT SENSIBLE PRICES

Sprague Germanium Micro-Alloy Diffused-Base Transistors, well-known for their rugged vhf performance, are now priced below ather transienens with comparable electrical characteristics. In many areas, this permits designers to improve circuit techniques without necessarily increasing costs. Expanded production facilities enable us to ship quantifyordersousbort notice. Add to this their ulfcefast suitching time and you have three good reasons why Sprague MADT ${ }^{8}$ Transistors have achieved their high level of acceptance.
With Sprague Transistors, circuits in vhf amplifiers and oscillators can now operate with collector currents as high as $50 \mathrm{ma} .$. . with power dissipation up to $50 \mathrm{mw} .$. with collector to base voltages to 15 v . They have been application tested through the entire military electronics vhf spectrum.
The application table may well suggest the use of one or more Micro-Alloy Diffused-Base Transistor types in your latest circuit designs.
For complete engineering data on the types in which
*Sprague micro-alloy, micro-alloy diffused-base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type numbers are manufactured to the same specifications and are fully inserchangeable.

IDPRAGUE COMPONENTB:

> prasue componanter
> [CAPACITORS - RESIBTORS - MAGNETIC COMPONENTS - TRANSIBTORS - INTERPERENCE FILTERS - PULBE NETWORKB
> LEMOH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS • PACKAGEO COMPONENT ABSEMBLIES

ELECTRONIC DESIGN • February 15, 1961

MICRO-ALLOY DIFFUSED-BASE TRANSISTOR APPLICATIONS	
Type	Application
2N499	Amplifor, to 100 mcs
2N501	Ulitra High Speed Switch (Storage Temperature, 85 C)
2N501A	Ultra High Speed Switch (Storage Temperature, 100 C)
2N504	High Goin IF Amplifor
2N588	Oscillator, Amplifer, to 50 mcs

you are interested, write Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Massachusetts.

You can get off-the-shelf delivery at factory prices on pilot quantities up to 999 pieces from your local Sprague Industrial Distributor.

SPRAGUE
THE MARK OF RELIABILITY

[^0]
SOMETHING NEW IN SUITCASE.

... Complete transistorized

 EECO Digital System BreadboardDesigners who want to go places fast systemswise can be sure of getting there on time with an EECO suitcase. It's packed with a complete and integrated breadboarding system designed around mutually compatible EECO T-Series Germanium circuit modules. N Series transistorized decades, and R-Series Minisige sensitive indicators.
Standard 19" amateur-notched panels have the necessary permanent wiring to accommodate any standard EECO Germanium circuit module, and all other circuit interconnections are made by patch cords or plugs, with unique, prepunched circuit cards to guide you. No soldering is required, and experimental arrangements of T-Series circuits can be quickly patched
 Circuit cards are selected
according to the system it is according to the system it is placed on the panel in align. ment with the jach pattern Corresponding F Series circuit modules are plugged in above each card.

Circuit interconnections are made by patching throush made by patching through Resulting pattern of symboi cards and patch cords shows a schematic and bill of materials lor the system. once it is checked out.

NEWS

Skybolt Using Magnetic Shift Register

Stamp-Sized Wafer Packages Are Stacked to Form Cascaded, Low-Cost, Low-Power-Consuming Units

Special production techniques have been developed for the GE magnetic shift-register packagng approach. Here components making up one bit for the register are mounted on a rack prior to encapsulation. Reliability goal for the wafer development project is a failure rate of 0.0001 per cent per thousand hours for each component

0NE OF THE first applications for a new magnetic-core shift-register package is in the guidance computer of the Air Force Skybolt missile.

The shift register, consisting of thin, encapsulated wafers each containing one bit, was designed by General Electric Co.s Healy Military Electronics Dept. An advanced version using microcomponents, so that wafers are only a third the size of present units, is now under development in the laboratory:

Some of the advallatges of the magnetic-core over transistorized shift registers include lower power consumption, ease of automation, lower price, fewer components and councctions, and expected higher reliability: Much design effort has been devoted to reducing average power contsumption, so that operation at higher speed can be achieved with magnetic elements, according to Burton F. Wagner, GE project engineer.

With a shifting rate of 100 kc , power consump)tion is about 10 mw per bit. Peak pulse power on the order of 8.5 mw is necessary for operation at this shifting rate. A $500-\mathrm{ke}$ shift register now being designed is expected to require peak pulse power in the neighborhood of 170 mw . Average power consumption per bit at 400 -kc shifting rates is about 5.5 mw , tests have indicated. No steady-state de power is consumed by the magnetic core clements.

Operation at these low power levels means that few drivers are necessary for many bits.

The complete circuitry necessary for each shift register bit is encapsulated in a single stamp-size wafer. A wound toroidal ferrite core provides a

Postage stamp gives size comparison for the magnetic-core shift-register wafers developed by General Electrics Heavy Military Electronics Dept. These wafers are tested after encapsulation, and then stacked to form a shift-register module. The entire register module is then en capsulated.
permanent sturage medium, a capacitor supplies the temporary storage function, and a diode gives unidirectionality. Necessary resistors are also included in the packages.
With each shift cycle, all magnetic corrs are cleared to ZERSO. Any core that had been storing a ONE induces a current on an output winding, thos charging an associated capacitor. Then, as a ()NE or ZER() is written into the first core in the register, each capacitor is discharged to the input winding for the succeeding core in the register
The cost, ranging from $\$ 10$ per bit downward, is considerably less than that for comparable tramsistorized registers, according to Mr. W'agner.

Memory Reliability Expected to Exceed

 That For Electromechanical DevicesReliability of the encapsulated magnetic-core shift-register memory is expected to be significantly greater than that for drum or other electrosmechanical memories. The absence of moving parts is one factor fasoring reliability. Individual tests of each encapsulated bit to be put in the register can also be performed. When the wafers are stackey to form a register, the entire unit is encapsulated, and further tests are applied.
Accelerated life tests of the wafer elements are currently in progress. However, actual reliability figures have not yet been determined.
Th:e present encapsulated shift-register wafers provide a packing density of 22,860 bits per cul ft . according to (GE. Significantly greater densities can be expected, the company said, when new wafers, a third the size of present elements. reach production

Aside from the speed limitation, however, shift register memories are not well suited to large storage functions. When storage of about $5.0(1)$ or $\mathbf{1 0 , 0 0 0)}$ bits is necessary, some other medimu must be used.
In space and missile computer design, (iE is combining these standardized magnetic-core shiftregister elements with a standard NOR circuit package. This allows development time to be shortened considerably. Logic is provided by properly arranged NOR's, and single-hit, static storage can be achieved by using two NOR circuits feeding back into each other, giving a llipflop. The magnetic-core shift-register clements serve as the main memory.

A 50 -integrator digital differential analyzer using these two basic elements, for example, requires about 2,200 bits of storage and about 800 logic modules, according to GE. This does not include any special input-output equipment that might be needed. Such an analyzer could be contained in a 0.4 -cu- ft package weighing about $25 \mathrm{lb} .=$

A new high in potentiometer capabilities . The Clarostat Series 59M14. 10-turn.
$7 / \mathbf{B}^{" 1}$ potentiometer packs more performance per cubic inch than any other multi-furn pot today. Clarostat's unique design permits more winding length in a given diameter than conventional designs. And, pricenvise.
the Series 59 M 14 is comparitive
across the board
For all your multiturn potentiometer needs. compare Clarostat for quality.
for value.

SPECIFICATIONS - SERIES 59M14. 10-TURN POTENTIOMETERS

- Diameter
- Length
- Maxımum Resistance
- Indep. Linearity
- Wattage
- Taps
- Rotations
- Maximum Torque
- Werght
1.55" (Bushing) 1.611 (Servo) 100.000 olims
$\pm .25 \%$. $\mathrm{To} \pm .05^{\circ}{ }_{\mathrm{C}}$
4.5 watts @ 40 C .

Center tap
$3600+10^{\circ}$
1.0 oz . in.

10 oz

Advantages

- High power output: up to 30 w Class A. 100 w Class B, 1000 w switching
- High voltages . . . high current gains . . . and high working currents
- Low-distortion ring emitter construction
- Hermetically welded JEDEC TO-36 male indus. trial case

Characteristics

All these CBS high-power transistors have: Max. dissipation, 150 watts ${ }^{\circ}$ for a typical thermal resistance of 0.5°
$\mathrm{C} / \mathrm{W}_{\text {: }}$
max. collector current, 15 amperes; junction tem C/W: max. collector curren
peratures, -65 to $+100^{\circ} \mathrm{C}$.
peratures, -65 to $+100^{\circ} \mathrm{C}$.

Type	$\begin{aligned} & \text { Max. W. } \\ & \text { Diss: } \end{aligned}$	Mas. Thermal Rescolw	$\begin{aligned} & \text { Mas. } \\ & \text { Vceno } \end{aligned}$	Mar.	Mre Min.	$=5 \mathrm{~A})$
21173	70	1.0	60	50	35	70
2 M 174	85	0.8	∞	70	25	50
2N277	70	1.0	40	40	35	70
2 N 278	70	1.0	50	45	35	70
2 NHA	70	1.0	40	40	20	40
2 N 442	70	1.0	50	45	20	40
2 N 43	70	1.0	60	50	20	40
2N1100	85	0.8	100	80	25	50

save costs • space • weight

You can now replace two 40-watt or four 20-watt paralleled power transistors with one CBS PNP highpower transistor. This one design change brings you important transistor . . . component . . . assembly . . . space... and weight savings. New economies become possible in power supplies and amplifiers and in highpower switching circuits.
Note the wide line of these CBS PNP high-power transistors, their pertinent characteristics and many advantages. Ask for complete technical data. Order these money-saving units today . . . at factory prices for quantities up to 1000 . . . from your Manufacturers Warehousing Distributor.

CBS

semiconductors
Reliable products through Advanced Engineering
CBS ELECTRONICS, Somiconductor Operations, Lowell, Mass. - A Division of Columbia Broadcasting System, Inc.

 CIRCLE 14 ON READER-SERVICE CARD

Guidance Computer Also

Minuteman Soars 4,600 Miles In Successful Maiden Test

GUIDANCE for the successful maiden flight of the solid-fuel Minuteman was handled by the same versatile digital computer used for ground checkout of the missile.
In past ICBM programs only the first stage has been checked on the initial launch. In hopes of speeding up the Minuteman program, however, the Air Force gambled on a test of all three stages and the guidance system on the first shot. The 4,600 -mile successful shot demonstrated the soundness of the computer's design concept.
This versatile computer, which must be extremely reliable because of the Minuteman concept of no field repairs, has been designed by the Autonetics Div. of North American Aviation, Inc. It uses an air-bearing type of magnetic-disk memory, with a capacity of about 80,000 bits, to store checkout and testing as well as guidance and oontrol instructions.
Tests will be performed on Minuteman missiles at regular intervals during storage in underground vaults. If an error is detected, the control computer will cause a "no go" signal to be sent to equipment at the launching site. The missile must then be returned to the factory for repair, since modules cannot be replaced in the field (see description of Minuteman reliability concept, ED, Sept. 14, 1960, p. 4).
Necessary tests can also be performed under the computer's direction after a launching. If a malfunction is detected, an interrupt signal is sent to a warhead-arming circuit
On the ground the computer also controls alignment and calibration functions. In flight it solves guidance and flight-control equations, generates missile-steering commands, and controls staging and thrust-control termination.

Air-Bearing Magnetic Disk Memory Chosen

For Long Life, Tolerance to Acceleration
Since an air bearing eliminates the mechanical friction found in ball-bearing rotating disks, it was chosen for its expected longer life. Another advantage of the air bearing, according to Dr. William L. Morris, project director for the Minuteman computer, is its acceleration tolerance. The force exerted on the disk is inversely proportional to the separation between it and the head plate. Thus, as the acceleration increases, the bearing increases its force on the disk, preventing

Directs Ground Checks

warping. The usual disk-head plate separation is about 150 millionths of an inch.
Crosstalk did cause some trouble, according to Dr. Morris, because the bit spacing chosen was only about 1.5 mils. This problem was solved by redesign of the write heads and read and write amplifiers. Crosstalk is now held to 10 per cent of total information magnitude.
In the present memory design, a solenoid spring pulls the disk away from the head plate by about $1 / 8-\mathrm{in}$. when the computer is turned on. A 400 -cps drive in the computer turns the disk. When the disk reaches a speed of $6,000 \mathrm{rpm}$. the solenoid is fed current that causes the disk to be thrust toward the head plate. A ball bearing is used for this thrusting action. If power to the drive motor fails, a protective circuit causes power into the solenoid to fail also, and the spring pulls the disk away.

Disk Memory Much Faster

Than Mechanical Tope Reader
This disk memory operates at a cyclic rate about a thousand times fas.er than could be expected with a mechanical tape reader on the ground. Thus checkout and testing are performed many times faster than by current practice, according to Dr. Morris. The extensive groundcheckout equipment normally needed is also eliminated.

The computer, which operates in serial mode, is completely transistorized. The silicon devices and germanium-mesa transistors used have been selected for extremely high reliability and hightemperature characteristics. - -

Ground checkout functions as well as guidance and control tasks are performed by this solid-state computer for the Minuteman inertial guidance system. Autonetics Div., North American Aviation, Inc., designed the unit.

The newest Mincom magnetic tape instrumentation recorder / reproducer, to be announced in detail next month, answers the need for better performance in the intermediate frequencies. Covering bandwidths from 200 cps to 300 kc at 60 ips with improved dynamic range, it fills the gap between Mincom's Model C-100 ($125 \mathrm{kc} \cdot 60 \mathrm{ips}$) and the Model CM-100 ($1 \mathrm{mc}-120 \mathrm{ips}$). The new model also is extremely versatile, offering both FM and Direct recording / reproducing. One-rack compactness, all-transistorized electronics. Wait and see more of this new system's extra capabilities.

3M

. Where research is the key to tomorrow
MINCOM division Minnesota Mining and Manufacturing company
2049 SOUTH BARRINGTON AVENUE, LOS ANGELES 25, CALIFORNIA - 425 13TH STREET, N.W., WASHINGTON 4. D. C. CIRCLE IS ON READER-SERVICE CARD

NEWS

Radar-Beacon Tracking Used For Discoverers Series

High-Accuracy Discoverer Satellite Tracking Network Integrates Many Complex Electronic System Concepts

Tracking system for Discoverer-program satellites provides four services: tracking data of sotellite and recovery capsule; command of system; collection of telemetry information; and master timing. Long-Range VERLORT radar used is modified from a previous system and oper ates as radar-beacon system to reduce power requirements at ground stations. Analog data are developed as de voltages by potentiometers for slant range, azimuth and elevation. Digital information is developed by separate encoders and provides tracking data for automatic transmission to test center. Special-purpose orbital computer is included in each radar subsystem. Pulse-beacon transponder carried by Discoverer satellites is redesign of standard microwave missile-borne beacon. Also carried by sotellites is multichannel vhf $\mathrm{fm} / \mathrm{fm}$ telemetry transmitter for recording both environmental and equipment-operating data. Data are decommutated from tape and recorded on oscillographs after each pass of satellite. Doppler-telem etry unit is included in system as backup for telemetry tracker and to provide target-acquisi tion data by reception of cw signal from satellite-borne vhit oscillator. Data-transmission subsystem forwards information to test center at $4-\mathrm{sec}$ intervals.

Sixty-ft dish for receiving telemetered if data is part of the automatictracking subsystem with 1,500 -nautical-mile range. Dish has 7.6 -deg conical scan and scan frequency of 10 cps . It can track and slew to 10 deg per sec and accelerate to 5 deg per sec. Crystal-controlled receiver used, which incorporates phase-lock detection system, has 7 -db noise figure and gain of $1185 \pm 3 \mathrm{db}$.

Time-display systems
Time-display systems for world-wide tracking network in dicate elapsed time in seconds minutes, and hours starting sev eral days before each firing. Dis plays also show estimated time to subsequent events like orbit, re-entry, etc. Basic standard is ex tremely stable 1 -mc oscillator ad justed to WWV timing signal transmissions. Beckman produced 25 displays for network.

Tri-Helix antenna array receives VHF doppler and telem. elry information and permits simultancous telemetry reception and doppler readout to provide tracking data. Based on a two-ax's system, the an. tenno operates with inp : $s \mathrm{~g}$. nals down to -185 db w . The preamplifier and te.e ciry multicoupler have a combined noise figure of less t'an 4 d '. Beam width is $20 \pm 5 \mathrm{deg}$. Doppler and timing data are combined for transmission. Present system, devsloped by Philco Corp., Western Development Laboratories, Palo Alto, Calif., requires manual control, but may be replaced by an outomatic unit now e'n. der development.

Very-Long-Range Tracking (VERLORT) radar locks on and automatically tracks vehicle in range at a rate of at least $10,000 \mathrm{yd}$ per sec with a maximum error of +100 yd . System uses a tunable-magnetron transmitter. The antenno is a 10 - ft parabolic reflector, with a 2.5 -deg bandwidth. Receiver employs a traveling-wave-tube amplifier with a minimum $25 \cdot \mathrm{db}$ gain over the frequency range. Receiver noise figure is less than 7 db , and the minimum discernible signal is below -100 dbm

Complex master timing system for time-indexing data has accuracy of one part in 100 million. Time code is read out every 4 sec in pulse-code words and pulse rates. Two time-code generators are included in each system. Basic $4-\mathrm{sec}$ interval is marked off by 16 -bit binary word produced at 20 -bit per sec rate by accumulator and scanner circuits.

Transistorized vehicle pulse-beacon tiansponder, de signed by ACF Electronics Div provides VERIORT radar with pulsed-signals for tracking. Superhetero dyne-type receiver used has sensitivity of -70 dbm stability of +3 mc between 0 and 70 C , and an image rejection greater than 45 dbm .

$7{ }^{\circ}$
ERAMIC CAPACITORS
Meets MIL-C-11015/18 and 19 (USAF)

UNCASED

- $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- 200 vdc rating
- Small case size

Small case size:
$.2 \pi \times .2 \times 1 \mathrm{thr}^{2} \mathrm{mmf}$
$.3 \times .3 \times .1$ through $10,000 \mathrm{mmf}$

- Also available uncased for complete assembly encapsulation.

Rugged pre-molded flame resistant outer case assures resistant outer case assures anteeing environmental immunity and absolute product unify and absolute product nnifore affords highest capac shape affords highest capacity per usable volume.
. Epoxy potting solidly anchors, hermetically seals capacitor within case; increases mechanical strength and elimnates humidity leaks around leads.

Resilient, moisture-proof plastic sheathing protects unit during assembly and absorbs thermal shock at extremes of temperature cycling.

Uniformly exact dielectric margins around electrodes eliminate short circuiting and eliminate short circuiting and breakdown across edges under surge voltages through 400\% of rating. Single standard $0.2^{\prime \prime}$ lead dimension for all values simplifies circuit design.

Titдamon
 INCORPORATED

Box 544, Bridgeport 1, Conn.
CIRCLE 16 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

NEW SILICON TRANSISTOR TYPES / NEW PARAMETER COMBINATIONS / NEW STABILITY AND RELIABILITY / NEW SPECIAL ASSEMBLIES

THE PASSIVATED SURFACE: an integral silicon oxide coating completely protecting the junctions against contamination during manufacture and
ogainst change with time.

It is of particular significance that Fairchild, the first large-scale producer of silicon mesa types, is now converting all its types to planar structure. Planar is the logical successor to mesa because it offers the same advantages - to an even higher degree - and adds highly desirable characteristics of its own.

THE PLANAR ADVANTAGES:

Complete oxide protection of the junctions. The vital junctions are never exposed to cootamination - even in the earliest stages of manufacture. The surface is so impervious that planar transistors could function even without a case.

Unparalleled device stability and extremely low leakage. Leakage is between 1/10th and 1/100th that of other diffused silicon types - and remains low even with prolonged high temperature storage. Other surface dependent parameters are similarly outstanding in stability.

Broadened operating range with more complete characterization. Planar transistors operate in the same range as similar mesa types - but also have useful beta down to microampere currents. Fairchild is guaranteeing many parameters not ordinarily specified.

All parameters equal or surpass mesa. A direct replacement of mesa types with planar equivalents can be done without aitering your circuits. Cost is the same, and planar adds an extra safety factor in stability, low leakage, maximum power dissipation, and other ratings.

THESE STANDARD TYPES ARE AVAILABLE IN PLANAR
Fairchild 2N696, 2N697, 2N698, 2N699, 2N706, 2N707, 2N717, 2N718, 2N719, 2N720, 2N1420. 2N1613 and 2N1711. See also the new introductions on the next page.

NEWEST ADDITIONS TO FAIRCHILLIS PLANAR LIII:

Besides the conversion of previous types. Fairchild offers a continuing succession of new types in the planar structure:

2N708

PLANAR LOGIC TRANSISTOR
Combining high speed, high beta and high volt age, the 2N708 is a direct replacement for the 2N706. It requires no circuit changes, though it offers higher minimum beta. Like all plana types, the 2N708 offers extremely low leakage and outstanding parameter stability even under sustained high temperature storage.
maximum ratings

$P_{C} @ 25 \quad$ C case temp.	1.2 watts
$V_{\text {CER }}$	20 v
$V_{\text {EBO }}$	5 v
$V_{\text {CBO }}$	40 v
$V_{\text {CEO }}$	15 v

guaranteed parametens min. Maz.

$\begin{aligned} & \mathrm{I} \mathrm{CBO} \underset{ }{25^{\circ} \mathrm{C}} \\ & \pi 150^{\circ} \mathrm{C} \end{aligned}$		25 mual
		$15 \mu \mathrm{~A}$
$\begin{gathered} { }^{I} C E X \odot V_{B E}+25 v, V_{C E} \quad 20 v \\ 125 \mathrm{C} \end{gathered}$		$10 \mu \mathrm{~A}$
$V_{B E}(S A D) ~ \sqrt{R} I_{C}=10 \mathrm{~mA} I_{B}=1 \mathrm{~mA}$. 75	. 82
VCE (SAI) © IC $10 \mathrm{~mA}, \mathrm{IB}=1 \mathrm{~mA}$. 40
hFE 0 IC $=10, ~ V_{C E}=1 \mathrm{~V}$	30	120
hie $\sqrt{\text { c }} 100 \mathrm{mc}$	3	
$T_{5} \cong I_{C}=181=182=10 \mathrm{~mA}$		25 nsec
$\mathrm{I}_{\text {O }}$ @ $\mathrm{IC}=10 \mathrm{~mA}$, $I_{B 1}=3 \mathrm{~mA}$		35 nsec
$\begin{aligned} I_{\text {off }} \sqrt{a} I_{C}=10 \mathrm{~mA}, & I_{B 1} \end{aligned}=3 \mathrm{~mA},$		75 nsec
$C_{0 b} \sqrt{a} V_{C B}=10 v$		6 pf

PLANAR

F1210

FIRST
KILOMEGACYCLE SILICON TRANSISTOR
Two nanosecond propagation delay in saturated logic or 500 mc high efficiency output as an oscillator are typical performance. The FT1210 is also the fastest silicon transistor with micro. watt logic capabilities.

FT1210 1 k me OSCILLATOR

cuaranteed parameters and ratimes

hfe (a) 3mA, Iv	20 min.
${ }^{\text {CBB }}$	30 r
$V_{\text {EBO }}$	3.5 v
P_{C} max © ${ }^{\text {a }} 255^{\text {C ambent }}$	200 mm
TYPICAL CHARACTERISTICS	
\dagger	800 MC
1 CBO (13 150 C. 150	$25 \mathrm{~m} \mathrm{\mu}$
Cob ra Oma, iov	1.2 of
$\mathrm{Cib}^{\text {¢ }}$ ¢ Oma, 0.5v	1.6 pf
RF SPECIFICATIONS	
Available gain, 200 mc	$12 \text { to typ }$ $25 \mathrm{mw} \text { typ. }$

FT6200

30 WATT PLANAR POWER TRANSISTOR A high frequency transistor suitable for power oscillators. RF amplifiers and memory-driver applications. The FT6200 features a newly developed power package and is the only power transistor offering planar reliability.

fT8200 POWER DSCILLATOR
10 Watts at 10 mc

guaranteed parameters ano ratines

$V_{C B O}$	60 v
$V_{\text {EBO }}$	5 v
VCER $\sqrt{41} 10 \Omega$	40 v
P_{C} @ $25^{\circ} \mathrm{C}$ case	30 watts
T_{j} max	200' C
VCE (SAT) fit IC 12 mp . $I_{8}=1 \mathrm{amp}$	1.5 v
$V_{B E}(S A D)$ (4) $\mathrm{IC}=1 \mathrm{mp}$. $\mathrm{I}_{\mathrm{B}}=1 \mathrm{amp}$	1.5 v
	20

TYPICAL Parameters

भf © 20 mc , VCE $=20 \mathrm{y}$, ic 200 mA	60 mc
Pout Osc. (5) 10 mc	10 watts
Osc. eff. © 10 mc	50\%
tor delay + rise (a) IC IA	40 nsec

MULIIPIE ASSEMBLIES

Functional multiples of several transistors and/or diodes with common or isolated electrical connections can now be packaged together by Fairchild. This reduces the number of external soldered connections and makes possible higher packing densities. The planar technique affords the uniformity, stability of parameters and the high yield through assembly necessary to make such multiple units economically and operationally feasible.
FOUR EXAMPLES
(Assembled in JEDEC TO-5 outline except as otherwise noted.)

FSP-14 A low level logic block Consisting in this ex. ample of four diodes and
one transistor with common electrical conections across
the header.

FSP. 2 Difforential amplifier. Consisting of two planar transistors thermally
matched and closely matcheo in DC hfe and VBE. and having all connections with transparent window.

Special assemblies for your requirements
These or other multiple semiconductor devices (transistors, diodes and resistors) packaged in a single assembly are available from Fairchild's Special Products Group. Write for details.
Write today for more information - and a copy of the new 12-page full.color Fairchild Planar Story, which fully explains the process.

545 Whisman road - mountain view. california YORKSHIRE 8.8161 - TWX MN VW CAL 853
A wholly owned subsidiary of Fairchild Camare ond instrumant Corporstion.

YOUR BEST BUY FOR APPEARANCE AND PERFORMANCE... WESTON 301 PANEL METERS

Now. . .modern 3½-inch meters with time-tested Weston movements

You'll find new design advantages in the familiar, reliable Weston 301 panel instruments. Case and mechanism are redesigned for modern needs-more reliable than ever hefore-at no increase in cost!
The exclusive Cormag ${ }^{\text {B }}$ mechanism makes the 301 immune to the effects of stray magnetic fields. Instruments can be mounted on magnetic or nonmagnetic panels, close to other instruments, without special adjustments. Choose between round or rectangular case, modernistically styled in phenolic plastic.
Another design advantage... New $2^{1 / 3}$-inch Weston panel instruments-the 201 series-are designed with matching cases and incorporate the same advanced features!
For specifications...information ... or the address of your nearest distributor, contact your local Weston representative or write to: Daystrom, Incorporated, Weston Instruments Division, Newark 12, New Jersey.
International Sales Division, 100 Empire Street,
Newark 12, New Jersey. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ontario.

DAYSTROM, INCORPORATED
 weston instruments division
 DAYSTROM, INCORPO WESTON INSTRUMEN Reliability by Design

Weseon 301 socies is avaitoble in \propto, de, and RF rypes ... voltmeters, ammoters, milli and miero-emmotors . . . in dosens of ranges. Both round and rectengular meters ore fluch mounted. 301 Series "equirer 2.82" diometer culowl, 201 Sopies requires a $2.22^{\prime \prime}$ euloul.

NEWS

IR Maser Offers First CW

Pioneering Communication Uses Sought With Helium-Neon Tube

COHERENT-LICIIT commmication systems - appear significantly closer to realization with news of a cw infrared maser developed at Bell Telephone Laboratories, Murray Hill, N.J. The device, employing a mixture of helium and neon, delivers a principal output of 15 mw at 1.153 microns. Minimum line width is reportedly 10 kc , and beam spread is less than 1 min of arc.
The gas-discharge principle used in this first cw source of coherent light could prove applicable in a wide variety of gases and gas mixtures, according to Bell scientist 1)r. Ali Javan, inventor of the device. A family of such masers, considerably more powerful and efficient than the laboratory model demonstrated by Bell, could follow.
Dr. Javan indicated that later versions of the gas discharge maser might operate at wavelengths as short as 5,000 A. Such a "green" maser would be of considerable interest to Navy scientists, who believe that a transmission "window" in sea water at about 5.000 A may permit submarine detection by a form of light radar.

The maser's cw operation was demonstrated to the press by transmitting a phone conversation through Kerr-cell modulation of the IR beam, but the communications potential of the device is being seriously investigated at Bell.
"We are studying other gases and a number of unique modulation methods as well, but unfortunately I can't be more specific just yet," Dr. Javan says.
The maser is pumped by a 28 -mc signal applied to a 10 to 1 helium-neon mixture in a

Continuously operating IR maser tube is inspected by a Bell Telephone Laboratories scientist, Donald Herriott. Tube contains helium-neon mixture ot low pressure, pumped by if discharge. Light emonating from tube is the normal neon glow and does not indicate the extremely directional IR beam that exits from the ends of the fube.

Source of Coherent Light

slender glass tube at about 1 min of pressure. Helium atoms excited by the signal transfer their energy to the neon atoms through a collision process, thereby creating an excess of neon atoms at a higher energy level.

This energy is then surnomeded by maser radiation as the neon atoms return to a lower energy level. Since the collision process is relatively efficient and the total of atoms involved is small, the principle lends itself to cow operation with a pumping source of reasonable size. The rf generator used in experiments thus far has an output of approximately 50) w
Similar in design to the solid-state masers developed to date, the gas maser is built as a Fabry-Perot interferometer with high reflective, multiple-layer dielectric mirrors at cach end of the tube. The light is thus reinforced by many trips through the tube, where it gains intensity by stimulating maser action in additional neon attoms.
Because of the many excitation and relaxation levels possible for neon in this system, some 30 different 18 wavelengths can be gencrated by the maser. Principal modes are selected by tuming the interferometer and by maximizing reflectivity of the mirrors for specific frequencies. Thus far five oscillations between approximately: $11,(K K)$ and $12,(K K)$ atoms have been observed.
Colaerence of the output. denoting maser acetion, has been demonstrated by heterodyning two such frequencies to produce casily detected beat notes in the if region.

Russian scientists are also studying gas discharge masers and have reportedly operated a mercury-zinc unit. These and the better-known single gas masers operate at room temperatures and may prove more feasible for ystemus we. :-

Coherence and narrowness of cw maser is illus. trated by heterodyning the separale frequencies generated by the device. The beat noles shown range from 50 kc to 2 mc . Widths range from 10 to 80 kc . ELECTRONIC DESIGN • February 15, 1961

Silicon Mesa Transistors Sylvania-2N686, -2N697

current capabilities temperature storage power dissipation switching speed

Sylvania-2N696, -2N697 are large-signal NPN devices capable of switching high currents at high speeds with highest reliability. In addition, they are well-suited for high-frequency amplifier applications. Conservatively designed, these Sylvania Silicon Mesa Devices exhibit exceptional typical characteristics, provide high power dissipation of 2 watts at $25^{\circ} \mathrm{C}$ case temperature, and a $t y$ pical beta of 25 at 500 mA .
Sylvania-2N696, -2N697, hermetically sealed in TO-5 packages, are capable of storage life at $300^{\circ} \mathrm{C} . \mathrm{Too}$, they demonstrate remarkable uniformity of characteristics and excellent stability on life-the results of improved design, automated techniques and rigid Sylvania in-process quality controls.
Learn more about Sylvania-2N696, -2N697 and other Silicon Mesa Transistors from your Sylvania Sales Engineer or Sylvania Franchised Semiconductor Distributor. For technical data, please write to Semiconductor Division, Sylvania Electric Products Inc., Dept. 182, 1100 Main Street, Buffalo 9, N. Y:

PULSE•FORMING NETWORKS

FROM WATTS

to MEGAWATTS

... and everything in between!

When it comes to pulse capacitors and pulse-forming networks, many complexities in parameters and design factors must be considered. These specialized units must be designed and manufactured by a specialized organization. And because Sprague maintains a highly-technical special engineering section devoted exclusively to pulse capacitors and networks, it has been, from the very beginning, a major supplier of these complex units for radar equipment (ground, marine, aircraft, missile), tube testing, and similar pulse circuit applications.

T This special engineering section performs four important functions: One group designs custom units in accord-
ance with required parameters. Another group builds pulse capacitors and networks to these precise specifications. In another area, a group of specially-trained field engineers provides application assistance wherever needed. And yet another independent group works toward the future developing new materials, new design concepts, and new techniques for manufacture.

\square
This concentration on pulse capacitors and pulse-forming networks has enabled Sprague to introduce product improvements such as heliarc sealing of cases, rugged alumina bushing assemblies, Fabmika dielectric, and improved hermetic sealing of closures.

WASHINGTON

John J. Christie

NASA'S INFLUENCE ON COMMUNICATION SATELLITE DEVELOPMENTS is due to increase significantly. The space agency has initiated its first active communications satellite project by seeking bids on Relay. It also has begun preliminary studies on Rebound, an advanced version of its highly successful Echo passive communication satellite.

The Relay low-altitude active communications satellite is scheduled for a Delta vehicle launching in mid-1962. The 85-1b satellite will evaluate the transmission of wideband signals. including $T V$, multichannel telegraphy and data handling, between the East Coast of the U.S. and the West Coast of Europe.

While the proposed American Telephone and Telegraph Co. satellite will have two packages transmitting and receiving in both directions, Relay will transmit and receive in only one direction at a time. Its second receiver-transmitter package will provide redundancy for added reliability.

Relay will have an additional research mission-the measurement of radiation damage to solar cells and other critical components. Its payload will include a radiation instrument package and test panels of various types of solar cells.

A NASA conference to acquaint prospective bidders with Relay specifications drew representatives from 40 companies, including AT\&T and International Telephone and Telegraph's Federal and Kellogg Divisions. About one-fourth of the contenders were aircraft companies. Proposals are due March 6.

The space agency set as a general design objective for Relay an operational life of one year in orbit. Specifications contain stringent reliability and maintainability requirements. For example, it is specified that no circuit adjustment shall be required after a subassembly is installed. If controls must be adjusted after a unit is installed, they must be accessible without removal of any other unit.

NASA's specifications require the successful bidder to deliver four complete satellite assemblies: one prototype, two plight satellites and one flight spare. In addition a structural model with dummy electronics is required for structures tests.

MULTIPLE LAUNCHING OF SPHERES and development of a more rigid, more durable reflector than the inflatable Echo balloon are the twin objectives of Project Rebound.

Preliminary planning envisions Rebound spheres with a much thicker skin, probably of mylar and aluminum foil. A 140-ft diam, compared with Echo's 100 ft , will provide considerably more reflecting surface for higher-altitude operation. Rebound is expected to orbit at about 1,500 miles, or about 500 miles higher than Echo. The Rebound spheres are expected to weigh between 500 and 600 lb , compared with Echo's 136 lb .

Initially it is hoped to launch three spheres from a single
vehicle, but more are planned in subsequent tests. The first multiple launching is projected for 1963 and will probably be accomplished with an Atlas-Agena B vehicle. Meanwhile continuing experiments with Echo will require a launching this year and another in 1962.

When Febound was Pirst under consideration some months ago, a NASA report outlined the purpose and procedure as follows: - Studies indicate that at least 12 passive communications satellites spaced around the world are required to provide essentially continuous communications. For this plan to be economically Peasible, several satellites should be placed in orbit by a single vehicle. Initial development under this project will be concerned with the problem of packaging and erection of reflectors upon ejection into orbit. If this work appears promising, then further attention will be directed to the problem of providing period control for multiple passive satellites."

Design and Pabrication of Rebound will be done under contract, as in the case of Relay and most upcoming NASA projects.

GREATER EMPHASIS ON OCEANOGRAPHY is reflected in budget provisions for increased spending on research vessels, expeditions and laboratory programs by several federal agencies and by the recent establishment of a National Oceanographic Data Center in Washington.

According to the Office of Naval Research, a priority requirement in instrumentation $R \& D$ is a means of translating signals from sensing devices to digital form for on-the-spot recording on magnetic or paper tape. Most R\&D for oceanographic instruments will be conducted in Navy laboratories, with industry getting contracts for engineering, packaging and production.

CONTRACT RENEGOTIAIION is again a subject of controversy as the staff of the Joint Congressional Committee on Internal Revenue Taxation solicits industry and Government views for a report it must make to Congress by March 31. The March report was required by the last extension of the Renegotiation Act, although the act itself is not due to expire until June 30, 1962. Whether Congress intends to take up the matter at the present session is not clear. However, introduction of bills relating to the general subject of defense industry profits is inevitable.

Industry spokesmen prefer that the Renegotiation Act be allowed to die. If Congress insists on keeping it alive, they urge that some fundamental changes be made. EIA, speaking for the electronics industry, has taken the position that the act has clearly outlived its original purpose, which was to prevent excessive or windfall profits under crash-procurement programs, such as during the Korean War. The association contends that current armed forces procurement regulations and contracting procedures preclude profit-making abuses. It cites the safeguards built into cost-type contracts, a variety of redeterminable contracts and competitive bidding.

If Congress insists on extending the act, EIA and other industry groups would like revisions that would clip the wings of the Renegotiation Board. In a brief filed with the committee staff, EIA called attention to what it termed a "tendency on the part of the board to view renegotiation as essentially a rate-making or public utility type of proceeding" rather than a means of recapturing unconscionable profits, as was intended.

HOPKINS TYPE MCA
 Mylar"- epoxy capacitors

- thin as a disc, and

 temperature stable

You can fit these ultra-thin units into the narrowest chassis spaces into printed circuit and transistor layouts . . . into closely stacked arrangements-and get the benefit of excellent temperature stability. Capacitance change is only 1.5% at $85^{\circ} \mathrm{C}$.
Low power factor-less than 1% at 1 Kc and $25^{\circ} \mathrm{C}$.
Wide temperature range: from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ at full rated voltage. Units operate at $125^{\circ} \mathrm{C}$ with 50% derating.
High insulation resistance: 75,000 megohms min. at $100 \mathrm{VDC}, 25^{\circ} \mathrm{C}, 2 \mathrm{~min}$. Long life-extremely stable over long periods of continuous operation at high temperature or exposure to highest humidities.
Epoxy encapsulation. An extra tough coating resists moisture and chemicals . . . permits close stacking without danger of arcing or shorting . . . won't melt or drip under excessive heat . . . is immune to solder damage. Choice of leads-either straight or formed, to meet specific needs.

-DuPont trade name
Write for MCA data sheet.

TEFLON

Cable of TEFLON cuts costs...controls automated water supply with maximum reliability

CAN YOU AFFORD NOT TO USE "TEFLON"?

- Insulation of TEFLON TFE resins and the new mcll processible TEFLON FEP resins is your logical and most economical choice
whenever your cable encounters problems of corrosion ... high temperature .. space or weight limitations.
- Even when environmental conditions are not extreme. these most reliable of solid
dielectric materials can enable your dielectric materials can enable your performance.
- In your next cable application, il will pay you to evaluate the dollars and cents savings in installation, in replacement, in maintenance and downtime made possible by insulation of TEFLON.

A special cable construction with insulation of a Du Pont TEfion fluoro carbon resin was chosen for new automatic pressure and flow controls in the water system in Denver. Colorado The location of pump stations and reservoirs restricted the use of overhead services-and. consequently.cables had to withstand underground environment A ribbon type. 20 conductor cable coated with TEFLON solved the problem. It provides the necessary resistance to soll chemicals and zero moisture absorption. as well as the low capacitance required in the signal circuits In addition. the cable resists damage from abrasion and handling in unfavorable laying conditions and reduces installed cable costs by approximately 50%
In a variety of industrial installations. insulation of TEFLON is providing outstanding electrical properties plus the mechanical and chemical properties that assure long. trouble free life with a minimum of maintenance problems. For more information consult your vire coater who uses TEfLON fluorocarbon resins. or write to. E I du Pont de Nemours \& Co (Inc) Dept. ED-215,Room 2526T Nemours Bulding. Wilmington 98. Delaware In Canada- Du Pont of Canada Limited. P. O. Box 660. Montreal. Quebec

Tiflon is Di" Pumr's registered trudemark for is family of Huorocarbon resins., inc luding TFE (letraftuoroethylene)

NEWS

High-Power Magnets Predicted With New Superconductors
Design of lightweight, superconducting magnets in the $l(x),(x) 0$-ganss range is forecast with new materials and techniques deveoped by Bell Telephone Laboratories, Murray Hill, N.J. A 15,000 -ganuss magnet only 4 in. long and less than 1 in . in diameter using molybdenum-threerhenium ($\mathrm{Mo}_{3} \mathrm{Kh}$), has been successfully demonstrated.
Tests of niobium-three-tin $\left(\mathrm{Nb}_{3} \mathrm{Sn}_{\mathrm{n}}\right)$ indicate that a $1000,(000$-gauss magnet of this material would weigh only several hundred pounds. Magnets of this size and field strength are expected to open new areas in the design of masers, traveling-wave tubes and fusion reators, Benl spokesmen said.
Most proposals for high-field superconducting magnets have been frustrated because superconduction is quenched by relatively weak magnetic fields. $\mathrm{Nb}_{3} \mathrm{Sn}$, however, is said to retain its superconductivity at fields of more than 88 (h) g) gauss.

Although the properties of this material are fairly well known, its extreme brittleness has prevented falsication into corils and wires for use in magnet. Bell scientists say they have overome this dilficulty be the following novel technique:

A powdered misture of niohium and tin is sealed in a niobium tuber, which is then extruded through a die as a long wire. Since the niobium and tin are still in their clemental form, the wire remains ductile and can be wound into a coil or other desired shape. Only then is the wire heated in a furnace to react the two metals. The niohium casing itself is not superconducting in high magnetic fields, and it insulates the wire when the magnet is in operation.

The method was developed by Gene Kunzler Ernest Buehler, Frank Hsu and Jack Wernick scientists of Bell.

Hazeltine Gets Army Contract For Transportable 40-Ft Antenna

New transportable 40 - ft radar antennas to be used with Army air-detense radar are being designed and developed by Hazaltine Corp. of Little Neck, N.Y.
Adaptable to all air-defense ground radars the OA-1227 can be segmented and transported by helicopter or truck. An experienced Army team can set it up rapidly in the field. Accord ing to Army test reports, radar performance has been greatly improved as a result of using the Hazeltine antenna. The antenna is being developed under a $\$ 2.6$ million Army contract.

ELECTRON TUBE NEWS

...from SYLVANIA

...tubes with
built-in
reference display
scales!

...new
multi-trace
type CRT!

SYLVANIA "BONDED SHIELD' CRT'S FOR I\&M DESIGNS-Now Sylvania adds the advantages of "Bonded Shield" to 14 industrial-military cathode ray tubes. A scratch-resistant, annealed-glass safety cap, Sylvania "Bonded Shield" eliminates conventional safety glass cuts reflecting surfaces 50%. . . dramatically reduces specular images. . . increases apparent light transmission and contrast for improved image readability. Image display is brought "out front" for wide-angle viewing, mounting and styling are simplified, tube face is easily cleaned and vastly strengthened against breakage. Sylvania "Bonded Shield" caps are also available with anti-reflection treatment that can diffuse up to 70% of reflected light. Want more? Several CRT types feature calibrated reference scales permanently etched on the bonded safety cap, thereby reducing viewing
errors caused by parallax. X'irtually all popular CRT's, from 3" to 27." can be supplied with Sylvania "Bonded Shield. Investigate its potential with your Sylvania Sales Engineer.

Equivalent Standard Type	"Bonded Shield" Type	Equivalent Standard Type	"Bonded Shield" Type
5FP4A	ST-3082	10SP4	ST-3080
50P4	ST-3077	$12 \mathrm{KP4A}$	ST-3081
SUP1	SC-3074	$12 \mathrm{LP4A}$	ST-3115
SUP1	SC-3076*	$14 \mathrm{BAP4}$	ST-3101
5ABP1	SC-3119*	$16 \mathrm{WP4B}$	ST-2843
5ADP1	SC. 3114	$17 \mathrm{BP4A}$	ST-3084
$75 P 4$	ST-3078	$17 \mathrm{HP4B}$	ST-3086
7 TP4	ST-3079	170WP4	ST-3102
$8 \mathrm{KP4}$	ST-3100	24YP4A	ST-3085
10FP4A	ST-3083		

[^1]
3 high-resolution

CRT's for photo-recording

The broad capabilities of Sylvania in the field of highresolution CRT's are well illustrated by the definitionrange of three $5^{\prime \prime}$ diameter types. SC-3042 has a line width of ().()075". SC-2782 offers a $0.001^{\prime \prime}$ line width, while the ultra-high-resolution SC-2809 provides a line width of $0.0008^{\prime \prime}$
SYLVANIA SC-3042 features electrostatic focus and deflection, minimum pattern distortion and maximum sensitivity. It is availahle with a choice of eleven screen phosphors ranging from P1 to P25.
SYLVANIA SC-2782, SC-2809 feature aluminized screens. line grain P11 phosphor, conventional magnetic focus and deflection, non-ion trap guns. They simplify associated circuitry requirements, offer significant savings in equipment costs. Screen phosphors other than P11 are also available.

New Sylvania SC-3061 - multi-trace CRT

SC-3061 features three highly reliahle. independently controlled electron guns capable of tracing three displaty simultancously on its $10^{\prime \prime}$ diameter face. The three geuns focus undeflected spots $1^{3} x^{\prime \prime}$ apart on a common vertical line. The useful horizontal scan of each is approximately $8^{1} 2^{\prime \prime}$. SC-3061 is electrostatically focused and deflected and features an astigmatism control electrode. Deflection factors, at 5KV anode voltage are approximately 1300 in. horizontal and 7()N in vertical SC-3061 uses P I phosphor, but several other screen phosphors are also availathle.

Sylvania spiral accelerator tubes for precision 'scope applications

SYLVANIA-5BGP-, -5BHP- utilize an internal helical resistance coating to provide a uniform increase in accelerating voltage from deflection plates to the screen. They feature high-quality aluminized screens, high deflection sensitivity and accuracy, electrostatic deflection and focus. Both types can be supplied with a wide range of phosphors, all of which are rigidly controlled for premium characteristics.

Absolute Man Ratings	5BGP.	S8MP.	Units
Anode No. 3 Voltare	13.200	13.200	vac
Isotation Shield Voltage	2,300	2.300	vac
Deflection Plate Shield Voltage	-	2.300	vac
Anode No. 2 Voltage	2.200	2.200	vac
Anode No. 1 Voltage	880	880	vac

New Sylvania SC-3093-3" monoscope CRT for high-speed printing

Custom-built SC-3093 provides signal generation of characters to associated high-speed printing equipment. SC-3093 features electrostatic focus and deflection and provides a built-in $2^{\prime \prime}$ sq. target plate with a capability of 64 alpha-numeric characters. Similar monoscope tubes can be supplied to your specifications with a variety of black and white halftone patterns.

New Sylvania low-heater-power CRT's

Developed by Sylvania, the new highefficiency heater-cathode assembly consumes only 1.5 (a 140 mA - less than 6% of the normal CRT heater power requirements. A flat pancakelike structure. (0.05 $05^{\prime \prime}$ in diameter and 0.(011" thick, it possesses extremely low mass, thereby enhancing resistance to shock and vibration. It is adaptable to practically all present-day CRT designs.
SYLVANIA -3BGP- offers high-deflection sensitivity, electrostatic deflection
and focus, optical-quality, clear, presied faceplate. It is a compact, direct-view scope tube with face dimensions of $11 / 2^{\prime \prime} \times 3^{\prime \prime}$.
SYLVANIA -3BMP- is a $3^{\prime \prime}$ diameter tube with flat. clear faceplate. It offers post-dellection acceleration, electrostatic deflection and focus.
SYLVANIA SC-3016 features extremely compact size of only $6^{\prime \prime}$ in length and a circular face of $11 / s^{\prime \prime}$. It provides high-deflection sensitivity, electrostatic focus and deflection.

$\begin{gathered} \text { Key } \\ \text { Characteristics } \end{gathered}$	386p.	38MP.	SC-3016	Units
Heater Ratings	$1.5 \mathrm{~V} / 140 \mathrm{~mA}$	$1.5 \mathrm{~V} / 140 \mathrm{~mA}$	1.5V/ 140 mA	
Anode No. 3 Voltage		6600*		Vac
Anode No. 2 Voltage	2750*	2200*	2750*	Vdc
Anode No. 1 Voltage	1100°	$150{ }^{\circ}$	$1100{ }^{\circ}$	Vdc
Face Dimension	11/2 $\times 3 / 4$	3	11/8	inches
Over-all length	91/4	10	6	inches

-Absolute max ratings

Proven Sylvania capabilities in design and manufacture run the breadth and width of CRT applications - from highly sophisticated radar equipment to automobile ignition testers. The more than 200 Cathode Ray Tube types presently available represent only a small segment of Sylvania product capabilities. If your industrial-military design pre-
sents a CRT problem - look to Sylvania for solutions. Your Sylvania Sales Engineer will be pleased to work with you. For further information, contact the Sylvania Field Office nearest you. Or, for data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. B. 1100 Main St., Buffalo, N.Y.

MICROWAVE DEVICE NEWS from SYIVANIA

WR-75 waveguide ferrite isolators provide

-high isolation - low insertion loss - low VSWR-exceptional compactness

Sylvania introduces six new, narrow-band, high-performance ferrite isolators for common carrier and commercial microwave systems. Sylvania FD-7511, -7512, -7513, -7514. -7515, -7516 exhibit high isolation to insertion loss ratios, as much as 60 to 1 over a broad frequency range. Lengths are from $21 / 2^{\prime \prime}$ to as short as 11/2". Sylvania WR-75 Ferrite Isolators exhibit unusually low VSWR and excellent stability over a temperature range of -30 C to $+60^{\circ} \mathrm{C}$
Investigate the advantages of Sylvania's extensive ferrite device line for your microwave design. Contact your nearest Sylvania Field Office. Or, write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. MDO-B, 1100 Main St., Buffalo 9, N. Y.

TYPE	prequency (KMC)		$\begin{aligned} & \text { MIN. Max. } \\ & \text { ISO. IMSERTION } \\ & \text { LATION LOSS } \\ & \text { (} 1 \mathrm{~b} .) \text { (db.) } \end{aligned}$		VSWR (Input 6 Output)	Lengin (Inches)
	min.	Mar.				
7511	10.7	11.7	20	0.4	1.2	11/2
7512	10.7	11.7	40	0.7	1.2	2
7513	10.7	11.7	60	1.0	1.2	$21 / 2$
7514	12.2	12.7	25	0.4	1.12	$11 / 2$
7515	12.2	12.7	40	0.6	1.12	2
7516	12.2	12.7	60	0.9	1.12	$21 / 2$

SYLVANIA

Tasker Flight Control Equipment Undergoing NAFEC Evaluation Tests

Flight conditions are displayed on air-control radar screens with a new system now under evaluation at the National Aviation Facility Experimental Center in Atlantic City, N.J.
This erpuipment, designed by Tasker Instruments, I'an Nuys, Calif., includes a video-tracker programer, radar aircraft tracker, display-character generators, radar video conditioner, precision appoach radar (PAR) consoles, and support equipment.
The video-tracker programer contains a magnetic drum memory that stores more than 200,000 bits of digital information concerning the identity; destination, arrival time, aircraft type, and control data for as many as 50 aircraft. These data are presented to controllers on their radar displays. The radar display consoles use a 21-in. diam daylight-viewable display with alphanumeric symbol printing.

The radar trackers are used to provide continuous position data on all aircraft; they are comprised almost completely of semiconductor circuitry and controlled by digital logic via the programer.

The equipment developed by Tasker will aid the controller in processing aircraft through the crucial ascent and descent phase of air flightsthe terminal area. They will aid the controller to monitor and direct all the aircraft within a $30-\mathrm{mi}$ radius of high density air terminals.

If three dimensional radar is added later to the control facility; the system can be adapted to display altitude information.

CHANGE NOTICE

SUBJECT: Test Instruments*
DATE OF EFFECTIVITY: At Once

* Hathaway Denver, recognized for quality in design, development and manufacture of measuring, testing and control instruments, announces the acquisition of the test instrument line formerly Produstrial Electronics Electronics, SIE Division (formerly Southwestern Industrial Electronic. Company).

MEMO TO: Test Instrument Buyers

The line of test instruments formerly produced by SIE will now be manufactured and distributed by Hathaway Denver and will carry the Hathaway Denver label. The line includes:
VOLTMETER (ModelR-2)
This completely new voltmeter offers more in a single instrument, in terms of functional versatility, range and accuracy, than has ever been avail able in an electronic voltmeter.

- 1 MV-1000) V AC and DC
- 10 ohms -10 megohms midscale
- Frequency range $10 \mathrm{cps}-1 \mathrm{mc}$
- D(Distend-upper 10°; or $1^{\prime \prime}$; of any DC volts range can be expanded to cover the full meter scale.
MICROSOURCE (Model K-1)
('an be used in conjunction with any standard oscillator in the frequency range of $10 \mathrm{cps}-1 \mathrm{mc}$ to produce small. known controlled test signals. An internal battery and associated polarity reversing switch allow testing of high gain DC amplifiers. Direct reading voltmeter: 10 volts maximum output: continuously adjustable.
SIGNAL GENERATOR (Model N-2)
Continuously variable over the frequency range from 1 cps to 1 mc in 6 overlapping bands. each having a ratio of over 10: 1, this signal generator operates from 115 volt line and produces an output of 0 to 10 volts rms at less than 1% distortion.
- Resistance Meters
- Audio Response Plotters

- Vibration Meters
- Comparison Bridges

Weite for Dulletins on those products
HATHAWAY DENVER
5804 East Jewell Ave., Denver 22, Colo.

division of HATHAWAV INSTRUMENTS, INC

SEMICONDUCTOR TEST EQUIPMENT

To Accurately Evaluate Semiconductor Parameters

- Incoming Inspection
- Production Test
- Reliability Systems

20 AMPIRE DYNAMIC RECTIFIER ANAEYZER
Forword current 1/5/20 Solf-contained, no
amp. D.C. full sealo

- Roverse voltage

250/1000V. peat

- Forward voltage drop
$0.1,0.5 \mathrm{~V}$.
0.1, 0.5V.
ina to 50 ma . in four ranges
- Mirtornal load resistors - Mirror scale 1% - instruments
- Tests under actual
operating conditions in ina to 50 ma . in four ranges Mill. Specs.
- Madol 170 Price $\$ 855.00$ Delivery: Srock-2 Wooks

75 AMPIRE SUROE TEST ADAPTER

- Provides surge current test for silicon rectifiers in occordanee with
Mil. Specs.
- Continually adiustable
to 75 amp. peak
sinusoidal pulse
- 660.2500 and 6000 amp .
- I\% monits availoble
- 1\% monitoring aceurocy
automatic programming Delivery: Stock-2 Weeks

LHEE TEST MODULE

- Self-contained switching module

Reduces operating co

- Plug-in rack adapters 5 mable for 3, 4, and
- Forward dro
-qualizing resistors Dolivery: Stock-2 Wook

MODULAR DYNAMIC TEST POWIR SUPPLY

- Simulator circuit
reverse voltoge
odiusted independently
- RRduces operating cosis
by a foctor of 50
- Capacity is 20 rectifio 0.1 to 1 amp. or an to 2 rectifiers, 10 amp . eoch

200 AMPERE DYNAMIC

- Forward current 20/200 amp,
D.C. full secle
- Roverse voltage
- Forward voltage drop
$0.5 / 10 \mathrm{~V}$. peok
- Roverse current from 2 uo
to 250 mo . in four ranges
- Solf-contained, no
- external load rasistors
- Mirror scole 1
- Testa under actual
operating conditions in
oceordance with Mil. Specs.

Complete Reliability Evaluation Systems Available
WALLSON ASSOCIATES, INC.
912.914 Westfield Avenue * Elizabeth, N. J. . FLanders $1-0700$ Manufecturars of Somiconductor Test Equipmonl
Soe our full line of Somiconductor Test Equipment at Boeth \#3006 CIRCLE 24 ON READER SERVICE CARD

NEWS

ECI Weather Display System Slated for Project Mercury

A weather-display system developed at Electronic Communications Inc.'s Facsimile Div., will be used in Project Mercury, the man-in-space program.
Called the Electronic Messenger, the system is currently in use by the U. S. Weather Bureau for the instantaneous transmission and receipt of daily weather information. In Project Mercury it will be used to speed photos of cloud formations, and other data of special interest in launching of a manned satellite, between six U. S. Weather Bureau stations strategically located throughout Central and South Florida.

Here is how the system will work. Polaroid photos will be taken of the radar scope showing the complete weather pattern, at any given moment, within the range of any particular weather station. Developed and annotated in seconds, this photograph, together with any supplemental written or weather map information desired, is fed into an Electronic Messenger transmitter or transceiver for instantaneous receipt by other weather stations. These weather stations include those located at Cape Canaveral, Miami, Tampa, Patrick Air Force Base, and Daytona.

Youthful Scientist Blasts Off

After a four-hour countdown, at the Naval Ordnance Test Station, China Lake, Calif., 20 -year-old Marshall Kriesel of Owatonna, Minn., pushed the launch button on the 11 -ft missile that he designed and made himselt, with the encouragement of Minneapolis-Honeywell of. ficials. Missilemen said young Mr. Kriesel's "homemade" rocket, which veered off-course and crashed before attaining full altitude, was a highly complex one. Mr. Kriesel, who is going on with missile work, in vested four years and $\$ 3,500$ in his "bird."

New Tool Measures Ultra-Low Pressures

A laboratory tool for measuring pressure down to about $10^{-10} \mathrm{~mm}$ of mercury has been developed at the Westinghouse research laboratories.

The device, known as a photomultiplier ion gage, was developed by the Westinghouse research physicists IV. J. Lange, Henry Riemersma, and R. E. Fox as part of an ultra-high-vacuum research program supported by the U. S. Atomic Energy Commission's Project Sherwood. Project Sherwood is a long-range research program aimed toward achieving controlled nuclear fusion for peacetime uses.

In the new pressure-measuring device the heated filament is done away with completely. Rather than use a hot surface to produce the required ionization of the gas, a beam of ultraviolet light is employed. The light is beamed onto a metal surface which has the ability to release electrons under the stimulus of the ultraviolet rays, the company said. These electrons are guided onto a series of similar surfaces which multiply the electrons in speed and number. These electrons then are used to form the ions that are collected and counted in the usual fashion.

Photomultiplier Gauge Useful

 In Ulira-High-Vacuum ExperimentsThe photomultiplier ion gauge, the physicists pointed out, will be useful in a variety of key ultra-high-vacuum research experiments, being ideally suited to low-pressure studies of hot filament-gas interactions such as those encountered in the ordinary fluorescent lamp, in electronic tubes and in thermionic energy converters.

The gauge is linear with pressure over the range from 10^{-3} to 10^{-11} mm of mercury. This range of pressure is equal to that encountered in space at distances between 50 and 650 miles above the surface of the carth. According to the company, the new device has been used successfully in pressure measurements in space laboratories.

CIRCIE 25 ON READER-SERVICE CARD > CLE 25 ON READER-SERVICE CAR
TO BE PLACED ON MAILING LIST

SILICON CONTROLLED SWITCHES ... from SSPI

... Offering efficient switching in the 1-200 mA range and peak pulse current capability to 10 amperes, in the miniature TO-18 package.

High sensitivity ... $20 \mu \mathrm{~A}$ firing
Close firing control ... within $\pm .08 \mathrm{~V}$

- Voltage ratings to 200 V
- MIL-S-19500 capability

Type	Maximum Anode Voltage (DC or \pm Volts	Maximum Average Forward Current $75^{\circ} \mathrm{C}$ mA	Maximum Gate Current. to "Fire" $\mu \mathrm{A}$	Gate Voltage to Fire + Volts	
				Min.	Max.
2N884	15	200	20	. 44	. 60
2N885	30	200	20	. 44	. 60
2N886	60	200	20	. 44	. 60
2N887	100	200	20	. 44	. 60
2N888	150	200	20	. 44	. 60
2N889	200	200	20	. 44	. 60

Available for the first time in the miniature TO-18 case, these units offer the same high sensitivity and close characteristics control introduced by SSPI in pioneering PNPN devices for control and logic applications.

The precise firing characteristics of these devices make them ideal for timing and time delay circuits, voltage limit detectors, high gain static switching, logic circuits, and related applications.

With the high surge capability of this series, squib firing systems requiring pulse currents up to 5 amperes can be greatly miniaturized without sacrificing design margin. In addition, the low 1 mA holding current level is particularly useful in many programming, control and logic circuits.

Designed to meet the requirements of MIL-S19500 , these units are subjected to extensive temperature storage and cycling, as well as 100% acceptance testing, as a regular part of the manufacturing procedure.

Write for Bulletin C420-03.
CIRCLE 2 Ó ON PEADER-SERVICE CARD
PROVEN LEADERSHIP IN PNPN TECHNOLOGY...from SSPI

IRE Booth Number 1920

Are you on our mailing list for "New Design Ideas"?

NEWS

High-Speed Recording System Uses Film and Electrostatic Tube

A significant advance in the high-speed recording of electronic data as visible and projectable images has been announced by the Kalvar Corp.
The system can transform data at electronic speed into written or numerical characters on film, and into a "TV image" for giant-screen projection, Kalvar scientists said.

An electrostatic tube, the Printapix tube developed by Litton Industries of Beverly Hills, Calif. converts the electronic data to Kalvar film images at the rate of several feet per sec.

Kalvar is reportedly the only photographic film now marketed upon which a "discrete," or localized electric charge can be placed, a basic element of the new system. The patented coating on the plastic-base film is also unique in the photographic field in that the latent image on the exposed film is developed by heat alone in the completely dry process. All chemicals are eliminated by the Kalvar technique which is used in this svstem

Polarad Klystron Repair Facility

Repairs on high-power klystrons are being made at Polarad Electronics Corp.'s Microwave Tube Laboratory in Long Island City, N.Y. Polarad engineers find that by cutting the shell of the tube, it is possible to replace the gun and grid structure. With the completion of this rebuilding process, tubes are as good as new at a fraction of the replacement cost, the company claims. Such repairs are reported practical in cases of gaseousness, low emission, and heater failure.

PUT EXTRA
 SALES PUNCH IN NEW PRODUCTS WITHMALLORY MERCURY BATTERIES

FOOLPROOF PICTURES IN 10 SECONDS!
The new Polaroid Electric Eye Land Camera automatically adjusts lens opening and shutter speed. Photo cell circuit is powered by long life Mallory Mercury Batteries, capable of at least one year's service. No chance of corrosive leaks endangering the camera.

PRECISE VOLTAGE REFERENCE SOURCE for instrument calibration and lab tests, Mallory Mercury Reference Battery is accurate within $\pm 1 / 2 \%$ of stated voltage. Glassfree, rugged construction. Can't be damaged by overloads. Eight voltage outputs, 0 to 10.8 volts, in 1.35 volt steps.

HYPOTHERMIA PRECEDING HEART SURGERY involves remote measuring of temperatures. The Tele-Thermometer from Yel low Springs Instrument Co., Inc. does this exacting work, with Mallory Mercury Bat eries providing needed high electrical capacity per unit size. (2.5 volt cells, $.66^{n}$ dia. by $1.3^{\prime \prime}$, rated 1000 milliamp-hours.)

FIRST ELECTRONIC TIME PIECE ACCUTRON by Bulova, guaranteed accurate to one min ute per month, is designed to run a full yea without battery change. To power the mechanism, Mallory Mercury Batteries assure long life, constant voltage discharge and freedom from gassing and leakage

1
Miniaturization . . . portability . . . extra long life . . . name the extra sales factor, and Mallory Mercury Batteries can add it! Want fewer battery changes, longer storage life, fade-free service? Mallory offers far longer life, far higher capacity per unit size than conventional batteries! Batteries must have wide temperature range? Mustn't leak? Make yours Mallory! Their constant discharge voltage is ideal for transistor circuitry, too.

There's a wide availability on a broad line of single or multiple voltage cells. Custom power packs developed on request. Write Mallory, the mercury battery pioneers, for consultation and engineering data.

Mallory Bamery Company
North Tarrylown. N.Y. North Tarrylown. N. Y. a division of

n Cunata: Mallory Batter In Europe: Mallory Batlerier, Limited, Dapenham, Enoland

3-D Controlled Approach System Combines Swiss and U.S. Devices

A Swiss fire-control system and an American three-dimensional display system are combined in a new ground-control-approach system called Fledco.
The Fledermaus fire control radar system, produced by Contraves A. G., Zurich, Switzerland, and the Iconorama 3-D display system, designed by Fenske, Fedrick \& Miller, Inc., are combined in the mobile prototype system now being operated in Zurich.
The Fledermaus radar unit is designed for high accuracy and resolution in tracking. Iconorama is a data-integration system which processes many inputs and projects the track of an object and information concerning it on a 3-D display unit. Superimposed on this display is a panorama of land surfaces and obstacles, as well as a flightpath grid.

PLUS Printed-Circuit Module Offers Shock-Withstanding Qualities

A modular construction, known as PLUS and consisting of crossed interlocking printed-circuit boards, has been developed by Arthur Ansley Manufacturing Co., New Hope, Pa

The interlocking boards form a structural column. End plates may also be printed circuits and can carry tube sockets or transistors and plug-in connectors.
The structures can be made in a wide variety of shapes and sizes, including a subminiature version about $3 / 8 \mathrm{in}$. square. The development is said to offer advantages in miniaturization by providing maximum circuit-board area in a given space, as well as a rugged, self-supporting structure which is capable of withstanding shock and vibration.

- TH.W. . .

Etched-circuir board held by engineer holds up to 200 components to be measured and recorded for Minuteman program component reliability studies. Board will be inserted in Automatic Component Measuring and Recording System developed by Dymec Div, of HewlettPackard Co.

Tarzian Silicon Voltage Regulators for Tomorrow's Circuits in Design Today

Japanese Continue Push

Designs Range From Gadgetry To Refined Laboratory Devices

Stuart Griffin

Electronic Design Japan Correspondent

JAPANESE firms are keeping a continuous stream of new electronic products moving into the market in Japan. Developments range from novel gadgetry for consumer items to more sophisticated electronic developments for use in the research laboratory.
A cathode-ray tube which can produce two different images simultaneously on a single face has been singled out by the Japanese Government's Science and Technology Agency as one of the most practical Japanese inventions of the year. The tube can be used, for example, to show an instantly vanishing image on one half of the screen, and a slowly vanishing image on the other half. In combination with a cathode-ray oscillograph, it can be used to observe mixed sound patterns, such as those caused by the exhaust of an internal combustion engine. The new cathode-ray tube is now being produced by Sanken Co., Numazu City.

Transistorized Clock-Radio

Features Builf-In Chimes
A clock which chimes at any preset time has been built into an eight-transistor radio built by Nippon Columbia Co., Lid., Tokyo. The sound
tarzian silicon voltage regulators-in $1 / 4$-watt, 1 -watt and 10 -watt classifications-will serve you well as DC power regulators, AC clippers and limiters, and as protective devices in a wide variety of component protection circuits.

Their small size, inherent ruggedness, and physical simplicity are distinct improvements over other types of regulators. Sharp and instantaneous breakdown (avalanche) characteristics and instantaneous recovery are invitations to inventiveness in circuit design.

Tarzian silicon regulators, like Tarzian silicon rectifiers, are made with a unique blend of care and ingenuity that delivers excellent quality at a realistic price. They are available now from factory or warehouse stocks in sample or volume production quantities. Application engineering service is offered without obligation.

SARKES TARZIAN, INC.

Equipment - Air Trimmers o FM Racios o mognolic Recorrding Tope o Samicondenetor Dovices
EEMICONDUCTOR DIVISION - ELOOMINOTON, INDIAMA in Canedar 700 Woston Rd., Torontos E Export: Ad Aurloma. Inc., Now York

Write for your free copy of the new 6-page Tarzian voltage regularor caralog. II contains and application notes.

CIRCLE 28 on reader-SERVICE CARO
of the chimes is amplified through a $6-\mathrm{cm}$ speaker. The watch portion of the unit is being supplied by Citizen Watch Co., Ltd., Tokyo.
An automatic time switch operates the twoband radio, which has another $10-\mathrm{cm}$ speaker. The entire clock-radio combination is about 12.5 in . wide, $2.5-\mathrm{in}$. high, and $4.5-\mathrm{in}$. deep. It holds four UM-1 dry-cell batteries.

Another new product on the market is a small push-button interphone using printed wiring. This unit is being marketed by Matsushita Tsushin Industrial Co., Ltd., Yokohama. The interphone, about the size of a book in the pocket version, comes in two models. The TP-101 is for two-way communications, and the TP-301 is for three-way communications.

New Ultrasonic Burglar Alarm

Uses Doppler For Motion Detection

A transistorized ultrasonic burglar alarm, using the doppler effect to detect motion within an area. has been introduced by Kanda Tsushin Kogyo Co., Ltd., Tokyo. An alarm is sounded whenever something moves in an area under surveillance. This area surveillance provides

For More New Products

more secure protection than a photoelectric beam-type alarm.

A wireless, two-channel stereo sound system, using earphones, has been developed by Toho Technical Research Laboratory, a branch of Toho Motion Picture Studios.
A titanium condenser microphone, claimed to have improved temperature stability, has been developed by Nippon Electric Co., Ltd., Tokyo, through cooperation with the Musashino Laboratory of Japan Telegraph \& Telephone Corp.
Similar steel microphones have a variation of as much as 3 db with a temperature change of about 45 C , while the comparable titanium models remain almost constant. In addition, the titanium has a relatively flat response curve over a wide frequency range.

A finger-tip sized (smbination microphone and carphone has been put on the market by New Plastics Co., Ltd., Tokyo. Measuring only 19×19 $x y-\mathrm{cm}$, the device has a frequency range of 500 to $5,000 \mathrm{cps}$.

Ourdoor Hi-Fi Stereo System Developed by Toshiba Electric

A high-fidelity stereo sound system design for ontdoor performances has been developed by the Tokyo Shibaura Electric Co. in Japan.
The unit operates on a frequency of 40 to 10,000 cycles and consists of four sections, each of which combines three speakers for the low, middle, and high-sound frequencies. Output is rated at 440 w .

The woofer is $19.5-\mathrm{ft}$ high, 8 - ft wide, and 13.6 ft deep. Its weight is $5,000 \mathrm{lb}$.

Japanese outdoor hi-fif stereo unit stands 19.5 ft tall. It is specially designed for outdoor performances.

PSI SILICON

MICROTRANSISTORS FOR ADVANCED COMPUTER DESIGN

TRIPLE DIFFUSED SILICON MESA MICRO-TRANSISTORS-FAST SWITCHING TYPES PMT 118 and PMT 119 Low level, high beta versions of 2 N696 and 2 N697 switching transistors. PMT 113 and PMT 114 Micro equivalents of popular 2N696, 2N697.
PMT 111 and PMT 112 Low saturation, extremely flat beta similar to 2 N1409, 2N1410.
PSI silicon Micro-Transistors are fast becoming a major feature in the design of miniaturized high capability computers. A wide selection of Micro-Transistors is available in production quantities. High performance versions of many standard transistor types are being introduced.

NOTE THESE OUTSTANDING FEATURES!
Great reduction in size $-1 / 50$ th the size of usual computer transistors.

Off-the-shelf delivery - from PSI distributors everywhere. Production quantities on fast delivery from factory.

New high performance, high reliability MicroTransistors open way to design of computers well beyond today's standards.

Companion to Micro-Diode - Permits fullest utilization of advanced micro-miniaturization techniques.

Meets MIL-S-19500B requirements - PSI
Micro-Transistors are also given the following
Meets MIL-S-19500B requirements - PSI
Micro-Transistors are also given the following Special 100\% Processing:

New low prices - Micro-Transistor prices now comparable to convention-size transistors.

Ease of assembly - Gold ribbon leads ideal for all soldering and welding techniques.

NEW DEPARTURES IN MINIATURE

HOW TO GIVE ON-THE-NOSE GUIDANCE TO MODERN "FISH"
UNIQUE N/D LINEAR MOTION BEARING FREES GYRO CAGING ACTION
The bearing illustrated is an N/D linear motion precision instrument ball bearing. It was specially designed and built to help solve a critical problem in the guidance system of a high speed anti-submarine torpedo.
PROBLEM : Loss of accuracy in torpedo's guidance system due to hang-up of caging arm in gyro assembly.
SOLUTION: N/D Sales Engineer, in cooperation with manufacturer, found that wear of bushing on caging arm caused hang-up, delaying guidance activation. N/D Engineers set to work to design and build an instrument bearing that operates virtually frictionfree. The result: Preservation of the guidance system's pin-point accuracy and reliability. Should you require ball bearing design information, invite the local N/D Sales Engineer to participate in your early design discussions. He represents one of the industry's largest engineering staffs devoted exclusively to the design and development of miniature and instrument ball bearings. Or, write for new Miniature and Instrument Ball Bearing Catalog, Department L.S., New Departure, Division of General Motors Corporation, Bristol, Connecticut.

This special N/D linear motion instrument ball bearing increased guidance reliability of ASTOR oped by Westinghouse.

NEWS

Data-Handling System Eliminates

 Need For Complex InstallationsA mobile data-handling system, which will reportedly climinate the need for complex installations, has been developed for use throughout automotive, processing, defense, and manufacturing industries. The new system, known as RADAC I is expected to considerably reduce industrial data handlling costs.
The system is composed of a Radiplex highspeed programable multiplexer, capable of sampling both high- and low-level analog information: a Radicon coder for conversion of this analog information into digital form: Radilog digital standard logie circuits which provide necessary programing and timing functions for recording the data in digital computer format; an Ampex FR-f(K) digital tape transport; and power supplies.
In addition to the basic components, the company reports that RADAC I's capability can be extended with such optional features as digital or analog quick-look recorders. atutomatic run controls. remote controls, and other devices.

The system reportedly handles י p to th analoge inputs with a resolution of $\pm 10 \mathrm{~m}, ~(1) \pm 0.1$ per cent accuracy: After digital conversion at at maximum word rate of 3.8 ke , the data are recorded in computer format on magnetic tape.

146-Db Acoustic Noise Facility

Noise facility reportedly capable of producing a higher sound-pressure level than ever before in a largecapacity reverberant chamber is examined by Avco engineers. Noise generators feed 146 db into a 200 cu-ft pentagonal reverberant chamber where individual cu-ft pentagonal reverberant chamber where individual
octave-band sound-pressure levels can be maintained octave-band sound-pressure levels can be maintained
within $\pm 3 \mathrm{db}$ with a specimen as large as $200-\mathrm{cu} \mathrm{ft}$. A total of 36 noise generators and 21 power amplifiers are used in this system. Thirty-four of the noise generators are horn-lype, covering a 150 to $9,600 \mathrm{cps}$ frequency range. The remaining 10 are direct-radiating cone noise generators in the 37 to 150 cps range.

ELECTRONIC DESIGN • February 15, 1961

Hughes Data-System Display Console

Old grease-pencil method of plotting aircraft, seen in upper left, contrasts sharply with the new Navy display console in foreground, a part of the Naval Tactical Data System. (IED, Sept. 14, 1960, p 20). Developed by Hughes Aircraft Co., Fullerton, Calif., the console dis plays graphically all aspects of aerial, sea-surface, and submarine warfare for combatant ships within a Naval task force. Soon to be installed in Navy ships, NTDS will cut down human error and will enable command personnel to comprehend the immediate tactical situation. Hughes developed the experimental data display system for the Navy Electronics Laboratory of San Diego, where the units were tested

Analog-to-Digital Converter Incorporates New Technique

An analog-to-digital converter, incorporating a new tecimique identified as Capeoder, is in operation at White Sands Missile Range, NM. Developed by the Towson Laboratories, Inc. of Towson, Md., the model employs a simple technique involving the exchange of charge between capacitors to encode electrical inputs.
T. T. Eaton, president, said similar work is being conducted on another transistorized model for airborne application under Navy sponsorship. The Navy model will offer 10 -bit resolution and encorling rates of over 18,000 words per second, including sample and hold features Mr. Eaton said. The input impedance is 1 meg and full scale ranges of 0 to +5 v or $\pm 2.5 \mathrm{v}$ are available. This unit, employing 45 transistors, is completely contained in a 120 (0)- Cl -in. volume and requires a power input of only 6 w . According to the company, small sizes can be obtained as a result of circuit simplification.

No.	Min. Delay (ω) Max. Pos.	Impedance (Ohms) $)$	Rise Time* (Max.)	Attenuation
501	.9 usec.	1.000	.2 usec.	.5 db
502	2.0 usec.	470	.40 usec.	1.2 db
503	4.0 usec.	220	.80 usec.	2.5 db
504	9.0 usec.	100	1.8 usec.	5.0 db
505	15.0 usec.	56	3.0 usec.	9.0 db

*Rise time is proportional to delay

Custom-designed variations are available to meet your most exacting specifications. Locking device or pressure sealed shaft
available at no extra cost.
Write today for complete technical data!

ELECTRONICS CORP. 534 Bergen Boulevard, Palisades Park, New Jersey
Distributed constant delay lines - Lumped.constant delay lines - Variable delay networks - Continuously variable delay lines. Step variable delay lines. Video transformers - Filletrs of all types. Pulseforming networks - Miniature plug-in encapsulated circuit assemblies - Magnetostrictive delay lines exceptional employment opportunities for engineers experienced in computer components...excellent profit-sharing plan.

UNSHAKEABLE SELF-LOCKING PERFORMANCE IS BUILT INTO AN ELASTIC STOP NUT

Start with a standard hex nut and add a metal crown...

Add "the ring 1 of reliability"the easily identified ESNA red nylon locking insert . . .

Then roll the crown over smoothly and stakethe insert is made an integral part of the Elastic Stop nut

BUILD FASTENER RELIABILITY INTO YOUR PRODUCT!

Take an Elastic Stop nut and mount it on one of your products where vibration is really severe. Shake the daylights out of it in the roughest torture test you can devise-or better still-send it into the field where it's subject to regular use and abuse.

Here's what you'll find: That Elastic Stop nut will stay putl The bolt threads are impressed into the nylon locking collar with such a perfect fit that internal liquid seepage is sealed off. Internal nut and bolt threads are protected against corrosion. The nylon insert locking torque is so smooth that it never galls or distorts bolt threads; and nylon is so wear-resistant that under normal usage you can wrench
the nut on and off the bolt 50 times or more and the nut will still remain tight under vibration! Protect the performance and the reputation of your product by guaranteeing fastener reliability. Try it vourself and see. Send for fro test samples. Just tell us the size. Dept. S53-257, Elastic Stop Nut Corporation of America, 2330 Vauxhall Road, Union, New Jersey

ELASTIC STOP NUT
CORPORATION OF AMERICA

NEWS

IBM Associative Memory

Experimental Memory Permits Retrieval According to Content

DESIGN of an experimental memory employing core storage elements is reported by the International Business Machines Research Laboratories, Yorktown Heights, N.Y. This announcement, following in the wake of an experimental cryogenic associative memory by the company, is further indication of the present research emphasis on such memory concepts for next-generation computers.
Rather than specifying and extracting information by storage address, the new memory retrieves data according to actual content. Memory search is not sequential; instead, all storage elements are interrogated simultancously:

These operating features are achieved by interrogating through a mask, itself consisting of ferrite cores. A mask core is provided for each core in a storage plane, but each mask core simultaneously interrogates its corresponding cores in all storage planes.
Mask cores are inscribed so that output from the mask consists of drive pulses whose polarity indicates whether a " 1 " or a " 0 " is being searched for. Interrogation is parallel hy word, and serial by bit.
Each storage core is designed to yield a small signal when it contains the information being sought, and to generate a large signal when there is a mismatch between stored and interrogating information. These large signals switch suitably designed core detectors, one detector for each storage plane.

Defectors Respond to Mismatch

Between Mask and Bit Planes

When a particular bit plane is energized, all the cores respond in the manner described. The matching cores yield a small signal which does not affect the detector cores; the mismatching cores generate a large signal to switch the corresponding detector cores.

When interrogation is completed, cores corresponding to the desired words have not been switched. These words are then selecterd and read out.

Another feature claimed for the experimental memory is nondestructive readout. Storage stability has been demonstrated for more than one million interrogating cycles.
Word lengths of up to 36 bits are said to be feasible with a passive detector. Transistorized

Enthusiastic response to the CBS 7548 established two major facts:

1. Keen interest in a practical, versatile secondary-emission tube.
2. Its limitless capabilities for simplifying and solving a wide range of circuit problems . . from fast-rise-time pulse amplifiers and generators to wideband distributed amplifiers.
This new mass-produced version of the CBS 7548 easily outperforms conventional tubes and transistors, incorporates many new features and improvements based on customer requirements. Check the facts. Better still, order the CBS 7548 and Technical Bulletin E-393A. Put this problem solver to work in your problem circuits.

Uses Masking Cores

detectors could handle word lengths of 1,000 bits. according to IBM scientists. Memory capacities of several hundred words could operate with a single interrogation driver. Larger sizes would require parallel operation. - -

Associative memory is shown here in its first, breadboard form. Core structure, of 4-bit capacity is at upper right-hand corner. Remainder of breadboard consists of peripheral equipment, drivers, etc.

Interrogating mask searches all bit planes simultaneously in associative memory. Pulses from interrogating cores correspond to the information desired. If cores in bit plane match the interrogating signal, output is small, and detectors are not switched; mismatch yields a large signal. After interrogation is completed, unswitched detectors correspond to the desired words in the memory.

New mass-produced version offers many improvements

- New long-life dynode surface
- Exceptional stability under dynode overload
- Relaxed restrictions on dynode voltage
- Lowered threshold vollage require. ments
- Output normalized, in or out of phase
- Relaxed regulation requirements for heater voltage
- Tested for shock and vibration
- Coil heater and high-conductivity gold-plated base pins
- Dual cathode leads for h-f operation
- Standard 9-pin miniature base
eniuaro y-pin minaluere base
. . AND
WIDE-BAND
CLASS A AMPLIFIER
- as0 guin asanceam entina - D5,000 mbion iransoendue bince at Eis - apor and tho 18 me
- 3.4 mef outhut capoctracos

ELECTRONIC DESIGN • February 15, 1961

equals the ever growing family of CAPITRON ${ }^{\text {® }}$ Capacitors
And plenty doesn't say enough! Now Capitron adds this silicone rubber encapsulated Wafer Capacitor to its more than 2,500 special capacitor designs. available as standard in our line. When your requirements go beyond this. we will create a capacitor to fit your requirements. If you're working in advanced areas of design-atomic energy, radar, communications and control-there's no need to let ordinary "off-the-shelf" capacitors freeze your design creativity
you may find exactly what you want in the big Capitron line. From single wafers to encapsulated multiple capacitors . . . whatever your choice or requirement . . . you can depend on Capitron products for:

- high resistance to thermal extremes $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- maximum stability, reliability and longevity with AMPIi-film dielectric
- choice of waxdipped, encapsulated or armored types

Complete information on Capitron Capacitors available upon request.
(8Reg U.S. Pal. Off.

CAPITRON DIVISION AMP INCORPORATED

Elizabethtown, Pennsylvania

NEWS

Video Tape Recording Standards

 Are Available from SMPTEFour proposed American Standards on videotape recording have been prepared and are available from the Society of Motion Picture and Television Engincers, 55 W. 42nd St., New York 36, N.Y.

Proposed standard VTR 16.2, Dimensions for 2-In. Video Magnetic Tape, specifies the dimensions for the width, thickness, and curvature of $2-\mathrm{in}$. video magnetic tape.

Characteristics of the Audio Records for 2-in. Video Magnetic Tape Recordings, VTR 16.5 covers the audio records for $2-\mathrm{in}$. video magnetic tape recordings.
Another standard, VTR 16.6, Dimensions for Video, Audio, and Control Records on 2-In. Video Magnetic Tape, specifies the locations and dimensions of the video, audio, and control records on 2 -in. video magnetic tape.

The fourth standard, VTR 16.8, Speed for 2-In. Video Magnetic Tape, specifies the rate of travel of 2 -in wide video magnetic tape in recorders.

Powerful Eye on the Sky

Man is dwarfed by the 60 -ft radar antenna now under construction at Cornell Aeronautical Laboratory, Inc. of Buffalo, N.Y. When the experimental 50 -million-w radar installation begins operating this fall, CAL scientists reportedly will study the ability of "high-peak power" radar to penetrate the earth's ionosphere in order to detect and track ballistic missiles and satellites with greater accuracy and at considerably longer range than is now possible. CAL is conducting this research program for the Defense Department's Advance Research Projects Agency under the supervision of the Army Rocket and Guided Missile Agency. The trans mitter for CAL's new installation was designed and built for the Laboratory by FXR, Inc. of Woodside, N.Y.

TV Used for Precision Alignment

Industrial TV for precision alignment of large automated machine tools has been installed at Douglas Aircraft by TELantograph Corp. s Telautovision ClosedCircuit TV Div. of Los Angeles, Calif. The operotor of the company's Drivematic Riveter checks the ram position on each pilot hole to be drilled which is projected on his monitors. He holds a dead man's" switch which can stop the tape-programed riveter if the monitor indicates it is out of alignment. The riveter positions to a non-accumulative tolerance of $0.30-\mathrm{in}$.

New Data-Processing Centers In Offing for General Electric

Anticipating that industry shipments of commeicial computer equipment will increase 33 per cent within two years, General Electric Co.'s Computer Dept. is planning to open 11 new data-proces-ing centers and 10 additional sales offices in major cities across the nation.
The new data-processing centers will support GE computer installations and will handle dataprocessing, training, statistical, computing or tabulating problems, data processing service will be sold to banks, utilities, commerce and industry for handling payroll, inventory, accounting, production scheduling, sales analysis, engineering and scientific problems.
The centers scheduled to open next year will be in Chicago, New York City, Philadelphia, Boston, and Cleveland. Those scheduled for opening in 1962 will be in Minneapolis, Seattle, Atlanta, Washington, D.C., Dallas, and the San Franciso Bay Area.

eace TYPE WW \& HW RESISTORS
In planning any circuit, even the most advanced, you can check off one question mark the minute you specify Dale precision resistors.
Resistor reliability in that circuit is assured. under any and all condi ions, because of Dale's advanced design and methods of manufacture . . . methods which have reached new levels of achievement as part of Dale's super-high reliability development program.
SPECIAL PROBLEMS? Let us help you with your requirements for special resistance products. We make modifications of standard products, resistor networks, matched pairs, etc. Send us your specs.
PROMPT DELIVERY: Whether your need is for a short "test run" or a large production release, Dale offers prompt service, direct from the factory and through a widespread network of distributors.

Write for Bulletin R.26 with handy cross reference file card

DALE ELECTRONICS, IIC.
1328 28th Ave, Columbus, Nebraska, U.SA
A subsidiary of HATHAWAY INSTRUMENTS. INC.

WIRE WOUND - BOBBIN - ENCAPSULATED Dale bobbin type resistors are impervious to salt spray, humidity. moisture and corrosive gases and vapors. The encapsulating material has very high di-electric strength. The resistors have excellent noninductive characteristics. They are made to surpass functional requirements of MIL-R-93B. Some Mizes Specs.) WW prefix meets requirements of characteristic A; HW prefix meets requirements of characteristic C

- resistance range: 0.1 ohm to 6 meg. ohms, depending on size.
- TOLERANCE: $\pm .02 \% ; \pm .05 \% ; \pm 0.1 \%$; $\pm 0.25 \%: \pm 0.5 \%: \pm 1 \%: \pm 3 \%$
- RATED AT: 0.1 watt to 2.5 watts, depending on size. type and tolerance.
- temperature coefficient: 0.00002 per degree \mathbf{C}.
desree.
- TERMINALS: WWA and HWA-axial leads; WWP and HWP - parallel leads; HWL and HWR - radial leads; WWL and lus.
- SIZES: Complete range from sub-miniature $5 / 64^{\prime \prime} \times 5 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime} \times 2^{\prime \prime}$

CIRCLE 35 ON READER-SERVICE CARD

The Few Engineers Who Don＇t Know Abouł
C．I．C．Film Połs Might Solve＂Short－Life＂Poł Problems

BUT THE BEST WAY YET．．．

Use C．I．C．Precision Conductive Film Potentiometers For Proven＊Multi－Million Cycle Life！
－Ast us for list of mizsailes and aireraft currontly using
－Ask is for list of missiles and
C．I．C．Film Potentiomoters．

COMPUTER INSTRUMENTS CORPORATION و2 MADISON AVENUE．HEMPSTEAD，LI．，NEW YORK

CIRCLE 36 OM READER－SERVICE CARD
．．．and Here Are a Few Additional Features：

ADAILABLE FROMSJOCMJ

C．I．C． PRECISION FILM POTS

You can have any of these precision film pots on their way to you within hours．No need to wait for＂custom＂pots．
LINEAR SINGLE TURN FILM POTENTIOMETERS

$\begin{gathered} \text { Diemeter } \\ 1 / 2^{\prime \prime} \end{gathered}$	Rosistome	tinoority
	1 k	$\pm 5 \%$
	106	$\pm .5 \%$
	sok	．5\％
7／8＂	1 K	$\pm .5 \%$
	10k	\pm 5\％
	sok	$\pm .5 \%$
	1 K	$\pm .25 \%$
	10K	$\pm .25 \%$
	sok	$\pm .25 \%$
1．3／32＊＊	1 K	$\pm .5 \%$
	10K	$\pm .5 \%$
	sok	$\pm 5 \%$
	1 k	土 ． 25%
	10k	$\pm .25 \%$
	sok	士． 25%
2＊	5k	$\pm .25 \%$
	20k	$\pm .25 \%$
	sok	士．25\％
	5 K	$\pm .1 \%$
	20K	$\pm .1 \%$
	sok	$\pm .1 \%$
$3^{\prime \prime}$	5k	$\pm .1 \%$
	20k	$\pm .1 \%$
	sok	$\pm .1 \%$
	5 K	$\pm .05 \%$
	20k	$\pm .05 \%$

SINE－COSINE SINGLE TURN FILM POTENTIOMETERS
Diameter Resiatonce Conformity
$1-3 / 32^{\prime \prime} \quad 10 k \quad \pm .75 \%$
$\begin{array}{ll}20 k & \pm .75 \% \\ 10 k & \pm .25 \%\end{array}$
$20 K \quad \pm 25 \%$
$10 K \quad \pm$ 20K $\pm .15 \%$

LINEAR MOTION FILM POTENTIOMETERS
siro Rouistance stroko Linearity
＂ 5 S． 10 K 1＂Stroke $\pm .5 \%$
 20K． $2^{\text {＂}}$ Stroke Strok $\pm .25 \%$ 10K 3 ＂Stroke $\pm .1 \%$ 20K 3 ＂＇stroke $\pm .1 \%$
WRITE OR CALL IN YOUR ORDER！POTENTIOMETERS WILL BE IN YOUR PLANT WITHIN 24 HOURS！

COMPUTER INSTRUMENTS CORPORATIOM $\$ 2$ MADISON AVE．，HEMPSTEAD，L．I．，N．Y．

CIRCIE 37 ON READER．SERVICE CARD ELECTRONIC DESIGN • February 15， 1961

EDITORIAL

The Rootless Engineer

A not insubstantial number of engineers have employment records little different from those of migrant farm workers.

Both criss-cross the country getting jobs where their talents are in demand. The farmhand usually moves north and south; the electronics engineer, east and west. The farm worker's cycle is easy to predict: it follows the season. The electronics engineer's travels appear considerably more whimsical, since the Department of Defense doesn't award contracts on a strictly seasonable basis. The pay difference for the two groups is significant. The migrant hand averages about $\$ 1,200$ a year; the electronics handyman, eight to ten times that amount.

On the surface, it looks as if both might acquire a diversity of experience in a short time. However, the migrant worker knows better; he is aware that he will never break a dollar an hour unless he is on piece work. The itinerant electronics engineer hasn't yet faced reality.

He can still pick up a handsome increase per mowe. But there is a ceiling on "engincering-only" experience.

Any engineer's salary is figured not only on his technical ability but also on his administrative ability. Administrative ability is seldom identified as such-it goes under the label of "gets work done on time," "cooperative attitude," "understands company procedures," "inspires confidence on the part of coworkers," "loyal to company," and so on.

Proved administrative ability-the ability to get the right job done-does figure heavily in an engineer's worth. Responsibleness is always rewarded.

But industry practice has fostered the development of routless engineers, unidentified with any long-range goal. Companies doing heavy defense business hire and fire engineers on a schedule based on contract progress.

The rootless, itinerant engineer never really identifics himself with his employer. He never links his goals with the company's goals, he never truly engages in a cooperative endeavor. Instead, he is project-oriented. Six or nine months on one task and he is ready to move. He sees no challenge in the present job.
The rootless engineer, whose orientation is solely the technical job at hand, will have to develop outstanding technical competence to make up for his deficiency of experience in working with others for a common goal. We doubt that this competence will be achieved by a preoccupation with reading and answering help-wanted ads.

GOOD-ALL 601PE CAPACITORS are wafer thin to "fit like a disc". Capacitance is highly stable with temp. Equal in all respects to high quality Good-All tubulars. Available in 50 volt ratings only, they are competitive in price with ceramic discs in the range of .1 mfd and above. The case is moisture resisting Epoxy. Type 601PE is capable of being produced to HI-REL. specifications on a "special project basis'.

SPECIEICATIONS

Insulalion Resistance-Gieater than 75.000 megohms when measured al 100 volts $D C$ at 25 C tor a masimum ol 2 minules Capaetily Tolerance - Stancaid toletance $\geq 20 \% \pm 10 \% \pm 5$. Windiat Constivetion - \{alended tal inon inductive. MYI AR
Lese Vatiatians - formed ot starght leads
Dissipatian freter-Less than 1% at 1.000 cycies pei second ${ }^{31} 25^{\circ} \mathrm{C}$
Dietestic strength - 100 volls DC. for 1105 seconds through a minimum curtent limiting resistance of 100 ohms der voll. Temperature Range - May, be operated at tull iated valage to
85 C Derate to 50% when opetaling at 125 C

CAP. (myb)	A	E	F
\cdots	20:	, tel	Sed
H20	313.	, 10	50
*39	418	4	cr
ant	5	73	A
\pm	m	\cdots	Sv.
.	nill	net	53
15	an	260	Es:
*	N\%	48	62
28	418	36	170

Capacitoris

Write for detailed literafure

GOOD-ALL ELECTRIC MFG. CO. Ogallala. Nebr

Graphical Procedure for Transistor

Switching Circuit Design

> In addition fo eliminatines tedious trial and error calculations, the graphical procedure pree sented defines the selection range of circuit com ponents fo permit optimum design solution.

Samuel J. Osler

Philco Corp.
Computer Div
Philadelphia, Pa.

SINCE three unknowns are contained in the two equations involved in the design of the switching circuit shown in Fig. 1, algebraic solution involves tedious trial and error calculations. Although an adequate solution can be achieved after several attempts, it will not be possible to determine whether the optimum design has been reached. A graphical procedure is presented which, in acdition to saving time, defines the selection range of each resistor.
The switching circuit under consideration is shown in Fig. 1. The analysis can be applied to either npn (as shown) or pnp transistors because absolute voltage terms are used. The switching
circuit can be in either of two modes:
Mode 1, Q_{1} on $-Q_{2}$ off and Mode 2, Q_{1} off()$_{2}$ on. Satisfactory operation in Mode 1 requires the base current supplied ($I_{R S}$) to Q_{1} to be equal (1) or greater than the minimum value of base current required ($I_{B R}$) to turn Q_{1} on while Q_{2} is off. Satisfactory operation in Mode 2 requires the absolute value of base to emitter reverse bias voltage $V_{\text {ne:rs' }}$ of Q_{1} to be equal in or greater than the absolute minimum value of base to emitter voltage required $V_{\text {beris }}$ to hold ρ_{1} off while Θ_{2} is on. The conditions for satisfactory opera tion in Modes 1 and 2 are summarized:
('ondition 1 (Mode 1), $I_{B S S} \geqq I_{\text {Bh }}$
(ondition 2 (Mode 2), $V_{\text {HEFS }} \geq\left|V_{B E F R}\right|$
The design problem is to determine R_{C}, R_{1} and R_{2} such that conditions 1 and 2 are satisfied with worse case tolerances applied to the supply volt-
ages and resistors.
To satisfy Conditions 1 and 2, consider operiltion in Modes 1 and 2.
Mode 1, Q_{1} oll - Q_{2} off
The equivalent circuit is shown in Fig. 2. where

$$
I_{H, S}=I_{1}-I_{2}
$$

Sutisfactory operation in the on-off mode requires that Condition 1 be satisfied.

$$
I_{U, S}=I_{1}-I_{2} \geqq I_{R R}
$$

The minimum and thus worse case value of $I_{n s, t}$ oscurs when I_{1} is a minimum and I_{2} a maximum

$$
\begin{equation*}
\underline{I_{B S S}}=\underline{I_{1}}-\overline{I_{2}} \geqq I_{B R} \tag{1}
\end{equation*}
$$

Tolerancing the supply voltages and resistors accordingly and substituting in 1

$$
\underline{I_{B S}}=\frac{\left|V_{C C}\right|-I_{C O} \overline{R_{C}}-\left|V_{B E N}\right|}{\overline{R_{C}}+\overline{R_{1}}}
$$

Fig. 1. Reverse bias for Q_{1} is provided by R_{2} and $V_{B B}$.

Fig. 2. For Mode 1 operation, Q_{1} on and Q_{2} off, $I_{\text {Is }}$ $=I_{1}-I_{2}=I_{B R}$.

Fig. 3. For Mode 2 operation, Q_{1} of and Q_{2} on, $\mathrm{V}_{\text {REFY }}=\left|\mathrm{V}_{\text {BIIFII }}\right|$.

Fig. 4. Composite graph of $R_{2}=F\left(\kappa_{1}, R_{f}\right)$ and $R_{2}=G\left(R_{1}\right)$ with R as the parameter.

$$
\frac{\left|\overrightarrow{V_{B B}}+\left|V_{B K X}\right|\right.}{\underline{R_{2}}} \geq I_{B K}
$$

where
(1) $V_{e \prime}$, is the maximum absolute value of hase to emitter voltage of Q_{1} while on.
(2) $I_{r o}$ is the maximum collector leakage current of Q_{2} while off.

The cquivalent circuit is shown in Fig. 3 where

$$
I_{2}^{\prime}=I_{2}^{\prime}+I_{n^{\prime}}^{\prime}
$$

Sulbstituting in Eis, 3 and solving for $\mid V_{\text {br }}$ rs \mid
$\left|V_{n K P N}\right|=\frac{V_{k K} R_{1}-V_{C R} R_{2}-l_{n}^{\prime} R_{1} R_{2}}{R_{1}+R_{2}}$
Satisfactory operation in Mode 2 requires that Condition 2 be satisfied. Thus, tolerancing the sinplatages and resistors
$\underline{V_{n e p s}}=\frac{V_{n n} R_{1}-V_{c k} \overline{R_{z}}-I_{n}^{\prime} R_{1} \overline{R_{2}}}{K_{1}+R_{z}}$
where
(1) $V_{r e}$ is the maximum absolute value of collector to emitter voltage of Q_{2} while on.
(2) $l_{n}{ }^{\prime}$ is the maximun base leakage current of Q_{1} while off.
The problem reduces to determining values of $\boldsymbol{R}_{R^{\prime}} . \boldsymbol{R}_{1}$ and \boldsymbol{R}_{2} succh that Eqs. 2 and 4 are satisfied. Satisfying Eqs. 2 and 4 in turn satisfies Conditions 1 and 2 which is the design problem.

As previously mentioned R_{c}, R_{1} and R_{2} may be found algebraically by a trial-and-error method. This can be done by assuming a value of R_{c},

ARNOLD:

 WIDEST SELECTION OF MO-PERMALLOY POWDER CORES FOR YOUR REQUIREMENTSFor greater design flexibility, Arnold leads the way in offering you a full range of Molybdenum Permalloy powder cores . . . 25 different sizes, from the smallest to the largest on the market, from $0.260^{\prime \prime}$ to $5.218^{\prime \prime} \mathrm{OD}$.
In addition to pioneering the development of the cheerio-size cores, Arnold is the exclusive producer of the largest 125 Mu core commercially available. A huge 2000 -ton press is required for its manufacture, and insures its uniform physical and magnetic properties. This big core is also available in three other standard permeabilities: 60,26 and 14 Mu .
A new high-permeability core of
147 Mu is available in most sizes.

These cores are specifically designed for low-frequency applications where the use of 125 Mu cores does not result in sufficient Q or inductance per turn They are primarily intended for applications at frequencies below 2000 cps .

Most sizes of Arnold M-PP cores can be furnished with a controlled temperature coefficient of inductance in the range of 30 to $130^{\circ} \mathrm{F}$. Many can be supplied temperature stabilized over the MIL-T-27 wide-range specification of -55 to $+85^{\circ} \mathrm{C} \ldots$ another special Arnold feature
Graded cores are available upon special request. All popular sizes of Arnold M-PP cores are produced to a standard inductance tolerance of +
or -8%, and many of these sizes are available for immediate delivery from strategically located warehouses
Let us supply your requirements for Mo-Permalloy powder cores (Bulletin PC-104C). Other Arnold products include the most extensive line of tapewound cores, iron powder cores, permanent magnets and special magnetic materials in the industry. - Contacs The Arnold Engineering Co., Main Office and Plant, Marengo, Illinois. adoress dime ED-2.

Fig. 5. Graphical solution of R_{1}, R_{2} and R_{0}. The shaded region represents the area of satisfactory solution. Since the tolerance box remains in this region, $R_{1}{ }^{1}, R_{2}{ }^{1}$ and $R_{c}{ }^{1}$ are proper solutions.

Fig. 6. Graphical solution of the design example used to illustrate the technique.
substituting it in Eq. 2 and then solving Eqs. 2 and 4 simultaneously for R_{1} and R_{2}. If this solution is not satisfactory, the process is repeated until an adequate solution is determined. Very often several selections of $\boldsymbol{R}_{\boldsymbol{c}}$ must be made before an adequate solution can be determined and even then an optimum solution is not apparent. To overcome these difficulties a graphical solution is presented.

Procedure for Preparation

Of a Graphical Solution

In the following analysis, the resistor tolerances are removed and taken into account graphically. The values of $\boldsymbol{R}_{C}, \boldsymbol{R}_{1}$ and \boldsymbol{R}_{2} which make $\boldsymbol{I}_{B B}=$ $I_{B K}$ and $\left|V_{B E F S}\right|=\left|V_{B E F R}\right|$ are critical values. With the resistor tolerances removed, $I_{B E}=I_{B R}$, and $\left|\underline{V_{B E F E}}\right|=\left|V_{B E F R}\right| ;$ Eqs. 2 and 4 are solved for R_{2}
$R_{2}=\frac{\left[\left|\overline{\Gamma_{B B}}\right|+\left|V_{B E N}\right|\right]\left[R_{C}+R_{1}\right]}{\left|\underline{V_{C C}}\right|-I_{C o} R_{C}-\left|V_{B E N}\right|-I_{B R}\left[R_{C}+R_{1}\right]}$ (5)
$R_{2}=\frac{\left[\mid \underline{V_{B B}\left|-\left|V_{B E P R}\right|\right] R_{1}}\right.}{\left|V_{C B}\right|+V_{B E P R}+I_{B}{ }^{\prime} R_{1}}$
Generally $I_{C o} R_{C} \ll\left|\underline{V_{C C}}\right|-\left|V_{B B N}\right|-I_{B K}\left[R_{C}+R_{t}\right]$ and can be neglected. Thus, Eq. 5 becomes
$R_{2}=\frac{\left[\left|\overline{V_{B B}}\right|+\left|V_{B E N}\right|\right]\left[R_{C}+R_{1}\right]}{\left|\underline{V_{C C}}\right|-\left|V_{B E N}\right|-I_{B R}\left[R_{C}+R_{1}\right]}$

Eq. 6 gives $R_{2}=G\left(R_{1}\right)$ and 7 gives $R_{z}=$ F ($\boldsymbol{R}_{1}, \boldsymbol{R}_{C}$). When \boldsymbol{R}_{C} is used as a parameter and the functions are graphed, their nature is similar to Fig. 4.
With the composite graph, values of R_{1}, R_{2}, and R_{c} can now be determined that satisfy Conditions 1 and 2. Assume the resistors have a tolerance of $\pm K$. Conditions 1 and 2 are satisfied if the toleranced values of R_{1} and R_{2} remain within the region bounded by $R_{2}=F\left(R_{1}, R_{C}[1+K]\right)$ and $R_{2}=G\left(R_{1}\right)$. This is illustrated in Fig. 5. $R_{1}{ }^{\prime}$ and $R_{2}{ }^{\prime}$ (when toleranced) remain within the tolerance box shown and since the tolerance box remains in the region bounded by $R_{2}=F$ (R_{1}, $\left.\boldsymbol{R}_{C^{\prime}}[1+\mathrm{K}]\right)$ and $\boldsymbol{R}_{2}=\boldsymbol{G}\left(\boldsymbol{R}_{1}\right)$ (shaded region), then $R_{C^{\prime}}, R_{1}{ }^{\prime}$ and $R_{2}{ }^{\prime}$ satisfy Conditions 1 and 2 .
Some conclusions are apparent from Fig. 5 with respect to satisfying Conditions 1 and 2.
(1) The larger R_{c}, the smaller becomes the region for selection of R_{1} and R_{2}. A critical value of R_{C} exists ($R_{C R}$), such that for $\boldsymbol{R}_{C}>\boldsymbol{R}_{C R}$ no values of \boldsymbol{R}_{1} and \boldsymbol{R}_{2} will satisfy both Eqs. 2 and 4. Obviously, the maxiinum and minimum positive values of \boldsymbol{R}_{o} which satisfy Conditions 1 and 2 are $\boldsymbol{R}_{c}=\boldsymbol{R}_{C \cdot R}$ and $\boldsymbol{R}_{c}=\mathbf{0}$.
(2) Crossing the $\boldsymbol{R}_{2}=\boldsymbol{F}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{C}{ }^{\prime}[1+\mathrm{K}]\right)$ boundary with the tolerance box gives values of $I_{B S}<I_{B R}$ which do not satisfy Condition 1.
(3) Crossing the $\boldsymbol{R}_{2}=G\left(\boldsymbol{R}_{1}\right)$ boundary with the tolerance box gives values of $\left|\underline{V_{R B P B}}\right|<$
$V_{B E F R}$ which do not satisfy Condition 2. It was assumed that $I_{C o} R_{C}$ \& $V_{C c}\left|-\left|V_{\text {biss }}\right|-\right.$ $I_{B R}\left[R_{C}+R_{1}\right]$ could be neglected. The term $I_{c o} R_{C}$ has the effect of shifting the curve for $\boldsymbol{R}_{\mathbf{2}}=\boldsymbol{F}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{c}\right)$ slightly up and to the left. This shift would tend to violate Condition $1\left(I_{R S} \geqq\right.$ $\left.I_{B K}\right)$. To offset this shift and not violate Condition $1, R_{1}$ and R_{2} should be selected so as to shift the tolerance box slightly up and to the left which is essentially increasing R_{2} and increasing R_{1}. Very often $I_{C O} R_{C}$ « $\left|\underline{V_{C C}}\right|-\left|V_{B E N}\right|-I_{B R}\left[R_{C}+R_{1}\right]$ and it is not necessary to adjust R_{1} and R_{2} as just described. If any doubt exists as to whether Condition 1 is satisfied, the solution should be substituted in Eq. 2 which contains the effects of $I_{C O} R_{C}$ and verify that $I_{B B} \geqq I_{B R}$.

Examination of Eq. 7 indicates that R_{2} will remain constant if R_{1} is decreased by the same amount that \boldsymbol{R}_{i} is increased and vice-versa. Therefore, it is only necessary to calculate values of R_{1} and R_{2} for one value of $\boldsymbol{R}_{c}\left(\boldsymbol{R}_{c}=0\right.$ is suggested) from which the curve for any value of R_{C} can readily be determined. This allows at series of curves for different values of R_{c} to be plotted with very little effort.

Design Example

Illustrating the Graphical Procedure

To apply the graphical analysis to :t practical design problem, assume it is required to determine R_{1}, R_{1} and R_{2} of Fig. 1 with
$V_{c c}=+10 \pm 5$ per cent (collector supply voltage)
$V_{B B}=-5 \pm 5$ per cent (bias supply voltage)
$I_{B R}=10 \mathrm{ma}$ (minimum base current required to turn Q_{1} on)
$I_{c o}=0.1 \mathrm{ma}$ (maximum collector leakage current of Q_{2} off)
$I_{B}{ }^{\prime}=0.5 \mathrm{ma}$ (maximum base leakage current of Q_{1} off)
$V_{B E N}=+0.5$ (maximum base to emitter voltage of Q_{1} on)
$V_{\text {BPPM }}=-0.1$ (maximum base to emitter voltage required to reverse bias Q_{1} off)
$V_{C E}=+0.5$ (maximum collector to emitter voltage of Q_{2} on)
All resistors have a ± 10 per cent tolerance. Substituting these values in Eqs. 6 and 7
$R_{2}=C_{i}\left(R_{1}\right)=\frac{[5 \times 0.9 i-0.1] R_{1}}{0 . i+0.1+0.5 \times 10^{-3} \times R_{1}}$ $R_{2}=V^{\prime}\left(\boldsymbol{R}_{1}, R_{c}\right)$

$$
=\frac{[5 \times 1.05+0.5]\left|R_{c}+R_{1}\right|}{10 \times 0.95 j-0.5-10 \times 10^{-3}\left[R_{c}+R_{1} \mid\right.}
$$

Eqs. 8 and 9 are graphed and shown in Fig. 6. Eq. 9 is plotted for $R_{r}=0$ from which the curves from $R_{C}=200$ and 220 ohms are derived. Since the ± 10 per cent tolerance box remains within the region bounded by $R_{2}=\mathrm{C}\left(\boldsymbol{R}_{1}\right)$ and $\boldsymbol{R}_{2}=\boldsymbol{F}\left(\boldsymbol{R}_{1} 220\right)$ then $\boldsymbol{R}_{1}=330, \boldsymbol{R}_{2}=1.5 \mathrm{~K}$ and $R_{c}=200$ ohms satisfy Couditions 1 and 2 and is an adequate solution.

In order to verify that Conditions 1 and 2 are satisfied, the above solution is substituted in liqs. 2 and 4 which yields:

$$
\begin{aligned}
\frac{I_{B S}}{} & =11.1 \mathrm{ma} \geqq I_{B R}=10 \mathrm{ma} \\
\left\lvert\, \frac{V_{B E P S} \mid}{}\right. & =0.17 \geqq\left|V_{B E R R}\right|=0.1
\end{aligned}
$$

In conclusion, the above determined resistors assure:
(1) $\left(Q_{1}\right.$ on and Q_{2} off) that the base current supplied to Q_{1} will not be less than 11.1 ma .
(2) $\left(Q_{1}\right.$ off and Q_{2} on) that the reverse bias base to emitter voltage of Ω_{1} will be no greater than -0.17 v
when the supply voltages and resistors are tolerarce in the worse case direction.
The above solution is an arbitrary one of many and is selected to illustrate the graphical method of design.

To demonstrate further the usefulness of the graphical design method consider the following. It is generally desirable to make R_{R} : as large as possible in order to reduce the collector current of Q_{2} when it is on; this in turn minimizes the base drive current required-assuming a constant transistor beta for Q_{2}. Using the graphical method of design, this is simply done by increasing R_{C} until the tolerance box just fits in the region of solution; this is a difficult and time-consuming task when algebraically determined. - -

Librascope Shaft-to-Digital Encoders are highly accurate, reliable, shock-resistant, and versatile... ready to serve in a variety of applications including missiles, aircraft, machine control, computers, Doppler navigation and data processing. Accuracy that counts is the by-word of a Librascope Encoder... backed by the superior technology and reputation of one of the world's largest producers of Computers that Pace Man's Expanding Mind.

	other popular Librascope encodera				Resolution per input shaft turn				
	new subminiature size 8 encoder	Code	Model no.	Fapacity					
		Binary	773	13 bits	128 counts				
contac			0.773	oil-filled unit for increased life					
magnetic encoder		Binary	710) 10 bits	1024 counts				
			707 (7070 ${ }^{\circ}$)						
MODEL NO. 807	MODEL NOS. 787 \& 793	Binary	713 (7130*)	13 bits	128				
FEATURES:			717 (71700)	17 bils	128				
Long life, high reliability, high speed,	YEATURES: Low torque, low ineritia, long life. high reliability, withstands severe environments.	Self-Decoding Binary	719 (7190)	19 bits	$128{ }^{\prime \prime}$				
natural binary V-Scan readout.			740 10 bits 1024 counts	oil-filled unit for increased life					
SPECIFICATIONS: Output Code: natural binary Resolution: (per input shaft turn) 128 counts Full Scale Capacity: 7 bits ${ }^{\circ}$ Speed: operating from 0 to 10.000 rpm Life Expectancy: 20,000 hours at $4,000 \mathrm{rpm}$; 4×109 revolutions Starting Torgue: 0.1 in-oz. max. Diamoter: 2 Length: $13 / 16^{\circ}$ Waight: 5 ounces also available in 13, 17, AhD 19 oit capacitics.				10 bits	1024 counts				
	SPECIFICATIONS: Output Code: natural binary Resolution: (Der input shalt furn) 128 counts Full scale Capacity: 7 bits, 13 bits Speed: operating 200 pm , slew 600 rom Life Expectancy: 2×106 revolutions at 200 rpm Starting Torque: $0.502-1 n$ maximum Diameter: 750° Weight: 3 ounces	B/C/D	723 (7230*)	2,000 counts	200 "				
			$724\left(7240^{\circ}\right)$	20,000 ".	200				
			733 (7330\%)	3,600 "	200				
			$73417340^{\circ} 1$ 735	$\begin{array}{r} 36,000 \\ 360,000 \end{array}$	$\begin{array}{ll} 200 & \because \\ 200 & " . \end{array}$				
		Sine/Cosine	757.5**	4 quadrants 7 bits per quad perturn rant f limit 1					
			$\begin{array}{r} 758 \\ 758 \cdot S^{\bullet \bullet} \\ \hline \end{array}$	4 quadrantsDer turn8 bits per quad-rant + limit 1					
		Gray	708	8 bits	256 counts				
		${ }^{\circ}$ Contain isola for multiplexi	diodes	${ }^{\circ}$ Servo driven. hermetically se	aled				
new catalog AVAILABLE write today for your copy	BUREANK BRANCH LIBRASCOPE DIVISION For career GENERAL PRECISION, INC. opportunities, write John Schmidt 100 East Tujunga • Burbank, Calif. Engineering Employment								

new
 ize 8 iature
 MODEL NOS. 787 \& 793 EATURES:
 Low torque, low inertia, long life. hhigh relability, withstands severe environment SPECIFICATIONS: Output Code: natural binary Resolution: Der input shalt Full Scale Capacity: 7 bits, 13 bits Speod: operating 200 ipm, Slew Expectancy: 2×106 revolutions at 200 rpm Starting Torque: 0.5 oz-in. maximum Diameter: 750° Diameter: 7 Weight: 3 ou

BURBANK BRANCH

LIBRASCOPE DIVISION
100 East Tujunga • Burbank, Calif.

For career
opportunities. writer
John Schmidt
Engineering Employment

All-Pass Networks - Part 3

Their Use for High Quality Delay Lines

The versatile all-pass network, which introduces phase shift without attenuation, can vastly improve delay lines. Here, in the third of a series of articles on all-pass networks, Mr. Lubkin shows how to use the networks in these applications. The first part of this series, "The Anatomy of Net works," appeared in the October 12 issue of Electronic Design. The second part, "Using Networks to Shape Transient Response," appeared in the October 26 issue. Part 4, on ripple, will appear in a subsequent issue.

Yale Jay Lubkin

Loral Electronics Corp.
The Bronx, N. Y.

THE USE of all-pass networks can enable the designer to build delay lines of much higher quality than the vast majority of those now of fered for sale. The designer can even take an existing line and add his own all-pass corrective network to produce a line with much better characteristics than he started with.

A delay line is a filter whose primary function is the faithful reproduction of the input waveform at the output terminals, delayed in time by an amount t_{d}. Since delay lines are generally used for pulse work, the response parameters are usually given for the case where the input is a step. Fig. 1 shows the important characteristic of the input and output waveforms

Laurent Theorem

Gives Delay-to-Rise-Time Ratio
Suppose the transfer function of a luw-pass network or delay line is

$$
\begin{equation*}
F(\omega)=A(\omega) e^{-i \phi(\omega)} \tag{1}
\end{equation*}
$$

where $A(\omega)$ is the amplitude response and $\#(\omega)$ is the phase shift. The response of this network to a step will be similar to that shown in Fig. 1 and will have a delay, t_{d}, and a rise time, t_{r}. The ratio, t_{d} / t_{r}, is a dimensionless quantity widely used as a figure of merit for delay lines and lowpass filters. A theorem of Laurent ${ }^{1}$ gives the delay-to-rise-time ratio as

$$
\begin{equation*}
R=t_{d} t_{r}=\frac{t_{d}}{\pi} \int_{0}^{\pi} A \cos \left(\phi-\omega t_{d}\right) d \omega \tag{2}
\end{equation*}
$$

In general, designs are chosen to maximize R.

Section Efficiency

Depends on Available Phase Shift

Suppose we have a low-pass filter or a delay line with an amplitude response $A(\omega) \leq 1$ and a
phase shift $\psi(\omega)$. How can A and $\%$ be chosen to maximize the delay-to-rise-time ratio, R ? The available phase shift is defined as the difference between the maximum and minimum values of ₹(01). (For a low-pass filter the minimum value will occur for $(1)=0$.) This difference will always be a multiple of $\pi / 2$, and for a network without resistors, it will always be a multiple of π.

The available phase shift is a function of the complexity of the network, and is equal to $\pi / 2$ times the sum of the number of poles and the

difference (including sign) between the number of right-half-plane eeros and the number of left-half-plane veros.
Suppose there are g, π radians of plase shift available, and the phase shift is linear with frequency. Using $\mathbf{E q}_{\mathbf{1}}$. 2. we see that the choice of $\boldsymbol{A}(t, 1)$ which will maximize \boldsymbol{R} for this particular plase slift is unity for $\cos \left(\%-\left(\omega f_{d}\right)>0\right.$ and zero for other freguencies. Thas A should be unity for (1) $<$ "', where

$$
\begin{equation*}
\omega_{i}=\frac{(\eta+1 / 2) \pi}{t_{d}} \tag{3}
\end{equation*}
$$

and should be zero for all other trembencies. Thus, substituting in E!f. 2,

$$
\begin{equation*}
R=\eta+\frac{1}{\pi} \tag{4}
\end{equation*}
$$

and the delay-to-rise-time ratio is equal to the number of "undistorted" x 's of available phase shift, the number being arrived at by weighting the acthal phase shift according to both phase and amplitude distortion.

In general, a "section" of a minimun-phaseshift netwerk (the ustal kind) has an available phase shift of a radians. Eq. 4 indicates the maximum possible value of R for q sections of a lowpass filter. The section efficiency for a particular filter is then the ration of R for the filter to R given by Ecq. 4.

Iterative Delay Lines

Easy to Make and Adjust
The usual delay line is composed of a number of identical sections in series. This type of construction is called "iterative" and is preferred becallse of relative case of fabrication and adjustment. The section commonly used (Fig. 2), was originated by (G. W. Pierce. ${ }^{2}$ This section is in the form of a low-pass tee structure, with series inductances and shunt capacitances and with cou-
pling between the inductances. In a delay line of more than one section, series inductances can be combined into a single inductor. The Pierce section can be used as a tee, a pi, or a ladder section.
Many radar sets designed in World War II and later used the Pierce section without coupling between the inductors, and some manufacturers still make this type of line. This section has two poles and no finite zeros, and no zeros are introduced by cascading sections, so that π radians of phase shift are available per section. The maximum value of R obtainable from a cascade of q such sections is $q+1 / \pi$. In practice these delay lines perform very poorly, with 10 -section delay lines having R of 4.3 and 80 -section lines having R of 20 .

Since the Korean War, most manufacturers have gone to the "compensated" Pierce section (negative coupling between inductors), which has two poles and two zeros and prowides very efficient delay lines. The zeros are at $s= \pm(1 / M)^{1 / 2}$, where M is the coupling coefficient. Since they are in opposite half-planes, they have no effect on the phase shift. The maximum R is the same as that of the uncompensated delay line, but the compensated lines are much more efficient. With reasonable care in component selection, Piercesection delay lines have been made with R of 7.9 for 10 -sections and 50 for 100 -sections.

Maximal-Flainess Criterion

Requires Small Disfortion Terms

As the number of cascaded sections increases for a low-pass section, the amplitude cut-off becomes very sharp and the cutoff frequency becomes very small. The series expansion for the amplitude and plase shift is

$$
\begin{align*}
& A=1+b \omega^{2}+d \omega^{4}+\ldots \\
& \phi=\ell_{\omega} \omega+c \omega^{3}+c \omega^{5}+\ldots \tag{5}
\end{align*}
$$

For a large number of sections, it is important that the phase shift at low frequencies be linear. Since successive terms in the expansion differ by a ratio of (1) ${ }^{2}$, which can amount to orders of magnitude for small (1), it is desirable that as many as possible of the distortion terms be zero. (The distortion terms are those in w^{3}, w^{3}, ctc.) This condition is called the maximal-flatness criterion and is widely used in delay-line and filter design. (In delay-line design, the criterion is generally applied to the phase shift, while in filter design it is arisilied to amplitude response.)

A delay line is said to have maximal flatness of order m if the first m derivatives of the delay with respect to frequency are zero at the origin. (The delay is the derivative of the phase shift with respect to frequency.) The uncompensated Pierce section is not maximally flat, while the
compensated line, with $M=-1 / 12$, is thirdorder maximally flat. It is possible to make a fifthorder line by cascading compensated Pierce sections and all-pass sections.

Maximally Flat Pierce Section Makes Efficient Delay Lines

The phase shift of the Pierce section can be calculated using

$$
\begin{equation*}
\cos \phi=1+Z_{1} / 2 Z_{2} \tag{6}
\end{equation*}
$$

where Z_{1} is the total series impedance and Z_{2} is the total shunt impedance. ${ }^{3}$
For the Pierce section,

$$
\begin{equation*}
\cos \phi=1-\frac{\omega^{2} L C}{2\left(1-\omega^{2} . M L C^{\prime}\right)} \tag{7}
\end{equation*}
$$

Expanding the denominator in a power series,

$\cos \phi=1-\frac{\omega^{2} L C}{2}-\frac{M \omega^{4} L^{2} C^{2}}{2}-\frac{M^{2} \omega^{6} L^{2} C^{3}}{2}+\ldots$
$\operatorname{Cos} \varphi$ can also be expanded in a power series

$$
\begin{equation*}
\cos \phi=1-\frac{\phi^{2}}{2}+\frac{\phi^{4}}{21}-\frac{\phi^{6}}{3 \cdot 20}+\ldots \tag{9}
\end{equation*}
$$

Since \approx is an odd function of ω it has a power series composed of odd powers of ω and for a third-order, maximally flat network the coefficient of $\omega)^{3}$ is zero, so

$$
\begin{align*}
\phi & =t_{d} \omega+e \omega^{5}+y \omega^{7}+ \\
\phi^{7} & =l_{d}{ }^{2} \omega^{2}+21_{d} \omega^{6}+\ldots \\
\phi^{4} & =\iota_{d}{ }^{4} \omega^{4}+\ldots \\
\phi^{5} & =t_{d}{ }^{5} \omega^{4}+\ldots \tag{10}
\end{align*}
$$

If Eq. 10 is substituted in Eq. 9,

$$
\begin{align*}
\cos \phi & =1-\frac{1}{2}\left(t_{d}^{2} \omega^{n}+2 \ell_{d} \epsilon^{6} \omega^{6}+\ldots\right) \\
& +\frac{1}{24}\left(t_{d}^{4} \omega^{4}+\ldots\right)-\frac{1}{i \cdot 2(}\left(t_{d}^{6} \omega^{6}+\ldots\right)+\ldots \tag{11}
\end{align*}
$$

Since Eqs. 8 and 11 are true for all values of ω, we can equate terms in the same power of ω. Equating terms in ω^{2},

$$
\begin{equation*}
t_{d}=\sqrt{L C} \tag{12}
\end{equation*}
$$

Note that L is the total series inductance in one section, and C is the total shunt capacitance in one section. Eq. 12 gives the delay per section. If a delay line is composed of a number of identical sections, the delay is multiplied by the number of sections and the delay for the whole line becomes

$$
\begin{equation*}
l_{d t}=\sqrt{L_{t} C_{t}} \tag{13}
\end{equation*}
$$

where L_{8} is the total series inductance of the line
and C_{6} is the total shunt capacitance. Thus the delay depends only on the total series inductance and shunt capacitance and not on their distribution. This is not true of the rise time.

Equating fourth powers of ω,

$$
\begin{equation*}
-1 / L^{2} C=t_{1}^{4} / 12 \tag{14}
\end{equation*}
$$

so that $M=-1 / 12$. Other values of M do not give third-order, maximally flat sections.
If we equate sixth powers of ω we find that

$$
e=t_{d}{ }^{5} .480 .
$$

From Eq. 12 of the first article in this series ($E D$, Oct. 12, 1960), we find that, for the duopole,

$$
\begin{align*}
\phi= & \frac{\omega}{r}\left(\frac{4 a}{r}\right)+\frac{\omega^{3}}{r^{3}}\left(1-\frac{4 a^{2}}{3 r^{2}}\right)\left(\frac{4 a}{r}\right) \\
& +\frac{\omega^{5}}{r^{3}}\left(1-\frac{4 a^{2}}{r^{2}}+\frac{16 a^{4}}{3 r^{4}}\right)\left(\frac{4 a}{r}\right) \ldots \tag{15}
\end{align*}
$$

Hence $t_{d}=4 a / r^{2}$, as before. For the third-order maximally flat all-pass section, the coefficient of ()3 in Eq. 15 must be zero, so that $a / r=\sqrt{3} / 2$ The fifth-order term can be explicitly evaluated. and the coefficient of ω^{5} is $-t_{d} / 720$

Fifth Order Maximally Flat Delay Line Provides High Section Efficiency

The sign of the coefficient of ω^{5} in the powerseries expansion of the phase shift of the Pierce section is positive, while that in the expansion of the all-pass section is negative. Thus a suitable combination of all-pass and Pierce sections can be found with a zero coefficient for ω^{5} in the series expansion for phase shift, and a fifth-order, maximally flat delay line can be made.

Since the coefficient of ω^{3} for the all-pass section is $-t_{d} / 720$, and that for the Pierce section is $t_{d} / 480$, any combination of Pierce sections and all-pass sections (of the same impedance) in which the Pierce sections make up $2 / 5$ of the total delay and the all-pass sections make up $3 / 5$ of the total delay, will be fifth-order maximally flat. Delay lines made in this manner will have appreciably better section efficiency than conventional lines.

Commercial, Maximally Flat Pierce Seems Much Befter Than Theoretical

The phase and amplitude characteristics of the maximally Hat Pierce section are shown in Fig. 3. This section is very nearly ideal, and for a small number of sections, the delay-to-rise-time ratio of the Pierce line will be very nearly equal to the number of sections.
As the number of sections increases, the phase distortion of the Pierce section becomes significant. If the value of R is calculated using Eq. 2. for a 50 -section maximally flat Pierce line, \boldsymbol{R} turns
out to be only about 14 , much less than that of commercial lines designed to be maximally flat Pierce lines. The improved performance over the theoretical line can be accounted for in three ways:

1. The amplitude cutoff of the line is lower than theoretical because of finite component Q. This actually improves rise time because it cuts gain at frequencies where the phase distortion is severe $\left(\cos \left[\omega t_{d}-\phi\right]<0\right)$.
2 . Distributed capacitance across the inductors changes the Pierce section into one with somewhat different characteristics. For the right values of capacitance, the phase error is less than for the Pierce section.
2. Because the components used are not ideal, manufacturers do not put all their trust in calculations and they adjust the coupling coefficient, M, for best results. For a finite delay line, overcoupling and overcompensating for the phase error yields a better delay line, particularly when there is appreciable distributed capacitance across the inductors. When M is changed from $-1 / 12$ (maximally flat) to $-1 / 11$, the 50 -section Pierce line will have a delay-to-rise-time ratio of 28 , just about equal
to the best of the 50 -section commercial lines.

All-Pass Lines Befter Than Pierce Due to Smaller Distortion Terms

The all-pass section can be used directly as a delay line, provided that it is put in series with a low-pass filter which restricts the pass-band. The all-pass network makes a better delay line than the Pierce section because the distortion terms are smaller. A 50 -section, maximally flat, all-pass delay line would have a delay-to-risetime ratio of 28 if the series low-pass filter were ideal, just as with the best commercial units. R could be improved to about 33 by overcompensating. A Pierce section comes very close to being the ideal, series, low-pass filter for the all-pass delay line.
The phase errors of the maximally flat and over-compensated Pierce and all-pass sections are compared in Fig. 4 for sections having unity delay. The phase error for the Pierce section without coupling is also shown. It is evident that:

- The Pierce section without coupling ($M=0$) makes a very poor delay line (because the phase distortion is very high at low frequencies).
- The all-pass sections are better than the

Pierce sections (because the phase distortion at a given frequency is less).

- The overcompensated sections are much better than the maximally flat sections for lines of reasonable length-say up to 100 or 150 sections (because though the phase distortion at low frequencies is higher, the distortion is negligible for a line of this length, and the high-frequency phase distortion is less).

Fig. 5 shows the circuits of the maximally flat Pierce and all-pass sections, both for $1-\mu \mathrm{sec}$ delay per section and a characteristic impedance of 1,000 ohms. Component values are about the same for overcoupled sections.

Because all the zeros of the all-pass section are in the right-half plane, the available phase shift of the all-pass section is 2π, twice as much as the Pierce section. One practical effect is that, for a given delay, the all-pass components are smaller, hence cheaper. Furthermore, coil losses are smaller, so lines will have less pulse attenuation.
Lastly, the smaller components permit longer delay lines to be built without special techniques, and they behave more nearly like ideal components at high frequencies.

There are some disadvantages to the smaller

Fig. 3. Phase and amplitude characteristics of the maximally flat Pierce section.

Fig. 4. Phase distortion of maximally flat Pierce, overcompensated Pierce, and all-pass sections.
component values. Since circuit capacitances are small, the effects of associated circuit capacitance will be greater. Very small inductances are diffcult to fabricate and couple accurately. The greatest drawback of the all-pass network is its inability to be realized in an unsymmetrical form because of the bridging capacitor.

Use of the unsymmetrical form, illustrated for the Pierce section in Fig. 6, permits automatic adjustment of the coupling coefficient to any value whatever, using closely coupled coils. Instead of two equal inductances in each section, a single autotransformer is used with a total selfinductance of $(1+M) L$ and with a tap at the de sired inductance ML.

A cascade of unsymmetrical sections is electrically equivalent to a cascade of balanced sections. This means that the Pierce line is normally cheaper to make for a given number of sections than the all-pass line. It does not mean that a Pierce line with a given R is cheaper to make than an all-pass line with the same R.

Maximum Practical Number of Sections
 Determined by Inductor Q

At this point the designer may be tempted to

Fig. 6. An unsymmetrical Pierce secFig. 6. An unsymmetrical Pierce sec.
tion with automatically adjustable coupling coefficient.
ask, "Why so much fuss about getting a good section? The difference between the Pierce and all-pass sections isn't so much anyway, and if we want a better delay line, we'll just add more sections."
The answer is that what you do depends on what quality line you want, how much you can afford to pay, and what the competition is doing. A useful rule of thumb is that the maximum practical number of sections you can use is equal to the Q of your inductors.

After World War II, most delay-line manufacturers used the very unsatisfactory, uncoupledPierce network and built delay lines with a maximum R of about 20 for 100 sections. Further improvements with this network were not possible at the time because of low inductor Q. About 10 years ago, the Electronic Computer Corp., which is no longer in business, succeeded in getting R of 50 for a 100 -section line using overcoupled Pierce sections. By increasing the line length to 125 sections, they could raise R to 60 , but further increases caused deterioration in R.

A few years later, they had improved their inductors to the point where 200 -section lines were practical and they were able to get R 's of 75 to so. On occasion, and not repeatably, they were able to make 400 -section lines with R of 100 . A few years ago, ESC Corp. announced a line with $R=170$. This high ratio was obtained by stacking about 500 Pierce sections and using specially developed ferrites with very high Q 's. The procedure is normally very expensive.

Cascading Too Many Sections

May Not Be Profitable

The major reason that cascading more sections does not pay off too well is that the section efficiency drops as more sections are added, and the drop is faster if the sections are not very good. For two iterative sections in cascade, the gains multiply and the phase errors and delays add.

Experience confirms the mathematical proof which leads to three important conclusions.

1. Section efficiency goes down more rapidly as either the amplitude or phase distortion increases.
2. Phase distortion is probably more important than amplitude distortion.
3. R can actually decrease as the number of sections increases especially if the phase distortion is sufficiently poor.
We can obtain some useful quantitative data on cascading sections. Suppose we have a maximally flat network whose phase shift can be described by $\quad \phi=\omega+a \omega^{n}$
(17)

If we have q sections, then

$$
\begin{equation*}
\phi_{n}=q \omega+q a \omega^{p} \tag{18}
\end{equation*}
$$

Suppose the associated amplitude characteris-
tic is unity until the phase error is 90 deg , and zero afterward. If p is large, the cosine of the phase error will approach $1-k w^{2 p}$, where k is a constant. The cosine will be very nearly equal to unity for frequencies where the phase error is less than 90 deg. If we substitute in the Laurent equation we find that $R=t_{d} \omega_{0} / \pi$ where ω_{0} is the frequency for $90-$ deg phase error. From Eq. 18,

$$
\begin{align*}
& q \mu \omega_{0}^{p}=\pi / 2, \text { and } \tag{19}\\
& \omega_{0}=\sqrt[r]{\pi / 2 q a} \tag{20}
\end{align*}
$$

If we substitute this in the equation for R, noting that the delay is q,

$$
\begin{equation*}
R=q^{p-1) / p}\left(p \sqrt{1 / 2 a \pi^{p}-}\right) \tag{21}
\end{equation*}
$$

and R is proportional to $q^{(p-1) / p}$.

For the Pierce section without coupling, $\boldsymbol{p}=3$, so R is proportional to q^{23}. To double R, we have to add 2.8 times as many sections. Thus if we take the figure of $R=20$ for a 100 -section line, we need 400 sections to obtain $R=50$.
For the third-order, maximally flat Pierce and all-pass sections, R is proportional to $q^{b / 5}$. This is nearly true for the overcoupled sections also. An additional 2.35 times as many sections are needed to double R. Referring to previous data, we see that to obtain $R=50$, we need about 340 sec tions of maximally flat, Pierce line, about $103 \mathrm{sec}-$ tions of maximally flat, all-pass or overcoupled Pierce line (verified by commercial practice), and only about 83 sections of overcoupled, all-pass line. The advantage of good sections is obvious.

Large Rise-Time Improvements
 From All-Pass Networks

It is frequently possible to make large improvements in network rise time by using all-pass networks, either as corrective networks, or as basic structural elements. The same considerations apply to fall time since the networks are linear.
What about the other parameters? Do we have to pay a price of deterioration of other characteristics to gain improvements in rise time? In general, the answer is "no." The other major characteristics of a pulse response are droop and ringing. Phase correction with all-pass networks should have little effect on droop, which is determined by an effective network Q. Phase correction can have a very beneficial effect on ringing. and this will be discussed in the next article in this series. - =

Roforances

1. T. Laurent, Zur Systemtheorie der Laufzeit und der Einswingzeit in Elektrischen Filtern mit Phasenverung (On the Theory of Delay and Rise Time in Electrical Filters with Plase Distortion). Archiv der Elektrischen Ubertragung. March 1952.
2. Pat. No. 1576495, Dec. 24, 1921.
3. Reference Data for Radio Engineers, IT\&T Corp., Fourth Edition, pl65.

How To Specify Noise

In Precision Linear Potentiometers

When considering wiper-contact resistance in precision linear potentiometers, what are the acceptable limits of Equicalent Noise Resistance? Some specifications-such as NAS-710, MIL-R-12934B, MIL-R-19518-establish the limit at 100 ohms. The authors dispute this figure as a standard. ENR, they say, must, in some way, be related to the circuit of use.

J. Damast, M. Marro

Engineering Dept.
Computer Instruments Corp
Hempstead, L. I., N. Y

ACCEPTABLE levels of Equivalent Noise Resistance in the wiper-contact section of precision linear potentiometers can be specified realistically, using the graphs in this article. Equivalent Noise Resistance (ENR) cannot be stated as a single value, but must, in some way, be related to the circuit of use.

Equivalent Noise Resistance

As a measure of the uniformity of quality in manufacturing their wirewound potentiometers, several manufacturers, some years ago, isolated the factor of wiper-contact resistance and established the following as an internal quality control procedure. Referring to Fig. 1, with the potentiometer connected as a rheostat and an arbitrary 1 ma through the wiper, the contact resistance variation, as the wiper is moved, appears as the equivalent in millivolts; any momentary change of contact resistance, such as an open caused by dust, appears on the oscilloscope as a voltage pulse. The peak value of voltage was called Equivalent Noise Resistance.

Fig. 1. This circuir was used by some manufac turers to establish Equivalent Noise Resistance

The gencral circuit in which precision potentiometers operate is shown in Fig. 2. \boldsymbol{R}_{L} represents the electrical load in the wiper circuit; \boldsymbol{R}_{C}, the wiper variable contact resistance due to wiper movement. When R_{L} is infinite in value, the potentiometer is called a voltage divider; zero wiper current is drawn. When R_{L} is zero ohms, the potentiometer is called a rheostat (current controlled); all current in the potentiometer passes through the wiper

When zero wiper current is drawn (R_{L} is infinite), any level of variable contact resistances does not produce voltage changes: the voltage output is governed entirely by the relative position of the wiper on the potentiometer resistance element. In this instance, the contact resistance variation is totally irrelevant to the performance of the potentiometer.
However, when the potentiometer is operated as a rheostat, the level of current is directly affected by the variable contact resistance, since it is in series with the potentiometer resistance element. Here the performance of the potentiometer is directly affected by its contact resistance characteristics: the variable contact resistance directly produces "noisy" outputs.

From the general circuit considerations dis. cussed above, it follows that a rational criterion for acceptable level of Equivalent Noise Resist-
ance is related to the relative wiper current, or alternatively, to the relative wiper loading. Referring to Fig. 2, this analysis can be made.

It can be shown that, in a linear potentiometer:

$$
m=\frac{1}{(1-\Sigma) p+\frac{1}{S}}
$$

The load current can be shown to be

$$
t_{L}=\frac{m E_{n}}{l_{c}+l_{L}}
$$

So that the voltage drop across the contact resistance is

$$
E_{C}=I_{L} R_{C}=\frac{m E_{i n} R_{C}}{R_{C}+R_{L}}
$$

The change in output voltage due to drop across contact resistance is:

$$
\Delta_{c}=\frac{E_{c}}{E_{\text {in }}}=\frac{m R_{c}}{R_{c}+R_{L}}
$$

Since, usually

If $\quad K=\frac{R_{C}}{R}$ and $p=\frac{R}{R_{L}}$,

then $\lambda_{r}=m K_{r} \mu=100 m \kappa_{\mu} \mu=1(k) K(m p) c_{i}^{\prime}$
For any given load ratio p, m has a maximum value of 1 when $S=1$, i.e., when the wiper is at its maximum excursion from the ground terminal. The maximum "noise" voltage due to contact resistance variation corresponding to the equation $\Delta_{r}=1(0) K p$ for the circuit of Fig. 2 is shown on Fig. 3.

The data of Fig. 3 is based on maximum load current, resulting wher. the wiper is opposite the maximum excitation voltage terminal. For different wiper positions, (1) the load current will be less, and (2) the "noise" voltage induced by contact resistance variation will also be correspondingly less. The factor m in the above equation will vary with both wiper position and load. A plot of this factor is shown on Fig. 4. Note that, when the load is connected to the center tap, the load factor m is different from its value with load connected to one end terminal.

How Curves Are Used to Establish

 Equivalent Noise ResistanceThe family of curves shown on Figs. 3 and 4 can now be used to establish the acceptable level of contact resistance variation, or ENR, based on the cffect of such variation on potentiometer performance. This is best illustrated by examples: Example 1. In a circuit in which a $1-\mathrm{meg}$ load to one excitation terminal appears on the wiper of a 50-K potentiometer ($p=R / R=0.05$), the nature of the application permits a noise-to-signal ratio of one part in 1,000 (0.1 per cent); referring to Fig. 3, the maximum acceptable ENR is 2 per cent of terminal resistance ($K=0.02$). Conversely, an ENR of 2 per cent of terminal resistance will introduce a maximum output noise voltage equal to 0.1 per cent of the excitation voltage. If the load was 5 meg instead of 1 meg , the allowable contract resistance variation would be 10 per cent of terminal resistance.

Further, if in actual use the usual area of operation covers only the lower 50 per cent of the pot wiper travel (referring to Fig. 4), m will be 0.49 . In the example given above, the effective loading ratio is now 0.0245 (0.05×0.49); for a noise-to-signal ratio of 0.1 per cent therefore, the maximum acceptable ENR is 4.2 per cent of terminal resistance.
Example 2. In a circuit in which a 1-meg load on the wiper of a $50-\mathrm{K}$ potentiometer is connected to the center tap instead, the Load Ratio Factor for maximum noise is 0.5 , permitting an ENR equal to 4 per cent of terminal resistance for a noise level of 0.1 per cent of excitation voltage. If the usual area of operation is restricted to ± 25 per cent off on either side of the center tap, the load ratio factor is 0.247 per cent and p is 0.01235 (0.05×0.247) therefore permitting an ENR of 8.4 per cent of terminal resistance for the same output noise level. - -

Immediate delivery at factory prices... from Mallory industrial distributors

TANTALUM CAPACITORS Industry ${ }^{\text {s }}$ broadest line. Microminiature 10 high capacity: 0.33 to 1300 mfd . Sintered wet slug, solid and foil
types. Temperature ratings -55 to $+200^{\circ} \mathrm{C}$

SElECTOR SWITChes Push-button, lever action, rotary, wafer, multilever action. rotary, Warer, muti-
section. Phenolic or ceramic insulation.

VITREOUS ENAMEL RESISTORS COMplete line of tixed and adjustable wire-wound resistors including MIL types. 5 to 200 watts, resistances to 100,000 ohms.

CERAMIC DISC CAPACITORS AII standard temperature coefficients. Ratings from 50 volts general purpose to 6000 volts. Mide by Radio Materials Company, a Mallory division.

SUBMINIATURE SMAP-ACTION

SWITCHES Milli-Switch line of precision push-button switches; toggles and auxiliary actuators for slide or cam action. Temperature ratings to
$300^{\circ} \mathrm{F}$. Also hermetically sealed $300^{\circ} F$.
types.

HIGH-CAPACITY, HEAVY-DUTY ELECTROLYTICS High-capacity HC type and non-polarised NP type Plastic calse. Compact, Icak-proof design. High ripple current rating, cool operation. From 3V, 6700 mfd . $10450 \mathrm{~V}, 88 \mathrm{mfd}$.

Wherever you may be, a Mallory Industrial Distributor near you can supply you with Mallory original equipment parts from stock at factory prices. You'll profit by his prompt delivery on all your small-lot orders . . . for research, maintenance, or short production runs. Each of the organizations listed below specializes in industrial electronic supply. Call them for your rush orders . . . they're ready to serse you.

Distributor Division
Indianapolis 6, Indiana
MALIORY

These Mallory Industrial Distributors stock the lines indicated by numerals:

Key: 1 -Tantalum capacitors
2-Selector switches
3-Vitreous enamel resistors 4-Ceramic disc capacitors -Snap-action switch

Chemical and Solar Power Sources

An Electronic Design Staff Report

Howard Bierman
Associate Editor

Batteries - Work horses for Portable Equipment

Fuel Cells-Direct Conversion of Chemical to Electrical

Energy
p 62

Silicon Solar Cells - Tapping Power from the Sun

For space and for many ground-based applications, power sources for electronic equipment must possess such characteristics as light weight, compact size, reliable and unattended operation. high energy per unit weight and volume, and long life. "Converting Heat to Electricity" (ED, Sept. 28, 1960, p 32) outlined the development of thermoelectric, thermionic, and MHD devices to fill these needs. Other approaches, using chemical and solar sources, are likewise being pursued to bring man's dreams of space discoveries nearer to reality.

In this Staff Report. Electronic Design analyzes in depth three techniques of energy con-version-batteries, fuel cells, and solar cells.

Batteries continue to play a most significant role in the healthy growth of electronics; more than $\$ 500$ million worth of batteries were produced last year in the U.S. Radios, hearing aids, and test equipment have depended on battery supplies for years; industrial devices, for close to a century. Present-day satellites are equipped with secondary batteries acting as storage devices for solar converters.

Battery-research gains have beer slow but steady, relatively devoid of sensational "breakthroughs." Over-all performance, however, has been considerably improved; shelf life has been lengthened, and substantial increases in energy-to-weight ratio have been achieved. The latest trends in battery design, improved cell characteristics, and the diversified application areas are discussed in "Batteries-Workhorses for Portable Equipment."

Fuel cells, producing electricity directly from chemical reaction between fuel and oxidant, are not subject to the Carnot limitation imposed on heat engines. Thus, practical fuel cells can operate at 60 to 80 per cent efficiency, almost double the figure achieved with the most efficient steam or diesel engines in use today. Fuel cells are noiseless, have infinite shelf life and are free of hot, noxlous by-products. The weight-to-energy ratio of fuel cell systems, estimated in the order of 50 lb per kw , is an attractive prospect for space applications.

An interesting possibility involves the combination of fuel cells with solar or nuclear energy sources. An isotopic source or solar energy could be used to restore the waste by-products of a fuel to the original cathode and anode reactants. Over-all efficiency should be double the value available using the same nuclear source and a heat engine. The progress of fuel cells and their construction are covered in "Fuel Cells-Converting Chemical to Electrical Energy."

In a bright, sunny location, such as Arizona or New Mexico, close to 100 w of electrical energy can be obtained for every square meter of surface covered by currently available silicon solar cells. Outside the earth's atmosphere, this figure approaches 150 w per square meter. Although solar-cell cost is high, ranging from $\$ 300$ to $\$ 50$ per watt, an appealing feature is the use of free, available energy from the sun; fuels need not be stored or transported. It is obvious, however, that a storage device such as secondary batteries must be included for operation during dark or sunless periods. For extremely long-duration service, such as satellites in orbit, solar cells are ideal since lifetime is limited by the device rather than the fuel supply. Developments in solar cells and their significant characteristics are detailed in "Silicon Solar Cells-Tapping Power from the Sun."

No single conversion technique, thermal, chemical, or solar, can be singled out as the panacea for power demands. Solar cells and fuel cells are still in their infancy, with much research and consequent gains ahead. Batteries, despite their hoary background. have been improved considerably in the past decade with further gains in view for the near future. At the present time, the "best" design for a particular application may well consist of a marriage between two or more of the available conversion schemes.

Batteries - Workhorses for Portable Equipment

In the face of onrushing competition from "exotic" ene'gy-conversion designs batten-research scientists continue their search to improve cell characteristics. In) cells do more than light flashlights; secondary or storage batteries are more useful than more engine starters. The advance's in battery performance, neat drevee's under dezelopme'm and the wide scope of applications presently serwed by batteries are detailed.

C. K. Morehouse and J. R. Thomas

Globe Battery Co.
Div. of́ Globe-Union, Inc.

Milwaukee 1, Wis.

DESPITE threats from more "exotic" energyconverson schemes under intensive development during the past decade, the electrochemical battery continues to rule as leading contender for the task of powering industrial, military, and space equipment separated from ac power sources. Although there is an aura of glamour about the newer conversion techniques, extensive research and development effort is, and has been, dedicated to the task of improving capacity, shelf life and performance of primary and secondary batteries

The battery industry has grown steadily since its beginning about 160 years ago; about $\$ 600$ million worth of hatteries of various types are produced annually in the U.S. alone.

Batteries are electrochemical devices which
convert stored chemical energy directly into electrical energy; they are the most efficient energy converters known today.
Electrochemical cells are generally classified into two groups, primary and secondary, based on the nature of the chemical reactions. Primary cells are discarded when output drops below a usable level. Secondary cells, on the other hand, convert chemical energy by reactions that are essentially reversible. A battery, of either primary or secondary type, consists of two or more cells connected in either a series, parallel, or series-parallel arrangement to provide the needed power. The five basic components of a cell are:

- Anode-the negative electrode from which electrons flow into the external circuit. Anodes are reducing agents which give up electrons and go into solution, forming positive ions
- Cathode-the positive electrode into which electrons flow from the external circuit. Chemically, cathode materials are oxidlizing
agents which can accept electrons with case
- Electrolyte-a solution that permits ionic conduction between anode and cathode.
- Separator-an inert, porous insulating substance to plysically separate the anode and cathode; ions in solution can flow between the clectrodes.
- Seal-a composition to prevent loss of electrolyte and water while permitting gas to escape

The electrode processes which occur when electrical energy is withdrawn from a rincmercuric oxide primary cell is shown in Fig. 1 Although the chemical reactions vary for each dectrochemical cell, the principles are the same.

The theoretical energy that can be withdrawn from a primary or secondary cell depends on the chemical reactions which occur at the anode and cathode. In general, most cells operate below their theoretical limits because of polarization effects. irreversibility of the electrode reactions or olimic losses.

Primary Cells: Compact, Disposable Power Source

Abstract

The four major classes of primary cells are dry, wet, reserve, and fuel or continuous feed. Most of the new developments of the last 10 years have been of the dry, reserve, and fuelcell types.

Dry cells contain an aquueous electrolyte which is immobilized and does not spill out when the cells are inverted. Three types of dry cells are presently produced in quantity in this country: Leclanche zinc-manganese-dioxide, zinc-mercu-ric-oxide, and alkaline-zinc-manganese-dioxide Leclanché cells: Approximately 90 per cent of the 2 billion dry cells produced annually in the United States are zinc-manganese dioxide cells,

commonly referred to as Leclanché cells after their inventor.

Two basic cell designs of the Leclanche type are currently being manufactured in a number of different sizes. Cross sections of cylindrical and of flat or layer construction are shown in Figs. 2 and 3.
Most cylindrical cells consist of an amalga-mated-zinc can which acts as the anode as well as the cell container. A mixture of manganese dioxide and carbon wet with electrolyte is shaped into a cylindrical core; a carbon rod the positive terminal, is placed in the center of the mixture, see Fig. 2. A starch-flour gel is used
to separate both electrodes. The entire cell may be dropped into a steel tube surrounded by an insulating jacket to retard cell leakage caused_by zinc-can perforation; this type of battery is termed "metal clad." Some manufacturers include modified starch-paste separators to provide a leak-resistant cell. An "inside-out" cell, having the rinc anode at the center of the device, is claimed to be free of leakage due to zinc-can perforation and to make better use of the zinc content.
To provide high voltages for communication equipment, flat-cell constructions have been developed. One such type is shown in Fig. 3.
 zinc-mercuric-oxide primary cell.

Fig. 2. A cross-sectional view of a Leclanché flashlight battery.

Although most of the manganese dioxide used in dry cells comes from Africa, there is a definite trend to products synthetically prepared by chemical or electrolytic processes. The more contly synthetic materials differ from the naturally occurring manganese dioxide in crystal structure, particle size, impurities, and chemical activity. Their present applications include cells designed for ligh-current drain usage for industrial and military needs.
The open-circuit voltage of Leclanche cells varies from 1.5 to 1.6 v , decreasing $0.4 \mathrm{mv} / \mathrm{C}$ from 25 to -20 C . The ampere-hour and watthour capacity are dependent upon cell size and

From the smelting furnace at Fusite has come a glass so ideal for use with 52% nickel alloy pins and mild steel body it obsoletes all previous compression type seals.
Designated TR-Glass it grips the pins so tightly no amount of bending or twisting will cause the terminal to leak. Heat shock of $1000^{\circ} \mathrm{F}$ in 20 seconds is child's play for the compatible combination of materials in this new relay header.
The favorable balance of expansion between TR-Glass and the two dissimilar metals of pins and body assure performance well in excess of Mil specs.
Available in electrode styles of hook, plug-in and extended lead. Samples on request. Write Fusite Corporation, Department C-1.

Fusite Corporation, Cincinnati, 0 .
Woodford Mfg. Co., Versailles, Ky.
Fusite N. V., Königweg 16, Almelo, Holland
Fusite Gmb H, Dieselstrasse 5 Karlsruhe, W. Germany
the FUSITE CORPORATION 6000 FERNVIEW AVENUE, CINCINNATI 13, OHIO
CIRCLE 43 ON READER-SERVICE CARD

Fig. 3. Typical Leclanché flat cell construction. A flat sheet of zinc acts as a duplex electrode for a layerbuilt dry cell. One side of the zinc sheet acts as the anode of one cell while the opposite side, bearing an adherent conductive coating, serves as the base of the cathode of the adjacent cell. The two-cell electrodes are separated by gel-coated paper. Cells are stacked to achieve the required voltage, then taped and sealed in wax to eliminate moisture loss.
rate of energy withdrawal. Intermittent type of service is generally preferred, especially for heavy current drain usage. Heavy drain may roughly be defined as any drain which results in a service life of 10 hr or less. Due to freezing of the electrolyte, the cells become inoperative at about -30 C . Low-temperature performance can be extended to below - 40 C hy changing to an electrolyte with a lower freezing point
Shelf life is dependent on quality of manufacturer, cell size, cell formulation, and temperature of storage. In general, the smaller the cell size, the shorter the shelf life. Storage temperature has a marked effect on shelf life; the lower the temperature, the longer the shelf life.

A considerable number of tests have been adopted, each intended to simulate some kind of service, as for example, flashlights, portable radios, hearing aids, telephones, or military services. Most tests involve discharging the cell or battery through a constant resistance simulating the current drain required to power the particular equipment. Typical discharge curves and capacity data for Leclanche dry cells compared with other dry cells are shown in Fig. 4. Zinc-Mercuric Oxide Cells: These cells use an amalgamated-zinc anode in the form of either a fine powder or a coiled corrugated strip. The cathode consists of a mixture of red mercuric oxide with about 5 per cent graphite

Fig. 4. D-size cells discharged intermittently through 4 -ohm resistors, four minutes per hour in an eighthour day.

Fig. 5. Cross-section views of a zinc-mercuric-oxide dry cell manufactured by P. R. Mallory Co.

Fig. 6. Penlight IAA. size) dry cells continuous. ly discharged through 50 -ohm resistors at 21 C
molded under pressure into a steel cup or pressed as a discrete part and assembled into the cell, depending on the type of cell produced. An aqueous potassium-hydroxide solution containing zinc oxide acts as the electrolyte and the separator consists of a cellulosic material to immobilize the electrolyte and a barrier material interposed between the cathode and the cellulosic material. A typical construction which is commercially available is shown in Fig. 5. A typical discharge curve for this cell compared with a comparable size Leclanché cell is shown in Fig. 6; the open-circuit voltage is 1.345 v . Advantages over the Leclanché cell include greater w-hr capacity, smaller voltage drop as cell discharges and better shelf life. Unfortunately cost is high.
Alkaline Zinc-Manganese-Dioxide Cells: This cell construction uses a rinc anode and a man-ganese-dioxide cathode, as does the Leclanché cell, but it has an alkaline electrolyte. The opencircuit voltage is 1.52 v . Its advantages are that it gives better high-rate performance than the Leclanche and that it can be made up easily in very small sizes which are like the zinc-mercuricoxide cells.

One type, called "crown" cells is very like zinc-mercuric oxide cell. It contains an aqueous sodium-hydroxide electrolyte and is most suitable for low-drain applications. Although these cells
do not give as high a capacity as mercuric-oxide cells of comparable size, they contain a cheaper cathode material. Improved performance with a subsequent increase in material cost can be obtained by adding mercuric oxide to the manga-nese-dioxide mix.

During the past few years, an "inside-out" construction has been designed for high-drain, continuous-duty applications. This type contains an aqueous solution of potassium hydroxide as the electrolyte and a powdered-zinc anode disposed in a gel.

Higher W-Hr Capacity,
 Longer Shelf Life Goal of R \& D

Magnesium Cells: Magnesium is theoretically more attractive as an anode material than zinc since it has a considerably higher reversible electrode potential and more than twice the amp-hr capacity per unit of weight. Recent developments in this type of cell involve the coupling of a magnesium anode and an aqueous magnesi-um-bromide or perchlorate electrolyte with such cathode materials as manganese dioxide, cupric oxide, mercuric oxide, and a number of organic compounds. Each of these new dry cells has some desirable characteristics and offers the possibility of replacing conventional dry cells for certain applications. A magnesium flat cell has been developed which uses an aqueous magne-

Fig. 7. Shelf life of magnesium-mangonesedioxide flashlight cells vs Leclanché types.

Fig. 8. Various AA-size dry cells discharged continuously through 16.67 .ohm resistors.
sium-bromide electrolyte. These cells have a sloping voltage-time discharge curve as does the Leclanclié cell, but operate at 0.1 to 0.3 v higher. Magnesium-manganese-dioxide cells have a longer shelf life than Leclanchè dry cells, especially at elevated storage temperatures, as shown in Fig. 7.
Discharge curves for various AA-size dry cells are shown in Figs. 4, 6, and 8.
Organic cathode materials, such as aromatic nitro and C -nitroso compounds, are being applicd to cell structure. Many of these compounds have from five to eight times the theoretical ampmin capacity of manganese dioxide and mercuric oxide, materials now used in commercial cells. The operating voltage characteristics of the mag-nesium-organic cells have, in general, a more constant voltage-time discharge curve than the manganese-dioxide cells as shown in lig. 8. Comparative capacity figures for actual cells are shown in Fig. 9.

Organic-cell development may lead to the use of new materials, many of which are relatively inexpensive and non-strategic, a factor which could eliminate U.S. dependence on foreign ore deposits. Among the technical problems associated with the use of magnesium anodes are cost, delayed action, high impedance, and loss in capacity during light intermittent service. As these problems are solved, magnesium cells will achieve

First complete line of

 Solderable Magnet Wires for the Electronics Industry!```
NYLEZE * Class B (130}\mp@subsup{}{}{\circ}\textrm{C}
```

    S-Y BONDEZE \({ }^{*}\)
    SODEREZE*
    GRIP-EZE ${ }^{*}$
a tough, all-purpose. soldcrable wire for your most severe applications. Especially suited for use in high speed auto:natic winding equipment or wherever extreme varnish or compound treatment is involved.
a self-honding wire with underlying N yleze ${ }^{\text {© }}$ film, solderable at low temperatures. The high temperature cutthru resistance of the Nyleze® film will reduce the number of shorts in your coils.
the solderable wire with exceptional "Q" characteristics proven over the years in thousands of customer applications.
the solderable film wire with controlled surface friction for use in lattice-wound coils. A special surface treatment provides mechanical gripping between turns and keeps the wire in place.
All Phelps Dodge solderable magnet wires are red in color.
Any time your problcm is magnet uire, consult Phelps Dodge for the quickest, surest answerl



## Here's proof!

No increase in reverse leakage when you etch diodes in

## BECCO Hydrogen Peroxide!

To test the effect of impurity-free Becco Hydrogen Peroxide across an unsealed diffused silicon junction diode, the following "toracross an unsealed diffused silicon junction diode, the following "tor-
ture test" was performed: 600 volts AC were applied across the diode, ture test was periormed: 600 volts AC were applied across the diode,
and the reverse leakage current depicted on an oscillograph. Then, the and the reverse leakage current depicted on an oscillograph. Then, the
diode was immersed in Becco $30 \%$ Reagent Grade Hydrogen Peroxide. diode was immersed in Becco $30 \%$ Reagent Grade Hydrogen Peroxide.
The diode, without being washed in any way, was placed on a hot plate The diode, without being wash
and the $\mathrm{H}_{2} \mathrm{O}_{2}$ was evaporated.

The voltage was re-applied and the tracing produced was virtually identical (see above)-proof that no impurities that could affect the diode exist in Becco Hydrogen Peroxide.

Of course, you'll use Becco $\mathrm{H}_{2} \mathrm{O}_{2}$ at a different stage-when you etch the diode. And, of course, good practice still dictates that you wash the diode in pure water following the etch. Nevertheless, this test proves that you need not be too concerned with your wash when you etch in Becco $\mathrm{H}_{2} \mathrm{O}_{2}$, since the peroxide itself, made by an inorganic method can not deposit any impurities of its own on the diode.

Becco packages its Reagent Grade $\mathrm{H}_{2} \mathrm{O}_{2}$ in returnable or non-returnable polyethylene containers to insure its purity when it arrives at you plant. Write us for further information or specifications, analysis, prices, etc. Address: Dept. ED-6. CIRCLE AS ON READER-SERVICE CARD



Fig. 9. Capacity and watt-hour per unit weight and volume for various systems.


Fig. 10. Basic construction of a zinc-cupric-acid wet cell.
commercial significance in the near future. Air-Dry Cell: Oxygen in the air is used as the cathode component for this type of cell. The first dry-type air cell was produced in this comtry about a decade ago. These cells contain a zine anode, an aqucous sodium-hydroxide electrolyte, and a special porous water-repellent carbon positive electrode. The carbon electrode is sufficiently porous to permit adequate access of air and to occlucle enough oxygen to maintain the intended rates of discharge. The cells are designed to operate at current drains as high as 64) mat about 1.0 .5

Air-dry cells are sealed during assembly to prevent drying out during storage; before use, the seal is broken to allow oxygen into the porous carbon electrode. For short continuous operation, these cells perform satisfactorily: in lones intermittent discharge service, the electrolyte evaporates resulting in a loss of capacity: The utility of this cell would be greatly enhanced by the development of a sealing membrane which would permit oxygen to enter the cell but prevent water vapor from leaving.
Aluminum and Indium Dry Cells: In aluminum counterpart to the Leclanche cell consists of an Alclad aluminum-anode can, an aqueous alumi-num-chloride electrolyte and a manganese-dioxide cathode. Ammonium dichromate is added to the electrolyte to inhibit the corrosion of the aluminum. These cells operate about 0.1 v higher


Fig. 11. Comparison of various 300 -w secondary cell devices.
than the Leclanche with the same sloping volt-age-discharge characteristic, but more development is required to improve their perfonnance.

An indium version of the zinc-mercuric oxide cell, using an indium anode in place of zinc, has also been developed as a very small, hermetically sealed cell to power a wrist watch. This all can be sealed, because the indium anode is more resistant to corrosion than zinc. The cells also libcrate less gas. Another cell announced recently is the zinc-mercuric dioxy sulfade, which has high capacity and a flat discharge curve like the zinc-mercuric-oxide ccll but which can be made in designs similar to the Leclanche cell at a reduced cost.
Solid Electrolyte Cells: Solid electrolyte cells offer potentially long shelf life as compared to cells with liquid electrolytes. In the latter, shelf life is limited by the reaction of the electrodes with the electrolyte and by the evaporation of the eiectrolyte itself. Solid clectrolyte cells are ideal for use in military and other equipment that may be stored for ears in a stand-hy condition: however. they are limited to applications reguiring very low current drains.

## High Power, Long Life <br> Offered by Wet Cells

Ther zinc-(cupric-ovide Latande and the zinc-air all are tuo types of wet cells produced in the C.S. These cells are used where high capacity moxderately large currents at constant woltage and long tife are needed. The Lallande cell eonsists of a rinc amode, a canstic-sonda electrolyte and a cupric-oxide cathode contained in a glass jar. 1 eppical comstruction is shomen in Fig. 10. The cells are uswally shipped dry with the electrolyte added prior to usage: In general, Lalande
 cities, and operate between 0.5 and 0.7 vat current drains as high as 15 amp . The air cell, which is considered as a replacement for the Lalande cell. contains a porons-carbon electrode in place of the cupric oxide. The porous-carbon electrode is designed to absorb oxygen from the air, which in turn is reduced in the comese of cell discharge. The air cells operate at 1.1-1.2 v with a constant voltage-time discharge curve.

## Reserve Cells Fill <br> "One-Shot" Demands

"One-shot" or "delayed-action" reserve batteries are assembled in an inactive state and activated prior to use. Advantages over other conventional primary batteries include: a higher energy output per innit of weight and volume, long shelf life, and hish over-ill reliability.
In general, the important cells can be classified into three qroups, (a) liquid-activated, (b) gas-activated, and (c) heat-activated. The liquid-


OVER 740 PROVEN CIRCUIT PACKAGING CONCEPTS
. . are available to translate your circuit designs into space saving, ruggedized. circuit-pak modules.
What is a Raytheon Circuit-Pak? It is an unique encap. sulation capability - refined by years of experience - to take a "rough" circuit. black-box spec. final circuit design or anv similar multi-component group and so package the elements that you derive distinct additional package the

Here are just a few of the benefits that accrue from Raytheon's Circuit-Pak technology

## ENGINEERING BENEFITS:

Raythenn's long and valuable experience with high temperature epoxy molding ... Ravtheon's large inventory of carefully matched semiconductor devices .. Surprisingly efficient component spacing tior maximum utilization of epoxy dielectric properties
Plug in replaceability of complete circuits.. Ruggedized Plug in replaceability of complete circuits... Ruggedized .. Ultra reliability of Raytheon's welding techniques

More uniform temperature control of components hecause the encapsulation acts as a heat sink. providing a balanced operating temperature for circuit and components.

ECONOMIC BENEFITS
Elimination of expensive package development costs Shorter lead times from design to complete units Lower packaging costs through proven techniques Lower service costs through Raytheon Circuit-Pak reliability.

More than 740 different Circuit-Pak configurations have been produced to meet customers' needs. And each customer had a different reason for specifying a Raytheon Circuit-Pak. Whatever your circuit need may be, check Raytheon first. More than eight years of progressive refinement in circuit packaging. and resultant capability have put Raytheon in a position to optimize a Circuit Pak for you - at surprisingly low cost.

A Raytheon Circuit-Pak of your circuit may be more A Raytheon Circuit-Pak of your circuit may be more
compact than you would imagine, as Raytheon inte compact than you would imagine, as Raytheon inte-
grates its tiny Submin transistors in many new versions grates its tiny Submin transistors in many new versions.
You may even find that some in-stock Circuit-Paks can fill your needs ideally.

For consultation on circuit packaging, and a brochure on Raytheon Circuit-Paks, call your local Raytheon office - listed below

> RAYTHEON COMPANY

SEMICONDUCTOR DIVISION
RAYTHEON

SILICON AND GERMANIUM DIODES AND TRANSISTORS - SILICON RECTIFIERS - CIRCUIT-PAKS


 GOVERNMENT RELATIONS: Washington. D. C.. MEtrodoliten es 205

CIRCLE 46 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961


EXCLUSIVE EXPERIENCE and unique combination of Facilities offer big savings in time and money. For example, Rototest offers 6000 amp . of regulated 28 Volt D.C. . . . poly-environmental facilities . . . equipment to perform valid random vibration tests. Fast service on any combination of over 160 Mil Spec qualifications 32 with ASESA recognition for QPL testing.

PROVEN ROTOTEST CAPABILITIES - More than 150 industrial and military repeat customers including Aerojet-General Corp., Autronics Corp., Beckman Instruments, Inc., Consolidated Electrodynamics Corp., Haydon at Torrington, Hughes Aircraft Co., Lockheed Aircraft Corp., North American Aviation, Inc., The Martin Co., Olin Mathieson Chemical Corp., RCA, Wright-Patterson Air Force Base.

GET YOUR ROTOTEST FACILITIES BROCHURE NOW Write or phone J. K. Davidson. Please indicate areas of interest or specific problem.

| LEADER | $R \bigcirc T$ TOTES |
| :---: | :---: |
| IN | LABORATORIES, INC. |
| SOLVING |  |
| UNIQUE | near as your relephone |
| TEST | 2803 Los fiores Blvd., Lynwood. Calitornia |
| PROBLEMS |  |
|  | 47 ON READER-SERVICE CARD |

activated, magnesium-silver chloride, magnesi-um-cuprous chloride, and zinc-silver oxide cells are the most important, the others presently in the development stage or used to a limited extent. Liquid-Activated Cells: Magnesium-water activated cells are stored dry in an inactive condition in hermetically sealed containers and are activated by adding water. They have the advantage over other reserve-cell systems in that the electrode need not be transported with the battery. One disadvantage is the slow activation time, requiring several seconds to minutes for complete activation. Magnesium-silver-chloride and magnesium-cuprous-chloride are two types of water-activated cells commercially available. The silver-chloride cells operate at $0.2-0.3 \mathrm{v}$ higher than the cuprous-chloride cells and have higher capacities; the cuprous-chloride cells are cheaper, however. Both of these cell systems have a constant voltage-time discharge curve and the heat generated during cell discharge permits operation at temperatures to -54 C .

A new water-activated reserve-cell system under development uses a magnesium anode and organic N-halogen compounds. The N-halogen compounds operate at $0.6-0.7 \mathrm{v}$ higher than the silver-chloride electrode, approaching the poten-
tial of the chloride electrode. Results indicate that batteries can be made which will give nearly twice the w-hr capacity per unit of weight and volume of the magnesium-cuprous-chloride battery based on certain military tests.
Zinc-Silver Chloride Cells: A zinc-silver chloride battery has been designed to provide a moderatedrain, long-life, water-activated battery system. These batteries are reportedly capable of providing up to two years' life in sea water, since corrosion of the zinc in fresh or sea water is negligible under load throughout the life of the battery. Capacities of 40 w -hr per lb and 3 w -hr cu in . have been reported for these cells.
Zinc-Silver Oxide Cells: Zinc-silver oxide reserve cells are high-rate batteries capable of delivering their rated capacities in one to 10 minutes. High watt-hour capacities per unit of weight and volume plus constant voltage during discharge at high-power output levels are valuable features offered. These batteries are stored dry and one type is automatically activated by applying an electric pulse to a squib which ruptures a diaphragm holding back the potassium-hydroxide electrolyte. Activation times in the order of a few tenths of a second have been attained. In order to achieve operation at low temperatures, electric heaters are added to the assembly.

Other reserve battery systems under development are activated either by forcing a reactive gas into the cell or by heating the cell to melt the electrolyte which is a nonconductive solid at ordinary temperatures but which becomes a conducting fluid at high temperatures.

## Secondary Cells - Energy Reservoirs for Long.Term Applications

Secondary or storage cells are those which can be discharged and then recharged by reversing the current. Secondary cells are usually used as energy reservoirs or energy storage devices in electrical systems rather than as prime power sources. The cells are almost always sold and used in the form of batteries consisting of a number of identical cells connected in series and usually packaged in a single container. The following criteria are used to evaluate a secondary cell:

- Cost.
- Service life, usually given in terms of the duty cycle.
- Energy-storage capacity, expressed as watthours per pound or unit volume.
- Rate at which energy can be withdrawn from the cell-the maximum rate of dis-charge-expressed in watts per pound or unit
volume, or as the time in which all of the available stored energy can be taken out. - Rate at which energy can be stored in the cell-the maximum rate at which the cell can be charged-expressed in watts per pound or unit volume, or as the time in which the cell can be recharged.
- Charge retention; or better, rate of loss of charge-the tendency of a battery to dissipate energy stored in it by internal reac-tions-expressed as the per cent of stored energy lost per unit of time.
- Operating temperature range and the effect of temperature on the other properties.
In some special cases other factors are also important, such as whether the cell can be sealed hermetically and whether it can be operated in any orientation. Of particular interest recently has been the ability of the cell to withstand ac-
celerations experienced in rocket propulsion and ability to operate under zero gravity conditions.
The five types of secondary cells that are commercially available are listed in Table 1 along with some of their important characteristics. Typical performance data are shown in Fig. 11.


## High Performance at Low Cost

Offered by Lead-Acid Cells
There are more batteries of lead-acid cells made than of all other types combined. They are made in a variety of forms and sizes for many different applications. The largest use is in engine starting for autos, boats, and aircraft.
Cells for high-current, short-duration use are made up of a number of thin-plate electrodes placed quite close together, alternately positive and negative, spaced by porous separators, all plates of one polarity being connected in parallel as shown in Fig. 12. The plates are made by applying a paste of active materials to grids cast from a lead-antimony alloy. Such a battery will not last for more than about a hundred deep discharges and recharges because the active material will flake off the positive plates, but it will last through thousands of shallow high-rate dis-

Fig. 12. Cutaway view of a leadacid automobile battery showing internal construction. (Courtesy of Globe-Union Inc.)

Table 1. Key characteristics and applications related to secondary batteries.

|  | Application |  | Disadvantages | Service Life |  |  | ating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  | Advantages |  | Float or Shallow Discharge | Regular or Deep Discharge | Capacity, light drain (w/hr/lb) | Voliage for light drain (v) |
| Lead-Acid | 1. High current for short time (Engine starting) <br> 2. Electrically powered trucks, mine locomotives, etc <br> 3. Emergency power supplies | 1. Low cost <br> 2. High voltage per cell <br> 3. Good copacity, life and charge retention properties | 1. Cannot be charged at temperatures below 0 F . <br> 2. Cannot be hermetically sealed <br> 3. Cannot remain in discharge state too long without damage | Up to 15 yr | Up to 1,500 cycles | 10-15 | 1.95 to 2.05 |
| NickelCadmium | 1. Fngine starting in low temperature areas <br> 2. Sealed units used in space vehicles | 1. Ruggedness <br> 2. Long life <br> 3. Can operate from 180 F $10-65$ F <br> 4. Can be in various charge or discharge states without harm 5. Can be hermetically sealed | 1. High cost <br> 2. Lower cell voltage than lead-acid | Up to 25 yr | Up to 1,500 cycles | 10-12 | 1.10 to 1.30 |
| Nickel-Iron (Edison cell) | 1. Heavy duty lighting and air conditioning for railway cars, materials handling | 1. Extremely rugged <br> 2. Not damaged by over-charge or over-discharge | 1. High cost <br> 2. Poor charge retention <br> 3. Performance drops af low temperature. | Up to 25 yr | Up to 1,800 cycles | 12.13 | 1.10 to 1.30 |
| Silver-Zinc | 1. Specialized military needs where weight and volume are at a premium | 1. High capacity <br> 2. Excellent performance at high discharge rates | 1. High cost <br> 2. Short cycle life | - | 10-300 cycles | 40-45 | 1.40 to 1.50 |
| SilverCadmium | 1. Low-rate, long life ap. plications | 1. Cycling life and charge retention better than silver-zinc cell | 1. High rate performance not as good as silver-zinc cell | - | 300-1,000 cycles | 25-30 | 1.05 to 1.10 |



## Now! Get premium features in a DVM priced at only \$940

Cubic Corporation announces the V-45 -the first low-cost digital voltmeter with premium features. Now industrial users can buy a top-quality, precision four-digit instrument at a price they can justify - only $\$ 940$. Here are the premium features you get in a V-45:
Floating Input: Both sides of the input may be floated above or below ground The floating input circuit provides more than 80 db rejection to $60-\mathrm{cps}$ common-mode signals. A grounded input is also supplied.
Extended Range: A $10 \%$ extension is incorporated in each of the V-45's three ranges. Voltages up to 10.999 may be read on the 10 -volt range; voltages up to 109.99 may be read on the 100 -volt
range; and voltages up to 1099.9 may be read on the 1000 -volt range. Therefore, the operator need not constantly shift back and forth between ranges when reading close to the normal upper limit of a range.
Transistorized Logic and Drive Circuit: The V-45 DVM uses construction techniques representing the latest state-of the-art, with all-transistorized circuitry driving reliable stepping switches.
Cubic manufactures a complete line of guality digital instruments, including a-c and d-c voltmeters, ohmmeters, ratiometers, scanners and printer controls. Write for literature to Dept. ED-101. Industrial Division, Cubic Corporation, San Diego 11, California. CIRCLE 48 on reader-SERVICE card

## SPECIFICATIONS

mooel v-45 DIGital voltmeter Inpot Impesosece 10 megohms
at halance.
Ranges: Manually selected,
$10 \%$ extended ranke $10 \%$ extended ranke Low $\pm 0.000$ to $\pm 10.999 \mathrm{vdc}$
Mrd $\pm 00.00$ to $\pm 109.99$ vdc
High $\pm 000.0$ to $\pm 1099.9$ vdc High $\ddagger 000.0$ to $\ddagger 1099$.
Sonsitivity: 1 millivole Sonsitivity: 1 millivolt
Somitvity Comfor: Continuously var
iahle from l digit to lahle from 1 digit to standhy luckout. 25 watts standhy, 30 watis operating,
 deep, rack or bench muunt ing wiit Average Ealancing Time: Less than 2 sec .

CORPORATION
charges provided it is kept at or near full charge Lead-acid batteries designed for use in the power train of electrically propelled trucks, mine locomotives, and materials handling equipment are generally discharged over an 8- to 10 -hour working day, and then recharged overnight. They cost more than starting batteries but they are still relatively inexpensive. These cells are also assembled of plate's, alternately positive and negative, but the plates are thicker and more rugged than those in starting batteries. The positive plates are heavily wrapped in glass fiber to prevent spalling of the active material. Alternatively, each positive plate is made up of a number of pencil-thick cyllinders lying side by side in a plane. The cylinder walls are made of inert materials such as glass fibers and synthetic resins, either porous by nature or slotted so as to allow the electrolyte to penctrate. The tubes are filled with tightly packed active material, with a spine of lead alloy running down the center to carry off the current
Lead-acid batteries used for emergeney power supplies are generally very large, stationary batteries in contrast to the previous types which were smatl enough to be used on mobile equipment. The most important requirements are extremely long life. dependability minimum maintenarice cost, and excellent charge retention. The batteries are always "floated" at a voltame slightly above their open-circuit potential so that they remain fully charged, and under these conditions (assuming that they are not required to discharge frequently) they may last for 2.5 years. The plates are sometimes constructed by pasting active materials on a lead grid and sometimes by forming the active material from the material of the plate itself by repeated charging and discharging. Often these batteries are made יון using grids of pure lead or an alloy of lead with a trace of calcium instead of antimonial lead to improve the charge retention of the battery and the corrosion resistance of the grids

## Nickel Cadmium Cells

Rugged. Long-Lived
Nickel-cadmium cells were formerly made by depositing the active materials in pockets in the plates. Now most electrodes are made by sintering nickel powder to form strong porous plates, then depositing the active materials by soaking these plates in solutions of nickel salts or cadmium salts (depending on whether the electrode is to be positive or negative). Cells made from these sintered plate dectrodes give
much better performance than those made from the pocket type of electrodes.
Nickel-Iron Cells: This cell, called the Edison cell after its inventor, has been in use since the early 1900 s, principally for heavy-duty industrial applications such as materials handling equipment, clectric locomotives, and railway car lighting and air conditioning. The negative ellectrode consists of plates holding the active material in pockets and the positive electrode of perforated nickel tubes filled with a mixture of Hake nickel and nickel oxides.
Silver-Zinc Cells: These cells, available only since World Wial II, have the same over-all reaction as the silver-zinc primary sell. The key to making successful secondary cells from this electrochemical couple was the development of suitable separators to keep the plates apart. Silver-Cadmium Cells: These cells are almost identical to the silver-zince cells exeept for the use of calminm in place of rinc. Capacities are high althongh mot as high as that of the silveraine system. Iligh rate performance is mot nearly so good as that of the silver-rine coll but eycling life abll charge retention are much better - -

## References

1. "The Auminvary fow on frimary Gill systems" and "Thre Arniterviry Iwhe ow Stownge Batteries", Journal of Whe Electrochemieal sexiety, 94 pp. 179C-205C, 233C$2.54(1) 952)$
2 J'rocerexlin - ot the 10th-14th Amenal Power Soturces Conference. Power Someres Division, U. S. Army Sigmal Research ald Developmolnt Laboratery. Fort Monmeuth, New Jersey (1950-19e0)
2. Vinal, (: W.. Primary Batteries, Niow Yish, Jolis Wiley and Sons, Ine (1950)
3. Vinal, G. W., Storage Batteries, 4th Ed., New York, John Wiley and Sons Inc. (1955)
4. IIator. II. J. "Voulern Battari-s" BRE: Tramactions

5. Lord. E:. L.....md Anderom, F: C., "Batteries". The Stamelard Handlamek for Electrical Engincors, Gth Ed., Eatiterl by A. E. Kımbom. Ni.w York. MeCoran-lill Bexik Co.. Ine. (19.5.)

## With Many Thanks...

Electronic Design is grateful to the following organizations who submitted material for this special report: Aerojet General Corp., Battelle Memorial Institute, Burgess Battery Co., Boeing Airplane Co., Clevite Corp., The Eagle-Picher Co., Globe-Union, Inc., Mallory Battery Co., Power Sources Div. of Telecomputing Corp., U'nion Carbide Consumer Products Co., U'nited States Electric Manufacturing Corp., and Yardney Electric Co.


The Bendix Corporation, represented by Bendix-Pacific and Bendix Radio, as a member of the Western Electric industrial team furnishing the Ground Instrumentation and Tracking System for Project Mercury, has designed and delivered telemetry receiving and data display equipment for 18 Mercury tracking stations. Project Mercury is the National Aeronautics and Space Administration's initial manned space flight program.
The purpose of Bendix-Pacific's extremely reliable equipment at these stations is to monitor the functions and the physiological reactions of the astronaut which are telemetered from the manned spacecraft.
Customer confidence in Bendix-Pacific as the source for this vital link in manned space flight is evidence of a highly developed system to subsystems capability.
We invite you to contact us regarding this systems capability in the areas of Instrumentation, Missile Guidance, Sonar, Airborne Radar and Hydraulics.


Bendix-Pacific Division
NORTH HOLLYWOOD. CALIFORNIA

# Fuel Cells- <br> Direct Conversion of Chemical to Electrical Energy 

    anduvarial. ard missile applications.

## ErnsI M. Cohn

Army Research Office
Office, Chief of Research and Development Department of the Army Woshington, D.C.

THE FUEL CELL is an electrochemical device for converting chemical energy directly to electrical energy. In contrast to a battery, the fuel cell does not normally contain its own fuel supply; instead. fuel is fed to it when power is demanded.
The idea for a fuel cell appears to have been orginated by Sir Humphrey Davy, who published a paper on a zinc-oxygen cell in 1801 and another paper on a coal-oxygen cell in 1802. One may well ask why it has taken so long for fuel cells to become "fashionable." The answer is, in part, that the demand for more efficient energy production has not been too pressing, sources of energy have been abundant and relatively cheap thus far, and-perhaps most important-the sporadic work on fuel cells in the past has been disappointing because of lack of reactivity, breakdown of materials, and expense of the more reactive fuels and cell fabrication.

## More Than \$4 Million from Military

 For Fuel-Cell R\&DAdvances in science and technology since World War II, demands for energy for the most diversified purposes, recognition that fossil fuels may hecome exhausted, and the population explosion have all placed a new perspective on means for energy conservation.

The effect of defense demands on triggering the current feverish activity in this field cannot be overestimated. Even though a large number of U.S. firms, as well as many foreign enterprises, are now funding their own fuel-cell R\&D programs, support from the Department of Defense, particularly the Department of the Army, has
greatly spurred world-wide interest in this field. Thus far, the Army has committed about $\$ 1.750$,000 , the Navy $\$ 1.5$ million, and the Air Force $\$ 1$ million on fuel-cell work

## Fuel Cell's Basic Components <br> Number Only Six

The basic components of a fuel cell are two reacting chemicals (fuel and oxidant), the housing, two electrodes (an anode that receives the fuel and a cathode that receives the oxidant) and an electrolyte that provides a path for the migration of ions. A basic description of the low-temperature hydrogen-oxygen system is shown in Fig. 1, an ion-exchange membrane assembly is shown in Fig. 2, a high-temperature fuel cell in Fig. 3 and a redox system in Fig. 4.
The anode itself may be the fuel, for example, sodium, magnesium, or zinc; in this case, the metal constitutes a consumable electrode. At low temperatures, up to about 500 C , the activities of bare, non-consumable electrodes are generally too low for practical purposes and must be enhanced by adding catalysts to the fuel cell.
The electrolyte may be a liquid, an ion-exchange membrane, a molten salt, or a solid semiconductor at high temperatures. Liquid and membrane electrolytes may be used together. The electrolyte may be unrestrained or it may be in a suitable carrier, e.g., liquid in asbestos or molten salt in a porous matrix of magnesium oxide.
The fuel-oxidant pair may be any suitable substances that can be made to react electrochemically, or they may be used indirectly in the so-called redox cell (Fig. 4) where the fuel re generates one ionic species and the oxidant regenerates the other, each in a separate compartment, so that neither fuel nor oxidant actually enters the cell itself.
In the typical hydrogen-oxygen fuel cell, hydrogen gas gives up an electron to the solid elec-
trode and releases ions to a liquid electrolyte. Obtaining sufficient fuel-electrode-electrolyte area presents a serious challenge. If the electrolyte floods the electrode and prevents gas-to-electrode contact, electrons cannot flow; if excessive gas pressure does not permit ion migration through the electrolyte, the process is not complete and electrical output is not available. Simultaneous three-way contact between gas, electrode, and electrolyte must be maintained during operation.
This brief consideration of the components suffices to indicate the wide variety of possible cells, the breadth and ranges of conditions under which cells can be operated, and the spectrum of materials that may be used for their construction. Which combination of chemical reactants. structural components, and operating conditions is chosen depends on the system in which the cell is to be used

## Types of Fuel Cells <br> And Fuel-Cell Systems

Fuel cells may be divided into two classes, the indirect (redox) cells and those that utilize fuel and oxidant directly. Among the latter the fol lowing types are distinguished

Consumable electrode
Low temperature

- liquid electrolyte
- ion-exchange membrane

High temperature

- molten salt
- solid electrolyte

Depending on the reactants and the circumstances of their use, fuel as well as oxidant may be regenerated. The system then includes not only the direct fuel cell but also a regenerator in which chemical, solar, nuclear, thermal, or electrical energy is used to convert products back to reactants.


Fig. 1. The basic operation of the low-temperature, liquid electrolyte cell is as follows: hydrogen and oxygen are fed into the cell through specially treated porous electrodes separated by an electrolyte, In the alkaline system shown, hydrogen diffuses through the anode and reacts at the electrode surface with the hydroxyl ions in the electrolyte to produce water. Electrons given to the anode electrode during the process flow through an external load to the cathode where they combine with oxygen and water to form hydroxyl ions. The hydroxyl ions travel through the electrolyte to the anode to complete the process
Hydrogen is ow:orbed at the anode, and the adsorbed hydrogen reacts with hydroxyl ions from the electrolyte

$$
2 \mathrm{H}_{\text {ade }}+2 \mathrm{OH}=2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}
$$

freeing electrons that can do useful electrical work. The cathode adsorbs oxygen according to the reaction

$$
20_{a d x}+\mathrm{H}_{2} \mathrm{O}+\dot{2} \mathrm{e}=\mathrm{HO}_{2}+\mathrm{OH}
$$

Peroxide is then decomposed catalytically to oxygen and hydroxyl ions, the latter traveling to the anode. Product water must be removed.



Fig. 2. An ion-exchange membrane can be used instead of or in conjunction with liquid electrolyte. This application was suggested by Dr. W. T. Grubb of the General Electric Research Laboraories. Whereas the liquid alkaline electrolyte as now used in $\mathrm{H}_{2}-\mathrm{O}_{2}$ cells cannot tolerate carbon dioxide, which would react to form carbonate, an acid-ion exchange membrane may make it pos sible to use carbonaceous fuels in low-tempera fure cells. The membrane also aids in avoiding the flooding of porous electrodes by liquid, thus re laining a maximum area of three-phase contac among electrode, gas, and electrolyte.
In the ion-exchange membrane technique, the liquid electrolyte is replaced by a plastic mem brane which permits ion migration. Hydrogen and air, fed to opposite sides of the membrane diffuse through porous electrodes and contact the membrane structure. Electrons are obtained at the hydrogen electrode and routed to the external load. Hydrogen ions penetrate through the membrane and combine with the incoming oxygen and circulating electrons to produce water. The water formed is drained off without the need for special condensation equipment.

Fig. 4. In the redox (reduction-oxidation) cell, the fuel and oxygen do not react directly with each other. Instead, each electrode and its associated electrolyte is separated from the other by a membrane structure which permits passage of ions. Reactions take place between each electrolyte and its regenerant in exterior regenerators. Hydrogen fuel is fed into one eegenerator, where it reduces (adds electrons to) one electrolyte; the electrolyte then passes into the cell, reacts at its electrode to give up electrons, and returns to the exterior regenerator for another cycle. In the other regenerator, air reacts with its electrolyte so as to oxidize frake electrons from) the solution which is then fed into the cell to react at the positive electrode. The cycle is completed by migration of hydrogen ions through the membrane separating both sections


Fig. 3. High-temperature (above 500 C ) fuel cells permit the use of relatively inexpensive fuels such as natural and coal gases or vaporized gasoline. The electrolyte is generally molten carbonate held in a porous magnesia matrix; porous electrodes are firmly held to the electrolyte. The fuel does not necessarily combine directly with oxygen; instead, the fuel is generally "cracked" or broken down into hydrogen and carbon monoxide. These gases then pass through the anode where reaction takes place with carbonate ions in the electrolyte. Electrons are donated to the electrode while carbon dioxide and water are formed. The electrons flow through an external load to the cathode where the incoming oxygen combines with carbon dioxide to produce carbonate ions. These ions, in turn, flow back to the anode to complete the cycle.
In the molten carbonate cell, carbon dioxide must be added with the oxygen because the reaction at the cathode is

$$
1 / 2 \mathrm{O}_{2}+\mathrm{CO}_{2}+2 \mathrm{e}=\mathrm{CO}_{3}
$$

The carbonate ion migrates to the anode where it reacts with carbon monoxide, for example,

$$
\mathrm{CO}+\mathrm{CO}_{3}=2 \mathrm{CO}_{2}+2 \mathrm{e}
$$

Thus, when carbonaceous fuel is used, some of the reaction product can be recycled to the cathode. Since the maximum useful work available from a fuel cell is the free energy,

$$
\Delta F=\Delta H-T \Delta S
$$

where $\Delta H$ is net heat evolved, $T$ is the absolute temperature, and $\Delta S$ is the entropy. Therefore, this high-temperafure cell has a lower theoretical efficiency than cells working at lower temperatures.


Fig. 5. To speed up reaction, the hydrogen-oxygen fuel cell can be operated under high-pressure conditions with waste heat used to maintain operating temperafure. The Bacon cell shown operated at 200 C and 40 atmospheres to produce a current density of 200 amps per sa ft . at 0.8 v . Porous electrodes are made of nickel or nickel plated steel. The electrolyte is pre vented from flooding the electrodes due to pressure differences in the cell.

In some calses, the action of the fuel cell itself may be reversed occasionally for regeneration of fucl. Thus, a hịdrocarbon fuel cell could drive a wehicle: on a downgrade or while decelerating, the cell might be powered by the movement of the whicle, water would be electrolyzed, and hydrogen and oxygen stored for subsequent use.
Orbiting space vehicles may use regenerative fuel-cell systems as secondary power sources Solar energy, converted to electrical energy via solar cells, for example, could regenerate the reactants for use in a fuel cell during periods when the wehicle is not exposed to the sun.

As another example, a zinc-air fuel cell could replace an inclustrial battery in a warehouse truck. During use, zinc dissolves from the electrode into the electrolyte; during off hours, the zinc is plated back on the electrode by electrical recharging from the network.

The redox cell (Fig. 4) is, of course, constantly being regenerated. It must therefore be regenerable with cheap fuels, and this has been one of the weak spots in its development thus far. Impurities, primarily hydrogen sulfide, from the regenerating fuel have been carried into the cell and caused elecas-le poisoning. Also, recovery of the most promisıng oxidant, bromine, appears to require costly and cumbersome equipment. At


Fig. 6. A dramatic example of a fuel-cell application is Allis-Chalmers Research Div.'s tractor demonstration. A total of 1,008 fuel cells, 112 units of nine cells each are arranged in four banks which can be connected in various series-parallel groups. A mixture of gases is fed through a tubing system under pressure and produces 15 -kw output during reaction in an elecirolyte. Sufficient output is obrained to drive the 5,270 - lb tractor and provide $3,000 \mathrm{lb}$ drawbar pull.
present, this appears to be the least promising type of fucl cell.

## Current Status

## Of Fuel-Cell Developmen

Although fuel-cell powered equipment has been demonstrated-the "Silent Selitry:" a tractor (Fig. 6), a small car-fuel cells have not yet reached the commercial production stage. The primary reasons for this are lack of sufficient scientific and engineering knowledge.
The most advanced systems at present are those in which relatively expensive hydrogen is the fued and onygen is the ovidant. it fuel cell with platinum electrodes, consuming hydrogen and oxygen at room temperature, was demonstrated in England in 18:39. Low-temperature cells with porous carbon or nickel electrodes, catalyzed by small amounts of platinum, palladium, or silver (the last for the oxygen electrode only) have recently been operated with aqueous alkali (Fig. 1) or with ion-exchange membranes as electrolytes. At ambient pressure and temperature, current densities have been relatively low, mostly $5-25 \mathrm{amp}$ per sq ft of electrode surface, polarization losse's are considerable, and the voltage developed at the oxygen electrode has usually been below that calculated theoretically. Cell


Fig. 7. (a) Up to 600 -w output is available trom this $6 \times 6 \times 17 \mathrm{in}$. flat-plate, multicell hydrogen-oxygen fuel cell constructed by Union Carbide. The basic construction of the cell is shown in (b).

performance often deteriorates with time, and "drowning" of clectrodes by filling of pores with liquid electrolyte has been a proble.m. When an ion-exchange membrane is used as eleetrolyte physical deterioration has been observed
Some of these problems appear to have been solved: Justi and coworkers in Germany have developed a "double skeleton catalyst" nickel elecetrode structure that should overcome the drowning problem as well as maximizing triple contacts among electrode, electrolyte, and reactant for ob taining high current densities-as much as 7()) amp per saft for the hydrogen electrocle at 85 C and $4(0)$ anp per sy ft for the oxygen electrode at 0.75 v . The U'nion Carbide Co. use's specially processed carbon electrodes at up to about 150 F 10) atmospheres, and $25250 \mathrm{amp} p \mathrm{~m} \mathrm{sf}_{\mathrm{f}} \mathrm{ft}$.

General Electric Co. and Ionics, Inc., are developing improved ion-exchange cells (see Fig. 2), in which thinner membranes show lower electrical resistance and hence should lead to lower internal losses through heating of the cells, making possible higher current densitiess than those obtained thus far

A full description of the Marshall Flying School. Ltd., high-pressure cell, (Fig. 5) partly financed by National Research Development Corp. (England), was given by its developer, F. T.

Bacon, at a meeting of the American Chemical Society in 1959. Porous nickel electrodes and $37-50$ per cent potassium hydroxide electrolyte at 200 C and 40 atmospheres yield a current density of 200 amp per sq ft at 0.8 v or 500 amp per sq ft at 0.6 v per cell for more than 1.000 hours of operation. Higher current densities appear possible, thongh probably at the expense of shorter cell life. Stainless steel, nickel, and compressed asthestos are the materials of construction. Fuels other than hydrogen did not work, and the use of air instead of oxygen increased the polarization losses. These limitations as well as the conditions of operation prevent the economical use of small-scale units. As regards we ght, Bacon estimated $50 \mathrm{lh} / \mathrm{kw}$ for a 44 -kw unit (heavier for smaller units) and showed that, though competitive on a weight basis with batteries, such fuel-cell units could not compete with diesel engines which use air as the oxidant Bacon predicted, however, that large units should eventually le useful for road and rail traction and for augmenting electric power during peakload periods, for which purpose water comild be electrolyzed and stored during off-peak hours.

## Cheap Fuels Can Operate

 High-Temperature Fuel CellsFor operation at temperatures from about 300 to 900 C , see Fig. 3, molten alkali carbonates in a porous magnesia matrix have gemerally been used as electrolyte. In at least one case, however, this electrolyte is not immobilized in a porous matrix. Flectrodes may be porous, sintered, semiconducting ovides or siluer gatuze for the cathode (air electrode) and porous or powdered nickel. silver, or iron for the anode. Claty and metal chromites have bern used in Russia for electrodes. Operating pressure has been atmospheric.

The principal developers of this kind of cell are" researchers at the University of Amsterdam, Comsilidation Coal Company near Pittsburgh, Sondes Place Research Institute in England, and two groups of Russian scientists. This system has thus far been limited to much lower current densities, up to 100 amp per sq ft , and has been more trouble some than the liquid electrolyte cell due to the more severe operating conditions. Despitc its current drawbacks it is of interest becanse, being operable at higher temperatures, it can use less reactive fuels (such as propane and carbon monovide) and is less susceptible to poisoning of electrole's by impurities from the fuel A high-temperature cell might therefore be opcrated on gas from a coal gasifier, as envisaged by Gorin and coworkers of Consolidation Coal Co., and thus come as close as possible to realizing the old dream of converting coal directly to electricity

At still higher temperatures, fuel cells have


## WESTIMGHOUSE Hico

vaRICONS PRODAC?


CIRCIE 50 ON READER-SERVICE CARD

Because Westinghouse Hound our Varicons permit rapid, easy removal and replacement and yet provide the reliable, constant contact so necessary" to puter! Hence you will find Varicon Series 700135 contac: models and our Varipak Series 9006 printed circuit card enclosures throughout these remarkable computers. Shown, top left, is that anicon Series with variavailable and at the upper and lower right Varipaks llustrating flexible cable Varicon applications. You will also find most major computer manufacturers relying upon the reliability of these Elco products
So why not solve both the design and reliability prob ems of your own most sophisticated packaging Bulletins 7001 and 9006 now while it's on you mind!


Fig. 8. Producing 200 w at $24-\mathrm{v}$ output, the $30-\mathrm{lb}$ fuel-cell power pack can take the place of a $55-\mathrm{lb}$ engine-generator or 80 lb of secondary batteries. Built by GE for the Marine Corps and the Army Signal Corps, the unit contains 30 ionmembrane fuel cells consuming oxygen from the air and hydrogen produced by decomposition of metal hydride. The metal hydride is contained in reusable, hermetically sealed canisters (at top of unit); o canister weighs 6 lb and provides 14 hrs operation.


Fig. 9. Experimental model of a lightweight regenerative fuel cell under development by Electro-Optical Systems, Inc
been operated with semiconducting oxides as electrolyte, but little is known about their performance chracteristics.

A number of other fuel-cell systems will be mentioned briefly because they appear to have more limited applicability. Regenerative systems, primarily for space use, may utilize alkali (especially lithium) hydride, the ferrous-ferric ion couple, a sulfuric-acid concentration cell, sulfur trioxide and dioxide, cadmium iodide, silver io dide, proflavine-ascorbic acid, thionine-iron, nitrosyl chloride/nitric oxide plus chlorine. Among consumable-electrode systems are magnesium (to be oxidized by nitro- or dinitrobenzene); sodium amalgam and other amalgams, as well as pure aluminum, magnesium, or zinc to be oxidized by air, oxygen, hydrogen peroxide, or halogens. In addition, potential fuels such as ammonia and hydrazine have given promising results. All of these systems have been or are being worked on, and many more have been or could be proposed. Although some may ultimately find application for special purposes in military and space systems or as secondary power sources it appears too early to predict their usefulness now.

## Top Firms Team Up

## To Advance Fuel-Cell An

During the past year, a phenomenal change has occurred in the fuel-cell field. A large number
of organizations have suddenly taken an active interest in fuel cells and, almost without exception, this interest has centered on hydrocarbon as ultimate fuel source and air as oxidant. Many of the organizations that started in this field earlier have been working on hydrocarbons and oxygenated organic compounds and are continuing their research. But the added impetus of these new groups is bound to accelerate the development of petroleum- and natural-gas-based fuel cells.

A notable fact is the teaming up of companies with non-competitive interests in fuel cells, e.g., Allis-Chalmers with Esso Research and Engineering Co., Standard Oil of Indiana with McGrawEdison, and some 25 companies sponsoring a joint project at Battelle Memorial Institute.
Another point worth mentioning is that some organizations are looking upon fuel cells as chemical reactors, i.e., devices of potential use for making chemical products, with electricity thrown in as a welcome by-product that could lower the cost of manufacture (in some cases considerably).
The great spurt of interest in hydrocarbon fuel cells makes it appear likely that workable systems, based on products from or fractions of petroleum and natural gas, are not too far from realization. Considering that high-octane gasoline is now being made from crude petroleum at a
reasonably low cost, "tailor-made" fuel-cell fuels from petroleum and methane should be reasonably priced if they are found to be most suitable for fuel-cell consumption.
Hydrocarbon-based fuel cells, particularly those with air cathodes, appear to hold the greatest promise for industrial and domestic, stationary and mobile applications. Although the basic fuel-cell systems for these reactants are already available-the low- and high-temperature cells described-the future fuel cell, operating on organic compounds and air, will differ from the present types about as much as a jet plane differs from that of the Wright brothers.

A considerable amount of research and development is needed before a practical, longlived, dependable fuel cell of this kind can be realized. For example, more active air electrodes and methorls for increasing the flow of orygen to the electrodes must be found. Homogencous and heterogeneous catalysis may fulfill these needs as well as that for more active and poison-resistant fuel electrodes. The British Shell laboratories have announced development of better electrodes, but no details have been divulged as yet.

Electrolytes with more desirable properties must be found, particularly materials having higher electrical conductivity and low-temperature liquids that are not affected by carbon dioxide. Membranes, if used, must be durable and
permit higher current densities. Refractory electrolyte matrices must be more resistant to thermal shock. Fuel-cell packs or batteries must be leak-proof and engineered for minimum weight and volume, if this is a critical consideration, or for maximum efficiency in stationary uses, or for necessary short-time overloads.

## More Basic Research Required

To Speed Device Design
Basic research, much of it supported by armed forces contracts and grants, in electrochemistry, catalysis, and other facets of science is being carried out at many universities, research institutions, and company laboratories. Scientists at the Army's Signal Corps, Ordnance, and Engineers laboratories as well as at the Naval Research Laboratory are also working on some of these problems. Nevertheless, a great deal more basic research will be needed to obtain sufficient insight into the chemistry of fuel-cell reactions for a rational development and engineering effort. The latter will undoubtedly require adapting newly developed materials and processing methods for the creation of optimum fuel-cell packs for each application.

Even for electo-metallurgical purposes, in which fuel-cell outputs might be used without modification, new control equipment will probably have to be developed for regulating the low-voltage, high-amperage dc. Novel electrical equipment will be all the more necessary for such applications as vehicles and power stations. Developments in de motors, regulators, and "transformers" (to higher voltages and/or ac) will undoultedly be stimulated by the prospect of practical fuel cells. Thus, a minor revolution in dc electrical engineering is a likely by-product of the realization of a 160 -year old dream. - -

## Reforences

1. "Fuel Cells," G. J. Young, ed., Reinhold Publishing Corp. New York; 1960. This book contains the papers and discussions of the September, 1959, mecting of the Gas and Fuel Division of the American Chemical Society.
2. "Fiuel Cells. Poucer for the Future," by D. R. Adams (t al., Fuel Cell Research Associates, P. O. Box 157, Cambridge 38, Mass., 1980. This is the only book specifically oriented toward the economic future of fuel calls. It also crntains a gond technical review
3. "Status Report on Fuel Cells," by B. R. Stein, Office of Tecclanical Serices publication PB 151,804, Dept. of Commerce, Washington 25, D.C. Issued by the Army Rescarch Office, this is the first report of a series intended to collect and review all available information in this field. Details on systems using unusual fuels and oxidants will be found here. The second report should become available from the same source carly in 1961 as PB 171, 15.5. Subseguent reports, to be compiled by the U.S. Army Signal Corps, will also include patent literature.


## Silicon Solar Cells-Tapping Power from the Sun

On a sunny day in Arizona, it is estimuted that 1,000 w of energy fall on each square meter of the earth's surface. With the present 10 to 14 per-cent efficiency available from silicon solar cells, more than 100 u' per square meter could be harnessed for power "pplications. Cost is still high per cell but research efforts promise a significant reduction within several years.

## Jerome Kalman <br> General Manager <br> Solar Systems, Inc.,

Skokie, III.

DIRECT CONVERSION of solar energy into electrical energy is presently best achieved by use of silicon solar-energy converters, or solar cells, developed by the Bell Telephone Laboratories in 1954. Advancements in technology and production techniques by licensed manufacturers have resulted in the high-efficiency solar cells powering electronic eguipment on most of the American satellites.

To understand fully the advantages of solar converters requires an appreciation of what goes into making them. Very thin wafers $(0.020 \mathrm{in}$.) are sliced from an arsenic-doped silicon ingot which provides a blank of n-type silicon. The wafer is exposed to a highly controlled, hightemperature $(1,200 \mathrm{C})$ boron atmosphere and a diffusion action takes place wherein an extremely
thin layer of boron atoms ( 0.0001 in .) is formed on the surface of the silicon wafer resulting in a p-type silicon, see Fig. 1. This operation creates a built-in electric field within the wafer in the form of a p-n junction and this field supplies the force which will result in the conversion of light energy into electrical energy. One surface of the wafer is treated so that the boron layer is removed and the n-type silicon material is exposed. Nickel plated contacts are deposited on the wafer in order to make electrical connection; and finally, a solder coating is applied to the nickel surfaces to allow for ease of soldering. Among the current commercial manufacturers of solar cells are International Rectifier Corp., Hoffman Electronics Corp., Texas Instruments, and Solar Systems. Inc. Other companies contemplate commercial production in the near future

In the fabrication of the solar cell, only atomically pure materials are used. The basic ingredient is silicon which is one of the most abundant materials found on the surface of the earth

In no case is anything added which has a finite lifetime; as a result, theoretically, the silicon solar cell should have limitless operation in regards to time.

Light energy consists of discrete bundles of energy or photons. The photon has an amount of energy inversely proportional to its wave length, and in order for a photon to cause an effect within the solar cell, it must have sufficient energ! to create a hole-electron pair. When light eners! strikes the active surface of the solar cells, thuse photons with sufficient energy impart this energy within the solar cell in the creation of a hole electron pair. Those pairs in the region of the $\mathrm{p}-\mathrm{n}$ junction are acted upon by the built-in furce; holes are forced into the p-region and electrons into the n-region. An mbalance of the charge carriers within the silicon thus results with a consequent potential voltage developed across the solar cell. If a load is cronnected between the positive and negative contacts of the cell. a current will flow due to the potential vultage that


Fig. 1. Cross-sectional view of an arsenic-doped silicon slab (n-type) with a diffused boron layer (p-type) deposited on its surface.


Fig. 2. Spectral response characteristic of silicon and selenium solar cells.


Fig. 3. Short-circuit current, Isc, varies almost linearly with illumination while open-circuit voltage, $V_{u c}$ flattens out and soon reaches a steady value.

ELECTRONIC DESIGN • February 15, 1961


Fig. 4. An optimum load resistance value is indicated in the graph shown; illumination is 5,000 fr-c.


Fig. 6. Variation of silicon solar cell maximum power output with temperature.
exists due to the incident photons. Thus, light energy is directly converted into de electrical energy.
The solar cell is in reality a silicon photovoltaic energy converter. The fact that it favors photon energy in the range of the solar spectral energy distribution (Fig. 2) led to the application of the word "solar" and in the interests of brevity, "solar cell."

The ability of a solar cell to convert light energy is expressed in terms of "conversion efficiency," This represents true efficiency since it indicate's the power output per active area of a solar cell divided by the power input per unit area; the power output is measured at the point of maximum power transfer since this represents the point of optimum design. The solar cell is capable of delivering a maximum current (short (ircuit current), or a maximum voltage (open circuit voltage), or any combination of current and voltage less than the maximums indicated, see lig. 3. This characteristic must certainly be considered as an advantage since no other converter evhibits such versatility in regard to the applicable load conditions. In the case of space applications, the requirement is for maximum power output per unit area and the load impedance is designed to be that coincidental with the maximum power transfer point of the solar cell, see Figs. 4 and 5.

In the measurement of conversion efficiency, correlation between laboratory-light standards and the solar-energy spectrum has been attempted. On a cloudless summer day at about noon, it was determined that the sun delivered approximately 100 mw per $\mathrm{s}(\mathrm{cm}$ of solar energy at normal incidence to the surface of the earth. This quantity was considered to be "one sun." In the laboratory, a tungsten-type lamp was util ized operating at a color temperature of approximately $2,800 \mathrm{~K}$. It was determined that the sun and the tungsten source could be made equiva-
lent. This theory has been considerably altered during the past six months since additional characteristics of the solar spectrum have been determined. This necessitates somewhat of a change in original correlation data.

## Conversion Efficiency Has Tripled Within a Five-Year Period

At the inception of the solar cell, conversion efficiencies in the order of 4 to 6 per cent were achieved. Detailed studies of the solar cell's characteristics and manufacturing techniques have resulted in currently asailable solar cells having conversion efficiencies up to 14 per cent. This advancement certainly is outstanding when compared to achievements made in the field of other t!pes of solar energy converters. Notable contributions to the increase in conversion efficiency are "gridding" techniques now employed by the major manufacturers of solar cells. This procedure allows for minutely thin contact strips which emanate from the positive contact of the cell and effectively increase the collection efficiency of the cell by providing "pick-up" areas over a greater amount of the solar cell's active surface. Thus eefficiency retarders such as recombination time effects and series resistance are reduced.
With the development of the gridded-type cell came a greater understanding of the solar energy spectrum as it existed in outer space. It was determined that the greater amount of solar energy in space was due primarily to enntributions of energy having wavelengths lower than those favorable to the silicon solar cell. At the same time, a change in spectral response of the solar cell was noted in that the high wavelength portion of the response was shifted even farther towards the high wavelengths. Thus, although the laboratory measurements using a tungsten source indicated high efficiency solar cells, measurement in an actual solar environment indicated

Fig. 5. Typical current-valtage characteristics of a silicon solar cell at various illumination levels.



Fig. 8. A total of 1,184 cells, 3602 by 0.5 cm and $8241 \times 2 \mathrm{~cm}$, surround the telemetry transmitter in a cosmic ray detector probe. Glass slides 0.006 in. thick cover the cells to prevent possible radiation damage. The solar cells are used to recharge nickel cadmium batteries supplying 1.25 w to electronic instrumentation contained in the equipment.

Fig. 7. Wires connecting one of the four solar cell paddles to the interior of Pioneer $V$ ore checked before launching. Each paddle carries 600 Hoffman Elec ironic Corp. solar cells on each side, White stripes between cells are painted on the assembly to maintain proper temperature.


Fig. 9. A small motor is powered by $20-s q \mathrm{~cm}$ cadmium-sulphide single crystal solar cells made by the Harshaw Chemical Co., Cleveland, Ohio. The efficiency of single crystal cadmium sulphide cells vary from 5 to 6 per cent.


Fig. 10. Tiros 1 , the first U. S. weather satellite, is equipped with more than 9,000 solar cells supplied by International Rectifier Corp. (Photo courtesy RCA)
a somewhat lower gain. In order to resolve thes differences, many companies (including Lockheed, GE and Bausch and Lomb) are presently. working towards development of "sunlight simulators," also known as sunshine chambers. These programs have been endorsed by various military agencies who realize the necessity for accurate correlation between laboratory and space measurements. The techniques employed in making a simulator involve utilization of lamps having particular spectral energy contributions. The overali output from such a lamp assembly has to accurately simulate the spectral energy response of sunlight.

## Currently Available Cells

## Can Provide 50 W per Lb.

Solar cells are generally mounted on a substrate which is made from extremely light metal. The geometry of such a substrate is predicated by the type of satellite involved, the propulsion system employed, orbital conditions in which the satellite will operate and over-all power requirements of the satellite. Naturally, the strength of such an assembly is dependent primarily on the metal substrate and the adhesive used to fasten the cells to the substrate. Spectrolab, Inc., Elec-tro-Optical Systems, Inc., Boeing and Lockheed are some of the companies involved in systems study and development.


Fig. 11. The 10,640 solar cells mounted atop a 1912 Baker Electric, together with intermediate storage batteries, power International Rectifier Corp.'s solar-pow. ered auto.

The advantage of lightness is a most important one when space power applications are involved. Power-weight ratios of 10.5 to 110 mw gm or 50 w th are possible from 12 per cent efficient solar cells. To fully utilize this adsantage, supporting structures hase been desisned which have high streneth-to-weight ratios and low weight-to-area ratios. Some support substrates are made from honeycomb structures of aluminum and polyester impregnated fibreglass.

The power output from the solar cell decreases with increasing temperature, see Fig. 6. Conserfuently, design considerations encompass methods of maintaining low-temperature operation in space. That portion of the solar spectrum which is outside of the solar-cell spectral response can create a temperature increase in the solar-cell assembly. Bandpass filters have been developed in the form of interference film filters which are vacuum deposited onto glass cover slides, which are in turn cemented to the top surface of the solar cell. An ultra-vislet reflecting filter serves to prevent ultra-violet degradation of the transparent adhesives while the infrared reflecting filter minimizes the heating effects of the IR energy. Although the application of such filters increases the weight of a solar-cell array, considerable improvement in power output is achieved by controlling the temperature of the device in space. Companies involved in these ef-
ELECTRONIC DESIGN • February 15, 1961

## IN RACK AND PANEL CONNECTORS



## THiS makes

 THE DIFFERENCE!Right here in the socket contact lies the heart of the AMPin-cert Connector line: the AMP cantilever spring. Seated in the slot of the socket to meet the pin shaft, it is your key to top connector reliability. It provides you with positive wiping action... consistently sound electrical contact . . . firm pin grip. and stable resistance-yet has an extremely low, uniform insertion and withdrawal force. And, regardless of the metal plating you choose or the thickness you require, all pins and sockets are provided with an underplating of nickel to give long life reliability in all critical applications.
Add to this cantilever construction, many other plus features including AMP's industry proven solderless crimping technique to help you design and manufacture products of the highest reliability and lowest cost. Take your pick: AMPin-cert Connectors in Series D, M and W as well as environmentally sealed or un. sealed Series A-all tough enough to soak up heavy punishment while providing the dry circuit sensitivity you need for your most critical applications.


The complete story is available in catalog form. Write today for your copy.


GENERAL OFFICES: HARRISBURG, PENNSYLVANIA



Application \#4316. SOLA ELECTRIC COMPANY'S CONSTANT VOLTAGE DC POWER SUPPLY Two modified ITT Series F,
70 amp Silicon Rectifiers are shown in this precision Sola equipment. Note the limited space requirement - the reason for
the rectifier modification. This kind of flexibility in application engineering is available to all ITT customers!

## application experience ... proving ground for ITT SILICON RECTIFIERS \& ZENER DIODES

The proving ground for ITT Silicon Rectifiers is Experience-the toughest, most exacting applications imaginable. The result . . . ITT Silicon Rectifiers are unexcelled. They'll take electrical surge overloads and rough environmental conditions which would cripple many units.
There's a reason for this rugged superiority. Each ITT Silicon Rectifier is the product of the most exacting engineering and manufacturing standards standards dictated by the exacting
needs of the engineers ITT serves.
This entire line is made to conform to the most rigid military requirements and JEDEC specifications.
Remember - the ITT line of Silicon Devices is the widest available. Whatever your rectifier requirements (even when modification is indicated) your best source is ITT. Let us help.
For specific information and/or complete ITT Silicon specifications, write Department 25-B.


Prompt off-the-shelf deliveries, factory prices up to 999 pieces, full warranty. Call your ITT distributor:

Mow Yerk, M. Y. Mew York, M. Y. Progress Electrenics Co. 107 Frankllin Strect
Philodolphis, Pa.
Alme Ratio Co. 918 Areh Stroel

Les Angoles, Calle. Shollay Ratio Co., Ine. 2000 Westweed Blva. gion of easic prooucts corporation

4747 W . Century 8lvo. Bruno-Mow York, tac. 460 West sath Streot

## Gerbor Radio Supply Co.

 1000 Columbue Are.Ingloweod, Calif. 147 w . Century 81 vo . orporation

Mountalnaide, Nowert and Bottimere, Maryiand
 Nowart Eloctronics Corp. Adlote Company 223 W. Madison St.

## 田

forts include Optical Coating Laboratory, Bausch and Lomb, Corning Glass and Spectrolab.

## R\&D May Drop Cost Per Wal

From \$300 to $\$ 10$
Costs for solar-cell assemblies vary quite considerably with cell efficiency, quantity, and general assembly designs. During the early state of development of the solar cell, cost for power converters was approximately $\$ 1,000$ per watt. Today, converters are available for from $\$ 50$ to $\$ 300$ per watt depending upon efficiency and quantity. The greatest contributions towards this price reduction have been increased yields due to improved production techniques and higher available conversion efficiencies. Further improvements in these avenues together with greater over-all usage by industry should result in available silicon solar-cell power supplies in the neighborhood of $\$ 10$ per watt.
Studies of new materials are being made in order to develop a solar cell having the ability to use a greater percentage of the solar spectrum. Gallium-arsenide cells have been made in lahoratory quantities with most promising results. However, the cost of the raw material coupled


Fig. 12. Hoffman's transisior radio uses solar cells plus rechargeable battery for long period operation.
with the low production yields achieved with these cells present a formidable cost problem. The coming year should see a resolution of the problem of the feasibility of using gallium arsenide for solar cells.
More and more is being learned about the "space" around us, with each successful satellite launching. The discovery of high-energy radiation fields around the earth has prompted investigation of radiation effects on silicon solar cells. From these studies has evolved the " n on p " silicon solar cell, a device in which n-type material is diffused into p-type silicon. Although in the extremely early states of study, these " $\mathrm{n}+/ \mathrm{p}$ "
cells hold great promise of providing more consistent high-efficiency silicon solar cells which will have greater resistance to radiation damage.

Coupled with the above investigations is the study of large-area solar cells to achieve maximum reliability in a satellite system; vapor deposition of single-crystal silicon in order to minimize material cost and also allow for large area devices, and general improvements in production techniques so as to provide a maximum of consistent results. These studies, currently under way, will undoubtedly result in further improvements of silicon solar cells for use in future space power applications. - "

Comparison Between Various Energy Conversion Techniques

| Conversion <br> Technique | Device <br> Efficiency <br> (per cent) | Advantages |  |
| :--- | :--- | :--- | :--- |
| Batteries | 85 | 1. Compact, self-contained <br> 2. Low cost | Disadvantages |


"INDEX OF RELIABILITY" ... Mean Operating Time Between Failures.

Reliability and Maintainability are always important - and most often very critical factors. Their definitions invariably involve "time". Some military specifications use "mean operating time between independent failures" as the index of reliability and call for the incorporation of elapsed time indicators into the operating equipment. Replacing critical components before they reach the limit of rated life contributes greatly: to peak operating efficiency and reliability.
Waltham's subminiature elapsed time indicators are being used and designed into both military and commercial equipment for ground support and airborne applications. They are small and light enough to go anywhere. Jewel bearings, precision gear trains - some with a precistion of 1.8 billion to 1 , a new low inertia synchronous motor are teamed with over 110 years of experience to provide instruments reliable and accurate enough to provide precise "measures of reliability"


Waltham can provide subminiature elapsed time indicators in both digital and dial readouts - and in production quantities. Write for bulletins $\# 5001$ and $\# 5002$ or telephone TW 3-4000

## HYEITMEIRIM

-RTBelson INETRUNEMT -OMRAMY WALTHAM 54. MASSACHUSETTS CIRCLE S4 ON READER-SERVICE CARD


## REPLACE CLUTTER...

 ADD EFFICIENCY...
## GET MAXIMUM

- Performance
- Versatility
- Density
- Reliability
- Economy


WITH INTEGRATED ELECTRONIC COMPONENTS FROM...
 PACKAGEDELECTRONICS

## Ultra-Fast-Switching Silicon Epitaxial Now in Mass Production

EPITAXIAL silicon transistors, offering such advantages as faster switching speed, saturation resistance relatively independent of temperature and low collector capacitance compared to conventionally fabricated devices, are now available in an off-the-shelf, unlimited quantity basis. Housed in TO-18 packages, the 2 N 743 and 2N744 types, announced by Texas Instruments Incorporated, Dallas, have been optimized for switching applications.
Compared to a conventional-type $2 \times 706$ sili-con-switching transistor, the epitaxial $2 \ 743$ is more than twice as fast at 10 ma and four times faster at 100 ma (Fig. 1); cost-wise, the 2N743 is about ten per cent higher than the 2 N 706 . In a saturated mode, total switching time (typical) for the 2 N 743 is 26 nsec at 10 ma and 24 nsec at 100 ma ; maxirnum switching time is 40 nsec at 10 ma and 52 nsec at 100 ma . For the 2.1744 , typical switching time is 27 nsec at 10 ma and 29 nsec at 100 ma ; maximum switching time is 40 nsec at 10 ma and 57 nsec at 100 ma . Storage time is $14 \mathrm{nsec}(\max )$ for the 2 N 743 and 18 nsec (max) for the 2N744. A comparison of the switching characteristics of the conventional 2 N 706 vs the epitaxial 2 N 743 is shown in Fig. 2.

The maximum saturation voltage of the 2N743 is essentially constant at 1 v from -55 to +170 C ; $V_{C E}$ of the 2 N 706 at 100 ma varies from 2.2 v at


Fig. 1. Comparison of rise, fall, storage and delay times of the epitaxial 2 N743 switch vs the conventional-structure 2 N706.


Fig. 2. The improved switching characteristics offered by the epitaxial 2 N 743 are dramatically demonstrated in their comparison with those of the 2N706.


Fig. 3. A $10-\mathrm{mc}$ counting flip-flop, requiring a 3-v trigger, designed to operate from -55 to +125 C .

## THIS IS HOW RESISTORS OUGHT TO LOOK. THIS IS HOW RESISTORS OUGHT TO WORK. CORNING NF RESISTORS DO.

Glass-enclosed, fusion-sealed Corning NF resistors have boiled merrily in salt water for days without showing a jot of change in their electrical characteristics.

These are resistors that are rugged, completely moisture resistant, highly vibration resistant . . . in short, resistors that exceed the requirements of MIL-R-10509C, Char. $B$, better than any we've seen or heard of.

The key to such fortitude is our NF structure. We start with glass rods with metal oxide applied under heat. This in itself makes a moisture-resistant. almost abnormally stable resistor, as you well know if you have ever used our regular N -style resistors.

We encapsulate this basic unit in a glass envelope and apply glass-to-metal seals at the leads . . . comparable to those in a vacuum tube.
IMMEDIATE DELIVERY - There are two models of this
gem in production, ready for quick shipment: the $1 / 8$-watt NF-60 and the $1 / 4$-watt NF-65. Resistance ranges from 100 ohms to 360 K ohms. Voltage ratings are 250 v and 300 v . Full rating at $70^{\circ} \mathrm{C}$. with derating to $150^{\circ} \mathrm{C}$. More typical values:
Load life
$0.3 \%$
Voltage coefficient ..................... $0.001 \% / \mathrm{v}$
Temp. coefficient $0.015 \%{ }^{\circ} \mathrm{C}$

## Insulation resistance 100,000 megohms

To get these and other data for your file, just write and ask for Data Sheet CE-2.02. Address: Corning Glass Works. 540 High Street. Bradford, Pennsylvania.

(6) CORNING ELECTRONIC COMPONENTS ELECTRONIC DESIGN • February 15, 1961

CORNING GLASS WORKS, BRADFORD, PA.

## 0ates <br> (®)

## 1ヵMT Q

For 400 Cycle Airborne \& Ground Control Applications



| E |  |
| :--- | :--- |
|  |  |
| Servos | Computors |
| Synchros | Indicators |
| Resolvers | Servo Mechanisms |
| Motor Tache | DC Motors |

310 Northern Blvd.
Great Neck, Long Island, N.Y. Phone: HUnter $\mathbf{7 - 9 0 3 0}$ TWX Great Neck, N.Y. 2980

## WESTERM OFFICE

5333 South Sepulveda Bivd. Culver City, California Culver City, California Phone: EXmont 1-5742 TWX S. MON. 7671 CIRCLE 57 ON READER-SERVICE CARD

Engineers For Advanced Projects: Interesting varied work on designing Transistor circuits and servo mechanisms. Manager, in confidence.
( $\overline{A+B-C \cdot 5)}$
Fawin - Fon-out =A
0 C To 100 CO Opiction

Fig. 4. The maximum operating frequency of the NOR gate shown is 1 mc for two cascaded logic stages.


Fig. 6. (a) The small signal, $60 . \mathrm{mc}$ amplifier shown is operated common-emitter at the signal frequency and common-base for biasing. The response curve is shown in (b).

25 C to 4 v at 170 C . The low saturation resist ance of the epitaxial devices makes them suitable for switching tasks previously requiring mediumpower transistors of conventional structure.

The forward current ratio, $h_{P E}$, for the 2 N 743 is specified as $10(\mathrm{~min})$ at 1 and 100 ma and 20 $(\mathrm{min})$ to $60(\max )$ at 10 ma . Values for the 2 N744 are $20(\mathrm{~min})$ at 1 and 100 ma and $40(\mathrm{~min})$ to 120 (max) at 10 ma . Typical capacitance values for both types are 3.5 pf at 5 v and $\mathrm{f}_{\mathrm{s}}$ (typical) is rated at 400 mc . In quantities of 100 to 999 , the 2 N 743 is priced at $\$ 13.95$, the 2 N 744 at \$15.35.

## Typical Computer and

## RF Amplifier Circuits

The low storage time and low saturation voltage associated with epitaxial transistors are used to advantage in computer circuit design. A flip-


Fig. 5. A direct-coupled flip-flop using TRL with a single power supply.


Fig. 7. Schematic of a $70-\mathrm{mc}$ class-C amplifier, with $6 \cdot \mathrm{db}$ power gain, capable of $0.5-\mathrm{w}$ output.
flop for $10-\mathrm{mc}$ operation over a -55 to +125 C range is shown in Fig. 3; improved wave shapes and operation to 150 C could be achieved by adding an emitter-follower to the output.
A NOR gate, designed for medium-speed applications up to 100 C , is shown in Fig. 4. The low storage time of the epitaxial device eliminates the need for a turn-off base bias supply. The circuit operates at $10-\mathrm{ma}$ collector current, the region of maximum gain and high switching speed. Two NOR circuits can be combined to form a direct coupled flip-flop as shown in Fig. 5.
The low collector-base capacitance and high $f_{t}$ of the epitaxial transistor may be used to advantage in vhf amplifiers. A small signal, $60-\mathrm{mc}$ amplifier is shown in Fig. 6a; the 82 -ohm resistors approximate the input resistance of the transistor. The frequency response curve, Fig. 6b, illustrates the $17-\mathrm{db}$ gain for an unneutralized stage suitable for communication and pulse applications. Another amplifier, designed to deliver 0.5 w at 70 mc is shown in Fig. 7, featuring high efficiency and gain from a $12-\mathrm{v}$ supply.

For more information, turn to the ReaderService Card and circle 251.

General Instrument Semiconductor. . Exclusive!

## NOW. . .MADT COMPLET G SPECTRUM OF SWITCHING SPEEDS..Dcto 50 Mc <br> Only General Instrument offers the MADT, Drift, and Alloyed-Junction Transibtors for all your switching needs! The new $\mathcal{G}$ MAD t completes the entire switching spectrum from de 50 Mc , as illustrated above. Cemputer semicosductors are immediately available, realistically priced, and produced by advanced manufacturing techniques to assure highest quality and long life. <br> 

## YOU CAN DEPEND ON GOR ALL YOUR COMPUTER NEEDS

 Devices • Full Specifications • Engineering AssistanceGeneral Instrument is your single source of supply for a full range of germanium computer transistors, companion diodes, logic encapsulations and rectifiers. In addition $\mathbf{G}$ provides complete engineering and reliability design data. The abbreviated specifications below, for exam-
ple, illustrate the range of data available from $\mathbf{C}$ on its entire line of computer semiconductors. Write today for device information, engineering data and applications assistance on your special computer problems. Contact General Instrument for the name of your local stocking distributor.


|  | cleres-mmenem |  | Unin |  | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Conmmose | 20317a | Comaluene | 201098 | convosen | 2ncosa |
| Oatmes |  | $\begin{aligned} & 200 \\ & 200 \\ & 100 \\ & 100 \cdot \mathrm{~cm} \end{aligned}$ |  |  |  | $\begin{aligned} & 180 \\ & 20 . \\ & 000 \\ & 000^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |
|  |  |  |  |  |  |  |
| cmanctumites | Vo-5v | 2 nomax | $\mathrm{Va}=30 \mathrm{~V}$ | 5 somax | $V_{n-50}=5$ | 8 nomar |
| 6 |  |  |  |  |  |  |
| $\cdots$ |  | ${ }^{20} 0_{\text {min }}$ |  | 23 min |  | 20 mmo |
| ¢ |  | 20 me or |  |  |  | 150me $0^{\circ}$ |
| Vm |  | ass $\mathrm{vman}^{\text {man }}$ |  | abvmar |  | assuma |
| Volm) | k=400 mo | 02 umaz | k k $\mathrm{h}=0.8 \mathrm{ma}$ | $0.23 \mathrm{v}_{\text {max }}$ |  | 020 yma |
| $\square(c+t)$ |  | $\begin{aligned} & 600 \text { as max } \\ & 1800 \text { ns max } \end{aligned}$ |  | $\begin{aligned} & 400 \text { ns } 60 \\ & 400 \text { ns } 60 \end{aligned}$ | $\begin{aligned} & k_{6}=20 \mathrm{ma} \\ & v_{0}==^{2.2} \mathrm{~ms} \end{aligned}$ | $\begin{array}{\|l\|} \hline 13 \mathrm{~ns} 0 \\ \hline 14 \mathrm{~ns} 60 \\ \hline \end{array}$ |
| - |  |  |  |  |  |  |

-r. M. Philco-G1 Micro Alloy Diffusod-bam Transistors Are fully
liconsed Undee Licensed Undee
Philco Potonts


SEMICONDUCTOR
DMSIOM OF GENERNL IMSTRUMENT CORPORTIOM
65 Gouverneur Street, Newark 4, New Jersey
 CIRCLE 58 ON READER-SERVICE CARD



Compact spot coolers bring thermoelectric cooling into practical price range. The white substance around the heads is an epoxy-foam resin.

## Low-Cost Thermoelectric Spot Cooler For Sale-Off the Shelf



Cold-shoe dimensions for 3 M 's Model 10-J (top) and 10-L.

cOOLIN(; hot spots in electronic equipment is now a practical matter with a new thermoelectric spot cooler. At relatively low cost, the small cooler can pump as much as two thermal watts. Two or more coolers can be used for higher heat loads.
Manufactured by Minnesota Mining and Manufacturing Co. (3M), of 900 Bush Ave., St. Paul, Minn., the cooler, designated Model 10, comprises four sets of efficient, thermoelectric, pn couples, a copper cooling fin, and a cold shoe. A model 10 -J has a $7 / 8$-in.-radius, concave, copper cold shoe while a model $10-\mathrm{L}$ has a flat copper shoe.

In addition to the two basic models, 3 M offers custom designs for special applications. For


HEAT LOAD (WATTS)

Typical cooling performance of the spot cooler with a heat sink of 77 F forced air. The curve reflects actual operation and includes practical, heat-transfer losses due to thermal contact resistance and thin electrical resistance materials.
example, thermostats can be imbedded in the coolers for temperature control; additional couples and cooling fins can be added to increase cooling capacity; or provisions can be added for liquid cooling of the fins. Normally the fins are cooled by forced air.
The couples and the cold-shoe contacts are imbedded in a closed-cell, epoxy-foam resin, which provides thermal insulation, physical strength, and moisture protection. Cooling efficiency with either model can be raised by improving the surface contact between the cooler and the device being cooled. A silicone grease or epoxy resin can help provide intimate surface contact.

Any reasonably flat, low-voltage dc supply, even a low-ripple battery eliminator, can be used to power one of these spot coolers. Maximum cooling efficiency results with a supply of about 6 v at 8 amp .

In small quantities, up to about 10 units, the coolers are available on immediate delivery. Unit cost is $\$ 35$ for quantities up to $9, \$ 26$ for quantities from 10 to 99 , and $\$ 20$ for 100 -unit cooler lots.

For more information on these thermoelectric spot coolers, turn to the Reader-Service Card and circle 252.

## Borg Microdials feature

 digital readout for increased readability and accuracy

Borg Direct-Reading Microdials provide faster, more accurate turnscounting readability. They indicate the precise shaft positions of potentiometers or any multiturn device of up to 1,000 turns. Digital readout minimizes human reading errors. The 1330 Series /above right, features internal illumination red light for dark adapted environments or white light. Colors add style to control panels and instruments. Threedigit, ten-turn model with finger-tip brake is standard. All 1330 models display numerals through lenses ( $1.5 x$ magnification) which are curved for wide-angle viewing. The 1300 Series (center and bottom right) is available in three-digit ten-turn, four-digit 100 -turn and five-digit thousand-turn models with or without finger-tip brakes. Your nearest Borg technical representative or distributor has complete data.

BORG EQUIPMENT DIVISION
Amphenol-Borg Electronice Corporation
Janesville, Wleconein • Phone Pleaeant 4-6616
Micropot Potentiometers - Turns-Counting Microdials - Sub-Fractional Horsernwer Motors . Frequency and Time Standards CIRCLE 60 ON READER-SERVICE CARD

## NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipmeni Use the Reader-Service Card for more information on any product. Merely circle number corresponding


High-Voltage Silicon Diode 254 Has Low Leakage

Type 1N645B high-voltage silicon diode features extremely low leakage. The reverse current is typically 0.055 $\mu \mathrm{a}$ at 225 v . It provides $400-\mathrm{ma}$ average rectified current, 225 v piv and $600-\mathrm{mw}$ power dissipation. The diode is recommended for such applications as magnetic amplifiers, modulators, demodulators and power supplies.

Rheem Semiconductor Corp., Dept. ED, 350 Ellis St., Mountain View, Calif.
Price: $\$ 4.50$ in 1 to 99 quantities. Availability: From stock.


Command Receiver
255

## Weighs 24 Oz

The Veri-Min command receiver is a solid-state, dual-conversion, super-heterodyne set designed to receive tone-modulated fm signals in the frequency range of 406 to 450 mc . It weighs 24 oz and displaces $17.9 \mathrm{cu} \mathrm{in}$. Environmental specifications are: operating temperature, -55 to +75 C ; shock, 100 g for 4 msec ; acceleration, 100 g . Electrical characteristics include: sensitivity, $5 \mu \mathrm{v}$; noise figure, less than 17 db ; audio response, $\pm 1 \mathrm{db}, 7$ to 22 kc .

Leach Corp., Communications Div., Dept. ED, 18435 Susana Road, Compton, Calif.
Availability: 90 days.
Price: Upon request.


## Microminiafure Transmitter Displaces 0.026 Cu In.

This microminiature transmitter is so small it has been mounted as a tooth in a dental bridge for research. It displaces 0.026 cu in . and weighs 1.2 g . Constructed by a vapor-deposition process, the unit has an output of 50 to 100 kc with a signal-field intensity of 0.002 amp per meter at 0.3 meter range. Input, from a mercury cell battery is 1.2 ma at 1.34 v . Temperature range is +10 to +55 C . One mercury cell will give 24 hr of operation.
Varo, Inc., Dept. ED, 2201 Walnut St., Garland, Tex.
Price: $\$ 225$ in quantities of 1 to 10.
Availability: 45 days.


Precision Current Source 257 Delivers From $0.1 \mu \mathrm{fo}$ to $\mathbf{1 5 0} \mathbf{~ m a}$

Model CS-140 current governor furnishes $0.1 \mu$ a to 150 ma for load voltages from 0 to $\pm 100 \mathrm{v}$. Current may be set to six places by decade knobs arranged to provide 1 ppm resolution. Accuracy at any current setting is $0.01 \%$ full scale. Line and load regulation are better than $0.0025 \%$ for dc outputs. It may be used as an ac current source from de to 6 kc with an external modulating signal.

North Hills Electronics, Inc., Dept. ED, Alexander Place, Glen Cove, N.Y.
Price: $\$ 3,250$.
Arailability: From slock.


Digital Voltmeter Has 258 "Full-Time" High Impedance

The series 5000 transistorized digital voltmeter has an input impedance of $2,000 \mathrm{meg}$ that does not depend upon a null condition within the instrument. This "fulltime" impedance prevents excessive loading of circuits when the instrument probe is first applied. An average of 200 readings per sccond is achieved with $0.01 \%$ accuracy. Solid-state amplifiers are used to achieve the high input impedance and for precise sign changing. The unit also has decimal and binary coded decimal outputs for driving a varicty of accessories.

Electronic Associates, Inc., Dept. EI), Long Branch, N.J. Acailability: 30 days.

## NEW FROM BUFURGABED CINCH... Printed circuit

 board edge connectors to maintain positive contact!

NOW AVAILABLE FOR IMMEDIATE DELIVERY! Bifurcated Contact Connectors with two flexing surfaces instead of one to provide positive contact! . . . accommodate irregularities in Printed Circuit Boards.
TWO TYPES-conventional wiring tail (type 251) or dip solder (for . 051 dia. hole) (type 252) . . . with 6 to 25 contact positions (12-50 contacts).
INSULATION-glass filed diallyl phthalate type GDI 30 per MIL-M-19833.
POLARIZING KEYS-can be supplied loose, or inserted in any position designated.
FINISHES-phosphor bronze or beryllium copper . 00003 Min. Sel-rex. gold plated
PART NUMBERS-customer part numbers imprinted when required.
MEETS MIL-C-2109A (ships) specs for printed wiring board connectors

WRITE FOR FULL INFORMATION TODAY! Complete details and performance specifications on new Bifurcated Cinch Printed Circuit Board Edge Connectors are available for the asking. Write for full information now.

Cinch Manufacturing Company
1026 South Homan Avenue - Chicago 24, Illinois Division of United-Carr Fastener Corporation, Bosfon. Massachusetts


## NEW PRODUCTS

Toggle Switch
Measures $0.78 \times 0.656 \times 1.356 \mathrm{in}$.


Model B-T1-3P is a three-position toggle switch that measures $0.78 \times 0.656 \times 1.356 \mathrm{in}$. Electrical rating is: 5 amp at $120 / 240 \mathrm{v} \mathrm{ac} ; 3 \mathrm{amp}$ at 30 v dc inductive at sea level; 4 amp at 30 v dc resistive at sea level. It is supplied with a keying tab 0.025 -in. thick.
P. R. Mallory \& Co., Inc., Milli-Switch Corp., Dept. ED, Gladwyne, Pa.

Logic Module


One of the Data-Bloc line of compatible digital modules, the model 1321 has delay variable from 0.1 usec to 0.7 sec in 5 incremental steps, by means of a front-panel selector, and continuously variable between steps. A level output and a pulse output are provided.

Harvey-Wells Electronics, Inc., Dept. ED, 14 Huron Drive, Natick, Mass.
Price: $\$ 205$.
Availability: Delivery from stock.

Motors
Fractional hp type


This series of split-capacitor, fractional hp motors are available in ratings from $1 / 15$ to $1 / 2 \mathrm{hp}$ at $1,050 \mathrm{rpm}$. They can also be wound for 208- or $230-\mathrm{v}$ operation at 50 or 60 cps . Motors have full


*Tests Conducted L'inder Military Surveillance and Certiferl by Holfiman Reliability Engineers

The statistical graphs presented here are taken from certified reeords of the Foffman Reliability and Statistical Engineering Department, Evanston, Illinois. Hoffanan tests are conclucted mader the surveillance ()f at resedent militar: inspecetion team. Reliability (lata (s) IN129) zerner


SURVIVAL RATE
At the right is a picture of survival. It depicts the life expectancy of Hoffman silicon zener reference devices, basid on continuing tests of representative samples selected from thousands of production units. These samples are tested at $100^{\circ} \mathrm{C}$ without derating from specifications. Mean time between failures based on a 90 percent customer confidence factor-"failure" meaning any deviation beyond specification toler-ances-is 188,477 hours! Life test data indicates mean time between catastrophic failures to be 565,431 hours (as of December 31st, 1960).

## PARAMETER STABILITY

These graphs can help you build more reliable equipment with Hoffman devices by permitting you to take into account parameter stability during service life. Although the graphs represent just one type of unit, the IN429 zener reference diode, the high survival rate and parameter stability are indicative of the degree of reliability built into all Hoffman devices. Research, development, advanced manufacturing techniques, and statistical quality control all provide assurance that the Hofman products you buy will perform their intended service with maximum reliability.

This curve represents the maximum increase in zener resistance experienced by 05 pencent of the units tested.


The 5 th and 95 th percentile curves denote the boundaries for the change to zener voltage (referenced to the initial values) experienced by 90 percent of the units. A visual examination of the median reveals the high degree of stability obtained by the Hoffman devices.

ancmonies Semiconductor Divislon oso phener Avonue. Evanaton, uhnols Avonue. Evanston, ulinole
Phona: UNveralisy 0-2500 Phona: UNWers/ty $9-2400$
TWX: Evanaton, nimole 300 Planta: EI Monta, Caltomile and Evanaton, Mlinolo
skew, centrifugally cast rotors with distributed wound stators and are capable of meeting UL application tests.

Leece-Neville Co., Dept. ED, 989 Athens St., Gainesville, Ga.

Open-Core Transformers
With encapsulated windings


These reactor chokes, and filament, isolation, and high-voltage supply transformers, with windings encapsulated in epoxy resin, range from 15 to $6,000 \mathrm{va}$, with isolation to 300 kv . Encapsulation gives constant electrical characteristics over a long service life, minimum size and weight, and corona-free operation at rated high voltage. The design has very low capacitance and can be made for operation in air or oil.
Components For Research Inc., Dept. ED, 979 Commercial St., Palo Alto, Calif.
Price: From $\$ 100$ to $\$ 990$.
Availability: 30-day delivery.

## Pulse Rate Integrator

Frequency-to-dc type


The series PI-300 pulse rate integrator gives low-impedance dc voltage and current outputs precisely proportional to the frequency or pulse rate of input. Each model operates from 5 cps to a specified upper frequency for full-scale output with an adjustment provided to vary the full scale frequency over a $2: 1$ range.

Anadex Instruments, Inc., Dept. ED, 14734 Arminta St., Van Nuys, Calif.
Price: $\$ 275$ ca.
Availability: 3-week delivery.


Mew Eyclet Solector-FREE
Simplify deaign, purchasing, inventory, and pro duction. Decide the hole size and grip, and set the calculator to find the eract eyelet you need. Send for your free copy today!

These "3 Steps to Excellence" - Funnel Flange Eyelets, Automatic Eyeleting Machine, and Component Inserting Machines...can provide that vital extra margin of dependability and value in your PW or Etched Boards. And the investment is surprisingly small. Call or write for complete details.

UNITED BMOE MACHINERY CORPORATION 140 federal Sircet, Boston, Mase. - Uberty 2.9100 CIRCLE 64 ON READER-SERVICE CARD


Gyro Spin Motor 443

Model 108 gyro-spin motor has an epoxy-encapsulated stator and external rotor with cast aluminum squirrel cage. Operating on $400-\mathrm{cps}$ power, it accelerates a 480 g per $\mathrm{cm}^{2}$ inertia ring in 50 sec and draws 6 w at $23,000 \mathrm{rpm}$. Less ring, $O D$ is $1-1 / 4 \mathrm{in}$., length 3/4 in. Curvin Development Co., Dept. ED, 13740 Saticoy St., Van Nuys, Calif.

## Rectifier Series

The 2N1881-2N1885 series, companion to the 2N1595 series, offers greatly improved performance over wider design limits. Cut-off currents and gate firing sensitivity are improved by a factor of 5 . The units are available in TO-9 outline. Solid State Products, Inc., Dept ED, 1 Pingree St., Salem, Mass.

## Feed-Thru Insulator

This Teflon feed-thru insulator provides a fluorocarbon-silver metal fused seal permitting the device to be soldered directly to the deck. The hermetic seal is oil-proof and withstands shock, vibration, and extremes of temperature. Garlock Inc., Garlock Electronic Products, Dept. ED, Camden 1, N.J.

## RF Chokes

These 3 -pi rf chokes, the 1100 series, range in inductance from 0.1 mh to 50 mh in 13 steps. Exceptionally high inductance, high $\mathbf{Q}$ and low de resistance with small physical size are claimed for the chokes. Form diameters are 0.187 and 0.250 in . Delta Coils, Inc., Dept. ED, 1128 Madison Ave., Paterson 3, N. J.
"Leadership in semiconductors"

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.

## BALTIMORE, Maryland

2319 Maryland Ave............CHesapeake 3-3220 Bostow, Massachusetts
168-182 Albion St.
Wakefield, Mass.......................CRystal 6-5640 CAMDEN, New Jersey
227 S. Sixth St. .
........WOodlawn 6-2877
chicago, Illinois
6641 W. North Ave.
Oak Park, III.....
.............. VIllage 8-5556
Cleveland. Ohio
14625 Detroit Ave.
Lakewood, Ohio. ................. ACademy 1.9191
dallas, Texas
511 Braniff Airways Bldg.
Dallas 35, Texas................FLeetwood 7-9448
Darton, Ohio
DArTON, Ohio oenver, Colorado
First National Bank Bldg.
621 Seventeenth St.................AComa 2-1686
DETROIT, Michigan
2842 West Grand Blvd............... TRinity 5-2440 KANSAS CITY. Missouri
Wirtham Bldg.
31st and Troost Sts.............. VAlentine 1-1819
LOS ANGELES, California
6362 Hollywood Blvd.
Hollywood 28, Calif............. HOllywood 2-238
newark. New Jersey
1060 Broad St.
ORLANDO, Florida
$\$ 10$ Jacklind Bidg.
205 E. Jackson St.................... CHerry 1-4526
phoenix. Arizona
2727 North Central Ave. . . . . . . CRestwood 7-3366
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave............... MIdway 6 -1891
SAN diego, California
3620 30th St..
.........CYpress 7.3708

SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif................. DAvenport 1-2064 seattle, Washington
3466 East Marginal Way. . . . . . . . . . . MA . Min 4-0783
syracuse, New York
2360 James St.....
winston-salem, North Carolin
Nissen Building
310 W. Fourth St
PArk 3.0363
Trangitron

ANOTHER FIRST FROM


Transitron


## NO COMPROMISE!

Development by Transitron scientists and engineers of a new concept in glass packaging has now made it possible to introduce the industry's first micro-diode with true hermetic sealing. This is the new micro voltage regulator ("zener") series... a series in which the glass is meited around the silicon body that forms the working part of the device. Achievement of a direct high-temperature glass-to-metal sual meane that there are no plastics . . no multi-part packaging . . no "gunk" ... no degrading of characteristics with humidity. Absolute hermetic sealing makee this the most reliable and efficient micro-regulator ever developed, ideal for voltage eficient micro-regulator ever developed. ideal for voitage economies and required.
Micro Zener Diodes are produced exclusively by Transitron. The frst series is available immediately; other diodes are under development and will be marketed shortly.
For more information write for Bulletin PB-7IE.

|  |  |  | Cuntent matimes |  |
| :---: | :---: | :---: | :---: | :---: |
| TME |  |  | Merumum Anerize (3) Domating (mim) Currom |  |
|  |  |  | G\%80 | (alor C |
| TM0-010 | 5.1 | 15 | 178 | 4 |
| Tmose | 56 | 15 | 155 | 40 |
| Tmo-03 | 12 | 15 | 14.5 | 37 |
| rmo-a | 18 | 15 | 13.0 | 33 |
| Tmos | 15 | 15 | 12. | 31 |
| тmo-9 | 2 | 15 | 110 | 21 |
| тmo-070 | 21 | 15 | 10.0 | 2.5 |
| Tmo-a | 100 | 15 | 9.0 | 23 |


adoitiownl characteristics and ratimgs



Truabing and fivere $-50^{\mathrm{C}} \mathrm{C}+150 \mathrm{C}^{\mathrm{C}}$
Maximun powe ainspaum 100 mm


MEET US ATIRE-BOOTH NOS. 1220-1224

## Transitron

NOW... HIGHER $\mu$


## G-L's new lamination insulation process gives greater permeability than ever before!

Most nickel-alloy laminations have insulation coatings formed by hightemperature oxidation of the base-metal surface. This process produces generally satisfactory insulation. But at the same time it usually causes degradation of lamination permeability. Our new "Hy-Q" insulation process eliminates the undesirable side effect. It makes it possible for us to retain the high permeability achieved by controlled hydrogen annealing. Result: greater - and more uniform - initial permeability in the stack. Better efficiency, too. These performance improvements may allow you to reduce stack size . . . or get more output from the same size stack. Either way, production will be easier, for the "Hy-O" coating - applied to both sides of the lamination - prevents sticking, facilitates handling. You can have "Hy-Q" laminations in wide variety of shapes, sizes, materials, and standard thicknesses, with immediate delivery from stock. A word from you will bring detailed information. Ask for Bulletin TB 106.

Specialists in magnetic components for the electronics industry
Depl. LD-2
2921 ADMIRAL WILSON BLVD., CAMDEN 5, N. J.

## NEW PRODUCTS

Digital Meter
Stability is $0.005 \%$


Model $3510 \mathrm{ac} /$ dc digital voltmeter and ratiometer has a stability of better than $0.005 \%$ for periods of several months under normal use. Sensitivity is 0.1 mv ; ac accuracy is $0.1 \%$ and 2 digits; dc accuracy is $\pm(0.01 \%$ and 1 digit $)$. Average balance time for dc is $2 \mathrm{sec} ; 3 \mathrm{sec}$ for ac.

Electro Instruments, Inc., Dept. ED, 3540 Aero Court, San Diego 11, Calif.

## Stand-Off Insulators

With Teflon body


The bodies of these stand-off insulators are made of Teflon; turrets are machined from brass rod. The units are unaffected by humidity, mechanical shock and vibration, and are designed for ambient temperatures from - 110 F to 500 F , pressure altitudes from 0 to $80,000 \mathrm{ft}$.

Garlock Electronic Products, Garlock Inc., Dept. ED, Camden 1, N.J.

## Data-Scanning Relay

Life is $\mathbf{2 0 0}$ million operations


This data-scanning relay has an electro-mechanical relay coil. This relay utilizes two replaceable sealed cartridges containing the arma-


For example, on page 3 you'll find part of the story about types of insulation Rome Cable Division can supply . . . e.g., Rome Synthinol, a thermoplastic material, compounded mainly of polyvinyl chloride that is available in forms to cope with temperatures from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Or you might find that your needs are best met by Rome Rolene, a lightstabilized polyethylene that can stand up to weathering, oxidation, oils, and most chemicals.

Of course, insulation is only part of the story. In the other pages of "RCD. 400 Instrumentation Cable", you'll find other relevant descriptive material, photos, and tables about cable for telemetering, data recording, circuit control testing, and electronic computers.

For your copy, or answers to specific questions about cable, write to Rome Cable Division of Alcoa, Dept. 11-21, Rome, New York.

## ROMECABLE

division of ALCOA
CIRCLE 68 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

## superb new NULL DETECTOR



The new Keithley 151. incorporating a unique photo-conductive modulator of Keithley design, is useful wherever a suspension galvanometer can be used, and where a galvanometer is not sufficiently sensitive, fast or rugged. Currents as low as $2 \times 10^{-13}$ ampere can be detected.
Ranges: 11 linear ranges in $1 x$ and 3x steps, from $100 \mu \mathrm{v}$ to 10 v f.s.; 5 non-linear ranges, 0.001 to 10 vf .s., each covering three decades.
Accuracy: Linear ranges, $\pm 3 \%$ of f.s.; non-linear, $\pm 10 \%$ of input.

Input Resistance: 10 megohms on all ranges. Max. power sensitivity over $10^{-17}$ watt.
Response Speed: On $100 \mu \mathrm{~V}$ range. $2.5-\mathrm{sec}$.; I-sec. on all others.
Noise: Below $2 \%$ f.s. all ranges.
Zero Drift: Less than $10 \mu \mathrm{v}$ per day.
Output: 10 voles at 1 ma f.s.
Price: 151 Cabinet Model . \$420.00 ISIR Rack Model . $\$ 420.00$

For full details write:


KEITHIEと INSTRUMENTS

12415 EUCLID AVENUE CLEVELAND B, OHIO CIRCLE 69 ON READER-SERVICE CARD
ture and fixed contacts. Magnetic coupling to the relay permits a dpdt configuration suited for lowlevel data sampling. Dwell periods are as brief as $250 \mu \mathrm{sec}$ and dynamic resistances are less than 1 ohm . Service life is claimed to exceed 200 million operations.

Magnavox Research Laboratories, Dept. ED, 2829 Maricopa St., Torrance, Calif.

Mica Capacitors
Range from 1 to $40,000 \mathrm{pf}$


Types CD15, CD19. CD20 and CD30 dippedsilver mica capacitors cover the capacitance range from 1 to $40,000 \mathrm{pf}$. Standard ratings are $5(0), 300$ and 100 wvdc. Capacitance tolerances are from $\pm 10 \%$ to $\pm 1 / 2 \%$. The line meets MIL-C-5B (proposed) specifications. Models for operation up to $2,5(0)$ wivele at 10,000 pf are also available.

Federal Pacific and Electric Co., CornellDubilier Electronics Div., Dept. EI), 55 Cromwell St., Providence, R.I.

Solid-State Inverter
729
Weighs 3.7 lb


Model 90-156-0 solid-state inverter weighs 3.7 lb and occupies less than 65 cll in . of space. It operates on an input of nominal 28 vdc with an output of $115 \mathrm{v}, 400 \mathrm{cps}$, sine wave, single phase, 100 va . Output frequency is factory adjusted to $400 \mathrm{cps} \pm 0.5 \%$; stability is $\pm 0.25 \%$ from -60 to +71 C. Distortion of the sine-wave output is less than $4 \%$ under all operating conditions.

Magnetic Research Corp., Dept. ED, 3160 W. El Segundo Blvd., Hawthorne, Calif.

URGENT CALL . . . URGENT PROBLEM!!! man on phone indicates . . . high capacity centrifugal blowers designed to cool his transmitting tubes, delivering insufficient air to meet requirements - current supplier will not redesign!!! "and time waits for no one".

## S OLUTION <br> TO AN <br> AIRMOVER

PROBLE:I
eastern division - supplier of creative solutions, armed with years of experience, waded in and solved the problem by providing a unit to meet his exact requirement - a unit delivering 2000 cfm at $11^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. Now known as Model FBT 02131B, this unit was DESIGNED, DELIVERED, TESTED AND ACCEPTED IN $21 / 2$ WEEKS, and with a unit $40 \%$ smaller than original design.

Beyond the immediate need, imc also pointed out to design engineers overdesigned airmovers in existing applications - and savings made possible by precisely matching blower, fan and vane axial specifications to each application.

Thus at imc there's no need to compromise your cooling requirements . . . imc specialists will supply a solution - whether your problem is for air delivery of 1 cfm and up, extreme temperature, weight, space, size or environmental conditions.

Solutions are an imc specialty . . . may we send you an airmover equipment portfolio or supply a solution to your specific problem?

## OصC MAGNETICS CORP./EASTERN DIVISION

570 Main Street • Westbury, L.I., New York • ED 4-7070 • TWX WESTBURY N.Y. 5250-U


## NEW PRODUCTS

Cathode-Ray Tube
Is direct writing


The Printapix B3C2 tube has 500 conductive elements per linear inch to make a density of 250,000 conductive elements per square inch. Supplementary electrostatic deflection plates permit the generation of alphanumeric characters. It can print characters directly on nonsensitized paper at rates up to 100,000 characters per sec.

Litton Industries, Electron Tube Div., Dept. ED, 960 Industrial Road, San Carlos, Calif.

## High-Voltage Converters



This line of dc-to-dc converters has regulated voltage outputs that range from 700 to $1,500 \mathrm{v}$ and the rated current output is $20 \mu \mathrm{a}$. Each unit is hermetically sealed. Size is $2-3 / 8-\mathrm{in}$. high x 1-1/2-in. sq. They are available with plug-in base or solder connections.

Fairport Instruments, Inc., Dept. ED, 270 Midway Lane, Oak Ridge, Tenn.

Millimicroammeter


Model 1811AR millirnicroammeter is a rackmounted unit for measuring low-level currents from less than $0.001 \mu$ a to 3 ma . The instrument

## Instruments that Stay Accurate



circle $/ 2$ on reader-service card
CIRCIE 12 ON
15,1961
ELECTRONIC DESIGN • February 15, 1961



Yea! Schweber can sell any model of BOURNS TRIMPOT* at factory prices.
Sizeable quantities are available for immediate shipment from stock from Schweber's warehouse.


ELECTRONICS
©o henmicke road. mineola. Li., n.y. PIONEER B.e820. TWX G.CY-NY-B8OU
circle 74 on reader-service card

This Top Team of Application Engineers

## Represents You at Bourns!

Consider this crack Trimpot engineering group an extension of tion to steer you to fast answers for your potentiometer needs. your own staff...because that's exactly what it is. Each of these men is a graduate engineer; each has extensive experience in
potentiometer applications; and each is responsible for technipotentiometer applicatıons; and each is responsible for techni-
cal subjects within a specific geographic area. The Bourns cal subjects within a specific geographic area. The Bourns
specialist assigned to your region therefore becomes well acquainted with your requirements - to help you solve today's problems today!
Because Bourns offers the widest selection of adjustment poten


Exclusive designers and manufacturers of Trimpot ${ }^{6}$ potentiometers. Pioneers in transducers for position, pressure, acceleration. CIRCLE 75 ON READER-SERVICE CARD

## NEW PRODUCTS

Synchro Standards
Accurate to 2 sec


Designed to simulate the output of a master synchro, models SS-1, 2 , and 3 have a ratio accuracy of 10 ppm , equal to 2 sec of arc. Quadrant switching is provided to simulate operation over 360 deg . Similar units can be supplied as resolver standards.

Gertsch Products, Inc., Dept. ED, 3211 S. La Cienega Blvd., Los Angeles 16, Calif.
Price: $\$ 675$ up.
Availability: 30 to 45 days.


Typically used for spot cooling, this miniature dc blower moves 10 cfm against 0.3 in . of water static pressure. The tube-axial device is 1-1/8-in in diameter by $3-1 / 4-\mathrm{in}$. long, and operates on 27 v dc. Weight is 3.5 oz .

Globe Industries, Inc., Dept. ED, 1784 Stanley Ave., Dayton 4, Ohio.

## Computer Building 715

 BlockHolds 6 pairs of plug-ins


This computer building block is designed to accornmodate six pairs of the firm's operational plug-in

## for long-life operation

 despite extreme temperatures, heavy shock, severe vibration
## CLARE Type $F$


subminiature crystal can
RELAY

This hermetically sealed relay-no bigger than a postage stampis a precise component of unusual flexibility, capable of long.life operation under a wide variety of contact loads.

The Clare Type F is extremely fast and more than moderately sensitive. It is built to withstand temperature extremes, heavy shock and extreme vibration. It has proved its usefulness to advanced circuit designers. Contacts, rated at 3 amperes, are excellent for low. level circuit applications. Terminal arrangement is nicely suited to 2/10 inch grid spacing.

In a variety of terminal and mounting designs, the Clare Type F Relay is of real value for both commercial and military applications.
for complete data on construction. circuitry,
performance characteristics and mountings
...write for Catalog 203



For detailed information, ask your Clare Rep resentative for Catalog 203... or address C. P. Clare \& Co.. 3101 Pratt Blvd., Chicago 45. Illinois. In Canada: C. P. Clare Canada Lid., 840 Caledonia Road, Toronto 19. Ont. Cable address: CLARELAY.

## SPECIFICATIONS:



## Differential DC Voltmeter

## Accuracy is $0.05 \%$

The model 801 H differential dc voltmeter has an accuracy of $0.05 \%$ from 0.1 to 500 v . Input resistance at null is infinite over the entire range. Voltage ranges are $0.5,5,50$, and 500 v dc ; an automatic lighted decimal is provided. The meter is available for rack or cabinet mounting.

John Fluke Manufacturing Co., Inc., Dept. ED, P. O. Box 7161, Seattle 33, Wash.

Delay Lines
Have low attenuation


This series of lumped constant delay lines consists of m -derived LC networks. Each section is designed to give linear phase shift beyond $70 \%$ of the cut-off frequency. Attenuation is less than 1 db per $\mu \mathrm{sec}$ of delay. Specifications for model DL-2.265 are: impedance, 500 ohms $\pm 5 \%$; delay time, $1 \mu \mathrm{sec} \pm 5 \%$; rise time 0.08 $\mu \mathrm{sec}$; attenuation, 1 db max.

Dresser Electronics, HST Div., Dept. ED, 555 N. 5th St., Garland, Tex.
Price: $\$ 75$ ca.

## Optical Comparator

## For visual inspection

Designed as a portable unit, the Micro Vu 300 provides 20 -power magnification for inspection of components ranging in size from microminiature to 3 in . It needs less than 3 sq ft of bench space and weighs 20 lb . It has a $2-1 / 2 \mathrm{x}$ 9 in . measuring stage with $3 \times 3 \mathrm{in}$. vertical and horizontal travel. Standard dial indicators are used.

Micro Vu, Dept. ED, North Hollywood, Calif.
Price: $\$ 350$.

## Airborne DC Amplifier



Small, solid state, direct-coupled DC amplifier weighs only six ounces. Less than five cubic inches in volume, this rugged, hermetically sealed instrument is available with solder, plug-in, coax or combination header arrangements and a variety of mountings. DC gain is 200 to 1000 $\pm 0.75 \%$. Input capability is 5 millivolts differential at maximum gain; output capability is $\pm 5$ volts into not less than 20 K (single-ended).

Microdot Inc., 220 Pasadena Avenue, South Pasadena, California.

CIRCLE 851 ON READER-SERVICE CARD

## Weldable Strain Gage



Precise, rugged gage is capable of continuous operation at $800^{\circ} \mathrm{F}$ and dynamic test to $1500^{\circ} \mathrm{F}$. These gages employ one-piece etched wire filaments in swaged stainless steel tubes, and are suitable for use from cryogenic to elevated temperatures. They are also available with inherent temperature compensation (no dummy gages required). Easy installation through the use of stored-energy welding equipment eliminates complicated bonding and curing processes. Also available in integral lead strain gage versions.
Microdot Inc., 220 Pasadena Avenue, South Pasadena, California.

## MICROMINIATURE MULTI-PIN CONNECTORS

> Visualize 61 contacts in the diameter of a dime... think of slashing connector weight requirements by $33 \%$... estimate the dollar savings in time and inventory of a connector with complete interchangeability of parts. This unique combination of advantages - and more - are built-in features of Microdot's new multi-pins.

In airborne and ground support applications where size, weight and reliability are vital factors, Microdot's unique new multi-pin connector stands alone. Available in three shell sizes and a variety of mounting versions, these rugged connectors are adaptable to a wide range of specific applications (you specify from a wide variety of standard, interchangeable multi-pin component parts to arrive at a connector tailored to your specific application).
Inserts are available in a variety of straight power, straight coaxial, and powercoaxial layouts. Power contacts are interchangeable without changing inserts, allowing hermaphroditic contact arrangements (a mixture of male and female contacts within the same plug or receptacle, allowing hot leads to both plug and receptacle). Closed entry, pure coin silver socket contacts allow heavy currents with low temperature rise. Contact resistance is almost nil. Write today for detailed descriptive literature, Bulletin MP.O.

| $\begin{gathered} \text { size } \\ \text { Desigation } \\ \hline \end{gathered}$ | Plus 0.8. | No. OF coavial contacts | $\begin{aligned} & \text { MO. OF } \\ & \text { POWER } \\ & \text { COMTACTS } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| A | $\%^{\prime \prime}$ | up to 7 | up to 19 |
| B | 1760" | up to 12 | up to 37 |
| C | 16" | up to 19 | up to 61 |

## Microdot Muiti-Pins are available in

disassembled "kit" form or, if you prefer, factory assembled with Microdot cable.



DELIVERS
1544 STANDARD MODELS OF ITS
SQUARETRIM PRECISION POTENTIOMETERS. THEREBY GIVING YOU GREATEST DESIGN Latituide; (2) OUR SPECS ARE FIELD PROVEN AND REALISTICALLY DERIVED FROM TESTING UNDER
ENVIRONMENTAL STRESS, NOT "IDEAL" LAB CONDITIONS;
(3) WE ORIGINATED THE SQUARE TRIMMING POT,

HOLD MANY BASIC PATENTS ON IT, AND OFFER DESIGN
ADVANTAGES NOT OBTAINABLE WITH ANY OTHER
PRODUCT; (4) OUR HUGE NEW FACILITY IS THE MOST MODERN OF ITS KIND IN THE WORLD, PRODUCING THOI'SANDS OF POTS PER DAY. CHECK THE SPECS, THEN THE FACTS BEHIND THE SPECS, AND YOU'LL SEE WHY DAYSTROM DELIVERS THE BEST.

"Special Order

## DAYSTROM PATENTED PRECISION ROTARY T

## EXAMPLE: ZERO BACKLASH



The Daystrom 341 Series rotary potentiometers contain this patented "V guide which eliminates backlash and resultant error. U'.S. Patent 2,856,493

EXAMPLE: DOUBLE WIPEIRS, FINER RESOLUTION, ANI) ABSOLUTE CONTINUITY IN SUBMINIA'TURE SERIES 341 TEN.TURNS


The use of patented double wipers in our 341 Series Potentiometer effectively doubles the resolution...intermittents that normally result from shock and vibration are virtually eliminated.

Coupled with its subminiature size, this stability to environmental stress makes the 341 Series ideal for avionics systems, where it has found many applications (the TITAN missile is an example).

The Series 341 potentiometers are offered in resistance ranges from 1 K to 600 K , can carry 2.5 watts in still air at $40^{\circ} \mathrm{C}$, and operate from -55 to $140^{\circ} \mathrm{C}$. They are only ${ }^{\prime \prime \prime}$ ' in diameter and $1^{\prime \prime}$ long, and meet all applicable MIL specs. The 341 can also be supplied with a patented clutch for servo installation.

EXAMPLE: SPECIAL ADJUSTING DEVICE IN GANGABLE SERIES 319

For the first time in gangable potentiometers, you can make individual pot adjustments after ganging without disassembly Daystrom 319's are uniquely constructed so each can be adjuster separatels in 15 or 20 seconds without affecting others. Patent. are pending on the special Daystrom-engineered method by which these adjustments are
made. Because of the simplicity of adjustment after ganging, you can order these potentiometers already ganged at Daystrom in the number needed, then make your final adjustments in seconds. Resistance Range: 100! to 200 K : Power: 2 watts in still air: Temperat ure: -55 to $150^{\circ} \mathrm{C}$. Meets all applicable MIL specs.

|  | MOLDEIS |  |  |  | MODELS | MOIJEIS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sQuaretrim ${ }^{-}$ SERIES NUMBERS <br> RESISTANCE <br> POWER SIZE <br> OPERATING TEMP. RESOLUTION | 300-00, 300-60, 300-61, 300.64, 300.66, 300-67 |  |  |  |  |  |  |
| Standard Resistance Tolerance | =5\% (special tol. on request) | =5\% (special tol on request) | =5\% (special tol on request) | = $20 \%$ | *5\% (special tol. on request) | $=5 \%$ (special tol on request) | 5\% 15 |
| Temp. Coeff. of Resistance Wire | 20 ppmm m ${ }^{\circ} \mathrm{C}$ max $0^{-}$to $100^{\circ} \mathrm{C}$ | $20 \mathrm{ppmm}{ }^{\circ} \mathrm{C}$ max. $\mathrm{O}^{\prime} 10100^{\circ} \mathrm{C}$ | $20 \mathrm{ppm} \mathrm{m} /{ }^{\circ} \mathrm{C}$ max $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | $0.2 \% /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $100^{\circ} \mathrm{C}$ | $20 \mathrm{ppmmm}{ }^{\circ} \mathrm{C}$ max 0 - to $100^{\circ} \mathrm{C}$ | $20 \mathrm{ppmm} /{ }^{\prime} \mathrm{C}$ max. $0^{-1}$ to $100^{\circ} \mathrm{C}$ | 20 ppm m C |
| Temp. Coeff. of Potentiometer | $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 ppm C max $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 ppm C max. $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | $50 \mathrm{ppm} / \mathrm{C}$ max. $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 ppm ' C max $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 ppm - C max. $0^{+}$to $100^{\circ} \mathrm{C}$ | 50 ppm C |
| Stability as Voltage Divider | $02 \%$ or 1 resolution max. | $0.2 \%$ or 1 resolution max | 0.2\% or 1 resolution max. | Better than 0 $07 \%,-551085^{\circ} \mathrm{C}$ | $0.2 \%$ or 1 resolution max | $0.2 \%$ or 1 resolution max | $02 \%$ or 1 r |
| Load Life at Rating | $\begin{aligned} & 1000 \text { hrs. min } \\ & \text { ML-R-R } 19 \mathrm{~A} \text { (in still air) } \end{aligned}$ | $\begin{aligned} & 1000 \mathrm{hrs} \text { min } \\ & \text { MIL-R- } 19 \mathrm{~A} \text { (in still arr) } \end{aligned}$ | $\begin{aligned} & 1000 \text { hrs. min } \\ & \text { MIL- }-19 \mathrm{~A} \text { (in still air) } \\ & \hline \end{aligned}$ | $\begin{aligned} & 1000 \mathrm{hrs} \text { min mill air) } \\ & \text { MIL- } \mathrm{R}-94 \text { (in stil } \end{aligned}$ | $\begin{aligned} & 1000 \text { his. min } \\ & \text { M1-PR- } 19 \mathrm{~A} \text { (in still ari) } \end{aligned}$ | $\begin{aligned} & 1000 \mathrm{hrs} \text { min } \\ & \text { M1- }-\mathrm{R} \text { - } 9 \mathrm{~A} \text { (in still air) } \end{aligned}$ | $\begin{aligned} & 1000 \mathrm{hrs} \text { min } \\ & \text { MIL-R-19A (1n } \end{aligned}$ |
| Insulation Resistance | 50 megohms min. (500V. DC) | 50 megohms min (500v. OC) | 50 megohms min (500V. DC) | 50 megohms min. (500V OC) | 50 megohms min. (500V DC) | 50 megohms min. (500V DC) | 50 megohms |
| Dielectric strength | 500 V AC, 1 min. | 500 V AC, 1 min. | 500 V AC. 1 min | 500v. AC. 1 min. | 500v. AC. 1 min. | 500v. AC. 1 min. | soov. AC. |
| Usastie Resistance Range | 98\% | $98^{\circ} \mathrm{O}$ | 98\% | 98\% | 98\% | 98\% | $98 \%$ |
| Equiv. Noise Resistance | $0.1 \%$ or 100 ohms. NA 5-710 | $0.1 \%$ or 100 ohms NA 5-710 | 0.1\% or 100 ohms. NA 5.710 |  | 0.1\% or 100 ohms. NA 5-710 | 0.1\% or 100 ohms NA 5-710 | $0.1 \%$ or 10 |
| Adjustment Ratio | 45:1 | 45.1 | 45:1 | 45.1 | 45:1 | 45:1 | 451 |
| Screw Turns | 42 | 42 | 42 | 42 | 42 | 42 | 42 |
| notational Lite | 10,000 screw rev. min. | 10,000 screw rev. min. | 10.000 screw rev. min. | 10,000 screw rev. min. | 10,000 screw rev. min. | 10.000 screw rev. min. | 10,000 s |
| Torgue | 7.502 in. max. | 7.502 in. max. | 7.502 in. max. | 7.502 in. max | 7.502 in. max. | 7.502 in. max. | 7.502 in |
| Weight | 2 grams max. | 2 grams max. | 7 gr max | 2 grams max. | 2 grams max | 2 grams max | rams |
| Temperature Cycling | Exceeds MIL-STD-202. Meth. 102 | Exceeds MIL-STD-202, Meth 102 | Exceeds ML-STD-202, Meth 102 | Exceeds MIL-STD-202, Meth. 102 | Exceeds MIL-STD-202, Meth 102 | Exceeds MIL-STD-202. Meth 102 | Exceed |
| Vibration | Exceeds MIL-E.5272C, Proc. I. | Exceeds MIL-E.5272C, Proc. I. | Exceeds MIL-E-5272C, Proc. 1. | Exceeds MIL-E-5272C, Proc. 1. | Exceeds MIL-E.5272C, Proc I. | Exceeds MIL-E-5272C. Proc I. | Exceeds |
| Shock | Exceeds MIL-STD-202, Meth. 202 | Exceeds MIL-STD-202, Meth 202 | ExceedsMIL-STD-202, Meth 202 | Exceeds M |
| Altituda | Exceeds MIL-E.5272C, Proc. 11. | Exceeds MIL-E-5272C, Proc II. | Exceeds MIL-E.5272C, Proc. II. | Exceeds MIL-E-5272C, Proc. II. | Exceeds MIL-E.5272C, Proc. 11 | Exceeds MIL-E.5272C, Proc. 11 | Exceeds N |
| Sand and Dust | Exceeds MIL-E-5272C | Exceeds MIL-E-5272C | Exceeds MLL-E.5272C | Exceeds MIL-E.5272C | Exceeds MIL-E.5272C | Exceeds MIL-E-5272C | Exceeds M |
| Fungus Resistane: | All non-nutrient materials | All non-n |
| Corrosion Resistance | Simitar materials construction $100 \%$ | Similar materials construction $100 \%$ | $\begin{aligned} & \text { Similar materials } \\ & \text { construction } 100 \% \end{aligned}$ | Similar materials construction 100\% | Similar materials construction $100 \%$ | Similar materials construction 100\% | Similar mate construction |
| Humidity* | Exceeds MIL-E-5272C, Proc. 1. | Exceeds MIL-E-5272C, Proc. I. | Exceeds MIL-E-5272C, Proc. 1 |  | Exceeds MIL-E.5272C, Proc. I. | Exceeds MIL-E.5272C, Proc. 1. | Exceeds M |
| Salt Spray* | Exceeds MIL-E-5272C | Exceeds MIL-E.5272C | Exceeds MIL-E.5272C |  | Exceeds MIL-E.5272C | Exceeds MIL-E-5272C | Exceeds |


| 144 <br> MODEIS o | $144$ | $168$ |  |  |  | $96$ <br> MODELS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 315.60,315-61, \\ & , 315-72,315-74 \end{aligned}$ | 316-00, 316-60, 316.61, 316-64, 316-72, 316-73 | $318 \cdot 00,318 \cdot 60,318.61$, 318.64 | $\begin{aligned} & 355-00,355-60,355-61, \\ & 355-64 \end{aligned}$ | $\begin{aligned} & 356 \cdot 00.356-60,356 \cdot 61, \\ & 356.64 \end{aligned}$ | $\begin{aligned} & 357-00,357-60,357-61, \\ & 357 \cdot 64 \end{aligned}$ | 358-00, 358-60, 358-61, <br> 358.64 | 3/8" PREVIEW: TO BE INTRODUCED AT THE I.R.E. SHOW, MARCH 20 |
| 50k $1 / 2 " \times 0.200^{\prime \prime}$ $0+150^{\circ} \mathrm{C}$ | $\begin{aligned} & 10 \Omega-50 \mathrm{~K} \\ & \text { I wall (stl\|l arr) } \\ & 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0.195^{\prime \prime} \\ & -55 \text { to } 150^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 10!\text { - } 50 \mathrm{~K} \\ & \text { /atl (still ari) } \\ & 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0.200^{\prime \prime} \\ & -55 \text { to }+200^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 10!-50 \mathrm{~K} \\ & 1 \text { watt (still air) } \\ & 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0.195^{\prime \prime} \\ & -55 \text { to }+200^{\circ} \mathrm{C} \end{aligned}$ | 10? - 50 K <br> 1 watt (still air) $1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0.200^{\prime \prime}$ -55 to $+200^{\circ} \mathrm{C}$ | $\begin{aligned} & 10 \text { !? }-50 \mathrm{~K} \\ & \text { l walt (still air) } \\ & 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0.195^{\prime \prime} \\ & -55 \text { to }+200^{\circ} \mathrm{C} \end{aligned}$ |  |
| $-1.00 \%$ $1 \mathrm{~K}-.32 \%$ <br> -.77 $2 \mathrm{~K}-.23$ <br> .65 5 K .20 <br> .52 $10 \mathrm{~K}-.125$ <br> -.50 $20 \mathrm{~K} . .096$ <br> -.36 $50 \mathrm{~K}-.086$ |  |  |  | $10!-1.00 \%$ $1 \mathrm{~K}-.32 \%$ <br> $20 ?-.77$ $2 K-23$ <br> $50 ?-.65$ $5 K-.20$ <br> $100 ?-.52$ $10 \mathrm{~K}-.125$ <br> $200 ?-.50$ $2 \mathrm{~K}-.096$ <br> $500 ?-.36$ $50 \mathrm{~K}-.086$ | $10:-1.00 \%$ $1 \mathrm{~K}-.32 \%$ <br> $20 \Omega-.7$ $2 \mathrm{~K}-.23$ <br> $50: .65$ $5 \mathrm{~K}-.20$ <br> $1000-.52$ $10 \mathrm{~K}-.125$ <br> $200 ?-.50$ $20 \mathrm{~K}-.096$ <br> $5002-.36$ $50 \mathrm{~K}-.086$ | $100-1.00 \%$ $1 \mathrm{~K}-.32 \%$ <br> $200-.7$ $2 \mathrm{K-.23}$ <br> $50!-.65$ 5 KK .20 <br> $100 \Omega-.52$ $10 \mathrm{~K}-.125$ <br> $200 \Omega-.50$ $20 \mathrm{~K}-.096$ <br> $500 ?-.36$ $50 \mathrm{~K}-.086$ |  |
| pecial tol on request) | - $5 \%$ (special tol on reauest) | - $5 \%$ (spectal tol on reavest) | - $5 \%$ (special tol on request) | - $5 \%$ (ssectal tol on reauest) | $=5 \%$ (special tol on reauest) | =5\% (special tol on request) | New Squaretrims only $3 \cdot z^{\prime \prime}$ square, less than 1/8" thick. Design advantages: |
| $\mathrm{m}^{\circ} \mathrm{C}$ max.0. $0^{10} 100^{\circ} \mathrm{C}$ | $20 \mathrm{pdmm} \mathrm{m}^{\mathrm{C}} \mathrm{Cmax} 0^{\prime}$ to $100^{\circ} \mathrm{C}$ | $20 \mathrm{pmm} \mathrm{m} \mathrm{C} \mathrm{max} 0 \cdot 10100 \mathrm{C}$ | $20 \mathrm{ppmm} \mathrm{m}^{\circ} \mathrm{C}$ max $0^{\circ}$. $10100^{\circ} \mathrm{C}$ | $20 \mathrm{pmmm}{ }^{\circ} \mathrm{C}$ max $0^{\circ} 1010100^{\circ} \mathrm{C}$ | $20 \mathrm{pmm} \mathrm{m} / \mathrm{C}$ max. $0^{\circ} 10100^{\circ} \mathrm{C}$ | $20 \mathrm{ppm} \mathrm{m}{ }^{\circ} \mathrm{C} \mathrm{max} 0^{\circ}$ to $100^{\circ} \mathrm{C}$ |  |
| $\mathrm{C}_{\text {max }} 0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 dpm - $\mathrm{Cmax} 00^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 dom C max $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 ppm ' C max $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | $50 \mathrm{ppm} \mathrm{C}^{\mathrm{C}}$ max $0^{\circ}$ to $100^{\circ} \mathrm{C}$ | $50 \mathrm{ppm} \mathrm{C}^{\mathrm{C}} \mathrm{Cax} \cdot 0^{\circ}$ to $100^{\circ} \mathrm{C}$ | 50 ppm ${ }^{-C}$ max. $0^{\circ}$ to $100^{\circ} \mathrm{C}$ |  |
| 11 resolution max | 02\% or 1 resolution max | 028 or 1 resolution mar | 02\% or 1 resolution max. | 02\% or 1 resolution max | $0.2 \%$ or 1 resolution max | $0.2 \%$ or 1 resolution max |  |
| Is min ${ }_{\text {cin }}$ | (1000 his min |  | $\begin{aligned} & \text { 1000 his. min } \\ & \text { Mil-R-19A (in still air) } \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 1000 \text { his min } \\ & \text { MIL-R-19A (in still air) } \end{aligned}$ | $\begin{aligned} & 1000 \text { hrs. min } \\ & \text { Mil-P. } 19 \mathrm{~A} \text { (in stil air) } \end{aligned}$ | smaller, lighter in weight, yet rated |
| ohms min (500V DC) | 50 megohms min (500V DC) | 50 megohms min (500V. DC) | 50 megohns min. (500V. DC) | 50 megohms min. (500v. DC) | 50 megorms min. (500V OC) | 50 megohms min. (500v. OC) | still air. Flat, compact $3 / 8^{\prime \prime}$ |
| c. 1 min | 500v AC. 1 min. | 500v AC. 1 min | 500v. AC. 1 min. | 500V AC. 1 min. | 500 V AC, 1 min. | 500v. AC, 1 min. |  |
|  | 98\% | 98\% | $98 \%$ | $98^{\circ} \mathrm{O}$ | 98\% | 98\% | permits much greater circuit density per cubic inch, needs no mounting brackets for stacking, and |
| 1100 ohms NA 5.710 | 01\% or 100 ohms. NA 5.710 | 0.1\% or 100 ohms NA 5.710 | $01 \%$ or 100 ohms NA 5.710 | 0.1\% or 100 ohms. NA 5.710 | 0.1\% or 100 ohms. NA 5.710 | 0.1\% or 100 ohms. NA 5.710 |  |
|  | 45.1 | 45.1 | 45.1 | 45.1 | 45.1 | 45.1 |  |
|  | 42 | 42 | 42 | 42 | 42 | 42 |  |
| screw ever min | 10.000 screw rev min | 10.000 screw rev min | 10,000 screw rev. min. | 10.000 screw rev min. | 10,000 screw rev min. | 10,000 screw rev. min. |  |
| in max | 7.502 | 7.5 or in. max | 7.502 in. max | 7.502 in. max | 7.502 in. max. | 7.502 in. max. | the new ${ }^{3 / 88^{\prime \prime}}$ will ${ }^{\text {Squaretrim will be }}$ |
| is max | 2 grams max. | 2 grams max | 2 grams max. | 2 grams max. | 2 grams max. | 2 grams max. |  |
| sML.STD.202. Meth 102 | Exceess Mil.STD.202. Meth 102 | Exxeedsml.ST0-202. Meth 102 | Exceess M1.-ST0.202. Meth . 102 | Exceess ML-STO-202, Meth 102 | Exceess M1.-ST0.202.Meth . 102 | Exceeds ML-STD-202, Meth. 102 | line of 144 standard models. You get the |
| \% MLEE S272C. Proc 1 | Exceeds MLI.E.5272C. Proc. 1 | Exceeds MIL-ES5272C. Proc 1 | Exceeds MLLE.E.5272C, Proc. 1. | Exceeds MILEES272C, Proc. 1. | Exceeds MIL-E.5272C. Proc. 1. | Exceeds MIL-E-5272C, Proc. 1. |  |
| ml.STD-202. Meth 20 | ExceessML-ST0-202. Meth 202 | ExceessML-STD-202. Meth 202 | Exceess MIL.ST0.202.Meth 202 | Exceeds MILSTD-202. Meth 202 | ExceedsM1L-STD-202. Meth 202 | Exceeds MILSTD.202, Meth. 202 | famous Daystrom |
| SMLE.E.S272, Pr | Exceeds MIL-E.5272C. Proc. 11 | Exceeds MLIE.5272C, Proc II. | Exxeeds MIL-E52722, Proc. 11 | Exceeds MIL-E5272C, Proc. III | Exceeds MLLE.5.5272, Proc. 11. | Exceeds ML-E-5272C, Proc. II | $s$ Daystrom |
| is M1L-E.5272C | Exceeds MLI-E.5272C | Exceess MLE. 5272 C | Exceeds ML-E-5272C | Exceeds MIL-E.5272C | Exceeds MIL-E.5727 | Exceeds MIL-5.5272C |  |
| -nutrient materals | All non-nutirent materials | All non-nutrient materials | All nor-nutient materials | All non-nutrient materials | All nor-nutrient materials | All non-nutrient materials | Sample quantities |
| Mmeterals | Similar materials construction $100 \%$ | Similar materials construction $100 \%$ | Similar materials cunstruction $100 \%$ | $\begin{aligned} & \text { Similar materials } \\ & \text { constructıon } 100 \% \end{aligned}$ | Similar materials construction $100 \%$ | $\begin{aligned} & \text { Similar materials } \\ & \text { construction } 100 \% \end{aligned}$ | ill be available |
| Is MLLE.5272C. Proc. | Exceeds MIL-E.5272C, Proc. 1 | Exceeds MLEE.5272C, Proc | Exceeds MIL-E-5272C, Proc I. | Exceeds MIL-.5272C. Proc 1. | Exceeds MLL-E.5272C, Proc. . 1 . | Exrceeds ML-E.5272C, Proc. 1. | the I.R.E. See them at Booth 1706. |
| L.E.52726 | Exceeds MIL-E.5272C | Exceeds MLL-E.5272C | Exceeds MIL-E.5272C | Exceeds M1-E.5272C | Exceeds MLL-5.5272C | Exceeds MIL-E-5272C |  |

## DAYSTROM PATENTED PRECISION ROTARY TY

EXAMPLE: ZERO BACKLASH



The Daystrom 341 Series rotary potentiometers contain this patented "V" guide which eliminates backlash and resultant error. C'.S. Patent 2.8 . 0 (i, 19:3.

EXAMPLE: DOUBLE WIPERS, FINER RESOLUTION, ANI) ABSOLUTE CONTINUITY IN SUBMINIATURE SERIES 3H1 TEN-TURNS


The use of patented double wipers in our 341 Series Potentiometer effectively doubles the resolution...intermittents that normally result from shock and vibration are virtually eliminated.

EXAMPLE: SPECIAL ADJUSTING DEVICE IN GANGABLE SERIES 319

For the first time in gangable potentiometers, you can make individual pot adjustments after ganging without disassembly. Daystrom 319's are uniquely constructed so each can be adjusted separately in 15 or 20 seconds without affecting others. Patents are pending on the special Daystrom-engineered method by which these adjustments are
marle. Because of the simplicity of alljust ment after ganging, you can urder these potentiometer: already ganged at Daystrom in the number needed, then make your final adjustments in seconds. Resistance Range: 100!? to 200 K ; Power: 2 watts in still air: Tem perature : -55 to $150^{\circ} \mathrm{C}$. Meets all applicable MIL specs.

## 'YPES OFFER DISTINCT DESIGN ADVANTAGES..

EXAMPLE: HIGH POWER, HIGH TEMPERATURE COMBINED IN SUBMINIATURE 314 SERIES



The high temperature stability and power handling capacity of these tiny units is truly impressive. Here, in
 thimble-is a high-performance potentiometer that will operate to $2500^{\circ} \mathrm{C}$ and dissipate $?$ watts in still air at is $0^{\prime} C^{\prime}$ ? In addition, the weight is only 10 grams. Special
complementary and compatible materials plus precision winding techniques, are employed to achieve this capability. Resistance in standard models ranges from 10 ? to 30 K . Available with or without stops and all panel mounting modes. Meets all applicable MIL specs.
 GF SINOLE-TURN : 4 SEIRILS


## arti:al. sigh

Where spate is at a premium but precision and performance is a must, the subminiature I)aystrom 304 Series protentiometers are ideal. The use of a cylindrical
mandrel instead of a conventional card, plus special precision winding techniques, are the design features that permit such exceptional performance in such a small case. Only ' $\because$ " in diameter and with case length of mere $\because \because$, the $30 \&$ Series offers linearities of 0.3 ; to 3 ; standard, as fine as $0.1 \times r$; on special order. These ting potentiometers will carry 2 watts at $50^{\circ} \mathrm{C}$ in still air. operate from -ij5 to $125^{\circ} \mathrm{C}$. They weigh only 7 grams max., meet all applicable MIL specs. Resistance Range: 10! to 50 K .

THESE ARE BUT A FEW OF THE ADVANTAGES OF DAYSTROM KOTARY POTENTIOMETERS. SEND FOR SPECIFICATIONS OR CALL YOUR IDAYSTROM SUPPLIER FOR ADDITIONAL DATA.

## DAYSTROM, incorporated POTENTIOMETER DIVISION

ARCHBALD PENNSYLVANIA • LOS ANGELES, CALIFORNIA

Electronic Timer
For nuclear applications


The model N -804 timer measures preset and elapsed time with a 60 cycle controlled time base. Maximum time storage is $10,000 \mathrm{sec}$. Time readout is by four glow transfer tubes. Time resolution is to the nearest second on times longer than 1,000 sec. The unit may be used with any electronically gated scaler as well as with scalers which are stopped and started with mechanical contact closures.
Hamner Electronics Co., Inc. Dept. ED, P.O. Box 531, Princeton, N.J.

## Silicon Transistors

662

## Operate to 200 C

These four diffused-junction silicon power transistors, of the npn type, 2 N 1700 through 2 N 1703 , operate at case and flange temperatures from -6.5 C to 200 C . Dissipation ratings at 25 C range from 5 to 75 w . Alphaa cut-off frequency is 1 to 1.2 mc .
Radio Corp. of America, Semiconductor \& Materials Div., Dept. EI), Somerville, N.J.
Price: From \$3.50 ea, 1,(X) and up).

## Circuir Boards

672

## Teflon-glass laminate

Copper-clad, Teflon-glass laminated circuit board, called Genclad, is available in sizes up to $36 \times 34$ in., in any thickness, with copper on one or both sides. The nonflammable board may be solder-dipped for 1 min at 550 F . Dielectric constant is 2.56 at 1 mc ; dielectric strength is 500 v per mil. No adhesive is used in bonding.

General Plastics Corp., Dept. ED, 55 La France Ave., Bloomfield, N.J.
< CIRCLE 33 ON READER-SERVICE CARD

## "the Best



DC-105 1 Me, cemmercial


OC-106 100 Kc., commercial


DC-130 100 Ke., míl. spec.

FOR DETAILED INFORMATION, WRITE FOR BULLETIN 1002

## counter in deades"




The new Burroughs BEAM-X Counter is the lowest cost transistorized decade counter available. The DC-111 Counter, newest product of the Electronic Tube Division, combines the Beam-X switch with transistors in a circuit capable of resolving pulses at 110 Kc . Electrical outputs are provided to operate remote Nixie® tubes, printers, and to perform other circuit functions. This latest addition to the Burroughs Counter line makes possible a number of advantages never before available:

- Use of new Beam-X switch - lowest cost, lightest weight, highest speed, smallest size 10 position electronic counting device.
- Total power consumption of only two watts.
- Elimination of as many as ninety components from counting circuits.
- Increased reliability due to component reduction and use of the ultra reliable Beam-X switch.

This counter is designed as a plug-in module for use in computers, electronic counters, machine control, automation and test equipment and military systems. The units may be directly cascaded. They can be driven by a twelve-volt signal, and are compatible with existing transistor logic circuits.

## Taylor glass-base laminates

 pop right out as design materials in many applications

There are good reasons for investigating Taylor glass-base laminated plastics as high-strength-to-weight materials in your design. They offer light weight, corrosion resistance, electrical and thermal insulation, and ease of fabrication.

For example, glass-fabric-base laminates have the highest mechanical strength of all laminated plastic materials. They have been successfully used in the fabrication of critical parts, including aircraft parts and bases for printed circuits. They are most valuable where extremely low moisture absorption, increased heat resistance and superior electrical properties are required.

Taylor Fibre produces a number


of different glass-base grades in sheet, rod and tubular form, and copper-clad. Those with phenolic resin are recommended for mechanical and electrical applications requiring heat resistance. Those with melamine are characterized by their excellent resistance to arcing and tracking in electrical applications. They also have good resistance to flame, heat and moderate concentrations of alkalis and most solvents. Those with silicone exhibit very high heat resistance, combined with good mechanical and electrical properties. They also have highest arc resistance. Those with epoxy offer extremely high mechanical strength, excellent chemical resistance, low moisture absorption, and high strength retention at elevated temperatures.

Technical data about these and other Taylor laminated plastics are available. Ask for your copy of the Taylor Laminated Plastics Selection Guide. Taylor Fibre Co., Norristown 48, Pa.

## NEW PRODUCTS

## UHF Turret Attenuator

With fast value change


These step-type turret attenuators permit quick change of db combinations. The removal of 3 set screws allows pad retainer ring to move forward for easy replacement, removal, or rearrangement of pads. Turrets are available in any combination of values from 0.1 db through 60 db , in $0.1-\mathrm{db}$ increments.

Stoddart Aircraft Radio Co., Inc., Dept. ED, 6644 Santa Monica Blvd., Hollywood 38, Calif.

## HF Oscilloscope

Bondwidth to 15 mc


Designed for laboratory use, the GM 5603 oscilloscope has differential vertical input, bandwidth dc to 15 mc . Sensitivity ranges from 50 mv per cm to 5 v per cm , accurate to $\pm 3 \%$. Time base is $40 \mu \mathrm{sec}$ per cm to 1 sec per cm , in 21 steps, accurate to $\pm 3 \%$. Magnifications of $2 x$ and $5 x$ are provided. The $13-\mathrm{cm}$ flat-faced cathoderay tube has an accelerating voltage of 10 kv .
N. V. Philip's Gloeilampenfabriegen, EMA Dept., Dept. ED, Eindhoven, The Netherlands.

## Accuracy Is Our Policy . . .

A New Products item concerning Hamlin's Magnetic Reed Switches type DRS-5 appeared on p 159 of the Dec. 7, 1960, issue of Electronic Design. The picture which accompanied the text was incorrect.


AiResearch Minifan* is an extremely high performance 400 -cycle AC motor-driven fan used for cooling airborne or ground electronic and electrical equipment. Model shown has a flow capacity of 53.5 cfm at a pressure rise of $3.44 \mathrm{H}_{2} \mathrm{O}$, and requires only 69 watts.

Minifan operates up to $125^{\circ} \mathrm{C}$. ambient. Its size and weight make it ideal for apot cooling, cold plates or as a cooling package component. The fan can also be repaired, greatly increasing its service life.

## Range of Specifications

- Volume flow: 21.5 to 53.5 cfm
- Pressure rises 6 to $3.4 \mathrm{H}_{2} \mathrm{O}$
- Speed: 10,500 to 22,500 rpm
- Single, two or three phase power
- Power: 16 to 69 watts
- Standard or high slip motors
- Weight $\mathbf{~} .36$ to . 48 lb .

A world leader in the design and manufacture of heat exchangers, fans and controls, AiResearch can assume complete cooling system responsibility. Your inquiries are invited.
-Miallea la an Ai Resocerch irciomeril.


## AiResearch Manufacturing Division

Los Angeles 45, Callfomia
CIRCLE 86 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961

## Control Cable

 Vulkene cable makes it suitable for general usage in air, conduit, underground ducts, or for direct burial The heat-resistant, chemically cross linked polyethylene insulation is available on cable with ratings of 600 v or $1,000 \mathrm{v}, 2$ through 12 conductors, in AllC sizes 14, 12, and 10.General Electric Co., Chemical and Metallurgical Div., Wire and Cable Dept., Dept. EI), Bridgeport 2, Conn

## Commutating Switch 633

## For 10 circuits

This adjustable-pole commutating switch can incorporate as many as 10 independent spst or spdt cir cuits. Each pole can carry as many as 30 bits of information. All circuits can be adjusted over a 360 deg range to lead or lag any or all other circuits. The unit meets military requirements and has a life expectancy of more than 30 million cycles.

Airflyte Electronics Co., Dept. ED, 535 Avenue A, Bayonne, N.J.

## Dual-Channel Plug-In 634

 Dc to 500 -kc bandwidthDual-channel plug-in, type 200, provides de to 500 -kc bandwidth and 1 mv per cm sensitivity. The unit is designed for use with all Analab oscilloscope main frames. Contained within the single plug-in are two amplifier channels and the trigger sweep circuits. Channel A has a maximum sensitivity of 1 mv per cm and channel $B$ has a sensitivity of 40 mv per cm . Both have a bandwidth of dc to 500 kc .

Analab Instrument Corp., Dept. ED, 30 Canfield Road, Cedar Grove, N.J.

CIRCLE 87 ON READER-SERVICE CARD $>$


## Highly complex shapes,

internal and external, formed in one operation to close folerances in คlSiMas cernmucs

NEW SHAPES NOW PRACTICAL Technical ceramic parts formerly impossible or available only by expensive machining and grinding are now practical and can be produced in volume to close tolerances and with great uniformity. They include complex and compound curves, thin walls and other difficult design features. This injection molding process is particularly suited to volume production which readily permits amor tization of initial tooling costs.

## MATERIALS

AlSiMag 614 (High Alumina) and AlSiMag 704 (Porous and Leachable)
have found widest use. Other AlSiMag ceramic compositions are available. See Properly Charf, sent on request.

## APPLICATIONS

include but are not limited to: Electronic and Electrical, such as conical micro-wave tube windows, envelopes, complex internal insulators, cups, encapsulating devices, semi-conductor assembly boals and plugs.
High Temperature, Mechanical and Heat Shock uses such as welding nozzles. Precision Investment Casting cores of great dimensional accuracy.

Guides for wire and textile machinery The use of these AlSiMag ceramics is indicated when high frequencies, high lemperatures, heat shock, chemical al tack or mechanical wear are involved

## EXPERIENCE

More than two years of steadily in creased production from this equipmen has given us practical experience which enables us to promptly and accurately onswer most inquiries involving complex and difficult shapes. Send blue prints or sketches. Chances are that your "impossible" designs are now practical in AlSiMag ceramics

 dbectery): Bosion: Nowion Conter, Mass. Chicago: Badord Park, ill. Clovelond, Ohio © Dallas, Toxes Cor Angoles, Cel. Now York: Ridgefield, N. J. * Philedelphic, Pe. St. Lovis, Mo. St. Poul, Minn. © So. Sen Freacisco, Cal. © Seartle, Wesh. All ather expert: Minnosote Mining \& Monufecturing Co, Insornationd Dwision, ©p Perk Ave., Mow York, M. Y.

BOOTH 4MOI of I.R.E.

## NEW PRODUCTS

## Patch Cords

With 10 terminations


Designed for interconnecting af and rf circuits, these patch cords use $3 / 4$-in. double banana plugs cabled to a wide variety of plugs, connectors, clips and tips. Ten terminations and 3 types of cable are available. Design of the plug permits multiple parallel stacking.

Herman H. Smith, Inc., Dept. ED, 2326 Nostrand Ave., Brooklyn 10. N.Y.

## Synchronous Motor

With variable pole
An L-shaped variable pole arm on this permanent magnet synchronous motor makes it able to start from dead center. The VP-III is rated at 20 in . per oz at 1 rpm ; a high torque model is available. rated at 40 in . per oz at 1 rpm . Standard speeds are from 10 rpm to $1 / 60 \mathrm{rpm}$. Rotation may be clockwise or counterclockwise. Supply is $115 \mathrm{v}, 60 \mathrm{cps}$.

Controls Co. of America, Lake City, Inc.. Dept. ED, Crystal Lake, III.

## Frequency-Period

 664
## Meter

Measures dc to 220 mc
The model 737A will measure frequency from dc to 220 mc , period to $0.1 \mu \mathrm{sec}$, and time interval from $0.1 \mu \mathrm{sec}$ to $10^{7} \mathrm{sec}$. Readout may be decade or Nixie. The meter uses a solid-state counter and a vac-uum-tube heterodyne converter. Decimal point is automatically placed. Stability is 0.2 ppm ; sensitivity is 0.25 v rms. The $53-\mathrm{lb}$ meter measures $14 \times 17 \times 13 \mathrm{in}$.

Computer Measurements Co., Dept. ED, 12970 Bradley Ave., Sylmar, Calif. Price: $\$ 2,400$.


## we make almost every type of interference filter you've

You probably know the range and diversity of filters that Cornell-Dubilier offers industry and government. Surely you know that CDE pioneered inferference filters when many people didn't know what they were for! Yet do you know that CDE is now working on filters for high-temperature operations beyond the state of the art? Even now CDE is developing interference filters with a degree of reliability undreamed of a few years ago. In depth of experience and engineering personnel, CDE offers you unparalleled resnurces to design and produce the precise system you need for


## ever seen... and thousands you've never seen before!

any interference problem. Today, as part of fast-growing Federal Pacific, CDE offers you more than ever in facilities, plants and people with an "urge to serve" that welcomes your inquiry for everything we make, for everything we can help you design. We have recently issued the above-illustrated brochure to describe the range and breadth of systems engineering services available to you whenever you consult with CDE. May we send you a complimentary copy? Cornell-Dubilier Electronics Division, Federal Pacific Electric Co., General Offices: 50 Paris Street, Newark I, N. J.
federal pacific electric company

## Double-Target

For indication and control


This double-target temperature indicating-controlling pyrometer provides a second control point for secondary or additional action. It is available in 11 ranges between 0 to 400 F and 0 to $3,000 \mathrm{~F}$, plus a test chamber range of -100 to 300 F . The flush-mounting unit measures $6-3 / 8 \times 7$ in.
Alnor Instrument Co., Dept. ED, 418 N. LaSalle St., Chicago 10, Ill.

## RF Power Monitor

674

## Also measures vswr

The feed-through type power monitor measures incident power between 0.2 and 200 mc , reflected power and vswr from 10 to 200 mc . Calibration can be checked against 60 cps . Frequency range of the resistive voltage divider is dc to 200 mc. Accuracy is 5\% of full scale; impedance is 51.5 ohms. Model VM-1 has ranges of 15 and 60 w ; model VM-2, ranges of 60 and 150 w .
Electro-Impulse Laboratory, Inc. Dept. ED, 208 River St., Red Bank, N.J.

## Silicon Diode

For TV and fm afc
The type 1N3182 voltage variable capacitor silicon diode is designed for TV and fm afc use. Typical Q is 60 ; average capacitance is 30 pf . The subminiature diode, of all glass-construction, has a maximum series resistance of 3 ohms and an inverse voltage of $\mathbf{4 v}$.

Amperex Electronic Corp., Semiconductor and Special Purpose Tube Div., Dept. ED, 230 Duffy Ave., Hicksville, N.Y.

- CIRCLE 89 ON READER-SERVICE CARD


ADVANCED SPECIEICATION MINIATURE ELECTF CIRCLE 90 ON READER-SERVICE CARD

## NEW PRODUCTS



ICALCONNECTOR S
Is transistorized


Model L3501 power supply is a portable, transistorized unit which measures $6 \times 8 \times 8$ in. Rating is 0 to 35 v at 0 to 1 amp dc. Regulation is 2 mv per $10 \%$ line input change and 5 mv from no load to full load. Ripple is held to $250 \mu \mathrm{v}$ rms. Parts and workmanship are guaranteed for 2 yr for 24 hr continuous duty, without derating.

Universal Electronics Co., Dept. ED, 1720 2.2nd St., Santa Monica, Calif.

Price: \$189.50.
Availability: From stock,
Data Converter
From paper to magnetic


Model 433 extracts data from punched paper tape and writes them on magnetic tape. Input and output data are completely identical in content. It will accept paper, foil or plastic tapes in widths varying from 5 through 8 level. It includes a paper tape reader capable of reading 120 characters per sec.

Tally Register Corp., Dept. ED, 1310 Mercer St., Seattle, Wash.
Price: From \$26,500.
Availability: 120 days.

## Accuracy Is Our Policy . . .

The New Product described on page 112 of the Jan. 4 issue of Electronic Design was incorrectly identified as a multiplexer. The device described was the model 3735 Multiplier manufactured by Donner Scientific Co., Concord, Calif.


## three for dependability at low cost

MEET P\&B's FAMILY OF "K SERIES" RELAYS

Here are only three of a large family of "K Series" relays by P\&B. Blood brothers all, they are distinguished by fine craftsmanship and design maturity. Together they will handle a multitude of switching requirements.
Many design engineers find it saves time, saves money to integrate their circuits with related $\mathrm{P} \& \mathrm{~B}$ relays. Makes sense, doesn't it?
KR-A small, lightweight relay used widely in communications and automation. Engineered for long life and dependability. 3PDT max. AC or DC. (See engineering data.)
KT-Designed for antenna switching. Capacitance: 0.5 mmfds between contacts. Terminal board is glass melamine and stack insulation is glass silicone for minimum RF losses to switch 300 ohm antenna line. 3 PDT max. AC or DC
xC-Low cost plate circuit relay with sensitivity of 125 mw per pole. Factory adjusted to pull-in on specific current values. Available open, hermetically sealed or in clear plastic dust cover with standard octal-type plug. 3 PDT max. DC

co stampard pelays are ayailatle af your local tleciromic parts distrisutor

IN CANADA: POTTER \& BRUMFIELD CANADA LTD., GUELPH, ONTARIO


Make ALLIED Your Headquarters For P\&B RELAYS
 PRISES to 499

We stock the complete POTTER \& BRUMFIELD line-in depth.
Your orders are always filled accurately - and shipped immediately.

FREE 576-page Allied catalog-includes detoiled listings of POTTER \& BRUMFIELD relays.


Allien radio corp.
100 N. WESTERN AVE. CHICAGO 80, ILLINOIS TAylor 9.9100 TWX: CG-2898


This new Eagle Step Switch also provides:


SEQUENCING INTERLOCK when used with multiple indering circuits.

I
10 AMP SWITCH CONTACTS control load switches direct control load switchos.

3 mechanical circuit in. TERLOCK by cam action - elim. inates interlocking relays.

4
115 VOLT COIL operates direct on $A C$ with heavy duty ratchet mechanism - insures long life.

Writo us regarding your count problem, or see your local phone directory or Thomas Registor undor the heading. "Timers, Electric" for your nearest Eagle Signal representativo.

OTHER POPULAR HIGH QUALITY EAGLE TIME.COUNT CONTROLS


SIGNAL COMPANY • Moline, Illineis A onision or thi cmistil compmy


## NEW PRODUCTS

## Dual Blower

659

## Centrifugal type



MSA-11100 dual centrifugal blower is designed for air-cooling of high-powered electronic equipment. Operating on $220440-\mathrm{v}, 60-\mathrm{cps}$, threephase power, the unit will deliver 1.700 cfm at a static pressure of 1.4 in . of water. Over-all dimensions are $20.60-\mathrm{in}$. long, $14.63-\mathrm{in}$. high and 14.90-in. deep.

Torrington Manufacturing Co., Specialty Blower Div., Dept. ED, Torrington. Conn.

## Data Equipment

For scanning and printing
High-speed facsimile scanning and printing units, model 921 scanner and model 902 printer, are capable of transmitting and printing 600 individual page-size documents in an hour. The scanner accepts random length documents, then transmits the intelligence to the printer for continuous or intermittent "hard copy" print-out. Dry, permanent copies are produced on standard weight paper.
A. B. Dick Co., Dept. ED, 5700 W. Touhy Ave., Chicago 48, III.

Transistorized Preamplifier
658

## For image orthicon use



This transistorized preamplifier is mounted in a standard 14-pin image orthicon base socket. With nominal image orthicon tube load, frequency response is $\pm 1 \mathrm{db}$ to 8 mc . The output stage is an emitter-follower driving a coaxial cable. Terminating impedance is 75 ohms. Input is -6 v with output of 1.5 v peak-to-peak max undistorted.
Thompson Ramo Wooldridge Inc., Dage Div., Dept. ED, Michigan City, Ind.

over commercial telephone circuits equipped with

Rixon's sebit 24
data transceiver


Binary information is processed of 2400/1200/600 bits sec in a nominal 3-KC voiceband such as a long distance toll circuit. Used for passing high speed dato of: $3000 \mathrm{~m} / \mathrm{m}$ teleprinfers; mochines and computers; slow scan TV; and sequential felemetering equomen

- Built-in signal and test monitor . Fully transistorized. Fast acting AGC and self-contained, variable emplitude and delay equalization. Confains highly stable clock for synchronous defection and regeneration of received data signals. Low error rote... highly reliable over mon-engimeered circuifs standard reck mounting.

SPECIFICATIONS AVAILABLE ON REQUEST
tME seatt 24 WILL EE ON DISPLAY AT OUR SOOTH IN THE MARCH I.R.E. SHOW

## RIXON

ELEOTFONIOS, INC.
2414 REEDIE DRIVE SILVER SPRING, MD.

LOckweod 5-4578
CIRCLE 94 ON READER-SERVICE CARD

## LOOK FOR THIS GARD IN THE MAIL

Service cate
this facility. PLEASE: CHECKMUnication, (1] Audio, Communicar Mfrs.
 Radar. Radio a dinerols. Test

- Instruments imts.

Equilyzer. Compurersis.

${ }_{3} \square 1$ do design work 1 supervise design indicated corrections.
Aircraft. Aircraft Acceso
(] Aircs. Guided Missile
$\square$ Composnent Paris Mis
Sub-Assem Mfrs
[] Material Mirs
$\square$ Aromic Energy ${ }^{\square}$.
II Independent Labs, Corgns.
sultants, Research
U. S. Government
facility
Total employecs
$x+x=x+3 \in$
0

## NEW PRODUCTS

## Stepless Control

For furnace regulation


A solid-state switching device, the Power-Prop gives proportional control over the full range of furnace load. It is an input control that will operate from any pyrometer with a proportional dc voltage output signal. The system has no moving parts. It is made in capacities up to 75 amp and up to 230 v ac.

Stepless Controls Corp., Dept. ED, Bear Hill Road, Waltham, Mass.
Availability: Delivery from stock.
Time Delay Relays
Solid-state versions


These solid-state timing units, in the Agastat line, are designed for 18- to $32-v$ dc operation. Delay, on pull-in or drop-out, ranges from 0.01 sec to 10 hr . Internal and external adjustment types, with ratios from 10 to 3,000 to 1 , are offered in addition to fixed-time models. Ambient temperature ranges are -55 to 70 C or 125 C , with fixed-condition accuracies of $\pm 3 \%$ or $\pm 5 \%$. Output may be as high as 5 amp .

Elastic Stop Nut Corp., Elizabeth Div., Dept. ED, Elizabeth, N.J.

## Display System

Monitors computer
A general-purpose, alphanumeric display system, the dd74 provides readout for large data systems. A

## NEW 20 AMP 0.34 VOC Regulatel PWWERSUPPY

EASY SERVICE ACCESS
Dual-deck, swing-out back construction provides simple and fast service access without the need to remove unit from rack. All major component terminals are accessible from rear.


#  <br> Fotom Fonding <br> Lambda LA Series Power Supplies are compact, convection cooled and rated for continuous duly at $50^{\circ} \mathrm{C}$ ambient temperature. <br> <br> LAMBDA Transistorized 5 and 10 AMP LA Series 

 <br> <br> LAMBDA Transistorized 5 and 10 AMP LA Series}

## COMPLETE SPECIFICATIONS OF LAMBDA LA SERIES

## AMBIENT TEMPERATURE

AND DUTY CYCLE

OVERLOAD PROTECTION:

DC OUTPUY (Regulated for line and load)


Electrical

NPUT AND OUTPUT CONNECTIONS

METERS

CONTROLS:
DC Output Controls

Power
Remote DC Vernier
Remote Sensing

PHYSICAL DATA:

Size

Weight
Standard $19^{\prime \prime}$ Rack Mounting LA 50.03A $31 / 2 \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 143 / \mathrm{s}^{\prime \prime} \mathrm{D}$ LA100-03A $7^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 1433^{\prime \prime} \mathrm{D}$ LA200-03A $101 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 16^{1} / 2^{\prime \prime} \mathrm{D}$ LA $50-03 \mathrm{~A} \quad 55 \mathrm{lb} \mathrm{Net} \quad 85 \mathrm{lb}$ Ship. Wt LA100-03A . 100 lb Net 130 lb Ship. Wt LA200-03A 140 lb Net 170 lb Ship. Wt
Panel Finish

Send for complete Lambda Catalog. LAMBDA

ELECTRONICS CORP. EIS BROAD HOLLOW ROAD, HUNTINGTON. L. I., NEW YORK 616 MYRTLE 4.4200
console contains stored memory and character generator. The magnetic memory has full random access, 8 - $\mu$ sec cycle time, and a capacity of 1,024 words of 24 bits. The 45 -character repertoire includes numerals, alphabet, marks, and vertical and horizontal tabular ruling lines. Number of scopes is limited only by total character output, 125,000 per sec.
Data Display, Inc., Dept. ED, St Paul, Minn
Price: Under $\$ 25,000$ per operator station.

## Silicone Rubber

## In aerosol spray

A liquid, room-temperature vulcanizing, red silicone rubber is available in aerosol spray form. The RTV-60 spray is applied directly to the desired surface; cure is obtained by spraying a curing agent on the RTV coating. Where bond ing is required, a primer is used. Cure time varies from 15 min to several hours. The material has good physical and electrical properties and is resistant to temperature from - 65 F to 600 F

General Electric Co., Silicone Products Dept., Dept. ED, Waterford, N.Y.
Price: $\$ 14.85$ per carton: RTV-60, 3 lb ; spray catalyst, 180 oz total.

## Servo Potentiometer

503
Linearity to $1.3 \%$


A wirewound servo potentiometer, the $50-\mathrm{M} 52$ has linearity up to $1.3 \%$. Resistance range is 50 to 1,000 ohms; power rating is 2 w at 80 C , derated to zero at 125 C . Standard torque is $0.05 \mathrm{oz}-\mathrm{in}$. It is available with bronze or ball bearings, or sealed construction.

Maurey Instrument Corp., Dept. ED. 7924 S. Exchange Ave., Chicago 17, Ill.
Price: From $\$ 12$.
< CIRCLE 97 ON READER-SERVICE CARD


We've really hit the jackpot with the new DIEHL Vacuum Tube Servo Amplifier. For response, linearity and power output, this new servo amplifier just can't be beat. Here are five reasons why:

- Continuous power output of 75 watts-drives DIEHL servomotors up to 25 watts 60 cycle, 15 watts 400 cycle.
- Minimum phase shift at carrier frequency.
- Plug-in input modules accept a wide range of AC and DC voltages.
- Proven vacuum tubes and printed circuitry assure maximum reliability.
- Separate amplifier and power supply chassis plug together.
Whatever the application, you'll find this newly perfected Vacuum Tube Servo Amplifier by DIEHL a welcome new standard of dependability and convenience. Why not get all the facts today? For additional information and/or applications assistance, contact: Diehl Manufacturing Company, Somerville, New Jersey.

Cat. No. VA075 300
Output is watts Nominal
Gain 1000 volts volt in power amplifier with max feedback Feedbach can be redueed with patentiomeler provided, with resulting increase in gain Input Imp. 500000 ohms
Phase Shifl al Lass than 10 phase lag of envelope at one third carrier frequency b) Less than 2 at camer trequency

Noise 100 MV Man . Input Shorted
Power Req Diehi vp3 100 high voltage power supply. or equivaient
DIEHL MANUPACTURING COMPANY
A BUEBIDIARY OF THE BINEER MANUFACTURING COMPANY

## NEW PRODUCTS

Signal Generator
Provides fm and rf signals


Signal generator $12 / \mathrm{U}$ provides fm and unmodulated rf signals for measurements and alignment. One output supplies voltage at nine crys-tal-controlled frequencies for intermediate frequencies used by receivers to be tested. The second supplies rf output signals in a range of 90 to 100 mc in 5 bands. The rf output is variable from 0.05 to $10,000 \mu \mathrm{v}$; the if output from 0.5 $\mu \mathrm{v}$ to 1 v .

Systems, Inc., Dept. ED, 2400 Diversified Way, Orlando, Fla.
Price: (On request. Availability: 30) days.

Silicon Transistors
For fast-switching uses


Silicon mesa transistors $2 \mathrm{~N} 497,2 \mathrm{~N} 498,2 \mathrm{~N} 656$ and 2 N 657 are designed for general purpose, medium power, fast-switching applications with mesa reliability. They provide low input impedance, typical collector capacitance of 14 pf , operating range from $10 \mu \mathrm{a}$ to 500 ma and 4 w power dissipation. All are in the JEDEC TO-5 outline welded package.

Rheem Semiconductor Corp., Dept. ED, 3.50 Ellis St., Mountain View, Calif.
Availability: From stock.

## Accuracy Is Our Policy . . .

The New Products description of the Surge Stop manufactured by the Syntron Co., Homer City, Pa., stated "It delays good reverse characteristics for dissipating energy found in transient voltages." It should have read "It displays good reverse characteristics, etc." The item appeared on page 137 of the Jan. 4 issue of Electronic Design.


## How to double performance of your magnetic tape recorders

Now you can record 125 -kc data at $\mathbf{3 0}$ ips instead of $\mathbf{6 0}$ on most existing data recorders. How? By using the new Ampex FR-600 for playback. New record/playback capability in the FR-600 saves previous equipment from obsolescence with some added benefits of its own-for example. recording 500 kc at 120 ips .

Your curiosity whetted? Write:


AMPEX DATA PRODUCTS COMPANY Box 5000 Redwood Ciry, Calilormia

Motor Generator


Vertical positioning of this motor generator is said to eliminate shaft deflection and vibration. The brushless, synchronous unit, for defense or inclustrial uses, will handle 125 kw to 175 kw . Load on the thrust bearings is minimized hecause of a slight lifting action by magnetic forces in the rotor.

Leach Corp., Inet Div., Dept. ED. 184.35 Susana Road, Compton. Calif.

## Sampling System

673
Commutated, 12 channels
Using 12 transducers as sensors, the model 512 commutated sampling system provides readouts from any or all of 12 consecutive remote points. Readout is through a digital display; output is $\pm 10 \mathrm{v}$ dc. Measurement intervals are 1 to 2 sec or 12 per sec. Transducers may be singly balanced or nulled.

Crescent Engineering \& Research Co., Dept. ED, 5440 N. Peck Road, El Monte, Calif.

Pressure Transducer 612
With ac-dc input
The model CP5.3D, a dc-output variable reluctance differential pressure transducer. will operate from 115 vac or 28 v de. Pressure ranges are from $\pm 0.1$ to $\pm 2,500 \mathrm{psid}$. The unit is capable of measurement in the presence of line pressures up to $5,000 \mathrm{psi}$. The package combines a variable reluctance pressure transducer and a transistorized carrierdemodulator. Output is 0 to 5 v de.

Pace Engineering Co., Dept. ED), 130.35 Saticoy St.. North IIollywoorl, Calif.

CIRCLE 100 ON READER-SERVICE CARD $\rightarrow$

NOW...
RAYTHEON
"PROGRAM 2020" MEETS YOUR VOLTAGE

REGULATOR SPECIFICATIONS FAST AND AT LOW COST FROM STANDARD DESIGNS


## NEW LOW-COST RAYTHEON REGULATED DC POWER PACKAGES



## SPECIFY A RAYTHEON <br> "RD" POWER SUPPLY AND ELIMINATE POWER SUPPLY DESIGN MEADACHES

132 different ready-to-operate models for standard 19-inch rack installation, 3 to 1,000 volts, 50 to 3,000 watts
These compact Raytheon "RD" units are the complete low-cost solution to your power supply problems without any sacrifice of the heavyduty industrial performance your specifications demand.

The new power packages utilize ferroresonant (magnetic) voltage regulation coupled with full-wave silicon diode rectification and

> RAYTHEON
> RAYTHEON COMPANY
capacitive input filtering. Ripple is reduced to within 0.5 to $1.0 \%$ depending on model.

Raytheon assures prompt delivery of your selection from 132 different models in 20 voltage steps and 7 power ratings, 3 to 1,000 volts, 50 to 3,000 watts, all for 19inch rack mounting.

## CHECK THESE BENEFITS OF"RD"POWER SUPPLIES

- Lowest cost consistent with heavy-duty industrial ratings
- 132 models: 3 to 1,000 volts, 50 to 3,000 watts
- Self-protecting; extremely dependable
- DC output filtered and isolated
- Improved load regulation
- 19" rack mounting; 6 sizes, panel heights from $31 / 2^{\prime \prime}$ to $28^{\prime \prime}$
- Regulation $\pm 1 \%$ for line variation of $\pm 15 \%$


## RAYTHEON COMPANY

Power Supply and Voltage Regulator Operations
Keeler Avenue, South Norwalk, Connecticut
Please send me
$\square$ Raytheon "RD" Product Selection Data " 4-290
$\square$ Raytheon 2020 Regulator Selection Guide and Catalog $\mathbf{~ 4 - 2 6 5}$
Name
Title.
Company
City
State

## NEW PRODUCTS

## Cathode-Ray Tube

## With flat face

This rectangular 5 -in. cathoderay tube has a flat face plate for accurate visual observation. The type 5BXP has electrostatic focus and deflection with a low-voltage focus lens. The tube is $17-5 / 8 \mathrm{in}$. long; width is $4-5 / 8$, height $2-5 / 8$ in. $\pm 1 / 16 \mathrm{in}$. Accelerator voltage is $2,500 \mathrm{v}$ dc.

Fairchild Camera and Instrument Corp., Allen B. Du Mont Laboratories, Electronic Tube Sales Dept., Dept. ED, 750 Bloomfield Ave., Clifton, N.J.
Price: $\$ 74.50 \mathrm{ea}, 1$ to 10.
Availability: Several weeks.

## Voltage Follower

611
Input impedance is $10^{10}$ ohms
The model 302E Electrosensor has an input impedance in the region of $10^{19}$ ohms. Output measurements are within $0.001 \%$ of input voltages. Normal frequency response is 1 kc , with response of 10 kc on special order. Output impedance may be less than 1 ohm. Voltage readout range is from 100 mv full scale to 250 v full scale.

Halex, Inc., Dept. ED, 310 E. Imperial Highway, El Segundo, Calif.

## Unidirectional Antenna

Range is 6.5 to 58 mc
The 237A-1A antenna provides a horizontally polarized, unidirectional beam with an average free space gain of 8 db over an isotropic antenna, with side lobes 16 db down. Free-space radiation patterns and input impedance are essentially independent of frequency. The peak power-handling capability of antenna and transmission line is 50 kw , with a vswr less than $2.25: 1$ over the range of 6.5 to 58 mc . The longest element is 70 ft ; tower is 105 ft high. The $6,000-\mathrm{lb}$ assembly will withstand $80-\mathrm{mph}$ wind with $1 / 4-\mathrm{in}$. radial ice.

Collins Radio Co., Dept. ED, P. O. Box 1891, Dallas 21, Tex.


## RODUCTION

)
FAllure rate

## $109 \% / 1,000 \mathrm{hrs}$. <br> 



## RELIABILITY...PROVED



## PACIFIC SEMICONDUCTORS, INC., tests indicate failure rate of .0009\% per 1,000 hours ACHIEVED for silicon computer diodes... .002\% per 1,000 hours ACHIEVED for silicon general purpose diodes

PSI - qualified supplier of all silicon computer and general purpose diodes for the "Minuteman" ICBM guidance system-has undertaken a production and evaluation program designed to furnish "Minuteman" with ultra-high-reliability diodes. The program is being supported by the Air Force Ballistic Missile Division through the Autonetics Division of North American Aviation.
The ultimate reliability objective is a maximum failure rate of $.0002 \%$ per 1,000 hours for silicon computer diodes, and $.001 \%$ per 1,000 hours for silicon general purpose diodes-levels heretofore unattainable in the semiconductor industry. To achieve and prove this objective, more than 250,000 silicon diodes are being used to generate in excess of a billion diode hours of test information.

Results to date indicate that PSI is currently supplying "Minuteman" computer diodes with an indicated failure rate of $.0009 \%$ per 1.000 hours, and general purpose diodes with an indicated failure rate of $.002 \%$ per 1,000 hours.

Because of the huge quantity of high reliability diodes required in the "Minuteman" program, PSI has been able to make thousands of diode measurements and use these data to control processes. Since the same controls are applied to all PSI manufacturing processes - and not just to a limited and specially isolated line-PSI is able to supply highreliability silicon diodes in large quantities and on a regular basis.

If you are associated with a program requiring ultra-high reliability semiconductor devices, you are invited to take advantage of the vast and growing fund of information and large volume production capacity available only at PSI. For full details, write to Richard A. Campbell, Executive Vice President, Pacific Semiconductors, Inc., 14520 Aviation Blvd., Lawndale, California (Los Angeles County).

## ©. Pacafic Seminonductors hre

A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE INC.
CIRCLE 102 ON READER-SERVICE CARD

Electric Thermostat
654
Rated for 25 amp


Model EB-3 electric thermostat is designed for domestic electric oven applications. It is a dou-ble-pole, snap-action, single-circuit unit rated for 25 amp at 250 v ac. The hydraulically operated control incorporates the firm's diastat.
Robertshaw-Fulton Controls Co., Indiana Div. Dept. ED, 911 E. Broad St., Richmond 19, Va.

TV System
645
Uses telephone line


The Videx telephone-line television system is capable of transmitting a 400 -line resolution image over a standard telephone line in 60 sec . The system substitutes time for bandwidth, and can also be used to modulate a carrier for radio transmission. It includes camera, camera control and transmitter unit, and a direct-view storage tube monitor with receiver unit. The entire system weighs less than 100 lb .
ITT Laboratories, Components and Instrumentation Laboratory, Dept. ED, Fort Wayne, Ind. Price: From $\$ 12,000$ to $\$ 24,000$ )
Availability: 90-day delivery.

## Electronic Counter

## Range is 10 cps to 1 mc

The Transitron FM-1 electronic counter is designed for research and production. It has modular printed circuit construction and contains self-test circuitry. Specifications are: range, 10 cps to 1 mc ; accuracy, $\pm 1$ count for 1 sec , $\pm 0.0001 \%$ for 10 sec ; input requirements, 0.2 v rms min; connections, BNC type.
Van Norman Industries, Inc., Dept. ED, 186 Granite St., Manchester, N.I.
Price: $\$ 1,325$ ea.
Availability: 30 days.


You get all the important
features in stock TIC Trimmers - you don't pay more for a lot of extras.

Every TIC. trimmer is bubble tested at $90^{\circ} \mathrm{C}$ to be certain it is sealed, meeting or exceeding MIL STD- 202 for moisture resistance.

The inherent quality construction withstands temperatures to $225^{\circ} \mathrm{C}$ and shock at 150 C's for 11 milliseconds - vibration $5-3000$ cps at 50 G's. Resistances to 100 K ohms are provided without sacrificing reliability as the unique design of the resistance element eliminates the need for using extremely fine resistance wire. Dual wipers on winding and take-oll bar provide positive electrical contact and maximum reliability.

A choice of four types of leads are available on all stock trimmers - flexible insulated wire, printed circuit pins or solder lugs on end or bottom of housing. These twenty-five turn precise trimmers offer all the plus features - not just a few. Compare - features - price - reliability. Specify TIC Trimmers.
Available from stock for immediate delivery.

FECHNOLOGY INSTRUMENT CORPORATION
555 Main Strcet, Acton, Massathusctts - COlonial 3-7711

DIETRIBUTED NATIONALLY BY AVNET CORPORATION CIRCLE 103 ON READER-SERVICE CARD

## NEW PRODUCTS

## Command Receiver



This miniaturized command receiver is for missile flight guidance and safety operations. It is composed of a receiver and a decoller unit. The fm receiver, model 2621 , tunes to a fixed frequency in the 406 - to $549-\mathrm{mc}$ range, has a sensitivity of $7 \mu \mathrm{v}$ and is usable at deviations of up to $\pm 350 \mathrm{kc}$. The selectivity characteristic is $\pm 2 \mathrm{mc}$ at the $60-\mathrm{db}$ points, and image rejection is 60 db . The decoder, model 1801 employs toroid filters and may be supplied with up to 10 channels.
R. S. Electronics Corp., Dept. ED, P.O. Box 11368, Station A. Palo Alto, Calif.

## DC Amplifier

Bandwidth is 100 ke


Designed for use with interchangeable plug-in input circuit modules, the model 361 dc instrumentation amplifier can be operated in various combinations of fixed or variable gain or bandwidth, manually or remotely controlled. The bandwidth of 100 kc is unaffected by gain changes. Common mode rejection is 1 million between dc and 150 cps . Input impedance at dc is at least $1,000 \mathrm{meg}$.

Packard Bell Electronics, Packard Bell Computer Corp. Div., Dept. ED, 1905 Armacost Ave., Los Angeles 25, Calif.
Price: $\$ 1,700$ up.
Availability: Immediate delivery.

## Accuracy Is Our Policy ...

The picture accompanying the New Products description of the variable frequency generator manufactured by International Ultrasonics, Inc., was incorrect. The item appeared on page 142 of the Jan. 4 issue of Electhonic Design.


THE AIL TYPE 132
This high precision instrument combines a high gain, low noise figure, intermediate frequency receiver with a secondary standard of attenuation to deliver extremely accurate measurements in a variety of applications:

- Convenient and accurate method for the measurement of NOISE FIGURE.
- Ideally suited to high accuracy. quick laboratory calibration of If attenuators at all frequencies.
- Rapid and accurate in measure ment of the selectivity characteristics of if filters, preselectors and similar devices.
- Valuable for measurement of coupling factors and directivities.

The Type 132 is designed to operate from the i-f output of a wide variety of standard microwave mixers. In combination with these and a suitable local oscillator it becomes a sensitive detector of microwave energy.

Write for descriptive literature.

DEER PARK, LONG ISLAND, NEW YORK A DIVISION
OF CUTLER-HAMMER, INC.
CIRCLE 104 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

Magnetic Tape Recorder
464
Measures $2 \times 4 \times 5$ in.


Model PS-303M magnetic tape recorder measures $2 x+x 5$ in. and weighs 31 o\% including $70 \%$ of tape. It will record dynamic data from 100 to $5,000 \mathrm{cps}$. It requires 34 w of power, supplied by standard mercury cells. Frequency response is flat within $\pm 3 \mathrm{dh}$ from 100 to 5,(000 cps and signal-to-moise ratio is better than 30 db . It will record for 1 hr at $1 .-7$-ips speed.
Precision Instrument Co., Dept. E1), 1101 Commercial St., San Carlos, Calif.

## Stator Yoke

Low and medium impedance


Designed for both low-impedance transistor and medium-impedance cathode-ray tube applica tions, the series Y58 is available with deffection angles of 52,70, and 90 deg and fits all $1-1 / 2-\mathrm{in}$. neck diameter cathocle-ray tubes including 70 deg flat types. The stator type of core permits small effective flux area in relation to inside diameter. Impedances from 0.1 mh to 60 mh may be obtained. Syntronic Instruments, Inc., Dept. ED, 100) Industrial Road, Addison, III.

Acailability: 5-ucek delitery.


## OOK ELECTBIC

## chooses Tung-Sol transistors

## for automatic air traffic control vocal system

The Cook Electric Automatic Voice Relay is an integral part of a highly advanced system known as Volscan which is designed to relieve the hazards of air traffic congestion over modern airports. The AVR automatically generates flight path instructions vocally to pilots waiting to land, on the basis of data submitted to it by radar. A plane can be brought in every 30 seconds by the system.

Naturally, the highly critical nature of the system's function demanded that components selected to operate in the system meet the highest reliability standards. For this critical amplification and detection circuits in the AVR, Cook specified Tung-Sol transistors. More than 2000 Tung-Sol 2N461 germanium transistors were assigned to these significant tasks. Cook stipulated the reasons for selecting Tung-Sol: "We found
that Tung-Sol transistors more than satisfied the high reliability requirements for this operation. Moreover, Tung-Sol was able to meet a rapid delivery schedule."
Why don't you get the benefit of Tung-Sol component knowledge and experience too? TungSol components - whether transistors, tubes or silicon rectifiers - fill virtually every commercial and military application with unexcelled dependability. Tung-Sol applications engineers will be glad to recommend the best components for your design. Tung-Sol Electric Inc., Newark 4, New Jersey. TWX:NK 193.

Technical assistance is available through the following
sales offices: Altanta, Ga.; Columbus, Ohio; Culver City,
Calif.: Dallas, Texas; Denver, Colo.; Detroit, Mich.;
Jrvington. N. J.; Melrose Park, HL.; Newark, N. J.;
Philadelphia, Pa,; Seatle, Wash. Canada: Toronto, Ont.
(43)

## (5) TUNG-SOL

## "Oust what the doctor ordered!" TABER TRANSISTORIZED AMPLIFIER SYSTEMS

## You're the doctor when it comes to TABER TRANSISTORIZED AMPLIFIER SYETTMS. You name it and wo'll ship it to



TABER
INETRUMENT CORPORATION "Where the Aloert is or Aoruracy of Reliabitity" Section 161107 Goundry St. Nerth Tonawanda, N. Y Telephone: NX 3-8900
CIRCLE 106 ON READER-SERVICE CARD


They'll do it faster, better, more economically - and withouf moistenine Easy simple to apply, either by hand or with new Avery automatic ing. Easy, simple to appiy, either by hand or with new Avery auromated concave or irregular surfaces. Ideal for special applications - specific labeling problems. Speeds from 40 to 200 labels per minute. Avery self-adhesive Labels are profitable to use - use them in your business. always ask for AVERY LABELS - what a difference they make


CIRCLE 107 ON READER-SERVICE CARD

## NEW PRODUCTS

DC Power Supply
Is 1-3/4-in. high


A rack-mounted dc power supply, the 3210-R is $1-3 / 4-\mathrm{in}$. high. Output voltage is continuously adjustable from 0 to 32 v ; current, from 0.1 amp to 1.25 amp . An automatic limiter maintains load current at the preset level. Ripple is less than 1 mv rms; regulation is better than $\pm 0.1 \%$, or 5 mv , for load or line change. Input is 105 to $125 \mathrm{v}, 400$ cps. Depth is 10 in .
Power Instruments Corp., Dept. ED, 235 Oregon St., El Segundo, Calif. Price: \$39.5.
Availability: 3 to 4 weeks.
Positioning Control
Resolution is 1 in 30,000


A positioning control with resolution of 1 part in 30,000 , the HA- 50 may drive a rotary or linear actuator. It includes a position sensor or combined actuator and sensor, a solid state amplifier, and a digital readout position setter. A cross-over circuit provides fast traverse and transfer to slower speed as preset position is approached.
Jordan Controls, Inc., Dept. ED, 3235 W. Hampton Ave., Milwaukee 9, Wis.

## Cable Connectors

Rated at 7.5 kv


These cable connectors, in BNC size, are rated at $7.5 \mathrm{kv}, 60 \mathrm{cps}$, at sea level. Cable may be RG$59,62,71$, or equivalent; impedance is 50 ohms. In the series is a cable plug, EDD 2538; a cable
jack, EDD 2540, and a panel receptacle, EDD 25.39. Contacts are beryllium copper, gold plated over silver, retaining ring is phosphor bronze; all other metal parts are brass. A Teflon dielectric is used. The weatherproof connectors will opcrate at -65 to 260 F , and meet specifications of MIL-E-5272A.
General RF Fittings, Inc., Dept. ED, 702 Beacon St., Boston 15, Mass.

## Photocell

455
Cadmium-sulfide type


Model CDSS-9 cadmium photocell has a resistance of over 1 meg in darkness and has a broad response to visible light. At 1 to $50 \mathrm{ft}-\mathrm{c}$ it will permit direct control of a relay requiring as much as 10 ma for operation. Power dissipation is $1 / 2$ w continuous, 2 w for 1 min . It is non-polar and may be used for ac or dc, max voltage is 500 vdc or 350 v ac rms.
Pioneer Electric and Research Corp., Dept. ED, 743 Circle Ave., Forest Park, 111.

## Flux Amplifier

639
Is self-testing


This dux amplifier is designed to provide reactor power level data for visual display, recording, control and shutdown or scram use. The unit tests itself each second and actuates a warning circuit in case of failure. Range may be set between $0.1 \mu \mathrm{a}$ and 1 ma . Drift is less than $0.5 \%$; response time is less than 5 msec with $1,000 \mathrm{ft}$ of cable. An integral power supply furnishes $1,400 \mathrm{v}$ for ion-chamber activation. Panel height is 7 in .
Generad Electric Co., Atomic Power Equipment Dept., Dept. Ens, San Jose, Calif.


Four overlapping Beta Ranges - High meter resolution Direct reading with test circuit power off

New Sierra 219B 4-range Transistor Tester reads Beta directly in the circuit; also measures Ico, Beta out of circuit.
Less downtime and less danger of damage to transistors under test with this new Sierra instrument-battery-operated, light weight, portable, easy to use.
Maintenance, quality control, incoming inspection and production testing are just a few of the applications where you save time and money by testing transistors, even complete assemblies, without unsoldering leads. Model 2198 reads Beta in the circuit, 1 to 120 . Ico is measured on a straightforward basis; collector potentials of 3,6 or 12 vdc may be selected. All controls are on the front panel . . . an instrument of convenience, speed, accuracy.
Write or phone today for information and demonstration.

SPECIFICATIONS

## Test ranges

Beta 1-4, 3-12, 10-40, 30-120* co: 0-50, 0-500 ua
Accuracy
In circuit: $\pm \mathbf{2 0 \%}$ for external loads over $\pm 20 \%$ hor external loads ove
Improved accuracy above Improved accuracy above
500 ohm 5 , usable readings
below 500 ohms.
Out of circuit: $\pm 10 \%$
Power: Internal battery, mercury or zinc-carbon type, 600 hrs . av
life output indicated on
ltont-panel meter. Operating
Temperature:
32 to $149^{\circ} \mathrm{F}$

deep, weight, $101 / 4 \mathrm{lb}$.,
including batteries.
Price: $\$ 275.00$
Beta readings to 300 may be
approximated. Beta readings
approximated

## sierra

SIERRA ELECTRONIC CORPORATION 6919K BOHANNON DRIVE - Divislon of Philico Conporatlon Sales representatives in all principal areas.
Canada: Atlas Instrument Corporation, Ltd., Montreal, Ottawa, Toronto, Vancouver. Export: Frazar \& Hansen, Ltd., San Francisco.

CIRCLE 109 ON READER-SERVICE CARD


Hackground is schematic of world-famous Ward lemnard system of control.

## In modern rheostat circuits, it's

## SERVICE CONTINUITY THAT COUNTS

Production stopped. Workers idle. But wages, maintenance costs, and fixed charges go merrily on accumulating.
That's the black picture when an industrial control component-specifically a rheostat-fails. That's why reliability is more important than initial cost. In many cases, these irrecoverable charges and costs can quickly far exceed the replacement cost of the faulty components.

And that's why far-sighted designers are more and more specifying Ward Leonard VITrohm ring rheostats for control circuits where performance is a must... in motor and generator field control circuits...for electronic tube filament circuits... wherever substantial amounts of power must be handled with utmost rheostat reliability.

Ward Leonard ring rheostats, in sizes of $25,50,100,150$ and 300 watts, feature W/L's exclusive "twin contact shoe" design. Two sintered, self-lubricating contact shoes minimize wear and assure uniform contact pressure, smooth oper-
ation, and maximum reliability.
Special alloy resistance wire-made to $\mathrm{W} / \mathrm{L}$ 's closely monitored specifications to assure highest stability and lowest practical temperature coefficient -is bonded permanently to ceramic core by Ward Leonald's own Vitrohm vitreous enamel.

These are just a few of the reasons why VITROHM ring rheostats give you outstanding reliability in industrial control circuits. There are many more quality-engineered features than we can describe here-for instance, highest grade ceramic base and core, durably bonded tinned alloy terminals, and balanced beryllium copper contact arm. You'll find them all in Bulletin 60RR (and for powers above 300 watts, check w/L plate rheostats in Bulletin 60A). For your copy, and for a list of stocking distributors, write: Ward Leonard Electric Co., 77 South St., Mount Vernon, N.Y. (In Canada : Ward Leonard of Canada, Ltd., Toronto.)

WARD LEONARD ELECTRIC CO. RESISTORS • RHEOSTATS • RELAYS • CONTROLS CIRCLE 110 ON QEADER-SERVICE CARD

## NEW PRODUCTS

## Insulation Tester

Output is from 0 to $5,000 \mathrm{v}$ rms


Model HV53 high-voltage-insulation tester has a continuous adjustable output of 0 to $5,(0)(\%)$ rms. It has a calibrated high-voltage circuit breaker with a continuously settable trip-point between $10 \mu \mathrm{a}$ and $3,000 \mu \mathrm{a}$. It measures $7-1 / 2 x$ $3-1 / 8 \times 8-1 / 2 \mathrm{in}$. and weighs $8-1 / 2 \mathrm{lb}$.

Opad Electric Co., Dept. ED, 4.3 Walker St. New York 13, N.Y.
Price: $\$ 250$ fol NYC.

## Delay Timer

Replaces thermal delays


A transistorized replacement for thermal time delays, the MT 1103 offers instant reset with repeat accuracy of $3 \%$ under voltage and temperature variation. Time delay can be varied from 0.5 to 100 sec. Standard units have spdt or dpdt contacts, rated at 3 amp resistive, and operate from 18 to 32 v dc .

Syracuse Electronic's Corp., Dept. F.I). P. (). Box 566, Syracuse 1, N. Y.
Price: $\$ 31.50$.
Acailability: Delivery in $2(0)+$ ued $k$.

## Test Fixtures

## For dielectric tests

This line of interchangeable fixtures is for testing the dielectric strength of insulating solids, films, sheets and liquids. An adapter cup makes possible tests with the sample placed under oil. Primarily intended for use with the firm's Hypot testers, the fixtures may be used with many other instruments when the model 8539 test cage is installed.

Associated Research, Inc., Dept. EI), 3777 W. Belmont Ave., Chicago 18, Ill.
Price: From $\$ 12.5$ to $\$ 2.50$.
Availability: Stock to 30 days.

## Headquarters for HIGH POTENTIAL Testing

INSULATION BREAKDOWN DIELECTRIC STRENGTH

Every over polential tesp need from the generator to the ap. pliance motor . . . is mel by a HYPOT*


Model 5500
Typical Mobile HYPOTE provides 0 10 120 kvacat 3 ma More compact and eovier to wis thon equiventri ant seb Lomer in soss, 100

## 150 KV Testing Mobile HYPOT*

 thandestruchve tertiag of power coblel. generators and insulators with $A C$ or $D C$ ress fotentmil to 140 KY N+w DC Mobile HYPOT ${ }^{\text {a }}$ is easiel to handle. culs costs Wute for bullelin Mabile HYPOP ${ }^{-1}$
## 30 KV Testing

 Bench HYPOT*10 KV Testing Portable HYPOT The advanced ours polential
lester that enables an one io lester that enables an, one 10 make high polential bieandown
lests Sepurate lights indicale excess leatage curient and in sulalion heeatidown Available with test wilthats frest T 000 . a c 1010000 - 0
 30 kv . Widely used for insulatuen testing of cables. datibuton equipment and heouv duly motors.


New materials testing AC HYPOT * meeli ASIM dielectric sirength lest requirements Fertures io Iommlic rate of telt valtage rise. "ansparent test coge that - sately interloctied and complete line of pluy in moletials lesting liefures Wrile for new bulletin -HYPOIM Insulation Teslar.

## VIBROTEST ${ }^{\text { }}$ measures FIVE MILION Megs

Direct reading acoperated megohmmeler for resistance measurement to five million megohms. Drill free. stable and accurale an all ranges.
VIBROTEST To Model 2570 has sin megohm ranges $1.50,10$ -$500,100-5000,1,000 \cdot 50.000$, $10,000 \cdot 500,000$ and 100,000 . $5,000.000$ megohms. Write loe
 bullelin

Write for Bullatins
10-35.16
Associated Reseárch,
dincopostadial
3760 W. Selmont Avo., Chicage 10. Itlimols
CIRCLE 111 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

Drives variable autotransformers


The model A60tA step-servo motor drive provides bi-directional, open-loop control, independent of line frequency, for two Variac variable antotransformers. Resolution is to 0.2 deg at rates to 110 increments per sec. The time for full-scale travel, stepping increments, and the number of units to be actuated can be varied to constomer requirement.

Automation Development Corp, Dept. E.D), 11824 W. Jefferson Blud., Culver City, Calif.

## Tape Recorder

3-5 8-in. diameter


With a diameter of 3-5 8 in . and a length of $3-1 / 8 \mathrm{in}$.. the model 362 tape recorder will record in 7 or 14 channels on 75 ft of tape. It withstands: vibration of $15 \mathrm{~g}, 10$ to 2,000 cps; shock of 2.000 g for 3 msec on any axis; acceleration of 400 g continuously. The $26-\mathrm{oz}$ unit has a temperature range from -50 to 180 F . Tape speed may be 3-3/4, 7-1/2, 15, or 30 in . per seci; wow and flutter are less than $1 \%$. Power requirement is 24 v dc at 1 -amp start and less than 500-ma run.

Leach Corp., Dept. ED, 184.35 Susana Road, Compton, Calif. Price: From $\$ 3,($ OK) to $\$ 3,500$. Availability: 30 to 4.5 days.

## MINIATURIZATION pus LOWER COST



## Thin Versatile Co-Netlc and Netic Magnetic Shielding Folls

Permit positioning foil-wrapped components A \& B closely. minımızing interaction due to magnetic fields . . . making
possible compact and less costly systems.
How thin Co-Netic and Netic foils lower your mag. netic shielding costs:

1) Weight reduction. Less shielding material is used because foils (a) are only .004" thick and (b) cut and contour easily.
2) Odd shaped and hard-to-get-at components are readily shielded, saving valuable time, minimizing tooling costs.
These foils are non-shock sensitive, non-retentive, require no periodic annealing. When grounded, they effectively shield electrostatic and magnetic fields over a wide range of intensities. Both foils available from stock in any desired length in various widths.

Co-Netic and Netic foils are successfully solving many types of electronic circuitry magnetic shielding problems for commercial, military and laboratory applications. These foils can be your short cut in solving magnetic problems.


Cuts readily to any shape with ordinary scissors


Shielding cables reduces magnetic radiation or


Wrapping tubes prevents ulside magnetic

## PROTECT VITAL MAGNETIC TAPES

When accidentally exposed to unpredictable magnetic fields, presto!-your valuable data is combined with confusing signals or even erased.


For complete, distortion-free protection of valuable magnefic tapes during transportation or storage. Single or multiple reel Rigid Netic Enclosures available in many convenient sizes and shapes.

Thin pliable foil wraps easily around magnelic lape. maintain ing original recorded fidelity



Composite pho10 demonstrat. ing that mas qualilies of Rigid Netuc Alloy Material are not segnificantly af.
ected by vibration shoch (including dropping or bumping) etc. Nefic no non-retentive, requires no periodic annealing.

Write for further dotalls today.
magnetic shield division perfection mica co.
1322 No. Elston Avenue, Chicago 22, Illinois
originators or permanenily effective netic co nelic magne tic shielding

## NEW PRODUCTS

## Power Supply



The N-4050 high-voltage power supply has a positive output of up to 5 kv at 2 ma , with negative output on request. It has line and load regulation of better than $0.01 \%$. Voltage output is adequate for almost any type of proportional counter; current output is sufficient for routine scintillation counting. The rack-mounted supply has a panel height of $3-1 / 2 \mathrm{in}$., and requires 115 $\mathrm{v}, 60 \mathrm{cps}, 100 \mathrm{w}$.

Hamner Electronics Co., Inc., Dept. ED, P. O. Box 531, Princeton, N. J.

## Photoelectric Verifier

Photoelectric sensing is used in the type 2450 verifier to check punched 90 -column tabulating cards. Either the Univac 63 -character code or the standard 90 -column, 37 -character code used by tabulating machines may be verified in one pass. Carriage retum and card feed are automatically controlled by margin settings.

Sperry Rand Corp., Remington Rand Div., Dept. ED, 315 Park Ave. South, New York 10, N. Y. Availability: 9-month delivery.

## Particle Counter

For clean room use


Model PC200A is designed to monitor the presence and distribution of particulate matter in the atmospheres of such areas as clean rooms for precision manufacture and assembly. It presents immediate displays of the numbers of particles present in 15 subranges of sizes from 0.32 microns to 8.0 microns in diameter. Counts appear on decade counters and can be recorded on digital tape or a strip-chart recorder.

Royco Instruments Inc., Dept. ED, 440 Olive St., Palo Alto, Calif.
Price: Cabinet model is $\$ 7,000$.


Addentage of $\boldsymbol{P}$
EXPANDED TUEINO:

- clums mevitl any barted eblect, including trregular thepes and ether Tofon whime
- Chemically mear
- Low pemeanily
- Low coerficient of faction
- touch avo risxiae
- momflamianer
- Exceriomal klectical properites

PF Expanded Tubing is made in all popular thin and standard wall sizes, in 11 colors and it con be primiod and eut to the lengths you require.
Send for a free sample and try it yourself or lot us show you how it works and what it can do for you.

## JUST WRITE,

WIRE OR PHONE.
PENNBYLVANIA

## FLUOROCAREON CO., ING.

1115 N. 38m Street, Philadelphia 4, Po.
PHONE, EVergreen 6-0603 TWX: PH 252
${ }^{*}$ Du Pont Reg. T.M.
CIRCIE 114 ON READER-SERVICE CARD

Transistorized
Oscillator
For airborne use


The combination of this oscillator with 1 or more self-calibrating accelerometers provides a system for count-down and in-fight calibration of vibration sensors. The FO 1060 provides a $200-\mathrm{cps}$ square wave with continuously adjustable amplitude between 0.1 and 10 peak-to-peak. Model FO 1061 may be manually preset to 20,100 , or 200 cps .

Gulton Industries, Inc., Dept ED, 212 Durham Ave., Metuchen N.J.

Test Instruments
Multi-purpose type


These portable instruments are designed for general testing requirements and versatility. Ranges for the dc model 911 are: as a voltmeter, from 1 to $1,000 \mathrm{v}$; as a milliammeter from 0.1 to 100 ma ; as an ammeter, from 10 ma to $\mathbf{1 0}$ amp. Ranges for the ac model 912 voltmeter are from 3 to $1,000 \mathrm{v}$. Accuracy is: $\pm 1 \%$ full scale value on dc voltmeters and milliammeters ( $\pm 2 \%$ on 300 and $1,000 \mathrm{v} \mathrm{dc}$ ); $\pm 2 \%$ full scale value on rectifier-type ac voltmeters, 10 through 300 v ; $\pm 3$ \% full scale value on rectifier-type ac voltmeters for $1,000 \mathrm{v}$ range and 3 v range above mid-scale.

Weston Instruments Div., Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N.J
circle 115 on reader-service caro $\geqslant$


From miniature to sub-miniature to micro. the electronics industry is constantly striving to reduce the size of electronic components. As a result, there is an increasing demand for ceramic in smaller and smaller sizes. Coors is meeting this demand by making small-scale ceramic parts in mass production quantities at precision tolerances. Write for Design Data Sheet 7002, describing Coors manufacturing methods and facilities for small ceramic parts, and latest examples. Or call your nearest Coors Regional Sales Manager: WEST Const, william s. Smith. Jr.

 Dohins. GL a.938, Canton. Ohio: EAST Coss1. John McManus. MA Dallas. Texas, Southwest. William H Rumsey. UN 4-6369. Housion, Texas.



MODEL 31
Detects currents to $1^{-17}$ ampere. Provided with ten ranges, separate input-preamplifier unit.


## VIBRATING REED ELECTROMETERS



Outstanding instruments for precise, reliable measurement of extremely small charges, currents and voltages.
Several models are available to serve a variety of applications including radioisotope assays, ion current measurements, pH determinations, and solid-state studies.


MODEL 32
Designed specially for radioisotope studies. Single-unit design, provided with four ranges.
 impedance source.

For details regarding the various applications, specifications and accessories for all Cary Electrometers ask for Data File M19-21.


APPLIED PHYSICS CORPORATION 2724 South Peck Road, Monrovia, California

## NEW PRODUCTS

Power Supply
Delivers 3 kvo


Hydraulically driven, this power supply delivers 3 kva , 3-phase power at 400 cps , continuous duty, into a balanced load, or 1.5 kva at a continuous load unbalance of $20 \%$. It has a simple and reliable self-contained electro-hydraulic onoff control. Performance is independent of installed attitude or ambient pressure and temperature conditions.
Walter Kidde \& Co., Inc., Dept. ED, 675 Main St., Belleville 9, N. J.

## Sweep Generator

Range is 4 to 250 mc


The model 6016 sweep generator has a frequency range of 4 to 250 mc , with continuous tuning. Frequency modulation is 50 cps . Frequency rise is adjustable in 6 steps, 1 to 30 mc . The built-in quartz crystal oscillator has a frequency of 5.5 mc . The $33-\mathrm{lb}$ unit is $17 \times 13 \times 9 \mathrm{in}$., and operates from $110 / 220 \mathrm{v}, 40$ to $60 \mathrm{cps}, 55 \mathrm{w}$.
EPIC, Inc., Dept. ED, 150 Nassau St., New York $38, \mathrm{~N} . \mathrm{Y}$.

Recorder Pen Programer
For pen lift coding


A recorder pen programer, for recorders using solenoid-operated pen-lift mechanisms, the model CIRCLE 248 ON READER-SERVICE CARO $>$ ELECTRONIC DESIGN • February 15, 1961


Nev: Thermacoat resistors expand circuit design limits significantly by carrying full power even at $125^{\circ} \mathrm{C}$ ambients. These resistors meet MIL Characteristic V (MIL-R-26C) with an allowable $350^{\circ} \mathrm{C}$ hot spot, well above the $250-275^{\circ}$ customary for resistors of this type. Thermacoat is the exclusive silicone formulation developed by IRC for its Type AS miniature power wire oped resistors. In addition to the high heat capabilities, Thermacoat is tough and smooth, with high dielectric strength.

Thermacoat resistors have all the other advantages you want-small size, close tolerance, welded connections and permanent markings.
New Thermacoat resistors are available now in sample and production lot quantities. Order them through the sales offices listed on the back cover.

## Type AS Resistors | SPECIFICATIONS

Rosistance Ranges: Minımum 0.1 ohm: maximum 20 K to 175 K ohms Power: 2, 3, 5, 7, 10 watt sizes, rated at $125^{\circ} \mathrm{C}$ ambient.
Tolerancee: $\pm 1 \%$ or $\pm 3 \%$ commercial, $\pm 5 \%$ MIL standard. Toler
ances as close as $\pm 0.05 \%$ depending on resistance. Tomporature Coofficiont: Averages less than $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Intormmont duty operationt Higher than rated wattages permitted
up to $350^{\circ} \mathrm{C}$ hot spot limit.
Mign.freauoney applications: Ayrion-Perry non-inductive windings
available. Minimumpresistance values. $10 \Omega$ for $+1 \%$ and $+3 \%$ toler. ance $1 \Omega$ for $\pm 5 \%$ tolerance. Full details on request.
Torminal strength: Withstand pulls in excess of 10 -pound MIL-R.26C


RPP-1 operates the pen lift in 5 distinct code patterns for trace identification. It is specifically designed for use with antenna pattern recorders and X-Y recorders where multiple recordings on the same chart are desired. Weight is $\delta \mathrm{lb}$; rack panel height is $3-1 / 2 \mathrm{in}$. Power requirements are $115 \mathrm{v}, 50 / 60 \mathrm{cps}, 15 \mathrm{w}$.
Scientific-Atlanta, Inc., Dept. EID, 2162 Piedmont Road, N. E. Atlanta 9, Ga.
Price: $\mathrm{S} 3(1)$ ( fol) Atlanta
Acailability: 2103 weeks.

## Differential DC Preamplifier

## Extends voltmeter range



The range of digital voltmeters is extended to $1 \mu \mathrm{vdc}$ with the use of model $459 / \mathrm{N}$ differential de preamplifier. Common mode rejection is 180 db for dc and 1.30 db for 60 cps with up to 1,000 ohms unbalance in either signal lead. The input can be floated up to $\pm 250 \mathrm{v}$ with respect to ground. Input resistance is greater than 5 meg. Colur Electronics. Inc.. Kin-Tel Div., Dept E1), 5725 Kearney Villa Road, San Diego 12, Calif.
Price: $\$ 1.47 .5$ fol San Diego.
Availability: Onc week.

## Time-Delay Relay

638


The inodel T-164 adjustable time-delay relay comes in four timing ranges, four contact arrangements, and two mounting styles. Timing ranges cover from 50) msec to 60 sec , with external pushbutton reset. Repeatability is 1\% short term, $10 \%$ long term. With a relay, an RC: time circuit, and a two-stage transistor amplifier, the unit operates on 18 to 32 v de at 10 mat nominal. Contacts are rated at $3 \mathrm{amp}, 115 \mathrm{v}$ ace and 29 v de, both noninductive. Operating temperature is 32 F to 122 F. Dimensions are $1-29 / 64 \times 2 \times 2-5 / 8 \mathrm{in}$. high. General Automatic Corp., Dept. ED, 111 33rd St., Union City, N. J.

## < circie 24a on reader.service card

ELECTRONIC DESIGN • February 15, 1961

## Get a head-start on production

 with "solder-coated" resistorsYou can pretty well take for granted that any one of several leading resistor brands will meet or exceed your performance requirements. But there's another factor to be considered too-ease of handling on your assembly lines. Mainly that means ease of soldering - and here Stackpole Coldite $70+$ "solder-coated" fixed composition resistors stand head and shoulders above the field. Not only do these famous cold-molded resistors meet today's critical specifications, but they provide unmatched "solderability" on any hand or automatic, open wiring or printed circuit operation. That makes not only for a real saving in assembly work, but also stands to reduce subsequent service costs resulting from poor soldered connections.

ELECTRONIC COMPONENTS DIVISION STACKPOLE CARBON COMPANY, ST, MARYS, PA. <br> \section*{Coldifie $70^{+}$ <br> \section*{Coldifie $70^{+}$ <br> <br> FIXED COMPOSITION RESISTORS} <br> <br> FIXED COMPOSITION RESISTORS}

CERAMAGn ferromagnetic Cores - slide and snap switches - variable COMPOSITION RESISTORS. CERAMAGNET CERAMIC MAGNETS - FIXED COM. POSITION CAPACITORS. ELECTRICAL CONTACTS. BRUSHES FOR ALL ROTATING
ELECTRICAL EQUIPMENT - HUNDREDS OF RELATED CARBON. GRAPHITE. AND
metal powder products

Coldite 70+ Resistors Save You Money on Assembly Work!
Stackpole Coldite $70+$ resistors solder easier and stay soldered more surely. Thanks to an extra solder coating applied AFTER the usual tin-lead coating, they solder perfectly by ANY method - dip or iron. Moreover, resistance variations from normal soldering heat are negligible.


## AXIMAE MINTATURIF 400CPS FANS



## NEW PRODUCTS

## X-Y Plotter

Accurate to 0.05\%


This $30 \times 30-\mathrm{in}$. X-Y plotter is accurate to $0.05 \%$ of full scale and repeats exactly from any direction. No servo mechanisms are used in the solidstate plotter. Input can be from IBM cards, punched paper tape, or keyboard. Slewing speed is up to 20 in. per sec. Printing head contains 12 symbols, any of which can be selected at will; other print sectors can be added to plot digital or symbol information.

Gerber Scientific Instrument Co.. Dept. EI), Hartford, Conn.

## Wire Dispenser

Consisting of 10 high-impact plastic tubes held in a rack, this dispenser feeds precut wires one at a time. Wires may be clipped in the tube. Racks may be stacked, placed on the bench top, or hung where desired

Products For Industry, Inc.., Dept. ED, 1704 Summer St., Stamford, Conn.

## Printed Circuits

## On gloss-bonded mica



Printed circuits, for ferrite memory systems, missile control circuitry, and other uses, are produced on Mykrov glass-bonded mica. The 0.0005 in. copper conductive path may be located within holes, in grooves or counterbores on one or hoth surfaces. The material is dimensionally stable, moistureproof and noncombustible, radiationresistant, and will maintain a volume resistivity of 100 K per cm through 300 C .

Electronic Mechanics, Inc., Dept. ED, 101 Clifton Blvd., Clifton, N. J.
Price: About $\$ 0.04$ per sq in., in volume.

## Ultrasensitive relays

## HELPFUL DATA FOR YOUR CIRCUITRY IDEA FILE

The circuit drawing below indicates just one of the hundreds of ways many manufacturers utilize Micropositioners polarized relays to solve complex control problems.


ADJUSTABLE SPEED CONTROL WITH TWO-COIL MICROPOSITIOMER ${ }^{*}$

The output of a d-c tachometer generator (such as a Barber-Colman type BYLM) coupled to the rotating shaft, whose speed is to be regulated, is impressed on one coil of a two-coil Micropositioner.
The other coil is supplied with an adjustable input from a regulated source. The contacts operate appropriate devices to raise or lower the speed of the shaft being controlled.

If your projects involve similar types of control, why not test the Micropositioner in your circuits? Write for technical bulletins.

## BARBER-COLMAM MICROPOSITIOWER ${ }^{\text {E }}$ polarized d-c relays

 Operate on input power as low as 40 microwatts. Available in three types of adjust. ment: null seeking . .magnetic latch. ing "memory". . . and form C break.make transfer. Also transistorized types with built-in preamplifier. Write for new quick reference file.
Barber-Colman Company DEPT. N, res3 ROCK STREET, ROCKFORD, ILLINOIS
CIRCLE 119 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

## Transfer Function Analyzer

For random or periodic signals


A tool for determining the response characteristics of control, structural, and servo systems, as well as electrical networks, the moxlel OF-3 transfer function analyzer uses a cross-spectral density technique. It uperates with driving signals that are random or complex periodic, obtains the calusal relationship between two signals, and gives the output as Nyquist or Bode plots. It is applicable to vibration, acoustic, servo, human response and related fields.

Gulton Industrie's, Inc.. Dept. ED, 212 Durham Ave., Metuchen, N. J.


## Video-Switching Systems

This transistorized, modular video-switching system consists of 12 inputs and outputs, amplifiers, vertical interval control circuitry, power supplies, and 5 auxiliary effects amplifiers, all housed behind 35 in. of panel space on a standard rack. It is with either binary- or decimal-switching logic control.
Cotham Broadcasting Corp., Tarc Electronics Div Dept. ED. $4 \%$ U'rban Ave, Westbury, N. Y.

## DC Voltage-Current Source

467
Voltage accuracy is $0.0075 \%$


Model 401 is a completely transistorized de absolute voltage-current source. It has voltage accuracy of $0.0075 \%$ and an absolute current accuracy of $0.025 \%$. Stability for voltage outputs is 0.003 ; for current outputs it is $0.005 \%$. All outputs are short-circuit-proof.
Rotek Instrument Corp., Dept. ED, 733 Concord Ave., Cambridge, Mass.
Price: $\$ 1,075$.
Availability: Stock to 10 uecks.


When a light comes on ... or changes color ... it
immediately draws attention. Then add operator reaction
"hit that light when it turns redl". These are basic elements of today's sophisticated control panels.

Attention and reaction are built into all Control Switch lighted pushbutton switches. Round or rectangular buttons that light up in one, two, three or four colors, with monitor and control of up to four circuits.

For monitoring only, Control Switch indicator lights are available in hundreds of sizes, shapes, colors and circuits.

Write today for technical data on the industry's most versatile and complete line of lighted switches and indicator lights. If you have an unusual panel problem, let us solve it with a custom design.




## NEW PRODUCTS

## Memory-Core Tester



A completely integrated system for automatic production-line testing of ferrite magnetic memory cores, the type 2102 can be programed to accept or reject cores to a wide variety of specifications. It generates four different programs of current driving pulses, variable in timing and amplitude. A calibrated sensing system compares core output at five specific times against six known and variable amplitude levels. The system is self-checking.

Digital Equipment Corp., Dept. ED, Maynard. Mass.
Price: $\$ 20,(000)$.
Acailability: 8 weeks.

## Hall-Effect Generators

687
Thin-film metal-deposited Hall-effect generators, made of indium arsenide, are now available. The probes have a Hall output voltage exceeding 1 v at 10,000 gauss. The four electrodes are attached by printed-circuit technigues.
G. R. H. Halltest Co., Dept. ED, 157 S. Morgan Blvd., Valparaiso, Ind.

## RF Power Meters

Range is 100 kc to 200 mc


These rf power meters, of the absorption type, operate in the range of 100 kc to 200 mc . Power is measured in 2 to 6 ranges from 1.5 w full scale to $1,500 \mathrm{w}$ full scale, at an accuracy of $\pm 5 \%$. A resistive voltage divider is used. Meter calibration may be checked against dc or 60 cps .

Electro-Impulse Laboratory, Inc., Dept. ED, 208 River St., Red Bank, N. J.
Price: $\$ 60$ to $\$ 250$.

> WHITSO STANDOFF TERMINALS ‥ Largest Line Available


SINGLE TURRET
FEED THROUGHS

## DIALIYI PHTHALATE AND MELAMINE BODY

 MATERIALS TO MEET MILITARY STANDARDSGet the exact standoff or feed through terminal you want from a full range of types, sizes, body materials and plating combinations. Specials can be supplied to specification. The Whitso line is complete to the fullest extent of every industrial, military and commercial requirement.

Standoff terminals include fork, single and double turret. post, standard, miniature and sub-miniature body types-male, female or rivet mountings -molded or metal base. Feed through terminals are furnished standard or to specification.
Plating Combinations: Many terminal and mounting combinations furnished as standard.

Specials: Body materials and plating combinations, also dimensions, can be supplied to specifications.
PROMPT DELIVERY IN ECONOMICAL QUANTITY RUNS

## Get facts on the most com. Gelfacts on the mosi com-

 plete, most dependable source for terminaland custom molded parts. Request catalor.


9326 Byren Sreet, Sehiller Park, Illinels (Chicogo Suburbi
CIRCLE 122 ON READER-SERVICE CARD CIRCLE 124 ON READER-SERVICE CARD


Brush Operations Monitors' response to signals is virtually instantaneous-less than 4 milliseconds. Multiple high-speed events are clearly defined from start to stop, on a common time base - and at rates up to 500 per second. Portable 30 channel or rack-mounting 100 channel models record sharp reproducible traces with fixed-stylus electric writing that provides the utmost in reliability. "Built-in" transistor switching to eliminate relays is optional. No direct writing recording system can match the capabilities of Brush Operations Monitors for industrial and military analysis and control. Write for complete specifications and application data.


## compact transistor switching for millisecond unn!n! monitoring



The new Brush Trans-Switcher eliminates relays-greatly simplifies your problems of operations monitoring. Designed to take full advantage of the fast response and high resolution of Brush Operations Monitors, this compact, solid-state switching unit accepts up to 100 different "on-off" signals in a broad range of pulse shapes and amplitudes. Interchangeable, plug-in decade boards are designed to accept different voltage ranges and modes of operation. Avoid the "black box" approach-specify the standard Brush Trans-Switcher for the ultimate in precise, reliable monitoring. Write for complete details. $\qquad$ INSTRUMENTS
$\qquad$ CREXITE

## Vacuum Gage



Continuous pressure measurement, in the range of 0 to 1,000 microns of mercury, is provided by this thermocouple vacuum gage. The sensing clements, noble metal thermopiles, maintain their characteristics and hold calibration over extended use in any atmospherc. Gage tube volume is less than $1 / 2 \mathrm{cu} \mathrm{in}$. The device has internal voltage regulation.

Temperature Engincering Corp., Dept. ED, Riverton, N. J.

## Potting Compound

688
A clear silicone potting and imbedding compound. LTV 602 cures at 70 to 80 C to a flexible, resilient solid. The cured material is self-supporting and nonflowing. Useful temperature range is -65 to 175 C ; thermal shock requirements of MIL-STD-202A are met.

General Electric Co., Silicone Products Dept. Dept. ED, Waterford, N. Y.
Price: $\$ 10.50$ to $\$ 7.00$ per lb.
Availability: Commercial quantitics available.

## Power Supply

In modular form


1 regulated power supply module, the model 1 '-30-1 has an input of 115 v rms $\pm 10 \%, 1$ phase, 55 to 400 cps . Output may be 12 to 20 v at 0 to 1 amp, or 26 to 30 v at 0 to 1 amp , or 10 to 33 v at 0 to 0.75 amp . Load regulation is $\pm 0.05 \%$, zero to full load; line regulation is $\pm 0.05 \%$ for 105 to 125 v line. Ripple is 3 mv peak-to-peak max, and recovery time is $50 \mu \mathrm{sec}$. As many as 10 units nay be connected in series. The unit weighs $4-1 / 2 \mathrm{lb}$ and measures $8 \times 5 \times 3-1 / 4 \mathrm{in}$.

NJE Corp., Dept. ED, 20 Boright Ave., Kenilworth, N. J.
Price: $\$ 88$.

- circle 249 on reader-senvice caro

ELECTRONIC DESIGN • February 15, 1961


## How to hit the jackpot...

IF YOU HAVE A MOISTURE PROBLEM, Waters APW $1 / 2$ sealed potentiometer is so watertight and heat resistant, it operates reliably even in boiling water. Completely unaffected by humidity and water vapor, two common causes of pot failures in aircraft and missiles. Also available with servo face as Waters WPW $1 / 2$. Write for bulletin APW.
IF YOU REQUIRE A HERMETIC SEAL, Waters APH $1 / 2$, designed for soldering directly to the panel, not only maintains a hermetic seal behind the panel, but is itself tightly sealed against outside atmosphere and salt spray by means of double "O" ring shaft seal. Passes liquid immersion tests per MIL-E-5272A and, excluding the shaft, the Mass Spectrometer Test with leak rate less than $1 \times 10^{-7} \mathrm{cc} / \mathrm{sec}$. N.T.P. Write for bulle$t$ in APH.
IF YOU WANT TO READ A FUNCTION OF RESISTANCE DIRECTLY, Waters Dialpot8 gives you the answers to these questions: Where is the slider? At what angle is the pot set? At what percentage of voltage is the pot set? Dial calibrated with equal graduations from 0 to 10 in the $300^{\circ}$ winding angle. Scribe line on base. Plug-in feature is ideal for printed circuitry. Write 'or bulletin APD.


WATERS MANUFACTURING, INC. WAYLAND • MASS.
POTEWTIOMETERS - COLL FORME - POT MOOKS PAWEL MOUMTS - TORQUE WATCMO GAUEES - C'TROLB METERGOMTROLLER - IMSTRUMEWTS CIRCLE I23 ON READER-SERVICE CARD

For vswr and attenuation


The moded SP 160 test set, for determining vswr and attenuation values of rf components or circuits, operates over a frequency range of 200 to 475 mc . In conjunction with a dual-trace oscilloscope, it provides instantaneous readings of vswr or attenuation for the device under test. The generator section has a response that is flat within $5 \%$ over its maximum sweep width, an output of more than 0.75 v into 50 ohms , and is equipped with a variable frequency marker.

Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.

## Tefion Tape

A pressure-sensitive tape of virgin Teflon and inert filler, Fluorolin 101D resists heat distortion up to 500 F . Coefficient of thermal expansion is $2 \times 10^{-8}$. The tape has high-wear resistance and lowcompression set. It comes in 18 -yd rolls, 0.010 gage, up to 10 in . wide.

The Joclin Manufacturing Co., Dept. ED, Lufberry Ave., Wallingford, Conn.
Price: $\$ 9.90$ to $\$ 35.40$ per roll.
Aoailability: 3-day delivery from stock.
Pressure Transducers


The series 200 pressure transducers have a thickness of 0.035 in . and an over-all size of $1 \times 1 \mathrm{in}$. The sensitive area is 1 sq cm . Hermetically sealed, they may be used in the pressure range from 15 in . Hg to 100 psi. Frequency response and sensitivity are said to be high; linearity is good and hysteresis low.

Spitz Laboratories, Inc., Dept. ED, Yorklyn, Del.
Price: $\$ 40$.
Availability: 2 weeks.


These welder phase-shift heat-control patterns were directly recorded with a Honeywell 906 Visicorder at Bristol Aircraft (Western) Limited in Winnipeg.
Since the welding heat generated is proportional to the square of the current value, phase shift must be accurately controlled in order to determine the heat value. If the phase shift dial is not accurately calibrated, the result is too much or too little heat, and a poor weld.
In this application, the Visicorder is an essential guide to accurate calibration, since ink-type re-
corders do not cover the sensitivities and frequencies needed and an oscilloscope would present a continually changing pattern since most recording periods are less than 10 cycles. The directly-recorded Visicorder patterns allow a convenient study of the exact time when the current wave form was being cut off.
Here is the circuit used in this test.


## of phase shift


it he Model 1012 Vincorder is the mast veriatile and ontienient noscillograph eier detised for ie.
cording as mawr as sh chanuels of clata. aeference data: Sond for Eullotin HC. 1012


Ibe. Madel I Ios l'isionder. with mant antomatic feallures and the conceniem. on pusbbutrom come. trols. is ideal for intermediate wses reaniring up in 2s chamer
reference data Sond for Eulletin HC-110

he Madel 'xirin Visionrder imenrpn. rates time and grid lines-simulta nenuily record, wo to it chawnels Completels self-starting for remot pperation.
Eond for Bulletin HC
new model!
the NEU Matel lio6 ecomomicall: brimes outssanding l'ivicorder feature
 reference data Sond for Now Eullotin HC-1406

The Honevwell Visicorder is the pioneer, completely proven, and unquestioned leader in the field of high-frequency, high-sensitivity, direct-recording ultra-violet oscillography. Here are some of the reasons why Visicorders provide the most accurate analog recordings available: constant fat response and sensitivity of galvanometers; grid-lines simultaneously recorded with traces to guarantee exact reference regardless of possible paper shift or shrinkage; flash-tube timing system for greater accuracy of time lines; superior optics for maximum linearity of traces.

No matter what field sou are in . . . research, develop. ment, computing, rocketry, product design, control, nucleonics . . . the high-frequency (DC to 5000 cps ) Visicorder oscillograph will save you time and money in data acquisition.

Call your nearest Minneapolis-Honeywell Industrial Sales Office for a demonstration.

Minneapolis-Ioneyuell Regulator Co.
Industrial Products Group, Heiland Divisiou
5200 E. Fians Atemue, Denter 22, Colorado
HONEYWELL INTERNATIONAL
Salev ald Service offices in all principal citiesn) the uarld. Manufacinr. ing in L'nifed Stules. linited Kingdom. (allacha. Netherlands. Goermany. Irance. Japall.

## Honeywell

H Pndutial Producta Group

AC Motors

## In 4500 frame size



Units in this 4500 frame series of ac motors, with an OD of 5-3/8 in., are available with 1 - to 3phase, 26 - to $230 \mathrm{v}, 25$ - to 400 -cps inputs. Outputs are provided to $1-1 / 2 \mathrm{hp}$ in the induction motors, up to 300 in . per oz stall torque as torque motors, and from $1 / 200$ to $1 / 3 \mathrm{hp}$ in hysteresis synchronous motors. All can be wound for 1 to 4 speed operation. The standard temperature range is -55 C to 71 C ; units operating to 150 C are available.

IMC Magnetics Corp., Eastern Div., Dept. ED. 6058 Walker Ave., Maywood, Calif.
Acailability: Approximately eight weeks.

## Sealing Alloy

An alloy for high-density alumina seals, Fernico-5 is composed of iron, nickel and cobalt. Its coefficient of expansion is close to that of high-density alumina up to 600 C . Damping capacity and oxidation resistance are high.

General Electric Co., Metallurgical Products Dept., Dept. ED, Detroit 32, Mich.

## Magnetic Amplifiers

From 75 hp to 400 hp


Magnetic amplifiers in 7 sizes, from 75 hp to 400 hp , in the Mega-Power 1310 series are rec ommended for uses requiring controlled dc power for variable-speed dc motor drives. The static devices are said to offer more compactness and reliability, longer life and less maintenance than conventional motor-generator power supplies.

Vickers Inc., Electric Products Div., Dept. ED. 1815 Locust St.. St. Louis 3, Mo.

CIRCLE 125 ON READER-SERVICE CARD

Transformer A in the chart will deliver ten times more hours of dependable performance than transformer B. An engineer designing for reliability over a long period will want transformer $\mathbf{A}$.


Transformer A and B are identical in appearance. They can both pass electrical inspection tests. The quality of the materials, workmanship, and design are all hidden from view so that no physical inspection can be made. So how do you tell? Which is A , and which is B?

The best way to tell is to know the manufacturer. If you're not already a customer we'd like to number you among those who know from experience that they have transformer reliability inside, when it says ADC on the outside. Over 15,000 custom transformer designs in nearly 25 years have proven beyond a doubt that long life just plain runs in the ADC family.

## Designing for Reliability? Look to ADCI

## NEW PRODUCTS

Digital Data System
Is solid state


Model O-64 solid-state digital data system is designed to transmit variable and go-no-go signals in digital form. Signals are transmitted in serial form over a single cable pair, coaxial link or microwave channel. It will accept either highor low-level input voltages.

Moore Associates, Dept. ED, 2600 Spring St., Redwood City, Calif.

## Tube Shields

685
Designed for maximum heat dissipation, and for retention of the tube in shock and vibration, these shields fit 9T9 type tube bulbs. Base part No. is T9-2001-7H; tube shield assembly is No. T9-2027. 5 H .

International Electronic Research Corp., IERC. Div., Dept. EI). 135 W. Magnolia Blid., Burbank, Calif.

## Silicon Rectifiers

Weigh less than 0.75 g


Available in plastic ( 7 MP ) and ceramic ( 7 MH ) packages, these miniature silicon rectifiers weigh less than 0.75 g and measure $3 / 8$ by 0.200 in . in diameter. They are rated at 750 ma average, and 50 to 600 piv. Operating ambient temperature is from -65 to +100 for the plastic unit and -65 to +150 for the ceramic units. Type 7 MH meets military specifications and is insulated and hermetically sealed, in an axial-lead package. The 7MP is plastic-encapsulated for chassis mounting.

Standard Rectifier Corp., Dept. ED, 620 E. Dyer Rcad, Santa Ana, Calif.


For simple or complex constructions, Royal has the know-how and capacity to fill your multi-conductor cable requirements. Royal Multi-Conductor Cables are designed, made. and yuality-controlled to give you the cable characteristics you want most on the jobeasy workability, foot-after-fout quality, topmost dependability. Send us your cable -pecifications... or ask to have our representative call.
ROYAL ELECTRIC CORPORATION
301 Saratoga Avenue

## PAWTUCKET, RHODE ISLAND

in Canada: Royol Electric Company (Queber Ind. Pointe-Claire, Quebe


## Enclosed Relays

626
For motor starting


Start-winding contact ratings to 25 amp are available in the type 83 relay. Current-operated, it functions as a single-pole, normally open motor-starting relay for heavy-duty single-phase capacitor motors which are used in appliances. The type 84 is a voltage-operated single-pole relay, which may be normally open, normally closed or double-throw for pilot or power duty applications. Coil ratings are to 230 v ac, contact ratings to $1 / 2$ hp or 16 amp resistive. Contacts and coils are enclosed. Terminals may be screw, quick-connect, or solder type. Size is $1-7 / 8 \times 1-1 / 4 \times$ 1-1/4 in.

Essex Wire Corp., RBM Controls Div., Dept. ED, Logansport, Ind.

Film Capacitors 592
Low temperature coefficient


These subminiature Teflon capacitors, developed for missile guidance systems, have temperature coefficients from 0 to 120 ppm per deg C. Tolerances to $0.1 \%$ are available. These units have the self-healing characteristics of metallized film capacitors.
Component Research Co., Inc. Dept. ED, 3019 S. Orange Drive, Los Angeles 16, Calif.


George Jones' business is to mind yours...
As a Field Engineer for RCA Industrial Receiving Tubes, George Jones minds your business in several ways-and all to your advantage.

It's up to George to see that you, the customer, have accurate information on new and developmental industrial receiving tubes as fast as it's available, to give you the earliest possible start in your new designs.
George must also determine whether your application requires a tube of special design. If so, he analyzes the need and relays data back to our design-development engineers for possible action.

And as an engineer with 27 years experience in tube application, George is ready to provide you every assistance in finding the RCA tubes best suited to your needs. It was he, for example, who helped a large R \& D lab in the northeast select RCA's developmental nuvistor tetrode (see inset) for the design of a unique nuclear radiation checking and counting device.
George Jones' work-putting the vast accumulated knowledge and experience of RCA at your disposal-is another advantage you get in relying on RCA industrial receiving tubes.

The Most Trusted Name in Electronics radio corporation of america


Cutaway of RCA's devolopmental nuvis. tor tetrode for indusThe nuvistor design asoures oxtraordinary performance and low power drain in a tube of vory small size and woight. It is valuable mechanical shoct and vibration present difficulties.

RCA ELECTRON TUBE DIVISION-Fiold Offices EAST: 744 Broad Street, Nowark 2, Now Jersey, HUmboldt 5.3900 - MIOWEST: Suite 1154, Mer chandise Mart Plaza, Chicago 54, Illinois, Whito 4.2900 - WEST: 6355 E. Washington

## NEW PRODUCTS

Pulse Generator
For single or double pulses


A decade-pulse generator, the GO 1005 can be used for determining transmission characteristics and transient response of amplifiers and networks, or for testing frequency and amplitude limits of electronic counters. It provides positive or negative, single or double rectangular pulses of up to 100 v amplitude at prf from 10 cps to 1 mc . Signal delay and pulse duration ranges are $250 \mu \mathrm{sec}$ to 100 msec .

Solartron Laboratory Instruments Ltd., Dept. ED, Cox Lane, Chessington, Surrey, England.

## Stake Nuts

684
Minimum thickness requirements for these miniature floating and nonfloating stake nuts are 0.040 and 0.030 respectively. The push-out, torque-out and thread-locking features each exceed all the requirements of MIL-N-25027.
Kaynar Manufacturing Co., Inc., Kaylock Div., Dept. ED, Box 2001, Terminal Annex, Los Angeles 54, Calif.

## Tester Kit

479
For diodes and transistors


The IT-10 transistor-diode checker tests both low-power and high-power transistors for shorts, opens, leakage, current gain, as well as forward and reverse current of crystal diodes. A reversing switch is provided. The tester checks its own power supply, and may be used for continuity testing. Cabinet measures $3-3 / 4 \times 3-1 / 16 \times 3-1 / 8$ in.
Daystrom, Inc., Heath Co., Dept. ED, Benton Harbor, Mich.
Price: $\$ 6.95$.


## Some semiconductor manufacturers

 substitute down-graded gold bonded diodes for germanium point contac ypes. When this happens you don't ge the diode you need. You get square pegs for round holes.Germanium point contact diodes and gold bonded diodes are made by com pletely different manufacturing proc esses. So, they have inherent physical differences. And they have inherent electrical differences. When you specify germanium point contact diodes from Hughes you never get a substitute.
Hughes germanium point contact diodes are ideal for application in high frequency detectors, discriminators and
modulators-they have a higher $Q$, lower capacity and extremely fast recovery. Hughes germanium point contact diodes have been thoroughly proven through years of commercial and military use. Several types are JAN qualified. So when you need the unique capabili. ties of a germanium point contact diode, specify Hughes. You will always get a reliable, high performance, completely stabilized, fully-tested Hughes germa nium point contact diode.
For further information write for data sheet DS-89, Hughes Semiconducto Division, Marketing Department, Newport Beach, California.
Creating a new world with Electronics

## HUGHES

HUGHEs ARCMAFT company
SEMICONDUCTOR DIVISION

SPECIFICATIONS @ $25^{\circ} \mathrm{C}$ unless otherwise stated

| TYPE | Minimum PIV <br> (V) | Minimum Forward Current (a) +1 V (mA) | Max. Reverse Current |  | Maximum Average Forward Current (mA) | Maximum Forward Surge Current for 1 Sec (mA) | Reverse Recovery |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & I_{R} \\ & (\mu \mathrm{~A}) \end{aligned}$ | (V) |  |  |  |  | When Switched $\mathrm{If}(\mathrm{mA}) / \mathrm{V}_{\mathrm{R}}$ | Circuit |
| 1N34A | 75 | 5 | -500 | -50 | 30 | 500 |  |  |  |  |
| 1N388 | 125 | 4 | -6 | -3 | 50 | 500 |  |  |  |  |
| 1 NS4A | 50 | 5 | -7 | -10 | 50 | 500 |  |  |  |  |
| 1N58A | 100 | 4 | -600 | -100 | 50 | 500 |  |  |  |  |
| 1N66 in67A | 60 80 | 5 4 | -50 -5 | -10 -5 | $\begin{aligned} & 50 \\ & 30 \end{aligned}$ | $\begin{aligned} & 500 \\ & 300 \end{aligned}$ |  |  |  |  |
| IN68A | 130 | 3 | -625 | -100 | 30 | 350 |  |  |  |  |
| in69a | 75 | 5 | -500 | -50 | 40 | 400 |  |  |  |  |
| 1N70A | 125 | 3 | -300 | -50 | 30 | 350 |  |  |  |  |
| 1N81A | 50 | 3 | -10 | -10 | 30 | 350 |  |  |  |  |
| 1 N88 | 100 | 2.5 | -100 | -50 | 30 | 300 |  |  |  |  |
| 1 1N89 | 100 | 3.5 | $-100$ | -50 | 30 | 250 |  |  |  |  |
| 1N90 | 75 | 5 | -500 | -50 -50 | 30 | 250 |  |  |  |  |
| 1N95 in97 | 75 100 | 10 10 | -500 -100 | -50 -50 | 30 30 | 250 250 |  |  |  |  |
| 1 N99 | 100 | 10 | -50 | -50 | 30 | 300 |  |  |  |  |
| 1 NT16 | 75 | 5 | -100 | -50 | 30 | 250 |  |  |  |  |
| 1 N117 | 75 | 10 | -100 | -50 | 30 | 250 |  |  |  |  |
| 1 N119 | 60 | 5 | See | Note 1 | 25 | 500 | 0.5 | 50 | 30/35 | IBM "Y" |
| 1 N 120 | 70 | 5 | See | Note 2 | 25 | 500 | 05 |  | 30/35 | IBM " $Y$ " |
|  | 75 | 5 | -850 | \| -50 | 30 | 350 |  |  |  |  |
| 1N127A ${ }^{\circ}$ | 125 | 3 3 | -300 -10 | -50 -10 | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & 300 \\ & 300 \end{aligned}$ |  |  |  |  |
| IN142 | ${ }^{50}$ | 5 | -100 | -100 | 60 | 400 |  |  |  |  |
| 1 N191 | 60 | 5 | -125 | - -50 | 30 | 300 | 0.5 | 50 | 30/35 | IBM ${ }^{\prime \prime}$ |
| 1 N192 | 70 | 5 | See | Note 3 | 30 | 300 | 0.5 | 50 | 30/35 | IBM " $Y$ " |
| ${ }^{1} 119{ }^{\circ}$ | 60 | 5 | -250 | -50 ca $75^{\circ} \mathrm{C}$ | 30 | 300 |  |  |  |  |
| 1N198A | 100 | 5 | -250 | - $501075^{\circ} \mathrm{C}$ | 30 | 300 |  |  |  |  |
| 1 N 198 B | 100 | 4 | -250 | -50《275 ${ }^{\circ} \mathrm{C}$ | 30 | 300 | 0.3 | 100 | 2/6 | JAN 256 |
| 1 N 268 | 30 | 6 | -25 | -10 -100 | - | 300 300 |  |  |  |  |
| 12290 1 N294 | 120 70 | 5 5 | -100 -800 | -100 -50 | 30 50 | 300 500 |  |  |  |  |
| 1 N297 | 100 | 3.5 | -100 | -50 | 35 | 500 |  |  |  |  |
| 1 N298 | 85 | $30 \cdot 6+2 v$ | -250 | -40 | 50 | 500 |  |  |  |  |
| iN480 | 60 | 5 | -125 | $-50{ }^{\circ} 60^{\circ} \mathrm{C}$ | - | - | 0.5 | 50 | 30/35 | JAN 256 |
| 1 Na36 | 60 | 25 | -10 | -10 | 30 | 300 |  |  |  |  |

Notes: 1, Dynamic back resistance at 55 C between -10 V and -50 V is 403 K minimum
Dynamic back resistance is 55 C oetween -10 V and -50 V is 200 K minimum Dynamic back current $<50 \mu \mathrm{~A}$ at hov peak
JAN versions available.

Note: All Hughes germanium point contact diodes are limited to a maximum forward conductance of $25 \mathrm{~mA}(a+1 \mathrm{~V}$


Test System
For transistor life


This transistor life-test system has individual collector current controls for up to 220 transistors undergoing oven-life testing. Other functions include monitoring and control of collector voltages and monitoring of elapsed time and oven temperature. It is compatible with any oven operating over a temperature range of 25 to $150 \mathrm{C} \pm 1 \mathrm{C}$. Card modules, which can accommodate transistors of any type in groups of 25 to 50 , are used.

Tenco Electronics, Inc., Dept. ED, 108 Cummington St., Boston 15, Mass.
Price: $\$ 5,000$ plus the cost of the oven.
Availability: 30 to 60 day.s.

## Indicafor Light

683
A moisture-proof subminiature indicator light meeting the high-impact shock tests of MIL-S901B, the L20046 is rated for $60,000 \mathrm{hr}$ of operation minutes at 5 v . It has sealed construction, stainless steel case, and a variety of lens colors.

Controls Co. of America, Control Switch Div., Dept. ED, Folcroft, Pa.

## Power Supplies

Regulated to 0.1\%


These plug-in transistor-regulated power supplies are for industrial and military applications. The TMA series is rated at $1 / 4 \mathrm{amp}$, output from 7 to 30 v , with regulation of $0.1 \%$ for line or load variations. The EM series, using an extruded aluminum case, is available in current ratings of $1 / 2,1$, and 2 amp up to 60 v , with line and load regulation of $0.1 \%$. Ripple is 2 mv rms max. Supply voltage is 105 to $125 \mathrm{v}, 60$ to 400 cps .

Transistor Devices, Inc., Dept. ED, 40 Factory St., Cedar Grove, N.J.
Availability: 30-day delivery.

## Now... 2,000 VA 50-20,000 cps

## CML Model M1435D ELECTRONIC GENERATOR

## SPECIFICATIONS:

- Output: 2,000 VA
- Frequency range: 50 to 20,000 cps
- Frequency stability: $\pm .25 \%$
- Voltage regulation: $1.0 \%$ no load to full load
- Voltage stability: $\pm .25 \%$
- Distortion: less than $1.0 \%$
- Weight: 1,050 pounds
- Dimensions: $66^{\prime \prime} \times 27^{\prime \prime} \times 26^{\prime \prime}$ (mobile)
- Other high power units are available with this wide frequency range. Any of these units can be integrated into two and three-phase systems.
Write for complete technical data on Model M1435D or other CML high-power generators ranging in size from 6 to 100,000 watts and from DC to $50,000 \mathrm{cps}$.


COMMUNICATION MEASUREMENTS LABORATORY, INC.
a Suteridialy of Tenncy Ensuneering Itue
350 Leland Avenue, Plainfield. New Jersey • PLainfield 4-5502

## NEW PRODUCTS

X-Y Recorder
Plots variable against time


The rack-mounting model 2DR recorder will plot one variable against time, draw cartesian coordinate curves from two related sources of dc information, and accept ac input data on either or both axes. The 16 -dc input voltage ranges cover from 0.5 mv per in. to 50 v per in. on each axis. The ac input ranges are from 0.1 v per in. to 20 v per in. in eight calibrated steps. A variable range feature provides scale adjustment. Panel height of the unit is $17-1 / 2 \mathrm{in}$. and depth is 6-1/2 in. Pen speed is 20 in . per second.
F. L. Moseley Co., Dept. ED, 409 N. Fair Oaks Ave., Pasadena, Calif.

## Molding Compound

Dimensionally stable, Alkyd 446 cures rapidly at low pressure and has little or no post-mold shrinkage. It has been used successfully in housing and internal parts of airborne relays.

Allied Chemical Corp., Plastics Div., Dept. ED, 40 Rector St., New York 6, N.Y.

## Disk Thermostat

## With internal heater



The type 29 T is a snap-action, bimetal disk thermostat. An internal heater is used to lower the operating point of the thermostat, and to provide operation to a narrow differential. Rated to 350 F at 25 amp resistive, or $1 / 2 \mathrm{hp}$ inductive, at $120 / 240 \vee \mathrm{ac}$, the unit may be spst or spdt. Various mounting flanges and terminal arrangements are available.

Therm-O-Disc, Inc., Dept. ED, Mansfield, Ohio.

## KOH-INOOR PRECISION MATCHED INSTRUMENTS

Koh-I-Noor offers draftsmen an important new dimension in a comprehensive line of instruments and accessories meticulously matched to provide new high levels of professional performance, efficiency and convenience.


NOW... IWO KOH-I.NOOR RAPIDOGRAPH technical fountalk pens
in 7 "color-coded" precision line widths: $\boldsymbol{\infty}, \mathbf{0}, \mathrm{I}$. 2. $21 / 2,3,4$. Uses India (or regular) inh for ruling, teettering. tracing or writing with equal facility
mocel mo. 3055: A new model with 7 interchangeable drawing point sections. each color coded to indicate - difierent line widh. Best buy for the protessional who requires Irequent change ol line widths. Each drawing point saction complete with artight reflilable ink carthdge Interchange is accomplishod quickily, eleanly. Comes in handy desk top container.
moose mo. 3050: The regular Koh-I-Noor Rapidograph "Technical" Fountain Pen with self-contained automatic filling system, and pocket clip is a standard dratting room tool.


This new line of miniature in strument servo motors and motortachometers has units measuring as much as $1 / 3$ shorter than standard. The size 10 motor-tachometer is 1.375 in. long, rather than the usual 2 -in lengths. Units are available in sizes 8,10 and 11 , operationally identical to the longer units they replace. They fulfill the requirements of MIL-E-5272C.
Control Data Corp., Cedar Engineering Div., Dept. ED, 5806 W. 36th St., Minneapolis 16. Minn.

Coaxial Relays
586
Low crosstalk and vswr


Series RB coaxial relays have a crosstalk rating of $40 \mathrm{db} \mathrm{min}, 0$ to 470 mc ; vswr is less than 1.2, 0 to $1,000 \mathrm{mc}$. Antenna transfer rating is 150 w max. Series includes units of $1-\mathrm{w}$ and $2-\mathrm{w}$ ratings, for ambient temperatures of $25 \mathrm{C}, 80 \mathrm{C}$, and 125 C. Coil voltages are 6, 12, $24 / 26.5,48$, and 115 v . The 3 -oz unit has maximum dimensions of $2-1 / 8 \times 1-7 / 8 \times 45 / 64 \mathrm{in}$.

Allied Control Co., Inc., Dept ED, 2 East End Ave., New York 21, N.Y.

CIRCLE 133 ON READER.SERVICE CARD


Link Division of General Precision. Inc. specified ITT capacitors for this vital portion of its Tracer Identification and Control System, which demands utmost reliability and long life expectancy from every component.

TOTAL PROCESS CONTROL AND DISCIPLINED PRODUCTION DELIVER

## HIGH-RELIABILITY WET-ANODE TANTALUM CAPACITORS FROM ITT

ITT wet-anode tantalum capacitors meet MIL-C-3965B-a fact proved by independent laboratory qualifications tests on ITT capacitors. The reliability and long life expectancy of these competitively-priced capacitors are direct results of ITT's total process control and disciplined production procedures, above and beyond testing standards more stringent than normal industry practice-and backed by ITT's world-wide facilities and experience.


COMPOWENTS DIVISIOM


| Alsuqueraue | ax'93013 | tos Aagotes | W1 8-6325 |
| :---: | :---: | :---: | :---: |
| Sostem | CA )-2980 | Miami | M1 4-3311 |
| cmicage | Sp 7.2250 | Minneapolis | WE -0ast |
| Clevolans | CR 5-2090 | Mow Yeoth | L0 \$-1820 |
| Dalles | Em 1-176s | Philecolphis | Th C-3737 |
| Bayton | Ba 0.5483 | Phesaiz | WH \$-2471 |
| Denver | .NE 4.509 | Recmester | F1 2-1413, |
| Detrall | . 108.3322 | Sen Prameisce | Lr 1.732 |
| Peet wayme | ma 0301 | sentio | MA 2-5433 |
| Mansas City | JE 1-5238 | 8L. Lexis | EV 2-3500 |

## IM STOCK AT ITT DISTRIBUTORS:

- two types - M-Type and P-Type, for applications from -55 to 85 and 125 C. respectively
- 29 values - from 1.75 to 330 mfds over a working voltage range to 125 VDC and maximum surge voltages to 140 VDC
- compact and rugged - sintered tantalum slug in fine-silver cases for 2000 -hour life at maximum temperature and working voltage
- guaranteed - to $80,00 \mathrm{ft}$. and accelerations of 20 G 's with a 0.1 in , excursion in $50-2000 \mathrm{cps}$ range
- long storage life - tantalum-oxide dielectric is completely stable; assures trouble-free operation

COMPLETE SPECIFICATIONS ON ITT wet- and solid-anode tantalum capacitors are available on request. Write on your letterhead, please, to the address below.

ENGINEERS: Your ITT representative has a complete set
of qualifications and quality control tests for your inspection.

NEW PRODUCTS Delay Line

In slab configuration


The type 159 magnetostrictive delay line has 3 fixed outputs, including one of $30.00 \mu \mathrm{sec}$. Pulse repetition rate is 615 kc ; input pulse width is $0.8 \mu \mathrm{sec}$. Input and output impedance is 500 ohms, and insertion loss is about 50 db . Signal-tonoise ratio is $20: 1$. Output rise time, 10) to $90 \%$ is $0.4 \mu \mathrm{sec}$. It operates over a temperature range of 0 to 50 C with a temperature coefficient of delay of about 100 ppm per deg C.
Deltime, Inc., Dept. ED, 608 Favette Ave., Mamaroneck. N.Y.

## Sine-Cosine

Potentiometers
Conformity from 1.0 to $0.1 \%$


The PSC series of sine-cosine potentiometers can be furnished in conformities from 1.0 to $0.1 \%$ peak-to-peak. Watch-case threads permit ganging with no increase in body diameters. Terminals are sealed in epoxy resin. Case size ranges from 1 to 6 in. in diameter. Shaft diameters are $1 / 8$ and $1 / 4 \mathrm{in}$. Normally furnished with servo mounting and ball bearings; other mountings and sleeve bearings available.
Accuracy, Inc., Dept. ED. 4 Gordon St., Waltham, Mass.

## The Important Difference In Digital Voltmeters...

Check the design and construction features pictured here. These are the subtle marks of quality that exemplify the engineering leadership of NLS . . . the important difference between NLS digital voltmeters and those of other manufacturers. These are the engineering innovations that assure accuracy and rugged reliability . . . that minimize maintenance and downtime . . . that add to the long-term efficiency and usefulness of NLS instruments. Yes, there's
more to a digital voltmeter than meets the eye . . . so look behind the front panel and beyond the specification sheet before you buy! Call on your NLS representative to demonstrate the instrument of your choice
to show what engineering leadership means to you in digital voltmeter performance and usefulness. Write today for the NLS catalog that describes the world's most complete line of digital voltmeters
by purpose, by price!


1 PLUG-IN MODULAR CONSTRUCTION simplifies servicing, drastically reduces maintenance costs, keeps icing, drastically reduces maintenance costs,
instruments on the job. More than $99 \%$ of the cominstruments on the job. More than $99 \%$ of the com-
ponents of the NLS V44. Series 20 and Series 30 instruments are mounted on plug-in modules.


SNAP.OUT READOUT, exclusive on all NLS digital SNAP-OUT READOUT, exclusive on all NLS digital instruments, permits 20 -second bulb replacement
through front panel without tools. Precisely engraved headout numerals can be read all day from close up or far away without eye fatigue.


## NOW COMMERCIALLY AVAILABLE

 TRANSISTORIZEDPULSE GENERATORS

NEW!... 3500 SERIES

- Wide-Range Performance
- Modular Flexibility
- Exceptional Reliability
- Compactness, Low Power


These 3500 Series instruments offer a terrific, compact, "something new" in development of variable parameter pulse instrumentation.
They provide, through simplified, transistorized circuiry, a performance range which actually exceeds that of more complex, expensive equipment ... and, unlike their bulky counterparts, they expand your instrument-dollar's value through simple, inexpensive, almost unlimited (modular) expansion of applications - particularly valuable on systems work and new programs where it is impossible to predict exact instrumentation requirements at project initiation.
Series is wholly solid state. Its reliability, unamainable through fube techniques, and thorough time-to-failure test results suggest application to complex systems where reliability and life are paramount considerations. The basic equipment is applicable to a broad range of applications: development and test of RADAR, digital computer circuitry, navigational systems, missile guidance and control, transient lesting, elc.
Substitution or addition of inexpensive, physically and functionally interchangeable modules will provide high sensitivity external triggering, ultra slow time base, long delays, wide pulses for biological research, relay design, physical phenomenon sfudy, etc.

Basic 3500 Series instruments provide unrestricted output power duty cycle and: Repetition Rates to 2 mc ; Delays from 0.25 to $1,000 \mu \mathrm{~s}$; continuously variable Pulse Widths from 0.1 to $1,000 \mu$ 3; Rise Time faster than $0.02 \mu$ s; Amplitude 12 v open circuir from $50 \Omega$. Only $20^{\prime \prime} \times 61 / 4 " \times 93 / 4$ " deep overall, or mounts in rack as standard $5 \frac{1}{4}$ " panel. Weighs only 25 lbs .
Here are a fow of the many expansions of specifications possible through interchange only of modules: Widths and Delays from $100 \mu \mathrm{~s}$ to 1 sec; Rise Time to 10 nonosecs; Current to 300 mo ; Voltage 1020 v ; dual or complementary outputs.

The 3500 Series Transistorized Pulse Generators is comprised of two basic instruments. Model 3550A provides a single output channel, with variable rep rate, delay, duration, amplitude, polarity. Model 3565A adds a second output channel operating from the some rep rate triggers, with independent control of dele\%, duration, amplitude and polarity.

Writo for complote data : Bullotin 3500
Reprosentatives in Mojor Cities

A SUBSIDIARY Of SERVO CORRORATION OF AMERICA
6711 S. SEPULVEDA BLVD., LOS ANGELES 45, CAL.-ORegon B-2244

## NEW PRODUCTS

## Cathode-Ray Tube

3-beam, rectangular


Each of the 3 beams in this $4 \times 6$-in. rectangular cathode-ray tube is independently controllable, with common accelerator and heater connections. Each beam scans ad separate area of the metallized screen, permitting 3 simultaneous displays. The type 7BFP is electrostatically focused and deflected; post accelerator voltage is 9,000 v de.

Fairchild Camera and Instrument Corp., Allen B. Du Mont Laboratories, Electronic Tube Div., Dept. ED, Clifton, N.J.

## Tie-Clamp

425
This combination wire tie-cable clamp cuts material costs and speeds assembly by eliminating separate cable clamps, mounting screws and wire ties. The polyethylene device snaps into a 0.250 in . diam hole and adjusts to 30 sizes between $1 / 8 \mathrm{in}$. and 1-5/16 in.

Richoo Plastic (o., Dept. EI), 3 T22 W. North Ave., Chicago 47, Ill.
Price: From $\$ 7.40$ to $\$ 1.3 .9 .5$ per thousand depending on tuantity.

## Power Amplifier

Up to 4 hp


The mechanical power amplifier No. 13TAAOO24 will amplify the output of a $1 / 30-\mathrm{hp}$ servo motor to deliver and control up to 4 hp . The device provides continuous power over a $50: 1$ speed range, with higher ranges available, and will amplify torque from any control input device. An external cooling system dissipates heat for continuous heavy-duty operation.

Seneca Falls Machine Co., Electronics Div., Dept. EI), Fyfe Building, Seneca Falls, N.Y.

MR. JAMES SAY8ะ
-LETUS SUPPYY OUR STANDARD OR CUSTOM-DESIGNED TRANSFORMERSTO GIVE you MAX MUMMEFFCLEEEK', SMALIEST SIZE,AND MINIMUM COST!" दू०
$\frac{3}{3}$.

IMSTRUMENT TRANSFORMERS

.A complete line of unique input and low power transformers designed for instrumentation circuits where accuracy, balance, precision with both electromagnetic and electro. static shielding are required.

## MIMIATURE TRANSFORMER



Miniature transformers based on the universally used C-2450 kit for circuit application in input. interstage and output. Eficient transistor coupling with JAMES transformers reduces costs, increases efficiency
.750 in. and improves reliability.

SUB-MINIATURE TRANSFORMER
Micro-miniature designs based on
 the C. 2650 kit provide $1 / 2$ - inch diameter encapsulated designs with unique plug and solder in finish. the correct way to design transistor circuits.

Contact "Mr. James" for technical consultation on the correct trans. formers for your application. Write for further information and technical manuals on JAMES transformer kits and standard transformer designs. Custom designed samples in 76 hours at moderate cost.
TRAMSFORMERS • CHOPPERS - RELAYS


ELECTRONICS INC. 4oso N. Rockwell. Chicago 18. illimals

CO 7-6333

CIRCI 137 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961

Cable Tester
Tests 101 circuits


This equipment will test 101 circuits at the rate of 30 conductors per sec. Each wire is checked to ground and to every other wire. It will check continuity at 2 amp , leakage to ground and adjacent circuits at 500 v , and indicate leakage resistance to 100 meg . Circuit terminal numbers are indicated by Nixie readout.
Sturrup, Inc., Dept. ED, 50 Silver St., Middletown, Conn.
Price: \$2,950.
Availability: 6-uk deliverry

## Pulse Generator 615

Combined with synchroscope


Combining a pulse generator with a synchroscope in a single unit, the PCB-1 generates rectangular voltage pulses while providing the means of observing and measuring them. The pulses, generated with adjustable widtl. duration, amplitude repetition rate and polarity, are displayed on the quantitative cathode-ray synchroscope. Trigger rate is between 20 and 200 cps in ratios of 10 or 100 . There are 4 ranges of sweep time between 1 and $625 \mu \mathrm{sec}$. Pulse delay range is 2 to $200 \mu \mathrm{sec}$; pulse width, from 0.2 to $20 \mu \mathrm{sec}$ in 2 overlapping ranges.
Schaevit\% Engineering, Director of Marketing, Dept. ED, P. O. Box 50.5, Camden 1, N.J.


BRIEF SPECIFICATIONS
OUTPUT
+10 volts at 4 milliamps load $\pm 20$ volts at 2 milliamps load

TOTAL DC GAIN
In ercess of 250,000
FREQUENCY RESPONSE
dc to 200 hcs
ORIFT REFERRED TO INPUT 1 millivolt $/ 30^{\circ} \mathrm{C}$ change $1 / 2$ millivolt/ 24 hours with constant

JUNCTION CURRENT
$2 \times 10^{\circ}$ amperes for full output
POWER REQUIREMENTS (Operates from Model 3805 Power Supply) $\pm 221 / 2$ volts dc (8 ma maximum drain) and 12 volts peak-to-peak center tapped,

400 cps (2 ma maximum drain)
PRICE
$\$ 400.00$
Quantity discounts available


Using silicon transistors and semi-conductors throughout, Donner's new Model 3801 operational amplifier provides high gain, wide bandwidth and chopper stabilization paths over a broad range of ambient conditions. In standard form, the Model 3801 will operate reliably from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ in relative humidity of $95 \%$. Special versions have been made for temperature ranges as wide as $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. The amplifier will withstand shock of 30 g and meet all specifications to an altitude of 50,000 feet.

Originally developed, used, and tested in critical missile applications, the amplifier is available as an off-the-shelf item at regular stock prices. This amplifier has found acceptance wherever reliability and minimum size and volume are important considerations. The standard version weighs 3 ounces and possesses external dimensions of $33 / 4$ inches long by $21 / 4$ inches wide by $1 / 2$ inch thick. A hermetically sealed version which occupies only 2 cubic inches is also available.

Companion to the Model 3801 is the Model 3805 Power Supply capable of furnishing all power for 10 Model 3801 amplifiers.

Complete information on the Model 3801 Solid State Amplifier is ready now. Call your nearby Donner engineering representative or write Dept. 36.

## NEW PRODUCTS

Power Supplies
Outputs to 15 kw


These laboratory power supplies consist of motor-alternators providing 60 -cps. 3 -phase, 4 -wire, and 400 -cps, 3 -phase, 4 -wire service, and an alkaline battery pack providing 24 to 28 vdc . They are available in 2 power ranges: series LPC210 provides 5 kw at 400 cps , unity to 0.8 pf ; series LPC-230 provides 15 kw at each frequency. Voltage regulation, static load, is $0.5 \%$ no load to full load; static line $\pm 0.25 \%$ for $\pm 15 \%$ line voltage. Frequency is regulated to $\pm 0.25 \%$.

Electric Specialty Co., Dept. ED, 211 South St., Stamford, Conn.

## Fractional HP Motors <br> 609

From 1/150 hp to $1 / 3 \mathrm{hp}$


These 2-, 4- and 6-pole shaded pole and 6 -pole split capacitor motors are available in ratings from $1 / 150 \mathrm{hp}$ at $3,000 \mathrm{rpm}$ to $1 / 3 \mathrm{hp}$ at $1,075 \mathrm{rpm}$. They can be wound for $115-\mathrm{v}, 208-\mathrm{v}$, or $230-\mathrm{v}$ operation at 50 or 60 cps , and can be engineered for single or double shafts, thermal protectors, special mounting rings, terminals or other features to fit individual motor package needs.

Leece-Neville Co., Dept. ED, 989 Athens St., Gainesville, Ga.

# if you need compact cooling devices 

 ...you need

# COOLERS 

WESTINEHOUSE TherMoliectric

NOW AVAILABLE AT REDUCED PRICES

Now you can have the space and weight savings of Westinghouse "Component-Matched" thermoelectric coolers-with new cost savings, too. Prices are reduced on standard units, up to $50 \%$ !
Exclusive Westinghouse "Component-Matched" configurations! With no moving parts, Westinghouse Thermoelectric coolers provide dependable, compact, lightweight cooling where it is necessary to reduce component temperature below ambient. These unique "Component-Matched" coolers feature exterior cooling surfaces or inner-cooled chambers with tailor-made dimensions to fit specific requirements. As a result of new production facilities, a wide range of configurations can be offered to electronic equipment designers.

Only Westinghouse guarantees minimum $\Delta T$ ratings! Recent Westinghouse improvements in thermoelectric materials and assembly techniques have made it possible to guarantee minimum $\Delta T$ ratings for each cooling unit. Thus, a designer can select the unit he needs knowing in advance what the temperature drop will be from the hot to the cold side of the cooler.
Immediate military and industrial applications include: Photocells, photomultiplier tubes / Germanium transistors / Infrared detectors / Mechanical and electrical instruments / Laboratory and portable medical equipment / Controlling temperatures of solids, liquids and gases.
Westinghouse engineers who developed these new thermoelectric coolers will be glad to provide engineering assistance in your applications. For full information, contact your local Westinghouse representative, or write: Westinghouse Electric Corporation, Semiconductor Dept., Youngwood, Pennsylvania.

SC- 1000


Typical $\Delta \mathbf{T}^{\circ} \mathbf{C}$ versus input currentTypes WX814-H, WX816-H
"Buy and Try" - from Westinghouse distributors - standard WX814 and WX816 Coolers for immediate delivery at new reduced prices.

EASTERN

ACK SEMIC

## CAMERADIO

CRAMER ELECTRONICS INC. ELECTRONIC WHOLESALERS INC. GENERAL RADIO SUPPLY CO INC. GENESEE RADIO PARTS CO.
KANN-ELLERT ELECTRONICS. INC. MILGRAY ELECTRONICS RADIO \& ELECTRONIC PARTS CORP. SCHWEBER ELECTRONICS

Birmingham 5, Ala 'FA 2-0588 Pittsburgh, Pa. EX 1-4000 Melbourne, Florida PA 3-1441 Camden, N. J. WO 4-8560 Butfalo, N. Y. DE-9661 Baltimore. Md TU 9.4242 New York, N. Y RE 2.4400 Cleveland, Ohio/UT 1-6060 MIDWESTERM ELECTRONIC COMPONENTS FOR INDUSTRY CO INTER-STATE RADIO \& SUPPLY CO. St. Louls. Mo. WO 2.9917 LENERT CO RADIO DISTRIBUTING CO SEMICONDUCTOR SPECIALISTS, INC. S. STERLING CO UNITED RADIO, INC. WHOLESALE ELECTRONICS SUPPLY ELMAR ELECTRONICS WESTERN HAMILTON ELECTRO SALES NEWARK ELECTRONICS CO
Westinghouse (W)

SILICON POWER RECTIFIERS

AND TRANSISTORS
NOW IN STOCK
YOU CAN OBTAIN
UP TO 1000 PIECES
OF MOST TYPES
AT
FACTORY PRICES
FROM


ELECTRONICS
SO HERRICKS ROAD

CIRCLE 141 ON READER-SERVICE CARD


## NEW PRODUCTS

Resonant Reed Relay
Has self-holding feature


This self-holding resonant reed relay provides selective, positive contact without the use of auxiliary holding relays. It is unaffected by acoustic and mechanical vibration, and rejects transients up to 25 msec duration. There are 4 reeds, responsive to $75,95,115$ and 135 cps . Narrow or broad response bandwidth and wider frequency range is optional. Response time is 500 msec max; contacts, rated at $2 \mathrm{amp}, 115 \mathrm{v} 60 \mathrm{cps}$ resistive, have a minimum life of 100,000 cycles.
P. R. Mallory \& Co. Inc., Dept. ED, Indianapolis 6, Ind.
Price: $\$ 6$ ea in lots of 1,000 .
Availability: Tuo weeks.

## Closed-Cell Sponge

This closed-cell Viton and Fluorel sponge, a foamed fluorinated polymer, has a standard density $1 / 4$ that of the solid product. It is resistant to fuels and to perchlorocthylene. Standard size is $9-\mathrm{in}$. square, up to $1 / 2-\mathrm{in}$. thick.

Industrial Electronic Rubber Co., Dept. ED, 31945 Aurora Road, Solon 39, Ohio.

## Motor Regulator

481
For $1 / 50 \mathrm{hp}$ to 1 hp


The Reactron is a static ac power-compensating transformer which, in conjunction with silicon rectifiers, provides constant but infinitely adjustable motor speeds, in ratios up to 100:1, on de shunt-type motors directly from ac power supply. The motor may be operated at full-load torque at all speeds, and up to three times fullload torque intermittently. Units are available with motors in $1 / 50$ - through $1-\mathrm{hp}$ models.
Vee-Arc Corp., Dept. ED, Westboro, Mass.

MAGNETRON CONNECTORS


Magnatroe ingut Cenanetar Cal. moose Fits $4152 A$ and almilap
Masnetrons. Foaturas
Mat





Fits Miniature Magnetrons susch as $\mathrm{LL.3028Ba}$ Betron
lium copper heator lium coppar heator an
cathode contacts as uni
cependabion contact. sill
cone cuo cone cup fits snugly ovor
magnetron inout ond. Leads
insulated with sllicone insulated wizh sllicone.


Call or write for bulletins on apecial
sockets, magnetron and other connectors
JETTRON PRODUCTS • INC
56 Route 10. Hanover, New Jersey Telephones: TUcker 7.0571-0572

- Sales Enginoors in Principol Cifies CIRCLE 143 ON READER-SERVICE CARD DESIGN - February 15, 1961


## Relays by StrombergCarlson



## Telephone-type quality • reliability durability

If you require reliable. durable. top quality relays in the equipment you manufacture. you're well advised to consider the relays mede by Stromberg Carlson.

Hundreds of companies have found here the advantages based on our over sixty years of specialization in providing equipment and parts to the independent telephone world.

What's more, we go beyond just the manufacture of relays. If you desire, we can also provide wired mounting assemblies.

Our relays are available in a wide range of types, of which these are representative:
TYPE A: general-purpose. Up to 20 Form "A" spring combinations.
TYPE B: gang.type. Up to 60 Form " $A$ " spring combinations.
TYPE BB: up to 100 Fom " $A$ " springs. TYPE C: (illustrated) two on one frame. Ideal where space is tight.
TYPE E: characteristics of Type A. plus universal mounting. Interchangeable with other makes.

Types A, B, and E are available in high. voltage models. Our assembly know-how is available to guide you in your specific application.

Details on request from these StrombergCartson offices: Atlente- 750 Ponce de Leon Place N.E.; Chicago-564 W. Adams Street; Kansas City (Mo.)-2017 Grand Avenue: Rochester- 1040 University Avenues San Francisco- 1805 Rollins Rosd.

## STROMEERG-CARLSON a oivision of <br> G莫NERAL DYNAMICE

Solid state, with booster


These miniature plug-in amplifiers use neither choppers nor tubes to attain high performance. The operational amplifier, model A-2, has an open-loop voltage gain of 100,000 and a gainbandwidth product of 500 kc . The common-mode rejection ratio is 7.5 million to 1 . Linearity is within $0.1 \%$ in an output swing of $\pm 10 \mathrm{v}$; drift is less than 1 mv over a 45-F ambient temperature change. Its output current of 1.0 ma at 10 $v$ may be boosted to 100 ma by the companion G-2 power booster. The A-2 is $5-\mathrm{in}$. long $\times 2-1 / 4$ in. x 1 in ., and weighs 12 oz .

Schlumberger Corp., Ridgefield Instrument Group, Dept. ED, Ridgefield, Conn.
Price: A-2, \$195; G-2, \$75.

## Sound Survey Meter

680
A sound survey meter for field use, the portable type B weighs 1 lb . It indicates sound pressure levels for 40 to 125 db , and has a frequency response within standard tolerances in the 45. to $8,000-\mathrm{cps}$ spectrum. A vibration pick-up is provided. The solid-state meter uses a mercury cell.

The Korfund Co., Inc., Dept. ED, 22F Cantiague Road, Westbury, N. Y.

Cable Terminations


These ConheX cable terminations, with builtin dummy loads, may be mated with snap-on or screw-on connectors of 50 or 75 ohms. Units are made on order to provide proper impedance match and power capacity, and are available in any value of resistance and tolerance required. The dummy load is made of solid brass, gold plated, machined to accept standard resistors of the $1 / 2$-w non-inductive type.

Sealectro Corp., Dept ED, 610 Fayette Ave., Mamaroneck, N.Y.


Kearfott's MN-30 ferrite is a highly machinable, highpermeability ferrite for use in magnetic cores. Its low losses and high saturation magnetization permit efficient application at frequencies up to 500 kc , while eddy current losses are minimal due to the material's high resistivity. Custom shapes and sizes available with dimensional tolerances within $\pm .001$, density ranges from 4.9 to $5.0 \mathrm{gm} / \mathrm{cm}^{3}$. High quality and uniformity are assured through special compounding techniques, automatic control of firing, and rigid quality control.


Initial Permeability at $21^{\circ} \mathrm{C}$ and 5 kc
Maximum Permeability, measured at 2000 gauss
Flux density at 7 oersteds, using Rowland Ring Test Circuit and Fluxmeter

3000 Min.
6000

Circuit and Fluxmeter 4600 gauss
Flux Excursion for 1 oersted 3500 gauss
Retentivity ( $\mathrm{Br}_{\mathrm{r}}$ )
1300 gauss
0.13 oersteds
$7.5 \times 10^{-6}$
$\begin{array}{ll}\text { Loss Factor } 1_{\mu} \mathrm{Q} \text { at } 50 \mathrm{kc} & 7.5 \times 10^{-6} \\ \text { Loss Factor } 1_{\mu} \mathrm{Q} \text { at } 500 \mathrm{kc} & 30 \times 10^{-6}\end{array}$ Temperature Coefficients of initial permeability (\% per ${ }^{\circ} \mathrm{C}$ ):
From $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Curie Temperature
D. C. Restivity

All magnetic properties are held within a tolerance of $\pm 15 \%$ )
Write for complete data
KEARFOTT DIVISION GENERAL PRECISION. INC.

[^2]
## NEW PRODUCTS

Power Supply
For ac-dc devices


Model CV-1171-PS is designed to provide 110 $v$ de for small appliances from 400 -cps distribution systems. It is a self-contained unit measuring $2 \times 5-1 / 2 \times 1-1 / 2 \mathrm{in}$., weighing 0.9 lb . Input is 115 v 400 cps ; output is $110 \mathrm{v}, 300 \mathrm{ma}$ dc. It has a $5-\mathrm{min}$ overload capacity of 700 ma at 90 v min.
Espey Manufacturing \& Electronics Corp., Saratoga Industries Div., Dept. ED, Saratoga Springs, N.Y.

## Alkaline Manganese Battery

679
This alkaline manganese battery was developed specifically for hearing aids. The N -size cell gives $140-\mathrm{hr}$ service on discharge to nominal 0.9 v , with another 20 hr of useful life.
P. R. Mallory \& Co., Inc., Mallory Battery Co., Dept. ED, North Tarrytown, N. Y.
Price: $\mathbf{\$ 0 . 3 0}$.

## Building Blocks

For digital applications


Plug-in building blocks for digital computer applications provide flip-flop, multivibrator and univibrator elements in any combination. Frequency response of the flip-flop elements is above 20 kc ; multivibrators are available with any frequency from 250 cps to 20 kc . The univibrator may have any pulse duration from $4 \mu \mathrm{sec}$ to 4 msec . The silicone rubber encapsulated units are $2-3 / 4 \times 3-1 / 8 \times 1 / 2 \mathrm{in}$., weigh 2 oz , and contain 2 elements in any combination.

Marketing Computers, Inc., Dept. ED, 50 St. Benedict, Florissant, Mo.
Price: $\$ 14$ in sample quantities.
Availability: 1 week.


## makes the blower you


most stocked for $\mathbf{2 4}$ hour prototype delivery
For any electronic cooling problem that comes down your road, look to Globe! This big new line of vaneaxial blowers may meet your need right now. Or Globe will design and develop a special blower for your application (it's not as difficult as you think). Because we make all kinds of motors, we can control all the variables-size, weight. high temperature performance, and MIL spec factors. A.C. blowers are for 60.400 cycle, or variable frequency; a.c./d.c. blowers are for universal operation. Globe also makes a complete line of miniature centrifugal and tube-axial blowers and open fans. Request Bulletin VTC from Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio.

GLOBE INDUSTRIES, INC.
 CIRCLE 147 ON READER-SERVICE CARD

Servo Accelerometer


Of closed loop-servo design, the model PAV-1S variable range servo accelerometer has a threshold sensitivity of better than 1 part in 100,000 . In range between $\pm 1 \mathrm{~g}$ to $\pm 30 \mathrm{~g}$, the unit may be adjusted to provide any full scale range between $30 \%$ and $95 \%$ of maximum. The 3 -oz accelerometer operates on $\pm 15 \mathrm{vdc}$ at $\pm \mathbf{1 0 \%}$ at $\pm 7 \mathrm{ma}$, or 28 v dc $\pm 10 \%$ at 15 ma . Output is either $\pm 7.5 \mathrm{v}$ dc or 0.5 v dc at 1.5 ma .

Palomar Scientific Corp., Dept. ED, 4039 Transport St., Palo Alto, Calif.
Price: $\$ 670$.
Availability: 6 to 8 weeks.

## 15-g Synchros

675
Improved brush configurations on all size 8, 10, and 11 synchros and resolvers permit operation in the vibration spectrum of 10 to $2,000 \mathrm{cps}$ at 15 g . The feature is common to all units at no increase in price.
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

## AC/DC Converter

With automatic range selection


Used with a digital voltmeter, the 125 E ac to dc converter automatically selects the proper range between 1 mv and 1 kv . It is suited for automatic data logging and system testing jobs where a wide range of ac voltages are being measured. Input impedance is 10 meg . Output voltage will be within $0.01 \%$ of final value in less than 6 sec for full scale excursion at the lowest frequency, 30 cps .

Non-Linear Systems, Inc., Dept. ED, Del Mar, Calif.
Price: $\$ 1,500$.
Availability: Immediate delitcry.

## THE POLYSKOP

ONE INTEGRATED SWEPT-FREQUENCY SYSTEM REPLACES FIVE UNITS


TWO CHANNEL FREQUENCY RESPONSE DISPLAY FOR TWO AND FOUR TERMINAL NETWORK MEASUREMENTS.

The Polyskop Type SWOB is a visual display swept-frequency signal generator with a frequency range of 500 kc to 400 mc . It provides an automatic display of the response a given quantity exhibits with a change in frequency, thereby replacing timeconsuming point-by-point measurements with display curves which render instantaneous answers. Measurement and alignment work may be relegated to semiskilled personnel, and production tests may easily be carried out by unskilled workers.

## Outstanding Advantages of the POLYSKOP:

- Saves time - Solves problems up to 50 times faster
- Saves money - Relieves skilled personnel from routine work
- Universal usefulness - Wide frequency range ( 0.5 to 400 mc ) covers radio and television upwards to UHF
- Dual-trace display - Facilitates simultaneous checking of two mutually independent quantities.
- Completely self-contained measuring system - Control of error sources.
- Large screen scope display - Giving a resolution compatible with the accuracy which can be obtained with the system.
- Delivery from stock.

ROHDE \& SCHWARZ
111 Lexington Ave., Passaic, N. J. • PRescott 3-8010
A DAY'S WORK IN LESS THAN ONE BECONDI

ay employing a single lens Re"10x 35 mm . camera in conJunction with the Polyskop. documentation is fast, simple and inexpensive. Resultant picincluding graticule. frequency curves, serial number and date. Comera attochment is hinged for direct viewing.

WRITE FOR 8-PAGE POLYSKOP BROCHURE

## NEW PRODUCTS

## Meter Calibrator

General utility type


The model 600 meter calibrator is designed for checking ac and dc voltage and current meters in shop areas. There are 7 ac and dc voltage ranges, between 0 to 2.5 v and 0 to $500 \mathrm{v} ; 13 \mathrm{dc}$ current ranges, between 0 to $100 \mu \mathrm{a}$ and 0 to $1,000 \mathrm{ma}$; and 7 precision resistance decades from 25 ohms to 2.5 meg. Accuracy on all ranges is $3 / 4 \%$ of full scale, except for the $0.2 \%$ accuracy in resistance ranges. The rack-mounting unit is $10.5-\mathrm{in}$. high and $15-\mathrm{in}$. deep. Where greater accuracy is required, $1 / 4 \%$ on all ranges is available with the addition of the model 600 A auxiliary unit.
Mid-Eastern Electronics, Inc., Dept. ED, 32C Commerce St., Springfield, N.J.
Price: Model 600, $\$ 99.5$; model 600A, $\$ 59.5$.

## Connector Caps

678

Vinyl protection caps for rectangular connectors are made in 12 sizes. In addition to protecting connectors from impact damage, the bright yellow caps keep out moisture, dust, and contamination.
S. S. White Industrial Div., Plastics Dept., ED. 10 E. 40th St., New York 16, N. Y.

## DC Power Supplies

Regulation is $0.1 \%$


Current regulation of $0.1 \%$ from no load to short circuit and $\pm 10 \%$ line voltage variation, over an output range of 0 to 20 v , is provided by the IQ series dc power supplies. The transistorized units are made in 6 ranges: $2,6,10,15$ 25 , and 50 amp . Ripple is held to less than 600 $\mu \mathrm{v}$, with transient response less than $50 \mu \mathrm{sec}$. Power requirement is 105 to 125 v ac, 60 cps .
Universal Electronics Co., Dept. ED, 1720 22nd St., Santa Monica, Calif.
Price: $\$ 925$ for $15-\mathrm{amp}$ model IQ20-15A.

## Size 328 Resolvers

Error in less than 20 sec


Maximum error from electrical zero does not exceed 20 sec in these size 28 resolvers. They function as 4 -wire control transmitters, control differential transmitters, and control transformers. A system composed of 3 such units has a total error that is less than 35 sec . For use with 400 -cps power, excitation voltages are 90 v and 115 v . Operating temperature range is -55 C to 125 C. Model Z5153-004 has a power input of 0.180 w ; model Z.5163-001, 4.6 w , and model Z5193-001. 1.60 w . BuOrd numbers have been assigned.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N.J. Availability: (6) to 90 ) days.

## Phosphor Coating

677
Used on more than 200 different cathode-ray tube types, P31 phosphor is reported to increase brightness by an average $60 \%$ gain. The color and persistence characteristics of P31 make it a replacement in most P1 and P2 requirements where there is bright ambient light.
Thomas Electronics, Inc., Industrial and Military Cathode-Ray Tube Div., Dept. ED, 118 Ninth St., Passaic, N. J.

## Audio Transformers

Rated from 0.15 to 10 w


These transistor audio transformers range from 0.15 to 10 w . They are designed for interstage, driver and output applications. TA-53 and TA-54 are rated at 0.15 w and measure $13 / 16 \times 5 / 8 \times$ $11 / 16 \mathrm{in}$.; TA-52 and TA-55 are rated at 0.3 w and measure $1-5 / 8 \times 13 / 16 \times 3 / 4 \mathrm{in}$. Five other units range from 0.5 to 10 w .

Chicago Standard Transformer Corp., Dept. ED, 3501 W. Addison St., Chicago 18, Ill. Price: From $\$ 3.61$ to $\$ 7.06$ ea.
Acailability: Immediate through distributors.

## ENGINEERED COMPONENTS

## for the Electronics Industry

Now-Garlock Electronic Components are immediately available wherever and whonever needed!
Through a new, widespread distributor organization, Garlock now offers fast delivery of CHEMELEC Stand-off and Feed-Thru Insulators, Subminiature Tube and Transistor Sockets, and Connectors. Here, too, is an increased opportunity for close-at-hand assistopportunity for close-at-hand assist-
ance from Garlock distributors expeance from Garlock distributors expe-
rienced in applying electronic products.
Take advantage of on-the-spot availa-bility-specify these skillfully engineered Garlock electronic components. neered Garlock electronic components. Reliable under the most severe condi-
tions, they are ideal for high temperature, high voltage, high frequency service on missile guidance, fire control, tracking, and radar systems. Garlock has the technical personnel and modern facilities to produce components of all materials-Tefon $\dagger$ TFE and FEP, Nylon, Delrint, C.T.F.E.** - and in a range of sizes, designs, and tolerances to fit your exact needs.
Al your disposal, too, for development of new electronic products, Garlock maintains complete electrical, chemical and physical laboratories staffed by top-flight engineers. Your Garlock Electronic Products representative will be glad to discuss specific products and service with you. Call him at the nearest of these locations:

| ABBETT \& MUSTIS 1245 Highiand Ave. Needham 92, Mass. | I Y.SCMOONMAKERC 5328 Redfield Ave. Dallas 35. Texas |
| :---: | :---: |
| BOB BRAY is North Mentor Ave. Pasadena, Calit. | LAME ENGINEERINGCO.LTD 767 Warjen Ave. Scarborough, Ontario |
| CARL HOWER 340 N. Marshall Ave. Scoltsdale. Arizona | MAUDAIN-BOHAKER ECO Suburban Sta. Bldg., <br> Rm. 1032 |
| DON SMITH SALES CO 2320 N. 45th St. <br> Seattle 3. Washington | Philadelphia 3. <br> RUDAT \& EWING 636 Waverley St. Palo Allo. Ca |
| GRANT SHAFFER COMPANY 14241 fenkel Ave. Detroit 27. Michigan | SCOTT \& STEFFEN, INC. 1836 Euclid Ave. Cleveland 15. Ohic |
| HILL AND GRAY, INC. 411/2 Harrison St. Oak Park, Illinois | SOUTHERN SALESCOMPANY 105 Lakeshore Drive Angola. Indiana |
| J. P. DEARIE AND CO. Mountain Lake. New Jers STANLEY K. | R E. CATHEY CO. Denver 8. Colorado ACE ASSOCS. INC 3ox 67 |

You may also obtain more information by writing for Catalogs AD-169 and AD-171, Garlock Electronic Products, Garlock Inc., Camden 1, New Jersey.

## G A R L

 ELECTRONIC PRODUCTSCanadion Div.: Garlock of Canada Ltd.
Plastics Div.: United States Gasket Company
Order from the Garlock 2,000 . . . two thousand different styles of Packings, Gaskets, Seals, Molded and Extruded Rubber, Plastic Products.
Peointorod Prodomork "Ppolychloroti invoroathrome

## (wionio CLEAR <br> NEW PRODUCTS DC Power Supply <br> Has two outputs

FM TELEMETRY TRANSMITTER PROVIDES...

- Carrier frequency stability to within $\pm 0.01 \%$
- Frenquency response within 0.5 db
- Frenquency response with
- 2 watts minimum output
- Virtual immunity to extreme environments
- Low microphonics
- Pellability proven In Tiros I, Redstone, Jupiter,
- Snark and other missile programs
- Off-the-sheif avallability

For complete information on the Modet 3115 ask for: Technical Bulletin RAD B-102. Write Dept. ED-2.


RADIATION
Melbourne. Florida
CIRCLE 150 ON READER-SERVICE CARD


SEND FOR COMPLETE TEST REPORT. YOURS WITHOUT OBLIGATION. PYROFILM RESISTOR COMPANY, Inc. U.S. Mighway \#46, Porrippeny, Now dersey


Two de power supplies are combined in an 8-1/4-lb package. One supply delivers 2, 6 and 12 v dc, selectable; the other 1 to 30 v dc, variable. Outputs may be used separately or simultaneously. Power sources may be 115 v ac, 50 to $2,000 \mathrm{cps}$ or aircraft or marine ac/dc, 20 to 35 v . Transistor circuitry is used throughout.
R-K Labs, Dept. ED, Box 291, Buena Park, Calif.
Price: $\$ 199.50$ ca.

## Magnet Material

A magnetically oriented, rubber-bonded barium ferrite, Plastiform 1 has high coercive force and an energy product of about 1 million gauss oersteds.

> WHY AIR FORCE HAS ADOPTED MICROFILM FOR ENGINEERING DRAWINGS

Easily machined or cut, the material has high impact strength and will not chip in use. It is available in rings, sheets and strips
Leyman Corp., Dept. ED, 5178 Crookshank Road, Cincinnati 38, Ohio.

## Power Regulator

For computer operation


The type NPR solid-state power regulator controls the output of a power supply for operation of computer elements, providing closely regulated voltages at low impedance. Input is +16 v and -16 v ; output is +12 v at 2.50 ma and -12 v dc at 500 ma . The $+12-\mathrm{v}$ output is adjustable to within $1 \%$ from 10 to 16 v .
Ransom Research, Dept. ED, 374 W. 8th St., San Pedro, Calif.
Price: From $\$ 67.50$ to $\$ 57.40$.
Availability: Delivery from slock.

Recently the Air Force issued new contract requirements of vital importance to companies that are doing-or intend to do-business with its various activities. In essence, the Air Force has made the use of microfilm mandatory for most engineering data and records relating to items delivered by contractors and their vendors.

The new requirements (MCP.71-77) incorporate standards and specifications issued earlier by the Department of Defense for its Engineering Data Micro-Reproduction System. The Air Force move is indicative of the importance of microfilm to the government in saving time. money, and space.
The Air Force is convinced that working with microfilm is easier than working with paper, that it is more efficient and costs less. Filmwork, in other words, is easier and more practical than paperwork for engineering drawings and records.
This is not news to the many industries that use microfilm today. They know that microfilm is a highly efficient and effective production communication tool. They know that microfilm can do many jobs much faster and much more accurately, with almost fantastic savings in time and money.

## 3M makes microfilmeasy to use

## Dielectric Test Set

Has motorized output


Model K15-2M high-voltage ac dielectric test set is a one-piece unit with a motorized output control and a continuously variable output of 0 to 15 kv rms and a 2-kva capacity. Waveform distortion is below $5 \%$ and a dual-scale kv meter is connected directly at the output for accurate voltage indication.
Peschel Electronics, Inc., Dept. ED, Towners, Patterson, N.Y.
Price: $\$ 1,19()$ ea.
Acailability: Two week delivery.

## Playback Assembly

422
The PA-8414 magnetic head playback assembly is designerd to operate with built-in time delay, directly on an FR-100 tape transport. Fourteen channels are controlled by one micrometer. A stag.
gered array of heads provides fixed time delays between tracks.
Applied Magnetics Corp., Dept. ED, P. O. Box 368, Santa Barbara Airport, Goleta, Calif.

## DC Power Supply

Output to 350,000 v


Model 2350-8 dc power supply has an output range up to $350,000 \mathrm{v}$. It is designed for dielectric testing of cables and klystron apparatus, for particle accelerators and the study of high-voltage discharges. The unit provides continuous current of 8 ma at any output voltage and has $2 \%$ rms ripple. Auxiliary filters reduce ripple to $0.01 \%$.
Sorensen \& Co., Inc., Dept. ED, Richards Ave., South Norwalk, Conn.
Price: $\$ 13,500$.
Acailability: Four months.




Microfilm really became practical for industry only a few years ago when Minnesota Mining and Manufacturing Company introduced THERMO-FAX "Filmac" Reader Printers. For the first time, the advantages of a reader and a printer were combined in one compact, low cost unit. Today there's a "Filmac 200" Reader. Printer that has a huge viewing screen, simple pushbutton operation, makes copy after copy in $18^{\prime \prime} \times 24^{\prime \prime}$ size or half size prints of engineering drawings and data from microfilm in FILMSORT Aperture Cards. A "Filmac 100" Reader Printer delivers $8 \frac{1}{2} 2^{\prime \prime} \times 11^{\prime \prime}$ copies in seconds, too.
FILMSORT Aperture Cards and "Duplicard" Copy Cards long used by government and industry are designed to CIRCLE 154 ON ELECTRONIC DESIGN • February 15, 1961
meet military specifications and standards. These are the punch cards that make microfilm so easy to file, find, and use.
FILMSORT Microfilm Copiers, Mounters, and Readers are designed exclusively for FILMSORT Aperture Cards. They are engineered to make your microfilm system profitable.

## Get the proof!

For complete information on how 3M makes microfilm so easy to use, for details about military microfilm standards and specifications, and for a free copy of "How to Put Microfilm to Work," mail this coupon today.
Please rush me information on how 3 M makes microfilm so easy to use. details about the Department of Defense speci fications. $\square$ tree copy of "How to Put Microfilm to Work.

Name
Title
Company
Address
ddress

## 3M MICROFILM PRODUCTS

## Minmesova Misime ane Mamuractivine company 3M

Dopl. rCD-21s1, SL Paul C. Mina

## (1)

 TERAGLAS
## A NEW CLASS B INSULATION WITH RESILIENT WEAVE AND HIGH DIELECTRIC STRENGTH UNDER STRETCH

Natvar Teraglas is a new flexible insulating material comprising a base rabric, woven Irom polyester (polyethylene terephthalate, or "Dacron") warp yams and continuous filament glass hiller yams. coated with an improved varnish, possessing exreptional dielectric atrength under elo tion. It will withsland Class B ( $\mathrm{NO}^{\circ} \mathrm{C}$ ) operating lemperature
In view of the higher dielectric strength of Natvar Teraglas compared to bian vamished cambric, thinner sections or lewer layers may be used to provide the volkage breakdown protecion deaired. realized in produc tion costa. while permitting up grading to Class B ( $130^{\circ} \mathrm{C}$ ) temperatures. Natvar Teraglas will prove advantageous in meny applications-for in sulating motors, generalors, transformers, cables, switch gear, busbars, and other apparatus and equipment where resiliency and high diele tric strength are desirable.
Natvar Teraglas is available in four thicknesses, .008, .010, . 012 and $.015^{\prime \prime}$-in tapes, in full width rolls ( $36^{\prime \prime}$ ), or tn sheets. Ask for Date Sheet and Samples.

## NATVAR comoomonow

 Tolephom: FULTOM E-Es00 Cablo ACHMas: EATVAR:
241 RANDOLPH AVENUE - WOODSRIDGE, NEW JERSEY CIRCLE 153 ON READER-SERVICE CARD

Send for this 7 ree SAMPLE FOLDER


## Contains 25 different test samples of highdielectric Insulating Tubing \& Sleeving.

Includes samples and descriptions of: Varglas Silicone - Permafil-Impregnated Varglas Tubing - Varglas Tubing and Sleeving - Varglas Non-Fray Sleeving -
Varflo Tubing and Sleeving - Varflex
Cotton Tubing and Sleeving - Syntholvar
Extruded Tubing
Wrife foday!

## VARFLEX CORPORATION

508 W. Court Sp.
Rome, N. Y.
CIRCIE 152 ON READER-SERVICE CARD


## Defining "Loss" in Wave-Filter Specifications



There are two kinds of power-loss measurements of primary concern in filter work. These are called Transducer Loss and Insertion Loss. Because of their similarity, they are often used indiscriminately with the result thal hlter-design specifications are somel when exact meanings of these two iusion can be eliminated when exact meanings of these two It is the purpose of this article to tle down meanings of the terms Transducer Loss and Insertion Loss.

## filfors Are Traneducert

A transducer is, by definition, any device that can recelve energy from one system or systems and deliver it to another system or systems. A wave-filter is a transducer in the field of inductive components since it is capable of being actuated
by waves from one or more transmission systems and of supplying related waves to one or mission systems and of systems.
Text and derivations that follow make reference to ar. ideal transducer. While, of course, there is no such thing as an ideal or theoretically perfect transducer, concept of such a device is most useful. An ideal transducer is defined as one that transfers the maximum possible power from source to
Such a hypothetical ideal tran
Such a hyporthetcal (a) dissipates no sents to each its conjugate impedance. Conjugate impedances occur when two connected networks have equal resistive components, and reactive components are equal in magnitude but opposite in sign ( $R_{\mathrm{B}}=R_{\mathrm{L}}$ and $X_{8}=-X_{\mathrm{L}}$ ).

## Transducer Loss

Transducer Loss is the ratlo of power which an ideal transducer would deliver to a specified load from a specified source to the power delivered from the same source to the same load by the actual transducer.
Transducer loss is determined as follows. Power relationships are derived from the elementary circuit diagrams of
Figs. 1(a) and 1(b).

Insertion Loss
Insertion loss resulting from connecting a transducer into a transmission system is the ratio of power delivered to that part of the system following the transducer, before insertion of the transducer, to power delivered to that same part of the system after insertion of the transducer. Power relationships for determination of Insertion loss are derived from the elementary circuit diagrams of Fig. 2.


Insertion Loss in do

$$
=10 \log \left[\frac{\left(I_{1}\right)^{2} R_{L}}{\left(I_{z}\right)^{2} R_{L}}\right]
$$

(4)

Or, since $E_{1}$ and $E_{2}$ are proportional to $I_{1}$ and $I_{2}$ respectively. equation (4) becomes

$$
\begin{aligned}
& \text { Insertion Loss in db } \\
& \quad=10 \log \left[\frac{\left(E_{E_{1}}\right)^{2}}{\left(\mathrm{E}_{2}\right)^{2}}\right]=20 \log \left[\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}\right]
\end{aligned}
$$

(5)

Circuit impedances do not enter into the expression even though they obviously affect the quantities involved and, hence, the numerical result. However, equations do represent a true power ratio under all conditions.
Comparison Botween Transducer And Insertion Losses
It is obvious that Transducer Loss and Insertion Loss are not the same. Both ratios use power delivered to the load through the actual transducer as denominators of the expres delivered to the load through an ideal transducer with power delivered to the load through the actual transducer. Insertion Loss compares power delivered to the load with the transducer omitted completely from the circuit with power delivered to the load through the actual transducer.
Special note should be made that the value of $E_{1}$ in equation (3) and $E_{\text {, }}$ in equation(5)are NOT equal. With this fact In mind, the two equations can be defined in the same terms by writing $E_{1}$ in equation (5) in terms of $E_{1}$ in equation (3). of Transducer Loss: Insertion Loss=
 It is now obvious what results from Indiscriminate use of the term Transducer Loss and Insertion Loss. If a filter is required with an insertion loss of 7.5 db but transducer loss Is specified, the filter is manufactured with a T. L. of 7.5 db . When measured by the customer it exhibits an insertion loss of 7.5 db plus a factor of $10 \log \left[\frac{R_{L}}{R_{L}+R_{3}}\right]^{2}-10 \log \left[\frac{R_{L}}{4 R_{5}}\right]$
which puts it out of specification. which puts it out of specification.
It is the purpose of this article to emphasize the fact that insertion Loss and Transducer Loss are different. The only time they can be considered to have the same value is the condition under which $R_{L}=R_{8}$. That this is true can readily that the last two terms cancel out. This is the only time Insertion Lose Equals Transducer Lose. ansducer Loss.
Cleforence: IRE Srandords on Audio Systeme and Componenrs, S6IRE3.51.
SC 00.10 A
SANGAMO ELECTRIC COMPANY, Springfiold, Illinois - designing toward the promise of tomorrow

## NEW PRODUCTS

Dual-Channel Recorder


The model 81 recorder provides 2 channels of input which simultaneously record full scale. Trace identification is used. Each channel has 5 calibrated full-scale voltage ranges and 5 calibrated full-scale current ranges from 10 mv to 100 v and from $1 \mu$ a to 10 ma . Input resistance on all voltage ranges is 1 meg . The unit records on pressure-sensitive paper every second. Chart speeds from 2 to 60 in . per hour, in 8 increments, are available.

Yellow Springs Instrument Co.. Dept. ED, Box 106, Yellow Springs, Ohio.
Price: \$49.5.
Acailability: From dealer stock.

## Diode-Shipping Package

This diode-shipping package, called Test-Pak allows the purchaser to test incoming diodes without removing them from the package. It consists of a styro-foam block which encases the diodes and holds the diode leads in a rigid position. A special test jig is furnished with each shipment. Diodes arc packed 20 to a package, 5 packages to a box.

Delta Semiconductors, Inc., Dept ED, 835 Pro duction Place, Newport Beach, Calif.

## Summary Network

Withstands 100-g shock


This summary network is in effect a distributed constant delay line and is designed to withstand $100-\mathrm{g}$ shock. It has a total delay time of $1.6 \mu \mathrm{sec}$ $\pm 0.026$ and a tap delay of $0.8 \mu \mathrm{sec} \pm 0.013$. Impedance is 600 ohms $\pm 10 \%$ and operational temperatures are from -65 to +165 F .

Nytronics, Inc., Essex Electronics Div., Dept. ED, 5.50 Springfield Ave., Berkeley Heights, N.J

CIRCLE 157 ON READER-SERVICE CARD * ELECTRONIC DESIGN • February 15, 1961


## Allen-Bradley Low Pass Filters

Prevent Undesired Radiation... 100 Mcps to 8000 Mcps
Where at high frequencies conventional feed-thru capacitors become useless these Allen-Bradley low pass filters insure effective filtering of undesired frequencies. Their performance surpasses the theoretically ideal capacitor the effective filtering actually increases with frequency over a wide band. And here's another "plus" feature there are none of the undesirable parallel resonances experienced with standard tubular
capacitors. Thus, unusual attenuation - 75 db and more is possible in the frequency range from 100 Mcps to 8000 Mcps.

Although designed for low power applications, the Allen-Bradley low pass filters are available in ratings up to 2000 volts and with maximum d-c or low frequency a-c current ratings up to 20 amperes. These miniature filters provide single hole mounting -directly on metal shields. Also, they are usually interchangeable with conventional feed-thru capacitors, but provide far greater suppression of undesired radiation and feedback. Send for Technical Bulletin 5410.

Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee 4, Wis. • In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

## ALLEN - BRADLEY

Quality Blectronic
Components


Reliable Performance and
Stable Settings

In critical applications, Allen-Bradley Type $R$ adjustable fixed resistors are uithout equal. For example, in recent tests* Type $\mathbf{R}$ resistors successfully withstood acceleration, shork, and vibration five times better than the latest MIL spec requirements. Such wide margin of safety is your assurance of complete reliability. Virtual indestructibility is obtained hrough an exclusive Allen-Bradley process in which the olid resistance elements and the insulating mounting are hot molded into one integral unit. The moving element is selfmocking for absolutely stable settings. Also, the Type R control allows "stepless" adjustment of its resistance.
The molded case of the Type $R$ control is watertight and dust-tight. Rated $1 / 4$ watt at $70^{\circ} \mathrm{C}$, these Type R controls are avallable in values from 100 ohms to 2.5 megohms. - Test Repure 771801, Sept. 1960, Unuted States Testung Company.

UNDER EXTREME ENVIRONMENTAL CONDITIONS

> NEW CUP GUARD

## ALLEN - BRADLEY

## QUALITY ELECTRONIC COMPONENTS

Trimmer Resistors
Measure $1 / 4 \times 1 / 4 \mathrm{in}$.


These ceramic-hase trimmer resistors are designed for micro-, sub-, and miniature-applications. The single potentiometer-type microminiature units are rated at $1 / \underline{0} \mathbf{w}$ and measure $1 / 4$ x $1+\mathrm{in}$. The subminiature units are rated at 110 w and measure $7 / 16 \times 13 \mathrm{3} 2 \mathrm{in}$. The miniature size. rated at $1 / 5 \mathrm{w}$ is $7 / 16 \times 11 / 16 \mathrm{in}$. All lave a thickness of 0.1 in . Available resistances range from $5(k)$ oloms to 5 meg . standard tolerance is $\pm 30 \gamma_{k}$.
Centralah Dis., (Gobe-U'nion, Inc., Dept. EDD, G(K) E. Kerefe Ave., Milwaukee, Wis.
Price: From \$10.25 10 \$0 80.80 eal
Availability: Four to six weeks.

## High-Current Chokes

This series of high-current chokes is designed for computer power supplies. All units are packaged in MIL-T-27 cases of AH type. Chokes are foil-wound and range from 500 wh at 5 amp to 100 wh at 20 amp.
Atlas Transformer Co., Dept. ED, 1839 Moore St., San Diego 1, Calif.

## TV Camera

For intercom use


The model 700 TV camera, for intercom and educational applications, provides 600 -line horizontal resolution and optional audio channel. The camera features low-noise cascode video input, linear phase-type aperture correction, automatic exposure control, an interlacing synchronization generator, and vidicon protection circuitry. The model $700-\mathrm{S}$ has a microphone and amplifier channel.

Tele-Tronics Corp., Dept. ED, 12786 Western Ave., Garden Grove, Calif.
Price: Model 70n, \$1,295; Model 700-S, \$1,495.
\& Circle ist on reader-service card
ELECTRONIC DESIGN • February 15, 1961

## 26 standard Adage modules,

 assembled to serve a special purposeThis digital a-c ratiometer, designed to customer specifications for Nike Zeus checkout systems, typifies the Adage way with special purpose devices.


Adage assures rapid and economic design and delivery of special equipment with a variety of input-output functions:

## AC-DC Conversion Multiplexing High Inpuł Impedance Programmed Ranging and Mode Selection

## Differential Input <br> Limit Test

Min-Max Peak Reading
Magnetic Tape, Paper Tape, Typewriter \& Printer Outputs

For high-speed. reliable, and accurate systems components engineered to your specifications, contact


292 MAIN ST., CAMBRIDGE 42, MASS.
West Coast Facility: 1145 East Ash Avenue, Fullerton, California CIRCLE 158 ON READER-SERVICE CARD


## Now, with the new Bina-View <br> digital roadouts take on an added dimension Here is a readout that operates direct from binan <br> Input, has its own retentive memory, and offers one-plane <br> in mind, it is not to be confused with other readout devices on <br> The Bina-View Disital Readout fills the long-standing need for a fast, accurate, binary operated Iisplay in the filelds of dirital computers, missile checkout systems, ground support equipment, etc. Its ability to operate within a wide range of binary codes makes it the most versatile readout available today <br> Ropronatives in Impustrial Electronic Emgimeers, Inc. principal cities. <br> $\square$ <br>  <br> REC's INDUSTRIAL TEMPERATURE PROBES

 CIRCLE 159 ON READER-SERVICE CARD


COMSTANT voltage dDISTAII current PROGRAMMABLE CROSSOVER

Model 4005 is a $1-40$ volt. 500 ma, regulated DC $\$ 743^{50}$ power supply incorporating AMBITROL * The AMBITROL ${ }^{\circ}$ circuit will switch automatically to either voltage regulation or current regulation at any point predetermined by the control of voltage or current to $.05 \%$.

## 1~Pourer Devigus inc: <br> 1700 SHAMES DRIVE <br> WESTAURY, NEW YORK

EDgowood 3-6200 1LD Area Code S16: CIRCLE 161 ON READER-SERVICE CARD

## NEW PRODUCTS

Load Cells
Ranges from 0 to 50 lb


These load cells measure tension or compression force in ranges from 0 to 50 lb . They will operate a recorder with a strain gage channel, or may be connected as a dc bridge to operate a recorder with a de channel. Sensitivity is at least 1 mv per v at rated capacity. For tension force, model 002 has a range of 0 to 5 lb ; model 003,0 to 50 lb . Aluminum body is $1-11 / 16 \mathrm{in}$. long and $1-3.8 \mathrm{in}$. in diameter. For compression force, model 021 , from 0 to 5 lb . and model 015, from 0 to 50 lb , are 3 in . in diameter at base by 3-1 8 in . high.
Sage Instruments, Inc., Dept. EI), 9 Bank St. White Plains, N.Y

## Rate Gyro

Replaces free gyro


Where output on only one axis is required, and unlimited rotation is not required, the model IG01 de integrating rate gyro will replace a free gyro. Potentiometer output indicates displacement within $5 \%$ of actual position when displaced at a rate of 10 deg per sec over a range of +60 $\mathrm{deg},-40 \mathrm{deg}$. Weight is 18 oz . The unit will withstand temperatures from -6.5 F to 186 F . unlimited altitude, shock of 20 g and acceleration of 40 g on any axis.
Humphrey, Inc., Dept. ED, 280.5 Canon St., San Diego 6, Calif.

Impedance Converter
For buffering
Impedance converter, model IC 130 is designed to buffer piezoelectric and other highimpedance signal sources from recorders, amplifiers and other instruments. Bandwidth is 1 cps
to 100 ke. Input imperlance is $1,(\mathrm{KN})$ meg. common mode rejection is 130 dt with up to 200 v from signal source. Output capability is $\pm \underline{2 x} \mathrm{v}$ at $\pm 1$ ma. Construction is modular.
Compute: Engineering Associates, Inc... !ept. ED, 350 N. Halstead. Pasadena. Calif. Price: s29.5 ca.
Acailab:lity: From stock.
Variable-Scale Counter
With 10 outputs


The model 606 is a preset, variable-count ring circuit, clearable on command, with a ligh peak current drive capability available from cach stage of the ring. As all 10 outputs have external terminals, the register may be connected as a ring counter with nine scales or as a frequency divider with any internal ratio from 2:1 to 10:1. Maximum input pulse rate is $1(0) \mathrm{kc}$ : minimum input pulse amplitude is -6 v , with a minimum width of $4.0 \mu \mathrm{sec}$.
Magnetics Research Co., Dept. EI), 179 Westmereland Ave, White Plains, N.Y.
Price: $\$ 175$.
Availability: Stock to 45 days.
Delay Line
With 10 outputs


The type 158 magnetostrictive delay line has a mavimum delay of $39 \mu \mathrm{sec}$, with up to nine additional outputs. Input pulse width is $0.8 \mu \mathrm{sec}$ with a maximum repetition rate of 625 kc . $\mathbf{I n}$ sertion loss is about 50 db ; signal-to-noise ratio is $20: 1$. The temperature coefficient of delay is about $1(0)$ ppom per deg C. Input and output impedances are 500 ohms. The slab-shaped unit measures $7.1 / 2 \times 5-1 / 2 \times 3 / 4 \mathrm{in}$.
Deltime, Inc., Dept. EID, 6018 Faycte Ave, Mamaroneck, N.Y.

## A COMPLETE STOCK



OF 3 DIFFERENT TYPES

oval commercial...
Woven. tinned copper tubular braid, used as an electrostatic shield to cover conductors, cables. or other components, since it slips over them easily, due to its oval shape and flezibility.

## OF SIIIELDING \& BRAIDING!



TUBULAR . . . To Mil Spec QQ-B-575. Woven. tinned copper round braid, used in military applications requiring maximum shielding against electrostatic interference, mechanical abrasion and stresses. Construction has self-supporting characteristics enabling it to maintain its round configuration. Percentage of shielding coverage is $95 \%$ or more.
Special Constructions are available to order In the flat, oval, or tubular braid.
PLAT. . . Woven. flexible, tinned copper braid, generally used as a high current conductor at low voltages, and as a bonding strap in vehicles and a a arcraft to eliminate ignition interference. I
 -


LEADS THE FIELD WITH ADVANCED DESIGN!


## RIBBED CERAMIC

 COIL FORMS with internal torqueRibbed ceramic eliminates loose leads - permits you to feed wire lead under pie winding to terminal lug, when necessary. DELIVERY FROM STOCK! NO WAITING!



WATERS MANUFACTURING, INC. . WAYLAND, MASS. CIRCLE 164 ON READER-SERVICE CARD

Now...G-E Unijunction Transistors give you silicon performance at germanium prices


The 2NI671A and 2N1671B offer guaranleed characteristics for firing General Electric Silicon Controlled Rectifiers. Supply voltages and component values are easily determined from a single graph on the specification sheet.


NEW PRODUCTS
Selector Switch
Solenoid-driven


The Pacsol D size rotary solenoid, together with its detent mechanism, measures $1-5 / 8 \mathrm{in}$. long. Up to 10 wafers may be stacked on the output shaft, with an additional length of $11 / 64$ in. per wafer. The package has a diameter of less than 1-1/2 in. The solenoid steps 360 deg in 30 -deg increments and is single-pulse operated. Power input is 60 w for 10 wafers.
Illinois Tool Works, Licon I)iv., Dept. ED, 6616 IW. Dakin St., Chicago, III.

Dynamometer
629


Called compact, efficient, and reliable, the model No. D-1101 is capable of speeds to 20,000 rpm and loads to 7 hp . A weight scale indicates in.- Th generated by the test motor. Output torque is changed by varying the resistance of the rheostat grids connected to the armaturc of the generator and by varying the voltage input to the generator field. A power supply capable of 50 v , 20 amp , and a rheostat with a rating up to $4,000 \mathrm{w}$ is required.
Electronic Specialty Co., EEMCO Div., Dept. ED, 4612 W. Jefferson Blvd., Los Angeles 16, Calif.

High Voltage AC Testers
412

## Are mobile

These mobile, high-voltage ac testers are available with outputs up to 20 kv at 10 kva and to 30 kv at 5 kva . Output, through a 10 - ft shielded cable, is continuously variable from zero to max. A $4-1 / 2-\mathrm{in}$. kilovolt-meter assures accurate measurements unaffected by regulation or load varia-
tions. Weight ranges from 150 to 250 lb depending on rating.

Associated Research, Inc., Dept. El), 3777 W: Belmont Ave., Chicago 18, 111 .
Price: From $\$ 1,(1)(1)$ to $\$ 1,9(K)$ per mit.
Availability: 4.5 to 60 days.

## Power Supply

4 amp ac or 3 amp de


The model 40.25 power supply delivers 0 (1) 150 vac or 0 to $2(0) \mathrm{y}$ de at 4 and 3 ampre respectively. The unit has transformer isolation from line voltage, an output impedance of 15 ohms, a recovery time of 30 msec for half-current step changes and dual $3-1 / 2-\mathrm{in}$. meters. It weighs 35 lf and measures 8 in . wide. 9 in . high and 12 in . deep.
Eder Engineering (o., Inc., 1)ept. E1), 1568 S. First St.. Milwankere \&. Wis.

Price: $\$ 149.99$ completc: $\$ 125.35$ less meters.

Digital Module
601


This model FF-30 basic Hip-Hop has 4 identical, independent histable elements. One set and two reset inputs are provided; cach of these is expandable to 10 inputs per side. The unit operates between de and 1 mc ; temperature range is -20 C: to 6.5 C . Not-and logic is used. Measurements are 4.7/8 wide, 9 /16 thick, and 7 in . high. Circuits are etched and dip-soldered oll glass-epoxy cards.
(omputer Control Co., Inc.. I)ept. 1:1). 983 Concord St., Framingham, Mass.
Price: Sifi.
Availability: From stock.


FOUR SPECIAL BENDIX ${ }^{\circledR}$ TUBES with wide voltage and power capabilities. Bendix miniature tube type 7757 and type 6094, high perveance beam power amplifiers, are designed to operate at high voltages during vibration and shock conditions. They are free from internal arcing in aircraft, military and industrial applications. Tubes 6384 and 6889 also operate at high voltages (up to 3,000 volts on the plate and 1,000 volts on the screen). Their characteristics include high pulse output and closely controlled high-voltage cut-off, ideally suiting them to pulse modulation and high voltage regulation. Write for complete information today.

## election tuee products <br> Red Bank Division

Eatontown, new jersey


## RAYTHEON PANEL COMPONENTS FIT RIGHT INTO YOUR DESIGNS



## for equipment that deserves the precision-engineered look

## PANEL BRACKETS

Provide rigid support under shock or vibration - Mount single or double panels . Meet military specifications - Cold-rolled carbon steel, cadmium plated.

## KNOB LOCKS

Prevent control movement by shock or vibration or accidental movement - No slippage Replace potentiometer mounting hardware Match standard Raytheon knobs - Available in Mirror or Matte finish.

## SHAFT LOCKS

For use with screwdriver-adjusted controls Constant friction drag prevents accidental rotation - Provide seal against dirt and moisture - Replace standard mounting hardware • Under knob and standard types available.

## CAPTIVE HARDWARE

Stainless steel construction - Wide assortment of matching stock sizes and styles - Meet military specifications - Neoprene gasket provides dirt and moisture seal.

## WRITE FOR DATA

Complete technical data and specifications are available on Raytheon's full line of quality panel hardware and control knobs. Please write to: Raytheon, Industrial Components Division, 55 Chapel Street. Newton 58, Mass.

( Raytheon Panel Components A vailable From Local Franchised Raytheon Distributors

## RAYTHEON

## RAYTHEON COMPANY

## NEW PRODUCTS

Data Switch
623
Has 2,240 positions


A typical model of this data switch has 40 single-pole switches, each of which can be manually positioned to select one of 56 contacts on glass-fiber laminated printed circuit boards. Modular components permit assembly for manual insertion of data into computers, test equipment, communications networks, process control systems, and other applications. The unit extends 6 in . behind the mounting panel; 12 switches may be arrayed in less than 5 in . of length.

Instrument Systems Corp., Dept. EI). College Point 56, L.I., N.Y.

## Diallyl-Phthalate Varnishes

512
Varnishes based on diallyl-phthalate resius have been developed for general coating, sealing, and encapsulation use. Cured Dapon resin coatings are resistant to moisture, chemicals, fungus, weathering and aging over a wide temperature range

Food Machinery And Chemical Corp,, Chemicals \& Plastics Div., Dept. ED, Chrysler Bldg. E., 161 E. 42nd St., New York 17, N. Y

## Charging Control

514
For use with 2 -rate battery chargers, this antomatic charge-control unit switches the rate as required to prevent undercharge or overcharge. State of charge is checked every hour. Shipizing weight is 12 lb .

The Electric Storage Battery Co., Exide Industrial Marketing Div., Dept. ED, Rising Sun \& Adams Aves., Philadelphia 20). Pa.

## Fork Oscillator

Length is 2-9/16 in.


The type 25 subminiature fork-oscillating unit is of bi-metal construction, hermetically sealed;

## fabricated

to your exact specification

beryllium copper SPRINGS AND FLAT STAMPINGS

BTI cutom built stampings ofter the design engineer endless possibilitios in beryllium copper parts fabrication. By special processing, intricately formed pieces can be made to precision toler. ance and flatness.
Various types of beryllium coppers are evailable ranging from . 002 to .090 inches in thickness. Special designs can include drawing, stamping, punch. ing, slotting, in curved, cupped or angular arangements. fixture heat treating guaranteos all tompars to spring for long fatigue life.
BTI offers universal tooling for maximum cost seductions or special tooling for long run production jobs.

Write today for Bulletin No. E 106 describing the udiantages of engineer. illg wilh RTI special beryllium parls and stamp.
ings. ings.
BRAUN TOOL \& INSTRUMENT COMPANY. INC.
338 Fith Ave., Howthorne, N. J.


CIRCLE 168 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961
> iei TANTALUM SOLIDS
> meet or surpass MIL-C-26655A requirements

## iei

 from subfreezing -80 to broiling +125 C . Also low dissipation factor, low d-c leakage and long life whether in storage or operation.
## iei

 de by specialists in and manufacture of miniature capacitors, have shock-resistant construction, true hermetic seals and are performance-stabilized for 250 hours before shipment.
## iei

recommends Series "TD" solids for data processing. ASW, missile and airborne equipment and for all other demanding applications where big reliability and small size are of utmost importance. 0.33 to 330 microfarads, 6 to 35 WVDC. Write for 4-page bulletin 2743.

International Electronic Industries, Inc. dox 9036-12, Nashville, Tena.

where reliability replaces probability CIRCLE 169 ON READER-SERVICE CARD ELECTRONIC DESIGN • Februa
diameter is $5 / 8 \mathrm{in}$., length 2-9/16 in. Weight is 2. oz. Stock frequencies are 400 and 500 cps . Accuracies of $\pm 0.002 \%$ and $\pm 0.02 \%$, in temperature ranges from -65 C to 125 C , are available. The type 25 T is for use in transistor circuits; type 25 V is used with a double triode. Termination is 7 -prong miniature base
American Time Products, Inc., Dept. ED, 61-20 Woodside Ave., Woodside 77, N.Y

## Digital Clock

516
Operating from a $100-\mathrm{kc}$ input, the DC-116 digital clock provides an output in hours, minutes and sec onds on a 24 -hr basis. A preset pulse may be generated for system control. Output is suitable for driv ing a high-speed tape punch, and may be either decimal or binary-coded decimal form.

Datex Corp., Dept. ED, 1307 S. Myrtle Ave. Monrovia, Calif

## Cadmium-Plating Solution

511
A high-purity cadmium fluoborate plating solution, C-576 contains less than $0.00003 \%$ silver, and less than $0.0000 .5 \%$ copper. The $50 \%$ solution is prepared specifically for electronic requirements.

Fisher Scientific Co., Dept. ED. 717 Forlyes Ave Pittshurgh 19, Pa.
Price: $\$ 6.80$ per pint.
Solder-Type Alloy
513
Said to be $50 \%$ more conductive than standard 50-50 lead-tin solder, 157BN alloy has a highly active flux core that is inert after carbonization. It has a low melting point and will accept a wide range of plating.

Eutectic Welding Alloys Corp., Dept. ED, 40-40 172nd St., Flushing 58, N. Y

## Speed-Sensitive Switch

Withstands 400 F


The model S-10 speed-sensitive switch has an operating temperature range of -65 to 400 F . Rated performance for the unit is a switching error not to exceed $\pm 1.5 \%$ of the rated speed over all environmental conditions. The unit may be supplied with as many as three normally open or closed switches, allowing for up to three speed settings. All moving parts are mounted on precision miniature ball bearings. The l-lb unit measures $2.437 \times 2.437 \times 3.65 \mathrm{in}$.
The Cosmodyne Corp., Dept. ED, 12833 Simms Ave., Hawthorne, Calif.


This is a size comparison between the $10^{\prime \prime}$ POST Versalog and its $5^{\circ}$ replica, the POST Pocket Versalog.

## The trend to <br> "COMPACT" slide rules

## Why a small slide rule?

Users of America's best-selling Post Versalog, in the regulation $10^{*}$ desk size, have been known to covet a $5^{\circ}$ Post Pocket Versalog, and even buy one . . . as a more easily carried convenience . . as a spare ust for the sheer joy of having, like a gun collector, a "matched pair."

It took more than requests from pleased users of the $10^{\circ}$ Versalog to convince our marketing people that the need actually existed for a pre-mium-priced $5^{\circ}$ pocket rule with 23 scales. Our technical men were even scales. log standards of accuracy could be maintained in miniature.

## Who can use them?

That there is a need has since been proved by the thousands of engi neers, architects, acientists, and stu dents who have bought and used a Post Pocket Versalog in preference not only to the larger version, but

INGINEERING EQUIPMENT \& DRAFTING SUPMIFS - FIELD EQUIPMENT \& DRAFIING FURNITURE CIRCLE ITO ON READER-SERVICE CARD
after comparing it with other smaller makes.

As to accuracy, we are atill amazed at the exquisite job our production team has done in miniaturizationthe $5^{*}$ Pocket Versalog includes every one of the 23 scales found on its much larger counterpart and, in addition, bears engine-divided calibrations of such sharpness and clarity that no magnifier is needed.

## Own a Versalog for less

To further popularize this fine in strument, Post dealers are offering it at a special low price for a limited time. All models come with a handcrafted leather case and spring pock et clip. Also available with hard bound instruction text.
For further information, ask your Post dealer. Or, for free literature price data and name of nearest dealer, write to Frederick Post Com pany. 3644, North Avondale Avenue Chicago 18, Illinois.


HOE RULES

15,1961

- A production reality based on 20 years of crystal engineering experience...


# Miniature Wide Band-Pass Crystal Filters Delivered In Quantity...To Specification 

Filters just recently considered as "state of the art" are now a production reality. In addition to its many stock narrow band filters, Midland offers prototype and production quantities of practical Miniature Wide Band Filters in the .5 to 30 mc range. These filters are of exceptional quality.

They are essentially free from unwanted spurious modes which have previously limited the realization of many types of wide band filters. Small quantities for engineering evaluation are available immediately from stock. Consultation is available at any time to potential filter users.

Shown below are specifications for ten of our stock wide band filters, as well as actual characteristic response curves. These filters are actually being delivered to major weapons system manufacturers in quantities - to specification.
THESE ARE NOT LABORATORY CURIOSITIES OR IN PROTOTYPE DEVELOPMENT STAGE

| Typ | Centiar Freq. | $\begin{gathered} \text { 3db } \\ \text { Eandwidtem } \\ \text { Minimumem } \end{gathered}$ | $\begin{aligned} & \text { Hode } \\ & \substack{\text { cantuletim } \\ \text { Mas. }} \end{aligned}$ |  | $\begin{aligned} & \text { 75db } \\ & \text { Candividus } \\ & \text { Mas. } \end{aligned}$ | URimate <br> Discrim. <br> Minimum | Insertion Less Less Mar. | Impedance ohnes | Inband Ripple Max. | $\begin{gathered} \text { Package } \\ \text { Type } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NJ-1 | 7.2MC | 160KC | 300KC | - |  | 60db | 6db | 13K | 1 db | A |
| NJ-18 | 7.2MC | 160KC | 300KC |  |  | 60db | 6db | 13K | . 5 db | B |
| NJ-2 | 7.4MC | 160KC | 300KC |  |  | 60 db | 6 db | 13K | 1 db | A |
| NJ-2B | 7.4MC | 160KC | 300KC |  |  | 60db | 6db | 13K | . 5 db | $B$ |
| NG-1 | 5.09MC | 160KC | 350KC |  |  | 60 db | 6db | 20K | 1 db | A |
| NG-1B | 5.09MC | 160KC | 350 KC |  |  | 60 db | 6db | 20K | 1 db | B |
| NB-1 | 10.7MC | 200KC |  | 450KC |  | 75 db | 12db | 50 | 1 db | A |
| NB-1B | 10.7MC | 200KC |  | 450KC |  | 85 db | 8 db | 50 | .5db | B |
| RL-1 | 11.5MC | 80KC |  | 160KC | 200KC | 85 db | 6 db | 50 | . 5 db | C |
| RL-18 | 11.5MC | 80KC |  | 160KC | 200KC | 90db | 5 db | 50 | . 5 db | B |



ACTUAL CHARACTERISTIC RESPONSE CURVES


Write for Bulletin WBS 100


A limited number of opportunities for filter and communications engirieers and tech-
MANUFACTURING COMPANY - 3155 Fiberglas Road. Kansas City 15, Kansas
MID 1.61
LARGEST PRODUCERS OF QUARTZ CRYSTALS
DIVISION OF PACIFIC INDUSTRIES. INC
CIRCLE ITI ON READER-SERVICE CARD

## NEW PRODUCTS

DC Power Supplies
Current to 15 amp


Providing continuously variable output dc voltages in the 0 to 50 v range from 105 to 125 v single-phase, 48 to 62 cps input, these units are available in two series: Y, lowing $0.1 \%$ regulation, and $Z$, with 0.01 r regulation. In each series there are models with maximum output current ratings of $2,5,10$, and 1.5 amp. Stability is $\pm 0.25 \%$ and $\pm 0.05 \%$ and ripple is 2 mv and 1 mv max, respectively.

Consolidated Avionics Corp., Dept. E1), 800 Shames Drive, Westbury, L.I., N.Y.

## Force Gage

A gram and ounce force gage is offered to cqualified switch users. It normally sells for $\$ 7.50$. Send \$1 with letherhcad request stating name and engineering title.
(Cherry Electrical Products Corp., Dept. ED), Highland Park, III.

## Self-Extinguishing Epoxies

These epoxy resins, made self-extingnishing through substitution of bromine on the epoxy molecule, may be cured or hardened with the common curing agents. Resin X-3442 is a semi-solid with about $49 \%$ bromine; $\mathrm{X}-3441.1$, a solid. contains about $19 \%$ bromine
Dow Chemical Co., Dept. ED, Midland, Mich Price: $\$ 1.00$ to $\$ 2.01$ per ll.

## Crowbar Tube

Rated to 3 kr


This subminiature cold cathode trigger tube, designed for crowhar operation, is rated from 350 to $3,000 \mathrm{v}$ de on the anode, with a hold-off voltage of $3,500 \mathrm{v}$ dc. The WC-28 has a peak cathode rating of 10 to $1,000 \mathrm{amp}$; grid pulse amplitude is 230 v for $10 \mu \mathrm{sec}$ max.
Electronic Industries, Inc., Dept. ED, 18 Marshall St., South Norwalk, Conn. Availability: 10-day delivery.

## Mechanical Filters

591

A mechanical filter designed for mobile radio equipment, the F $455 \mathrm{Y}-1-120$ has a $4.55-\mathrm{ke}$ center frequency and a passband of 12 kc to match a $\pm$-ke transmitter deviation. Another filter, the F455YA-320, with a $455-\mathrm{kc}$ center frequency and a 32-kc passband, is suited for wide-hand mobile equipment applications
Collins Radio Co., Western Div., Dept. ED, 2700 W. Olive Ave, Burbank, Calif

## Potted Switch Leads

The Milli-Switch line is now available with potted leands. They are intencled to provide a strong, positive joint with low-temperature solder. All havic switches in the line conform to MIL-S-G7-4.
P. R, Mallory \& Co, Inc, Milli-Switch Corp., Dept. ED, (Cladwone, Pat.

## Indicator Light

The LIf,20(0) indieatere light has a watertight lens an ailable in 7 colurs. Case is ancelized aluminum; the 6 -, 14- or 28 - c lamp may he replaced from the front of the pancl
Controls Co. of America, Control Swith Div. Dept. ED, Foleroft, Pa.

## Storage Drum



A typical model of this magnetic storage drum has 4 channels, 2 of which provide adjustable delays of up to 6 sec accommodating either complex waves or pulses. The unit uses a synchronous drive motor and hydraulically-damped gear box. Delay variation may be accomplished mannally or through servo control. It may be supplied in a varicty of frequency responses, delay adjustments, head configurations and number of recording tracks.
Instrument Systems Corp., Dept. EID, College Point 56, L.I., N.Y.

Resistor shown was fitted into the space available on this printed clrcuit simply by varying the blend of Du Pont's now Resistor Compositions. Conven-


## Du Pont announces-New Resistor Compositions

 that permit varied resistance values without changing geometric form ... simplify design, save spaceNow, new Du Pont Resistor Compositions offer a second dimension for controlling resistance. You can vary resistance values by changing the composition of the resistor without the need for altering the geometric form. These new resistor compositions give you greater design flexibility, essential for miniaturized circuits. Du Pont Resistor Compositions are available at three approximate resistance values: $500,3,500$ and 10,000 ohms square per mil thickness, and they can be blended to give a range of intermediate values.
Du Pont Resistor Compositions are easy to apply . . . may be brushed. dipped, screen-printed or sprayed. Surfaces can be fired under normal atmospheric conditions in the $1100-1400^{\circ} \mathrm{F}$. range.

Printed resistor patterns and coated rods have abrasion and impact resistance similar to fired silver coatings and show only small variations in resistivity under humidity, overload, tem-
perature and voltage conditions as typical laboratory data show:

Temperature coefficient. Vollage coefficient. Humidity exposure Overload Temperature cycling Load life.
$\qquad$
Fired samples are available for your own evaluation. Request
them on your letterhead, indicating application you have in them on your letterhead, indicating application you have in mind. Complete technical information will also be sent. Write: Du Pont, Electrochemicals Dept., Ceramic Products Div., Wilmington 98, Delaware. Du Pont does not manufacture resistors .. produces only resistor compositions and other high-quality conductive coatings: gold, silver, platinum and palladium.

DU PONT RESISTOR COMPOSITIONS


BETTER THINGS FOR BETTER IIVING CIRCLE 172 ON READER-SERVICE CARD
nたeou
a synonym for. quality. stability, and dependability in CRYSTALS and CRYSTAL FILTERS


STANDARD SIZE CRYSTAL UNITS
The erystals that made the name of MeCoy a synonym for quality. Meial encased, the M.I, M.4, and M-5 are available in frequencies from 500.0 ke to 200.000 me

## ALL-GLASS CRYSTAL UNITS <br> 

HC.18/U iype. Meet now CR-73/U and CR-74/U specs. Available 5000 ke to 200.0 inc.


## Write tor ties. <br> illustroted

cutatiog

Shown Actual Size

## CRYSTAL FILTERS <br> Band pass types from 1.0 me to 30.0 me center frequency with 6 db band widths of $0.01 \%$ to $4.0 \%$ of center frequency. Single side band types from 1.0 mc to 20.0 mc frequency with 3 db band-

 widths from 1.0 ke to 10.0 kc.

Fill the need for miniature crystals from 1.0 me to 200.0 me. Meet specs MIL.C. 30988 and ARINC No. 401


Shown Aclual Size

## SUB-MINIATURE CRYSTAL UNITS



Regardless of size, weight, or shope, McCoy crystols and filters will deliver the ulmost in stability under extreme conditions of shork and vibrotion. Our ref tearch section will be pleased to assist you

## NEW PRODUCTS

## DC Motor

Weighs 4.7 lb


Weighing 4.7 lb with radio noise filter, the model 2030 dc motor produces 0.33 hp at 14,000 rpm , continuous duty, and 0.62 hp at $8,750 \mathrm{rpm}$, intermittent duty. The $26-\mathrm{v}$ de unit is 7.48 in . long by 2.44 in . wide. An integral clutch-brake provides fast stopping and irreversibility in power-off condition, and holds 3 in .-lh torque with the motor de-energized. The square-frame motor is rated to 260 F , altitude to $150,000 \mathrm{ft}$.

Hoover Electric Co., Dept. ED, Hangar \#2. Port Columbus, Columbus 19. Ohio.

## Printed-Circuit Kit

Each printed-circuit kit contains enough copperclad board, liquid etchant, etch-resistant terminal pads, and resistant tape to make 3 circuit boards. An etchant tray is provided with the Quik-Cirkit.

Advanced Designs Inc., Dept. ED, 914 Lullaby Lane, South V'ienna, V'a.
Price: $\$ 5$ per kit.
Acailability: Immediate.

## Transfer Function Analyzer

Range is 0.01 to 200 cps


A transfer function analyzer, for frequency response measurements, the model 711 has a range of 0.01 to $2(0) \mathrm{cps}$. Noise rejection is 40 db ; accuracy is 0.25 db or 2 deg . The data are presented as in-phase and quadrature components, as well as amplitude and phase vs frequency.

Boonshaft and Fuchs Inc., Dept. EI), Hathoro Industrial Park, Hathoro, Pa.
Price: $\$ 4,8.55$.

## very big in BWOs

Eight years ago, the first commercial backward wave oscillator took shape in the patient hands of wave tube pioneer Ray Stewart. With meticulous care and consummate skill, he evolved a precision lens system for forming a hollow electron beam, and developed lechniques for producing a fantastically accurate helix pitch and place. ment relative to the beam.

The result was an oscillator of truly exceptional characteristics. But because Ray Stewart will never be satisfied with the merely exceptional, each BWO he builds . . . and he has built thousands .... is better than the one before it.
This is the reason why Ray's BWOs can be guaranteed for 500 hours, and why they consistently outlive their guarantees. Ray's company is the only electron tube manufacturer devoted exclusively to the production of backward wave oscillators. The tube shown here is one of a series covering the frequency range 1.18 kmc .


Write for the new Stewart Engineering brochure and a set of specification sheets. When you've found out about the low operating costs of Stewart BWOs, we promise you'll be very big with your company's treasurer.

STEWART ENGINEERING CORPORATION

SANTA CRUZ • CALIF.
CIRCLE 174 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961


Shift Register
a spot is a spot
is a high resolution Spot with
CELCO YOKES

- Celco YOKES
keep spots $\boldsymbol{S m a l l e s t}$
- Celco YOKES keep spots roundest
- Celco YOKES keep spots sharpest


Use a CELCO DEFLLCTION YOKE for your high resolution applications.
In a DISPLAY SPot? call Celco!


Main Plant: MAMWAN. N. J. DAvis 1-1121

- Pacific Division - Cucamonga, Calif. - Yuton 2.2688

[^3]
extra security into printed-circuit assemblies. For a cost you count in pennies. A Transipad mounting is rock solid. It eliminates strain on delicate leads, provides vibration-proof separation between them. It isolates the transistor case from contact with printed conductors. And, perhaps most important, it provides a built-in air space to dissipate the heat of soldering (how many transistors have you lost lately through heat shock?). Transipads come in sizes and styles to fit most transistor types; some will convert lead arrangements from in-line to pin-circle, or vice-versa; others will widen lead spacing. Samples and drawings are yours for the asking. A note or a phone call will bring them.

Highly Reliable HITACHI "SEMI-CONDUCTORS"


## NEW PRODUCTS

For shaft angle


This photo transducer incrementally converts shaft angle to digital measurement information Maximum speed varies from $15,000 \mathrm{rpm}$ at 128 counts per revolution to $1,250 \mathrm{rpm}$ at 2,048 counts. It provides sampling rates up to $\mathbf{4 5 , 0 0 0}$ counts per sec. Output is 12 v at 1 ma ; maximum operating temperature is 55 C . The $19-\mathrm{oz}$ unit is 4.68 in . long over-all, with OD from 2.75 to 3.5 in .

Hydro-Aire Co., Electronics Div., Dept. ED 3000 Winona Ave., Burbank, Calif

Pulse-Train Modules
For step-servo control


These pulse-train generating modules are designed to act as pulse sources for step-servo motors and controllers. Ten versions of model A502 are made in five pulse ranges, from 4 to 16 up to 65 to 300 pulses per sec, and two temperature ranges, -55 C to 70 C and to 125 C . The $2-\mathrm{oz}$ units operate on $28 \pm 5 \mathrm{v} \mathrm{dc}$.

Automation Development Corp., Dept. ED. 11824 W. Jefferson Blvd., Culver City, Calif.
Price: $\$ 99 \mathrm{ea}, 70 \mathrm{C} ; \$ 164 \mathrm{ea}, 12.5 \mathrm{C}$.
Availability: Stock to 30 days.

## Accuracy Is Our Policy . . .

The photograph, accompanying the New Proclucts description of an indicator light made by Control Switch Div. of Controls Co. of America, on page 52 of Electronicic Design's Jan. 18 issue, does not show the light described..

Microminiature Thermocouples 749 Probe OD is 0.014 in .

The HT microminiature thermocouple is made for use in the range from cryogenic environments to $+3,000 \mathrm{~F}$. The probe measures 0.014 in . in diameter, with several sheath materials and lengths. A response time of 13 msec has been achieved.
Baldwin-Lima-IIamilton Corp., Electronics \& Instrumentation Div., Dept. ED, 42 4th Ave., Wialtham 54, Mass.

## Solid-State Chopper

Range is 5 to 50 kc

Model C-3001 is a solid-state and magnetic system, which provides the equivalent of a chopper and an input transformer. Drive or (arrier frequency is nominally 15 to 20 kc ; range is 5 kc $\mathrm{min}, 50 \mathrm{kc}$ max. Common-mode rejection is in excess of 120 dh . Typical drift will not exceed 10 he over 24 hr.
James Electronics Inc., Dept. EI), 40.50 N. Rockwell St., Chicage 18, III.

## Ventilating Unit

734
Delivers 350 cfm


Model KP701, $19-\mathrm{in}$. rack-mounting ventilating unit delivers 350 cfm of filtered air from twin blowers. It uses 7 in . of panel space. The unit is powered by a permanent split-capacitor motor. The motor is rated at 1.3 amp .

Kooltronic Fan Co., Dept. E1), P.(). Box 5().t, Princeton, N.J.


## Slip Rings?

To provide excellent electrical properties and long equipment life for slip rings, we manufacture and supply fine and coin silver in the form, size, finish and degree of hardness most convenient for the manufacturer and least productive of scrap.
Photo courtesy of Breeze Corporations, Inc., Photo courtesy of
Union, New Jersey


## Adjustable Contacts?

The Handy \& Harman Bimet shown here is used as an adjustable contact in a Rimset thermostat for control of residential heating, cooling and air conditioning. It is made of fine silver for optimum conductivity and reliability. and clad with bronze to give a more machinable, easily threaded surface. Handy \& Harman bimetals give you uniformly clad precious metal just where you need it, with no excess. Available in gold and silver and their alloys in strip, overlays, inlays, edge lays and thrulays.
Photo rourtesy of Penn Controls, Inc., Goshen, Indiana

If What You're Doing Involves Precious Metals*

## HANDY \& HARMAN CAN HELP YOU DO IT

Gold and silver...and their alloys... possess a combination of characteristics that offers unique advantages to the electrunics and electrical industries. Their excellent electrical and thermal conductivity makes them ideal for a vast range of applications, particularly in subminiature components. Their ability to resist corrosion imparts long service life and dependability to critical control items. The fact, too, that they can be obtained in so many convenient forms...wire, strip, sheet, powder, bimetals, flakes and plating anodes...lends them unusual versatility.
These are only a few examples of the ways in which Handy \& Harman precious metals are used in the electronics and electrical fields. Perhaps they will suggest some ideas to help you apply them advantageously in your own products or operations. Our technical staff invites your inquiries. No obligation.

* bold e bold alloys - silver and silver alloys
bimetals - silver paints - powders and flake


## Your Ne. I Source of Supply and Autherify on Procious Motals <br> HANDY \& HARMAN <br> General Offices: 82 Fulton Stree., New York 38, N. Y.

Offices and Plants: Bridgeport, Conn. - Chicago, III. Cleveland, Ohio Dallas, Texas - Detroit, Mich. - Los Angeles, Calif. - Providence, R. I. Toronto, Ontario - Montreal, Quebec


CIRCLE 178 ON READER-SERVICE CARD

## Rotary Switches?

Low contact resistance and ability to withstand corrosion make silver ideal for switch parts. The stationary contacts of this rotary switch are made of fine silver...the multiple leaf brushes are of durable silver alloy. Life tests of one million operations, representing several years of normal use, show that "Zero" resistance of 0.001 ohm through the switch body changes by less than 0.0005 ohm.

Photo courcesy of Leeds \& Northrup Company, Philadelphia, Pa.

## NEW CVethode

"FORN" COWHACTS
completely interchangeable with available types with FULL RADIUSED CONTACTS


Applications are limitless as determined by your design, ingenvily and needs We invite your inquiry.

## NEW PRODUCTS

## Dielectric Strength Tester

 is corona-free

Special construction is embodied in the model 4303 dielectric strength tester to eliminate creation of corona discharge. All high-voltage components are immersed in an oil-filled tank. Ratings are 20,30 , and 35 kv . Corona pick-up network and corona detector are accessories
Associated Research, Inc., Dept. EI), 3776 W'. Belmont Ave., Chicago 18. Ill.

## AC Potentiometer

747
10-turn type


The 7800 series of 10 -turn precision potentiometers is designed for ac circuits. The units are $2-\mathrm{in}$. in diameter. They have high input impedance and low output impedance, thereby substantially reducing quadrature and loading effects. Standard model 7803 has an impedance range of 1 K to 200 K and covers a frequency range of 400 to $1,000 \mathrm{cps}$.

Beckman Instruments, Inc., Helipot Div. Dept. ED, 2500 Harbor Blvd., Fullerton, Calif

## Pulse Transformer

731


This pulse transformer operates in a blocking oscillator circuit and includes the use of a highquality ceramic ferrite cup core. Its rugged encapsulated construction enables its use in salt atmosphere marine applications.

Lockheed Electronics Co., Avionics and In-


554 Elm Street, Kearny, New Jersey
CIRCIE IBI ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961


COMPUTER COMPONENTS from CAMBION®


Here's the answer to the increasing need for performance tested, higher speed components. These color coded "building locks, shown actual size, are conveniently packaged for ease of installation. All have superior frequency response - DC to MC. Modules weigh only 9 grams, are . 05 cubic inches in size, Write CAMBION Computer Componente, 457 Concord Avenue, Cambridge 38, Massachusetts.


The guaranteed electronic components
circle 182 ON reader seavice card

## FOR HIGH TEMPERATURE WORK <br> NON-SLIP FINISH ON <br> H <br> TEFLON COATED FIBERGLAS TAPES

Withstand temperatures up to 800 in ' 14 " and $1 \mathrm{a}_{\mathrm{a}}$ " widiths

## LACING CORDS AND TAPES OF

 NYLON and DACRONare available in wax, wax-free and resin-coated finishes

- Fungus-proof - Tie easy, last and tight
- Extra Strong - Knots won't slip

Sold notionolly by Alpho Wiro, New York
Write dof full
intormalan
THE
nem informasion inc
tree simples

## CIRCLE 183 ON READER-SERVICE CARD

 ELECTRONIC DESIGN • February 15, 1961dustrial Products Div., Dept. ED, 6:01 E. Randolph St., Los Angeles 22. Calif.

DC Power Supplies


The model TR-30-100, a transistorized, voltageregulated de variable power supply, provides 0 to 25 v dc from input of 105 to $125 \mathrm{v}, 50$ to 60 cps . Output current is 0 to 100 ma ; regulation is $0.5 \%$, line and load. Ripple is $0.1 \%$ or 25 mv max. The supply plugs into an octal socket. Weight is 2 lb 2 oz ; dimensions are $3-1 / 4 \times 3-3 / 8$ $\times 4-1$-in. high.

Acopian Technical Co., Dept. EI), 927 Spruce St., Easton, Pa.
Price: $\$ 50$ ).
Availability: Delivery from stock.

Module Testers
For digital elements

Developed for testing the 1-me T-Pac series of digital modules, these test units check all standard characteristics and functions. Model L.ET-10 tests the logical element package and provides some signals for FST-10, which checks static flip-Hop, thyratron driver, synchronous generator, and serial memory, and for the MPT-11. which tests sense amplifier, inhibit driver, and selector switch magnetic core memory packages.
Computer Control Co., Dept. ED), 98.3 Concord St., Framingham, Mass.
Price: $\$ 7,269$ for the 3 units in metal calinet. Availability: 12()-day delivery.

NEETY
Midget Rotary Tap Switch


- meets most environmental requirements per MIL-E-5272 and MIL-S-3786

COMPLETELY NEW - A real midget - genuine Grayhill quality. Conservatively rated to break one ampere at 115 VAC, resistive circuit, and to carry 5 amperes - life expectancy $100,000 \mathrm{cy}$ cles. Single deck, single pole, shorting or non-shorting, totally enclosed - provided with 2 to 6 positions (stop standard on 2 to 5 positions) and 6 positions normally supplied as continuous rotation. The Series 45 incorporates $60^{\circ}$ indexing with a stop strength of 10 pound inches, and a rotational torque of approximately 12 ounce inches.
Complete specifications and prices available on request.

"OPIONEERS IN MINIATURIZATION." CIRCLE 184 ON READER-SERVICE CARD

## GZ34 ${ }_{\text {5AR4 }}$

full-wave rectifier

irectly heated full-wave rectifier primarily intended for use in a.c. mains operated equipment
Maximum design centre raflnge
P.I.V. max
${ }^{1} \mathrm{C}$ max. ${ }^{\text {max }}$
Capacitor Inpus
Vatimal $2 \times 4502 \times 5002 \times 550 \quad \mathrm{~V}$
$\begin{array}{lrrrr}\text { I noum max. } & 250 & 200 & 160 & m A \\ R_{\text {IIn }} \text { min. (per anode) } & 125 & 150 & 175 & \Omega\end{array}$

## BUPPLIE 8 <br> IN THE U.S.A.

al Spring Street
IN CANADA
Rogers Electronic Tubes e Components
116 Vandertool Avenue, Toronto 17, Ontario. Hudson 5-8621

MULLARD OVERSEAS LTD MULLARD HOUSE, TORRINGTON PLACE, LONOOON, ENGLAND

CIRCLE 185 ON READER-SERVICE CARD

NEW PRODUCTS
Heat Radiators
For high wattage


Designed for transistors and diodes where $200-\mathrm{w}$ or more dissipation is needed, the 4AL series heat radiators also function as a chassis. With very low thermal resistance and high radiation capability, efficiency approaches that of an infinite heat sink. Width is $4-1 / 2 \mathrm{in}$., length up to 12 ft in 12 in . increments. Height is 1.03 in .
The Birtcher Corp., Industrial Div., Dept. ED) 745 S. Monterey Pass Road, Monterey Park. Calif.

DC Motor
Battery-operated


A l-in. diam, battery-powered dc motor, the HYQM operates from 4.5 to 30 v dc. Governed versions are made, with speeds from 1,500 to $5,000 \mathrm{rpm}$; the ungoverned motor has a torque of $0.5 \mathrm{oz}-\mathrm{in}$. at $10,700 \mathrm{rpm}$. Efficiency is $57 \%$; stall torque is $2.30 z-\mathrm{in}$. Rotation may be clockwise or counter-clockwise. Motors are rated to 200 F .

Barber-Colman Co., Dept. ED, Rockford, Ill.

## Ultrasonic Cleaner

719


These console-type ultrasonic cleaners are available with one, two and three chambers. All
controls are mounted on the sloping front panel. Working cabinet leeight is 30 or 38 in . Each type of unit is available in six sizes from 2- to 13-gallon capacities. Optional accessories include: 0-to (i) -min timer; automatic-reset timer; line-voltage switch and meter for varying linc-voltage compensation.
National Ultrasomic Corp., Dapt. El). 111 Montgomery Ave., Irvington. N.J.
Price: From $\$ 8.9 .5$ to $\$ 3,(\mathcal{O K})$

## Synchro-Receiver

Locks in position


Type 9614-02 synchiro-receiver has an integral brake which closes to lock the receiver in position. The receiver may then act as a transmitter. The recejver is a $26-\mathrm{v}, \mathrm{f}(\mathrm{K})$-cps synchro with $1.5-$ deg accuracy; the brake solenoid is 35 or $115-1$ de. Damping time is 2 sec. The unit is $2-316-\mathrm{in}$. long, $1-116 \mathrm{in}$. in diameter.
John Oster Manufacturing Co., Avionic Dis: Dept. ED, Racine, Wis. Acailability: fill (1) (M) dat!s.
DC Power Supplies
355
Transistor-regulated


The all-silicon model 322 delivers 20 v de from $115-\mathrm{v}, 400$-cps input. Output is adjustable over a $10 \%$ range. Rated output current is 50 ma ; ripple is less than 2 mv rms. Regulation is better than $0.1 \%$ from full load to $50 \%$ load. The $1-1 \mathrm{lh}$ supply operates at ambient temperatures from 0 to 65 C . The similar model 269 delivers 250 v de at 250 ma. Ripple is less than 15 mv mms ; regulation is better than $0.4 \%$ from full load to $50 \%$ load, over a $20 \%$ line voltage change. Weight is 4 lb .
Hycon Manufacturing Co., Dept. ED, 1030 S. Arroyo Parkway, Pasadena, Calif.
Availability: From stock.
ELECTRONIC DESIGN • February 15, 1961

## CIRCUIT IDEA FILE

A Honeywell Service Featuring

## New Transistor Applications



Does your regulated pouer supply burn ous when short-circuited? If so, Hone'wells improved high current voltage regula tion circuitry can help you. Check these basic circuir features

- Short-circuit protection up to $60^{\circ} \mathrm{C}$.
- 12 regulation at 21 volts output from 0 to 3 amperes load current.
- Output impedance of less than 0.07 ohm.
- Open circuit regulation at high temperatures with no power-wasting perarures
bleeder.
- Circuir simplicity.
- Versatility. The basic circuit can be easily adapted to operate at higher load currents over wide output soltage ranges or over wider temperature ranges.
For a complete description of the features, theory of operation and adaptations of this circuit-plus circuit design procedures-send for Application Note ANIC. Simply fill out and return the coupon below to: Honeywell, Dept. ED-2-52, Minneapolis 8, Minnesota.

| $Q_{1}$ - Honeywell 3 N49 | $\mathrm{R}_{1}$-180 ohm |
| :---: | :---: |
| Q $\mathbf{2}^{\text {- Honeywell }}$ 2N1263 | $\mathrm{R}_{2}-100 \mathrm{ohm}$ |
| $\mathrm{Q}_{3}-2 \mathrm{~N}_{169 \mathrm{~A}}$ | $\mathrm{R}_{3}-390$ ohm |
| $D_{1}$-Voltage Reference Diode <br> (1N763 or equivalent) | $\begin{aligned} & R_{s}-4700 \mathrm{ohm} \\ & R_{s}-0.02 \mathrm{ohm} \end{aligned}$ |
| $\mathrm{D}_{2}-3$ ampere Silicon Diode | $R_{8}-33000 \mathrm{hm}$ |
| (ancsil or equivalent) | $R_{L} \text {-Load }$ |

## Honeywell

 II First in ControlKindly check one or both of the following:
$\square$ Please send me your Application Nore ANIC detailing a Series Voltage Regulator
$\square$ Please have a Honeywell field engineer call on me at my convenience.
Name
Addros
Address
Company

CIRCLE 186 ON READER-SERVICE CARD

## OND.E゙/K

# New round end General Electric glow lamps for better viewing ... and better looking indicators! 



## PRODUCTION PRODUCTS

Imprinting Machine
Marks 3,000 parts per hour


Components without leads, with axial or radial leads, or with axial leads at one end, in diameters between $1 / 8 \mathrm{in}$. and $1 / 2 \mathrm{in}$. can be imprinted at rates up to 3,000 per hour by the model PAF-AG offset machine. The imprints, made by master plates with quick-change type inserts, may be 2-7 8 in . long $\times 1-5 / 8 \mathrm{in}$.

Markem Machine Co., Dept. ED. Keene 5.5, N.H.

Price: From $\$ 2,5(0)$ to $\$ 3,5(\mathrm{~K})$.
Availability: 4.5 to 60 days.

## Automatic-Welding System

## Operates on 115 or 120 v

This unit assembles and welds up to 300 subminiature electronic components per min . It can be used with any of the firm's ac or de standard power supplies. The system measures $48 \times 36 \times$ 48 in., plus the power supply console.

Raytheon Co., Apparatus \& Systems Div., Dept. ED, 1415 Providence Turnpike, Norwood, Mass.

## Commutator-Connector

## Triples manual output

This commutator connecting machine, for fractional hp motors, can turn out 65 motors per hr on No. 32 bar stock as compared to the manual output of 20 per hr. An unskilled worker can operate the machine, which performs a complete wire-insertion operation in $1 / 3 \mathrm{sec}$.

Joyal Products Co., Warner Equipment Co., Dept. ED, 250 McWhorter St., Newark, N.J.

## Soldering Machine

Solder capocity is 320 lb
This printed-circuit soldering machine has a solder capacity of 320 lb . Dual solder-waves lift solder up to the board or object to be soldered.

WOULD 30 DAY DELIVERY
HELP? Then call Helipot. We'll deliver abckman\&s Panel Meters...in a variety of styles, shapes and models... within 30 days after receipt of your order. Specials may take 45 days.
Fact is, quick delivery and customer service go along with every becoman meter ...voltmeters, ammeters, milliammeters, and microammeters . . in sizes ranging from $2 h^{\prime}{ }^{\prime \prime}$ to $4 \frac{1}{2}$ ".
Best of all, they are excellent meters .and we can prove it! A Certified Test Report (which you may have for the asking) gives details of rigidly controlled tests conducted to find out just how good our meters are. In all cases. units tested met or exceeded MIL M10304A. Like we said: they are excellent meters.
Clearly. if you need panel meters, call Helipot. Delivery is dependable, quality is excellent, and the price is right. The other things we could say in favor of these meters are contained in the latest meter Data File. Send for it: your meter problems will be solved.


Beckman'/Helipot ${ }^{*}$
POTS : MOTORS : METERS
Helipot Diviaion of
Beckman Instruments, Ine
Fullerton, California

Piner Ris bile
CIRCLE 188 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961


A
Circuit Component Controlled by LIGHT

Wave length is 10 in . Maximum width of solder tonching the board at one time is $1-1 / 2 \mathrm{in}$. Power reguirement of pot is $5,100 \mathrm{w}$; requirement of motors is $110 \mathrm{v}, 2.2 \mathrm{amp}$. The machine can be furnished with a $220-\mathrm{v}$ (1- or 3 -phase), 440- or 550-v pot.

Dee Electric Co., Dept. E1), 1101 N. Paulina St., Chicage 22, III.
Price: $\$ 2,17.5$ ea
Availability: 20) days.

## Orienting Table

## Accurate to 1 min of are

This table simplifies the orienting of semiconcluctor crystals prior to slicing, and is accurate to 1 min of arc. The automatic-slicing machines produce wafers with thicknesses from 0.025 to $0.007 \pm 0.0005 \mathrm{in}$. Speed of the spindle is controlled up to $9,200 \mathrm{rpm}$ by a current variator.

Fitchburg Engineering Corp., Electronic Div., Dept. ED, Fitchburg, Mass.
Price: Orienting table, $\$ 1,1(K)$; slicing machine, \$12,240.
Availability: 90 day.s.

## Circuit-Board Drilling Machine

## Controlled by magnetic tape

This circuit-board drilling machine has a holepositioning accuracy of 11000 in . Designated type 440, the device is coupled to a magnetictape control and can drill 40 holes per minute with each of four drill heads. The instrument has an optical programer said to increase operating speeed and reduce positioning errors. A contourstylus programer enables the machine to rout contours and divide multi-circuit boards.

Micro-Path, Inc., Dept. ED, Clifton, N.J.
Price: $\$ 27,(M N)$; optional contour styles, $\$ 2,(M)$ ).

## Transformer Winder

267
Handles round, square and rectangular wire
This heavy-duty winder handles round, square and rectangular wire without changing wire guides. Rectangular and square coils are wound without pounding. Wires can be sizes 2 to 24 AWC. W'inding speeds are 25,50, 85 and 165 rpm and winding range is 2.5 to 50 turns per in. The machine is furnished with a 5 -hp motor and weighs 2 tons.

Geo. Stevens Manufacturing Co., Dept. EI), Pulaski at Peterson, Chicago 46, III.
Price: $\$ 11,(\mathrm{OK})$.
Availability: Four to six weeks for Ielivery.


In precision potentiometers, Engineers and Purchasing Agents are becoming more concerned with the overall life of the units they buy. They are learning to evaluate potentiometers better. They know that in precision potentiometers, it's useful life that counts! Useful life . Performance over life ... Conformity in terms of resolution, noise and environmental characteristics, over life.
How long after you put a potentiometer in a system can you expect it to operate without degrading the system itself? What would you expect to happen at the end of one-fifth, onehalf or three-fourth's rated life? Would you expect degradation? And to what degree? These are the questions asked by the more sophisticated Engineers and PA's. They have learned to understand life better. They no longer think of life in terms of millions of cycles but rather how much of life is useful.
When you want useful life in precision potentiometers, look to Fairchild! Fairchild builds units that operate to 20 -million cycles with very little degradation, and with initial performance characteristics far superior to those of any other manufacturer!


A Subsidiary of Fairchild Camera and ingtrvenent Corperatien
225 Park Avenue, Micksville L I N. Y * 6111 E Washingion Blud Los Angeles, Calit
TRANSDUCERS - RATE GYROS - POTENTIOMETERS - ACCELEROMETERS CIRCLE 190 ON READER-SERVICE CARD

## What do these 24 Honeywell Precision Meters have in common?

They are various types and models, shapes and sizes. They perform a wide number of functions. Many different companies confidently utilize these meters and depend on them. This confidence stems from two significant things that all these instruments share - the unsurpassed quality that Honeywell builds into each of its products, and our ability to design and manufacture to meet customer requirements.
Can a quality meter from Honeywell help you make a better product or do a better job? Just get in touch with our representative listed in your classified telephone directory. Or with us: Precision Meter Division, Minneapolis-Honeywell Regulator Co., Manchester, N. H., U.S.A. In Canada, Honeywell Controls Limited, Toronto 17, Ontario, and around the world, HONEYWELL INTERNATIONAL Sales and Service Offices in all principal cities of the world.


PRODUCTION PRODUCTS

## Soldering Machine

Controls heating period


A timing control circuit in the model 186B soldering machine assures uniform heating to each solder joint on multi-pin connectors. In addition, a programing system gives visual indication of the pin to be so!dered and the color and number of the wire. A footswitch advances the program to the next pin when the predetermined soldering time has elapsed.

Virginia Electronics Co. Inc., Dept. ED, River Road at B\&O Railroad, Washington 16. D.C. Price: $\$ 375$ ea.
Availability: From stock after Jan. 1.5, 1961.

## Power Supply

For miniature welders
This stored-energy power supply is for miniature electronic welders. Designated type \TW: 29, the unit delivers a step-free, adjustable output of 0.01 to 40 w -sec in $0 .(0) 1$ sece. It is housed in a cabinet occupying less than 1 sq ft of bench space.
Hughes Aircraft Co., Vacuum Tube Proclucts Div., Dept. EI, 2020 Short St., Oceanside, Calif. Price: $\$ 315$.
Availability: Tuo weeks.

## Automatic Relay Tester

## Presents performance-test results

This automatic relay tester presents perform-ance-test results immediately as process control information. The tape-controlled unit classifies information by converting absolute measurements into cellular form. The results are presented by a visual readout device and recorded on a standard printer. At present, it provides cellular classification of eight parameters. The programed unit provide's information on tests for coil resistance, contact resistance, pickup voltage or current, drop-out voltage or current, pickup bounce time, drop-out bounce time, pickup operate time and drop-out operate time.

General Electric Co., Specialty Control Dept. Dept. ED, Schenectady 5, N.Y.

## Etching Machine

Double- or single-sided
The model 700 spray etching machine docs double- or single-sided etching on circuit boards or nameplates up to $16 \times 19-1 / 2 \mathrm{in}$. Etching time is less than 2 min using ferric chloride. All common etchants may be used. The heated tank holds 24 gallons. Construction is polywinyl chloride and titanium. Boards are held horizontally in an adjustable rack.
Centre Circuits, Inc., Dept. EI), P. O. Box 16.5, 1101 N, Atherton St., State College, Pa.

## Drilling Machine

For printed-circuit panel boards
Model $\mathrm{M}-\mathrm{I}(\mathrm{K})$ drilling machine is designed for hight-proxluction drilling of printed-circuit pancl boards. Using solid carbide drills, accuracy is $\pm 0 .(6) 5 \mathrm{in}$. with a capacity of $1(0)(X)$ holes per hr in epoxy glass. Feed rate is adjustable from 0 to 4 in . per sece; drill sizes are from No. 60) to $1 / 8$ in. Air consumption is \& to 10 cfm at $1(\mathrm{~K}) \mathrm{psig}$ with full $20 .(1)(1)$ rpm; electrical repuirements are $110 \mathrm{vac}, 6^{\prime}$ ) (pss, 5 amp .

Motion Control Machines, Dept. Eil), 2704 II. Burbank Blad., Burbank. Calif Price: Price is $\$ 2, \pi$ () fol) Burbank

Transformer Winder
Compact, multiple type


Model 4()$^{-A}$ AM, a compact multiple transformer winding machine, is especially suited for long production runs. It winds multiple papersection power, audio, ballast, and similar type's of corils at speeds up to 2.000 rpm , using 18 through I4 AWC; wire. Coil OI) may be 9 in . max if round, $4-1 / 2 \mathrm{in}$. if rectangular; maximum coil length is 6 in. Special features include a spiralling device, an electric pre-determining counter, and a carriage shift for adding extra turns in coil margins.
Geo. Stevens Manufacturing Co., Inc., Dept. ED, Pulaski Road at Peterson, Chicago 46. III. Price: \$2,415 fob Chicago. Availahility: 2-ucek delivery

## 3in 1

- SELECTIVE ERASURE•WRITE-THROUGH
- DARK TRACE DISPLAY

NOW POBSIELE IN ONE TUEE. ONLY WITM THE ALL-NEW MUGHES DIC OIRECT-VIEW ATORAGE TUEE!


With this unique Hughes BIC* Storage Tube you can now:

- Maintain continuous optimum display brightness
- Prosent dynamic cursors on stored diaplays
- Produce dark trace line or half-tone images
- Selectively eliminate sereen cluttor
- Obtain much higher resolution on all displays

The new Hughes BIC Storage Tube retains all of the characteristics of the TONOTRON** storage tube - controllable persistence, high picture brightness, full half-tone (grey) scale - and gives you the added advantages of selective erasure, simultaneous presentation of stored and non-stored information and high resolution dark trace writing.
For full information on the new Hughes BIC* Storage Tube, write or wire today: HUGHES, Vacuum Tube Products Division, 2020 Short Street, Oceanside, Calit. For export information, write: Hughes International, Culver City, California.

- Bombardment Induced Conductivity •• Trademark Hughes Aircratt Company




## OUET PLEASE!

Electrons faithfully obey this command in their movements between brush and ring in Electro-Tec slip-ring assemblies. Materials are so carefully selected, precious metals so accurately deposited and machined, and design so skillfully integrated, ETC slip-ring assem. blies transfer electrons in hushed electrical silence.

Do you have an electrical noise problem in radar, fire-control, in. ertial platforms or any other type of moving equipment? Learn how the electrical silence of an ETC slip ring can add accuracy and relia. bility to your system.

Write today for the new ETC brochure on large slip-ring assemblies.

## ELECTRO-TEC CORP.

South Hackensack. N. J
Blacksburg. Va.-Ormond Beach, Fla.
WEST COABT LICEMSEE: PACIFIC SCIEMTIFIC CO., P. D. BOX 22019, LOB ANQELES 22, CALIF, PAT no 2 *se.970 CIRCLE 193 ON READER-SERVICE CARD

## PRODUCTION PRODUCTS

## Hot Automatic Machine

For condenser caps


This machine automatically attaches wire to motor condenser caps. The caps, in strip form, are coated with solder. The machine melts the solder, crimps the cap, and affixes the wire. It is capable of handling 5,000 to 7,000 units per day. Caps are furnished in rolls of 10,000 . They are made to customer specification.

Patton-MacGuyer Co., Dept. ED, Edgewood Station. Providence, R.L.

## Slicing Machine <br> Accuracy within $\pm 0.0001$ in.

275

This automatic machine, designed for slicing silicon or germanium wafers, provides repeatability accuracy of the cross-feed index to within $\pm 0.0001 \mathrm{in}$. The 2 -speed dc table drive motor is controlled by a regulated power supply:

Reid Brothers, Inc., Dept. EI). Beverly, Mass.

## Setting Machine

## Sets eyelets in terminal boards

This machine provides for completely automatic feeding and setting of six twin-connector eyelets in a plastic-insulating terminal board. The terminal board measures $\mathbf{2} .5 \times 1.5 \mathrm{in}$. and is $3 / 16$ in. thick. Eye!ets are set in an irregular pattern.

United Shoe Machinery Corp., Eyelet Dept., Dept. ED, 140 Federal St.. Boston 7, Mass.

## C-Ring Assembly Press

## For high-speed operation

This assembly press is designed to eliminate manual operations and is claimed to speed assembly output $300 \%$. It can be furnished to handle C-rings of all sizes. Required input is 115 v ac at 60 cps .

Altomac Corp., Dept. E1), 86.3 Washington St., Canton. Mass.

## FEEDBACK CONFOL...



## in ULRAsONIC CEENJNG?

Sure! Powertron's Autosonic cleaner uses feedback control the way missile guidance systems do-to ensure maximum reliability and efficiency. Feedback control keeps the Autosonic electroni. cally tuned to peak cleaning efficiency, and makes it genuinely self-tuning. Anyone who can flip a switch can use an Autosonic. What's more - the Autosonic is guaranteed to clean almost anything better, cheaper, and faster than other ultrasonic cleaners.


A complete line of Powertron Autosonic cleaners is available from 2 gals . to 75 gols. -from 100 watts to 3000 watts-from $\$ 395$ to $\$ 6000$.

POMEERERON ULTRASONICS CORP. patterson place - roosevelt field GAROEN CITY, L.I., NEW YORK - PIONEER 1.3220
CIRCLE 194 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961


## Ultrasonic-Impact Grinder

For semiconductor and other electronic devices
Model 2-333 can machine an area up to 1-3/8 in . in diameter. It also has general-purpose applications, including soldering and cleaning. An air-cooled, $300-\mathrm{w}$ magnetostrictive transducer is incorporated in the tool.

Raytheon Co., Apparatus \& Systems Div., Dept. ED, 1415 Providence Turnpike, Norwood, Mass.

## Automatic Forming Machine

## For printed-circuit components

This forming machine is designed for the automatic forming, bending and cutting of resistor and diode leads for components of printedcircuit boards. It accepts different sizes of resistor and diode bodies and all carded resistors. The length of cuts and bends can be adjusted without additional tooling. Extra attachments include a hopper feed, a taped-reel feed, lead clamps and heat-sink stress relief shapers.

Design Tool Co., IDiv. of Federal Manufacturing and Engineering Corp., Dept. EI), 10.55 Stewart Ave., Garden City, N.Y.
Price: \$6.5).

## Axial-Lead Component Marker

Marks 2,600 components per hour
This machine, type 146A, prints trademark, polarity symbol and band, and desired code markings on diodes, capacitors, resistors, and other axial-lead components at a production rate of 2,600 per hour. Components with diameters from 0.08 to 1 in ., body lengths from $1 / 4$ to $1-1 / 8$ in . and over-all lengths from $1-3 / 4$ to $4-1 / 4 \mathrm{in}$. are accepted. The machine measures $18 \times 11 \times$ 12 in.

Markem Machine Co., Electrical Div., Dept. ED, Keene, N.H.
Price \& Availability: \$1485; delivery 75 10 90 days.

## Leak Detection Tester

## Speeds production testing

This semiautomatic leak detection tester can be attached directly to the firm's leak detector. It tests devices such as capacitors, transistors, and vacuum tubes. It has spring-loaded mechanical valves which are electrically tripped in proper sequence.

General Electric Co.. Instrument Dept., Dept. ED, Schenectady 5, N.Y.

High selectivity, attenuation and precision matching of . . .

## NEW HILL FILTERS ASSURE FAST, PRECLISE MEASUREMENT OF INTER-MODULLATON DISTORTION



Actual operational curves, obtained from point-to-point seodings, from $H: 11$ 34900 and 34800 filters developed to fulfill customers' specific requirements.

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

## WRITE FOR BULLETINS 34800/900

They contain details and specifications concoming the filters described above.

## HILL ELECTRONICS, INC.

## new north multi-contact multi-purpose connectors



These new, compact and highly efficient plug and receptacle type connectors provide maximum connection concentration in a limited space. They are designed for electronic applications in cable-tocable, cable-to-fixture, fixture-to-fixture, and are available in $40,60,80$ and 100 pin sizes.

A prongs of lork contact旦"at pin contact


Firm contact is assured by the unique torsion pressure principle in which beveled end flat blade male connectors seat into flat, fork shaped female blades placed at an angle to the male plugsassuring double contact, providing minimum contact resistance.
The new design of the mounting hardware features a handy locking bolt for securing the plug to the receptacle and a removable cover with captive screw for rapid wiring or inspection. The permanent cable clamp is adjustable to accommodate varied cable sizes. All connectors are available with either solder or taper tab terminals.
For full details, write

NORTH ELECTRIC COMPANY 152 S. MARKET ST.

GALION. OHIO

## PRODUCTION PRODUCTS

## Diode Classifier

282
Operates automatically


Model 18:20 automatic diode classifier sorts diodes at a rate in everess of $1.2(0)$ per hr. The diodes are fed to an oven unit where they are brought up to temperature and tested for reverse leakage characteristics at various reverse voltages. They are then ejected into the correct hin and counted. Shorted and open diodes are also separated. The temperature of the oven is adjustable up to $2(0) \mathrm{C}$.
Dynatran Electronics Corp.. Dept. El), 17. Herricks Road, Mineola, N.Y.
Availability: fill to (H) days.

## Conveyor Furnace

For applications in the $300-$ to $1,100-\mathrm{C}$ range
Type LAC-55M conveyor furnace is a box-type heating chamber with a custom-built loading table at the front end and a water-jacketed cooling section at the discharge end. The unit is designed for close temperature-control applications in the 300 - to $1,100-\mathrm{C}$ range, $\pm 0.5 \mathrm{C}$. A threezone temperature control within the $36-\mathrm{in}$. chamber obtains correct temperature curves for the work being processed. Applications include highly critical alloying of electronic components and metal bonding and soldering.
C. I. Hayes, Inc., Dept. ED, 8.96 Wellington Ave., Cranston 10, R.I.

## Wire-Coding Machine

## For Teflon-coated wire

This wire-coding machine automatically dereels, straightens, color codes, thermal strips and cuts to length a wide range of wire sizes. Duplicate sets of up to six bands of different colors can be simultaneously applied and sintered into the Teflon surface. Spacing of hands and cut-off lengths are adjustable.

Radio Corp. of America, Industrial Controls Div., Dept. ED, 12605 Arnold Ave., Detroit 39, Mich.


## flexible power for forward scatter

75 kW CW to 10 kW

The Varien Va- $\mathbf{6 5 3} \mathrm{CW}$ amplifier klystron features an extromely fiexitlo power rage at 755 to 95 Mc -
from 75 kW to as low as 10 kW . Provides new possibilities in the sewlopman of treposcatter systems

Dosigned io meet USAF specifications for forward scatter tubes
One power amplifiter senes the entire ourput rave.
Fower can be varied easily by adjustment of the beam voltuge. Dines from a 5 W exciter High gain - 50 do -
is pravided by five isternal cavities. Compactly
aneignod, with insut and output conplings proset for
flet if lines. Just tune to desired frepuncy; no
other physical adjustments are necessary.
Moncritical electromagnet provides a self-centering mount, the tube can be removed as a unit, insertod directly - no need for roll-out dollios.

H's vory probesio varlen power fubos
cean aid in your design probiom.
For fechnicel information, writo Tube olvision

(VA)VARIAN


The MicroWaves Section
Antenna-design activities continue at a feverish pace. Recently, the National teronautics and Space Administration. through its Jet Propulsion Laboratory faculty, awarded study feasibility contracts for advanced space tracking antennas to four companies: Blau-Knox, Hughes, North American and Westinghouse. A tracking antenna 200)to $2.50-\mathrm{ft}$ in diameter is envisioned which will increase deep-space communication capabilities 10 to 30 times over existing facilities.

This section continues a discussion of current antenna designs and contemporar! research started in the Nov. 2:3 isstere of Electronic Dfsig.n. Other articles in this issue leave the exotic field of adranced antemna design and tackle problems in "getting out the equipment."

Timu-demmain fechnigues and pat-
 locine researclucd in tlor scarch for
 rudialion pultorns. Many more are troutcel in

New Concepts in Antennal Rescarch
Promise Unusual Control of Radiation
Pattern
p 175

## A scholarly ancelysis of conaxial amel

 Hat plate catities for wise in the jens. mear bunce has licen reduced for the desis'n c'moin
lable form in

Designing Cavities
For the 500-Mc Range
p 180
A clever way to mocasiore the firld of permament-musence stacks for fll's is coceroel in
TWT Periodic-Permanent Magnet
Stacks Evaluated Automatically. p 184
PALO ALTO 21, CALIFORNIA
BOMAC LABORATORIES. INC.
VARIAN ASSOCIATES OF CANADA, LTO
S-F-D LABORATORIES. INC.
SEMICON ASSOCIATES, INC.
SEMICON OF CALIFORNIA, INC.
VARIAN A. G. (SWITZERLAND)

The latest in amplifiers. paramestric und traveling-uate. are pressented ulome with other recently un. nonnenced products in llis issurs) concrage of

Microwave Products

# New Concepts in Antenna Research Promise Unusual Control of Radiation Pattern 


#### Abstract

Simultaneous scan through time-domain techniques, and pattern synthesis by logical switching are only two of the promising new approaches to iodiating microwave energy surveyed in this article. In the Nov. 23 issue of Electronic Design these three Hughes antenna experts gave a review of electronic scanning techniques that are fairly far advanced. This article touches on areas just now emerging, or close to emergence from the theoretical stages.


L. A. Gustafson, L. N. Shestag, L. Stark Hughes Aircraft Co.<br>Culver City, Calif.

CONTEMPORARY antenna research is advancing along many lines. Theoretical an-tenna-design information which has been available can be tested with the increasing availability of components that permit electronic control of microwave energy. Many parameters of antenna systems can be controlled, which gives rise to new modulation and beam-stering techniques. Time-modulation techniques are a possibility.

## Time-Domain Techniques <br> For Simultaneous Scan

One of the newest and most important concepts employed in advancing microwave antenna design is that of Time Domain Techniques. ${ }^{1}$ The essence of these so-called four-dimensional systems is the periodic modulation of one or more antenna parameters either to increase informa-tion-handling capacity or to realize unconventional radiation-pattern characteristics. The modulated parameter may be the physical dimensions of the antenna, the energy distribution function over the antenna aperture, the frequency, or even the physical location of the phase center.

When one parameter of an antenna is modulated periodically in time, the signal which the
antenna transmits or receives is modulated with the same periodicity. The resultant signal can be represented as a line spectrum of frequencies centered about the carrier frequency and separated by the modulation frequency. If the power in each spectral line is measured as a function of the direction of arrival, an antenna radiation pattern can be associated with each spectral frequency.
For low sidelobe application, the pattern associated with the carrier frequency is optimized with respect to sidelobe suppression. For simul-taneous-scan operation. the modulation is so chosen that a pencil beam pointing in a slightly different direction is associated with each spectral frequency. This results in a system which "looks" simultaneously in all directions of interest. The virtue of this technique is that it supplies additional pattern control whereby the extreme design and construction tolerances required to achieve low sidelobes with a conventional antenna may be relaxed. In simultaneousscan operation, the data-producing capability of the antenna is greatly increased.

The basic technique of simultaneous scan may be explained from the point of view of Fourier series expansion of periodic functions. When a parameter of the antenna is modulated periodically in time, its radiation pattern will be expressible in the form of such a series. ${ }^{1}$ In particu-
lar, if the modulation is superimposed upon an antenna operating at an rf angular frequency $\omega$, then its complex, time-varying, voltage radiation pattern is expressible in the form of an infinite series of products of a pattern function and a harmonic of the modulation frequency. In the simultaneous-scan technique, each pattern and its beam direction is associated with the harmonic frequency of the term of that pattern in the infinite series.
Simultaneous Scan Uses Linear Array Antenna As an illustration of the technique, consider a linear array of $N$ elements which are sequentially excited by equal rectangular rf pulses cut from a continuous wave. This array excitation is readily expressed in mathematical terms as a series of $N$ contiguous pulses, one for each array element. The excitation envelope would repeat every $N \tau$ seconds, $\tau$ being the pulse width. The radiation from an array with this excitation can be analyzed in terms of its spectral frequency components and may be written as an infinite sum of $\sin u_{n} / u_{n}$ terms. Each $n$ corresponds to the $n^{\text {th }}$ harmonic of the modulation frequency, its pattern function, and the pattern beam direction, $n \ni$, which is measured from broadside.
Thus the scheme gives the desired property of beams pointing simultaneously in various directions, each associated with a detectable frequency component (see Fig. 1). Analogous results



Fig. 1. Time-domain electronic scanning produces beam pointing simultaneously in various directions.


Fig. 2. Sidelobe reduction shown by time-average patterns of square-wave switched array with uniform distribution. The term 1B1 represents the percentage of modulation of length of array.


Fig. 4. Linear Yagis array of end-fire elements. Vertical dimension is within 03 wavelength of the lowest frequency.
are obtained for signal reception, and proper signal processing gives the desired angular information. Pulsed, two-way radar operation is also possible with this technique.
It must be emphasized here that this effective electronic scanning is obtained without the use of phase shifters which must be precisely controlled. Instead, simple on-off switching of the array elements produces the scanning, thus eliminating many perplexing control problems.
For a simple example of sidelobe suppression by modulation of antenna parameters, consider a linear array with excitation uniform in both amplitude and phase. Such an antenna has a radiation pattern which is given by $g(\theta)=2 l_{0}[\sin$ $\left.k l_{0} \sin \theta\right] / k l_{0} \sin \theta$ where $l_{0}$ is the half length of the array. This pattern exhibits a $-13.2-\mathrm{db}$ sidelobe level which can be reduced considerably by modulation of the array length in simple fashion.

Let the half length of this array be modulated such that $l=l_{0}[1+\beta f(t)]$ where $\beta$ represents the percentage modulation of the length. If $f(t)$ is chosen to be a square wave, the time average component of the resultant radiation is the typi-
cal $\sin u / u$, however there is also a multiplicative factor, $\cos \left[k l_{0} \beta \sin \theta\right]$. This term has the effect of reducing the sidelobe level well below - 13.2 db . The extent of this suppression for various values of the percentage modulation $\beta$ is indicated in Fig. 2 For the optimum value, $\beta=0.25$, a $7-\mathrm{db}$ reduction in level is realized. It should be emphasized that the order of magnitude of this reduction is achieved by the simplest form of modulation on an array containing no amplitude taper.

The foregoing analysis is presented only as an indication of the effectiveness of time-domain opcration as a means of sidelobe suppression. By use of the excitation parameter alone, or by a combination of length and excitation modulation, considerably greater suppression can be realized.

## Early-Warning Antennas

## Made Smaller by New Arrays

To detect low-Aying aircraft, the search radar should be operated from high altitude. Compared to ground installation, this extends the distance to the radar's horizon and lowers the minimum
altitude of the beyond-the-horizon propagation. Design objectives are to produce high-gain antennas which physically are small so that drag on the aircraft is small.

Since radar range depends heavily on antennat gain, high-gain antennas are imperative. Unfortunately, efficient generation of extremely highlevel rf power is best accomplished at lower frequencies. Thus, the antenna designer must make his antenna physically large. Airborne Aircraft Early-Warning arrays have, until now, been of the mechanically scanned broadside-beam type. The large volume swept by a rotating array needs a large radome atop or below the fuselage.

Volumetric Arrays. An antenna for Aircraft Early Warning may take one of several forms. Antenna specialists at establishments such as the Naval Research Laboratory, Dalmo Victor, and General Bronze Electronics have been working on volumetric arrays in the form of two-dimensional broadside arrays of end-fire radiators which would more efficiently utilize the space required by presently used antennas. They also seek to make the radome a more integral part of
the volumetric array so as to effect some drag reduction. A final objective of their work is to achieve improved antenna gain from the volume.

Planar Arrays. At Chance Vought and Hughes Aircraft Co. the problem has been approached through the design of planar (flat-slab) arrays which are endwise to the slipstream instead of broadside to it. Integral antenna-radomes of this type have demonstrated the ability to reproduce the electrical characteristics of conventional broadside antennas. The lower drag of these units is expected to improve the radar aircraft performance greatly by increasing time on station. The required surveillance may then be accomplished with fewer operating units.

Design of such low drag antennas places stringent conditions on the end-fire radiators The vertical-plane radiation pattern of the end fire antenna is determined by the $I /$-plane pat tern of the individual end-fire radiators and must be achieved in a minimum length to limit the swing circle of the assembly. Classical end-fire antenna studies indicate that for maximum gain the beamwidth is $63^{\circ} / L, L$ being radiator length in wavelengths, with the first sidelobe approximately -9 db . During a current program at Hughes Aircraft Co. it has been shown, analytically and experimentally, that a combination of amplitude tapering and large inter-element phase shift c n produce practical end-fire arravs with leamwidths in the order of $50 / \sqrt{ }$, and -20 db H-plane sidelobes. Fig. 3 shows a 2.75 -wavelength experimental array of dipoles individually fed according to the results of is mutual coupling analysis. Fig. 4 shows an experimental full-size onc-dimensional array of end-fire radiators which combines the radar low-frequency array with an orthogonally polarized higher frequency IFF antenna. The assembly uses modified Yagi arrays as end-fire elements. The electrical components of this assembly are all contained within a vertical dimension of 0.3 wavelengths at the lowest frequency:

## Pattern Synthesis

## To Control Antenna Radiation

Antenna-pattern synthesis is also an active area in antenna research. It deals with the theoretical derivation of design techniques which are needed for proper control of the angular dependence of antenna radiation.

Recent contributions in this field include:

- the synthesis of optimum-difference patterns for use in monopulse applications
- synthesis of optimum sector beams
- a beam-forming technique useful when different shape requirements must be imposed on various parts of the beam.
The above techniques apply to linear or rectangular aperture antennas. Early this year the

MicroWaves


Fig. 5. Examples of patterns obtained through logical synthesis. Only two simple antennas were used to get these unconventional results.
synthesis of optimum directive patterns by means of circular apertures also appeared in print. ${ }^{2,3}$ A more difficult problem is the synthesis of arbitrary patterns by means of nonplanar antennas. The cone, a surface of considerable importance, has recently been successfully treated.4,5 The problem of optimum excitation of a surface of arbitrary curvature for the highest power on target has also been solved, but under certain restrictive conditions.

Logical Pattern Synthesis. The patterns obtainable through conventional synthesis are limited in quality because of physical restrictions. For example, with an antenna of a given size there is a certain gain figure that cannot be exceeded no matter what aperture excitation is used. On the other hand certain applications require the use of arrays whose effective length is unlimited but in which the inter-element spacing is so large that multiple-angle constructive interference produces secondary beams.

To overcome interference from secondary beams a technique has been developed which uses "logic," in the digital-computer sense, to combine several patterns, compare their signals, and decide which signals to display and which to reject. The several patterns may be obtained from the same antenna, by interconnecting the various elements in prescribed ways, or the patterns may come from several antennas operating side by side. Some of the results of logical pattern synthesis are shown in Fig. 5. The patterns shown are experimental verification of the syn-
thesis theory. As indicated in the illustrations, only two antennas, each with very few elements. were employed, yet the resulting patterns would be unachievable by conventional methods even with the use of many more elements.
Nonlinear Processing. Another synthesis technique for overcoming the dimensional limitations of the antenna applies various linear or nonlinear operations to the individual signals obtained from each element of an array. The nonlinear operations consist mostly of products of the signals derived from single elements or groups of elements Such schemes have been shown to simulate the performance of larger antennas having many more elements. Certain serious difficulties arise however, in the presence of multiple targets, and this type of processing also results in a rather poor signal-to-noise ratio.
Correlation Processing. A procedure which successfully simulates the performance of larger antennas with closely spaced elements and does not suffer the drawbacks of the nonlinear processing is the correlation processing scheme. This type of processing in its simplest form uses a matched filter for a processor and trades signal frequency bandwidth for the physical size of the antenna. The correlating antennas apply, therefore, to wide-band systems. This is not a serious limitation since modern radar systems require large bandwidth for other purposes as well.

Information Theory. The latest synthesis problem to come under study is the application of information theory to the antenna, which is treated


## PRODUCES MORE AND DELIVERS FASTER FAMOUS AMPHENOL COAXIAL CABLE AND WIRE

As a new decentralized division of Amphenol-Borg Electronics Corporation, R F PRODUCTS now has responsibility for the engineering, manufacture and marketing of Amphenol Coaxial Cable and Wire. To the electronics industry - and to you - this means more and faster deliveries from factory inventory of the world's largest selection of approved, high quality RG type cable.
R F PRODUCTS also means the consolidation of three great names in radio frequency components - Am. phenol Coaxial Connectors and Cable, IPC Coaxial Connectors, and DK Coaxial Switches. The integration of these related component lines makes possible the engineering-in-depth needed to stay abreast of your demands in this exacting field.
Whether you require sub-miniature coaxial cable, high-temperature flexible cable, large special-purpose multi-conductor cable - or any of hundreds of other varieties - you'll find that R F PRODUCTS offers a comprehensive, single-source supply.
IRE Show: Booth 2501-03
A DIVISION OF AMPHENOL-BORG ELLCTRONICS CORPORATION
tremely wide-band antennas started at the University of Illinois and has been carried on and expanded at Collins Radio and Sylvania, as well as at Illinois. The fundamental concepts for radiating elements of this type can be explained in terms of the relationship of dimensions to frequency.

In one approach the shape of the antenna is described essentially by angular relationships, and in another the design is based on logarithmic functions wherein the radiation pattern and impedance vary periodically with the logarithm of the frequency. The variation over a period can be made negligible, and the period can extend over a very large frequency interval. In angular design approach, since the pattern depends on the antenna's shape as a function of frequency and the antenna is essentially angular, the pattern simply rotates with frequency. If the pattern is symmetrical with respect to the rotation axis, it will appear to be frequency insensitive over a range corresponding to the extent of angle variation, which for spiral-type configurations may be many radians. Any antenna of such nature would have a finite size that determines its lower "cutoff" frequency and would perform satisfactorily for all higher frequencies up to the point where the feed point design becomes a limiting factor. Typical bandwidths for these types of antenna range up to $20: 1$.

Some of the recent experimental research done in this area is concerned with the antenna performance obtained when a reflecting surface is used to produce unidirectional radiation patterns. Inother important direction of study makes use of the log-periodic element for devising frequency independent arrays. Extremely broadband high-gain antennas have been realized by this means. More recently, effort has been devoted to the development of radiation pattern expressions for spiral-type elements and the incorporation of these elements in scanning arrays. - -

## Roferonces

1. H. E. Shanks and R. W. Bickmore, Time Modulated Electromagnetic Radiators, Technical Memorandum No. 582, Hughes Aircraft Co. and Can. J. Phys., Vol. 37, 1959, p 263.
2. T. T. Taylor, Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes, PGAP, Vol AP-8, No. 1, Jan. 1960.
3. R. C. Hansen, Tables of Taylır Distributions for Circular Aperture Antennas, PGAP, Vol. AP-8, No. 1, Jan. 1960.
4. R. F. Gondrich, et al., Radiation from Slot Arrays on Cones, PGAP, Vol. AP-7, No. 3, July 1959.
5. A. Ishimaru and G. Held, Radiation Pattern Synthesis with Sources Located on a Conical Surface, PGAP, Vol. AP-8, No. 1, Jan. 1960.


## WE'RE REACHING INTO SPACE



Bell Laboratories research with chilled ruby amplifiers speeds the day we may telephone via satellites


A strange combination of Nature's forces at Bell Laboratories foreshadows the day when world-wide phone calls may be relayed via man-made satellites orbiting the earth. It is a union of synthetic rubies and extreme cold, making it possible to amplify microwave signals from these satellites clearly.

Synthetic rubies possess an extraordinary property when deeply chilled and subjected to a magnetic field. They can be excited to store energy at the frequencies of microwave signals. As a signal passes through an excited ruby. it releases this energy and is thus amplified a thousandfold.

Bell Laboratories scientists chose a ruby amplifier because it's uniquely free of "noises" that interfere with radio signals. For example. it doesn't have the hot
cathodes or hurtling electrons that generate noise in conventional amplifiers. It is so quiet that only the noise made by matter itself in heat vibrations remains. But at a temperature close to absolute zero. this also is silenced. Even very faint signals from satellites can be clearly amplified and studied for their possibilities.

Bell Laboratories scientists were first to discover that matter itself generates electrical noise. They also discovered that stars send radio waves, and thus helped found radio astronomy. It is particularly fitting that the same scientists. in their endless research on noise, should now battle this number-one enemy of telephony in the dramatic new field of communication via satellites. The ultimate goal, as always, is the improvement of your Bell System communications services.

BELL TELEPHONE LABORATORIES
world center of communications research and development

# Designing Cavities in the $\mathbf{5 0 0}-\mathrm{Mc}$ Range 

Here are practical equations for designing coaxial and flat plate cavities in the $500-\mathrm{mc}$ range. Dr. Kiriloff compiled these handy tables after a thorough analysis of coaxial, flat plate and transmission line types. The latter is not included because of its limited applicability.


## Dr. A. Kiriloff,

Research Enginee
Columbia University*
New York, N. Y.

T
WO TYPES of cavities of particular usefulness in the $500-\mathrm{mc}$ range are the coaxial $\lambda / 4$ cavity and the flat-plate cavity.
These cavities find practical applications in the construction of frequency multipliers in radar circuits.

The $i / 4$ coaxial cavity is preferable for these particular applications, because:

1. Tuning is easier.
2. Radiation into the space is zero.
3. Bandwidth of the resonance curve is variable depending on the coupling system associated with cavity.
The flat-plate cavity is frequently a satisfactory compromise because it is easier to manufacture and the bandwidth can be made broader.
In designing a coaxial $\lambda / 4$ cavity, it is merely necessary to determine the dimensions shown in Fig. 1, Table I. Length of inner conductor $l$ is determined as a function of frequency: $l=\lambda . / 4$.
[^4]The characteristic impedance, $Z_{o}$, is normally chosen equal to the terminating resistance from Eq. 1, Table I.
The important feature of the cavity is the coupling system associated with the cavity, which determines the loaded $Q, Q_{L}$, bandwidth and loss.
The relation between $Q_{L}$ and unloaded $Q$, $Q_{u n}$, of the cavity is given by Eq. 5, Table I.
The solution to $Q_{L}$ for the coaxial cavity with electrostatic coupling is given by Eq. 6 of Table I.

The values of $Q_{L}$ (and bandwidth) are determined by:

- position of probe (from the closed side of cavity), angle $\theta_{1}$
- load of the coupling system, $R$
- capacity of probe, $C$

General considerations for electrostatic and magnetic couplings for the coaxial cavity are given in Fig. 4.

For electrostatic probes, the variation of $Q_{t}$. and bandwidth as a function of $g_{1}$ is plotted for constant $R$ and $C$. The variation of $Q_{L}$ and bandwidth as a function of $\boldsymbol{R}$ for constant $\boldsymbol{C}$ and $\theta_{1}$ is also given.

For magnetic probes, the variation of $\ell_{t}$ and bandwidth as the function of $\theta_{1}$ for constant $\boldsymbol{R}$ is illustrated.

## Sample Design

illustrates the Procedure
It is convenient to represent the design procedure by a specific example, which illustrates and explains the technique.

As an example, suppose $f=4.51 \mathrm{mc}, l=\hbar .4$ $=6.53 \mathrm{in}$., $2 h=7.5 \mathrm{in}$., $\boldsymbol{Z}_{\text {o }}=52$. ohms. $a=1.5$ in. (II), $b=5.8$ in. (OD).

From Eq. 4, unloaded $Q\left(Q_{u n}\right), \equiv 4,50()$ (assuming silver plated conductors).
From Eq. 6, for the coupling system associated with cavity:

$$
\begin{aligned}
& \mathrm{S}_{1}=2.5 \mathrm{deg} \\
& C \cong 10 \mathrm{pf} \\
& R \cong 100 \mathrm{ohms} \\
& Z_{o}=50 \mathrm{ohms} \\
& \varphi_{l_{l}}=104 \\
& B W \cong 4.3 \mathrm{mc}
\end{aligned}
$$

The design procedure for the flat-plate cavity is the same as for $\lambda / 4$ coaxial cavity.
Cavities operating near 450 mc have a variety of practical applications, particularly as fre-


Fig. 3. Diagram of flat-plate cavity.

## alfato flectronics <br> MAKES THE INDUSTRY'S MOST ADVANCED Swepł Microwave Oscillator

$\mathrm{N}^{\circ}$other sweeping oscillators offer as many solid advantages as Alfred Electronics' new series 620 models, built by the industry's leading manufacturer of high quality, broadband microwave instruments. Note these features:

- Five models, covering 1 to 18 kme. Broadest frequency range available. Electronic sweep of RF output, or extremely stable CW operation.
$\star$ Twe adjustable frequency markers for convenient calibration of oscilloscopes or recorders. Markers save valuable test time by indicating either band limits or intermediate frequency values. An exclusive Alfred feature on all models.

* Stable single frequency source. Drift less than $\pm .02 \%$ per hours; residual FM less than $\pm .0025 \%$ peak.
$\star$ Linear frequency sweep coverage over all or part of each band for rapid evaluation of reflection coefficient, gain, attenuation and other network transfer characteristics.
$\star 0.5$ microseconds rise and fall response to AM - equivalent to a 2 megacycle band pass. Another exclusive Alfred feature.
ڤ Quick Look readout. See frequency range. markers and sweep time at a glance. No cumbersome calculating.
* Fast sweep for flicker-free oscilloscope presentation; slow sweep for mechanical recorder operation.
quency multipliers in radar circuits. The circuit in Fig. 5 shows an application in the $300-500-\mathrm{mc}$ range, where lumped tuned circuits are not easy to apply. The particular circuit illustrated shows a $h / 4$ coavial cavity doubler-tripler $(2 \times 3)$ conversion going from 75 mc to 450 mc .
A comparison of the flat-line cavity to the coaxial cavity for a doubler-tripler $75-\mathrm{mc}$ to $350-\mathrm{mc}$ application points up their differences. Test results show the following: bandwidth for the coaxial cavity is 4.2 mc ; for the flat-line cavity it is 3.4 mc . Outputs are approximately the same. The coaxial cavity has electrostatic coupling very close to short-circuited end, capacity of coupling $\approx$ 10 pf . load $\sim 100$ ohms. Flat-line cavity has direct coupling very close to short-circuited end. Radiation effect of the flat-line cavity, whole system is $\sim 9$ ohm; $\boldsymbol{R}_{r o}$ of $i . / 4$ cavity is practically z.его. -

Acknowledgments
The work described in this paper was suppurted by Project AF:30(60)2)-1971 between Columbia University Electronics Research Laboratories, New York 2T, N. Y. and the Rome Air Development Center, Rome, N. Y.
The writer wishes to acknowledge his indebtedness to Professor J. Bose of Columbia University for permission to publish this article. The writer is also grateful for the valuable suggestions from Supervisors Stephen Abrams and Cormac Walsh, to Salvatore Rubiano for his important assistance in the construction of cavities, to Frank McIntyre for his assistance in correcting and preparing this paper.

Reforences

1. Reference Data for Radio Engineers, Federal Telephone and Radio Corp., Fourth Edition.
2. General Electric Electronic Tube Eng. Bulletin FT-R 27, "UHF Multipliers and Power Amplifiers."

OOUBLER: $75 \mathrm{mc}-150 \mathrm{me}$ TRIPLER $150 \mathrm{mc}-\mathbf{4 5 0 m e}$

Using Alfred Model 623 Microwave Oscillator (left) to rest small signal and saturation gain of Model 503 Traveling Wave Tube Amplifier. Microwave Leveler, Alfred Model 704, holds power output from oscillator constant within $\pm 1 \mathrm{db}$.

Write us for complete details of these new oscillators. We'll also send you our new short form catalog, which describes Alfred's complete line of packaged traveling wave tube amplifiers.

## ALFRED ELECTROOICS

897 COMMERCIAL BTREET
PALO ALTO. CALIFORNIA

## Microwaves

> electrostatic probe
> $R_{8} z_{0}^{2}, \omega^{2} C^{7} R \sin ^{2} \theta_{i}$
> If $z_{0}$ w CONSTANT
> VARIABLE ARE R, $\theta$, ANO $C$

magnetic phoge


Fig. 4. Effect of electrostatic and magnetic coupling for coaxial cavities.


Fig. 5. Doubler-tripler circuir ( $75-450 \mathrm{mc}$ ) using $\lambda / 4$ cavity.


. . . and 10 watts of power

## with this direct-coupled amplifier!

New from Krohn-Hite: this unique combination of power and bandwidth! The Model DCA-10 direct-coupled amplifier allows you to increase power of all sources from dc to one megacycle, without the bother of changing amplifiers or bandswitching!

The DCA-10's low distortion ( $0.1 \%$ ) makes it the perfect complement for low-distortion, quality oscillators - for unexcelled performance over the entire frequency range.

Output - to 300 volts peak to peak, to 600 milliamperes peak to peak. Frequency response is flat, within one db , from dc to 1 mc . Stability is excellent for both output DC level and gain.

The Model DCA-10 direct-coupled amplifier provides high, distor-tion-free power over the entire range, from sub-sonic into radiofrequencies. 20 watts of push-pull power can be obtained from two DCA-10's cascaded. If this high-quality, flexible amplifier can fill a need for you, write for full information.

Other Krohn-Hite amplifiers include the direct-coupled 50 watt DCA-50, and the ultra-low distortion ( $0.005 \%$ ) 50 watt UF-101A. Also, Krohn-Hite Oscillators, Filters and Power Supplies.

## TWT Periodic-Permanent-Magnet Stacks Evaluated Automatically

A new method of ecluating the magnetic field created by a stack of periodic permanent magnets is described by author Jacobs. U'se of the Hall effect make the method simple.

## J. Jacobs

Radio Corp. of America
Electron Tube Div.
Harrison, N.J.

T
HE HALL EFFEC'I can be used in the cealuation of the axial field created by an arrangement of periodic permanent magnets such as those used for focusing the electron beam in traveling-wave tubes. The Hall effect states that when a conductor carrying a current is placed in a magnetic field, a potential difference is gencrated on a plane in quadrature with both the current and the magnetic field. A semiconductor


Fig. 1. Test set up for measuring magnetic field of periodic permanent magnets
crystal is very suitable as the sensor of the magwetic field set up by periodic permanent magnets.
Fig. 1 shows the electromechanical setup used in this method. A probe consisting of a crystal on the tip end of a rod is driven through the bore of a stack of assembled periodic-permanentmagnet disks. The probe is mounted on a carriage coupled to the shaft of an ac synchronous motur by a rack-and-pinion assembly; a cradle supports the stack of magnets. The probe is aligned and positioned on the center of the stack by a piece of nonmagnetic tubing. A dc power supply provides a bias current to the Hall crystal.

## Magnet Field Plotted <br> On X-Y Recorder

A multi-turn potentiometer fed by a constant Ac voltage is also coupled to the rack by a suitable gear. This potentiometer senses the probe position as the crystal senses the magnetic field. Both the potential differences sensed by the Hall crystal and those picked up by the multi-tum potentiometer are applied to an X-Y recorder. Magnetic field as a function of probe position is plotted.
After the magnetic field of the stack is recorded, a standard magnet disk is probed and ia record is made of its magnetic field on the same chart used to plot the unknown stack. A calibrating constant (gausses per division) can then be obtained from this plot for use in determining the peak deflections of the unknown periodic magnetic field. The sensitivity of the Hall probe used in the equipment illustrated is 72.5 mv per amp of control per kilogauss of field. The sensitivity of the X -axis of the recorder is 10 mv per in.
The inaccuracy associated with slewing speed may be avoided by use of the correct carriageprobe speed within the recorder ratings. Recorder nonlinearity, if any, may also be avoided by selection of a standard magnet having a value close to that of the field of the magnet stack. Automatic recording has the advantage of eliminating the subjective errors which result from point-hy-point measurement with a ballastic galvanometer.
The graphic representation obtained by this method provides a useful and easy-to-read record of the magnetic field. - -


## for fast, visual

 reflectometer tests ranges from 2 to 40 KMCAnother breakthrough in measuring convenience has been achieved by the newly expanded FXR family of self-contained, direct reading sweep signal sources. Coverage is now provided as high as 40 KMC. Each unit utilizes a permanent magnet BWO as the tunable RF source.
Output power can be equalized at any detection point relative to the response of the detection element through use of FXR's
exclusive built-in AGC circuit. This circuit provides a flat ( $\pm 0.5$ db level) on modulated signal throughout the swept frequency range when used with matched bolometers and directional couplers. This AGC provision eliminates the need for using slow response ratiometers, and allows for visual VSWR or Reflection Coefficient tests.

FXR FAMILY OF ALL ELECTRONIC SWEEP SIGNAL SOURCES


| $\begin{aligned} & \text { Model } \\ & \text { Number } \end{aligned}$ | Frequency(0.0nc) | Appros. Minlonum Pomer Oul. | OUTMUT |  | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Wavegulda Type | Connector |  |
| 5775A | 2.0-4.0 | 70 mm | (\%- Coax Type N) |  | \$2750 |
| C775A | 4.0-8.0 | 20 mw | (\%" Coax Type N) |  | \$2800 |
| X775A | 8.2-12.4 | 20 mm | WR. 90 | UG-39/U | 82900. |
| V775A | 12.4-18.0 | 10 mm | WR-62 | UG-419/U | \$3300. |
| K775A | 18.0-27.0 | 5 mm | WR 42 | UG.595/U | \$3700. |
| U775A | 27.0-40.0 | 5 mw | WR-28 | UG-599/U | \$4300 |

Cbarocteritetice and prices subject to change without notice.

QENERAL SPECIFICATIONS
 Bit sicmul: Ew,

 weicur: in ins.



PRECISIOM MICROWAYE EQUIPMEWT - HISH-POWER PULSE MODULATOAS - MIEMVOLTAEE POWER SUPPLIES - ELECTRONIC TEST EQUIPMEMT CIRCLE 202 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

## VARIAN Potentiometer RECORDERS <br> More performance in less space





## THREE COMPACT CHOICES

Using one quarter the space of many comparable potentiometer recorders, the Varian family packs exceptional function into very little space. Interchangeable input chassis accommodate full-scale signal voltages from 10 mv to 500 vdc ., temperatures from $-200^{\circ} \mathrm{C}$ to $+1500^{\circ} \mathrm{C}$, and 1 mA current recording. The Varian recorders have $1 \%$ accuracy, $\%$ \%-of-span sen. sitivity, 1 or $2 \frac{1}{2}$ second balancing time, full-span zero adjust, Zener diode or mercury cell reference. A selection of chart speeds from $\mathrm{k}^{\prime \prime} /$ hour to $16^{\circ}$ /minute lets you pick the time resolution you need.

In addition to being rack-mountable, the G-22 and G.11A are portable for use in many locations. A wide range of accessories - such as retransmitting slidewires, alarm contacts and event markers - heips broaden the outstanding functional versatility outlined above. Chances are a Varian recorder can serve your need. Write Instrument Division for detailed specifications.

VARIAN assoclatos

## MICROWAVE PRODUCTS



Use tunnel diodes
These stable microwave oscillators use tunnel dindes in specially designed circuits. The oscillators are complete packages ready for use as signal sources, local oscillators, etc., in applications where small size and long life are required. The SS-100 is mechanically tuned over to its $1,050-$ to $1,400-\mathrm{mc}$ range. The center frequency of the SS-104 is specified in the range form 800 to $1,400 \mathrm{mc}$. It can be electronically tuned over a range of $5 \%$ of its center frequency. Both units require 0.2 v de to produce several tenths of a milliwatt output.

Radio Corp. of Americ: Electron Tube Div., Dept. ED, Harrison, N. J.


Covers 0.25 to 17 Gc


Each of the 11 units in the I series of mixer-preamplifiers covers a portion of the spectrum between 0.25 and 17 Gc . They consist of either a coaxial or waveguide mixer in conjunction with a lownoise preamplifier packaged in a single unit. The vswr for signal and local oscillator inputs is from 1.2 to 2.2 depending on the frequency range and the type of mixer selected. Each model can be obtained with a single-ended or balanced input, a symmetrical bandpass, specified bandwidth, gain, and noise figure.

Orion Electronic Corp., Dept. ED, 108 Columbus Ave., Tuckahoe, N. Y.


## S-Band Amplifiers

 Have 75-mc bandwidthThis family of broadband, parametric amplifiers includes an S-band nondegenerate model that gives bandwidths up to 75 mc at $15-\mathrm{db}$ gain. Noise figure, including circulator loss, for the S-band model is 3 db over the frequency range of 2.8 to 2.96 Gc ; gain variation is no greater than 3 db from -40 C to 50 C . The unit also meets the vibration requirements of MIL-E-5400I). Other units are available for applications at $\mathrm{L}, \mathrm{C}$, and X bands; all are designed with gallium-arsenide varactor diodes.
Texas Instruments, Inc., Dept. ED, 6000 Lemmon Ave., Dallas 9. Tex.

$X$-Band Amplifiers
Have gain over 50 db
U'sing folded waveguide structures, these X -band traveling-wave amplifiers have saturation gains of more than 50 d . The 307 H has a 100)-kw peak power output (50) w average) with a minimum of 50 kw over an 8.5 - to $9.5-\mathrm{Gc}$ frequency range. It has $54-\mathrm{dh}$ saturation gain and operates with a $38-\mathrm{kv}$ beam voltage. The grid-controlled 30811 has a $15-\mathrm{kw}$ peak power output ( 150 w average), an 8.6- to 9.9-Gc frequency range, and a $53-\mathrm{dh}$ saturation gain. Beam voltage is 24 kv ; the beam can be modulated with a pulse of less than 500 N . Pulse rise times of 10 to $50 \mu$ sec can be achieved. The 308 H weighs 14 lb ; the 307 H weighs 21 lh .

Hughes Aircraft Co., Microwave Tube Div., Marketing Dept., Dept. ED, 11105 Anza Ave., Los Angeles 45, Calif.


MOPA
STABILIZED OPERATION


## New Raytheon master oscillator assures extreme stability in frequency diversity transmitters

The QKB 924 voltage tunable " 0 " type backward wave oscil lator with the feedback circuit shown above provides a highly stable master driver-lucal oscillator for S-Band MOPA
chains.
F.xternal feedback through a delay line provides a $10: 1$ or more increase in frequency stability-performance that is particularly suitable for frequency diversity MTI applications. The frequency vs. voltage curve of the circuit is essen tially fat at discrete steps over the entire 2,700 to $3,200 \mathrm{Mc}$ range. Power output is typically 100 milliwatts with a delay line luning voltage of 350 to 700 volts. Models are also available at frequencies through X-Band.
Write for detailed application information to Raytheon Company, Microwave \& Power Tube Division, Waltham 54, Massachusetts. In Canada: Waterloo, Ontario.


RAYTHEON COMPANY

MICROWAVE AND POWER TUBE DIVISION
RAYTHEON

BOSTON, MASS., BRowning 2.9600 - ENGLEWOOD CLIFFS, N. J., LOwall 7-4911 - BALTIMORE, MD., SOuthfield 1-0450 - CHICAGO, ILL., MAtional 9 -4000 DAYTON, OHIO, BAIdwin 3.8128 - LOS ANGELES, CALIF., PLymouth 7.3151 - CANADA: Waterloo, Ont., SHerwood 5.6831

Michowaves

Power Supply
Output to 10 kv


A regulated tube power supply, the model Z851-2 has output voltage adjustable from 0 to 10 kv . Current range is 0 to 100 ma ; ripple content is $0.4 \%$ max. Overload relay protection is provided, with activation current manually set within the range 25 ma to 100 ma . Power requirement is 208 v ac, 3phase, 60 cps.

FNR. Inc., Dept. EID. 25-26 50th St., W'oodside. N. Y.
Price: $\$ 3,500$.
Availability: 60 to 90 days.

## Bandpass Filters

565
With single-knob tuning


Covering a range of 0.5 Gc to 18 Gc , these bandpass filters give single-knob tuning of 2,3 . and 4 section cavities. The 81 models, for the uhf. L, S, C, X, and Kiu hands, provide a variety of rejection c!laracteristics. They are designed for laboratory and systems applications.

John Gombos Co., Inc., Dept ED. Webro Road. Clifton. N. J.


CACHERIS
SCHAFFNER

## People, Products, Potentia ..of advanced ferrite devices and low-noise amplifiers...typifies

The accelerated research and development program of Motorola's Solid State Devices Laboratory has produced a significant number of "firsts" in the past two years: the first broadband, microsecond ferrite switch at X-band; an S-band parametric amplifier with highest reported gainbandwidth product; the first compact UHF isolator. These Motorola microwave devices - many others, as well - are already performing vital functions in advanced military
and industrial electronic systems. R Research emphasis continues for a growing number of devices. Included are VHF and microwave phase shifters, delay lines, circulators and switches for low-power, rapid, electronic control. Also in progress are even more exotic microwave transmission and control devices, ultimately utilizing Motorola thinfilm forms of ferrimagnetic, ferroelectric, semi-conductor. and piezoelectric solids. \& As a result of its full-scale assault

engineering leadership and planned development Motorola's Solid State microwave capabilities.
on the frontiers of solid state electronics, Motorola's broad range of engineering talent is particularly well qualified to analyse your problems. Rapid, economical and practical solutions are assured. For prompt attention to your device requirements, use coupon at right. \& Experienced engineers and scientists desiring to participate in the forward area of solid state materials and integrated circuitry development, as well as in solid state device design. are invited to apply directly to Dr. Arthur L. Aden.
(4)

Dr. Arthur I.. Aden. ph.d. (Applied Physics); Manager, Solid State Electronics Dept.; applied physics, electrodynamics, solid state devices R\&D and microwave applications of magnetic ferrites.
John C.Cacheris, m.s.e.e.; Manager, Solid State Devicea Laboratory; solid state devices R\&D; awardee of several patents for microwave ferrite applications, and author of numerous technical publications.

Nicholas G. Sakiotis, b.e.e.; Section Head (microwave ferrite devices), Solid State Devices Laboratory winner of several important awards, including the GMTT Annual Award for Outstanding Contributor to the Microwave Art, 1956, and the Scientific Research Society of America "Applied Science Award", 1959.
Dr. Gerald Schaffner, ph.d. (e.e.); Section Head (low-noise amplifiers) Solid State Devices Laboratory; microwave device research and development, microwave instrumentation, and low-noise solid state amplifier design and development.

REPRESENTATIVE DEVICES
' (for full details, circle opproprate number in coupon below):

1. Compact UHF Isolators: weigh less than 9 ozs. and occupy less than 6 cubic inches, provide more than 10 db isolation with low insertion loss.
2. VHF and UHF Low-Noise Amplifiers: VHF parametric amplifier tunable from $180-270 \mathrm{mc}$, high gain. requires only 1.0 milliwatt pump power. UHF para metric amplifier, similar in appearance, is tunable from $400-460 \mathrm{mc}$, yields 13 db gain, very low pump power.
3. S.Band Parametric Amplifier: features highest gain-bandwidth product presently available.
4. $X$-Band Switching Circulator: for advanced high-power applications and extreme environmental characteristics.
5. High-Speed, Broadband Switch: first broadband, microsecond solid state switch of its kind, better than $18 \%$ bandwidth at X.band.
6. Broadband Y.Circulator: offers 20 db isolation at C -band with $1 / 2 \mathrm{db}$ insertion loss, can also be used as high-speed switch.
7. Faraday Rotation Circulators: employ highperformance ferrite material developed at Motorola, permit simultaneous use of single antenna for transmitting and receiving, even in CW systems.

## Engineered Reliability.

Precision Quality Control

```
JOHN C. CACHEMIS. Manager, Solid State Devices Laboratory Solid Stale Electronics Deparment • Motorola Inc
8201 East McDowell Road, Scottsdale 4, Arizona
 Please send full details on the devices circled:
 1
D
 Please send me solid state microwave devices application
 information.
- Please have a representative call to discuss my
 microwave applications.
I wish to consider an engineering proposal on my apecial
```

NAME
TITLE OR DET
FIHM
A0DRfes

## Broadband Y-Circulator

 553Range is 2.7 to 3.3 Gc


Model CS-902 is a lightweight, compact broadband Y-circulator for use in duplexing systems as well as with masers and parametric am plifiers. It covers a range of 2.7 to 3.3 Gc with a minimum isolation of 20 db and a maximum insertion loss of 0.4 db . The vswr is 1.3:1 max; power handling is 5 kw , peak With a dummy load, this device can be used as a broadband isolator: with factory modifications, it can be used as a broadband isoattenuator or amplitude modulator. Similar models are made for frequency ranges of 5.4 to $6.7 \mathrm{Gc}, 6.8$ to 8.0 Gc and 2.2 to 2.4 Gc

Rantec Corp., Dept. ED, Calabasas, Calif
Availability: 30-day delivery.

## Traveling-Wave <br> Amplifier

Noise figure below 5 db
The WJ-2l2 traveling-wave amplifier covers the 1- to $2-\mathrm{Gc}$ band with spot noise figures below 3 db and fixed-voltage noise figures below 5 db across the band. It is compatible in size, weight, and power supply requirements with present solenoid-focused low-noise tubes. Cathode-operating temperature is 650 C .
Watkins-Johnson Co.. Dept. ED.
3333 Hillview Ave., Palo Alto Calif.
Price: $\$ 2,9.50$
Acailability: 4 to 8 wecks.

* CIRCLE 206 ON READER-SERVICE CARD


## " bige step forward in brocılloand RF amplification <br> OCTAVE RF AMPLIFIERS 4010 600 mos

- low noise figure - low power drain
- high gain - broadband operation
- flat gain characteristic

Model HFW Octave RP Ampliniers fearure lobility high gain, low power drain plus dependability and easy maintenance. Four basic amplifiers are available, with the following frequency sesponses:
40 to 80 mes - 80 so 160 mes 160 to 320 mes 300 to 600 mes

Two additional units cover the $100-400$ mes region as follows:
100 to 200 mes 200 to 400 mes
Conservatively speaking, these equipments offer practical and realistic answer to nearly all broadband amplification sequirements.

IYPICAL PERFORMANCE CHARACTERISTICS MOdOI HFW-303
Input frequency: nput, output impodan nput, oulpul V.S.W.R.: Noise figure (overage): Goin
Primary power requirements: size (L.W.H.):
Mounting dimonsions:

## $300-600 \mathrm{me}$

50 ohms
Less thon 1.5 in bondposes region 7 db
30 db 115 vac
$19^{\prime \prime}$ VAC, 60 cps
Standard $199^{\prime \prime}$ reloy rock
Write for lunher Information.

## Applian Research inc.

76 South Bayles Avenue, Port Washington, N Y CIRCLE 207 ON READER-SERVICE CARD

Rotary Joint
Handles 4 megawatts peak
The inline type, high-power, rotary joint, model RJSL-1A, has a power handling capacity of 4 megawatts peak, and 25 kw average. It has coaxial non-contacting choke joints, ball bearings and an O-ring type pressure seal. Operating between 2,240 and $2,300 \mathrm{mc}$, the vswr is 1.2 ; insertion loss is 0.02 dh . The flanges are type UG$435 \mathrm{~A} / \mathrm{U}$
Canoga Corp., Dept. ED. Bor 550. Van Niuss, Calif.
Price: $\$ 2,5(0)$ cal
Acailability: fil clays.
Signal Generator


For operation in the Ka band, 32 to 37.5 Gc , the model 100 signal generator has a frequency stability of 0.01 ppm , short term, and 1 ppm , long term. Average power output is 15 mw . A rack-mounting configuration is available. Other models in this line provide coverage from L band to K band.
Strand Labs, Inc., Dept. ED, 294 Centre St., Neuton 58, Mass.

## Accuracy Is Our Policy .

In the New Products description of a Ku-band isolator on page 153 of the Jan. 18 issue, the manufacturer's name was inadvertently omitted. The model IKull8 isolator is made by Raytheon Co., Special Microwave Device Operations, 130 Second Ave., Waltham 54, Mass. It handles $135-\mathrm{kw}$ peak and $100-\mathrm{w}$ average power at frequencies between 16 and 17 Gc . Insertion loss is 0.3 db max; isolation is $13 \mathrm{db} \mathbf{~ m i n}, 20 \mathrm{db}$ max. The $2.44-\mathrm{in}$. long unit, weighing 1.4 lb , has a vswr of 1.06 max. For further information on this Kuband isolator, turn to the Reader-Service card and circle 405.

## NEW. . . POS-E-KON PRINTED BOARD CONNECTORS

For Flat Conductor Cable and Flexible Etched Circuirry...


Ask For Publication P2-39

## T\& $B$ <br> THOMAS \& BETTS <br> Engineered

CIRCLE 208 ON READER-SERVICE CARO


## TOROIDS

## We specialize in heavy wire TOROIDAL COMPONENTSmagamps, transformers, etc.

Equipped with the largest selection of winding machines, UNIVERSAL offers coils from $1 / 10^{" F I n}$. I.D. up to 30' O.D.

WIRE RANGE EROM \#2 - \#50.
We also offer "Pof" Windings and Encapsulated Construction to MIL T-27A.


WRITE FOR PURTME INPORMATION

The mest COMPLETE line of TOROIDAL equipment in the world
CIRCLE 209 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961


New customed preforms consist of an accurately predetermined amount ef a specific alloy. The pruper melting temperature and correct volume of solder aie assured. Labor costs are lowered. Production increases. Scrap is eliminated. Get the facts today! Write for 8 page Guide to Preform Soldering
21-01 43rd Ave., Long Island City 1, N. Y.
CIRCLE 210 ON READER-SERVICE CARD


PLASTIC EXTRUSIOWS...AMY SHAPE OR SIZE AcE is one of America's leading mass producers of plastic extrusions and all types of precision parts. Any shape. form or color. Any type Since $\quad$ of plastic. Small runs or large runs. Huge stock
 of plastic. Small runs or large runs. Huge stocks for immediate delivery. Quick, low-cost service on specials. Write, wire or call for samples, price lists and technical bulletins.
acE PLASTIC COMPANY 91-58 VAN WYCK EXPWY.JAMAICA 35 N Y CIRCLE 211 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961

## NOW. . . S-BAND, NON-DEGENERATE AMPLIFIERS

with bandurdthes up) to $\tilde{i} \cdot \mathrm{~m}$ m. at $1: \bar{s} d b$ gazm!


## FOR MILITARY ENVIRONMENTSI

Broadband parametric amplifiers for applications at $\mathrm{L}, \mathrm{S}, \mathrm{C}$, and X band are available now from Texas Instruments. The S-band model, designed with a TI XD-500 gallium arsenide diode, gives bandwidths up to 75 mc at 15 db gain. Gain variation is no greater than 3 db over temperatures ranging from $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, and the unit meets the vibration requirements of MIL-E-5400D. Noise figure, including circulator loss is 3 db . The associated circulator is a miniaturized, three-port ferrite unit with 0.5 db insertion loss and 20 db isolation

| TYPICAL MODEL | -22 SEAIES SPECIFICATIONS |
| :---: | :---: |
| Preauaney | 28.802 .96 Gc |
| bandwidth | 40 mc |
| gain | ${ }_{3}^{15 \mathrm{db}}$ |
| noise figure | 3 db |
| lator loss) |  |
| mump froyueney | ${ }^{\chi}$ ¢ band ${ }^{\text {Texas }}$ Instruments |
|  | XD. $500 \mathrm{~F}_{\mathrm{c}} \geqslant 70 \mathrm{kmc}$ at |
|  | -2v bias 400 |
| temperature rany | $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ |
| vibration. | per MIL-E-54000 |
| pump power | 50 mw |

For details on TI's S-band amplifiers, write for Bulletin No. DLA-1217. For information on specific applications at all frequencies, contact MARKETING DEPARTMENT.

TEXAS ! No cox mitonated onuas in. texas

## PRDpreviews/reviews/design notes Measuring Microwave Frequencies

Of the four basic microwave measurements, i.e., (1) VSWR (2) Power (3) Attenuation and (4) Frequency, the latter is probably the easiest to determine. There are available, of course. many frequency meters with varying degrees of accuracy. These are generally either tunable cavity-type resonators or devices which urilize a harmonic of a low frequency standard.

Cavity Frequency Meters Cavity-type frequency meters, both coaxial and waveguide, make use of the absorption (reaction) or transmission properties of selectively tuned resonators. In use, the meter is inserted between the signal source and the r-f detector indicator. The reaction or absorption type instrument is tuned to obtain a decrease in power level at the detector and, consequently, is particu larly useful as a search frequency meter The transmission type unit passes only those frequencies within the pass band of the resonant cavity and so is mos convenient for monitoring or filtering purposes.

Of the dozens of frequency meters available from PRD, among the most popular and simplest to use are the


PRD 555-579 Series. They are high precision, direct reading, hermetically sealed, temperature compensated instruments and are particularly useful for laboratory and production line testing or as secondary standards.

At X band frequencies the PRD 559-A or B, which are available in both reaction and transmission types, are accurate to $0.015 \%$ with readout directly in megacycles.

Typical cross sectional views are shown for both coaxial and waveguide resonating cavities in this scrics of precision meters.


UHF Frequency Meter
Another popular and useful meter in the UHF television hand is the PRD 587 -A, which is accurate to $\pm 0.2 \%$. It can be used for alignment of tuned circuits and oscillators in the frequency range of 250 to 1000 megacycles. The direct reading dial has a scale length of 60 inches for easy and accurate read out. For convenience and protection circie 213 on reader-service card
the meter is housed in a metal carrying case with a handle.


Precision Heterodyne Frequency Meter
An instrument that uses the heterodyne principle with a crystal oscillator as its standard is the PRD 504 Precision


Heterodyne Frequency Meter. It has an extended range of 100 to $10 .(0 \mathrm{MM}$ megacycles and is accurate to $0.002 \%$. This versatile and portable instrument is used for laboratory and field testing of transmitters, receivers, and signal generators. A cathode ray tube is provided for zero-beat indication on the front panel.

If you would like some assistance with your frequency measuring prohlems, please contact our Application Engineering Department.
We have many interesting openings for engineers...contact Mr. John R. Zabka


## Chart Stamp

## For microwave impedance



This microwave impedance chart stamp, No. RRDP-1, makes a clear, scaled impression of the Smith chart. Designed primarily to stamp notebooks for plotting recrorded data, it obviates pasting in the conventional paper charts.
Radar Design Corp., Dept. EI), Pickard IDrive, Syracuse 11, N.Y.
Price: $\$ 9.50$ each.
Availability: From slock.

## High-Speed Microwave Switch 743

## Consists of three identical switching cells

This high-speed microwave switch consists of three identical switching cells. Each cell has 17 -dh isolation and 1.5 -dh insertion loss. Specifications include: rise time. 10 nsec max; decaly time, 10 nsec max; frequency, 5.4 to 5.9 kmc ; isolation, 40 db min ; insertion loss, 4.8 db max; power requirement, 150 mw .
Gencral Precision Inc., Kearfott Div., 1)(pt. EI), 14844 Oxnard St., Van Nuys, Calif
Price: On request, 10 customer specs
Acailability: 6il days.

## Tunable RF Filters

Insertion loss under 1.5 db
The TTF series of tumable of filters uses $\overline{5}$ resounant line sections, capacity loaded to tune over a 2:1 range. The $Q$ of each section is over $5(1)$; insertion loss is less than 1.5 db . For general use, they operate at 50 -ohms impedance, have a visur of 1.5:1 max and an rf leakage over 120 th below the input level. Four models cover ranges between 250 and $2,500 \mathrm{mc}$, each with a 5\% handwidth. Cabinet models measure $7 \times 5 \times$ 10 in .: panel size for rack mounting is $6-3 / \nmid \mathrm{x}$ 4-3/4 in. Type BNC connectors are standard, with TNC or $\lambda$ types available.
Telonic Engincering Corp., Dapt. Ell, Laguna Beach, Calif.

Delivers 600 cu ft per day


The model 600 pole-mounted air dryer will deliver 60\%) standard (all of dry air per day at pressures from 0 to 1.5 psig. The fully automatic unit, encased in all alnminum cabinet, operates within an ambient temperature range of - 10 F (0) 120) F Compression, cesoling, and desiccation will reduce the relative lommidity of hoot air from


Puregas Equipment Corp., I apt. Ell), Co piagnes, N.Y.

## Waveguide Plug

491
This fast-opening aud-closing rectangular pluge is designed for pressure-testing microwate waveguides It provides ath air-tight seal lor the ends of wavesuide sections and may be put in place or removed onickly during pressure-testing operations. They are available in a wide variets of sizes and shapes.
Moeller Mamblaturing (io., Dept. E.D). Racine, Wis.

## Flexible Absorber

408
Is easily worked, non-breakable


With an attenuation of 50 dh per cm at 8.2 (ic, this encapsulated ferrite, designated CMA-150, provides the electrical properties of a rigid material, yet is easily worked and non-breakable. Its dielectric constant is $\mathbf{1 0}$ at $\mathbf{2 0} \mathrm{mc}$.
Cinstom Components, Inc., Dept. El), Caldwell, N.J.
Availability: 10-day delivery from stock.


TYCO SEMICONDUCTOR
BEAR HILL.WALTHAM 54. MASSACHUSETTS
TWINBROOK 9-2400


## family potraif!

Met the whole Ace family yet? ()r have your requirements in date in precision pots been only in $1 / 2^{\prime \prime}$, or wirewound? The famous Ace reliability, quality control and mass production facilities are not just limited to the above, no sir! Just consider Ace's complete range of standard sizes for instance - not just $1 / 2^{\prime \prime \prime}, 3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}, 11 / 16^{\prime \prime}$. but sizes including A.I.A., up to $0^{\prime \prime \prime}$ !

All these, in bushing, servo and universal mounts, in potentiometer and trimmer parameters. And . . . there are specials. multi-gangs, quick-cup-change designs, linear and non-linears and rectilinears - all in standard and special accuracies and conformities. both in wire-wound and conductive plastic. In short, when you can get Ace-quality in your every potentiometer need. get it the easy way: see your ACErep' Write For complete catalog!


This 3" AIA ACEPOT (shown $1 / 3$-scale) meeting all MILL specs, is available, in a range of accuracies, for prompt delivery.


## Micrownes

Absorption Wavemeters
570
With direct readout


This series of three broadband wavemeters, with direct readout, gives full coverage from 1 to 8 Gc with an accuracy of $0.07 \%$. The readout device consists of a precision film-driving mechanism. All units have N-type connectors. Absorption is $10 \% \mathrm{~min}$; loaded Q is 1,000 .

Frequency Standards, Dept. ED, P. O. Box 504, Asbury Park, N.J.
Availability: 30-day delivery.

## FM Deviation Meter 583

## Range is 4 to $1,024 \mathrm{mc}$

Carrier-frequency range of the model 791D fm deviation meter is 4 to $1,0,4 \mathrm{mc}$. Drviation is read directly from 200 cps to 125 kc , or down to 10 cps with external readout. A counter type discriminator gives deviation-measuring accuracy of 3\%, verifiable against an internal standard.

Marconi Instruments, Dept. ED. 111 Cedar Lane. Englewood, N. J.

## Pi-Line Attenuator

576
Diameter is 3 in .


A miniature, S-type continuously variable $\pi$ line attenuator, the model No. $4426-10$ has a diameter of 3 in . Frequency range is 2 to 4 Cc ; attenuation range is 0 to 10 db . The vswr is 1.30 max, and insertion loss is 0.2 db max. It will handle 10 w average power, or up to 5 kw peak.

Antenna \& Radome Associates, Dept. ED, 27 Bond St., Westbury, N.Y.
Price: $\$ 220$.
Availability: 4-week delivery.


## NEW Miniature MICROWAVE OSCILLATOR CAVITIES

now available

TRAK Electronics Company. Wilton. Connecticut, announces the formation of TRAK MICROWAVE CORPORATION to increase its developmental facilities for triode cavities in r-f signal generation from 500 Mc upwards. Present low. medium and high power cavities are available for application in grid pulse, plate pulse, and CW service.

TRAK expanded its Microwave Cavity line, which started in 1949, by adding the following 7 NEW miniature Cavities in 1960:

TAAK Type 9127-L
TRAK Type 2958
TRAK Type 2959
TRAK Type 9127-SL
TRAK Type 9127-S

TRAK Type C-3136
TRAK Type 9127-C

At 1090 Mc, tuneable $\pm 25$ Mc available from $900-1200 \mathrm{Mc}$

Al 925 Mc , funeable +50 Mc available from $500-2200 \mathrm{Mc}$
At 1.5 KMc . Puneable $\pm 50 \mathrm{Mc}$. available from $500-2200 \mathrm{Mc}$.
At 2 KMc, funeable $\pm 100 \mathrm{Mc}$. avaılable from $800-7000 \mathrm{Mc}$

Available in 3 segments of
S.Band: $2700-3000$ Mc $3000-3300 \mathrm{Mc}, 3300-3600 \mathrm{Mc}$.

ALSO, OSCILLATORS ENGINEERED to your specifications!

We invite you to write for now TRAK MICROWAVE CAVITY BULLETIN.


TRAK MICROWAVE CORPORATION
Subsidiary of
TRAK Electronics Company
5006 N. Coolidge Avenue Tampa 3. Florida

## Microwaves

Radar Test Set


For use with radar equipment operating in the $3-\mathrm{cm}$ band, 8.5 to 9.6 Gc , the test set type 8 G .111003 measures peak and average power, noise level, magnetron and klystron frequency, magnetron pulse envelope, vswr, if handpass and, in combination with an oscilloscope, the frequency spectrum of the magnetron pulse. Power requirement is 110 to $24.5 \mathrm{v}, 40$ to 60 cps .
N. V'. Philips' Clocilampenfabricken, EMA Dept., Dept. EID, Eindhoven, The Netherlands.

## RF Diodes

563
With all-glass construction


This series of subminiature silicon point-contact diodes, of allglass construction, is designed for use in If circuitry. The $1 \mathbf{N} 830$ series is recommended for vhf and uhf video detection and general-purpose rf rectification in coaxial and printed-circuit applications. The IN831 series is designed for lownoise rf mixer applications at signal frequencies below 4 Gc . The 1 N 832 series, for low-noise broadband mixer use between 4 and 10 Gc , replaces 1 N 23 and 1 N 415 types. Microwave Associates, Inc., Dept. ED, Burlington, Mass.

CIRCLE 217 ON READER-SERVICE CARD *

## NeW Frequency Meter and Discriminator


... Simple, Direct Frequency Measurements
... Simplifies Recording of Drift and Stability
... A Highly Linear Pulse-Count Discriminator for Measurements of FM Deviation and Incidental FM.

FREQUENCY METER

- Logarithmic meter maintains constant accuracy, even at one-tenth of full scale.
- Calibrated interpolator . . . effectively expands meter scale by a factor of 10 . . . permits readings to 3 significant figures from any of the 15 preset references on each range.
- Higher frequency measurements can be made by heterodyne techniques. This method also permits drift measurements up to one part in $10^{\circ}$. or better, when using stable frequency standards.
- Readings independent of input waveform. Sensitivity: 20 mv rms from 20 c to 150 kc , rising to 200 mv at 3 c and 1.5 Mc .
- Built-in calibration.

DISCRIMINATOR

- Output: 15v, full scale, on all ranges
- Low Noise: Residual fm more than 100 db below full output
- Linearity: Same as output current accuracy statement


## RECORDER OUTPUTS

- Adjustable output provides current proportional to input frequency up to 5 ma to drive recorders.
- Interpolator output for high-impedance recorders provides voltage proportional to frequency deviation from preset references.

Type 1142-A
Frequency Meter and Discriminator...
$\$ 495$

Write For Complete Information


GENERAL RADIO COMPANY west concord. massachusetis



## - Greatest versatility!

- Highest accuracy!
- Widest range!

NARDA transistorized POWER METER

What's most important to you in a power meter? Accuracy? Portability? Independence from line voltage deviations? Wide range? Stability? Rapid warm-up?

Not that you have to make a choice... or a compromise . any longer. The Narda Model 440 Power Meter gives you all these features! Completely transistorized and powered by a nickel-cadmium battery, rechargeable during operation or overnight, it offers two low-power scales in addition to the five standard scales (see below), a built-in charger with

state-of-charge indicator and protection against overcharging, and freedom from internal heating caused by vacuum tubes.

Moreover, the 440 provides up to 18 ma bias current. enabling you to use the widest selection of bolometers and thermistors. In short, the 440 is the most versatile unit available to provide accurate direct-reading measurements of cw or pulsed-power automatically, over any frequency range for which there are bolometer or thermistor mounts. For complete data, contact your nearest Narda representative, or write us directly. Address: Dept. ED-11.

## SPECIFICATIONS

POWER RANGES: 1 SCALES

| -0.01 mw full scale | -30 to -20 dbm |
| :---: | :---: |
| -0.03 mw full scale | -25 to -15 dbm |
| 0.1 mw full scale | -20 to -10 dbm |
| 0.3 mw full scale | -15 to -5 dbm |
| 1.0 mw full scale | -10 to 0dbm |
| 3.0 mw full scale | -5 to +5 dbm |
| 10 mm full scale | 0 to +10 dbm |

-4.5 ma bolometers give best results on these scales

Range Switch: 0.01 to 10 mw (full scale)
Accuracy: 3\% of full scale reading
Bolometers \& Thermistors: All 100 and 200 ohm, requiring up to 18 ma bias.

Battery Charger: Built-in; continuous or overnight. (Battery operable 16 hrs . before recharge required.)

## muan the narda <br> microwave <br> corporation

118-160 HERRICKS ROAD. MINEOLA. L. I., N. Y. PIONEER 6-4650

## Cooxial Attenuator



This modified version of the model $\mathrm{AU}-10$ can withstand 100 w of ew power for 24 hours with no change in performance characteristics. Insertion loss is zero. The device provides up to 60 dh of attenuation in the 300 mc to 5 Gc range.

Merrimac Research \& Development. Inc., Dept. ED, 517 Lyons Ave., Irvington, N.J.

## Metal-Film Resistance Cards

401
For microwave attenuation
These metal-film resistance cards can be punched. drilled, sheared and machined. They measure $5 \times 12 \mathrm{in}$. and have thicknesses of 0.025 . (0.032 and 0.062 in . Resistivity range is 25107.50 ohms per square. Maximum surface temperature sl:ould be held to 1.30 C. Standard values include $50,100,12.5,150,180,2(0), 3(0), 377,400$ and 500 ohms per square. Applications include use at microwave attenuators and terminations.

Fiimohm Corp., Dept. EI), is W. .25th St., New York 10, N.Y.
Acailability: From stock

Waveguide Shorting Switches 502
Ranges from 2.6 to $\mathbf{4 0} \mathbf{~ G c}$

The model 80 waveguide shorting switch serics covers the frequency range of 2.6 to 40 Gc with 8 sizes. The vswr in open position is 1.02 max; in the closed or shorted position, viwr is 125 min . The hand-operated, plunger type switches are made of standard waveguide and flanges. Insertion loss is negligible in the open position. Solenoid relay actuation is available on request.
Waveline Inc., Dept. ED, Caldwell, N.J.

1 kw Hughes


REAING A NEW WORLD WITH ELECT RONICS
HUGHES


CIRCLE 219 ON READER-SERVICE CARO

Now available in production quantities, these new and improved tubes offer you 1 kw of pulsed output power, with low power input, minimum heat generation and high reliability.
All these Hughes S-band tubes are lightweight, compact and ruggedly lightweight, compact and ruggedly built to withstand the most sever environmental conditions-and fully tested in the field.
Three of these tubes provide full octave frequency ranges of 2.0 to 4.0 kmc and you have a choice of either $1 / 2$ or $1 \%$ duty, in either ungridded or gridded versions, and with gains up to 37 db . All are permanent magnet periodically focused.

ars.
 over the center portion
of the band, $1 / 2 \%$ duty, 36 db small
 $17 / 2$ los. Length: $16-5: 8^{8}$. Meets MIL.E. 1 environmenta' tesis.

For information wire or write:
11105 Anza Ave.
Los Angetes 45, Calif.

## See Mallory for

wire-wound controls


We've got 'em at


2 watts


4 watts

and 7 watts
in hundreds of resistance values, tapers, shafts and multi-ganged arrangements. And we're famous for engineering special models and delivering them at economical prices. Mallory Controls Company, Frankfort, Ind.

## MAllot

plugs
\& jacks
 controls

vitreous enamel resistors
 switches


398

These balanced waveguide duplexers are claimed to minimize incoming signal loss to the receiver, and to provide matching over a broader frequency range and greater protection against receiver crystal burnout than is possible with the branched duplexer. Units are available in $\mathrm{L}, \mathrm{S}, \mathrm{C}$, S1, Ku, K, Ka, and X bands. The duplexer shown is designed for frequencies of 8,490 to $9,578 \mathrm{mc}$ at a transmitter power of 200 kw max; duplexer loss is 1.2 db max, and isolation is 10 db min . The vswr is 1.4 max; vrwr high level is 1.2 max.

Bomac Laboratories, Inc., Dept. EI), Salem Road, Beverly, Mass.

## Microwave Amplifiers

10- to $15-\mathrm{db}$ noise


Covering a frequency range from 500 mc to 18 Gc , the 5000 series amplifiers provides 10 - to $15-\mathrm{db}$ noise figures with $25-\mathrm{db}$ or more gain. Each unit consists of traveling wave tube, power supply, and a focusing solenoid with power supply if required. Each power source has a wide adjustment range so that new tube types may be accommodated. The tube may be directly coupled to a front panel BNC connector for external modulation. The units may be operated with input power from 50 to 450 cps .

Alfred Electronics, Dept. ED, 897 Commercial St., Palo Alto, Calif.
Price: From $\$ 3,150$ to $\$ 5,500$. Availability: 60-day delivery.
 urements. versatility +economy

## Panoramic's ULTRASONIC SPECTRUM ANALYZER SB-7bZ

## 200 cps to 300 kc



UD to $\mathbf{2 5 u v}$ sensitivity and exceptional dy namic range with simple, convenient $O D-$ eration are combined in one compact, lowpriced instrument. Stondord equipment af milifary installations and in industry, the SB-7bZ is ideally suifed for:

- Ultrasonic noise and vibration analysis - Communication system analysis-wire carrier and VLF radie
- FM Telemefry subcarrier chaanel anolysis

The SB-7bz feafures:

- Variable sweep width: 0 to 200 ke
- Amplitude sceles: $40 \mathrm{db} \log , 20 \mathrm{db}$ linese ond $2.5 d b$ exponded
- Resolution: variable from 100 cps to 2ke - Sensitivit: 25 uv for full scole defleclow, calibrated to measure signals as
- Sweep $25 \mu \mathrm{~V}$.

Dower line, plus perevisions symponized sweep rates when used with eccesson equipment
5 high-persisfence CRT Tube
 renalay maiting liot out the feaforlas aspllemito dats.


524 5. Fultom Ave., Mt. Vernon, N.Y. Phone: Owens 9.4600 Cables, Panoromic, Mount Vernon
CIRCLE 221 ON READER-SERVICE CARD

## VISUAL MICROWAVE ANALYSIS 10 to $44,000 \mathrm{mc}$



The scope displays shown opposite each Polarad
Spectrum Analyzer serve two Dasic purposes-first. they illustrate the significant analysis capability of each wave parameters that can be measured and displayed
visually on Polarad's versatile analyzing equipment.

polarad
ELECTRONICS

## CORTORATION

43-20 34th Street, Long laland City 1, N. Y.
Representatives in principal cities.

MAIL THIS CAREI
or specifications.
Ask your nearest
folarad represen.
Folarad represen.
tative (in the
Yellow Pages) tor
Yellow Pages) for
-Handbook of
"Handbook of
pectrum Analyze:

POLARAD ELECTRONICS CORPORATION:
123456
Please send me information and specifications on:

| $\square$ Model TSA | $\square$ Model SA-84 |
| :--- | :--- |
| $\square$ Model TSA•S | $\square$ Model SA•84W |
| $\square$ Model TSA•W | $\square$Model SD•1 <br> (see reverse side) |

Folamas

My application is
Name.
Titie
Company
Addres
City


Microwave
Components
For $\mathbf{4 - m m}$ and $\mathbf{2 - m m}$ bands


A series of microwave components for gencration, detection and measurement in the $4-\mathrm{mm}$ and -. -mm band is available. The units are of original design rather than scaled down from the longer bands. The scries fcatures a claw-flange construction for optimum coupling. N. V'. Philips Clocilampenfabricken, EMA D(pt., Dept. El), Eindhoven, The Netherlands.

Standing-Wave Detector

For vswr of 1.03 to 300


A precision standing-wave detector for the $8-\mathrm{mm}$ band, the type PP 4382 Q measures vswr from 1.03 to 300 . Frequency range is 31 to 36 Gc . Probe carricr displacement is $30-\mathrm{mm}$ max, with an accuracy of adjustment to 0.01 mm . Probe penetration is adjustable to 2 mm . Flanges are Franco-British standard type Z.83.0019.
N. V. Philips' Gloeilampenfabrieken, EmA Dept., Dept. ED, Eindhoven, The Netherlands.

get the slze, specs and mobllity you need with

## SANBORN REOORDERS

1 Chamael $\qquad$ 20 bes, briofease sias

2 Chancels. . . 35" nigh mobile eert ctovice of 4 plugtin preamps

Interchangeable plug-in " 850 " type preamplifiers in Carrier, DC Coupling. Phase Sensitive Demodulator and Low Level types, for inputs fanging from microvolts to hundreds of volts ... Internal MOPA available when carrier or chopper excitation is required . . heated stylus, rectangular coordinate recording stylus, rectangular coordinate recording torized circuits. frequency response to 125 cps within 3 db , if 10 mm peak-to-peat. Model 297 can also be used in optional portable case or rack mounted in $101 / 2^{\prime \prime}$ of panel space.


10 rive rusfly AC strath gace mocial

Extremely compact, highly versatile rocorders for general purpose DC inputs (Model 299) and AC strain gage recording (Model 301). Two chert speeds: 5 and $50 \mathrm{~mm} / \mathrm{sec} \ldots$ inkless, rectongular coordinate recording ...response from DC to 100 eps within 3 th, at 10 div peak-ro-peak io gain stability
better than $1 \%$ to 50 and for line voltage variation from 103 to 127 volts. Model 299 has balanced to ground in. Model 299 has balanced to ground input. 10 switch-selected sensitivities,
calibrated zero suppression. Model 301 has wide sensitivity ranges, can be used with strain gages and inductive trans. ducers, provides excitation voltage of approximately 4.5 volts ms at 2400 CDs . and has uncalibrated zero suppression.


For complete details contact your nearest Sabborn Salos-Engineering representative. Sales representatives are located in major cities throughout the United States, Canada and foreign countries.
 INDUSTRIAR DIVISION 178 Wyman etreet, Wattham 84, Masesehusetto
simple, reliable $]$
DIRECT CONTROL PROGRAMMING


Inoustáial
PUNCHED CARD TMER AND PUNCHED TAPE

PROGRAMMING EQUIPMENT

Automatic equipment designed to provide direct control, without coding or decoding. for as many as 85 indici dual load circuits, through 30 durnal moress. many others. processes. or phone.
or more different steps of an The Programmer is governed by a simple, punched vinyl card The card or tape is advanced from position to position ly at simple external switch closure signalled by feedback, time. limit switch, thermostat, and
Programming equipment operated by punched tape is also available. Modular design permits addition of accessory hanks of memory-type load relays. Industrial Timer Programmers are now in use for the autumatic control of steel and aluminum blooming mills, structural steel fabrication batching solid rocket fuels, and many other industrial

Complete information in Bulletin 100 , sent on request. Write


CIRCLE 223 ON READER-SERVICE CARD

Microwayes products

Coaxial Load
554
Rated at 300 w


Model DRL-9LT, with LT connectors, is a $300-\mathrm{w}$ load for use in the 1 - to $6-\mathrm{Gc}$ frequency range. It is also available with type N or $7 / 8$-in. line connectors.
Radar Design Corp., Dept. ED, Pickard Drive, Syracuse 11, N. Y.
Price: \$225.
Availability: Delivery from stock.
Broadband Isolator
Isolation is 30 db min
The broadband isolator model X11OLI, 5 -in. long, provides a minimum isolation of 30 db with a maximum vswr of 1.10 and a maximum insertion loss of 1.0 db over a range of 8.2 to 12.4 Gc
E \& M Laboratories, Dept. ED, P. O. Box 2427, Van Nuys Station, Van Nuys, Calif.
Price: $\$ 175$ ca; $\$ 85$ to $\$ 160$ ca, 6 to 1,000 units. Availability: 14-day delivery from stock.

## Coaxial Attenuator



The coaxial attenuator, model RDA-1196, is continuously variable from 0 to 25 db over the frequency range of 0 to 500 mc , with an accuracy of $\pm 0.5 \mathrm{db}$. Insertion loss is 1 db maximum. Type BNC connectors are standard; TNC and N available.

Radar Design Corp., Dept. ED, Pickard Drive, Syracuse 11, N.Y.
Price: \$185.
Availability: From stock after Jan. 1.

## Large changes in Inductance, Electrically

Using INCREDUCTOR
Controllable Inductors
The inductance of a signal winding is electrically byanging the current through a separat control winding-with no moving parts.
Audio to UHF units are available from stock.
TYPICAL APPLICATIONS

- Automatic control of amplitude, irequency orphase
- Compressor circuits - Modulation
- Remote contro - Resonant circuit unine
- Switching circuits - Variable Filters
- Wide range, sweep frequency generators

We invite you to write for our periodic technical bulletin, INCREDUCTOR NOTES.

## TRAK

TRAK ELECTRONICS COMPANY
TRAK ELECTRONICS COMPANY
61 Danbury Road
ELECTRONICS Phone: POrter 2.552
CIRCLE 224 ON READER-SERVICE CARD


CIRCLE 225 ON READER.SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

## MicalWaves

## Antenna Cover

552
Withstands 50-1b force


These conical, fiber glass covers, called ParaDome, are designed to withstand a wind force of 50 lb per sq ft . Signal attenuation between 2,000 and $6,200 \mathrm{mc}$ is less than 0.1 db . Standard models cover reflectors of $4,6,8$ and 10 ft .
Tower Construction Co., Dept. EI), 2700) Hawkeye Drive, Sioux City, Iowa.
Availability: 15-day delivery.

## Ceramic Magnet

404

## For twt stack applications

Type F-310, barium ferrite permanent magnetic material, is for periodically focused twt stack applications. Properties include: residual induction, 2,190 gauss; coercive force, 1,850 oersteds; intrinsic coercive force, 3,450 oersteds; electrical resistivity, $10 \times 10^{\prime}$ ohm per cm at 25 C . Temperature is 450 C .
D. M. Steward Manufacturing Co., Dept. EI), Chattanooga, Tenn.
Price: On request.
Acailability: 4 weeks

## Slotted Sections



Model RDZ-1237C is one of a series of precision slotted sections with type N, BNC, TNC, HN or LT series connector in the $1.5-$ to $12.4-\mathrm{Gc}$ range. The section has a residual vswr of 1.06 $\max$ to 12.4 Gc and mounts on standard carriages.

Radar Design Corp., Dept. ED, Pickard Drive, Syracuse 11, N.Y.
Price: $\$ 225$.
Availability: 4-week delivery.
ELECTRONIC DESIGN • February 15, 1961

A few of the many different donr interlock switches available. Write for Data Sheet 186 or see the Yellow Pages for the nearby MICRO SWITCH Branch Office.

A new model in MICRO's line of protective door interlock switches, the " 13 AC " is designed to eliminate that momentary power interruption when the interlock is re-set upon closing the door. This feature is particularly desirable on electronic equipment such as data processing consoles, transmitters or compurers.

Door interlock switch assemblies automatically break the power circuit when a door or drawer is opened, make it easy to intencionally energize the circuit for check or test, and eliminate the use of dangerous jumpers or tie-downs. When the door is closed, these devices automatically re-set so that next time the door is opened, power is safely cut off.

MICRO SWITCH door interlocks are the ultimate in reliability as protective devices on cabinets and enclosures containing electronic equipment that may be hazardous to personnel. More than 150 models include environmentproof and high temperature designs, subminiature and multicircuir assemblies and some with self-lubricating thermoplastic actuating rods.

MICRO SWITCH . . . FREEPORT, ILLINOIS A division of Honeywell In Canada: Honeyuell Controls. Limited, Toronto 17. Ontario


The Model 710A is the most compact, versatile, and easy to operate precision impedance bridge available today.
Because its internal ratio arm resistors and capacitance standard are selected for highest stability, the 710A also assures you the utmost in reliability and ing life.

PARTIAL SPECIFICATIONS

| Resistence: Accuracy: | 0.12 megohms in 8 eanges. $\pm(0.1 \%+1$ dial division $)$ | Storge factor ( $\mathbf{( Q ) \text { : }}$ Aceurecy: | 0 to 1000 at 1 kilocyclo. $\pm(2 \%+0.005)$ |
| :---: | :---: | :---: | :---: |
| Copacitance: | D io 1200 microfarads in 7 renges. | SWITCHES: | All switches use silver alloy contects to insure the highess escurocy. |
| Aceuracy: | $\pm(0.2 \%+1$ dial division) <br> 0 io 1200 hearys in 7 ranges. | INPUT POWER: | 115/230 volus, 50 to 800 |
| Accurecy: | $\pm(0.3 \%+1$ dial division) | DIMENSIONS | Cabinet length, 9 inche |
| Dissipotion Foctor (D): | 0 to 1.000 af 1 kilocyslo. |  | width, 7 inches; height. |
| Accurecy: | $\pm(2 \%+0.005)$ |  | $61 / 2$ inches. |

ADDITIONAL SPECIFICATIONS AND APPLICATION NOTES ARE AVAILABLE Please circle this ad number on the inquiry card or write direct for additional information.

ACTUAL CABINET SIZE indicated by black border.
$\$ 525.00$ nol Fe:
Seatile, Washington

SEE THE NEW 7IOA BRIDGE IN OPERATION
NEW YORK I.R.E. SHOW-BOOTH \#3237
Price and specifications subject to change without notice

## JOHN FLUKE MANUFACTURING CO., INC.

P. O. Box 7161

Seattle 33, Washington circie 230 on reader-service card

Terminal Boards 285
Are Custom-Designed
Built to specifications fumished by the manufacturer, these terminal boards are machined automatically, meeting the requirements of MIL9858, MIL-Q-5923C and MIL-STD-105. Special terminals can also be furnished. The boards may be machined from silicone, melamine, epoxy or other laminates, depending upon the requirements.

National Connector Corp., Dept. ED, 311 Fifth Avenue N., Minneapolis 1, Minn.

Alumina-Ceramic Inserts Made 286 For Transistor Firing Boats
Made to customer specifications, the AlsiMag 614 alumina-ceramic inserts have a long life in fusion-firing boats. They can be made in sample quantities at a reasonable cost.

The inserts position the metallic dots in relation to the silicon or germanium wafer during the furnace operation. AlSiMag 614 stands normal firing temperatures.

American Lava Corp., Dept. ED, Manufacturers Road, Chattanonga 5, Tenn.

## Cable Jacketing Process

Places No Limit On Length Of Run
The jacketing process used by Alpha Wire Corp. in the manufacture of neoprene and polyvinylchloride jackets for multi-conductor cables places no limit on the minimum length of the run. A single foot of jacketing can be furnished. The number of cable conductors may be as specified, provided the ID does not exceed 4 in . The customer specifies performance characteristics.
Alpha Wire Corp., Dept. ED, 200 Varick St, New York 14, N. Y.

## Reports of Laboratory Work

## Present Latest Techniques

Designed to bring authoritative answers to typical problems encountered in laboratory procedures, the Laboratory Guide Reports cover the latest laboratory techniques as well as conventional approaches. Each month, subscribers receive at least four reports drawn from more than 300,000 test programs conducted by New York Testing Laboratories. The annual fee for this service is less than $\$ 20$.

New York Testing Laboratories, Dept. ED, 47 West St., New York 6, N.Y.

ELECTRONIC DESIGN • February 15, 1961

## New Technique Permits

 100-Lb Investment CastingsThe ceramic-shell casting process at Arwood Corp. can produce intricately shaped investment castings that weigh up to 100 lb . Besides increasing casting size, the process offers these advantages:

- More intricate coring
- Finer grain structure
- Better and more consistent surface finish
- Sounder castings (made possible by greater freedom in engineering the casting setup).
- Production of shapes previously impossible.
- Less finishing needed.

This casting technique consists of building up successive monolithic ceramic layers around a wax or a plastic and wax casting set-up. The number of layers depends upon the thickness required to withstand molten metal pressuie. In general, six layers are used to build up a thickness of $1 / 4 \mathrm{in}$.

The firm also does solid-mold casting with "ax or plastic patterns and shell-mold casting. using frozen mercury patterns

Arwood Corp., Dept. ED, 321 W. 44th St. New York 36, N.Y.


Made by the ceramic shell process, this hea: exchanger part is for use on a die modulator in o iet plane.


A gyroscope component cast in 17-4.PH steel is shown in comparison to an ordinary sized investment casting.


ALITE - with its completely equipped facilities for producing high quality, vacuum-tight ceramic-to-metal seals - is geared to meet all your requirements for high alumina ceramicmetal components. From design to finished assembly, every manufacturing step - including formulating, firing, metalizing and testing-is carefully supervised in our own plant. Result effective quality control and utmost reliability.
Hermetic seals and bushings made of high alumina Alite are recommended for electromechanical applications where service conditions are extremely severe or critical. Alite has high mechanical strength and thermal shock resistance. It maintains low-loss characteristics through a wide frequency and temperature range. It resists corrosion, abrasion and nuclear radiation. Its extra-smooth, hard, high-fired glaze assures high surface resistivity.

ALITE DIVISION
or Special Desigus FROM ONE COMPLETELY INTEGRATED SOURCE

To simplify design problems and speed delivery Alite high voltage terminals. feed-throughs and cable end seals are available in over 100 stand ard sizes. However, when specifications call for special units for unusual applications, you can rely on expert assistance from Alite engineers to help you take full advantage of Alite's superior properties
Write us about your specific requirements today

## WRITE FOR HELPFUL FREE BULLETINS

Bulletin A-7R gives useful com. parative dala. Bulletin A- $\mathbf{4 0}$ describes Alite facilitios and complete line of Alite Standard Bushings.


# Standard Bushings 



ORRVILLE, OHIO
$80 \times 110$

## DESIGN DECISIONS

caturing the clever and unusual
in packaging, appearance design,

Novel Techniques Boost Performance,
Cut Size and Power of Tape Recorders


Fig. 1. Astronaut recorder in Mercury capsule has
coaxial reels mounted on opposite sides of the mainframe casting. Recorder has no conventional, pinchdrive rollers.

Fig. 2. Synchronous motor in Courier recorder provides excellent speed regulation, avoids brush problems. Spring driven reels obviate take-up motors, brakes, clutches.


DESIGNING magnetic-tape recorders for today's air and space craft can pose unusual challenges. Requirements for minimum size and power consumption are now accompanied by other demands which can complicate the designer's job. Some of these problems and their solutions can be seen in some recorders developed by Consolidated Electrodynamics Corp.'s Drs. R. L. Sink and J. C. Frayne at CEC's Datalab Div.

## Coaxial-Reel Astronaul Recorder

## Designed for Oxygen Environment

For example, the recorder in the Mercury "Man-in-Space" capsule (Fig. 1), had to work in a 100 per cent oxygen environment. Hence, all materials had to be tested in oxygen for irritating or objectionable odors, for toxic gases, for oxidation or other chemical effects, and for flash fire or explosion. To contain the ozone emitted, motors had to be sealed in separate aluminum containers.

To eliminate the effect of ozone on the nonmetallic drive belts, a belt of nylon webbing was designed. It was impregnated with silicone rubber which vulcanized at room temperature.
Original specifications for the Mercury recorder called for a silicone-paint finish, or a type requiring a $500-\mathrm{F}$ curing temperature. This heat would have warped and annealed the parts the paint was intended to protect. An air-dry silicone paint solved this problem. Thongh it showed poor abrasion resistance, it was adecquate in all other respects. Further research proved epoxy paint satisfactory for the application too.

To minimize volume, the Datalah engineers mounted the take-up and supply reels on opposite sides of the main-frame casting. Both reels use a coaxial shaft, mounting hubs (which contain the reel drive), and brake mechanism. The $\mathrm{read} / \mathrm{write}$ heads are mounted on the side of the main casting. The tape passes over them as it moves between reels.
Power requirements were greatly reduced and tape deformation minimized by discarding the conventional, solenoid-operated, pinch-drive rollers in favor of twin, $270-\mathrm{deg}$, tape-contact, wrap-around capstans. They provide isolation from reel flutter and supply the friction between tape and capstan to assure positive tape drive.

For satellite-horne recorders, reliability is naturally of primary importance. The Courier recorder (Fig. 2), for example, was designed to operate for $1,000 \mathrm{hr}$ without losing efficiency. With a weight of only 5 lb , it can record, reproduce, and erase teletype communications between the earth and the satellite. It can accept


This is the FIRST Space Cabin Simulator used by the Air Force School of Space Medicine to successfully confine 2 men for a 30 day period in a simulated space condition. The creation of this device was the result of the combined efforts of Honeywell's Manned Systems Engineering Section and is one of the many examples of Honeywell's unique capabilities in the fields of environmental control and space technology.

## Honeywell

H Meltay Probutara graup

## ENGINEERS, SCIENTISTS

Because of continued expansion at the Aeronautical Division and in our Manned Systems Engineering Section, the following select, high level openings are now available:
Human Factors Engineer-Cross degree background, BSEE with MS in Psychology or BS in Psychology with MSEE or equivalent to design and layout man-machine interface specifications, control and display dynamics and experimental work on Human control information processing abilities.

Sr. Manned Systems EngineerPh.D, EE or equivalent with broad servo, math and analytical systems experience to work on Human requirements for space flight, complex man-machine interactions and the development of manmachine systems analysis techniques.

Sr. Physical Chemist-Space Environment-BS in Physical Chemistry (although advanced degrees are preferred) to develop methods of maintaining desired levels of gas concentrations and develop processes for reclaiming waste materials for manned space, lunar, or orbital vehicles, cabins or satellites.

Sr. Physical Chemist-Cryogenics -BS in Physical Chemistry (although advanced degrees preferred) with knowledge of cryogenics to plan and conduct investigations on cryogenic liquids and the properties and compatibility of materials at cryogenic temperatures. Also develop processes and techniques as they apply to the design and production of space control systems making use of cryogenic phenomena.

Select the position best suited for you and send your resume or request for further information to: Mr. James H. Burg, Technical Director, Aeronautical Division, 2614 Ridgway Road, Minneapolis 40, Minn.

To explore professional opportunities in other Honeywell operations, coast to coast, send your application in confidence to: Mr. H. T. Eckstrom, Honeywell, Minneapolis 8, Minnesota.


Said J. Stefan and L. Boltzmann: "The total radiation from a black body is proportional to the fourth power of the absolute temperature of the black body."

Radiation is usually associated with high temperatures. Yet very cold bodies emit a radiation which can be highly significant in missile and space applications. The problem faced by infrared scientists, trying to detect variations in radiation from low temperature atmospheres, can be likened to detecting a one-foot cube of ice from a distance of five miles.

Lockheed Missiles and Space Division scientists are deeply engaged in studying the problems of infrared emission from the earth and its atmosphere, as seen from orbital altitudes. Although the earth resembles a black body at $300^{\circ}$ Kelvin, the emission from its atmosphere, under some circumstances, is much colder. To make measurements under these circumstances, Lockheed has evolved radiometric equipment with one of the most sensitive detection systems yet conceived.
Scientists and engineers must also take careful measurements of a potential employer. Lockheed Missiles and Space Division in Sunnyvale and Palo Alto, California, on the beautiful San Francisco Peninsula, invites this close scrutiny. As Systems Manager for the discoverer and midas satellites and the polaris fbm, Lockheed preeminence in Missiles and Space creates positions in many disciplines for outstanding engineers and scientists.

Why not investigate future possibilities at Lockheed? Write Research and Development Staff, Dept. M-13B, 962 West El Camino Real, Sunnyvale, Calif. U.S. citizenship or existing Department of Defense industrial security clearance required.

## Lockheed/missiles and space division

Systems Manager for the Navy POLARIS FBM and the Air Force AGENA Satellite in the DISCOVERER and MIDAS Programs sunntuale. palo alto. van nurs. santac.auz santa maria. california - cape canaveral florida• hawail

## DESIGN DECISIONS

frequencies to 50 kc for 5 min on one channel at a tape speed of 30 ips . Its tape can be reversed to reproduce the signal in reverse time sequence.

## AC Molor in Courier Recorder

## Cuts Flutter and Speed Variations

Use of an all-metal capstan drive, driven by a 400 -cps synchronous motor assures low flutter and long life. Though the motor requires a solidstate inverter to supply its ac power, it provides one per cent speed control and eliminates brush problems.
The motor transfers its torque by friction on a spring-loaded, steel drive ring through a rubber coupling on the drive shaft to two capstan shafts. The $0.02-\mathrm{in}$. thick drive ring is free to deflect, but it is held in alignment with the drive shaft and the capstan-drive wheels by a flanged wheel on ball bearings. The pressure can be adjusted by moving the drive shaft against the drive ring.
Twin, rubber-covered, tape-drive capstans eliminate the need for pinch rollers and solenoids. They also provide positive tape-drive isolation from reel-induced flutter.
To minimize power requirements, take up motors were eliminated. Instead, an unusual spring-driven reeling system has been employed. "Neg'ator" springs apply a reverse torque through the common shaft. They apply constant tension to the tape.
Microswitches stop the recorder at the end of a record or reproduce cycle. These are actuated by cams driven by a gear reducer on the reel shaft. A potentiometer on this shaft provides a voltage proportional to the amount of tape still on the record reel. A potentiometer rotation of 316 deg signals the expenditure of a full $775-\mathrm{ft}$ length of tape.

## Flangeless Reels Take More Tape,

Give Smoother Operation in Smaller Package
Some particularly unusual approaches were used in designing an airborne recorder for an automatic data-handling system. Most noticeable innovation in this recorder (Fig. 3), is the absence of conventional flanged reels. These were discarded because of several disadvantages. For one, their fixed diameter precludes making the package length less than twice the reel diameter. Further, because the flanges have thin sections, severe vibration or shock can induce violent vibration in the flanges.

This interferes with the uniform motion of the

## Immediate delivery! HST <br> TRANSFORMERS

in Quantities up to 250 per item at factory prices!

CONTACT THESE AUTHORIZED HST-ARCO INDUSTRIAL DISTRIBUTORS ARIZONA
Aadio Specialties \& Appliance Corp.
917 N. 7th Street, Phoenix CALIFORNIA Brill Electronics
610 E. 10th Street, Oakland 6
Hellywood Radio \& Electronics inc.
5250 Hollywood Boulevard, Holly yood 27
1850 Mission Stret San
1850 Mission Street, San francisco 3
2045 Kettner Boulevard, San
Shelley Radio Co. Inc.
2008 Westwood Boulevard. Los Angeles 25
921 s. V. Weatherford Co .
San Fernando Road, Glendale ?
colorado
1254 Arapahoe Street, Denver 4
MARYLAND
Kann-Ellert Electronics, Inc.
2050 Rock Rose Avenue. Baltimore MASSACHUSETTS
Cederal Steet Bosto
NEW JERSEY
Federated Purchaser Inc.
1021 U.S. Route 22, Mountainside NEW YORK
525 Jericho Turnoike. Mineola, L. Harvey Radio Co.., Ine.
103 W. 43rd Street. New York 36
Lafayette Radie Electronics Corp.
Terminal-Hudsen Electronics Inc. 236 W. 17th Street New York 17

TEXAS
All. State Electronics Inc.
Busacker Electronic Equipment Co. Inc.
1216 W. Clay. Houston 19
5000 Denton Drive, Dallas
UTAH
3214 Washington Boulevard, Ogden WASHINGTON
2221 Third Avenue, Seatt CANADA
Electro Sonic Supply Co. Lto. 543 Yonge Street, Toronto 5, Ontario
ARCO ELECTRONICS, INC.


Complete stocks are available from ALL Arco branches or from any Arco HST Industrial Distributor for instant shipment upon receipt of ordel. Requred material is prepared minutes after your request is received. Arco's branches in Dallas and Los Angeles. eliminate any delay in shipping time from the East to West coast
electronics inc. Transformer Division,
Community Drive. Great Neck, New York - NUnter 7.0500 branches

Manulactured by



## NEW $3^{\prime \prime}$

"SPACE SAVER"

## DC OSCILLOSCOPE

The little 1O-10 has big applications. Use it in industrial. medical and general service fields for computer "read out" and for voltage, frequency and phase shift measurement. It features identical vertical and horizontal AC or DC coupled amplificrs. external sync terminal, external capacity binding posts for sweep rates lower than 5 cps , transformer-operated power supply, voltage-regulated B+ and bias and excellent specifications. 3RP-1 CR tube included. Send for free Heathkit catalog or see your nearest Heathkit dealer.

## HEATHKIT क [PAYSTROM

HEATH COMPANY Benton Harbor ©0, Michigan
Please send the Free Heathkit cotalog.
NAME
ADDRESS
CITr
ZONE STAIE


CRUCIBLE'S HANDBOOK CAN HELP AVOID MISTAKES IN PERMANENT MAGNET DESIGN. Now design errors can be eliminated from permanent magnet gap dimensions, sizes, alloys, etc. Refer to this 346-page Crucible Permanent Magnet Handbook. It's the most complete reference of its kind! It gives all the data you need to design permanent magnets into generators, meters, compasses, hi-fi and TV systems, etc. It also discusses ferromagnetism, electromagnetic theory, and over 60 different magnet materials, For your copy of this Permanent Magnet Handbook, send check or money order for $\$ 10^{\circ}$ to Crucible Steel Company of America, Four Gateway Center, P.O. Box 88, Pittsburgh 30, Pa. - Add 40, for state sales tax if you are located in Pennsylvania.

CRUCIBLE STEEL COMPANY OF AMERICA CIRCLE 237 ON READER-SERVICE CARD


Fig. 3. Flangeless reeling system in this airborne recorder cuts size, increases tape capacity, and improves environmental immunity.
tape. Also, the tape cannot be wound tightly on a flanged reel becanse it is difficult to remove air entrapped between each tape layer. Because flanges must keep tape in place, the full reel diameter cannot be used.
The flangeless reeling system uses tapered rollers above and below the supply and take-up hubs. In normal operation, these rollers do not touch the tape. Under severe environmental conditions. the rollers keep the tape in position on the luhb.
This technique increases the tape-holding capacity by 17 per cent over the normal $7,200-\mathrm{ft}$ capacity of a standard $15-\mathrm{in}$. flanged reel using one-mil Mylar tape. Furthermore, it winds the tape more uniformly and maintains more uniform tension by using a follower roller that "squeegees" the entrapped air from the layers of tape and controls the tape-tensioning brakes.
The basic design concepts behind the tape recorders discussed here can be found in "Design Tape Recorders for Minimum Size, Weight, and Power" by Dr. Sink and Dr. Frayne in Elec. thonic Design, Nov. 23, 1960.

## Solid-State Carrier Amplifier Improves Control With Square Waves

By using a $10-\mathrm{kc}$ square-wave carrier instead of the conventional sine-wave carrier, a solidstate strain-gage amplifier provides casier control of the output amplitude. In addition, the amplifier requires less filtering than do amplifiers with sine-wave carriers and the amplified signals are more easily reconstituted after demodulation. Zener diodes with a zero temperature cocfficient are used to shape the square waves. They keep the square waves at a constant amplitude over a $220-\mathrm{F}$ temperature range for long intervals. Before they are shaped, the square waves are derived from an overdriven amplifier which is fed by a sine-wave oscillator.
This novel carrier amplifier is a product of Video Instruments Co., Inc. of Santa Monica, Calif.

## Low Impedance Lines Minimize Voltage Spikes in DC Transmission

An extra-low impedance transmission line was used in the Univac Lark and Univac III computers to distribute de voltages. The low im-pedance-approximately $1 / 30 \mathrm{ohm}$-was necessary to minimize spikes of voltage due to fast switching.
The low impedance was obtained by using small spacing between lines and large cross-sectional areas.

The lines used were about 6 ft long. They were made by sandwiching a film of mylar dielectric between brass shim stock 6 ft long by 6 to 10 in . wide, and folding the sandwich several times around the longitudinal axis.
Several of these lines are mounted side by side in the section of conduit shown below.


Section of conduit contains several low-impedance lines for de transmission. Low impedance minimizes voltage spikes due to fast switching.

## NEW! <br> Self-Check Rate of Turn Gyro Tells you "GOI" or "NO GOI"

Here is built-in reliability you can depend on. Just prior to flight, when it really counts, you can determine whether the new Honeywell Rate of Turn Gyroscope, Model JRS Series, is functioning properly by just pressing a switch . . . Green light - "GO!" . . . Red light - "NO GO!" It's just that simple. In missile applications, it can be even simpler. Manual "press-to-test" can be eliminated by programming an automatic gyro integrity check into the countdown network.
This new Honeywell Rate Gyro is designed expressly for flight control and instrumentation in missiles and aircraft where severe ambient conditions prevail ... and at the same time where low threshold, minimum hysteresis, excellent linearity, high natural frequency, high signal-tonoise ratio, and ruggedness are essential.
Viscous damping is temperature compensated to maintain a virtually constant damping ratio over the entire operating temperature range of $-65^{\circ} \mathrm{F}$ to $+175^{\circ} \mathrm{F}$.
Honeywell inertial components and engineering experience are available to assist in the solution of your gyro problems. Write for Bulletin JRS to MinneapolisHoneywell, Boston Division, Dept. 10, 1400 Soldiers Field Road, Boston 35, Mass., or call your local Military Products Group office. Sales and Service offices in all principal cities of the world.

## Honeywell

H) Miltaray Products Graup


Honemwell Rate Gyro, Type JRS Series. Shown approx i/2 size

## PERFORMANCE DATA

- EXCELLENT linearitr: As low as $0.25 \%$ of full scale
- LOW HYSTEREsIS: Less than $0.1 \%$ of full scale
- LOW ThaEshold: Less than 0.01 degree/ second
- MICROSYM PICKOFF: Variable reluctance type providing infinite resolution and high signal-to-noise ratio
- FULL SCale rate: as low as 10 degree/ second
- Full scale output: Up to 15 volts
- RUGGED: Withstands 100 G shock
- VIBRATION: Operates at 12 G shock to 2,000 cps
CI2E: $2.11^{\prime \prime}$ diam, $\times 4.60^{\prime \prime}$ long
- WEIGHT: 2.2 lbs .

Consult Honeywell for your specific gyre requirements

## Self.Check Feature Is Used

to Determine that:
(a) Gimbal is free to rotate
(b) Restraining Spring is able to return gimbal to zero position
(c) Pickoff generates proper signal, proportionate to gimbal defiection
(d) Gimbal Deflection is proportionate to given torque exerted upon it
(e) Gyro Wheel rotates at proper speed
(f) Dampening Ratio of gyro is within acceptable limits



## NEW LITERATURE

## Strain-Gage Pressure Transducer <br> 290

Bulletin 4326, two pages, describes type 4-326 strain-gage pressure transducer. Electrical, mechanical and physical specifications are given. Wiring and dimensional diagrams are included. Consolidated Electrodynamics Corp., Transducer Div., 360 Sierra Madre Villa, Pasadena, Calif.

## Miniature Electromanometer System

291
Bulletin 1156, two pages, describes and illustrates a miniature electromanometer system. The unit is a precision-measuring device that provides secondary pressure standard accuracies for lab, field or industrial applications. Specifications and a block diagram are given. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

## Free Space Room Design

This 12 -page bulletin gives free space room design elements. Included are charts for estimating room dimensions according to frequency and antenna size, a table of absorber performance, three typical design problems and solutions, and information on specification pitfalls. McMillan Industrial Corp., Brownsville Ave., Ipswich, Mass.

## Thermion

293
Technical Report No. 4-3-9-A, 9 pages, is entitled "The Thermion: Theory and Practice," by Professor L. F. Eastman. It describes the thermion's applications for testing vacuum-tube thermal conditions and reliability. Chapters include: vac-uum-tube thermal conditions and reliability, description of the thermion and its performance, description of the use of the thermion, and conclusions and recommendations. Graphs, references and a biographical sketch are included. Rescon Electronics Corp., 151 Bear Hill Road, Waltham 54, Mass.

## Micro-Vellum Process

294
This 12-page brochure describes and illustrates the firm's half-sizing technique, called the microvellum process. This technique reduces drawings by recording on $35-\mathrm{mm}$ microfilm and printing from the microfilm by electrostatic process onto engineering vellum. This reduces the storage space required for blueprint files. The firm has a microfilm service for films conforming to military specifications. Diagrams and price sheets are included. Delta Blue Print Co., 5742 Tujunga Ave., North Hollywood, Calif.

## TEST EQUIPMENT

 by...tensorPORTABLE AC-DC REFERENCE SOURCE
MODEL
5890 …... S495


Here is a completely self contained standard for meter calibration. Accuracy is held to $.25 \%$ of set voltage. Supplies are regulated and one watt of power is available from 0 to 100 volts.

INCREMENTAL ANALYZER


## моое 5880 \$250 $\ldots \ldots$

This general purpose input adapter for high impedence recorders is used to allow the display of any voltage, current, resistance or temperature measurable on the units VOM. Increments of any part of the range may be expanded to full scale readout on a recorder or sensitive DC millivoltmeter.

ARBITRARY FUNCTION GENERATOR


Covering the frequency range of .001 to 10 cycles per second, waveforms are programmed by shaped cams. In addition to the selected function, a square wave at the same frequency is also produced. Function derived can modulate a 60 cycle or other frequency carrier to yield a suppressed-carrier waveform useful in servo testing.



ELECTRIC DEVELOPMENT CO., INC.
1873 Eastern Parkway Brooklyn 33 New York HY 5.9200

CIRCLE 240 ON READER-SERVICE CARD


## Capacitors for

 NO COMPROMISE Circuit DesignUnusual requirements in capacitance. tolerance. case size or configuration no longer need compromise your circuit designs SOUTHERN ELECTRONICS' engineers are experienced in solving these problems to the extent that non-standard capacitors have become roufine at SEC.

SEC has developed multiple block capaci. fors that are now saving space and weight in a production missile. Two 12 mfd capaci tors were designed to take less space than one. with improved electrical characteris. lics. In another application. SEC eliminated 6 tubular capacitors, utilizing a single can. 6 terminals and a common ground. Result Room for additional components. easier wiring. and a less expensive component

SEC. in addition to designing special capacitors to save weight and space, has developed dual-dielecirics to solve unusual temperature coefficient problems, and has introduced special dielectrics and oils for extreme high temperature and high voltage applications

This engineering know how has resulted in the use of SEC capacitors in twelve U S missiles. analog computers, and many radar and communications services.
SEC capacitors are manufacfured in a wide range of capacitance to meet your needs from 100 mmf to any higher value. with tolerances as low as $0.1 \%$. They are made under unusually crilical quality control standards. and meet or exceed the most figid MIL-SPECS.

See our new sub-miniature polystyrene capacitors at the IRE Show, Booth 2217, N.Y Colisoum.

## SOUTHERN ELECTRONICS! Corporation

150 WEST CYPRESS AVENUE BURBANK. CALIFORNIA

CIRCLE 241 ON READER.SERVICE CARO
ELECTRONIC DESIGN • February 15, 1961

## Moly Permalloy

Bulletin EM-30, Edition 1, 16 pages, describes moly permalloy for use in the miniaturization field of electronics. The bulletin gives testing data, hysteresis loops, special heat-treating data, magnetization curves, core-loss graphs and typical physical, mechanical and magnetic properties. Allegheny Ludlum Steel Corp., Oliver Bldg., Pittsburgh 22, Pa.

## Decade-Counter Modules

This four-page data sheet describes types DC-111-A and DC-111-B switch-transistor de-cade-counter modules. Mechanical and electrical specifications and output-capability information are given. Suggested transistor circuits for use with the counters are included. Burroughs Corp., Electronic Tube Div., P.O. Box 1226, Plainfield. N.J.

## Magnetic and Electronic Equipment

297
Bulletin PI-B01, 12 pages, illustrates and describes 31 items of magnetic and electronic equipment. Performance data and specifications are given for dry-type transformers, voltage-regulating transformers, voltage-stabilizing transformers, saturable reactors, power supplies and magnetic-amplifier-controlled battery chargers. Acme Electric Corp., Cuba, N.Y.

## Radio-Transmitting Equipment

This four-page, illustrated brochure describes the firm's 11 -type radio-transmitting equipment. Designed for high-frequency communication systems, the equipment can be used in applications such as traffic control or news-gathering and emergency communications. Specifications and performance characteristics are included. Westrex Corp.. Communications Equipment Dept., 540 W . 58th St., New York 19, N.Y.

## Photoelectric Catalog

Photoelectric catalog No. 60, 24 pages, describes and illustrates new developments in highspeed. ultra-sensitive and impulse-actuated controls; tubeless photoelectric controls; safety controls; photoelectric and electronic timing controls; controls with built-in sensing heads, remote sensing heads and miniature remote sensing heads; plug-in mounted controls; light sources with built-in and remote heads and miniature heads; and controls actuated by current surge and impact. Included are a photoelectric control/ light source distance chart, a conversion chart, and application and dimensional diagrams. Autotron. Inc., Box 722HA, Danville, Ill.

## Stepping Mofors

## BI-DIRECTIONAL

 HIGH RELIABILITY POSITIVE LOCKCompact and lightweight CurtissWright bi-directional digital motors index precisely and lock positively between each angular rotation when converting electrical pulses to mechanical motion in missile, aircraft, automation and actuation applications. Ruggedly constructed and dynamically balanced for long life and reliable service under severe environmental conditions. shock and vibration. Low power required for high speed operation.

Temperature: $-65^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$ Vibration: 20 G's to 500 CPS
Shock: 30 G's for 11 milliseconds along each axis
$\qquad$
Write for latest complete components catalog \#502

TIME delay pelays o delay lines - Rotany SOLENOIDS - DILITAL MOTORS - TIMIME DEVICES - DUAL RELAYS - SOLID STATE COMPONENTS


## Electronics Division <br> CURTISS-WRIGHT CORPORATIOH <br> East Paterson, Now Jorsoy

CIRCLE 242 ON READER-SERVICE CARD

## Thermal Time Delay Relays



## Instant Reset

## Voltage Compensafed

## VIbration Resistant

Precision-built Curtiss-Wright thermal time delay relays reset instantly when de-energized - provide the same delay period for each succeeding cycle. Compensated for wide voltage variations. Available in either 28 V DC or 115 V AC, 60 or 400 cps . Chatterfree operation, under severe shock and vibration conditions. Small sized, hermetically sealed. temperature compensated for precise, relable operation and long life. Preset time delays from 10 to 180 seconds with SPST, SPDT or DPDT snap action contacts.

Write for latest complete components catalog \#505
time delar relars o delay limes - rotaay SOLENOIOS DIGITAL MOTORS TIMIME DEVICES - DUAL RELAYS - SOLID STATE COMPONENTS

## \section*{Electronics Division} <br> CURTISS WRIGHT CORPORRTION

East Paterson, Now Jersoy
CIRCLE 243 ON READER-SERVICE CARD

# Use these logic modules for easier, faster, computer design 

Encapsulated elements operate at high frequency over wide temperature range

- Fast switching speed of $1 \mathrm{mc} /$ second
- Standard 6 volt logic
- Rugged, uniform packaging


Series M Transistor Logic Elements now provide maximum reliability and high frequency performance over an extended temperature range of -40 C to +125 C . Pre-designed for immediate use in breadboard. prototype or production equipment, these compatible logic modules find versatile defense applications in digital computer and data handling systems. Encapsulation in high-temperature epoxy material, semi-transparent for easy inspection of internal assembly, affords protection from extreme environmental conditions of humidity, shock and vibration. Metal feedthrough sleeves improve mounting flexibility, while uniform packaging and terminal arrangement facilitate interconnection of modules.

Reasonably priced and available for prompt delivery, General Electric Transistor Logic Elements are manufactured from thoroughly tested, quality components. These saturating and resistance-coupled modules are also offered in circuit and packaging variations, custom designed to meet specific engineering requirements.


Transisfor Binary (Type M.266) -provides Iwo gate control inputs, two gate signal inputs, and two direct resistance inputs for the set and reset of the flip-flop. Infended for use in counters and shift registers, it drives up to four, fully loaded, Ssios M Transistor NORGates af each of the two outputs.


Transistor NOR-Gate (Type M-134) -performs pulse inversion and logic functions $O R$ and AND. Each of the iwo separate elements of this common emitter switch drives four odditional, fully loaded, Series M Transistor NORGates. Three inpuis are furnished for each oloment.

Transisfor Emiffer Follower (Type M-31-10) consists of two separate elements with individual input and output ferminals. Both elements are capable of driving up to ten, fully looded, Series M Transistor NOR-Gates. Applications are found in impedance Ironsformation and in driving logic elements without inversion or significant degradation in the transmitted pulse.

176-52
Progress Is Our Most Importiont Product
GENERAL ELECTRIC
DEFENSE ELECTRONICS DIVISION
HEAVY MILITARY ELECTRONICS DEPARTMENT - SYRACUSE, NEW YORK

## NEW LITERATURE

## Plastic Ruler

300
This 6 -in. plastic engineering ruler shows the 1959 ARDC model atmosphere table of atmospheric pressure and temperatures encountered at altitudes up to $2.000,000 \mathrm{ft}$. Temperature inversions at $90,000,180,000$ and $325,000 \mathrm{ft}$ are given to hundredths of degrees. Tenney Engineering. Inc.. 1090 Springfield Rd.. Union, N.J.

## Rubber-Neoprene Cables

Bulletin No. 1134, 30 pages, contains information on the splicing and terminating of shielded and unshielded cables. Included in the illustrated booklet are tape selector and quantity estimating charts, product information, and a pur-chase-planning aid sheet. The Okonite Company. Passaic. N.J.

## Test Instrument Catalog

Illustrated catalog No. ES-9, 24 pages, lists the firm's line of integrated instruments for automatic measurement of sound, vibration and strain. Instruments listed include: accelerometers. amplifiers, analyzers, deviation bridges, filters, level recorders, megohmmeters, oscillators. strain-gage equipment, test jig, vibration control equipment and voltmeters. Applications and specifications are given. B \& K Instruments, Inc.. 3044 W. 106th St., Cleveland 11, Ohio.

## Tape-to-Tape Converter

 303Brochure 3C, four pages, describes a magnetic tape-to-tape converter designed for missile applications. Modifications for industrial applications are suggested. A block diagram of the instrument is included. Computer Control Co., Inc., 983 Concord St.. Framingham, Mass.

## Electronic Switch

304
Brochure No. BX-535, 24 pages, contains 50 illustrations. It covers theory of operation, circuit design information, characteristic curves, and applications of the firm's Beam-X switch. Burroughs Corp., Electronic Tube Div., Plainfield, N.J.

## Selenium Rectifiers and Diodes

305
Two-page Bulletin, No. EI-2.98 tabulates specifications of selenium rectifier stack's and gives forward and reverse characteristics of diodes in graphic form. Outline drawings are included. Radio Receptor Co., Inc., Selenium Div., 240 Wythe Ave., Brooklyn 11, N.Y.


New operational amplifier 200 KC

## gain-bandwidth product

from unity to open loop COMPACT . . . ALL SOLID STATE FULL DIFFERENTIAL
RIGis new. transistorized Operational Amplifier Model A-2 is now your onebest DC amplifier chouice: as a miniature. completely reliable instrument preamplifier . . . for versatile, multiple-unit use in complex data-handling and process control systems ... and for customary analog computing applications.
Check and compare the A-2's unmatched combination of electrical. mechanical, and cost specifications:
OPEN IOOP (GAIN - 100 ),001)
RISE TIME - Less than 10 micro. reconds at unity gain. and at gain of ten: less than ( $(x)$ ) microveconds at gain of one hundred.
DRIt T ( refererred to input) - l.ess than two millivolts over $75^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$ change of ambient: less than 100 ) micro. volis over eight-hour period at constant temperature.
COMMON-MODE REJECTION RATIO - U'p to S(X),OKX) to one at open loop.
oLTPUT loaiding capability 10 K at $\pm 10$ volis
1.INEARITY - Within 0.1 - in outpur swing of $\pm 10$ vols.

WEIGHT - 12 O2. COKT - \$195.10
 lor completer deraulul:
also avallable cumpanion. plue.m power

 ampliferi, and smill DC iefros.

RIDGEFIELD INSTRUMENT GROUP a Schlumberver division Ridgefield, Conn., P.O. Bux 337. IDlewond K-6571

SPECIAL PURPOSE ANALOG COMPUTERS FOR DATA HANDLING AND CONTROL, ELECTRONIC COMPONENTS. NMR AND ESR SPECTROMETERS, MAGNETIC RESONANCE ANALYTICAL SERVICES
circie 245 on reader-service card
ELECTRONIC DESIGN • February 15, 1961

## Molded Tubular Capacitors

This four-page bulletin describes series 3811 and 38 M molded tubular capacitors. It gives electrical and mechanical specifications and standard ratings. John E. Fast Co., 3598 N. Elston Ave., Chicago 18, III.

## Rectifier Columns

Bulletin SR-370, 16 pages, gives spe(ifications, electrical principle and operating data on a series of high-voltage rectifier columns. Diagrams, tables, and performance characteristics curves are included. Write on company letterhead to International Rectifier Corp., 1521 E. Grand Ace., El Segundo, Calif.

## Power Source

Bulletin 502, two pages, describes model LDS-1500 $50-\mathrm{w}$, low-distortion. variable-frequency power source. Specification data are given. Krohn-Hite Corp., 580 Massachusetts Ave., Cambridge 39, Mass.

## DC Power Supplies

Bulletin 105, two pages, describes and illustrates a series of transistor-regulated de power supplies. Four models are given. Electrical and physical specifications are included. Opad Electric Co., 43 Walker St., New York 13, N.Y.

## Antenna Towers

This 68 -page booklet describes the firm's facilities, capabilities and experience in designing, fabricating and erecting stecl and aluminum structures. Radar and antenna towers and antenna structures are described and illustrated. Dresser-Ideco Co., Dept. DP, 875 Michigan Ave., Columbus 15, Ohio.

## Solderless Terminals

310
This eight-page bulletin, No. 264, illustrates a line of solderless terminals giving stock number, hole diameter, stud and wire size and price. Crimping tools also are described. Vaco Products Co., 317 E. Ontario St., Chicago 11, III.

## How to keep computers compact



You can often save space, weight and money in equipment employing sine-cosine operations by "designing in" Gamewell Sinusoidal Potentiometers. Far lighter and more compact than gears, cams, and other complicated mechanisms, they're widely used in analog computers, data converters, Tacan systems, and radar components. Advanced design produces functions with smoothness and precision unobtainable by other resistive methods. For details and latest catalog, write The Gamewell ComPANy,1398Chestnut Street, Newton Upper Falls 64, Mass. A Subsidiary of E.W. Bliss Co.

CONDENSED SPEC OF RVG-30X5-4
Resistance . . . . . . . . . . . . 16,000 ohms $\pm 5 \%$ Conformity ............... $1.0 \%$ peak to peak Starting Torque............. 0.5 oz. in. max. Angular Accuracy ..................... $\pm 0.7^{\circ}$ Weight...................... . . . . 2 02. max. Mechanical Rotation. ..... . . . . . . Continuous Electrical Rotation..... . . . . . . . . . . . . . . $360^{\circ}$ Nominal life. . . . . . . . . . . . . . 350,000 cycles

## BLISS

 PRECISION POTENTIOMETERS
integrals of
high performance

## BREAKTHROUGH!



## interchangeability !

What do you need from a thermistor in the way of performance? Reliability? Extreme stability? High shock resistance? Long life? Fenwal Electronics can supply it. But Fenwal Electronics' thermistors provide an additional important characteristic all their own: they can be supplied with identical resistance temperature curves.
That means that now, for the first time, you can have complete interchangeability. It means you can rely absolutely on consistently accurate resistance changes versus temperature of Fenwal Electronics' thermistors. It means also you can now achieve accurate, multi-point temperature indication or control through a single system without having to calibrate out each individual sensor.
From Fenwal Electronics . . .the most complete line of precision thermistors






From Fenwal Electronics . . .more help on thermistor problems minn minnix


For complete information, or the name of the fenwal Representative in your area, write:


[^5]> in


## HUNDREDS OF BASIC EMCOR STANDARD FRAMES TO BUILD YOUR ENCLOSURE SYSTEM

Just a few of the thousands of control center combinations, attained through the use of the EMCOR MODULAR ENCLOSURE SYSTEM, are
 illustrated here. The ultimate in enclosure flexibility is available through hundreds of EMCOR Standard Basic Frames and thousands of component parts. The EMCOR Fine Line of Quality features simplicity in assembly. With a standard screwdriver, you can assemble a control center to meet your electronic, instrument or electromechanical housing problem. You eliminate costly enclosure design time and modification of custom type units. Only EMCOR, the originator of the Modular Enclosure System, provides the ultrimate in design, beauty, rugged structural capabilities and quality controlled craftsmanship in the fabrication of metal enclosures. Let EMCOR "Know-How" serve and save for youl


## NEW LITERATURE

## Magnetic Clutches

312
Catalog No. 63, 48 pages, contains dimensional drawings and specifications data of the firm's line of magnetic clutches and precision differentials that meet Mil specs. Sterling Precision Corp., Instrument Div., 5 Sintsink Drive E., Port Washington, L.I., N.Y.

## Direct-Recording Oscillograph

313
This 36-page manual describes applications of the firm's direct-reading Visicorder oscillograph. Included are reports on missile component testing, drone surveillance, and transistor testing. Schematic diagrams and graphs are given. Minneapolis-Honeywell Regulator Co., 5200 E. Evans Ave., Denver, Colo.

## Testing Machines

314
This eight-page brochure, Tinius Talks Vol. 12, No. 2, traces the development of the electronic null-balance principle as applied to indication systems, stress-strain recorders, and strain instrumentation. Developments in automatic readout systems for printing test data are discussed. Tinius Olsen Testing Machine Co., 417 Easton Road, Willow Grove, Pa.

## Precision Electrical Instruments

315
This eight-page catalog contains summary specifications of an English firm's line of products. Included are precision test instruments, components, synchros and servomotors, servo equipment, and telefacsimile equipment. Muirhead Instruments Inc., 441 Lexington Ave., New York 17, N.Y.

## RF Inferference Filters

This eight-page, two-color data sheet describes L-Cap rf interference filters. Specifications, performance data and applications are given. Performance curves and dimensional diagrams are included. Devco, Inc., 24 Maple Court, East Longmeadow, Mass.

## Phase Controllers and SCR Amplifiers 317

Bulletin No. 6071, four pages, describes and illustrates the firm's line of modular phase controllers and SCR amplifiers. Transfer characteristics, specification charts, wiring diagrams and application information are given. The units are for power-control applications. General Electronic Control, Inc., 8001 Bloomington Freeway, Minneapolis 20, Minn.


Technical Brochures are available upon request. Automatic

METAL PRODUCTS CORP.
323 BERRY ST.. B'KLYN II,N.Y.
Tolephone: EVergreen 8-6057
CIRCLE 752 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961


Tough-as-tortoise-shell Armag armor is an exclusive Dynacor development. It is a thin, non-metallic laminated jacket for bohbin cores that replaces the defects of nylon materials and polyester tape with very definite advantuse's -and, you pay no premium for Armag extra protection.

Tough Armag is suitable for use with normal encapsulation techniques on both ceramic and stainless steel bobbins. It withstands $180^{\circ} \mathrm{C}$ without deteriora-tion-is completely compatible with poured potted compoundshas no abrasive effect on copper wire during winding-fabricates easily to close-tolerance dimen-sions-inner layer is compressible to assure tight fit on bobhin-docs not shrink, age or discolor.
Write for Engincering Bulletins DN 1500, DN 1000A. DN 1003 for complete performance and specification data covering the wide range of Dynacor low cost Standard. Special and Custom Bobbin Cores-all availahle with Armag non-metallic armor.
*thaolmank
DYNACOR
DYNACOR, INC.
a subsidiary of sprague electric co. 1012 Weatmore Ave.

## Transistorized Pulse Generator

This 12 -page booklet describes the uses and applications of pulse generators with particular emphasis on high-speed transistorized circuits. The features, advantages, and limitations of a new all solid-state pulse generator designed for use with transistorized circuitry are explained Each specification of the portable unit is presented together with the practical limitations and special applications. Valor Instruments, Inc., 13214 Crenshaw Blvd., Gardena, Calif.

## Subminiaiure Switches

Catalog No. 20-1. 16 pages, describes the firm's line of subminiature switches. Dimensional drawings, force and movement specifications, electrical ratings and photographs are given. The W. L. Maxson Corp., Unimax Switch Div., Ives Road, Wallingford, Conn.

## Synchro Mounting Instructions

This eight-page, two-color brochure gives details and illustrations on mounting and zeroing synchros and servomotors, fixing gears or pinions. Tables provide information on mounting-panel drilling and recommended screw sizes. A parts list is included. Muirhead \& Co., Ltd., Muirhead Instruments Inc., 441 Lexington Ave., New York 17, N.Y.

## Digifal Volimeters

This 10 -page folder discusses factors to consider in purchasing a digital voltmeter. The pocket guide gives specifications, features and applications of the firm's instruments. Non-Linear System, Inc., Del Mar, Calif.

## Receiving Tubes

This bulletin gives specifications and base diagrams for more than 60 Mullard receiving tubes. These tubes are for hi-f, am-fm, TV and industrial applications. Characteristics for Mul-lard-frame grid tubes are included. International Electronics Corp., 81 Spring St., New York N.Y.

## Control Components Guide

 323This eight-page booklet contains illustrations and specifications for the division's line of products. The components include military-telemetering pressure transducers, high-accuracy pressure transmitters, high-voltage pressure transmitters and displacement-position transducers. International Resistance Co., Control Components Div., 401 N. Broad St., Philadelphia 8, Pa.

# HOW TO BLOW UP A 2.2 CFM BREEZE WITH A ONE-INCH CUBE... 



Specify the Sanders MINICUBE ${ }^{\otimes}$ Blower
... the only cooling unit in a reliability-proved 1.25 oz . package!

Roliability-proved? Yes! Its original job was lowering ambient temperature in miniaturized airborne equipment. Here, it had to meet acceleration, shock, vibration and temperature requirements of military specifications for missile and aircraft applications. It did so well, the word got around. Now, it's being used in commercial applications, too.
Today, if's doing many jobs: cooling klystrons, vertical gyros, electronic circuits . . circulating air in dead spaces . . . defogging lenses, mirrors, radomes. The Sanders Minicube Blower is the most versatile cubic inch in cooling today.

## SPECIFICATIONS

AIr Rowi 2.2 cu . H . per minute of $\mathrm{O}^{\circ} \mathrm{H}_{3} \mathrm{O}$ Inpur Valreges 6.3 or 26 volts ladaptoble to 115 volis), 400 cps; 5.2 volts, 800 epas single- or two-phase
Power Conaumptiont $31 / 2$ worts
Temparature Ranget -55 C to +110 C LHe 500 hours at 110 C ; longer at hower tom. peratures
Sizot $1^{\circ} \times 1^{\prime \prime} \times 1^{\circ}$
wolghes $11 / 40$ or.

Gef all the facts about specifications, flowpressure ratings, delivery schedule and prices. Write today!

SOIVES CAPACITOR PROBLFMS WITII ONE SETTING...

## OHMITE

CAPACITOR Calculator


One setting of the slide solves problems in capacitance, frequency, capacitative reactance, power factor, dissipation factor, impedance and phase angle. Use it for all types of capacitors from 1 mmfd to 1000 mfd . Also includes slide rule scales A, B, C, D; 1000 mfd . Also includes slide rule scales A, B, C, D;
capacitance formulas : comparison table on different types of capacitors. Constructed of heavy, varnished cardboard. .............................. 288
OTHER OHMITE ENGINEERING AIDS
ohm's law calculator
COLOR CODER FOR COMPOSITION RESISTORS

Solves Ohm's Law and parallel resistance problems. Includes A, B, C, D slide rule scales. 26t Vinylite model. \$1.60

Set color wheels to match EIA color bands on resistors . . . read ohms directly. Also lists std. "Little Devil" and MIL values.
 OMMITE MAMUFACTUPINE COMPAMY OHmite manufacturing company 3603 Howard Str I amenclosing \$ for. - Capacitor Calculator O Ohm's Law Calculator - Color Codar

## Name.

Titlo.
Company
Strect
City

## IDEAS FOR DESIGN

Get $\$ 10.00$ plus a by-line for the time
it takes you to jot down your clever
the idea is accepted for publication

## Demodulator Helps Measure Distortion

## In AM Transmitters

A- INEXPENSI'E demodulator, easily constructed from readily available components, was found to be extremely valuable in studying the audio characteristics of amplitude modulated radio transmitters.
The circuit, Fig. 1, was used successfully with radio transmitters ranging from 2 to 247 mc .
It was especially useful in determining the amount of audio harmonic distortion when used with distortion analyzers such as the Hewlett Packard Model 330B. Because the circuit uses 1N34 crystal diodes, it requires no external power source. Further, no adjustment or tuning is necessary since it has an untuned antenna circuit and an audio filter. The latter is a low-pass,
constant-K type designed for a cut-off frequency of approximately 60 kc . This keeps the audio response substantially flat over a large passband and yields a true measurement of the harmonic content present in the transmitted audio envelope. Some advantage might be obtained in the vif range by replacing the $\mathbf{2} .5-\mathrm{mh}$ choke in the antenna circuit with a vhf choke in order to overcome any loss of impedance by distributed capacity. However, this refinement was not tried since the purpose of the design was to develop a more universal accessory.

The $2.5-\mathrm{mh}$ choke in the antenna circuit is shunted by a $1-\mathrm{K}$ resistor and crystal diode to keep its load constant on both positive and nega-


Fig. 1. Demodulator circuit is used for observing the audio harmonic distortion of am radio transmitters.


Fig. 2. With coaxial transmission lines demodulator circuit can be connected to antenna using a wall outle box and appropriale connectors.

## - SUGGESTED APPLICATIONS

- replacement of:
tive halves of the rf wave. It is important to keep the polarities of the crystals as shown in the schematic. The constant-K filter is designed for a $1-\mathrm{K}$ input and output impedance. Fortunately, standard $2.5-\mathrm{mh}$ chokes fitted very nicely into the filter design. Those used were rated at 250 ma (about 17 ohms de resistance). Actually the current normally passed through them is only a few milliamperes, but these chokes were chosen because their low resistance would result in improved filter characteristics.


## Circuir Couples Directly

## To Antenna

Coupling this device to the transmitter is very simple. For the usual case, a single wire held in the proximity of the transmitter antemna terminal will suffice. Or, depending upon the amount of radio frequency power boing transmitted, a small dipole can be used. In order to read distortion directly on the Hewlett Packard Model 330B, enough rf energy must be fed to the demodulator to obtain at least one volt of audio from the output terminals at the fundamental audio frequency. However, for weaker signals, satisfactory results were achieverd with the Set Balance control adjusted for 1 v on the meter scalle ( 10 per cent) and the audio input control of the analyzer cut back accordingly. The per-cent distortion observed was then multiplied by 10 to obtain the true figure. On this basis, audio output as low as a tenth of a volt would suffice.

For the whf range where coaxial transmission liness are used, a method published in the RC. Field Support Material pamphlet has been used successfully: A moxlified version of this is shown in Fig. 2. A wall outlet bor with a C.C.-5s U' connector at each end was used. A stiff, heavy wire (AllC; \#10) is connected between the center terminals of the L(0.-5 s. Similar wires soldered to the ground sides of the L(C.-5)'s were spaced about $1 / 8 \mathrm{in}$. from the eenter conductor to keep the wswr low. A pick-up loop consisting of a sim ilar wire grounded to the boe at one end was rim parallel to the center conductor and spaced about $1 / 8 \mathrm{in}$. from it for approsimately three quarters of the length of the bex, then terminated in a LCO-290/U connector

Paul K. Johnson, U. S. Army Signal Matcrial Support Agency, Fort Monmouth. N.J.

- do motor control
- Variable dC supplies
- DC TO DC CONVERTERS
- frequency changers
- inverters

RELAYS


- constant current supples
- PULSE WIDTh MODULATION
- IGNITRON FIRING
- WELDING CONTROL
- temperature control
- power pulse generator


# GENERAL EIECTRIC USN 2N68I-688 sIIICON CONTROLLED RECTIFIERS NOW MEET MIL-S-19500/108 

The fir-t ACR to meet VIII-19500 108 is now available in production guantities from General Ele trii. This is natural. (i.E. originally developed the SCR. now offers a wide range of carrom rating- including the new C8. 1.3 amp and C55. 70 amp typer. beneral Electric provide- much of the hnow-how and ideas on how to apply the SCR brough in reduced price baed on large whme production....and hav reams of reliabilit! and te-t data, the hind !ous lomid know alnout

The b.EF SC: is changing a lit of ohd ideas ahout power control and -with ching in term- of circont derixn and cons. Can son afford th wait ans longer? Call your (b-E Semiconducher Dietrint Sale- Wanager today. He'll give sou all the help sou need.

Bectitier Compment- Deparment. Section 2338s. General Electric Companv, Auburn. \en Yorh. In Canada: Canadian Ceneral Electric. 189 Dufferin Sitreet. Toronto,


For fat deliver! at factory-luk prices see sour local G-E Di-tributur.

## Shallcross

## precision circuit news

## DELAY LINES



Some of the toughest performance specs we've seen in 12 years of delay line engineering are crammed into the $1 / 2^{\prime \prime} \times 2^{\prime \prime} \times 6^{\prime \prime}$ case of this lumped constant line. Used by a data processing equipment manufacturer, the unit requires uncommon care in component selection and in circuit layout to achieve the desired 50 to 1 delay-to-rise-time ratio in the space allowed.
Special cores and toroidal winding techniques promote maximum $Q$, and, when coupled with custom miniature capacitors, desired LC characteristics are obtained within the specified space. An ingenious termination further reduces distortion at tapped outputs and appreciably enhances the pulse time characteristic.

Even if your delay line requirements are not so rritical, this same Shallcross ingenuity may pay big dividends in reducing size, cost, or circuit complexity for you. Why not outline your needs to us?


DISTRIBUTED CONSTANT


LUMPED CONSTANT
Shallcross' family of distributed constant and lumped constant lines utilize the latest refinements packaging lechniques.


## STEPPING ACCURATELY

Typical of longer Shallcross delay lines, this variable lumped constant unit provides a total delay of 24.65 $u$ sec in 15 steps calibrated to 0.05 usec accuracy. Delay-to-rise-time is 100:1 -and in a hermetically-sealed package measuring only $2^{\prime \prime} \times 4^{\prime \prime} \times 71 / 4^{\prime \prime}$.

Of course variations can be made for your requirements - in impedance, taps, rise time, attenuation and so forth. These are regular occur rences with the many hundred de signs produced by Shallcross delay line specialists.

# Shallcross Manufacturing Co. selma, north caroina 

Precision wirewound resistors. Switches. Instruments. Delay lines. Resistance networks. Audio attenuator

## IDEAS FOR DESIGN

## A Random Pulse Generator

To check coupling and clamping circuits, a quick and inexpensive random pulse generator was needed which would vary its pulse width at a random rate.

The problem was simply solved with the cir-

cuit shown. It is an arrangement that has been accidentally connected many times before.
Any variation in the output can be obtain by varying the frequency of $f_{1}+\Delta f$.
Irving Bayer, Budd Electronics, Long Island City. N.Y.

## Separate Lamps Controlled Over Single Line

Four separate lamp circuits can be remotely activated over a single control wire by using the rectifier arrangement shown in the figure. The circuit uses the four possible combinations of phase and polarity that can be obtained by halfwave rectification of the ac line. Relative polarity


Four (or mora) remotely located lamps can be controlled over a single interconnecting line.
of the $115-\mathrm{v}$ source and the "remote" 85-v lines are indicated by the plus and minus signs.

The desired bulb can be lighted by connecting the control wire to the corresponding switch position. Firing of more than one lamp is prevented by reducing the remote ac voltage to about 85 v rms. The $10-\mathrm{K}, 2-\mathrm{w}$ resistors connected from the control wire to the $85-\mathrm{v}$ supply help to minimize the effect of stray control line capacity which could cause improper lamp firing

It is possible to extend the circuit so that more than four lamps can be controlled. One control wire is required for every four lamps, with the same eight diodes sufficient for all lamps. Also, relays can be substituted for the neon lamps.

Note that, with appropriate switching, several lamps may be energized simultaneously. Thus, a binary coding may be employed, with decoding accomplished by using diode AND circuits, relays, etc. In this way, 15 functions may be switched over a single control line.
K. C. Herrick, System Engineer, Reflectone Electronics Corp., Stamford, Conn.

## Metal Foil Sticks To Tube, Conducts Heat

Heat can be rapidly conducted from the glass walls of a vacuum tube by applying a recently developed, adhesive-coated metal foil wrapper. Available through Shawmut, Inc., of Brockton, Mass., the wrapper can be formed to fit snuggly around the tube and is held fast by a high temperature resistant adhesive. The thin layer of adhesive, which has a thermal conductivity many times that of air, holds the wrapper in intimate contact with the glass surface and eliminates the film of air present when an ordinary metal heat shield is used. A metal clamp can be used to support the tube and serve as a heat sink. In addition to improving the conduction of heat from all portions of the tube surface, the wrapper also acts as an electrical shield, while the adhesive film serves as a cushion to damp vibration and shock


Metal foil sticks firmly to glass walls of vacuum tube, conducts heal away. Slits are made so that foil will stick fightly to irregular surface.
R. H. Wyner, President, Shawmut, Inc., Stough ton, Mass.; Dr. M. Mark, Consulting Engineer Cambridge, Mass.


## the Complete Line on Polyester Film and every film with "engineered" drafting surface

Only K\&E offers you all the film-based media for your drafting and reproduction needs, and they're all working products, designed to permit additions or deletions. The same engineered drafting surface throughout enables you to standardize on drafting techniques, and the same base throughout means constant behavior characteristics under exposure to light, heat, moisture, etc. 1. HERCULENE ${ }^{\text {- }}$ - the unchallenged leader among drafting filmo, with better than ever working properties for pencil. ink, and typing. Now with a choice of specialized writing mates: Duralar plastic pencils render tracings that are complesely washable in soap and water.. new Ruwe pencils have all the fine "feel" of graphite, yet resist smudging better than graphite on regular paper.

## $\mathrm{K}=E$

KEUFFEL \& ESSER CO.
NEW YORK - HOBOKEN, N J. - DETROIT - CHICAGO SAN francisco - LOS ANGELES. SEATtIE MONTREA
2. PHOTACT - the photographic second original on film that can be processed with regular paper developer. Image lines can be manually erased, too (no eradicators needed). Underneath - an excellent drafting surface for changes or additions in pencil, ink or typing. Available in three film types: Contact. Direct Positive, and Projection. 3. DUPRO ${ }^{*}$ - for ink-like second originals that can serve as working copies. mage lines are smudge-proof, with appearance and permanence of photography, yet are easily removed with soft vinyl eraser. For additions or changes in pencil, ink or typing: a perfectly balanced drafting surface underneath. Another advantage: wash-off emulsion permits processing in room light - no darkroom needed.
4. HELIOS - for intermediates of exceptional ruggedness, produced easily, quickly, and at low cost by the standard dry diazo process. Mechanical erasure dry diazo process. Mechanical erasure removes image lines (no eradicators needed): engineered drafting surface on the reverse side. Unsurpassed line density and background clarity - black line or sepia.
5. STABILENE ${ }^{\text {- }}$ - the re-siabilized drafting medium with unsurpassed dimensional stability. Ideal for highly precise work, like the preparation of multi-color maps, printed circuitry, lofting layouts, tools and templates, etc. Available with more than 20 types of surfaces-for pencil and ink work, scribing, peeling, stripping, and a variety of ing, peeling, stripping,
For more information on any of these popular K\&E. polyester-base films, simply mail the coupon below.

## KEUFFEL \& ESSER CO., Dept. ED-2, Hoboken, N. J.

Gentlemen:
Please send me your new brochure titled "Complete Line on Polyester Film." Name \& Title
Company \& Address:

## NEM! WIDE-BAND D-C AMPLIFIER



In the new all-transistor AccuData III, low level signals from a wide variety of transducers can be amplified up to 10 volts with a high degree of accuracy. At 30 mv full scale input the noise error ( $0-10 \mathrm{cps}$ ) is less than $0.007 \%$; common mode voltage transients are less than $0.008 \%$; and zero drift is less than $0007 \%$ The total error, therefore, is only $0022 \%$ a new level of accuracy.

The Honeywell AccuData III Amplifier is particularly useful in high accuracy data handling systems where pick-up problems associated with long cable runs and ground loops must be completely eliminated.

The high 10 volt output allows direct connection between transducer and a wide selection of output devices including:

| Analog/Digital Converters | Servo Control Valves |
| :--- | :--- |
| High Speed Oscillographs | High Speed Multiplexers |
| High Speed Printers | Telemeter Oscillator Controls |

Either single ended or differential input ranges may be selected with a frequency range up to 20 kc . Input impedance is 20 megohms single-ended and 2 megohms differential. Seven amplifiers mounted in a 19 inch relay rack occupy a height of less than $51 / 4$ inches No cooling fans are required since the amplifier heat dissipation is only 8 watts

Write for Bulletın BS DISA-3 to Minneapolis-Honeywell, Boston Division, Dept 10, 40 Life Street, Boston 35, Massachusetts.

## Honeywell

## PATENTS

## Benjamin Bernstein

## Voltage Regulated Power Supply

Patent No. 2,932,783. R. D. Mohler. (Assigned to Motorola, Inc.)
A voltage regulator having a Zener diode reference is usually nonlinear due to the diode internal resistance. It is possible to compensate for the variation in
output voltage by positive feedback in the base-emitter circuit of the comparison amplifier. A nonlincar, forward biased diode sets the feedback voltage and also helps to maintain the output voltage independent of temperature change.


You can measure $1 / 100$ th of a millivolt with this superior quality potentiometer recorder. Unit is extremely accurate ( $1 / 2 \%$ of span), and fast ( $1 / 2$ second balance time). Step selection of ranges up to 10 V is provided by attenuator on front panel
Standard features include a floating input with separate chassis ground ...5 $5^{\text {- }}$ chart width hum suppressor ... chopper stabilization changeable chart speeds. Write for Bulletin.

| 10 MV fixed span | $\$ 320.00$ | Model JY 100 |
| :---: | :--- | :--- |
| 10 MV to 100 V | $\$ 395.00$ | Model JY 110 |
| 1 MV full scale | $\$ 535.00$ | Model JY -120 |

TWT and Method of Manufacture Patent No. 2,943,228. B. Kleinman. (Assigned to RCA)
In a traveling-wave tube the helixceramic rod assembly is clamped by deforming the tube body or by having a shaped cylinder supported by the tube enclosure. The elasticity of the cylinder tends to restore the original circular
shape, pressing the rods against the helix.
A method of manufacturing the tube is shown in which a steel cylinder 24 is compressed along three lines due to the force on rods 36 as plate 34 moves downward. I Ielix 16 and rods 18 are inserted so that when the force on plate 34 is removed, clamps 24 and 26 hold them in a rigid subassembly


Designed and built for long, rugged, dependable service, Kulka Toggle Switches provide positive, precise switching for electronic and electrical circuits. Made to Joint Army and Navy Specifications JAN-S-23, MIL-S-21195, MIL-S-6745 and MIL-S. 3950A. Available in SPST, SPDT, DPST and DPDT types, DC and AC up to 1600 cps.

```
SCREW -
 SOLDER -
 OR TAB
```

Now, specify the terminal type best suited to your needs. Standard screw terminal, holethrough solder type, or male tab for accepting Burndy, AMP or Kent female slip- on connectors.

WRITE FOR COMPLETE DETAILS
KULKA ELECTRIC CORP.
G33-643 SO. FULTON AVENUE, MOUNT VERNON, N. Y.
CIRCLE 761 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961


## MD simplicity means savings for you

Here's a line of d-c power supplies you can literally mount in your relay rack and forget . . . the ultimate in simplicity and reliability. It's Sorensen's MD series featuring rugged magnetic regulation, heavy-duty silicon rectifiers, conservative continuous duty ratings for all components. Output voltage holds to $\pm 1 \%$ for input variations from 100 to 130 vac. 132 stock models from 3 to 1000 vdc output, 50 to 3000 watts (see table for just a few typical ratings). Several units may be used with paralleled outputs for increased capacity up to 9000 watts. Current limiting characteristics particularly suit MD's for battery charging and filament powering . . . can't be damaged by output shorts.

Write for complete MD data . . . Or, better, send for the new Sorensen catalog, listing over 400 power equipment models, plus the name of your Sorensen representative. Sorensen \& Company, Richards Ave., South Norwalk, Conn.

## POPULAR MODELS AND PRICES

(Numbers preceding dash in model designation indicate output voltage; those following dash indicate maximum current.)

| Model 50 watt | Price | Model 200 | Price | Model 750 | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MD 6.3-8.0 | \$159 | MD 6.3-31.8 | \$257 | MD 6.3-120 | 9523 |
| MD 12-4.2 | 145 | MD 12-16.7 | 215 | MD 12-62.5 | 423 |
| MD 28-1.8 | 137 | MD 28-7.2 | 184 | MD 28-26.8 | 336 |
| MD 48-1.1 | 131 | MD 48-4.2 | 179 | MD 48-15.7 | 315 |
| 100 watt |  | 400 watt |  | 1500 watt |  |
| MD 6.3-15.9 | \$194 | MD 6.3-63.5 | \$348 | MD 6.3-239 | \$921 |
| MD 12-8.4 | 171 | MD 12-33.3 | 292 | MD 12-125 | 735 |
| MD 28-3.6 | 158 | MD 28-14.3 | 247 | MD 28-53.6 | 567 |
| MD 48-2.1 | 152 | MD 48-8.4 | 231 | MD 48-31.3 | 525 |

Old Fashioned?

See what Ungar does to soldering tools next month!

## PROVED AND PREFERRED

PARAMOUNT Spiral Wound PAPER TUBES


## SQUARE, RECTANGULAR, ROUND

Regular-type Pazamount paper tubes used for millions of coil forms and other applications. Hi-Dielectric. Hi-Strength. Kraft. Fish Paper, Red Rope, Acetate, or any combination spiral wound on automatic machines. Any size from $11^{\prime \prime}$ to $30^{\circ}$ long, from $.450^{\circ}$ to $25^{\circ}$ I.P. Produced from vide range of stock arbors or specially engimeered for you.

PARAFORMED-SQUARE OR RECTAMGULAR Exclusive Paraforming method of tube making without artificial heat or premure. Makes perfectly flat side, walls, squre invide corners. and very small radius on the four outside cornersand does it all at the time of actwad spinal minding. No sharp outaide edgee to cut wire. No seed for wedges to tighten wire. Full rigidity and physical atrength. Permite winding coilh co cloeer tolerances. Allows faster automntic stacking of ooils. Approved and used by leading mamifacturems. No extre cost!

## PARAMOUNT <br> PAPER TUBE CORP.

608 LAFAYETTE ST, FORT WAYME 2, MOD.



Wite on compony lerterhecd for
STOCK ARBOR LIST OF OVER 2000 SIZES

## PATENTS

## lonic Vacuum Pump

Patent No. 2,925,214. A. M. Gurewitsch and H. C. Pollock. (Assigned to General Electric Co.)

Ion pump performance is improved by evaporating the gas absorbing material (cathode electrode) on the inner wall of the envelope after a fore-pump vacuum has been produced.

The device is initially pumped down to a vacuum of about one micron through tube 16. Ring 13 is then heated to deposit the gas-absorbent cathode 17 on the inner surface. Voltage PS is applied to accelerated electrons between the ring and the cathode. The gas ionizes and the positive ions are driven into the cathode. When, in addition, a magnetic field exists perpendicular to the direction of the electric field, the electrons spiral. increasing both the mean free path and the rate of ionization and gas collection.


## For that風 NEW IDEA visit the IRE SHOW

## Transmi_-Receive Device

Patent No. 2,959,778. W. E. Bradley (Assigned to Philco Corp.)
A semiconductor diode operated as a transmit-receive device gates the receiver according to the transmitter output to make a radar effective at ver; short range. The transmitter "spike" is not seen and the receiver is responsive as soon as the transmitter pulse terminates.

At quiescence, diodes 18 are backbiased by battery 24 and the receiver is open. A video pulse 31, synchronous with the transmitter pulse 30 , drives the diodes to conduct hard and short-circuit the receiver input. When the transmitter pulse terminates, the diodes again are cut off and the receiver can respond to nearby targets.


## Frequency Discriminafor

Patent No. 2,956,199. H. B. Briskin (Assigned to Sylvania Electric Products, Inc.)

A TWT frequency modulation discriminator operates by sorting electrons according to velocity.

Signal is applied to a dispersive helix 12 on which the wave propagates at a velocity prescribed by the instantaneous frequency. Interaction of the wave with the beam modulates the velocity of the electrons in the beam. Subsequently, the electrons are sorted by an apertured disk which is normally at the cathode voltage. Thus the quantity of electrons which pass through load resistor 30 , at any instant, depends upon the frequency of the applied signal.


FAST WARM-UP UHF TRIODE
MACHLETT ML-7210 PLANAR TRIODE provides stable operation In 12 seconds


The Machlett Laboratories offers the designer a new planar triode designed for pulsed or CW operation requiring fast warm-up time. The ML7210 reaches a stable operating temperature within 12 seconds and can withstand high shock and vibration. Its low grid-cathode capacitance reduces loading of input stages.
The ML-7210, available now from stock, employs a pancake coil heater, with heat reflecting baffles to provide extremely fast heating without loss of structural rigidity.

Plate.Pulsed Oselllator and Amplifier Class C Maximum Ratings, Absolute Values

| Pulse Length | 3 | unee |
| :---: | :---: | :---: |
| Duty Factor | 0.0025 |  |
| Peak Plate Pulse Supply Voliage | 3500 | volts |
| DC Crid Bias Volrage* | . 150 | voles |
| Peak Plate Current from Pulse Supply | 2.8 | emps |
| Average Plate Current | 7.0 | ma |
| Average Crid Current | 3.0 | m |
| Average Plate Disaipation | 25 | atts |
| Average Crid Disaipation | 1.5 | mat |

For full technical data on this or any other Machlett tube type, write:
The Machlett Laboratories, Inc., 1063 Hope Street, Springdale, Conn.
Subsidiary of Raytheon Compaay
CIRCLE 766 ON READER-SERNICE CARD
ELECTRONIC DESIGN • February 15, 1961


> Regatron Programmable CONSTANTCURRENT POWER SUPPLIES

There's a lot that's special about Regatron ConstantCurrent Power Supplies $0.1 \%$ regulation (above 2.2 ua) ... a modulation input . . . zero to maximumrange vernier . . . Wide range (see diagram above).
And for use in automatic or semiautomatic applications. you'll have the advantage of the exclusive Regatron programming feature.

## ASK FOR BULLETIN 3072A

- Registered U.S. Paf. Off. Patents issued and pending.


Telephone: LIberty 2-0300

## Wide-Band

Micromega Y \& T
Ferrite Circulators

Compact Conliguration
with Exceptional Performance
These waveguide and stripline uruts give vou 'efinble performance under rugged n uniy experienced microwave specialisis ine give performance that lives up to their ifcurlised. specifications These versatile it is c.all be converted info microwave tA.p:tics by eplacement of the permanent minnet with electromagnets
$\because$ mmegn also has a line of broadband li imical data on Micromegas ferrite cil : itialors and or isolators.

Typical of the line, spectications of the Madel CNQ10 waveovido T- eirculator inelude: Ireavener conge. 6150 to 7550 mc , isolation, 20 db min.; insertion
 $3 \mathrm{~V}^{\prime \prime}$ : $3 \mathrm{~K}^{\prime \prime}$ : conneciors mate with UG/50/U.


Micromega Corporation
4134 Del Rey Avenue, Venice, Callfornie. Exmont 1.7137

is measured to $3 \%$ accuracy with 928 and 928/2. Like all Marconi FM Deviation Meters they have direct readout, xtal standardization and ease of use. They include demodulated output for transmitter noise and distortion measurements
Most Missile Makers Measure Modulation with Marconi Meters.



111 CEDARLANE ENGLEWOOD, NEW JERSEY CIRCLE 769 ON READER-SIRVICः CARD

## A TRAVELING WAVE TUBE WITH 10 KMC BANDWIDTH <br> 

Available for delivery now is this Traveling Wave Tube which includes such features as an extremely wide frequency range... 10 to 20 KMC, with a minimum of 25 db smallsignal gain and I MW saturation power output.
The HA-82 finds use in reconnaissance systems, Doppler simulator systoms, as a driver for higher power tubes, atc. many areas which previously required two or more fubes. This space, woight, and cost roduction, coupled with improved systom raliability lend the HA-82 to airborne as well as fixed base applications.

```
\) Onher cemmorcially evailable "'Arsts" frem Noggins incluco:
 - First forward wave omplifter in 1952
 - Pirur bockwent wove escillater in 1gs
 - First PPM forveod maveling wave pubo in 1956
 - First oloctrestatically focvsed IWT in IPSO
```


## Tiblowe

## Digital Computer and Control Engineering

Robert Steven Ledlets, McGrau-Hill Book Co., Inc., 330 W. 42nd St., Neul York 36, N. Y., $835 \mu p, \$ 14.50$.

Covering nearly all aspects of digital cromputers and controls, this book is written from a fully detailed, engincering point of view. It is meant to be used as a texthook by senior or graduate engineering students or as a reference by the practicing engineer. The material is presented in five sections: concepts of programing, digital systems design, logical design as applied to digital circuits, current methods in logical design of both serial and parallel arithmetic components, and the design of digital circuits.
using solid-state and magnetic-core components.

## Using and Understanding Probes

Rudolf F. Graf, Howard W. Sams \& Co., Inc., 1720 E. 38th St., Indianapolis 7, Ind., 192 pp, $\$ 3.95$.

This book helps the engineer or technician select the right test probe and use it correctly to trouble-shoot practically any kind of electronic equipment. Types of probes covered are: direct, isolation, high-voltage, low-capacitance, rectifying, demodulating, signal-tracing and signal-injection. Data on the different types of probes available are also included. Illustrations are used throughout the book


Nicknamed the "Micro Mite". these reliable. rugged coils exhibit high $Q$. very low distributed capacity, all concentrated into an amazingly small package.

Miller's new "Micro Mite" coils are perfect for use where weight. space and high $\mathbf{Q}$ considerations are involved. Their volumetric reduction ranges up to $80 \%$, with current ratings approximately $75-300$ millamps and standard series values up to 10,000 uh.

The "Micro Mite" coil construction permits miniaturization without the use of ferrite materials, thus maintaining temperature stability to 125 C. These hermetically sealed molded coils conform to MIL-C.I5305A.

ASK FOK OLR MICRO-MITE BIIIIETIN
J. W. MILLER COMPANY - 5917 So. Main St. Los Angeles 3, Calif.

## Ultrasonics

Benson Carlin, McGraw-Hill Book Co., 3.30 W. 42 nd St., New York 36, N. Y., 309 pp, \$11.50.

This book is aimed at the practicing engineer who needs complete coverage of ultrasonics from the design consideration of ultrasonic crystals to the experimental measurement of ultrasonic waves. It contains information on the theory and methods of generating waves, circuits and electronic considerations, and data on the mechanical and electrical design of systems. Now in its second edition, the book has been revised to include recent developments.

## Analysis and Design of Feedback Control Systems

George J. Thaler and Robert G. Brown, McCiraw-Hill Book Co., Inc., 330 W' 42nd St., Ncu: York 36, N. Y., 648 pm , \$14.0).

A text for senior or graduate consses in feedback control theory, this book was first published under the title, "Servomechanism Analysis." This revised edi-
tion provides several chapters on design based on current industrial practices. Subject matter is integrated so that polar and logarithmic frequency-response methods are presented with root-locus methods.

## Electromagnetic Fields, Energy, and Forces

Robert M. Fano, Lan Jen Chu, and Richard B. Adler, John Wiley d. Sons, Inc., 44) Fourth Ave., Neu York 16, N. Y., 520 $\mathrm{mp}, \mathrm{sl2}$.

Written as a textloook for third-year electrical engineering courses at Massachusetts Institute of Technology this book develops a consistent macroscopic theory of electromagnetism and discusses the relation between circuit theory and field theory: It covers the electromagnetism of moving bodies and the process of electromechanical energy conversion. It emphasize, the synthesis of fields as opposed to the analysis of fields and introduces a power series technique for analyzing guasi-stattic fields and quasi-staltionary systems.
 rial you have inquired about, and helps to bring it to you faster.

This pre-typed lahel is only part of Electronic De'sign's New, Faster, One Day Rfaitr Strvice. All inquiries are now completely processed and air mailed (1st class within one day delivery zone) to advertisers within ONe Day of receipt. There is no delay for batch mailing or complicated tabulation.

New Fastir Inquity Handling is one more step in Electronic Design's continuing program to improve its services to both reader and advertiser.

## ELECTRONIC DESIGN

## HOW DO YOU RATE AS AN ELECTRONICS DESIGN ENGINEER?



## RELAY APPLICATION QUIZ



Here are some commonly used arc-inhibiting circuits. All arc-inhibiting circuits have a preidominamt effect on one relay performance characteristic; when selecting a circuit. which operating characteristic should you check: A , relay operate time; B , relay release time; or C , relay mutor torque?

Arc-inhibiting devices are circuits that absorb the energy induced by an inductor when the current through the inductor is interrupted. The induced emf assumes a polarity such that current flow will keep the relay energized over the period required for the energy to be absorbed by the device. The answer is $\mathbf{B}$.

## WHAT DOES THIS MEAN IN TERNS OF RELAY CIRCLIT DESIGN?

It means that when an are-inhibiting device is used across a relay motor coil, consideration must be given to its effect on switching time as well as its ability to absorb energy. To eliminate all arcing, contact voltages must be kept below 12 volts, but of course, no device should be used that will clip or dissipate the coil voltage. The more energy that is absorbed by the device, the longer the contact life.

In the following comparison of the devices shown in the illustration, the components were selected to limit the induced emf in a 28 -volt subminiature relay motor coil and also to fit within a subminiature relay housing.

| DFIICE | 1, ILIF. | $\begin{aligned} & \text { MAX. } \\ & \text { EMF } \\ & \text { (Volts) } \end{aligned}$ | $\begin{aligned} & \text { DEI.TS } \\ & \text { TMIME } \\ & \text { (Msec) } \end{aligned}$ | RATING AND COMMENT |
| :---: | :---: | :---: | :---: | :---: |
| Capacitur shunt | $\begin{aligned} & 10 \mathrm{mld} \\ & (1.2 .2 \mathrm{mfd} \end{aligned}$ | $\begin{array}{r} 10 \\ 120 \end{array}$ | $\begin{aligned} & 4.0 \\ & 0.0 .5 \end{aligned}$ | Cood trut large and expensive lor high temperature use. |
| Zener <br> dindes (2) | 50 volts | 190 | 0.2 | Must be rated above coil volt. age: expensive. |
| 'aristor shunt | $\begin{gathered} \text { Cluhar } \\ \text { a } 3: 1 \mathrm{BNil} .35 \end{gathered}$ | 61 | 1.2 | Cood; resistance must be high near coil voltage; may have high temperature problems. |
| Diote <br> Resistor shunt | 1\%0 ulims | 80 | 3.9 | Best device of the four; small, inexpensive, and safe. |

Filturs' research department has prepared a comprehensive monograph on this subject entitled, "Effects of Arc-Inhibiting Circuits on Relay Operation." Send 50 cents to Filtors, Incorpurated, or contact your Filtors' Sales representative for your copy.
plltors, inc., specialists in the design and manufactURE OF SUBMINIATURE AND MICROMINIATURE RELAYS.


Makers of the most efficient microminiature relay motor in the industry-the powerful new Sensi-Tork rolary relay motor; used in the J-series relays, the "Pillbox" printed circuit relay, and in the first premium quality micromıniature relay, the Golden $\mathbf{G}$.

## FILTORS, INC. RELAYS

## PORT WASHINGTON/NEW YORK/POrt Washington 7-8220

CIRCLE 773 ON READER-SERVICE CARD

## Inllis rumbir THIII

We are specialists in manufacturing STANDOFF \& FEEDTHRU TERMINALS insulated with Teflon*. Simplest terminal to install by forcing into undersize chassis hole.
Taurus Terminals are accepted and approved by major users. Taurus is a completely integrated, experienced and quality minded manufacturer of terminals. sem r.e oot. ounoor


TAURUS
CORPORATION
Academy Hill Lambertville, New Jersey

CIRCLE 774 ON READER-SERVICE CARD


He was going to Texas and his guidance system went haywire!"
Guidance of communications system failures can cause problems! Guard against them with Reeves-Hoffman oscillator reliability. Get the whole story.
mat roce mition s llso wo rcolsoooc
ansion or
DTNAMICS CORPORATION OF AMERICA 18/160

CARISLE, MENNSVVANIA

## BOOKS

## Publishing in the USSR

Boris I. Gorokhoff, Indiana University Publications, Bloomington, Ind., 308 pp , $\$ 6$.
A survey of book, periodical and newspaper publishing in the Soviet Union, this book includes topics such as censorship and copyright. It emphasizes publications in science and technology, especially those issued by the All-Union Institute of Scientific and Technical Information. Scientific journals are also listed.

## Electromagnetic Energy Transmission and Radiation

Adler, Chu and Fano, John Wiley d Sons, Inc., 440 Fourth Ave., New York 16, N. Y., $621 p p, \$ 14.50$.

One of the textbooks in the Massachusetts Institute of Technology curriculum, this book treats electromagnetic waves and oscillations in one, two and three space dimensions, using time-domain, complex-frequency-domain and energy
points of view. The authors try to provide a balance of emphasis between physical considerations and analytical technique.

## Infrared Radiation

Henry L. Hackforth, McGraw-Hill Book Co., Inc., 330 W. 42nel St., New York 36, N. Y., 303 pp , $\$ 10$.

This is a general reference and introduction to infrared radiation. It begins with a discussion of the basic principles of infrared radiation and its sources. The second part of the book covers applications in scientific research, in industry and in space technology. Infrared-system design considerations are also included.

## Magnetic Amplifers Principles and Applications

Paul Mali, John F. Rider, Publisher, Inc., 116 W .14 th St., New York, N. Y, 112 pp, \$2.45.

Written for the technician, this book begins with an elementary discussion of magnetism and goes on to discuss self-

## SKL VARIABLE ELECTRONIC FILTERS

These versatile instruments feature a continuous adjustment of cut-off frequency and a flexible arrangement of operational modes. Widely used in research and industry, their application is constantly solving new problems of signal selection, measurement and control.


Write for furtber information to:
starting and three-legged core magnetic amplifiers, compensating magnetic amplifiers and polarized magnetic amplifiers. Maintenance and troubleshooting are covered from the practical viewpoint. A final section on system applications is included. Easily understood diagrams are used throughout.

## Digital Computer Principles

Wayne C. Irwin, D. Van Nostrand Co., Inc., 120 Alexander St., Princeton, N. J., $321 \mathrm{pp}, \$ 8$.

An introduction to the fundamentals of digital computers, this book is directed to the reader with no previous experience in this area. It begins with a discussion of computation methods, including the binary system and the four fundamental arithmetic operations. Subsequent chapters develop topics essential to the use of digital computers. including programing texhniques. The last chapter presents some of the newer concepts and systems-organization methods now being explored.

## Magnetic Amplifiers-

## Principles and Applications

Paul Mali, John F. Rider Publisher, Inc., 116 W. 14 St., New York, N.Y., 112 pp. $\$ 2.45$.
Presuming only a fundamental knowledge of electricity, this text starts with a review in the field of magnetism, electromagnetism and magnetic circuitry. From the basics of magnetism, the text then discusses the saturable reactor, selfstarting and three-legged core magnetic amplifiers, compensating magnetic amplifiers, and variations of these. Having established the theory of the magnetic amplifier, the text next goes into amplifier gain, feedback, and general uses and construction. From here, the very important topic of maintenance and troubleshooting is covered from a practical viewpoint. A final section on system applications shows diagrammatically a vast number of practical applications of mag. netic amplifier circuitry, together with a thorough discussion of each application. A glossary is included for convenient reference.

## $1 \times 10-8$

with compact, transistorized series JKTO-PIP FREQUENCY STANDARDS
(Standard Modals Stocted For Quict Oolivery)

This series brings logether a combination of ultrastable glass sealed crystals, matched-design silicon transistor-ascillator circuitry, and transistorized proportional control oven performance. The result of this advanced engineering is frequency stobility of 1 part in 100,000,000 per doy, under normal conditions.


For information, write sioling your requirements.
THE JAMES KNIGHTS COMPANY SANDWICH, ILLINOIS

CIRCLE 777 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961

## GUDELACE TAKES THE SLIPS OUT OF LACING

Try this simple test. Tie a piece of Gudelace around a pencil in a half hitch and pull one end. Gudelace's flat, nonskid surface grips the pencil-no need for an extra finger to hold Gudelace in place while the knot is tied!

Gudelace makes lacing easier and faster, with no cut insulation, or fingers-no slips or rejects-and that's real econumy. Gudelace is the original flat lacing tape. It's engineered to stai fat, distributing stress evenly over a wide area. The unique nonskid surface eliminates the ton-tight pull that causes strangulation and cold flow. Gudelace is made of sturdy nylon mesh. combined with special microcrystalline wax, for outstanding strength. toughness, and stability.

Write for a frec sample and isst it yourself. See how Gudelace takes the slips-and the problems-out of lacing.

GUDEBROD
Electronic Division 225 Wost 34th Street
New York 1, N.Y.

BROS. SILK CO., INC.
Execullvo Offees

CIRCLE 778 ON READER-SERVICE CARD

Old Fashioned?
See what Ungar does to


Machine for Rounding Heads of all sizes
for Kegs and Barrels - E. \& B. Holmes - Circa 1870


Need relays or stepping switches that will stay fresh as daisies-even in environments of high humidity, gritty dust, or extremes of temperature or pressure? You can get them securely housed in ideal atmospheres of their own.
AE makes an airtight case out of every job by completely evacuating the prewired assembly, replacing the air with a dry, inert gas to a pressure of at least one atmosphere, and tightly sealing the housing. Then we test it, and if there's a single, tiny leak - enough to pass 1 cc of air in 30 years - we reject the assembly! Here's real protection from adverse environmental conditions (from tampering, too).

Ask for AE's Catalog 4083 on Hermetically Sealed Enclosures. It shows the wide variety of housing sizes and shapes available-with hook terminals, socket or cable plug-ins, or special printed-circuit connectors. Into these housings AE will put relays and switches assembled and wired to your specificationsor we will design and deliver complete con trol packages or systems. Chances are we can do the job at less cost, too.
If you have a sticky control problem, just write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois. In Canada: Automatic Electric Sales (Canada) Ltd., 185 Bartley Drive, Toronto 16, Ontario.

Subsidiary of
GENERAL TELEPHONE \& ELECTRONICS CIRCLE 780 ON READER-SERVICE CARD

AN IDEAL switch is a two-terminal, two-po sition device that in one position has no voltage across it (independently of the current) in the other position it has no current through it (independently of the voltage). Differences between practical and ideal switches fall into the four categories inclicated in Fig. 1. These differences are a result of leakage resistance and current, switch impedance and contact voltage, and coupling between switch and controller.
In the circuit $l^{\prime}$ is the leakage current with sistor as a switch operates on the static charac-
-

b

c

$d$


Fig. 1. Imperfections of "ideal" switching devices: (a) leakage with switch open" (b) non-zero switch impedance (c) contact potentials with switch closed (d) coupling from control circuit to switched branch shown as with relay circuits.

## as Switches

teristics indicated by the heavy lines of Fig. 2. Operation imperfections arise because these lines do not coincide with the coordinate axes. The simplified equivalent circuit of Fig. 3 may be used to deduce the static performance of the switching transistor.

In the circuit, $I^{\prime}$ is the leakage current with the switch "open." This current is strongly tem-perature-dependent. With the switch "closed"


Fig. 2. Static characteristics.


Fig. 3. Simplified equivalent circuit for static conditions.

## Contionuing VERSATILITY

In a DC-to-30 MC Oscilloscope
thru INTERCHANGE-ABILITY (o) accept any one of 16 Tektronix "letter-series plug-in units for display and measurement of almost any signal in almost any lahoratory application.

## for example:

1 Dual-Trace. . with a C-A Unit
2 Differential Input ... with D Unit (high dc sensitivity) E Unit (low-level), or G Unif (wideband)
3 High-Gain ... with an H Unit
4 Fast-Rise . . . with K or L Unit
5 Pulse Sampling . . . with an N Unit
6 Strain Gage or Bridge Measurements ... with a Q Unit
7 Transistor-Switching Time . . . with an R Unit
8 Diode-Recovery Time . . . with an S Unit
9 Detailed Waveform Analysis ... with a Z Unit

## thru DELAY-ABILITY

to hold off the start of the horizontal sweep from I microsecond to 10 seconds after receipt of a triggering signal-in two modes of jitter-free operation:

Triggered-when the delayed sweep is started by the signal under observation.
Conventional-when the delayed sweep is started by the delayed trigger


Delayed 5 weep display of a pulse Delayed 5 waes display of a pulse
chain-with the fouth puise intentheied by trace burohtening. This
briohtened ares indicates the de oriehtened ares indicates the de
taped smeers itartand daration. Will both the start and duration adiustaste, it is possibie to include iny
portion of the disoisved wavelormm portion of the disaisyed
in the brightened wea.


## thru ADAPT-ABILITY

to aid in setting up-with color-correlated controls"single shot". recurrent. or triggered main sweep presentations. or either conventional or triggered delayed-sweep presentations.

Fast Risetime-12 nanoseconds with K, L, R, S Units.
Wide Sweep-Speed Range- $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$
in 24 calibrated steps.
10-KV Accelerating Potential-for sharp traces at
Amplitude Calibrator- 18 steps from 0.2 mv to 100 v in 18 steps
Electronically-Regulated Power Supplies. Type 545A (without plug-in units)

## TEKTRONIX TYPE 541 A

Less versatile than the Type 545A. the Type 541A does not have the single sweep feature or TIME BASE. B-with its facility for sweep delay. All other specifications of the Type 541A are similar to the Type 545A.
Type 541 A (without plug-in units).

Your Tektronix Field Engineer will be happy to display the capabioks RMA5A Tyd PMAAA) with sarious plug-in-mils in versin dr-10-30 MC applications. Call him. your own dc-10-30 MC applications. Call him.

## Tekłronix, Inc.

P. O. Box 500 - Beoverton, Oregon Phone Mlithell 40161 - TWX-BEAV 311 - Cable: TEKTRONIX

TEKTRONIX FIELD ORFES: $\qquad$
texthonix enginething mipresentatives



## TAKE A CLOSE LOOK AT OUR PRINTED CIRCUITS!

We always do! In fact, each unit is carefully inspected many times during manufacture to insure printed boards of the highest quality and reliability.
Our services include design and application engineering, layout, artwork, manufacturing, plating (including plated-through holes), and complete assembly.
Let us prove we can provide you with the service you need on prototype work or full scale production. Contact:

Dayton Rogers ${ }^{\text {Photomemanical }}$  DIVISION CIRCLE 782 ON READER-SERVICE CARD

## NEW!3INCHES OF ${ }^{\text {answ }}$ POWER: HOW/DD H.P. INOUCTION MOTOR


for Typewriters-Business Machines-ComputorsMORE POWER SMALLER SIZE, LONGERLIFE, SIZE'HER CONSTRUC: TION... AT LOWER COST!

- $3^{\prime \prime}$ diameter- 26 frame size - 2 pole ratings from 15 millih.p. to $1 / 10$ h.p. 44 pole ratings from is milli-h.p. to /20 h.p. Available in hysteresis synchronous, permanent split capacitor, split phase and capacitor start models. Single or double shaft - Resilient mount, oot or face mount. Write for samples and prices!
 HOWARD MOUSTRUES, IMC. - 1725 State Street • Racien, Wisconem


## GERMAN ABSTRACTS



Fig. 4. Definition of normal and inverse parameters.

$$
\begin{aligned}
& \text { - } \\
& \text { = } \\
& \mathrm{I}^{\prime}=\frac{a_{1}}{\alpha_{n}} \cdot \frac{1-a_{n}}{1-a_{1} a_{n}}{ }^{1}{ }_{c o} \\
& E^{\prime}=v_{T} \ln \left[\alpha_{n} \frac{1-\frac{1_{e}}{1_{b}} \frac{1-a_{1}}{a_{l}}}{1+\frac{1_{e}}{1_{b}}\left(1-a_{n}\right)}\right.
\end{aligned}
$$

Fig. 5. Grounded emitter (e) and grounded collector (f) configurations.
there appears the series resistance $r_{c}+r_{0}$ and a "contact" potential $E^{\prime}+I_{\Delta} r_{e}$, where $E^{\prime}$ depends on $I_{c}$ and $I_{0}$. When the positions of the emitter and collector are reversed, ${ }^{\prime} I^{\prime}$ and $E^{\prime}$ are markedly smaller. The relevant transistor parameters, ${ }^{\bullet}$ R. L. Bright, Communications \& Electronics, 1955, pp 11-121.

## DIGITALLY MEASURE EVERYTHING!

## FREE



This IIL 16-page data file tells how you can take standard digital instrumentation and build a DME system that will digitally and precisely measure all or any of the following:

DC volts, AC volts, Resistance,
Frequency, Period, Frequency
Ratio, Time Interval.
For your copy, write to: Dept. 36
COMPUTER MEASUREMENTS COMPANY
12970 Bradley Ave. - Sylmar, California
Digitally Measures Everything
CIRCLE 784 ON READER-SERVICE CARD

## $\mathbf{a c} \mathbf{c} \mathbf{c} \cdot 1 \mathbf{a} \cdot \mathbf{c y}$

So that you can mut !four thust in what you ser and read in Electronic DesigM. this publication maintains the following policy:

To make all reasonable efforts to insure accuracy of editorial matter. To publish promptly corrections brought to our attention.
To not knowingly publish misleading advertisements.
To reserve the right to refuse any advertisement.

Readers finding un error or misstatement are encouraged to notif!! the publisher for appropriate uction.

## Electronic Desicm

. . . the publication you can depend on for accurus!!

## KNOBS <br> over 300 stock parts • no tool charge • fast delivery <br> 

send for catalog no. 106
kurz-kasch
1415 South Broadway, Dayton 1, Ohio



Lampholders and Indicator Light Assemblies are the ideal unils for space saving . . .




 and compleaicustic dome
 neoner.


CIRCLE 787 ON READER-SERVICE CARO ELECTRONIC DESIGN • February 15, 1961


Fig. 6. Time dependence of currents and charge during a switch ing cycle.
as well as the two configurations, are shown in Figs. 4 and 5. Typical values are:

For Fig. 5e: $E^{\prime}=5.8 \mathrm{mv} \quad l^{\prime}=4.6 \mu \mathrm{a}$ For Fig. 5f: $E^{\prime}=0.5 \mathrm{mv} \quad l^{\prime}=0.5 \mu \mathrm{a}$ The dynamic behavior of the switch is characterized by the time delay necessary for the required change in base charge to take place. Fig. 6 indicates the effect of a change in the base current waveform on the collector current. The base charge consists of two components, $Q_{1}$ and $Q_{2}$, the latter arising when $I_{b 1}>I_{b m i n}$ where
$I_{o_{\text {min }}}=\left(1-\alpha_{N}\right) I_{\text {cmax }}$
It can be shown, referring to Fig. 5, that

$$
\begin{gathered}
t_{1,2}=\frac{I_{\mathrm{emaz}}}{I_{\mathrm{b} 1,2}} \cdot \frac{1}{\omega_{\mathrm{N}}} \\
t_{*} \approx \frac{I_{\mathrm{b} 1}-I_{\mathrm{bmin}}}{I_{\mathrm{b} 2} \omega_{\mathrm{N}}} \cdot \frac{1-\omega_{\mathrm{N}}^{\prime} \omega_{1}}{1-\alpha_{\mathrm{N}} \alpha_{I}}
\end{gathered}
$$

where $\omega_{N}$ and $\omega_{1}$ are the upper radian cutoff frequencies of the transistor in the normal inverse states respectively. For a typical transistor

$$
\begin{aligned}
\alpha_{N} & =0.98 \\
\alpha \ell & =0.8 \\
\omega_{N} & =30 \star I=30 \times 10^{6} \mathrm{rad} / \mathrm{sec} \\
I_{\mathrm{b}} & =I_{\mathrm{b} 2}=I_{e m a s}=10 \mathrm{ma} \\
t_{1} & =t_{2}=0.03 \mu \mathrm{sec} \\
t_{\mathrm{a}} & =0.6 \mu \mathrm{sec}
\end{aligned}
$$

These formulas lead to shorter switching times than can be realized practically Moreover, thermal instability can be caused by the interaction of thermal and electrical values.

The original paper also cites examples of the design of choppers, switches and power amplifiers.

Abstracted from an article by G. MeyerBroetz. Telefunken Zeitung, Vol. 33, No. 128, June 1960, pp 85-98.

INSTEAD OF THIS...


YOU'LL DO THIS...

with American Aluminum Quality ... Dependability ... Service!

And when it comes to quality and dependable service . . . everyone at American Aluminum gets in the act. The minute you call American Aluminum, all members of our family concentrate on giving you the aluminum products that serve your specific needs. From the design to the finished product, all under one roof, you can depend on American Aluminum for quality and service . . . when you need it!

SPECIALISTS IN CONTRACT MANUFACTURING OF ALUMINUM FOR THE ELECTRONICS INDUSTRY

Complete fabricating facilities for Deep Drawing, Heat Treating, Spinnings, Assembly, Brake Work, Stampings, Anodizing, Welding, Finishing.

## Complete die making facilities Complete inspection facilitios

Send for brochure "ALUMINUM FABRICATING FOR INDUSTRY"

## AMERICAN ALUMINUM COMPANY

Manufacturers of Aluminum Products
for industry since 1910
Sheffield Stract Mountainside, Now Jorsey CIRCLE 788 ON READER-SERVICE CARD

When the requirements seem impossible...


## TUNG-SOL specifies MYCALEX 410 glass-bonded mica for extraordinary reliability

THE HEAT'S ON . . . to combat close quarters in critical power supply applications resulting in bulb temperatures up to $572^{\circ} \mathrm{F}$..
TUNG-SOL engineers chose MYCALEX 410 glass-bonded mica for the base of their new 7802WB Series Regulator Tube. TUNGSOL also specifies the MYCALEX 410 glass-bonded mica for its new type 7403 "hard" pulse modulator tube. This unique electronic char or develop leakage paths under difficult operating conditions. It exceeds requirements for a MIL-E-ID Qualification Zone is rating... offering a maximum temperature endurance of $650^{\circ} \mathrm{F}$. (unstressed), and absolute dimensional stability. Whatever your problem-"hot spots," reliability, intricate inserts, complex geom-

General Offices and Plant:
121 Clifton Boulevard
Clifton, N. J.
eiry-Mycalex Corporation of america has the facilities to supply a ceramoplastic or glass-bonded mica insulation materia in either precision-molded or machinable grades for your application. On short or large production runs, the more exacting the specification, the more you will appreciate the unduplicated dvantages of these materials. Write for design information on MYCALEX glass-bonded mica . . . SUPRAMICA ceramoplastics offering maximum temperature endurance of
and SYNTHAMICA and SYNTHAMICA ${ }^{\oplus}$ synthetic mica with maximum temperature endurance of $2000^{\circ} \mathrm{F}$. (unstressed) . . the
family of the world's most nearly perfect insulation materials
Our engineers will be glad to assist you with your design and produclion problem.n.

Executive Offices: 30 Rockefeller Plaza New York 20, N. Y.

## High Counting

 Rates From Swiss
## Decade-Counter

Tube


ARECENT Swiss development is an electronic decade counter tube capable of counting rates ranging from 200,000 to $1,000,000$ pps. Manufactured by Elesta A. G., Bad Ragaz (SG), Switzerland, the tube features a non-symmetrical cathode arrangement. Further, the tube is said to be very small in size, with low current consumption and no tube heating problems.


Fig. 1. Special arrangement of flash and auxiliary holdoff cathodes permits counting rates of up to $1,000,000$ pps.

Twenty cold cathodes of identical construction are mounted fan-shape about a cylindrical anode A, Fig. 1. Ten of these cathodes (numbered 0 to 9 ) are connected to the negative pole of the supply voltage by way of the external 6.8 ohm resistors.
Ten auxiliary cathodes are placed between the "main" cathodes, $1,2,3$, ctc. They are connected through a common $20-50-\mathrm{K}$ resistor, to the negative terminal. The tube is encrgized by a $560-\mathrm{v}$ supply. A series resistor $\boldsymbol{R}_{2}$ in the anode circuit reduces this woltage by one half.

Cathode 1 flashes and causes an anode potential difference of 280 v . By probe effect, the two adjacent auxiliary cathodes pick up a portion of the current which. in turn, causes an initial positive putential of 15-25 v to appear across the input resistor $R_{1}$. This blocks off an! triggering of the auxiliary cathodes. Cathode I therefore fires evenly

Now, if a discrete counting pulse is applied to input $E$, overcoming the "biasing" voltage across $R_{1}$, the potential on $h$ rises above the 280 v operating value, triggering the auxiliary cathole located immediately to the right of cathode 1. Because of its overlap, this cathode is partially within the field of the existing dis charge. The potential difference across $R_{2}$ rises, the potential on 1 drops helow 280 s : and the discharge of 1 is cut-off. The removal of the pulse from $R_{1}$ restores a positive potential which transfers the discharge to the next eathodeand so on. The successive application and removal of comenting pulses produces step-like gradients. Once the discharge reaches 9 , the postential differenes developed across the last resistor $K_{k}$ can be used for the next decade. Digested from R. Hübner, "Neue Elektronische Dekadenzilhrïhren fïr hohe Zahlgeschuindigkeiten" in Tcchnica (Suizzcrland). No. 11. 1990. pl 670-671 (in Ccrman). Appeared in English in European Trchnial Digests. Scpr., 1960, pp 13-14.


MINIATURE BUILDING

5 times actual size to better show the 28 standard-sized components

Delco Radio's high density packaging of reliable standard components utilizes the unique D - three-dimensional welded wiring technique. These miniature modules are available off the shelf in 16 basic types. Or with them, Delco Radio can quickly build for you a compact, relia sle digital computer for airborne guidance and control or any other military application. Vacuum encapsulated with epoxy resin, the modules perform all the standard logic functions. They meet or exceed all MIL-E-5272D (ASG) environmental requirements, and operate over a temperature range of $-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Too, these same reliable digital circuits are MODULES available packaged on plug-in circuit cards. And we can also supply circuits to meet your specific needs. For complete details, just write our Siles Department. Physicisis and clectronics engincers: Join Dello Radio's search for new and better products through Solid State Physics.

Provides Cooling, Mounting and Lighting
 in Modular Enclosures for Electronic Instruments in Any Installation

No one type of enclosure meets all environmental and physical demands. AMCO has developed 3 complete systems integrated into 1 system with interchangeable accessories, applicable for both commercial and military use.
CUSTOM . . . When space and appearance are critical 16 ga . double-channel steel frames, based on increments of $191 / 1^{\circ}$ widths, supports in excess of 3000 lbs. Multi-width panels and cowlings give single-unit appearance with series mounted racks. Meets EIA Standards.
Aluminum


Semi-Custom
SEMI-CUSTOM . . . Meavy-duty, more internal clearance . . . 14 ga . box-channel steel frames, 12 ga . gusseting provides exceptional rigidity both front-to-back and side-to-side. Frames based on 221/10 increments provides clearance for recessing $19^{\circ}$ wide panels. Meets EIA Standards.

ALUMINUM... Unique! Meets any size....almost any configuration from ti basic parts... 3 castings and 3 extrusions. Any size from $6^{\circ}$ to 20 ft.; any slope from $0^{\circ}$ to $90^{\circ}$ is standard. Mil Specs strength and material (6061-T6 extrusions and 356-T6 castings).
Amco manufactures all necessary blowers, chassis slides, doors and drawers, writing surfaces, cowling lights and other accessories. Check the extra savngs you oet thru Amco's combined-discount system of racks and aceessories. PLUS FREE ASSEMBLY.

Amco is your one complete source of Modular Instrument Enclosure Systems and Accessories. Write today for catalog of complete specifications.


REALISTIC 3 WEEK DELIVERY

Factory trained representatives in principal cities of U.S. and in Canada.
Custom
AMCO ENGINEERING CO.
7333 West Ainslie Street, Chicago 31, Illinois


## REPORT BRIEFS

## Telemetry System Study

A telemetry system study has been conducted to evaluate both experimentally and analytically the performance capability and potential of standard systems. A design plan for an improved telemetry system is also provided. Volume 1 contains an analysis of each of the four basic systems: PCM-FM, PDM-FM, FM-FM, and PAM-FM. The analyses have been developed and verified experimentally. The criteria for comparing the relative performance of the several systems are derived and the comparisons are presented. Telemetry System Study. Volume 1 (of three). Analysis and Design, J. G. Hammond, Aeronutronic, Newport Beach, Calif., Feb. 6, 1957-Nov. 30, 1959, 283 pp, Microfilm \$11.10, Photocopy \$44.10. Order PB 147919-1 from Library of Congress, Washington 25, D.C.

## Ferrite-Coupled Lines

An analysis is presented of ferrite-coupled TEM-mode transmission lines. Both the reciprocal and nonreciprocal transmission properties of a two-line or two-mode system have been analyzed for the case where the axis of dc magnetization is along the direction of transmission. The analysis was applied to the case of a transmission system which consists of two conductors plus a shield. Theory Of Ferrite-Coupled Transmission Lines Networks, Philip S. Carter, Jr., Lockheed Aircraft Corp., Sunnyvale, Calif., Feb. 27, 1959, 28 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 147672 from Library of Congress, Washington $25, D . C$.

## Dielectrics

Boron nitride and an alumina ceramic have been tested and found to possess high temperature dielectric properties surpassing that of the best single crystal sapphire. Reconstituted mica was also used to prepare pure dielectrics for use as electrical insulation at 500 C . The report discusses the development of techniques for high temperature pressing and firing of these materials to preserve the desirable high temperature dielectric properties. Included in the illustrated report is a bibliography and a 17 -page annotated survey of the literature on preparation, purification and dielectric properties of aluminum oxide. Synthesis and Purification of Dielectric Materials, Westinghouse Electric Corp. for WADC, Oct. 1959, pp 141, \$2.75. Order PB 161366 from U. S. Department of Commerce Field Office, 1031 S. Broadway, Los Angeles 15, Calif.


- Search and Faulp Prini-Out
- Capecity up ro 9600 wires

Introducing the most flexible testing unit devised for the analysis of wiring harnesses . . . the CTI Tape-Programmed Cable Harness Analyzer, Model 230. Any number of complex test procedures are programmed with ease. Operation is entirely automatic and unattended. The unique "Search.Out" feature provide a rredrtand of test failures of all firgrita each failure. Simultaneously programmable go/no-go continuity and leakage tests. Any combination of branch or standard circuits can be selected. Test capacity of up to 9600 wires in 600 wire increments. Engineering changes in the cable harness tests are quickly handled by paper tape programming. The CTI Tape-Programmed Cable Harness Analyzer is another outstanding breakthrough by CTI.

Write for full information


Fonsmost in Automatic Testing CIRCLE 792 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 15, 1961


MORE DATA PER DOLLAR

* Inexpensive Tungsten Light Source
- Electrically Selectable

Speeds
$1^{\prime \prime}, 5^{\prime \prime}, 10^{\prime \prime}$
and $50^{\prime \prime}$ per second
$\rightarrow$ Sensitivities from . 4 Mv /inch
$\pm 2000$ Cycles per Second Frequency Response ( $\pm 5 \%$ )
\& Amplitude Grid Lines
$\star$ Weight 15 lbs .

* 110 Volts - 60 Cycles

TESTING
ANALYSIS CORRELATION
Request Bullacin C:I:-322
-

## From The Home of Planned Pioneering

## century ELECTRONICS \& IMSTRUMENTS, INC.

 Serviced by Sysiems Engineering Offices of
Arrsupply - Aero Engineering Compony
OHfices in All Principal Citres

## circie 793 on reader-service card

## Cooling Semiconductor Devices

This handbook was prepared to aid electronic engineers in the thermal design of reliable military electronic equipment. Enumerated are recommended principles and techniques for the thermal design of electronic equipment using semiconductor devices. Air Force Handbook: Methods of Cooling Semiconductor Devices, Steven K. Morrison and James P. Welsh, Army Signal Research and Development Laboratory, Fort Monmouth, N.J. Report on Contract AF 30(602)1842, May 1960, 74 pp, 17 ref., Microfilm $\$ 4.50$, Photostat $\$ 12.30$. Order PB 148783 from Library of Congress, Photoduplication Service, Publications Board Project, Washington 25, D.C.

## Electrostatic Focusing

A new technique has been developed for constructing tubes employing the planar periodic electrostatic focusing of an electron-sheet beam. Use of this technique permits both mechanical ruggedness and excellent alignment of the electrodes. The technique, in brief, consists in assembling the entire tube structure in separate halves, grinding their surfaces simultaneously with an abrasive wheel, and then bolting the two halves together at each end. Experimental tubes were constructed, and gave excellent beam transmission through the electrostatically focused structure, in one case as high as 99.8 per cent. Construction of Tubes Employing Planar Periodic Electrostatic Focusing, Burton J. Odel son and McKay R. Bradley, Diamond Ordnance Fuze Laboratories, Washington, D.C., May 16, 1960, 31 pp, 8 ref., Microfilm $\$ 3.00$, Photostat \$6.30. Order PB 148464 from Library of Con gress, Photoduplication Service, Publications Board Project, Washington 25, D.C

## Planning Systems

A general concept for the formulation of detailed design and evaluation criteria for complex developmental systems is outlined. Achievements necessary to develop a suitable end product are described. The report points out that any process begins with the need for a system, and that a general description and an understanding of performance requirements are necessary to accomplish the mission. A group of combined functional elements for efficient system design are defined. Theoretical mechanization requirements are validated by the design, construction, and evaluation of an experimental model. Planning Philosophy for Complex Systems, Naval Research Laboratory, Washington, D.C., Aug. 1959, 12 pp, \$0.50. Order PB 151764 from U. S. Department of Commerce Field Office, 1031 S. Broadway, Los Angeles 15, Calif.



## MODEL 612

Models 61 and 611 ere identical in appeoranco

These popular direct reading instruments measure and abeorb power in 50 ohm coaxial line systems through the range of 30 to 500 me
They are portable and extremely useful for fiold or laboratory testing . . . checking installation of transmitters . . . trouble shooting . . . routine maintenance . . production and acceptance teats . . . transmitter tune-upa measuring losses in transmission lines.. cesting coarial line insertion devices such as, connectors, switches, relays. filters, tuning stubs. patch cords and the like... accurately terminating 50 ohm comerial lines, and. monitoring modula: tion by connecting phone, amplifier or audio voltmeter to the DC meter circuit.
Power scales for Model 41 speciel are made to meet your requirements.

WRITE FOR BULLETIN TW606

## SPECIFICATIONS

Re IMPUP IMPEDAMCE: 50 Chm mominel.
Yiwni stondard apecification -iving range.
ACCURACY: $5 \%$ of full scole. INTEAMAS COOLANT: OII.

POWER RAMOE: Model 611$0.15,0.60$ waits full scale Model 612-0-20, 0-80 watta full scole.

MNUT COMNECTOR: fomalo " N ".
EXTERNAL COOLINO METMOD: Air Convecion.

RADIATOR STRUETURE: AII Aluminum.
FINISN: Bird sfandard grey boked enamel.
WEIONT: 7 pounds.
OPERAFINO POSITIOM: Horizontal.

"Throline" Directionol R1 Wothmotera

"Pormaline" QF Loed Rosister


Coased
cor filhers
 Coaxiol
W. Switches


ELECTRONIC CORP.
CMurshill - 1200
30303 Aurora Road, Cleveland 39, Ohio Weatom Represeatafive:
UAN GROOS COMPANY, Weedlend Mills, Callf.

## REPORT BRIEFS

## Network Topology

The theory of linear graphs, or topology, is applied to passive and active networks. Some simplifications to the determination of equations for current and voltage gain are discussed. The calculation of the minimum number of network trees required to represent active networks is considered, and methods for simplifying the establishment of the required trees are examined. In addition, the active equations for the parametric amplifier are derived topologically. The Use Of Network Topology With Active Circuits, Keats A. Pullen, Jr., Ballistic Research Laboratory, Aberdeen Proving Ground, Md., Feb. 1960, 97 pp, Microflm \$5.40, Photocopy \$15.30. Order PB 147649 from Library of Congress, Washington 25, D.C.

## 2200-Mc Telemetry System

A $2200-\mathrm{mc}$ multi-channel telemetry relay system was developed to provide a high-capacity net interlinking all data-recording sites and receiving stations. In addition, simultaneous calibration of all stations was made possible. The relay employs the super-heterodyne principle to translate all the vhf telemetry signals as a unit to the microwave region for transmission to the recording stations. The system features a large dynamic range and uses close channel spacing for efficient use of bandwidth. A Microwave Telemetry Relay, Leonard S. Taylor, Integrated Range Mission, White Sands, N. M.., Apr. 1958, 88 pp, Microfilm $\$ 4.80$, Photocopy $\$ 13.80$. Order PB 147367 from Library of Congress, Washington 25, D.C.

## Picfure Transmission

This report examines several fundamental aspects of the picture-scanning process used in electrical facsimile or telephoto systems. In particular, scanning processes are analyzed with respect to the relation between the required time-bandwidth product and the unavoidable degradation of resolution which usually results. Upper bounds on the performance of such systems are given, together with several improved methods of scanning which hold promise for getting closer to ideal conditions than those presently in use. The Scanning Process in Picture Transmission, A. E. Laemmel, Microwave Research Institute, Polytechnic Institute of Brooklyn, N.Y., Mar. 1957, 51 pp, Microfilm $\$ 3.60$, Photostat \$9.30. Order PB 146371 from Library of Congress, Photoduplication Service, Publication Board Project, Washington 25, D.C.


NEW C1K, C3J and C6J THYRATRON TUBES with exclusive Cetron Milled Grid

A new development in half wave, xenon filled, grid controlled thyratrons that offers you:

- Increased Reliability!
- Matched Characteristics!
- More Hours Per Dollar!
- Flying lead, lug or base mounting! For improved performance in welding, precipitators, static spray equipment, induction heating, diathermy and other pulsating circuit equipment.

|  | $\lim _{5}^{\operatorname{lng}}$ | $C_{\operatorname{mon}}$ |  | Thluge |  | Vots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIK | 1.0 | 8.0 | 1000 | 1250 | -4.5 | 1000 |
| C3J | 2.5 | 30.0 | 900 | 1250 | -3.7 | 900 |
| C(0) | 6.4 | 77.0 | 750 | 1250 | -3.3 | 750 |
| Capoble of meating all requirements af JAN Milliany Specifications |  |  |  |  |  |  |
| Cetron engineers ore always available to help in your tube requirements-just arile, wire or phone |  |  |  |  |  |  |
| YOUR DEPENDABLE SOURCE FOR |  |  |  |  |  |  |
| RECTIFIER, THYRATRON AND PHOTO TUBES |  |  |  |  |  |  |

CETRON
ELECTRONIC CORPORATION
715 Hamilion streat - Geneve, Illinois CIRCLE 796 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961

## Ulitra High Temperatures

Final report covering a four-year study of various chemical and physical phenomena at temperatures up to $5,000 \mathrm{~K}$. This report summarizes the work reported in previous technical notes Study of Ultra High Temperatures, Research In stitute of Temple University for WADC, April 19.5., pp 26, \$1.00. Order PB 161460 from U. S. Department of Commerce Field Office, 1031 S Broadway, Los Angeles 15, Calif.

## Cooling Electronic Equipment

A comprehensive thermal design handbook has been prepared to assist engineers in designing cooling systems for Air Force ground electronic equipment. Various modes of heat transfer, as well as theory, data, and computational methods for achieving successful thermal designs, are discussed. Text is written for engineers without a heat transfer background and for thermal engineering specialists interested in electronic equipment cooling systems. Separate chapters are devoted to thermal design, natural cool ing methods, forced air cooling, liquid cooling, thermal criteria, and thermal limitations of parts. Also included are four appendixes, a list of refer ences, 196 diagrams and illustrations, and 47 tables. Handbook of Methods of Cooling Air Force Ground Electronic Equipment, J. P. Welsh and T. J. Walsh, Cornell Aeronautical Laboratory, Inc. and Rome Air Development Center, June 1959, \$8.00. Order PB 161264 from OTS, U. S. Department of Commerce, Washington 2.5, D.C.

## Paramagnetic Maser

Theoretical calculations showing the effects of various types of cross relaxation mechanisms on maser inversion ratio are given. Examples of three spin, four spin, and five spin processes are compared to experiments which have been described in the recent literature. Transient solutions of the rate equations are obtained and methods of measuring the cross relaxation probability described. The design of a superconducting iron-cored electromagnetic is described. It is anticipated that this magnet will allow the use of longer slow-wave structures than are possible with the conventional laboratory electromagnet. Rescarch and Development of a Solid State Paramagnetic Maser, Roy W. Roberts and Harold D. Tenney, Melabs., Palo Alto, Calif., Quarterly progress (scientific) report No. 7, Apr 9, 1960, 37 pp, Microfilm $\$ 3.00$, Photostat $\$ 6.30$. Order PB 148403 from Library of Congress, Photoduplication Service, Publication Board Project, Wash ington 25, D.C.


ELECTRONIC DESIGN•February 15, 1961


## Easiest loading...

## CEC's 5-124 Recording Oscillograph

 is ready to record in just 10 secondsDrop in a roll of paper . . . at the push of a button you are ready to record up to 18 channels of data... push another button to select any of five recording speeds ranging from $1 / 4$ to 64 ips . CEC makes recording easier than ever before with the new portable 5-124 Recording Oscillograph-a "big" oscillograph that sells for considerably less than the cost of any comparable instrument.

Everything you need for loading, operating and viewing is right in front of you-including ready to read, print-out records that eliminate processing problems.

The 5-124 delivers a writing speed of $50,000 \mathrm{ips}$ with trace widths of $0.010^{\prime \prime}$ or less - and an optional DATAFLASH* unit can speed its print-out process by a factor of 60 !

For flexibility, the $5-124$ has 18 individual inputs and is available with many optional features to meet your most demanding data recording needs.

For complets information, call your meareat
CEC sales and service ofice or write for Bulletin CEC 5124-X6.

- Pa: Pana

Data Recorders Division
CONSOLIDATED ELECTRODYNAMICS / pasadena, california


## Dry Cells and Batteries

## Spec Now Includes Transistor Batteries

Covering new tests and performance requirements, the seventh edition of this specification includes batteries for use with transistors. Some of the other classifications included in this revision are: No. 6 Dry cells; A, B, and C batteries; and $A / B$ pack batteries. Sponsored by the National Bureau of Standards, the American Standard Specifications for Dry Cells and Batteries, C18.1-1959 is available from the American Standards Association, 10 E. 40th St., New York 16, N. Y. at $\$ 0.25$ per copy.

## Methods of Assessing TV Receivers Properties Established

Methods of assessing the essential properties of a TV receiver under standard conditions are established by this IEC publication. The publication's primary purpose is to permit comparison of the results of measurements in different laboratories. The measurement techniques cover the electrical, acoustical, and optical properties of television-broadcast receivers designed for monochrome vision reception of 405-, $525-, 63-$, and 819-line transmissions of either negative or positive modulation and the associated am or fmsound channel. Copies are available from American Standards Association, 10 E. 40 St., N.Y. at $\$ 10.00$ per copy.

## ASA Compiles Shock, Vibration Pickup Calibration Methods

This comprehensive document describes most calibration methods used today and covers specifically constant acceleration, sinusoidal motion, and transient motion. Methods that are currently limited in use or are less accurate are included in an appendix; as their usefulness and accuracy are established, they will be moved into the main body of future revisions of the standard. American Standard Methods for the Calibration of Shock and Vibration Pickups, S2.-1959, is available from the American Standards Association, 10 E. 40th St., New York 16, N. Y. at $\$ 2.50$ per copy.

SEE US AT IRE booth 2233


WHAT IS RELIABLERELAYARILITY? IT'S ELGIN advance's ability to BUILD A RELIABLE QUALITY RELAY LIKE THE SENSITIVE MO SERIES.
THE MQ SERIES CRYSTAL-CAN-SIZE HERMETICALLY SEALED RELAY IS available in three sensitivities TO MEET VARYING MILITARY AND INDUSTRIAL REQUIREMENTS. THESE CURRENT-OPERATED RELAYS COME WITH PLUGIIN PINS FOR PRINTED CIRCUIT USE, SOLDER HOOKS AND 3-INCH LEADS AND A VARIETY OF MOUNTING ARRANGEMENTS. ALL CONNECTIONS ARE SPACED ON 02 INCH GRID.

| SPEC MOA MOB MOC |
| :---: | :---: | :---: | :---: |
| Pull-in Power |

Pull-in Power

| $(\mathrm{a} i$ | $\left.25^{\circ} \mathrm{C}\right)$ |
| :--- | :--- | $\mathbf{2 5 0} \mathrm{MW} \quad 100 \mathrm{MW} 50 \mathrm{MW}$ Contact Rating

(Res@ 28VDC
or 115 VAC ) 2 amps 1 amp 1 amp operating and
Release fimes 5 MS ea 6 MS ea 7 MS ea Shoch 50G 35G 20G
Contact Arrangement: DPDT
Temperature Range: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dimensions: $0.875 \mathrm{in} . \mathrm{h} x 0.800 \mathrm{in}, \mathrm{wx}$ 0.396 in . thk

Weight: 0.6 oz.
Life (af rated load): 100,000 eperations minlmum

ELGINadvance RELAYS MgTa
THE ELECTRONICS OIVISION OF ELGIN NATIONAL WATCH COMPANY 2435 N. NAOMI SI., BURBANK, CALIF.
CIRCLE 799 ON READER-SERVICE CAID

 the frequency range from 200102000 megscycles and may be easily sel to any bandpass value between $2.5 \%$ and $25 \%$. They are available with 2,3 , or 4 sections de. pending on bondpass and rejection requirements. Electrical performance of the TBP filters corresponds to resonant cavities or lank circuits with unlosded Q's of over 200, and their DC resistance is essentially infinite beth 10 ground and from input 10 output. Small size and rugged construction make these filters ideal for missile and aircraft applications. Special temperature resistont coil-forms and spacers assure a high degree of mechanical spability and allow aperation at temperatures over $100^{\circ} \mathrm{C}$. Available with BNC or other standard connectors.

Typical apecifications for a 4.Section Filter $\begin{array}{ll}\text { Center Frequency } & 200-2000 \mathrm{mc} . \\ \text { Pass B Bnd Width } \\ \text { Pass Band } & 2.5-25 \%\end{array}$
Pass Eand
Altenuation
$0.5 \mathrm{db} \pm .2 \mathrm{db}$
per section al
$3 \%$ B.W.
$0.2 \mathrm{db} \pm .1 \mathrm{db}$
per section at
$12.5 \%$ B.W.
$12.5 \%$ B.W.
less than $1.5:$
Pass Band VSWR
Impedance
Nominal Inpus
Connectors
Moterial
Weight 50 ohms

Over 15 watts Type BNC, INC or N
$18 \%$ Silver Nickel Approximately Approxim
5 ounces

Price - $\$ 125.00$ to $\$ 30.00$ depending on type and quantity.

## MINIATURE LOW PASS FILTERS

Telonic also manufactures the TLP Series of Low Pass RF Filsers exhibiting the same quality and high degree of performance as in the band pass units. These Low Pass filrers are available for any cup-off frequency from 200 to 2000 mc in 5 mc increments.

For complete data on both types write for data file TE-I

## Revision of MIL-P-13949

## Adds Five New Types of Laminates

Revision B of MIL-P-13949A adds to the spec five new types of glass-fabric laminates; generalpurpose, temperature-resistant, and flame-retardant types using epoxy-resin as well as melamine- and silicon-resin types. The spec establishes rigid tolerance classes for thickness and for warp or twist in addition to normal tolerances. The following requirements have been added: maximum copper-foil resistivity to assure reliable conductivity, solder tip on etched specimens to check for blistering, flammability for most types, bond strength on $1 / 8-\mathrm{in}$. strips, and flexural strength at high temperatures for the glass-fabric based epoxy resin type. In this spec, the "etching-process and etchant-removal" paragraphs are modified, specifying ferrite chloride solution at room temperature and substituting $10 \%$ oxalic-acid solution for the hydrochloricacid solution. The full name of the spec is Plastic Sheet, Laminated, Copper Clad (For Printed Wiring), MIL-P-13949B. Though not yet available, copies will be distributed by Armed Services Electro-Standards Agency, Fort Monmouth, N. J.

## U.S. Standardization Activities Described In NBS Document

A descriptive inventory of the work and objectives of organizations, both public and private, involved in standardization activities is contained in this recently published NBS document. Each organization is listed alphabetically with a brief description of its standardization area and accomplishment. A comprehensive index covers almost all widely known product areas and lists the organizations in each field. This 210 -page directory is available from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. Specify Standardization Activities in the United States, National Bureau of Standards Miscellaneous Publication 230. The cost is $\$ 1.75$.

## Resistance Value Symbols Calified In MIL-R-26C

The examples of symbols for resistance values have been clarified in the latest issue of MIL R-26C. The quality assurance provisions have been revised to incorporate the latest paragraphs on responsibility for inspection. The latest information on packaging requirements has also been added to the spec. Mil-R-26C, Amendment 1, Resistors, Fixed, Wirewound (Power Type).


## fastest reading!

## Here's 50,000 ips writing speed with

 the results at your fingertipsThe print-out record shown here illustrates a typical dynamic test employing 15 traces. Take special note of:

* 1-Trace numbering *2-Trace interruption
* 3 - Full-width timing lines ( $0.01,0.1$ or 1.0 sec. intervals) Trace identification and timing lines are optional features, as are grid lines ( $1 / 10^{\prime \prime}$ or mm ) and galvanometer block heaters. Eighteen Type 7-300 Galvanometers are available covering a range of 1.62 microamps per inch at 6 cps and 46.1 milliamps per inch at 5000 cps .


## CHECK THESE STANDARD FEATURES...ALL INCLUDED IN THE BASIC $\mathbf{1 8 - T R A C E}$ TYPE 5-124 SELLING FOR $\mathbf{\$ 2 , 2 9 0}$

5 Pushbutton.selected speeds - $7^{\circ}$ by $200^{\prime}$ print-out record capacity • High intensity mercury-vapor light source. Automatically regulated galvanometer lamp circuit • Intensity control - Unexposed footage indicator. Individual input connectors $\cdot 151_{4}{ }^{\circ}$ long $\times 13^{\circ}$ wide $\times 7 \% /^{\prime \prime}$ high $\cdot 115$ volts, $60 \mathrm{cps}, 250$ watts

For complete information, call your nearest
CEC sales and service office or write for Bulletin CEC 5124-X6.

## INDOX I and INDOX VI <br> Make Possible Simple, More Compact TWT Design



If your line of microwave equipment includes traveling wave tubes, you will be interested in Indiana Steel's amazing ceramic permanent magnets called Indox.

Unlike heavy Alnico materials, Indox offers designers of microwave equipment a new, light, inexpensive and easy-to-assemble permanent magnet in the sizes, shapes and strengths necessary for today's critical applications.

For example, in periodic focusing traveling wave tubes, Indox can supply a much higher flux density due to its higher intrinsic coercive force. And Indox pieces may also be magnetized prior to assembly without appreciable loss of flux density.

Not only does Indox open new doors of design, but Indiana Steel now offers two grades of Indox to meet special microwave design problems-Indox I and Indox VI.

## INUOX 1

In addition to having a higher intrinsic coercive force than Alnico, Indox I is an inexpensive material manufactured to design specifications at moderate die cost. Irreversible flux density losses do not occur until very low operating temperatures are reached. And Indox I produces a greater flux density than many other materials when operating low on the demagnetization curve. (See curve below.)

## INDOX VI

Through extensive research in Indiana's R\&D laboratories, a new, more powerful Indox material has now been released for use in microwave equipment, particularly the TWT's. Having a greater energy product, Indox VI can be used when a greater flux density is required or when a smaller magnet must be used.

AVAILABLE FROM STOCK NOW! Many unground sizes of Indox I and VI magnets are now in stock. If required, magnets may be ground to closer tolerance prior to assembly. Magnets may be magnetized before or after shipment, as desired. DESIGN ENGINEERING NOTE:
Indiana manufactures the widest selection of permanent magnet materials, available in thousands of sizes and shapes. Therefore, you can depend upon Indiana to give unbiased advice in choosing the correct magnet material for your application.
What are your permanent magnet requirements in the broad-band microwave field? It's likely an experienced Indiana application engineer can help you, so write for full information. Request Bulletin18M-2 (Indox I and V) and Bulletin 353M-2 (Indox VI).
NEW! Recently published data on predicting effect of low temperature on Indox V and VI, compiled by Indiana scientists. For your copy, write for Applied Magnetics, Fourth Quarter, 1959.



## TYPICAL CHARACTERISTICS

|  | inoox I | indoox y |
| :---: | :---: | :---: |
| Coercive Force ( $\mathrm{H}_{\mathrm{c}}$ ) cerstods. | 1,825 | 2,550 |
| Residual Induction <br> (Br) gauses | 2,200 | 3,200 |
| Peok Energy Product ( $\mathrm{B}_{\mathrm{s}} \mathrm{H}_{\mathrm{s}}$ ) | $1.0 \times 10^{6}$ | $2.4 \times 10^{6}$ |
| Rovenible Pormeability | 1.2 | 1.06 |
| Tomperature Coofficient - | $-0.19 \% /{ }^{\circ} \mathrm{C}$ | $-0.19 \% /{ }^{\circ} \mathrm{C}$ |
| Magnetization Field for |  |  |
| Soturation, eorsteds | 10,000 | 10,000 |
| Chomical Composition | - BoFe1, $0_{10}$ | BaFs $\mathrm{H}_{12} \mathrm{O}_{19}$ |
| Specific Gravity - | $\begin{gathered} 4.7 \text { or } \\ 0.17 \mathrm{Ib} / \mathrm{cv} \text { in } \end{gathered}$ | 4.5 or <br> $0.162 \mathrm{lb} / \mathrm{ev}$ in |

0.1.0.0. indiane


# INDIANA STEEL PRODUCTS 

VALPARAISO, INDIANA

in Cenede: The Indiana sieel Producte Co. of Canada Limited, Kirenener, Ontarlo
INDIANA PERMANENTMAGNETS

Gield. I feel that it would be appropriate to review the actual facts, which are as follows:
In the period from 1945 to 1948 the writer, while engaged in an R\&D project for the Signal Corps, had occasion to design and make a de motor in which commutation was accomplished electronically. The specific device consisted of a pair of revolving magnets on a common shaft; one of which served as the driver and the other as signal generator, phased so as to supply pulses for maintenance of continuous rotation. A miniature triode tube was employed. I did not, at the time, consider this device to have any commercial value and no patent applications were pursued either by me or by the client.

Early in 1953 I conceived the idea of using this same basic scheme for dc motor commutation, but employing transistors. In June, 1953, a finalized concept of such a motor was recorded by me and successful working models reduced to practice in January of 1954.

The original motor is generically identical to that shown in your photograph on p 37 , invention of which you have credited to a Dr. Harry Stockman. This structure incidentally is covered in U.S. patent No. 2,719,944 issued in 1955. Further development along this line has been carried out by me and several additional patents on these motors have been issued and or are pending. We have had in production a transistorized motor known as "Type TR" for several years.

Harrison D. Brailsford Brailsford \& Company, Inc. President
Rye, N.Y.

## ... And a Reply

There is no question about Mr. Brailsford's priority as an inventor in the transistor motor field, and he should be commended for having conceived these ideas at the early date indicated. My ignorance about this earlier work in the field probably stems from my specific approach: to improve upon oscillating and rotating electromechanical systems by analyzing them in light of the Nyquist stability criterion, restricting myself to linear network there exclusively (no iron permitted).

My strict departure from iron core structures in de motors provides a distinction from the motors covered by the Brailsford patent, in which core-free designs were not foreseen. My motor, designed exclusively for educational purposes, utilizes a spinning bar magnet. If the motor were provided with soft iron pole pieces, it just could not rotate, since my design does not utilize the cleverly designed circular magnets patented by Mr. Brailsford. The most significant difference, however is that my motor operates in an ultrasonic "super-regenerative mode," bringing the


## SCOTCH ${ }^{\text {® }}$ BRAND MAGNETIC INSTRUMENTATION TAPES OFFER A RIGHT TAPE FOR EVERY APPLICATION

Knowledgeable tape users realize that magnetic tapes are not all alike-that it takes specific constructions to meet the needs of specific applications. And they've learned to rely on "Scotch" brand to supply the one right tape for each application. Not only does "Scotch" brand offer a complete line, it offers that something extra that makes all the difference in performance-the uniformity and reliability that result from 3M's experience, technical skill, and continuing research. Make the "Scotch" brand label your guide in buying instrumentation tapes. Your 3 M Representative is close at hand in all major cities-a convenient source of supply and information. For details, consult him or write Magnetic Products Division, 3M Co. St. Paul 6, Minnesota.
© 1961, 3M Compeny

"Scorch" and the Plaid Design are registered trademarks of 3M Company, St. Paul 6. Minnesola. Export: 99 Park Avenue. New York, N. Y. In Canada: London, Ontario. CIRCLE 803 ON READER-SERVICE CARD

The wide "Scotch" brind line provides many tapes, including these broad classifications:
SANDWICH TAPES 182 and 189 -exclusive with "SCOTCh" BRAND, offering 10 times the wear of standard tapes, drastic reductions in heard wear, elimination of oxide rub-off. In standard or extra-play lengths. MION RESOLUTION TAPES 158 and 159 -offering superior resolution in high frequencies, greater pulse density in digital recording. In standard and extra-play lengths.
HEAVY DUTY TAPES 198 and 199-oflering exceptional life, gonid MEAVY DUTY TAPES 198 and 199 -oflering exceptional life, gond
resolution, high resistance to temperature and humidity, reduction resolution, high resistance to temperature and humidity, reduction
in the build-up of static charge. In standard and extra-play lengths. MIGH OUTPUT TAPE 128 -offering top output in low frequencies. Performs well even in temperature extremes.
STANDARD TAPES 108 and 109 -offering the good all-round performance at low relative cost which has made them the standards of the instrumentation field.
"SCOTCH" bRand Magnetic tapes for instrumentation

## THERMOSTATS ${ }^{\mathrm{BY}}$ Therm@ $)_{\text {Duc }}$ <br> rmin <br> - Slow make or break contacts <br> - For operating tomperatures up to $550^{\circ} \mathrm{F}$. <br> - Resistive load- $\mathbf{1 5 0 0}$ watts at 120 VaC <br> TYPE HL - Single pole, single throw or double - Manual orle, single throw or automatic reset  <br>  Besignes for sumper mounting also available for watert - MIgh ratings with minimum size  - Blace or screw terminals, exposed or - Resistive losd- -6000 watts enclosed disc 240 VAC <br> (TYPE 11 Tr.21 <br> 

 - Inductivo 1000 amps and full lise at ot 120 VAC1 TYPE AF \& AL



 THERM-O-DISC, Incorporated Mansfield, Ohio 242

## LETTERS

driving current pulse faster to a higher value.
The lack of a core structure in my motor and the use of ultrasonic oscillations speak against Mr. Brailsford's claim that his motor is "generically identical" to mine. Neither Mr. Brailsford nor I can patent a motor principle. What he has patented is $a$ transistor motor, and as time goes on, other inventors will patent other transistor motors. Mr. Brailsford retains, however, his established priority, and further inventions in the field will add to the credit we owe him, not detract from it.

Harry E. Stockman Waltham, Mass.

## Cheers for Maintainability, RFI

After reading the excellent series of articles, "Designing for Maintainability" in the Oct. 26, 1960, issue, I am wondering if you could let us have another collection of these articles. I would like to circulate them among engineers in our electronics department.
N. G. Dennis

Woodward Governor Co. Rockford, III.

In the past several months you have been issuing articles on radio frequency interference. I would very much like to have a complete set of these articles for ready reference. This series of articles fills a void that has long existed, i.e., the gap between the inception of an idea and hardware design. Never before have I seen this area covered so adequately in a publication such as yours.

## Stanley Becker

Airborne Instruments Laboratory
Deer Park, L.I., N.Y.
If available, may we have a reprint of your outstanding staff report on "Designing for Maintainability" for our files on maintenance design guidelines for submarine electronic equipment. Apparently that issue was in such demand that it was not delivered to our Circuit Group subscribers. We here in Electric Boat's circuit design section of Systems Application are looking forward to more detailed reports in this most critical electronic design area.

> S. B. Ensley
> Electric Boat Div.
> General Dynamics Corp. Groton, Conn.

The series of articles, "Designing for Maintainability," being of considerable interest to a num-

 wis Mismando s-6010 CIRCLE SOS ON READER-SERVICE CARD

circle 806 on reader-service card ELECTRONIC DESIGN • February 15, 1961

CHECK OUR QUOTE!


GET SAVINGS... AND HEIP
from largest producer of moving coil formsi
Need help on moving coil forms for meter-type movements you are working on Looking for razor-edge quotes for
moving coil forms you now use Check $H \& H$-conntry's largest, most experienced supplier. Made of high purity aluminum, plain or anodized, and held to super-tight rolerances. We guide, advise. do complere job from tooling to rigid inspection. Write for literature, or send blueprine with quantities desired.
W'rite. 100 , for information on ant small metal subing parts from $01 \mathrm{in} .103 / 4 \mathrm{in}$. of any commercial alloy for any application. Shoor ws skesch or blweprint of part yow need.

## H

H \& H MACHINE COMPANY, INC.
Noble \& Jack son Stroels. Norrislown. Pennsylvania
Phone. BRoadway 2-6453 - BRoadmay 9-2327

CIRCLE 807 ON READER-SERVICE CARD

## Cadillac Presents

THE CASE OF THE RELUCTANT E. E.

His motto on chonging jobs, is "a bird in the hand is worth two in the bush"-AND HE'S RIGHT. Even though his work and income may be less than his ability dictates, making a job change can be a risky task.
Every problem colls for a solution. The perfect solution in this case is Cadillac Associates the nation's Iargesi electronic executive plocement firm. At Codilloc, the elec"ronic engineer can weigh and compare opportunities of. fered by oll of the country's top electronic firms. This service is ABSOLUTELY CONFIDENTIAL And WITHOUT OB-
LIGATION. Placement is COMPLETELY WITHOUT COST.

## FREE—Monthly Opportunities Bulletin

For your free monthly bulletin of the finest available electronic opportunities, simply send us yoer name and home
address (and, if you wish, o review of your qualifications).


JACK L. HIGGINS, VIce President
Cadillac Associates, Inc.
29 Enst Madisen Ildg., Chireoge 2, Illinals Finansial © 9400
Where More Electronic Erecutives Find 7 heir


CIRCLE 895 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 15, 1961
ber of project groups working on government research projects for various weapon systems, we would like to request 10 copies of this issue.

Mary Ellen Padin
Dunlap and Associates, Inc. Stamford, Conn.

Our group designs test equipment and control circuits, and your magazine has enabled us to remain abreast of the new developments. Your feature article of "Designing for Maintainability" was very impressive. We would like to obtain 15 reprints of the article.
G. Orsi

Automatic Electric Co. Northlake, Ill.

## Factorial Experimentation Growing

An item appearing on p 26 of the Nov. 23, 1960, issue of Electronic Design caught my eye. [The news story referred to stated that the Fort Huachuca experiments will be one of the first engineering applications of factorial design.] Factorial designs have been fruitfully used for more than 10 years. I wrote my thesis on industrial and design engineering applications of factorial designs.
Dr. Martin Brumbough used factorials in the early '30s at Colonial Radio-now Sylvania. Dr. Harry Romig at Bell Telephone (now with Operations Research Inc.) used factorials in the early '20s. The Navy, with Dr. William Pabst, used factorial experiments in ordnance work in the '40s-on design applications and tests.

What's so new? In fact, though this method is not outmoded, we are using more advanced techniques such as Random Balance Experimentation, Multivariate Analysis, Monte Carlo, Queuing Theory, etc., on current work as a normal, everyday part of the design task. We have an Air Force contract to determine applicability of these techniques to the art of prediction.

A four-factor experiment involving four variables will result in erroneous data and, in my opinion, is a very dangerous one to have our Army rely on. The effect of the fifth factor is most significant. The statistical design, from what you report, seems to have a lot to be desired.

Please understand that we are pleased that the U. S. Army is using factorials. I only wanted to point out that others have for long periods of time used statistically designed experiments.

Richard M. Jacobs, Manager
Reliability \& Quality Assurance Dept.
Sylvania Electric Products Inc.
Waltham, Mass.

- Mr. Jacobs and other statistical experimenters would like to see factorial experiments used more widely in engineering.
 miniature - precision - wire wound POWER RESISTORS provide outstanding performance features vital in today's complex and highly reliable circuitry.

"CS" type designates a structural adaptation of long proven silicone coated SAGE Resistors by the addition of exterior heat sink sleeves. Design simplification and adherence to basic heat transier principles speak for this product

If you require anything beyond low grade (unspecified stability) power resistors you surely will benefit by investigating these features.
MINIATURE SIZE, or cooler hot spot operation for given size and watlage. Metal heat sink sleeves when clip mounted provide 2 for 1 increase in assigned warrage ratings over free air conditions.
PRECISION: to $\pm .05 \%$ tolerance and low values to .058.
STABLIITY: TC of $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Typical 1000 hour (full) lood life drift $.5 \%$. Although design hot spol emperatures are less than $275^{\circ} \mathrm{C}$, units are unharmed by prolonged exposure as high as $350^{\circ} \mathrm{C}$.
MECHANICALY RUGGED to withstand rough assem. DIELECTiGes pius vibration and shock hazards.

| Style | $\begin{gathered} \text { Length } \\ \text { in. } \end{gathered}$ | $\begin{gathered} \text { Diameter } \\ \text { in } \end{gathered}$ | Power Rating |  | Resistance05 a to |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { Free } \\ & \text { Air } \end{aligned}$ | $\begin{gathered} \text { Body } \\ \text { Mounted } \end{gathered}$ |  |  |
| CS3W | 1/8 | 1/ | 3 | 6 | 36,000 |  |
| CSR5W | 1 | 1/10 | 5 | 10 | 80,000 |  |
| CsSTw | 1\%/ | 1/16 | 7 | 14 | 100.000 | ! |
| CSRTW | 1/2 | \% | 8 | 16 | 150.000 | 12 |
| Csiow | 1156 | \% | 10 | 20 | 220.000 | ${ }^{1}$ |

Test camples ovaideble an requert

## biction

POWER
RESISTOR
SAGE
SAGE ELECTRONICS CORP
Country Club Road - East Rochester, N. Y. CIRCLE 808 ON READER-SERVICE CARD


# Cutting Your Reading Time in Half 

## Myron Q. Herrick

Development Research Institute New York, N. Y.

Today, more than ever before, it is your responsibility to be a critical reader. Here are some steps to take that will give you a sound basis for evaluation of any practical prose, and a summation of what has gone before.

Y
OU READ practical prose in the first place for information. But if your reading is to be useful to you, if you are to read efficiently, you must evaluate what you read, accepting only the statements that stand up under inspection and comparison. To al degree, everyone reads critically, if only when he decides if he likes or dislikes a selection.

Critical reading first requires a healthy skepticism towards the printed word, so that your mind can be free for the assessment of any statement you meet. No statement has authority simply because it has been printed; any authority it has is gained by passing the tests of reason and comparison. No precise formula or recipe can be given for evaluation of a selection, but there are two steps you can take that will give you a sound basis for evaluation of any practical prose. First, make a running analysis of a selection as you read it; second, make a comparative analysis of a selection after you have read it.
Full comprehension of a selection is mandatory for critical reading of it, and of course all the reading skills should be employed to that end. Two skills in particular will help you make a running analysis of a selection: understanding of techniques of paragraph development and reading with questions in mind.
In making a running analysis, you should dif-
ferentiate between an author's reports and his cvaluations. A report is an account of an event as it happened. There is the first-hand report made by a person who has actually witnessed an event; and there is a second-hand or hearsay report that is based on the first-hand reports of others.

An evaluation is a judgment inferred from first- and second-hand reports. An evaluation can appear by itself, or can be thoroughly mixed into parts of is report. It is possible, of course, for a writer to have all the facts right and still draw the wrong conclusions.

Confusion between reports and evaluations is easy, therefore, and must be avoided by the reader. Here is where a healthy skepticism about the printed word, plus an understanding of paragraph development and reading with questions in mind, will help you test the strength and validity of an author's thesis, purpose and evidence. Extensive use of marginal notes, especially when you wish to distinguish reports from evaluations, will facilitate running analysis and subsequent comparative analysis.

This series has presented the basic techniques of efficient reading. The over-all target is to practice these techniques until they have become habits.
The technique presented in this series may be briefly summarized as follows:

1. Pre-reading. Use this technique to get a systematic overview of any article or book of practical prose.
2. Questioning and anticipating. Use pre-reading as the basis for addressing specific questions to your author and to anticipate the steps of his discussion. Use questioning and anticipating as an aid to concentration as well as comprehension.
3. Summarizing. Use pre-reading and the question technique as bases for summarizing all important articles and books. Pre-reading gives
the basic outline of a complete summary. The question technique aids in filling in the outline. 4. Skipping and Skimming. After pre-reading, decide what may be skipped, what need only be skimmed, what needs a thorough reading.
4. Critical reading. Use pre-reading as an aid to critical reading. Find out ahead of time what conclusions the author is going to draw in his article. Critically evaluate the steps he takes to get there as you read along.
5. Self-pacing. Get in the habit of constantly improving your reading rate by pressing against the very limits of your current capacity for a few minutes every day. Time yourself every now and then to see how you are doing.
6. Phrase-circling. Circle phrases until they begin to stand out to you as separate wholes.
7. Space-reading. Help the phrases hang together, smooth out your eye movements by reading just above the line of type.
8. Vocabulary. Help yourself be a better phrase reader, a more effective businessman, by improving your vocabulary. "Use a word three times and it's yours."
9. Columnar reading. Help yourself be a better phrase reader by widening your span of recognition through columnar reading in your newspaper, news magazine, or trade journal.
10. Environment. Read under adequate, glareless light. Try to set aside a special place for all your serious reading. Sce your eye man regularly for an eye check.
11. Achievement. At the beginning of this series, you measured your reading speed. Now, to sce how much you have improved, turn to p 204 and read "Novel Techniques Boost Performance, Cut Size and Power of Tape Recorders" which contains 1,031 words. Divide the number of minutes into $1,0.31$ and compare this rate to your original score.

We hope that this series of articles has done for you what it has for thousands of others. There is nothing dramatically new in what we have told you and for that very reason many people tend to overlook its value. The techniques sound simple enough, but there is no surer way to replace bad reading habits than to practice in the use of these new skills. Ten minutes of practice each day for a few weeks can save you countless hours in the future, and at the same time sharpen your perception of the written word, making you not only a skilled reader, but also, in the larger concept, a more efficient and successful individual. - -

A 64-page book, giving the how, what, and why of reading improvement, is available to individuals. Send $\$ 2.00$ to Developmental Research Institute, Dept. E.61, 500 Fifth Ave., New York 36, N. Y.

## N:W Mzaluc FILM RESSTORS

## in CORNING

## typical operating characteristics

Load Life: Resistance change of $1.5 \%$ to $3 \%$ after 1.000 hours of operation at $70^{\circ} \mathrm{C}$
Moisture Resistance: Change in ohmic value of
Tomperature Coefficient: $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ between $-55^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$
Moise: 0.1 microvolt/volt of applied 'signal Derating: Full load at $70^{\circ} \mathrm{C}$ ambient to zero power a

Desistance
Ranges:

## distributor stocks

Corning C Type resistors have been designed as general purpose resistors with a highly reliable metallic film. These new resistors make outstanding performance available at low-cost. Corning C resistors not only outperform competing carbon composition types, but also outperform the requirements of Mil-R-11C. The $1 / 2$ watt C-20 and 1 watt $\mathrm{C}-32$ complement the 2 watt $\mathrm{C}-42$ available for the past year and are competitively priced.
Your Corning distributor will offer immediate delivery of these new metallic film resistors. Call him now for information and to order samples.

## 1 WATT

## $1 / 2$ WATT



AVAILABLE NOW

CORNING ELECTRONIC COMPONENTS CORNING OLASS WORKS, BRADFORD, PA.


## PROGRAM MANAGEMENT STARTS WITH THE DESIGN ENGINEER -AT LIGHT MILITARY*

Excineering Planning, time estimates and evaluations were once conducted almost exclusively at the management level, and deadline assignments passed down to design engineers. The result: bottlencek delays and unrealistic completion dates.

By applying PERT (Program Evaluation \& Review Technique), however, General Electric's Light Military Electronics Department is solving the problem in a systematic fashion - one that works to the strong advantage of the individual engineer as well as program management. As one of its essential features. PERT recognizes that the creative engineer himself is in the best position to evaluate the requirements of his own work
a DIAGNOSTIC AND PROGNOSTIC TECHNIQUE
Based on initial time estimates and subsequent progress reports - both submitted by engincers doing the actual work at each stage - PERT formalizes all related steps toward a program's completion into an analytical network. Computer analysis then provides both a diagnostic and prognostic means for combining time, talent and resources to assure a high probability of success in meeting overall deadlines.

The use of the PERT technique is just one aspect of LMED's forward looking endeavors to utilize the judgment and enhance the creativity of the individual engineer. At Light Military, the engineer finds himself in direct contact with the problems and decisions that influence his professional activities. He finds that management is not imposed on him - it depends on him.

Immediate
Professional Openings
If you are an engineer who wants to participate more directly in the conduct and evaluation of your work. why not look into the excellent positions that are open at Light Military Opportunities are available at most levels of education and experience in the following areas:

Space Communications \& Telemetry
Missile \& Satellite Computers Space Vehicle Guidance Undersea Warfare Systems Thermoplastic Data Storage
Space Detection
\& Surveillance
Command Guidance
\& Instrumentation
nfrared Missile Applications Technical Writing
Forward a brief outline of your education and experience in confidence to Mr. R. Bach, Dept. 76-MB
M.MLD]
*LIGHT MILITARY ELECTRONICS DEPARTMENT

## YOUR CAREER

## NEWS AND NOTES

Financial help in advanced studies at Hughes Aircraft Co., Culver City, Calif., has enabled 600 engineers to obtain their master's or Ph.D. degrees in the past 11 years, the company states. The program provides financial aid to Hughes engineers working for advanced degrees while they continue to work on research projects at Hughes.

Two Hughes engineers cited as men who took advantage of the program and now have important positions in the company were Dr. Leo Stoolman and Dr. Warren E. Mathews. Dr. Stoolman started working for his doctorate at California Institute of Technology in 1949 and received it four years later. He is now manager of the Aerospace Vehicles Laboratory, Hughes Research and Development Laboratories. Dr. Mathews started at Cal Tech in 1950 and received his doctorate three years later. Dr. Mathews is now assistant director of the laboratory and manager of the Infrared Laboratory.
This year, Hughes will award 24 fellowships for doctoral candidates and 132 for master's candidates.

Younger engineers are more active in obtaining patents, according to a study of 4,415 Purdue University graduates. The study showed that the greatest number of patents were granted within the first ten years after graduation.

One of the things an engineer dreads is answering a "blind ad"-one of those glowing accounts of a job opportunity that sounds ideal until one discovers that "Box XYZ" is his own company.
An engineer who has since mended his ways provides us, rather than his psychiatrist, with this switch on the old trap:
The company of which he was part owner was about to fold, so the engineer whipped up an ad describing an "opportunity" with his own company. The details neatly dovetailed with his own qualifications.
The best applicant he interviewed described his current job in detail, including salary, boss' likes and dislikes, and so on. At the end of the interview, the engineer called the applicant's boss, played on his idiosyncrasies as described by the applicant, and incidentally said he understood the jobseeker was unhappy. He added that he was very interested in that job, if it should fall vacant. The applicant was naturally eased out and the engineer got his job.

Moral: caveat jobseeker.
ELECTRONIC DESIGN • February 15, 1961

## Advancement Your Goal?

## Use CONFIDENTIAL

## Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fost. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your sec retary, type neat duplicates of your applica tion and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapid. ly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precoutions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.
If you are seeking a new job, act now!

ELECTRONIC DESIGN CAREER INQUIRY SERVIICE

After completing, mail career form to ELECTRONIC DESIGN. 830 Third Avenuc. New Jiork, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)
$\qquad$
$\qquad$
Home Address $\qquad$ City $\qquad$ Zone $\qquad$ State $\qquad$
Date of Birth $\qquad$ Place of Birth $\qquad$ Citizenship $\qquad$
Position Desired $\qquad$

| Educational History |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Recent Special Training $\qquad$

|  | Employment History <br> Company |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | City and State | Tille | Engineering Specialty |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Outstanding Engineering and Administrative Experience $\qquad$

Professional Societies

## Published Articles

$\qquad$
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you



DEVELOPMENT OF LUNAR SPACECRAFT
the "Ranger" series of spacecraft, designed first to explore the environment and later to land instrument capsules on the Moon, are now being developed and tested at Jet Propulsion Laboratory.
Illustrated is a "Ranger" proof-test model undergoing design verification testing at the Laboratory. Here design features are tested and proved, operational procedures developed and handling experience gained for the actual construction of the initial flight spacecraft.

This is one phase of JPL's current assignment from the National Aeronautics and Space Administration - to be responsible for the Nation's unmanned lunar, planetary and interplanetary exploration.
An advanced program such as this provides numerous objectives and incentives for qualified engineers and scientists who are eager to help solve the complex problems of deep space exploration.
Such men are welcome at JPL.

## jpl

JET PROPULSION LABORATORY
Oberated by the Colifornia Instifute of Yacthology under contract with the Nolionol Aoronoutia and Spoce Adm, nistration pasadena, california
Employment opportunities for Engineers ond Scientists interested in basic and spplied research in these fields COMMUNICATIONS•INSTRUMENTATION•INFRARED•ASTROPHYSICS•GEOPHYSICS. GEOCHEMISTRY - ASTRONOMY - PROPULSION • MASER • STRUCTURES • PHYSICS . Sond proteuiianal mesumo, with full quolificetions ond oxporionco. for our immodiato conidideration

## CAREER NEWS

Engineering education was cited as an important part of any national program to cut engineering lead time in a recently published survey, "Ideas, Inertia and Achievement." Conducted by the American Society of Mechanical Engineers, the survey presents the views of 88 corporations and research institutions in the United States and Western Europe.
Two qualities are necessary in an engineer if he is to help his country overcome the time lag between a scientific discovery and its first engineering utilization, according to Gordon S . Brown, MIT dean of engineering, in one section of the survey.
One is the ability to point out deficiencies in existing devices. The other is sufficient depth of fundamental training to be able to do something about the deficiencies.
To provide graduates with the needed training, MIT is in the midst of a five-year revamping of its engineering curriculum. The result will be an updating of both the professors and the laboratories, according to Dr. Brown. To develop both sides of the above-mentioned qualities in students, MIT will emphasize both a basic sciences education and an exposure to the latest engineering advances.
A combined engineering-medical doctor educational program at the master's degree level that has been established at the Drexel Institute of Technology, Philadelphia, was described by Dr. James G. Hilton. director, Laboratory for Endocrine Research, Dept. of Medicine, St. Luke's Hospital, New York City.

Engineers will study biology and physiology; physicians in turn will take concentrated courses in mathematics, electronic and mechanical engineering. The two groups will then continue with a joint program in advanced engineering subjects. A key part of the program will be the joint research on which both doctors and engineers will cooperate.
The University of Nebraska is starting a smallscale program very similar to the Drexel program, Dr. Hilton added, and Johns Hopkins University has worked out a curriculum for a fouryear program for a doctorate in biomedical engineering. The last program, however, is for engineers only.

Computer abstracts on 3 -in. by 5 -in. filing cards will be soon available at costs from $\$ 30$ per category to $\$ 250$ for all categories from Cambridge Communications, 238 Main St., Cambridge 42 , Mass. These are the same abstracts which have been published by the Institute of Radio Engineers in the proceedings of the professional group on electronic computers.

Management and engineers don't agree on the question of the professional status of engineers. The results of a survey of 295 engineers and 55 managers in six major industries, including electronics, just published by the Professional Engineers Conference Board for Industry, Inc., Wash ington, D.C., show that while engineers think they are not being treated professionally, their managers think they are.
For example, the survey indicated that 90 per cent of the managers regarded the engineers as among those employes in their company who were making the most valuable contributions. Meanwhile, less than half the engineers thought they were so regarded.

Particularly interesting in the survey was the difference between the attitudes of engineers in those companies which encouraged engineering professionalism and those which did not. Fortyfour per cent of the engineers in the "pro-engi-neering-professionalism" companies agreed that their management really believed in the professional status of the engineers. Only 7 per cent of the engineers in the "other" type of company agreed with this.
Instcad, 53 per cent of the engineers in the second type of company said that engineers were a "sort of commodity-let go quickly if business is poor." Only 17 per cent of the engineers in the "pro-professionalism" companies held this view.
Engineers in both types of companies were against unions, the report showed, but the antiunion feeling was much stronger among the engineers in the first type of firm.

Among things which engineers feel they can do to increase their professional stature were:

- Increase their communication skill (so that they can articulate their desires to management as well as be more useful on the job).
- Increase their technical abilities.
- Increase their integration with broad company objectives.

The survey indicated that many engineers have higher personal aspirations than most managers appreciate. The engineers' satisfactions come from creative, challenging work. (Their dissatisfactions come from low pay and slow salary progression.)

Two criteria for professionalism rated highly by the engineers were, "becoming more like lay lawyers and doctors," and "being utilized as full professionals, not as technicians." The managers on the other hand thought that technical competence and a high standard of ethics were important to engineering professionalism.

Primary objective of the study was to find out what engineers and managers mean by the term "engineering professionalism" and how each group thinks it can be best advanced.

## BUT, OUR PENDULUMS AREN'T SIMPLE, SIGNOR GALILEO!

Since your time, Schuler has shown that a simple pendulum can be used for navigation here on Earth if it has a period of 84.4 minutes. By your formula, Signor, the pendulum would be 3,959 miles long! We couldn't keep it simple; we had to mechanize an artificial pendulum with Schuler's long period to inertially guide the Mace missile. If you, as an engineer, would like to join us in compounding such new approaches from traditional science, and if you have a BS, MS or PhD in Physics, ME, EE, or Math, please contact Mr. E. G. Allen, Director of Scientific and Professional Employment, 7929 S. Howell, Milwaukee 1, Wisconsin.
ac spark plug the electronics division of general motors



## MANAGER Development Engineering

"Our 4 million dollor volume constitutes - $100 \%$ increose in the lost 5 years. Our growth potential is unlimited.-Since nome of our monogement teom is ovep similar drive and enthusiosm to shore in and contribute to our future growth."

These are the words of our client. If anything, thay understate the exceptional opportunity offered by this medium sized firm in the relay engineering fiold.
Ideally located and solid as a rock financially, this young $d y$ nomic company seeks a qualified enginear with imagination and obility to organize, stoff and manage his own development deportment.
To quality, you must have knowledge of manufocturing rechniques and materials. Also proferred ate 2 years new product experience. Age 25 to 40 . Initial solory $10 \$ 15,000$ plus fringe
benofis.
For further information, sond resume in obsolute confidence 10 :

E. J. MCDERMOTT

CADILLAC
ASSOCIATES, IMC.
${ }^{25}$


## CAREER NEWS

"Military electronics continues to be the most bullish area for executives and the demand will be greater in '61," according to J. H. Higgins, head of the electronics division, Cadillac Associates, Inc., Chicago employment agency.

A vice president of personnel for a West Coast electronics firm recently told Higgins that he can't keep up with the requests for personnel by department heads in his firm. The West Coast vice president said that he may place 10 men then get an order for 250 more engineers.

Mr. Higgins commented that many companies are missing out on valuable manpower by being too specific in their job experience requirements, but at the same time many engineers are being too specific in their selection of geographic areas and types of jobs.

Better career selection will result from a common program for all freshman and sophomore engineering students, Cornell University predicted recently. In explaining why students entering Cornell's engineering school in the fall of this year will go through a uniform program of basic studies for their first two years, Prof. Dale R. Corson, dean of the college of engineering, said this will help the student to learn something about the engineering fields available before making his selection. After he selects his degree field at the end of his sophomore year, the student will specialize in that field for the next three years. (Cornell adopted a five-year undergraduate engineering program in 1946.)

In addition to the basic studies in mathematics, physics, chemistry, and English, Cornell hopes to develop the student's talents for applying fundamentals, Corson said.

Scientists are not as excited about the classical concepts of professional freedom as they were once thought to be, according to a survey of 57 researchers working at one large midwestern university.

Some key questions, with a breakdown of answers given, show the trend:

- Should a scientist be free to choose his own projects? Only 47 per cent thought so.
- Should scientific judgment be suspended until all the facts are in? Twelve per cent believed it should.
- Should there be free access to all scientific information? Only 20 per cent felt there should.
One "pure" scientist uncovered by the survey was asked what he thought "freedom" meant,
and replied that it was the opportunity "to ruminate on pay." Another, of a more practical turn of mind said that the greatest hazard to professional freedom was the number of daily interruptions he had to put up with.
"Continental Classroom," the nation-wide carly-morning TV educational series, is offering a course in probability and statistics, since Jan. 30th.

Monday through Friday at 6:30 am on the NBC network, the sessions cover central limit theorem, normal distribution, physical interpretation of probability, and application of probability and statistics.

On Mondays, Wednesdays, and Fridays, the undergraduate course "Probability and Statistics" is taught by Frederick Mosteller, professor of mathematical statistics at Harvard. On the other two days, the emphasis is directed towards the teaching of the subject.

Most difficult teaching tasks for the advanced teaching machines promised for the future may well be that of teaching ordinary engineers the machine's own principles of operation. Any engineer who has sat through a "hairy" technical session will appreciate the following comment made in England by a consultant, Mr. R. H. Tizard, during the question and answer session following a paper on adaptive teaching machines by Mr. Gordon Pask, a partner in the British firm Systems Research Lid. It comes from the Transactions of the British Society of Instrument Technology, London.
"I have known Mr. Pask for a number of years; I have known his teaching machine for quite a time, and I have even been taught by it. For a long time I tried to understand its mysteries from Mr. Pask's patient explanations, and have failed. Now I have read his paper six times, and only last time, this very morning, did I begin to understand what it was all about.
"After struggling hard over the diagrams for a long time I had begun to conclude that the whole system was based on the theory that the learning power of the human brain is bound up with the random connections between cells. I wondered whether Mr. Pask has wired up his machine at random and had then allowed a process of Darwinian selection to take place (among the elements), the unfit being those that burst into flames on plugging it in. . . ."
The ensuing hour's discussion, however, did not make it especially clear whether Mr. Tizard ever did really understand.


## present genuine challenge to scientists and engineers of demonstrated competence

"To preserve our free institutions, it is absolutely essential that the United States find the most effective means of advancing the science and rechnology of space and also of applying them to military space systems. This is the mission of Aerospace Corporation.'

## Ivan A. Getting

President
Aerospace Corporation

In accomplishing its mission, this nonprofit public service organization performs the unique role of space systems architect. Aerospace Corporation pro vides scientific and technical leadership to the science/industry team responsible for developing complete space and ballistic missile systems on behalf of the United States Air Force.

Specific responsibilities of the new corporation include advanced systems nalysis, research and experimentation, initial systems engineering, and general technical supervision of new systems through their critical phases.

The broad charter of Aerospace Corporation offers its scientists and engineers more than the usual scope for creative expression and significant achievement, within astimulating atmosphere of dedication to the public interest.
Aerospace Corporation scientists and engineers are already engaged in a wide variety of specific systems projets and forward research programs. under the leadership of scientist/ administrators including corporation president Dr lvan A Getting senior prese president Allen F Gelting, senior vice president Allen F. Donovan, and willia W Dra Wiliram W. Drake, Jr., Jack H. Irving and Chalmers W. Sherwin

Aerospace Corporation is currently seeking scientists and engineers capa bee of meeting genuine challenge and with proven ability as:

- Senior Electronics Engineers

Communications systems
Guidance electronics
Data processing systems
Radio techniques
Electromechanical design
Information theory
Sensing systems

- Space Vehicle Specalists:

Senior power systems engineer
Sr. flight performance analyst
Re-entry aerodynamicist
Those qualified and experienced in these and related fields are urged to direct their resumes to
Mr. James M. Benning, Room 111 P.O. Box 95081, Los Angeles 45, Calif.

A new and vital force

## AEROSPACE CORPORATION

engaged in accelerating the advancement of space science and rechnology

CIRCLE 906 ON CAREER INOUIRY FORM
ELECTRONIC DESIGN • February 15, 1961

## SATIN

... An Experimental System for High-Altitude Air Jraffic Control

Under a contract with the Federal Aviation Agency and jointly supported by the Department of the Air Force, MITRE is designing and implementing an experimental en route Air Traffic Control system. The system, called SATIN (for SAGE Air Traffic Control Integration), utilizes area control techniques to provide positive separation of all high-altitude en route traffic regardless of the route chosen or navigation used.

Through application of a SAGE digital computer and its associated radar, beacon, and radio network, SATIN permits inclusion of both the Boston and New York centers into a single highaltitude control area. The system automatically correlates radar and beacon data with flight plan information to establish a current position for each aircraft under control. Conflict prediction takes place automatically as does the transfer of information for intra- and inter-center coordination.

Initial parts of the experimental system are now in operation with major testing scheduled for next year.

Openings are currently available for engineers and scientists with experience or an interest in Air Traffic Control.

Inquiries may be directed in confidence to Vice President - Technical Operations

# " <br> MITRE <br> CORPORATION 

Post Office Box 208, 15-AU
Bedford, Massachusetts

MITRE is a system engineering organization engaged in the design, development and evaluation of large-scale command and control systems.

## THERE IS NO CEILING ON IDEAS

- Advanced hydrogen systems being developed by The Garrett Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.

Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.
Excellent positions are available for qualified men with M.S., Ph.D. and Sc.D. degrees for work in these areas:

- Environmental Control Systems - Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and lifo support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems - Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems - Largest supplier of accessory power units. AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles. liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines - World's largest producer of small gas turbine engines, with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.


## Immediate openings exist for MANUFACTURING ENGINEERS

to work with product design engineers on all aspects of production including forming, machining, assembly, material processing, operating standards and manufacturing feasibility of products in the above fields.


Los Angeles 45, California • Phoenix, Arizona

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars intended to provide the engineer with a better knowledge of various specialties. Our grouping includes several different types of meetings: National Courses - those held on consecutive days and intended to draw attendees from all geographical areas; One-Day Seminars-one-day intensive seminars which move from city to city: and Regional Lectures ~regional symposia or lecture series which generally run one night a week for several weeks.

Summer Courses at Case
A two-week summer course in digital control systems engineering will be held at Case Institute of Technology, June 31 through Aug. 11, under the direction of Dr. Marry Mergler, associate professor of mechanical engineering. Tuition is $\$ 300$.

A three-week summer study course in processcontrol theory for practicing engineers will be directed by Dr. Donald P. Eckman, professor of mechanical engineering, July 10-29. Tuition is \$400.
Applications for both courses should be addressed to Herbert Schultz, manager of special programs, Case Institute of Technology, University Circle, Cleveland 6, Ohio.

## PAPER DEADLINES

Convention Program Chairmen have ienued the following deadlines to authors wishing to have thetr papers considered for presentation. Feb. 15: Deadline for 50 - to 100 -word summaries for the 1961 Spring Conference of the Chicago Professional Group on Broadcast and Television Receivers of the Institute of Radio Engineers. The conference will be held June 15 and June 16, 1961, at the O'Hare Inn, Des Plaines, Ill. Emphasis will be placed on advanced development papers in the radio-television field and related areas. Papers should be limited to approximately 2,500 words and the presentation to 20 minutes. Potential authors should submit three copies of the summary including title of paper, author's name, position, title, company and affiliation to: Mr. Neil Frihart, Motorola, Inc., 4545 W. Augusta Blvd., Chicago 51, Ill.

March 1: Deadline for papers for the Interna tional Convention of the Institute of Radio Engineers to be held March 20 to March 23, 1961, at the Coliseum and Waldorf-Astoria Hotel in New York City. Send papers to: Dr. G. K. Teal, Program Chairman, Institute of Radio Engineers, Inc., One E. 79th St., New York 21, N.Y

STROMBERG. CARLSON EXPANDS PROGRAMS in COMMUNICATIONS SCIENCE

## SEEKS 10 MANAGERS AND OTHER KEY PERSOHNEL FOR NEW ADVANCED DEVELOPMENT OPERATIONS

These men will direct creative investigations across the spectrum of advanced problems in the acquisition, transmission, processing, storage and display of communica. tions data. High technical qualifications, breadth of view and leadership capabilities are required. Specific openIngs include:

## Manager: COMPUTER SYSTEMS LABORATORY

Goal: development of new proprietary computer systems and equipment in both seneral and special purpose fields.

Manager: BASIC DATA COMPONENTS LABORATORY
Goal: new developments of basic circuits and components for Goal: new developments of basic circuits and components for ystems.

## Managef: INFORMATION RETRIEVAL LABORATORY

Goal: development of new solutions to information retrieval problems for both general and apecial purpose date handling yatems.

## Manager: INTELLIGENT MACHINES LABORATORY

Goal: development of brain-like systems, such as perceptrons. character and voice recognition devices, robots, medical computers, adaptive radar and sonar computers.

## Manager: MICROWAVE Lasorntory

Goal: new devices and techniques in field of microwave transmission, utilization, aimplification, modulation and generation.

## Manager: RADIATION LABORATORY

Goal: new understanding in areas of radio frequency, acous tics and nuclear particles, leading to breakthrough in communications and anti-submarine warlare aystems development.

## Manager: SOLID \& PLASMA STATE LABORATORY

Goal: new developments in solid state accelerometers. Eyros, cryostats, electron sources and display devices: microminia. turized elements.

Manager: LABORATORY FOR GENERAL STUDIES
Goal: support of entire advanced development operation through conduct of unspecialized studies aimed at exploitation of new phenomenn and techniques uncovered in physica, biology and chemistry.
Manager: COMMUNICATIONS LABORATORY
Goal: development of new radio communication and terminal aystems, including investigation of new circuit and equipment concepts
Section Manager: COMMUNICATIONS SYSTEMS DESICN
Goal: development of new communication systems. Includes integration of radio equipment with the antenme system, data terminal equipment and propagation medium.

Project Director: SOLID STATE \& PLASMA LABORATORY
Goal: to generate, direct and participate technically in advanced development projects.

Principal Engineer: GROUND SUPPORT EQUIPMENT
Minimum 10 yearn experience including successful zour as Section Head on Large Projecta. Broad bachground in ground support and weapons system testing; radar and dipital equipment circuit design.
ALSO OPENINGS IM COMMUNICATIONS LABORATORY
FOR SENIOR COMMUNICATION DESIGN ENGIMEERS
Familar with antennas, propagation, HF and VHF radio equipment, and teletype terminal equipment Minimum 6 years experience.

Senior Engineer: FILTER DESIGN
A minimum of 3 years in design area, with emphasis on x-tal filter deaign.

If you are interested in furthering your career in any of the areas listed, please address your resume to Mr. M. J. Downey.
STROMEERG-CARLSON
a OVISION O GENERAL DYNAMICS CORPORATION
1452 N. GOODMAN STREET - ROCHESTER 3. NEW YORK

## looking for a special potentiometer?

 reach for

## electronic engineers

## physicists

# SYRACUSE SEMICONDUCTOR FACILITY UNDERGOING THREE-FOLD EXPANSION DURING 1961 Experienced Semionductor <br> Engineers and Scientists Now Being <br> Interviewed for Newly Created Positions <br> in Research, Development, Applications and Fabrication Engineering. 

Exceeding The Growth of an industry which is doubling in size every three years, General Electric's Semiconductor Products Department is beginning a new expansion program which will double its professional staff during the next two years.
At the same time, the physical facility will be expanded three-fold-providing room for an increased scale of manufacturing operations, as well as a number of individual laboratories devoted to advanced device research, development and testing.
Behind the Department's record of growth are a number of significant accomplishments, for example:

- General Electric uas the first to market a commer. cially successful tunnel diode.
- Dr. Vernon Ozarour, a member of the stafl. holds patents on multiclectrode field controlled germanium devices and labrication methods for PN junctions. He is presently uorking in the area of silicon carbide devices and epitaxially krou'n films.
- Dr. Robert N. Hall, G.E. research physicist, devel oped indium-germanium junctions, and the"rate grow ing" process for making groun junction transistors.

Current activities are concerned with virtually every aspect of the semiconductor industry - many of a highly sophisticated nature. Included are development of new materials, processes, and techniques; development of inprocess measurements for diffusion, vacuum deposition and photolithographic techniques; new encapsulation methods; continued advanced studies in transistors, rectifiers, tunnel diodes, solar cells, micro-electronic components, etc.
A number of excellent positions are currently open at the BS, MS and PhD levels to men with 3-10 years of experience.

To apply, or obtain information on specific opportunities related to your background and interests, write in confidence to Mr. J. H. McKechan, Dept. 76-MG.

## SEMICOMDUCTOR PRODUCTS DEPARTMENT GENERAL (3) ELECTRIC

Electronics Park

## a Special note to scientists and engineers interested in entering the semiconductor field

Almost $75 \%$ of the scientists and engineers - currently making important contributions to semiconductor technology at General Electric - rame from other fields. Opportunities are still open to interested men - for example, those with experience in small electronic components such as resistors, miniature relays, capacitors, transducers, etc.


## ENGINEERS



Grow in an atmosphere of Professional Challenge . . join $A$ 퐆
타표TRONICS DIVISION

You can bring new meaning to your career in engineering by investigating opportunities in state-of-the-art developments at ACF.

Experienced engineers at all levels are cordially invited to inquire about challenging positions in the following fields:

COMMUNICATIONS MICROWAVE COMPONENTS \& SYSTEMS ANALOG \& DIEITAL TECHNIQUES SOLID STATE CIRCUITRY FIELD ENGIMEERING

These openings involve assignments at our laboratories located in suburban Washington, D.C. and the New York metropolitan area at Paramus, New Jersey. Pleasant residential neighborhoods provide readily available housing. Advanced study under tuition refund may be conducted at nearby universities.

ACF EIECTRONICS DIVISION
-OIF IITIDTESHIRIIコE

## TMEMDLE, MARYAND - HYATTSYLLE, MLYLNMD - PARAMUS, NEM MERS3



## Simplify Wire



KINGSLEY Wire and Tube Marking Machine

Now you con mark each wire or piece of plastic iubing with its own circuil number quickly economically, right in you own plant!

You reduce wire inventories because you need only one color of wire for as many circuils as necessary

Simplify your assembly methods and speed production with the same machine that has proved so successful in the aircraft and missile induspries Wrife for details

## KINGSLEY MACHINES

850 CAMUENGA. HOLIYWOOO 38 CALIF

SEE US AT IRE BOOTH 4236 CIRCLE 10 ON READER-SERVICE CARD ELECTRONIC DESIGN • February

Natvar Corp.
Nesco Intruments, Inc. ................ 220 New Departure Div., General Motors Corporation . ......................... . . 32 - Non-Linear Systems, Inc. . . . . . . . . 134, 135 North Electric Company . . . . . . . . . . . . 172

Ohmite Manufacturing Company . . . 10, 216 Oster Mig. Co.. John . . . . . . . . . . . . . . . . . 76

| PRD Electronics, Inc. . . . . . . . . . . . . . . 182 |  |
| :---: | :---: |
| Pacific Semiconductors, Inc. . . 31, 110. | 111 |
| Paktron Div, of Illinois Tool Works | 74 |
| Panoramic Radio Products, Inc. | 198 |
| Paramount Paper Tube Corp. | 222 |
| Pennsylvania Fluorocarbon Co. | 118 |
| Penta Laboratories. Inc. | 78 |
| Perfection Mica Co., Magnetic Shield Div. | 118 |
| - Perkin Electronics Corp. | 6 |
| Phelps Dodge Copper Products Corp. | 55 |
| - Philco, Lansdale Division | 9 |
| -Polarad Electronics Corporation. .. 198 | A-B |
| Post Co., Frederick | 155 |
| Potter \& Brumfield | 103 |
| Power Designs, Inc. | 150 |
| - Powertron Ulirasonics Corp. | 170 |
| Pyrofilm Resistor Co., Inc. | 146 |

R I Products, Div. of Amphenol-Borg . . 178 Radiation. Inc. . . . . . . . . . . . . . . . . . . . . 146 Radio Corporation of America. 129, Cover IV Radio Corporation of America, 117 Semiconductor \& Materials Div. . . . . . . 117

Raytheon Co.e and Power Tube Div .... 187
Raytheon Co.. Power Supply \& 109
Cilat 109
Raytheon Co., Semiconductor . . . . . . . . . 57
Reeves Hoffman Div.
Dynamics Corp. of Amer. . . . . . . . . . 226
Renbrande. Inc. . . . . . . . . . . . . . . . . . . . . . . 242
Ridgefield Instrument Group . . . . . . . . . . 212
Rison Electronics. Inc. .............. . . . 104
Rohde \& Schwarz . . . . . . . . . . . . . . . . . . 144
Rome Cable, Div. of Alcoa . . . . . . . . . . . . 86
Ross Company, Milton, The . . . . . . . . . 158
Rosemount Engineering Co. . . . . . . . . . . . . . . 150
Rototest Laboratories, Inc. . . . . . . . . . . . . . . 58
Rotron Mfg. Co. . . . . . . . . . . . . . . . . . . . 122
Royal Electric Corp. . . . . . . . . . . . . . . . 128
Rutherford Electronics Co. ............. 3


- Manufacturers ${ }^{\circ}$ catalog, appears in 1960-1961 Electronic Degignzrs Catalog


# 3 WAYS TO PERMANENT THREADS -IN ANY MATERIAL! 

For original design - production saivage and "on-the-job" thread repairs - use Heli-Coil" Stainless Steel Wire Screw Thread Inserts.

## HELI-COIL Standard Insert

for stronger, smoother, lifetime threads
Permanently protects threads against wear, stripping, corrosion, galling, seizing, vibration, and shock. Made of 18-8 stainless steel wire, this precision-formed Heli-Coil Insert has a tensile strength of approximately 200,000 psi.
 Conforms to military standards and all commercial and industrial thread forms.

## HELI-COIL Screw-Lock Insert

eliminates lock wiring and lock nuts This one-piece wire Screw-Lock Insert provides all the thread protection of the Screw-Thread Insert, PLUS an exclusive resilient internal locking feature that eliminates clumsy protruding lock nuts, lock wiring and other supplementary locking devices. It saves cost, space and weight - permits simple streamlined design in standard bosses. Meets military and N.A.S. specifications for locking torque and vibration.

## HELI-COIL Shop-pack

for all "on-the-iob" thread repairs
Contains everything needed for fast, easy thread repair - on the spot! Salvage expensive parts - for pennies! Shop Pack restores threads to original size. Available in U.N.F. and U.N.C. sizes 6-32 to $1 / 1 / 2-6$. There's a kit for spark plug and pipe thread sizes, too. Each Shop Pack contains a supply of Heli-Coil Screw-Thread Inserts with special tap plus inserting tool.
There is a complete line of Heli-Coil products for every thread need: inserts, taps, tools and gages. Let us help with your design and application problems. Write today for complete information.

Advertiser
Taber Instrument Corp.
Taurus Corporation
Taylor Fibre Company
Tektroniz, Inc. ....n Corp.
-Telonic Engineering Corp.
Tensor Electric Dev. Co. Inc.
Texas Instruments Incorporated
Therm-O-Disc, Inc.
Theta Instrument Corporation
Trak Electronics Company
Trak Microwave Corp.
-Transitroo Electronic C.
Tung-Sol Electric, Inc. ................ 113
Tyco Semiconductor Corp. ............... 193

Unger Electric Tools, Electronic Div. of
Eldon Indusiries. Inc. United Shoe Machinery Corp. .......... ${ }^{84}$
U. S. Stoneware ..................... 203 Universal Toroid Coil Winding lnc. ...... 190


Wallson Associates, Inc. ............... 26 Waltham Precision Instrument Co. .... ${ }_{118}^{73}$ Ward Leonand Electric Co. Waters Manufacturing. Inc Westera Devices, Inc. . Westinghouse Electric Corporation..................................... 138 "Weston Instruments. Whitso, Inc. . . . . . . . . .................... . . . 20

- Manufacturers
Electanic Desicalog, appears in $1960-1961$
CATALOG


## Advertising Representatives

Adv. Sales Manager: Bryce Gray, Jr. Salea Service Supor.: Alvin D. Ross New York: Robert W. Gascoigne, Richard Parker, Blair McClenachan James P. Quinn, Ralph Richardson, Donald J. Liska, Charles J. Stillman, Jr. Kenneth M. George, John M. Webe

Chicego: Thomas P. Kavooras, Berry Conner, Jr. Fred T. Bruce, 664 N. Michigan Avenue, Superior 7-8054 Los Angeles: John V. Quillman, Wayne Stoops, 3275 Wilshire Blvd. Dunkirk 2-7337
San Franciseo: Stanley 1 Ehrenclou, 292 Walter Hays Drive, Palo Alto, Davenport 1-7646

Southecatern: Pirnie \& Brown. Morgan Pirnie, Harold V. Brown, G.W. Krimsier 1722 Rhodes-Haverty Bldg., Atlanta,

London EC4: Brad Nichols, 151 Fleet Street

## NEW FROM <br> Highest reliability Highest quality

## NEW 170A MILITARIZED

 SCOPE-TO 30 MC!(4) 160B MILITARIZED 15 MC SCOPE!


Vertical, time axis plug-ins provide unique

16SAA Plug-in (TimeAds) furaiched with the -hy coB and 170A Occilloncopes (ao pietared), provide 2 -axio, aingio-sweep arming inpot.



Q1CSC Dieplay Scanmer (Time Axle ploz-la) pro-
 lop with permanont. Lareverale record in hither than either soope CRT or phote raph, ad you ene dbare

4. 166D Sueep Delay Generator (Time-Axls phacin) delays the malis weep of the 1008 and 170 A Soopes for detailed examination of a complex sifral or pula
train. In dition, it offers a unique mixed werp fex






## electronic design one day service <br> USE BEFORE MARCH 29th. 1961 <br> Name Title

Compony



Momo Addreas
For Change of Addren
Oid Compony Nome


# OSCILLOSCOPES 

## Meets military specifications <br> Conventional controls for simple operation Uniquely versatile dual plug-ins providing:

1. X-Y records of repetitive waveforms (4) 166 C Display Scanner Plug-in)
2. New sweep delay convenience
( 4166 D Sweep Delay Generator Plug-in)
3. Widely versatile input capabilities

These are the scopes you have been waiting for! Built to exacting military specifications, they offer instantly expandable measurement capabilitywhen you need it. It's easy ! Just add a moderately priced plug-in unit!

Both $\$ 160 \mathrm{~B}$ and 170A employ the same vertical and time-axis plug-ins providing the widest range of application with minimum plug-ins and minimum investment. Details of these plug-ins are given on the opposite page.
New 160B and 170A follow MIL-E-16400C for shock, vibration, humidity and temperature. Important features include high stability tubetransistor circuits, regulated dc filament voltages and premium components throughout. Power transistors in efficient heat sinks insure cool operation ; etched circuits on translucent epoxy glass simplify circuit tracing and servicing.

Simple, conventional controls speed set-up time and actual measuring. Improved preset triggering insures optimum operation for almost all conditions with just one adjustment-even on signals down to 2 mm deflection. Both 160B and 170A give you big, bright presentation on a $5^{\prime \prime}$ CRT, with a clear, steady trace free from bloom or halo.
A push-button beam finder automatically locates off-screen beam or trace (especially useful for operation by inexperienced personnel). And to increase general-purpose usefulness: 24 calibrated sweep times, $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}, \pm$ $3^{\prime \prime}$ r accuracy. Vernier extending slowest sweep to $15 \mathrm{sec} / \mathrm{cm}$. Seven-range magnifier increasing fastest sweep to $0.02 \mu \mathrm{sec} / \mathrm{cm}$. Horizontal sensitivity $0.1 \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$. Vernier extending minimum sensitivity to $25 \mathrm{v} / \mathrm{cm}$. 160B, $\$ 1,850.00$; 170A, \$2,150.00.

## versatility for the 160B and 170A scopes!

| SPECIFICATIONS-4 1608 and 170A with \& 166A Plug-in |  |  |  |
| :---: | :---: | :---: | :---: |
| vertical | SWEEP CEMERATOR |  |  |
| Bandwidth: | $\begin{aligned} & \text { 4. 1608, } 15 \mathrm{MC} \\ & \text { 4 } 170 \mathrm{~A}, 30 \mathrm{MC} \end{aligned}$ | Intornal sweep: | 24 ranges, $0.1 \mu s e c / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}, \pm 3 \%$. Vernier extends slowest sweep to $15 \mathrm{sec} / \mathrm{cm}$ |
| Veltage Calibrator: | 9 calibrated ranges $\pm 3 \% .0 .2 \mathrm{mv}$ to 100 v peak to peak | Magnifieation: | $>$ calibrated ranges, $\times 1, \times 2, \times 5, \times 10, \times 20, \times 50$ and X 100 . Increases fastest swoep to 0.02 $\mu s e c / c m$ |
| Current calimentor: | 5 ma peak to peak $\pm 3 \%$ | Tricsering: | intemal, power line or vertical input sienal $(2 \mathrm{~mm}$ or more vortical deflection); external ( $1 / 2 \mathrm{v}$ peak to peak or more) |
| Bandwiden: | de to 1 MC | Trisser Paint: | Positive or negative going voltage. Trigger level of external sync signal adjustable |
| Sonsiuvity: | 7 ranges $0.1 \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$. Vemier extends minimum sensitivity to $25 \mathrm{v} / \mathrm{cm}$ |  | - ${ }^{-30}$ to +30 voits |
| Inpur impedence: | 1 megohm shunted by 30 pf |  | 4 170A, 82.150 .00 (cabinat or rack mount) |

## HEWLETT-PACKARD COMPANY <br> 1057K Page Mill Road <br> Cable "HEWPACK" <br> Palo Alto, Californis, U.S.A. <br> DAvenport 6-7000

HEWLETT-PACKARD S.A. Cable "HEwPAcksA" Tel. No. (022) 26.43.36
sales rapresentadiven in all prancipal areas
CIRCLE 812 ON READER-SERVICE CARD

"The lowest noise figure and highest sensitivity permitted by the present state of the art" harman kardon


#### Abstract

For High-Fidelity FM Tuners. HARMANKARDON, nationally recognized as a manufacturer of stereo and hi-fi components of the highest quality, has designed the front end of its Citation III FM Tuner to take advantage of the exceptional performance capability of the RCA6 CW 4 nuvistor triode. Why? Because in the words of Harman-Kardon, "The revolutionary nuvistor furnishes the lowest noise figure and highest sensitivity permitted by the present state of the art."

For Television Tuners. RCA-6CW4 nuvistor triode in VHF TV Tuners makes possible satisfactory reception in fringe areas and other locations where signal levels are extremely weak. This tiny tube with giant performance gives RCA Victor's New Vista tuner up to $45 \%$ more picture pulling power in weak signal areas than the best tuner previously available. It has proved so successful that RCA Victor has introduced 12 new colur-TV receivers with the nuvistorized tuner.

Nuvistors can make extraordinary contributions to industrial and military as well as entertainment electronics. Discuss them soon with your RCA Field Representative or write Commercial Engineering, RCA Electron Tube Division. Harrison, N. J.




The Most Trusted Name in Electronics radio corporation of america

RCA FIELD OFFICES:
EAST: 744 Broad Street Newaik 2. New Jersey, HUmboldt 5-3900. MIDWEST: Suite 1154, Merchandise Mart Plaza, Chicago 54, Illinois, WHitehall 4.2900 WEST: 6355 E Washington Blvd.. Los Angeles 22, California, RAymond 3-8361 - 1838 El Camino Real, Burlingame, California, OXford 7-1620.


[^0]:    CIRCLE 11 ON READER-SERVICE CARD

[^1]:    -Denotes Standard Modulation Scale printed on face

[^2]:    Little Falls, New Jersey

[^3]:    CIRCLE 175 ON READER-SERVICE CARD
    ELECTRONIC DESIGN • February 15, 1961

[^4]:    - Now with Polytechnic Research \& Development Co., Inc., Brooklyn, N. Y.

[^5]: