

For lasting dependability, specify...

EPON RRESINS

When you are looking for outstanding reliability, even under severe operating conditions, you can count on Epon resins to give you the excellent electrical and mechanical performance you require.
For example-Epon resins have truly amazing adhesive qualities-form strong bonds to metal, glass, and plastic. They assure air-tight, moisture-tight enclosure for delicate components and vacuum tubes. Even when exposed to solder-bath temperatures, Epon resins retain their dimensional stability.
Epon resin-based insulating varnishes and potting compounds, in addition to providing
excellent moisture sealing, have outstanding resistance to attack by solvents and chemicals, even at high temperatures.
When reinforced with inert fibrous filler, Epon resins produce base laminates of superior dielectric properties that can be sheared, punched, drilled, and bath-soldered.
Solvent-free Epon resin adhesive formulations require contact pressure alone and cure at room temperature, or with low heat for accelerated curing.
Will Epon resins solve a production problem for you? For a list of resin formulators and technical literature write to

SHELL CHEMICAL COMPANY

PLASTICS AND RESINS DIVISION 110 WEST S1ST STREET, NEW YORK 20. NEW YORK SEALING

ENCAPSULATING

LAMINATING

COVER: Bionics, the subject of this issue's Staff Report, has been loosely defined as the imitation of nature by electronics. The cover painting is a stylized rendition of a neuron. Superimposed on it is the familiar pattern of a printed circuit to represent the electronics part of the new discipline.

Selected Topics In This Issue

Circuits
Multivibrator Gives Nanosecond Pulses With Variable Width High-Duty Cycle
Designing Phase-Sensitive Transistor Circuits - A Russian Translation

Communications
Commercial Use of Space Bring ing New Problems

New Fay-TV System Being Readied for Field Test

Components
Wirewound Trimming Potentiometers for Printed Circuit Application .

Design Aids
How to Make Your Own Transistor Parameter Converter

Logic
Putting Boolean Algebra to Work

Radiation
Guidelines in Designing for a Nuclear Environment

R\&D
Bionics-Electronics Learns from Biology
Test Equipment
Direct-Writing Recorder Operates Over a 100 Per Cent Bandwidth
Transistorized Oscilloscope Weighs Less Than 2 Lb .

Bionics-A New Discipline
As a general rule, our editors are from Missouri. With all the developments that pour across our desks every day, it is not too often that we get terribly excited about a story. But every once in a while, something comes along which makes us sit up, rub our eyes, and explode in a fit of superlatives.
Such was the case a few weeks ago with bionics. We had been sniffing around this new subject a bit, and the deeper we got into it, the more excited we got.

Opening up in front of designers is a whole new concept in electronics. The reasons why a dolphin has a better sonar than any available from man, why a bat's radar is more effective than man's, and why a frog jumps according to light patierns add not only to our knowledge of biology but to our knowledge of electronics. If we can duplicate these natural processes electronically, we shall have come a long way toward teaching machines to learn and to adapt themselves.
On p 38 of this issue, ELECTRONIC DESIGN presents the first report in depth on bionics. We are proud of it and hope you will find it helpful.

Hark, Hark, the Dogs Do Bark
A few days ago, a motley crew dragged into our editorial offices at 830 Third Ave. These were the blooded veterans of the WESCON campaign. For both ED and ELECTRONIC DAILY, they had labored hard and under the tough. est possible conditions (see photo). DAILY Managing Editor Alan Corneretto and his staff had put together four issues of the magazine distributed at WESCON and each had returned to tell the tale, bloody but unbowed. The story in ED on p 14 of this issue and the one in the Aug. 31 issue are their work.

 Production or lab instruments-Simple to use, even for nontechnical personnel-Moderately priced-Full $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ display - Automatic calibration waveforms - Low phase shiftAutomatic triggering for optimum presentation-"Times-5" sweep expander magnifies trace, improves resolution.

DC to 200 KC

Models 120A/AR combine minimum controls with automatic triggering for utmost speed, convenience. Horizontal amplifier dc to 200 KC ; phase shift only $\pm 2^{\circ}$ to 100 KC . More X-axis information due to horizontal amplifier sensitivity control, with vernier, 5% accuracy. Balanced input on most sensitive ranges for low level work. Times- 5 sweep expander, all ranges. 15 calibrated sweep speeds, $5 \mu \mathrm{sec} / \mathrm{cm}$ to $0.2 \mathrm{sec} / \mathrm{cm}$. Vernier, expander extend speed range $1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm} .10 \mathrm{mv} / \mathrm{cm}$ sensitivity calibrated vertical amplifier, drift-free trace. 120A (cabinet) or 120AR (rack), $\$ 435$.

DC to 200 KC-DUAL TRACE

Models 122A/AR provide simultaneous two-phenomena presentation, are ideal for direct comparison of filter, amplifier output/input phenomena; vibration testing. Unique frontpanel automatic calibrator waveform switch. Twin vertical amplifiers operate independently, simultaneously, differentially. Automatic triggering, automatic synchronization, single trace operation when desired. Sensitivity $10 \mathrm{mv} / \mathrm{cm}$ to $100 \mathrm{v} / \mathrm{cm}, 15$ calibrated sweeps, vernier extension. Horizontal amplifier dc to 200 KC .9122 A (cabinet) or 122AR (rack), $\$ 625$.

DC to 300 KC -"BIG SCOPE" PERFORMANCE

Models 130B/BR provide wide usefulness, simple operation and rugged dependability. 21 calibrated sweep times, $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$. Vernier, expander extend range $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to $12.5 \mathrm{sec} / \mathrm{cm}$. Twin horizontal and vertical amplifiers, phase shift $\pm 1^{\circ}$ to 50 KC ; sensitivity $1 \mathrm{mv} / \mathrm{cm}$ to $125 \mathrm{v} / \mathrm{cm}$. Balanced input on 6 most sensitive ranges. Common mode rejection 40 db . Stability $1 \mathrm{mv} /$ hour after warmup. Triggering automatic, internally, line power, externally, 0.5 v or greater. 130B (cabinet) or 130BR (rack), $\$ 650$.

Thirteen precision
(4) oscilloscopes,
dc to $1,000 \mathrm{MC}$

Data subject to change without notice. Prices f.o.b. factory
HEWLETT-PACKARD COMPANY
1050K Page Mill Road
Palo Alto, California, U.S.A.
Cable "HEWPACK"
Sales representatives in all principal areas HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1
Geneva, Switzerland
Tel. No. (022) 26.43.36 ©1s

UPGRADE MOUR CHRCUIT

The reason is revealed in the joint. Compare these tinned copper-wire resis leads, welded and soldered, each magnified $\mathbf{5 0}$ times. In the solder joint, resistance is created through plating on the surface and through the addition of solder. Note the poor connection. In the Weldmatic welded joint, you can see complete fusion of the parent metals. This welded joint is stronger than the parent metals, has excellent conductivity, and can be produced without operator skill.

Ask Weldmatic for a free sample weld
evaluation... you'll receive the
best in current technical knowledge.

WELDMATIC DIVISION
 950 Royal Oaks Dr., Monrovia, Calif.

CONTENTS FOR SEPTEMBER 14, 1960 VOL. 8 nweser 19
Electronics Learns from Biology38
Electronic: imitates nature in a l'asi mad evel-widernime mow fede
Bionics-A New Discipline Emerges 67
An Editorial
Guidelines in Designing for a Nuclear Environment 68
Practical findings from years of radiation experiments, and hints for applying them to electronic design-P. S. Miglicco. D. M. Newell
Multivibrator Gives Nanosecond Pulses with Variable Width, High Duty-Cycle 72
Using additional transistors to isolate key points in the conventional mono-stable multivibrator circuit improves performance in nsec region-R. Roy
RFI Test Equipment74A compilation of commercially available RFI equipment-R. Schulz76
An example of how to state a problem in terms of Boolean algebra and extracta solution in terms of hardware-R. C. Harrison
How to Make Your Own Transistor Parameter Converter 80
Construction details on a handy slide rule for converting from " h " to " T "parameters-J. R. McDermott
How to Design Scales that Humans Can Read 82A presentation of rules for selecting the number of subdivisions and the lengthof marker lines-H. Littlejohn
Direct-Writing Recorder Operates Over a 100\% Wider Bandwidth 84
It has eight independent channels for recording various signals
Transistorized Oscilloscope Weighs Less Than Two Lb 86
It operates on battery, ac or low-voltage dc
Wirewound Trimming Potentiometers for Printed Circuit Application 88 88
They weigh one ram, are about one-quarter the volume of convention
trimming pots
Equalizer Extends Transducer Range 90Flat frequency range increased three or four times
Special Book Preview 168System Applications of Ferrite Devices-R. F. Soohoo
Russian Translations 176
Designing Phase-Sensitive Transistor Circuits 176
German Abstracts 180
Microwave Noise Source 180+

ELECTRONIC DESIGN

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N. Y.

ELECTRONIC DESIGN News

Firms Seek Ultrareliability for Minuteman
AF Seeks High-Sensitivity Accelerometers
Space Meeting Stresses Electronics
40,076 Throng WESCON Exhibits
Navy Data System Begins Sea Duty
Commercial Use of Space Bringing New Problems
New Pay-TV System Being Readied for Field Test
Electronics Learns from Biology
"Electronic Packaging" and Gracious Living
Texas Instruments' ASR-4 Radar Slated for 34 Air Terminals

Ideas for Design

Visual Display Helps Determine Tuning Fork Q 160
Modified Circuit Limits Pulse Amplitude More Effectively 162
Voltmeter Variable Resistor Measures Zener Current 163
Simplified Conversion Eliminates Slide Rule Step 164
Measuring Primary Screen Grid Emission 164
Woods Metal Good for Plugging Plumbing

ELECTRONIC DESIGN Digests
The Stable Platform: Key to Inertial Guidance 182
Cost, Failure Time Dictate Unit Size in Reliability Test 190

Standards \& Specs
MIL-STD-704 Helps Designers Achieve More Performance, Reliability in Airborne Equipment
Washington Report 22
New Products 92
Production Products 148
New Literature 150
Books 168
Report Briefs 192
Careers 198
Career Brochures 203
Advertisers' Index 205

CIRCLE 4 ON READER-SERVICE CARD

Firms Seek Ultrareliability for Minuteman

13 Components Makers Join in Autonetics Program; May Lead to Complete Reliability Spec Revisions

SIGNIFICANT achievements in electroniccomponents reliability have already been recorded as a result of a bold new program launched late last year in preparation for the Minuteman missile system. The long-range result of this program, being directed by North American Aviation, Inc.'s Autonetics Div., could be a complete revamping of reliability specifications for vital military weapons systems.
The exacting procedures being followed to achieve the reliability requirements outlined in the table below should pinpoint weaknesses in present quality control programs and direct manufacturers to corrections of poor reliability results. Levels about 100 times over present reliability are sought.
The special nature of the inertial-guidance and flight-control systems for the Minuteman led to the North American program. Retaliatory solid-
fuel missiles, stored in underground "hard" sites, must be ready to streak skyward with the first signs of enemy attack. Since components such as gyros require hours to warm up properly, many portions of the Minuteman electronic systems must be operating continuously in storage vaults. This could mean years of constant operation, with tests performed every few hours to assure the proper performance whenever it is needed.
To meet these severe conditions, Autonetics outlined an industrywide reliability-improvement program in a proposal to the Air Force for the guidance and control contract. This effort would be conducted at top component manufacturers' plants, with Autonetics coordinating the entire effort and issuing the specifications to be met by Minuteman parts. It is felt generally that this reliability program was the factor eventually winning the contract for Autonetics.

Careful records are kept for each part being stored by Autonetics-and each part is given an individual serial number. Parts are dip-soldered in place on printed boards in the storage trays used for stripping.

To arrive at initial reliability figures for the program an optimistic Mean Time Between Failures was set for the entire Minuteman system. From this total figure, MTBF's for subsystems were calculated, and from these the MTBF's for the components were derived. Although system's figures have not been disclosed, unofficial sources said that the system will operate at least for a year, perhaps for several years, 24 hours a day, without a malfunction due to electroniccomponent failure.

Reliability Compromises Necessary

In seeking component subcontractors for the Minuteman system, Autonetics asked for components with a reliability level that would assure unattended operation for a certain number of thousands of hours. Potential subcontractors submitted proposals in which they specified reliabil-

| Contributions to Minuteman | | | |
| :--- | :--- | :--- | :--- | :--- |
| Company | | Contract
 Amount
 lin | Reli-
 ability
 Level
 Specified
 (per 1,000
 hr) |

evels which they felt capable of achieving. lecause of the state-of-the-art in various comen! types, it was in some cases necessary to n reliability restrictions-but at the same requirements were proportionately stiffened components which were more susceptible to rovement.
cfore awarding component subcontracts, onetics toured the plants of potential suprs to evaluate reliability procedures and asin coming to contracting decisions. During program Autonetics specialists will be staed at each component manufacturers' plant ecp) a continuous check on procedures and ide liaison with the coordinating group. selecting components for use in the Minute system, all vacuum tubes and most moving s have been eliminated-no potentiometers elays are used, for example. The system is gg designed so that it can not be repaired. If alfunction occurs, it is assumed that the syswill be scrapped.
any of the concepts developed by Bell Telene Laboratories in achicving estimated inty-year reliability levels for the repeaters underseas cables have been applied in the onetics effort. Long storage times are ned, following the example of the BTL proi. and parameter shifts will be charted durthis period to aid in prediction of parts which fail or fall outside of tolerance before a sped time. To aid in this program automatic king and tallying equipment has been built installed, and every component in the pron is being assigned a serial number and an card carrying its complete history.
laborate record-keeping procedures and testrequirements under the Autonetics plan will ire considerable expense for special installas, hiring, and implementation of the program. ar, some $\$ 20$ million has been subcontracted, tly for developmental efforts in achieving ability.
t Pacific Semiconductors, Inc., for example $000 \mathrm{sq} \mathrm{ft} \mathrm{facility} \mathrm{is} \mathrm{being} \mathrm{added} \mathrm{for} \mathrm{environ-}$ tal testing equipment. Some 500,000 silicon les will be under test continually during the se of the Minuteman contract.
he elaborate checking procedures on each in the production process-starting with iniing materials at the manufacturing plant t up to the placing of the part on a Minutecircuit board-should isolate the major prescauses of poor reliability, program contribuugree.
Wheeler Electronics Corp., Waterbury, mr., subsidiary of Sperry Rand Corp., for inace, a reliability level 100 times greater than for normal transformers is being sought.
(continued on page 6)

RAYTHEON WELD-PAK CIRCUIT MODULES

will help guide POLARIS

to its target

Investigate the many advantages of custom or standard Weld-Pak high density circuit modules for your equipment design. Based on an MIT Instrumentation Laboratory packaging concept, Raytheon Weld-Pak modules provide exceptionally high reliability. For information please write Raytheon Company, Industrial Components Division, 55 Chapel St., Newton 58, Mass.

measure rf to 1000 mc without replacing plug-ins

It's all here in two easily-movable cabinets - a digital frequencymeasuring system of wider range and lower price than any comparable equipment on the market. The counter in the top cabinet measures all frequencies from 10 cps to 10 Mc . Heterodyne convert-ers-added to the bottom cabinet as you need them-extend range to $110 \mathrm{Mc}, 220 \mathrm{Mc}$ or 1000 Mc . This provision for expanding the system simply and economically makes the equipment a wise long-term investment. Buy only the range you need now, rest assured that you can cover higher frequencies whenever need arises. © Accuracy is $.00004 \%$ or better from 1 Mc to 1000 Mc. Sensitivity is unequalled: 2 mv from 10 Kc to $10 \mathrm{Mc}, 10 \mathrm{mv}$ to $110 \mathrm{Mc}, 20 \mathrm{mv}$ to 220 Mc and 1 mw to 1000 Mc .

WRITE FOR DETAILED TECHNICAL BULLETINS ON MODEL 7570 SERIES

Beckman ${ }^{\circ}$

Berkeley Division Richmond, California

NEWS

Various audio and power transformers, of open, vacuum-impregnated, epoxy encapsulated, an potted types contained in metal cans will be stored at the Wheeler plant for 2,000 to $5,000 \mathrm{hr}$ -the exact figure has not yet been decided. Para meter shifts will be charted during this period according to Frank Williams, engineering sec tion head in electromechanical design at Sperry Gyroscope Co., and then the parts will be shipped to Autonetics. Another extended storage period will take place at the California plant and further parameter shifts will be plotted This technique should give a good indication of the effects of shipping on deterioration of parts according to Mr. Williams.

Information To Be Kept Under Wraps

The Air Force so far has not indicated that will make the data gathered by component sup pliers available to industry in general. Informa tion on any reliability breakthroughs made dur ing the program will be available to agencies o the Department of Defense and to those who can demonstrate "neeed to know," according to industry sources.
It appears, therefore, that the companies in volved in the Minuteman program will gain unique advantage in the pursuit of new reliability plateaus. Already some of the companies in the program are beginning to incorporate some of the know-how being gained into their standar product lines.

Dale Electronics, Inc., Columbus, Nebr., feetr

Packaging of component boards with parts soldered in place for shipment is illustrated. This interior package is wrapped in six sides with rubberized hair and packed in a larger exterior container.

? d, and will ;000 1. Par period | ag sect |
| :---: |
| Sperr | vill d storlott lion

arts are removed from individual component boards or attachment into actual Minuteman circuits.
lat its efforts are already leading to improved eliability in its standard units. Dile is working n silicone-coated wire-wound power resistorsyipes RS5, RS2A, and RS10-to achieve reliabilify levels about 100 times greater than that of this ype.
Corning Glass Works, Corning, N. Y., has alcady delivered about 100,000 of its fusion-sealed lass capacitors types CYF-10 and CYF-15 for prototype and development use, and is using the xperience gained to boost reliability of convenional products.
The first is a complete Program Plan outlining In detail every step that will be made in producng components and advancing reliability levels. The initial, or Preliminary Program Plan, will be ollowed in 90 days from contract signing with revised program including agreements made retween the supplier and Autonetics during the irst three month period. Tasks 2 and 3 involve documents on production control specifications.
A failure analysis aimed at steadily raising reliability levels is the fourth task, and 5 and 6 are the corrective action to be taken by the supplier on production processes and process controls. Task 7 is an evaluation of this corrective action.
Electrical parameters of the device being produced are tested under task 8 to provide the following data: the distribution of each critical device parameter; change in the distribution with respect to time; failure rates of devices at accelerated environment; and acceleration factor failure rate of the device.
The program organization showing names and job titles, responsibility and authority is the ninth task, followed by a requirement for a training program for all personnel associated with the program. Test equipment is specified under task 11, and technical direction and monitoring by Autonetics is task 12. The assigning of a serial number to each part is covered in task 13, and the special handling and packaging requirements are covered in task 14. Documentation for the entire program is covered by task 15. -

TAming

Newest additions to the Burnell Adjustoroid ${ }^{6}$

OF THE SCREW

line, the microminiaturized Kernel ATE 84 and the miniatures ATE 11, ATE 0 , ATE 4, represent an important contribution to printed circuit design.
These new Adjustoroids possess the exclusive advantage of flush-slotted heads which serve to eliminate adjusting screws - provide maximum economy of height - insure ease of adjustment. Besides high Q, they also offer high stability of inductance versus dc.
The new microminiature Kernel ATE 94 and the miniature ATE 11, ATE 0 and ATE 4 Adjustoroitds are variable over a 10% range of their inductance. Fully encapsulated, they will withstand high acceleration and vibration environments. These Adjustoroids meet specifications MIL-T 27 Grade 4, Class R and MIL-E 15305 A as well as MIL-E 5272 for humidity and thermal shock. Write for Adjustoroid Bulletin ATE-7.
SEND NOW FOR HANDY $24^{\prime \prime} \times 36^{\prime \prime}$ TOROIDAL INDUCTOR WALL REFERENCE CHART
Lists more than 100 types of toroidal inductors and adjustoroids. Gives performance characteristics, mechanical specifications, including case sizes, types of sealing. etc. Attach coupon to company letterhead. And if you haven't already done sosend for your free membership ita the Space Shrinkers Club.

Burnell \& Co., Inc.

 Dept. D-36 10 Pelham Parkway, Pelham, New York Gentlemen:\square I am interested in your new universal toroidal reference chart.
\square I am interested in a Space Shrinkers Club membership.
name.
titie...
company....
address..

Both Are 0.1 Mfd , 200V

Electron Products rectangular epoxy-tube capacitors with metallized Mylar" or paper dielectric are small in size ... long on specs . . . short on price.

They meet or exceed most military environmental requirements of larger, more expensive hermetically sealed components ... MIL-C-18312 and MIL-STD202...humidity, temperature and immersion cycling, shock, vibration.

Typical Specifications	Paper	Mylar
operating temperature	-55° to $+125^{\circ} \mathrm{C}$	-55° to $+85^{\circ} \mathrm{C}$
insulation resistance at $25^{\circ} \mathrm{C}$	$1,500 \mathrm{meg} \times \mathrm{mfd}$	$10,000 \mathrm{meg} \times \mathrm{mfd}$
dissipation factor at $25^{\circ} \mathrm{C}$	less than 1%	less than 1%
test voltage	$1.5 \times$ rated voltage	$1.5 \times$ rated voltage

- "higher orth derain

Special capacitors built to meet your particular requirements. Standard values are available for immediate delivery...capacitances as low as .001 $\pm 1 \%$, up to 600 VDC rating.

Write for Electron Products engineering file ED for complete specifications, sizes, temperature characteristic curves.

ELECTRON PRODUCTS

division of Marshall Industries

NEWS

AF Seeks High-Sensitivity Accelerometers

Nuclear Gyros, Mossbauer Effect, Liquid Pressure Differences Studied

THE AIR FORCE is dusting off some old ideas, and at the same time turning to some of the latest concepts in developing instruments suitable for acceleration measurements during low thrust space flight.
These highly sensitive instruments would be useful during orbital or inter planetary stages of flight when extremely minute accelerations must be sensed, according to sources at Wright Air Development Div., Dayton, Ohio.
Reaching to the past, WADD's Navi gation and Guidance Laboratory is studying the possibility of developing a precise pressure difference type accelerometer using liquid filled crossed U-tubes. Best configurations and liquids are currently studied at the laboratory
under an in-house program.
Liquids of differing densities might used in such a system, separated by interface, so that accelerating for would have differing effects on th liquids. Either optical measurement physical sensing of fluid levels might used for detecting level changes.

Nuclear Gyros May Eliminate Drift

Industry research laboratories ha been studying possible nuclear gyr scopes for some time. These wou theoretically eliminate many of the dr factors in conventional man-made gyr and would also be suitable for sensin minute accelerations.

Each atomic nucleus spins, creating electric dipole. Various forces cause pr

Instrumentation for observing nuclear resonance, with dials representing magnitude of readings on scintillation counters. When no resonance occurs because of relative motion between source and absorber, top, then the beam of photons from excited source causes a high reading on the counter behind the absorber and no indication on the counter to the side of the beam. When resonance occurs, bottom, much of the energy from the source is absorbed and reradiated, so that the counter behind the absorber has a lower reading and the counter to the side shows a reading.
ssi m of the direction of angular onsentum of the nucleus in a shion similar to the action of a onventional gyroscope, and the lectric dipole is reoriented as a sult of this precession. It is imossible theoretically to measure he orientation of a single nuclear pole without disturbing this ientation. However, it is possible measure statistically the orientaon of a large number of nuclear poles.
The difficulty with this technique that over a long period of time ese orientations have a tendency decay randomly. By choosing a paterial with an appropriately long me constant, and measuring for nly short periods of time, an acNo statistical groups have been
educed to a few microseconds, Noo statistical groups have been
leduced to a few microseconds, ack and forth between two statiscal groups. Even though materials ave been found which can be neasured over several minutes vithout introducing meaningful erors, and switching times between
urate short duration precession peasurement is possible. In operaon the measurement would switch
here is still a certain amount of here is still a certain amount of
foise entered into the system due ooise entered
Another problem in the nuclear yro is the presence of spurious orques-such as thermal agitation and interfering electromagnetic adiation. Even with operation pear absolute zero and some form ff shielding a certain amount of ystem noise is introduced by these factors. Extreme chemical purity is liso required to reduce noise facors, another severe requirement on his approach.

Mössbaver Effect New Approach

The latest concept being invesligated in the search for suitable prbital accelerometers is the Mössbauer effect, recently discovered by R. L. Mössbauer, a German physicist. If this effect can be instrumented for a space vehicle it may lead to an accelerometer of unparaleled sensitivity. Up to this point, h.wever, only laboratory devices hive been operated.
The principle of nuclear resoCIRCLE 9 ON READER-SERVICE CARD \geqslant

Philco

announces

 the only
MICRO-ENERGY SWITCH

the industry's first $/$

LOW ENERGY, HIGH SPEED switching transistor

2N768 . . . MICRO-ENERGY SWITCH . . . TO-18 CASE
maximum ratings

> Storage Temperature $\ldots \ldots \ldots 100^{\circ} \mathrm{C}$
> Total Device Dissipation at $25^{\circ} \mathrm{C} \ldots 35 \mathrm{mw}$

CHARACTERISTICS
DC Current Amplification Factor,
$h_{\text {FE }}\left(Y_{C E}=-0.20 \mathrm{~V}, I_{C}=-2 \mathrm{ma}\right)$
Colliector Voltage, VCE
$\left(I_{C}=-2 \mathrm{ma}, I_{B}=-0.2 \mathrm{ma}\right)$
Gain-bandwidth Product, i_{T}
($V_{C E}=1 \mathrm{v}_{\mathrm{C}} \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma}$)

。

The Philco 2N768 is a new concept in the design of switching transistors for high speed computer logic circuits! All internal device capacities are exceedingly small... and its static characteristics are optimized for operation at low collector voltages and collector currents. It permits the design of high-speed logic circuits with an overall power consumption only $1 / 3$ rd to $1 / 10$ th that of circuits with conventional transistors. It will operate at pulse rates in excess of 10 mc with collector currents as small as 1 ma from collector supply voltages as small as 1 V .
This new micro-energy switch is of great importance in the design of ultra-reliable, high density, high speed equipment. In micro-energy circuits, the total device dissipation is reduced to an absolute minimum . . 250 microwatts . . . a prime consideration in achieving maximum reliability. The $2 N^{\prime} / 68$ is an important step toward microminiaturization ... permitting high packing densities without excessive internal heat generation. For complete information write Dept. ED-S1460.

PHILCO.
P- Famous for Quality the World Over
LANSDALE DIVISION • LANSDALE, PENNSYLVANIA

Immediately acailable from your Philco Industrial Semiconductor Distributor

with Tuf-P/ate

Miniaturization of electronic components put the pressure on circuitry to keep pace. Photocircuits took up the challenge and turned an idea into the space and weight saving reality of Tuf-Plate plated thru holes - reliably interconnecting conductor patterns on both sides of the circuit board.
Where even greater component density is required - up to 50% - Photocircuits now offers printed circuit boards with miniaturized conductor patterns using landless Tuf-Plate - another first by P/C.

The inset at left offers a visual comparison between out dated eyelets and new landless Tuf-Plate. Get the whole exciting Tuf-Plate story today - it's likely that conventional or landless - Tuf-Plate can save you space, weight
often at lower cost. Write Department A-1590, Photocircuits Corporation. Glen Cove, New York.

NEWS

nance used in this approach has been known several years, and a suitable measurement tec nique has also been available. A previously u controllable effect known as recoil has prevent the development of instruments however. Mös bauer's work has overcome the recoil proble opening the door to the development of man ageable devices.

Experiments in this country have been pe formed primarily with a radioactive cobalt.; source and an iron- 57 absorber. As the cobalt -3 decays it produces excited atoms of iron-5 which oscillate at a frequency of about 3×10 cps with a half-life of about $10^{-7} \mathrm{sec}$. As the excited iron-57 atoms drop to a stable, or ground state they emit photons of a particular energ dependent on the energy difference between th two states, which is proportional to a particula frequency according to the principles of quat tum mechanics. When a beam of these photon is directed at the absorber material, containin stable iron-57 nuclei, and resonance occurs, the the absorber will be raised to an excited stat and the absorbed energy will be re-radiated in a directions.

Arrangement of Instruments

Instruments for detecting absorption can arranged as illustrated in the diagram. On scintillation counter is placed in line with the photon beam from the source material, and th absorber is placed between the counter and th source. A second scintillation counter is place to one side of the absorber, at right angles to the photon beam.

When a nonresonant condition exists th counter in line with the beam shows a high read ing, and no reading is indicated at the other in strument. When resonance occurs there is a shar drop in the reading of the counter in line witi the beam due to the absorption, and a reading

Lathe was used at Argonne National Laboratory for Mössbaver effect experiments using iron- 57.
will be indicated in addition on the counter at the side because of the reradiation of energy by the absorber
Relative motion between the source and the absorber, even at extremely low velocity, will cause a slight doppler shift in the frequency reaching the absorber. Under ordinary conditions as a photon is emitted the nucleus simultaneously recoils-which introduces such a doppler effect. This recoil, therefore, prevented resonance from occurring in early experiments.
Mössbauer's approach to overcoming this difficulty was to freeze the excited atoms into a crystal lattice, so that the recoil energy is distributed over the lattice rather than causing recoil of an individual nucleus. This, in effect, locks the nucleus in place so that resonance can be much more easily achieved.

More Problems

Other problems face current researchers in instrumenting the effect-for example differences in the rate of change of temperature at the source and the absorber can cause enough relative motion to prevent resonance.
Moving such a sensitive instrument from the controlled environment of the laboratory to an operating space vehicle offers severe difficulties. Accelerative forces would probably be sensed by locking either the source or the absorber to the vehicle, and allowing the other unit freedom to shift with outside forces. Spurious signals, such as vehicle vibration, temperature variations, and other effects may prove too significant for high precision readings.
If adequate solutions can be found, however, designers will have a valuable new tool for acceleration measurements. By choosing a material with the appropriate nuclear oscillating frequency and half-life, a more or less sensitive instrument might conceivably be designed for particular applications. -

Personal to 'R.C.R.'

The editors of Electronic Design would be more than happy to discuss further your proposed paper on analysis of transistor circuits. But is the contents of the paper so hush-hush that you couldn't include a return address with your letter? Let us know so we can let you know.

Accuracy Is Our Policy . . .

General Radio Company's Pulse Generator $1391-\mathrm{B}$ has a 15 -nsec rise time. The 50 -nsec figure given in "Russian Test Equipment and Ours" ($E D$, Aug. 17, 1960, p 51) was erroneously supplied by General Radio.

Here is another GIANT STEP toward optimum reliability...

- Sprague Electric's new COMPULYTIC Capacitors now permit digital computer power supply filtering at operating temperatures to 85 C as standard. This is a full 20 C higher than capacitors offered by other sources. COMPULYTICS will reduce your design headaches and cut down your cooling and ventilating problems.

New! compulytic ${ }^{\circ}$. capacitors

SPRAGUE
 $130.000 \mu \mathrm{~F}$
 2.5 VDC
 TYPE 32D 85C

are now
designed for
85 C operation

Trademark

Under normal 85 C operating conditions, Type 32D COMPULYTIC Capacitors display extremely low leakage current, low equivalent series resistance, and have higher permissible ripple current values. Extended shelf life of 3 years and more is another outstanding feature.

Ratings up to $130,000 \mu \mathrm{~F}$ at 2.5 volts or $630 \mu \mathrm{~F}$ at 450 volts are skillfully packed into the largest standard case size of 3^{n} dia. by $4^{55} 8^{n}$ high. Capacitor banks as large as 1 farad have been constructed, in relatively small space, using COMPULYTIC Capacitors.

Because of their extremely high stability, COMPULYTICS are ideally suited for use in continuously adjustable voltage power supplies since they will not "deform" when operated for long periods at lower than rated voltages.

For complete specifications on Type 32D COMPULYTIC Aluminum Electrolytic Capacitors, write for Engineering Bulletin 3441B to Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams,

BPRAGUE COMPONENTS:

HIOH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMOLIES

THE AMCO MODULAR INSTRUMENT ENCLOSURESYSTEM

two completely new lines added in steel and aluminum to give 3 COMPLETE MODULAR FRAME LINES IN ONE OVER-ALL SYSTEM

A Ameo Cusfom Line. Removable multiAmee Cusfom Line. Removable multipanels and cowlings based on 19 incre-
ments of width. Custom, single-unit appearance for frames mounted in seriesideally suited for complex console arrangements. The $19^{1 / 5}{ }^{\circ}$ width of frame saves space in series mounting of frames.
Constructed of double-channel 16 gauge cold-rolled steel. Conforms to EIA mounting standards.

- Amco Semi-Cusfom Line. Removable multi-width cowlings provide a semicustom, single-unit appearance for frames mounted in series. Extra rugged, wide box-type channel frames provide greater internal mounting area. 19 wide
panels of any thickness can be recessed - from a flush-mounted position to any desired depth. Box type channel construction of 14 gauge cold-rolled steel. Conforms to EIA mounting standards.
c Amce Aluminum Line. This system of aluminum box extrusions and cast in any size from 7° to 20° in height width or depth. Corners and extrusions
lock together by hand with built-in locking device. All sizes are standard. Ideal
for stocking and odd-ball sizes. Cast for stocking and odd-ball sizes. Cast num as described in Federal Spec. QQ-A-596a. Extrusions of $6061-\mathrm{T} 6$ aluminum as described in Federal Spec. QQ-A-270a.
D Amco Accossories. A full line of Amco integrated accessories such as blowers, chassissidesand mounts, lighting, doors, able for A, B and C shown.
Cost sovings. All the above-or any Cost sovings. All the above-or any partined discount schedule base determined by order dollar value. Order received at one time with one delivery date may also be combined. Free presavings in time and installation. 3 week dellvery on ell standard parts.
We welcome inspection of our plant and facilities. Send for your free literature now.

Frctor-trained repereselatives in al pinicipal U.S. cities and in Camber
AMCO ENGINEERING CO.

Space Meeting Stresses Electronics

IAF Stockholm Congress Hears Papers On Global Satellite Monitor System

ELECTRONICS and propulsion in space were the predominant themes of papers read by U.S. scientists at the International Astronautical Federation congress held recently in Stockholm
A satellite traffic monitoring system, new techniques for re-entry communications, ion propulsion systems, nuclear rockets, space ecology and NASA's plans for higher thrust vehicles were included among the subjects discussed by Americans and the congress.

A worldwide satellite tracking and cataloging system to monitor the highdensity satellite traffic expected to develop within the next few years was proposed by Peter R. Dax, radar engineer with Westinghouse's electronics division. Mr. Dax predicted that about 1,000 manmade objects may be in orbit by the end of the decade and that it will be necessary to build a monitoring system capable of handling this traffic. Detection of new satellites, cataloging of existing vehicles and measurement of atmosphere densities and earth shape by correlating orbit data from a large number of satellites would be among the objectives of such a system.

Seven Radar Sites Needed

The proposed system would include seven powerful radar installations located about a great circle of the earth. Each radar would be served by a local computer and linked to a central computing station which would further analyze the data collected at each station. The radar installations should be capable of searching between altitudes of 100 to 1,000 miles, where traffic is expected to be heaviest.

It was calculated that a satellite in this range of altitude will be within the sector of any one radar for an average of 5.5 min . This would give a typical radar ten opportunities to detect the vehicle during
each pass.
Mr. Dax suggested that information should not be transmitted immediately to the central computer. Instead, position reports should be stored within the local computer to prevent transmittal of false indications caused by random noise, interference, meteor trails, and other irrelevant sources. A five-minute storage period would permit the examination of successive target returns to confirm the validity of a track.

Reentry Communications Held Possible

Radio waves directed along the lines of the earth's magnetic field could permit radio control and communication with vehicle reentering the atmosphere, according to Haeri Hodara, head of space communications for Hallicrafters. Mr. Hodara told the congress that these lines may constitute a window for low-frequency radio waves. Signals could be propagated along these lines with considerable reliability and set the pattern for an earth-space communications net, Mr. Hodara said.
Re-entry communications within the present state of the art are virtually impossible because of the ionized air that surrounds a reentering vehicle. This plasma blocks communications for several seconds at a time when the vehicle is extremely susceptible to loss of control.
Tracking systems accurate to within a few feet at 1,000 miles and able to measure velocity to a few hundredths of a foot per second were predicted by Calvin R. Woods and Earle B. Mullen of GE's defense systems department. "Rapid progress in space vehicle technology requires advances in tracking systems which emphasize accuracy and near-instantaneous data output," the authors said.

Phase-controlled coherent transponders were suggested as one means to achieve the precise timing needed for accurate
heasurements. Uncertainties in the speed flight, deficiencies in present surveying hethods, and atmospheric anomalities vere cited as some of the obstacles to he achievement of tracking accuracy.

pace-Flight Costs to Be Cut

Electric space propulsion systems in he very near future were predicted by Pr. Ernest Stuhlinger, chief of the Reearch Projects Laboratory of NASA's larshall Space flight center. Dr. Stuhinger told the Stockholm parley that arceated and ionic propulsion systems are eing developed rapidly enough to be ight-tested in 1962. "Space missions may e flown from arc-heated systems from bout 1963 on, and with ion systems from 964 on," Dr. Stuhlinger said. He also ointed out that such systems would orove very competitive with chemical propulsion on heavy freight missions in ear space and particularly so on deep pace fights.
Still another propulsion scheme decribed at the sessions involves a combiation of nuclear, thermionic, and ionic principles. In this system, described by Dr. R. H. Olds of Lockheed's missiles nd space division, several very small uclear reactors would heat thermionic enerators to supply electrical energy or ion-beam propulsion engines. On a rip to Jupiter, Dr. Olds said, 110 lb of esium vapor expended as fuel could and a payload of equal weight.
Along more conventional lines, Dr. Vermher von Braun described plans for he Saturn vehicle now under developrent by NASA. Dr. von Braun indicated hit a round trip to the moon by chemia) rockets would require a vehicle with 2 million lb of thrust at lift off. However. his figure can be cut by refueling a n aller vehicle in flight. Orbiting tankers nd cargo carriers now being designed ${ }^{n}$ this purpose were described.

FROM FAIRCHILD
Improve your small-signal performance, simplify specifying, and get the inherent advantages of the Fairchild silicon mesa configuration - greater mechanical and electrical reliability; tighter control of parameter spreads; minimal saturation resistance; high frequency capabilities.
Why carry twelve separate small-signal transistors and specifications in stock and on file? Just two types - the 2N698 and 2N699 from Fairchild - offer superior characteristics in every parameter.

SMALL-SIGNAL PARAMETERS, FAIRCHILD 2N698 AND 2N699 SILICON MESA TRANSISTORS.

$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{Vc}_{\mathrm{c}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kc}$			$\mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kc}$	
	MIN.	MAX.	MIN.	MAX.
2N698-hfe	18	60	20	-
2N699-hfe	35	100	45	-
2N698 ${ }^{h_{\text {ib }}}$	20	30 ohms	-	10 ohms
$\begin{aligned} & \text { 2N68d } \\ & \text { and } \\ & \text { 2N600 } \end{aligned}$	-	$250 \times 10^{-}$	-	300×10^{-6}
2N699 hob	0.1	0.5	-	$1.0 \mu \mathrm{mho}$

A wholly owned subsidiary of
Fairchlld Camera and Inatrument Corp.

545 Whisman Road / Mountain View, Calif. / YOrkshire 8.8161

40，076 Throng WESCON Exhibits

Most Products Subminiature； Parametric Transistor Shown

Lenkurt Electric＇s Vladimir Vodicka and Hughes Semiconducto Rainier Zuleeg（right）discussed new parametric transistor（see p

THE＂new look＂at the 1960 Western Elec－ tronic Show and Convention was character－ ized by the opening of the four－day meeting－ there were no opening ceremonies．
Formal openings tie up hordes of engineegrs eager to get out onto the exhibit floor to check the thousands of products on display，so why not forget about the conventional formal show－open－ er，reasoned WESCON officials．To give the show maximum value to the industry several other precedent－setting policies were instituted by this year＇s IVESCON managers．

Recruiting，for example，was banned by a gentleman＇s agreement initiated by a letter sent to several hundred companies prior to WESCON． Total registration at the show was kept contin－ ually up－to－date through the use of an auto－ mated＂people－meter．＂Technical sessions were designed to stimulate spirited discussion of cur－ rently unresolved technical problem，and work－ shop sessions were built around topics that ap－ peared to be worthy of extended discussion．
Results of these attempts at improving the show were not completely successful，but indica－ tions are that further improvements can be ex－ pected from some of these policies now that management has had a chance to see them in ac－ tion during the Aug．23－26 event．
The no－recruiting agreement was not followed to the letter．There were a few job－opening notices pushed under hotel doors，and a Cali－ fornia Southland Career Center was operated at the Shrine Auditorium，not far from the Sports Arena．Show visitors agreed，however，that the little recruiting that took place didn＇t detract
from the main business of the day－seeing the show and listening to technical presentations．

The people－meter，a registration counter with digital voltmeter readout prepared for the show by Non－Linear Systems，Inc．，successfully auto－ mated the old fashioned painstaking hand tally method．The counter finished the show with a grand total of 40,076 registrants．
There were some outstanding exceptions to this general evaluation．One session that led to some lively debate was entitled Stereo Multiplex Broadcasting．Papers covering the major multi－ plexing techniques started off the session which then turned into a heated panel discussion．

Man－Machine Systems Top Topic

Man－machine systems gained more prominence at this year＇s WESCON than at any previous major convention－probably reflecting current man－in－space programs and military stress on bio－ instrumentation and bionics．Six of forty techni－
cal sessions and four special workshops contr buted to the information exchange．

Dangerous tariff trends were threshed over a meeting of the Electronic Industries Associr tion＇s Tube and Semiconductor Div．Germaniut diodes have been placed on the＂offer＂list of th General Agreement on Tariff and Trade，speake pointed out．This means that the Governme can offer to lower tariffs on germanium diode in exchange for lower tariffs on other U．S．pro ucts shipped to the foreign country involved．

Transistors might be added to this tariff li at any time，the group was warned by Mar Shepard．Texas Instruments vice president．

On the Product Front

Few really new developments were shown WESCON．Several companies showed miniatur and microminiature components but most mand facturers were content to exhibit＂interimstage microelectronics．

Lots of action，plenty of customers were standard throughout the four days of the largest WESCON yet．A record total of 40，076 thronged through the exhibits，heard tech－ nical papers，and，more than occasionally，com－ plained about a sprawling layout and sore feet．But all in all，it was judged a success．

Phasolver (see p 19) measures angles to fraction of a second of arc, said Telecomputing Corp. Project engineer Ray Dunwell.

Miniature transistors from Texas Instruments, Rheem Semiconductors, Sylvania, and Raytheon were a case in point. These transistors, while small and useful, are not in the "micro" class like the Pacific Semiconductors units announced in March or the Transistron and Hughes Aircraft development units. They were not designed for use with microcircuitry, but are aimed at the intermediate, subminiature stage.
To recap the small transistors shown:

- Texas Instruments, a high-speed, silicon mesa unit with $1.6-\mathrm{w}$ power dissipation. The company calls these devices "micromesas." They were available in two types, TI450 and TI451, with guaranteed de beta ranges of 20-60 and 40-120 respectively. The company also claimed 40 nsec turn-on switching time and 75 nsec turn-off. Micromesa case size is 0.050 in . thick and 0.190 in . across, about a tenth that of the TO-18 package. - Rheem Semiconductor, silicon-mesa unit with 3 -w power dissipation. According to Rheem, the RT697M Microbloc is a 50 -per-cent higherpowered version of the 2 N 697 . As the name implies. Microblocs are manufactured as virtually solid blocks: a silicon crystal is embedded in a gas-tight, hermetically sealed welded block. Rheem asserts the Microbloc is mechanically more stable than any previous transistor, will withstand minimum 1,500$) \mathrm{g}$ shock and $20,000-\mathrm{g}$ acceleration.
- Sylvania Electric Products, a germanium alloy switching unit with a power dissipation of 0.1 w . The two "pancake" transistors, SYL1986 and SYL1987, were to be electrically similar to the 2 N 404 and 2 N 338 . Case dimensions are 0.070 in .

Centraab Model

Linear Motion Variable Resistors

contact bounce

No contact bounce when vibration tested, 20-20,000 cps at 30 g 's. loaded at $\mathbf{8 0 \%}$ rated load, at $\mathbf{8 0 \%}$ wiper travel, 3 planes, 10 minutes each. Induced noise less than 10 millivolts.

DESCRIPTION	MODEL	TERMINAL LEADS	RESISTANCE RANGE	POWER RATING (Watts)	MAXIMUM OPERATING TEMP.	ENCAPSULATED
Gen. Purpose (Composition)	BA-701	Nylon or Teflon	10K to 2.5 Meg	$0.25 @ 50^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Wirewound)	BA-702	Nylon or Teflon	10:2 to 20K	$0.25\left(1150^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Composition)	BA-703	Printed Circuit	10K to 2.5 Meg	$0.25\left(a 50^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Wirewound)	BA. 704	Printed Circuit	1082 to 20K	$0.25{ }^{(150}{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Composition)	BA-705	Nylon or Teflon	10K to 2.5 Meg	$0.25{ }^{13} 50^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Wirewound)	BA-706	Nylon or Teflon	10:2 to 20K	$0.25\left(130{ }^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Composition)	BA-707	Printed Circuit	10K to 2.5 Meg	$0.25<145{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Wirewound)	BA-708	Printed Circuit	1083 to 20K	0.25 © $50^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
High Temp. (Wirewound)	BA. 712	Teflon	1082 to 20 K	1.0 © $70^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	No
High Temp. (Wirewound)	BA-714	Teflon	1082 to 20 K	1.0 © $70^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	Yes
High Temp. (Wirewound)	BA-716	Printed Circuit	1083 to 20 K	1.0 @ $70^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	Yes

Maximum end resistance: $<1 \%$ of total. Size:
encapsulated $23 / 64^{\prime \prime} \times 19 / 64^{\prime \prime} \times 1-11 / 32^{\prime \prime}$, without encapsulation $5 / 16^{\prime \prime} \times 1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$.

Resistances: Wirewound: 10-20-50-100. 200-500-1K-2K-5K-10K-20K ohms. Composition: 10K-20K-50K-100K-500K, 1 Meg, 2.5 Meg.

Standard Tolerances: $\pm 5 \%$ Wirewound, $\pm 20 \%$ Composition. Closer tolerances available upon request.
Shock: Less than 1% change in resistance with JAN-S-44 apparatus at $100 \mathrm{~g}, 5$ shocks in each of 3 planes, Method 202A.

Meet or exceed all specifications of applicable MIL-STD 202-A, MIL-R-19A and MIL-R-94B tests.

Industrial quantities of the Model 7 are available for immediate delivery at factory prices from your CENTRALAB industrial distributor.

The Electronics Division of Globe-Union Inc. 960J East Keefe Avenue - Milwaukee 1, Wisconsin Centralab Canada Limited - Ajax, Ontario

ELECTRONIC SWITCHES - VARIABLE RESISTORS - CERAMIC CAPACITORS - PACRAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS CIRCLE 14 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

Need Refractory Metals In A Hurry?

FANSTEEL'S NEW WAREHOUSE CAN SHIP Within Hours!

Now it's easy for you to meet or beat production deadlines, prototype or pilot plant completion dates. At right are just a few examples of the new Fansteel warehouse service which hundreds of manufacturers have already used.

OFF-THE-SHELF DELIVERY ON:

Tantalum Tungsten Molybdenum Columbium	$\left\{\begin{array}{l}\text { wire, rod, foil } \\ \text { sheet, plate }\end{array}\right.$		
Refractory Metal Alloys		\quad	Tantalum Chemical
:---			
Plant Equipment		bayonet heaters,	
:---			
heat exchangers, coils,			
thermowells, fubing			

Also many other products, plus complete processing service, fechnical assistance.

FANTTEEL
 HIGH TEMPERATURE METALS

Write to Metals and Fabrication Division for your copy of the Fansteel Warehouse Price and Stock List ... or contact your local Fansteel representative.
fansteel metallurgical corporation
NORTH CHICAGO, ILLINOIS, U.S.A.

NEWS

thick and 0.230 across. Power dissipation of both units is about 0.1 w at 25 C .

- Raytheon Manufacturing Co., rf silicon-mesa units with case size a quarter that of the TO-18.
Several companies showed vacuum-deposited microcircuits and boasted an improvement in yield, but had not yet learned to vacuum-deposit active elements or diodes.
According to Dr. William B. Wright. Jr. of Electro Optical Systems, Pasadena, Calif., who chaired a panel session on microelectronics, the transistors, no matter how small, is still a standard component. It has leads that must be attached to the circuit.

Westinghouse Monoliths Sold

In line with Dr. Wright's comment, Westinghouse Electric joined Texas Instruments as suppliers of integrated functional blocks. Unlike the TI etched-circuit modules announced in March, however, the Westinghouse solid circuits are said to be true monolithic molecular electronics.

According to Westinghouse, five types of blocks, ranging from multi-level amplifiers two to three week delivery at prices from $\$ 300$ to $\$ 400$. Now available are:

- Two-Stage Amplifiers. These have an asserted current gain of 500 and a power gain of about 45 db . Output current is from one to two amps. - Three-Stage Amplifiers. Specifications are similar to the two-stage; but current gain is increased to 10,000 .
- Bistable Multivibrators. Operating freguency is up to 500 kc for this cross-coupled type.
- Trinistor Suitches. These multiple transistor switches are 10-position, three-terminal pnpn units. Acceptable operating conditions are 100 v and 50 ma .
- Pulse Generators. Operate in the $100-\mathrm{kc}$ range, with pulse widths said to be less than 1 usec.
Other functional blocks still in development by Westinghouse include high-impedance and very-high-impedance low-level amplifiers, a notch filter, and a broadcast-band tuned amplifier. Computer blocks in development include a tun-nel-diode bistable multi-vibrator, cross-coupled analog and pnpn type astable multivibrators, and an analog multiplier. A ten-position switch fabricated by dendritic techniques will also be offered in future.

Four-Kmc Transistor in Prototype

One of the most startling revelations at WESCON was the announcement of a transistor developed at Hughes Semiconductor Div., designed to operate in the parametric mode at

All solid-state components, available from Philco, make up this $5-\mathrm{mw}, 2.2-\mathrm{kmc}$ generator, shown at WES CON booth by Philco engineer Charles S . McCarthy.

4 kmc . Hughes showed it working at 10 -per-cent efficiency in a mixer-oscillator circuit.
According to Hughes physicist Rainier Zuleeg, the transistor now being readied for production, may soon produce 10 kmc with a minimum of 10 per cent efficiency. The Hughes transistor is reportedly the first ever designed to operate in the parametric mode at such high frequencies-two to five times higher than those heretofore considered the limit for commercial transistors.
Significance of the development: it could replace parametric amplifiers, which are now costly and tricky to operate.
Key to the success of the parametric transistor is a circuit designed last fall by Dr. Vladmir W. Vodicka of Lenkurt Electric Co.'s Advanced Development Group. The mixer-oscillator circuit is said to extend the performance of transistors so they develop useful gain well beyond their normal cut-off. It also reduces inherent noise to low levels.
"Even with mesa transistors," Dr. Vodicka told Electronic Design, "frequency response is limited by the geometry. Major limitations are the capacitances inherent to pn junctions. These are proportional to the junction area-reduction in size helps, but on the other hand militates against power dissipation.
"Up to now the practical limit of commercially available transistors has been a maximum oscilla-

A progress report of importance to
everyone concerned with electronics quality

How Reliable

Are Semiconductor

 Reliability Ratings?

By Harvey J. Finison
General Manager
Semiconductor Division
Raytheon Company
"Everybody talks about reliability, but nobody does much about it," a customer's Quality Control Engineer told us recently.
There's just enough truth in this generalization to cause misunderstanding and confusion, particularly where semiconductors are concerned. We'd like to set the record straight.

Here Are the Facts

First, plenty is being done about reliability. We can't speak for the industry, but here at Raytheon Semiconductor we've made tremendous strides Whether you're talking about the whole field of reliability assurance, or narrower aspects such as statistical quality control or environmental testing, or specific quantitative data for a whole product group... we have the facts down in black and white.
For instance: for some time we have been operating a reliability assurance program that we believe is unique in program that we believe is unique in the semiconductor industry. It takes a
26 -page report just to cover the scope, 26-page report just to cover the scope,
methodology and results of the promethodology and results of the pro-
gram. We place 270 devices on life test each working day, and we have on test at any one time approximately 12,000
units. Interested in further details, and in the results that are shaping up? in the results that are shaping up? Is Generated and Maintained," by R. E. Pratt, our Manager of Reliability Engineering.

Plenty of Specifics

We have plenty of specifics to back up this basic analysis. Since perfect quality is prohibitively costly, acceptable quality should be determined on a scientific basis. While this is not a simple matter, it can be done. How this can be accomplished is spelled out in a stimulating new paper, "A.Q.L.-What Is It?" by J. Gilbey of our Quality ConIt?' by J. Gilbey of our
trol Engineering section.
And as to detailed data on individual And as to detailed data on individual
types of products - we have still antypes of products - we have still anPratt covering the results of $7,000,000$
transistor hours of life tests on our PNP germanium alloy transistors.

Plenty of Progress

As this interim report indicates, there is plenty of progress to report on the complex subject of reliability. Not the least controversial aspect of this problem is the reliability of the ratings themselves. It is evident that test conthemselves. Itis evident that test conditions, specifications, and all relevant parameters must be defined precisely in
order for the figures to have meaning.

The Raytheon Semiconductor reliability program is a continuing program. As we see it, by the very nature of our business, it's a task that will never be completed. For that reason we plan to bring you periodic interim re-ports-such as this one-and to publish detailed papers as often as the results warrant. Your inquiries and comments are invited.

SEMICONDUCTOR DIVISION

RAYTHEON COMPANY • Silicon and Germanium Diodes and Transistors • Silicon Rectifiers • Circuit-Pnks
ENGI.EWOOI) CLIFFS. N. J., IOwell $7-4911$ (Manhattan Phone, WI:consin 7 -6400) • BOSTON. MASS., Hillerest 4-6700 • CHICAGO. III., NAtional 5-4000 LOS ANGELFS. CAI... PI.ymouth 7 -3151•ORIANDO, FLA., GArden 3-0518•SYRACUSE, N. Y., H()ward 3-9141• BAITTIMORE. MD., SOuthfield 1-0450 LOS ANGELFS. CAI... PI.ymouth 7-3151•ORIANDO, FLA., GArden 3-0518•SYRACUSE, N. Y., H()ward 3-9141• BALTIMORF. MD., SOuthfie
CLEVEIAND, O. WInton 1-7716 - DETROIT, MICH., TRinity $1-1710$ - SAN FRANCISCO, CAL. (Redwood City), EMerson 9-5566

CIRCLE 16 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

NEWS

tion frequency of about 1 kmc and 30 -to- $50-\mathrm{mw}$ power dissipation. These were the 2 N 700 and 2N502 transistors."

The basic Vodicka circuit is an oscillator. Input and output are 180 deg out of phase and loop gain is unity or greater. Feedback to accomplish this is applied through $C_{\text {, }}$ in the circuit drawing. This loop reflects the input impedance back into the output, the tuned circuit effectively sees a negative impedance in the region of operation. Input Z is negative and equivalent to a capacitive reactance.
An inductance, $I_{s s}$ in the schematic, replaces the usual input blocking resistance in the converter circuit and a second resonance circuit with L_{n} and C_{l}, was added in the collector.
The transistor is oscillating at a frequency $F_{L}-$ smaller than $F_{\text {max }}$ of the transistor-which is determined by tuning the tank $L_{1,}$ and C_{1}. Transistor input is then current-tuned, according to Dr. Vodicka, to give maximum conversion gain for the frequency $F_{s,}$, of amplitude V_{s}. The amount of feedback-therefore conversion gain-is controlled by C_{r}.
Stringent requirements are imposed on the transistor in the Vodicka circuit: during currenttuning of the input, the oscillation must be maintained. "These oscillations are met by only a very few existing high-frequency transistor types," Dr. Vodicka said.
Dr. Vodicka and Hughes Semiconductor's Mr. Zuleeg have been working together since Feb-

Westinghouse functional blocks are (left to right): multiple trinsistor switch, high-level two-stage amplifier, high-level three-stage amplifier, pulse generator, and bistable multivibrator.

Build

RELIABILITY

into Your Product with Honeywell Power Transistors

Outstanding Honeywell Features:

- Maximum reliability
- Dynamic testing for dependability
- Accurate, complete specifications
- Smaller size per watt output
- Rugged, thermally efficient stud mounting

Honeywell offers a complete line of germanium, PNP transistors (1 to 100 watts), 1 to 30 amperes. Many to MIL specifications. For immediate delivery, call your authorized distributor listed below. For application assistance or production quantities, call your nearest Honeywell sales office.

Honeywell Semiconductor Products Sales Offices
UNION, NEW JERSEY • WASHINGTON, D. C. • BOSTON, MASSACHUSETTS • LOS ANGELES, CALIFORNIA • CHICAGO, ILIINOIS toronto, ontario - ottawa, ontario - montreal, quebec - general sales, minneapolis, minneapolis

Peerless Radio Distributors, Inc. Jamaica, New York
JAmaica 3-3456

Stark Electronics Supply Co. Minneapolis, Minn. FEderal 6-9220

Electronic Supply Co. Melbourne, Florida PArkway 3-1441

Elmar Electronics

Oakland, Calif.
TEmplebar 4-3311

C \& G Electronics Co. Seattle, Wash. MAin 4.4355
ierulff Electronics, Inc. Los Angeles, Calif. Rlchmond 8-2444

Allas Electronics, Inc. San Diego, Calif. BRoadway 4-313

Flight Electronics Supply Corp. Inglewood, Calif. ORegon 8-5122

Electronic Industrial Sales, Inc. Washington, D. C. HUdson 3.5200

Busacker Electronic Equipment, Inc. Houston 19, Texas JAckson 6.4661
T. F. Cushing, Inc. Springfield, Massachusetts STate 8-7341

Pioneer Electronic Supply Co.
Cleveland, Ohio
SUperior 1.941

Contact Electronics, Inc.
Dallas, Texas
RIverside 7.9831

Allied Radio Corp.
Chicago, III.
HAymarket 1-6800

Summit Distributors, Inc Buffalo, N. Y. GRant 3100

DeMambro Radio Supply Co Boston, Massachusetts Algonquin 4.9000

Kimball Distributing Co Salt Lake City, Utah EMpire 3.5813

Electronic Supply Corp.
Battle Creek, Mich. WOodward 5-1241

Important New Developments!

New Power Transistors

3N49, 3N50, 3N51, 3N52: Power tetrodes in a new, singleended, cold weld package mechanically interchangeable with TO- 6 case. 12 ampere, 75 watt at $25^{\circ} \mathrm{C}$., 60 and 80 volts Vcb. Tetrode design provides exceptional gain linearity. Circuit stability achieved through control of leakage current. Electrically identical with 3N45, 3N46, 3N47 and 3N48 double-ended tetrodes.

2N1658, 2N1659: New medium power general purpose units in stud mounted, cold weld packages less than $1 / 2^{\prime \prime}$ in diameter and with flexible leads. Gain specified at 1 ampere, 15 watt at $25^{\circ} \mathrm{C}$., 80 and 60 volt VCB. Suitable for pulse amplifiers, switching, servo and audio amplifiers. Frequency response, low leakage characteristics and small package are unique in this power class.

Higher Voltage at new low prices!

2N1261, 2N1262, 2N1263: VCB now 80 volts (alpha unity of 25 volts). 3.5 amperes, 32 watt at $25^{\circ} \mathrm{C}$. Typical applications include power conversion, voltage regulation switching and servo amplifiers.

Special Price Reductions

2N538, 2N538A: High quality power transistors now at less than half former prices. 3.5 amperes, 32 watt at $25^{\circ} \mathrm{C}$., rated at 80 volts Vcb. (alpha unity of 60 volts.) Designed for high power amplifiers (servo and audio), power converters, voltage regulators and switching circuits.

2N1501, 2N1502: Lower voltage units now in the lower price range. 3.5 amperes, 32 watt at $25^{\circ} \mathrm{C}$., VCB of 60 and 40 . Ideal for servo amplifiers, power conversion, switching and other commercial applications where cost is vital. Now priced at 6ϕ to $7 \$$ per watt of power dissipation.

Honeywell

 H. Fut in Cantal

Circuit designed by Dr. Vodicka varies entire input impedance of parametric transistor for high-efficiency amplification.
ruary to increase the performance of the circuit and have tested a number of microalloy diffused transistors. The new Hughes transistor modified to favor parametric operation, "has consistently produced excellent uhf and microwave operation," said Mr. Zuleeg.

Solid Microwave Sources Unveiled

Two semiconductor microwave power generators were on display at the Sports Arena. First, a solid-state $1000-\mathrm{mc}$ generator that reportedly delivered 11 w of rf power was described at a technical session by G. Luettgenau, M. V. Duffin, and P. H. Dirnbach of Pacific Semiconductors, Inc. Electronic Design learned that the circuit described in this paper had been improved (see circuit diagram). The solid-state devices used in this circuit, all immediately available from PSI are two vhf power transistors, and four high-Q voltage variable capacitors.

Second power source was Philco Corp.'s Lansdale Div. S P-801 unit, said to deliver 5 to 10 mw at $2,200 \mathrm{mc}$. It consists of three sections: a transistorized oscillator-amplifier followed by fourth and fifth harmonic amplifier stages. Two transistors and two varactor diodes available from Philco are used.
A pair of printed-circuit disks 9 in. in outside diameter measured angles with 6 sec accuracy and $\pm 0.324 \mathrm{sec}$ resolution at Telecomputing Corp.'s exhibit.
The Phasolver (see picture, p 15) a product of Telecomputing's Electronic Systems Div. converts small mechanical motions to large electrical phase shifts with such accuracy that Société Genevoise d'Instruments de Physique's Precision Rotary Table for Angular Measurements couldn't identify any error.

According to Telecomputing's Ray Dunwell, a 30 -in. disk phasolver currently under development will measure angles with an accuracy of a fraction of a second of arc-something even the National Bureau of Standards cannot do, using optical techniques. One second is 1.296 millionths of a circle. -

How to use a 4-megacycle instrumentation tape recorder
Ampex's new AR-300 and FR-700 answer a whole new range of needs

For video-bandwidth phenomena

Radar, for instance, can now be tape recorded off receiver and played back repeatedly to scopes, analytical devices or radar guided equipment. Radar testing, reconnaissance and tracking are enormously aided by tape's live-playback capabilities. And for simulation and training, elusive transient phenomena now become repeatable at will.

For predetection recording and communications monitoring The recorder's bandwidth catches everything at once - any 4 megacycle band of radio frequencies or the IF stage off a tele metering receiver. This simplifies on-site equipment. One kind of recording serves for all usual types of communications and telemetered data. L.ater you can play back through detector discriminator and other equipment as many times as necessary to separate and process the desired channels of information.

For 5,000.000 binary bits per second
Super-efficient acquisition and reduction systems can be devel oped around serial pulse-coded data put directly on tape. One reel lasts 60 minutes - holds over seven billion binary bits Compare this with previous PCM techniques on tape limited to less than $1,000,000$ bits per second even at much higher tape speeds and proportionately shorter recording time.

The essential data
The Models: AR-300 Mobile or airborne record only; FR-700 single-rack laboratory record/playback. Response: 10 cps to $4 \mathrm{mc}(\pm 3 \mathrm{db})$. Tape speeds: $121 / 2$ and 25 ips . Playing time:
60 minutes. Tape: $1.0-$ mil Mylar, 2 -inch width, $10^{1 / 2}$-inch reels. 60 minutes. Tape: 1.0 -mil Mylar, 2 -inch width, $101 / 2$-inch reels. Data tracks: two wideband plus two auxiliary. Electronics: alt solid state. Environmental (AR-300): 10 g vibration; $50,000 \mathrm{ft}$ AR-300/FR-700 recorders.

Write for full information
AMPEX DATA PRODUCTS COMPANY Box 5000 - Redwood City, California - EMerson 9-7111

NEWS

Navy Data System

Prototype in Operation Univac Unit at Center

Automatic collection, processing and display of tactical data along with recommended courses of action are provided by a Naval Tactical Data System which has just reached operational status.
Central unit of the system is a Univac Advanced Navy Computer which operates in real time. Methods used to feed radar, sonar and other data directly into the computer are classified, a Remington Rand spokesman told Electronic Design. Communication ierrs, submarines, or atomic ships in a task force can be accomplished using a data transmission system developed by Collins Radio Co., Cedar Rapids, Iowa. Tactical data is displayed for unit commanders using special tubes and other devices developed by Hughes Aircraft Co.
Several prototype systems are now in operation, and the Navy hopes to install the system on all future combatant vessels, and to provide existing ships with retrofit systems, according to a Remington Rand source.
The data systems can be used on cruisers, destroyers, aircraft car-

Computer designed by Remington Rand Univac's Military Div. for Naval Tactical Data System.

iers, f the

The

tem
 egins Sea Duty

riers, submarines, or atomic ships of the future.
The Univac computer, which is packed into a case measuring 3 x $3 \times 6 \mathrm{ft}$ has a 1 million bit memory with a $2.5 \mu \mathrm{sec}$ average access time. Germanium transistors and magnetic cores are used in the unit. Germanium transistors are used despite the high ambient temperatures sometimes experienced aboard ship because of the high reliability experienced with the Athena computer used with the Titan missile, according to a Remington Rand spokesman.
The ruggedized shipboard machine will be cooled, and parts are being hermetically sealed and potted in epoxy, it was added.
Remington Rand Univac's Military Div., St. Paul, systems contractor for the Tactical Data System, has been working on the shipboard computer since 1955. ■ ■

Radar Under Test for Zeus

Eerie view at Sperry Gyroscope's Great Veck plant shows radar transmitter for he Army's Zeus anti-missile system under test. In the foreground is the highoower klystron; transmitter cabinets are n the background. Prior to shipment, he equipment is checked for output, stability and fidelity. The Army Ordnance Missile Command directs the development of Zeus, with Western Electric Co. as prime contractor.

CIRCLE 19 ON READER-SERVICE CARD

Vital to your design orbit!

HDCON ת

Precision Standard Tooling makes the Difference - The HUDSON line provides complete versatility for the designer/engineer. The industry's widest range of round, square and rectangular closures supplied with dozens of modifications to meet unusual applications. Standardized designs assure fast delivery and precision quality every time! All finishes available on components of mu metal, nickel-silver, aluminum. brass, copper, stainless steel and steel. Call or write for quotations.

Hudson Tool \& Die Company• Inc
18-38 Malvern Street, Newark 5, New Jersey
Precision Metal Components for Electronics, Nucleonics, Avionics and Rocketry

Ask for the
HUDSON
CATALOG

- contains - contains complete data
on HUDSON on HUDSO
Standard Closures including MIL types. Please make request on company letterhead.

Telephone: MArket 4-1802

Teletype: NK 1066

WOULD 30 DAY DELIVERY
HELP? Then call Helipot. We'll deliver beckman(i) Panel Meters....in a variety of styles, shapes and models... within 30 days after receipt of your order. Specials may take 45 days.
Fact is, quick delivery and customer service go along with every beckman meter... voltmeters, ammeters, milliam. meters, and microammeters... in sizes ranging from $21 / 2^{\prime \prime}$ to $41 / 2^{\prime \prime}$.
Best of all, they are excellent meters ...and we can prove it! A Certified Test Report (which you may have for the asking) gives details of rigidly conasking) gives details of rigidly con-
trolled tests conducted to find out just trolled tests conducted to find out just
how good our meters are. In all cases, how good our meters are. In all cases,
units tested met or exceeded MIL-Munits tested met or exceeded MIL-M-
10304A. Like we said: they are excellent 10304 A . Like we said: they are excellent meters.
Clearly, if you need panel meters, call Helipot. Delivery is dependable, quality is excellent, and the price is right. The other things we could say in favor of these meters are contained in the latest meter Data File. Send for it: your meter problems will be solved.

Beckman/ Helipot*
POTS : MOTORS : METERS Helipot Division of
Beckman Instruments, Inc. Fullerton, California

WASHINGTON AREPORT
 IIIIIIII II
 - 14 i

Ephraim Kahn

ANTI-KICKBACK LAW has been extended to all negotiated contracts. The original anti-kickback act was passed in 1946. Since then, according to the General Accounting Office, "new types of negotiated contracts have been devised to meet the specialized and complex procurement problems of the government." Penalty for violation of the law is a fine of up to $\$ 10,000$ or imprisonment for not more than two years, or both.

ECONOMY SHOULD BE THE WATCHWORD of defense contractors, says Cecil P. Milne, the navy's Assistant Secretary for Materiel. He says that Congress and the public at large have "a general feeling of apprehension" that the military has "not been doing an adequate job of management." Saying that the military services are constantly trying to tighten buying procedures and obtain tougher competition, he asks whether industry is doing all that it can. He warns that changing conditions in different industries may alter the "reasonableness" of a cost, and urges that "questionable or unnecessary fringe expenses" be pared to the bone.
SMALL BUSINESS SET-ASIDES will be increased by the Armý, though some complaints have been received from mediumsized firms that the set-aside program is keeping them from getting business. In fiscal 1960, the Defense Department figured on a set-aside program of $\$ 974$ million, and actually awarded $\$ 781$ million worth of contracts to little companies. The Army's technical services have been told to take the initiative in setting aside contracts for small companies without waiting for intervention by representatives of the Small Business Administration. They are also to continue to make future set-asides for items which have been handled under this procedure in the past.

CHANGES IN MILITARY BUYING RULES have been urged by the Senate Armed Services Committee. One major suggestion - that formal advertising be used whenever practicable - is believed to have been satisfied by recent changes in the Armed Services Procurement Regulation. The committee also would like the military to change its regulations governing incentive contracts to exclude from the target cost any excess amounts that can be attributed to inaccurate cost data.

IMPACT OF IMPORTS on American producers should be cushioned by government aid, according to the Senate Small Business Committee. The electronics industry has been one of those that has complained to the government that it is suffering from extensive import competition.

At Magnetic Controls Company...

long other things, the group suggests that the governerit should continue efforts to secure international pooperation to prevent exploitation of pirated American lesigns and ideas. As direct help to injured indusries, the group would institute specific federal prorams for firms and communities hard-hit by imports.
IIGHTER CONTROLS OVER ARMY R\&D has been given to Lt. Gen. Grthur G. Trudeau, its Chief of Research and Developpent. His control will be exercised through the chiefs of the Army's technical Services. Objective of the change is speedier decisions. Trudeau, "under the funcfional policy supervision" of Richard S. Morse, Director of R\&D, will be responsible for "planning, coordinating, directing, and supervising" all the Army's research, development, test and evaluation, including control over disposition of funds. Army Secretary Wilver M. Brucker says this will "greatly strengthen authoritative direction of research and development matters."

DIMINISH PATENT PROTECTION is implied in a recent change to the Armed Services Procurement Regulation. It replects adoption by the Defense Department - after considerable protest-of a position taken by the General Accounting Office. The GAO had held that the mere fact that an item is patented does not justify buying it through negotiation instead of by formal advertising. Now, the ASPR has been changed to caution that awards cannot be negotiated "merely because the item to be bought is patented." Under formal advertising a standard patent indemnity clause is put in the final contract. This is supported to provide recourse for the owner of the patent. As a result, contracting officers are advised that the low bidder must get the contract "even though not the patent owner of Licensee, if otherwise responsive."
QUALITY-CONTROL REQUIREMENTS for "complex supplies" have been noted in the Armed Services Procurement Regulation. With some exceptions, future pacts for such items will require the contractor to provide "a quality control system acceptable to the government." In general, military specifications MIL-Q-9858 will satisfy the need for such control. Standard commercial items are exempt from this quality control system requirement, as are products which are being purchased under such stringent specifications as to insure that necessary quality control standards and inspections be observed.
LISTS OF FIRMS interested in doing R\&D for the Defense Department are being mechanized as a part of the military's efforts to throw more business to little companies. The Signal Corps' Research and Development Laboratory expects to have its mechanized list of R\&D sources ready very soon. In about five months, the BuNeau of Naval Weapons (which places about 70 per cent of the Navy's R\&D contracts by dollar value) hopes to have a comparable project completed. The Air Research and Jevelopment Command will have its headquarters list nechanized by mid-0ctober. All ARDC purchasing branches should have a similar set-up by the end of the current fiscal year.

where reliability

 isRED/LINE timing relays "Pay Off"!

At Magnetic Controls Company, where power supply reliability is sacred, design engineers selected G-V Red/Line Thermal Relays over all others. According to Magnetic Controls, "The timing cycle does not change with ambient temperature change . . . a characteristic which is essential for maximum performance . . ." They
 have used the recognized quality of Red/Line in 13 different models of their power supplies without a single relay failure. That's reliability! So, at Magnetic Controls, the high quality of G-V Timing Relays is "paying off".
More and more companies are finding the reliable performance of G-V Red/Line Timing Relays makes them best for their products. G-V Red/Line Relays will pay off in your product, too. Your customers appreciate the importance of high quality, reliable components. G-V Red/Line Timing Relays are specially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use.

Your G-V distributor has them in stock now. Call him or write for Bulletin 131 today.

G-V CONTROLS INC. Livingston, New Jersey

ELECTRONIC DESIGN maintains a policy which demands accuracy . . . accuracy on which its 36,000 readers have
learned to rely in keeping themselves informed of the very latest electronic developments.

This policy is stated in the explicit sentences found in every issue of ELECTRONIC DESIGN.

ACCURACY POLICY

Recognizing the power of the printed word to influence, it is ELECTRONIC DESIGN'S policy:

To make all reasonable efforts to
insure accuracy of editorial matter.
To publish promptly corrections
brought to our attention.
To not knowingly publish mislead-
ing advertisements.
To reserve the right to refuse any advertisement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

Strongly supporting its policy, ELECTRONIC DESIGN takes exacting care to check the validity of the editorial material within its covers. All articles are thoroughly checked and re-checked before publication. If an error does appear, immediate steps are taken to rectify it, and when possible, it is corrected in the very next issue.

Concerning advertising, the magazine requires that a manufacturer substantiate a claim if it is questioned by a reader, and reserves the right to reject the advertising if the claim is not proved.

ELECTRONIC DESIGN places the responsibility of accuracy upon its own shoulders. But you can help, too, by reporting any misstatement found in its pages. We encourage you to do so.

It is through such dual guardianship-readers and editors-that ELECTRONIC DESIGN guarantees highest reliability and detailed coverage.

NEWS

Instrument-Automation Meetings Slated for N.Y.C., Sept. 26-30

The Fall Instrument-Automation Conferenc and Exhibit of the Instrument Society of Ame rie will be held in New York during the weel: September 26-30. Don G. Mitchell, president General Telephone and Electronics Corp., h been named general chairman.

Three sessions dealing with meteorological i strumentation will also be held. The programs fo these are being developed jointly by ISA and th American Meteorological Society. The sessio deal with modern instrumentation in radiatio meteorology, stratospheric meteorological meas urement, and instrumentation for airborm weather-reconnaissance systems.

6th RFI Autumn Conference Is Scheduled for Oct. 4-6

Electromagnetic interference problems will the topic of discussion again this year at the Sixt Conference on Radio-Interference Reduction an Electronic Compatibility. The conference will held at the Museum of Science and Industry O_{0} tober 4-6 in Chicago.
Jointly sponsored by the three military service the conference is conducted by Armour Researc Foundation in cooperation with the Institute o Radio Engineers professional group on radio fre quency interference. Included in the program wit be sessions on design and measurement tech niques and problems of civilian and military alike
Stanley I. Cohn, assistant director of electronic research at Armour Research Foundation, is com ference chairman. Inquiries conceming the con ference should be addressed to Robert Brausch conference secretary, Armour Research Founda tion, 10 W. 35th St., Chicago 16, Ill.

NEC October Meeting in Chicago Will Feature Exhibit, 100 Papers

The 1960 National Electronics Conference wi be held at the Hotel Sherman in Chicago on October 10-12.

Approximately 100 papers will be presented covering these typical areas: instrumentation and telemetry, masers, parametric amplifiers, plasma research, radar and radio navigation, radid astronomy, space electronics, and communications and navigation.

New Materials Science Center Being Organized at Cornell

Cornell University, the University of Pennsylvalia, and Northwestern University have been selected to set up enlarged programs for the expansion of basic research in the science of maerials.
Under a $\$ 6.1$ million contract, from the Advanced Research Projects Agency, Department of Defense, Comell will organize a Materials Science Center.
The work of the Laboratory of Atomic and Solid State Physics will comprise the largest part of the Center. A second area of emphasis in the Center will be chemistry-concerned with electron and X-ray diffraction, inorganic polymers, solidvapor reactions, electronic processes in oxides, diffusion in polymers, polymers under high pressure, catalysis, photoconductivity, and theoretical physical chemistry.
The third area will be concerned with metallurgy and the fourth with mechanics and materials.

NBS Attempting to Find Cause Of Severe Radio Blackout

Members of the solar research group of the Radio Warning Services Section of the National Bureal of Standards', Boulder, Colo., Laboratories have been appraising a recent unusual solar event.
A severe radio blackout of long duration, and large radio noise outbursts on a number of wavelengths, began at 1630 hours, UT. No solar flare could be seen on the sun's disk, although a prominent flare would normally be apparent at the time of the radio disturbance. It now appears that the reason for this anomaly can only be conjectured until solar behavior is known in much greater detail than at present.
Complete blackout of the Bureau's radio station, WWV, occurred ac a number of receiving locations. Cosmic noise absorption of an outstanding nature was evidenced by the great drop-off in received signal strength, and also by the unusually slow onset of the absorption.

Another unusual feature of the occurrence was will the exceptionally low velocity of the radio emission source. The velocity was deduced from observations at two separate low frequencies. Slow drift bursts on dynamic spectrum records normally show velocities of the order of 1,000 lm per sec at metric wavelengths. By comparison, velocities derived from $18-38$-, and $200-\mathrm{mc}$ fxed-frequency observations during the blackcut average about 250 km per sec.

Synthane makes and fabricates

laminated plastics

Quality is Precision and People and Pride

We make and sell laminated plastic sheets, rods, and tubes. But nearly all of our customers prefer us to fabricate their parts from these materials.
Synthane quality starts with the rigid inspection of incoming raw materials. From this point forward, to the finished laminate, control is the byword. In fabricated parts, too, quality is precision, people and pride. Measuring instruments of all kinds, many of our own design, gauges, precision tools and other specialized
equipment all contribute to Synthane quality products. Our people, through years of experience, know how to machine laminated plastics to achieve the dimensions and tolerances you require.

Quality is a matter of pride on the part of every Synthane craftsman who works on your job. And sixty per cent of our people have been with us for 10 years or more.

Aside from the first class job Synthane gives you, it will hardly pay
you in money or headaches to do your own machining. Ask your Synthane representative for a quotation. You'll find him in the classified telephone book of any principal city or write Synthane Corp., 42 River Road, Oaks, Pa.

SYNTHANE
 CORPORATION
 OAKS, PENNA.

Sheets e Rods. Tubes . Fabricated Parts Molded-laminated • Molded-macerated

Commercial Use of Space Bringing New Problems

New Equipment, Adequate Frequencies Needed for Global Satellite Links; Public Begins to Move into Area Previously Used Only by Government

Robert Haavind

News Editor

POTENTIAL commercial uses of space have catapulted to public attention in recent weeks, sparked by Projects Echo and Courier and a controversy over the re-allocation of spectrum for possible space requirements (ED, Aug. 3, p. 4).
The push toward public rather than government use of space opens new problem areas and casts a different light on the direction of satellite and ground system design.
The most pressing problem, now being faced by the FCC, lies in adequate frequency allocation. Up to now the use of frequencies in space has been restricted to the government-through the military, National Aeronautics and Space Administration, and Advanced Research Projects Agency. These frequencies have for the most part been drawn from the large portions of the spectrum assigned to government use. They are not controlled by the FCC, but are assigned by the Interdepartment Radio Advisory Committee under the Office of Civil and Defense Mobilization. Many of these government space bands are already internationally protected under agreements reached during the International Telecommunications Union meeting in Geneva last year. Potential commercial applications, however, are not yet covered by international agreements.

The testimony presented before the FCC by commercial interests at recent space frequency allocations hearings indicated that telephone, television, and teletype users are all seriously considering the use of satellite links to serve international markets. Intercontinental exchange of digital computer data was suggested as another potential use of space systems.

Intercontinental television is an important factor in the allocations issue, since broadband systems like those required for TV transmission can not presently be provided by overseas cable technology. Current two-wire transatlantic cable systems have capacity for about 80 voice channels, and planned single wire cables will carry
about 230 channels-still short of the requirement for broadband television transmission. Coaxial cables can carry TV signals over land because repeaters can be used frequently and adequate power can be obtained from sources in the vicinity of each repeater, permitting wide bandwidth transmission. Repeaters on undersea cables, however, are widely spaced and powered from the shore ends, restricting possible bandwidth.

A significant increase in overseas cable bandwith capability is expected with the use of transistor rather than currently used tube repeaters. Transistor repeaters will require less power so that they can be placed closer together, thus operating at higher frequencies and providing wider bands. This progress must wait, however,
until high frequency transistors of the required reliability are available.

Meanwhile, the satellite overseas link offers the broadband capability needed for TV.

In making its request for space frequency allocations AT\&T indicated that 500 mc would be required for a TV channel or 600 voice channels. The most desirable frequency range for these requirements lies between 1 and 10 kmc -bounded on the low end by galactic noise and already existing heavy usage of the lower frequencies, and on the high end by atmospheric attenuation due to rainstorms, heavy clouds or fog. At least four, and preferably more, of these 500 mc frequency units are required for currently envisioned telephone and TV traffic via satellites.
(text continued on p 29)

Project Echo receiver uses this maser, giving low noise reception considered virtually impossible to achieve a short five years ago. Other breakthroughs like this should permit much more efficient bandwidth utilization than can presently be foreseen.

Current Allocations in 1 to 11.7 Kmc Band Government bands.
Bands shared by government and non-government services.

Means new, consistent and predictable magnetic core performance

Molybdenum Permalloy nickel-iron strip is now available from Allegheny Ludlum, with higher guaranteed permeability values than former typical values. For the buyer, this new high quality means greater uniformity . . . more consistent and predictable magnetic core performance. This higher permeability is the result of Allegheny Ludlum's intensive research on nickel-bearing electrical alloys. A similar improvement has been made in AL- 4750 strip steel. A.L continues its research on silicon steels,
including Silectron, well-known grain-oriented silicon steel, and other magnetic alloys.
Complete facilities for the fabrication and heat treatment of laminations are available from Allegheny Ludlum. In addition, you can be assured of close gage tolerance, uniformity of gage throughout the coil, and minimum spread of gage across the coil-width.
If you have a problem relating to electrical steels, laminations or magnetic materials, call A-L. Prompt technical assistance will be yours. And write for more information on Moly Permalloy. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

Address Dept. ED-9-1.

ALLEGHENY LUDLUM

STELLMAKERS TO THE ELECTRICAL INDUSTRY
Export distribution, Electrical Matorials: AIRCO IMTERMATIONAL INC., MYC 17
Export distribution, Laminations: AD. AURIEMA, MYC A
CIRCLE 27 ON READER-SERVICE CARD

Where Will Spectrum Come From?

Finding 2 to 3 kmc in the 1 to 10 kmc region is not an easy job, as can be seen from the table showing present allocations in that region. Currently common carrier fixed services are assigned 1 kmc in the region-used by AT\&T for its present TD-2 and now-being-constructed TH microwave relay link systems. Another 730 mc of the region is allotted to operational fixed services.
The possibility of sharing these frequencies with space systems has been pointed out by the Electronic Industries Association. A TH system antenna radiates 5 w with 40 db antenna gain, compared to a satellite system ground terminal feeding a kilowatt into a 57 db antenna, the EIA said at FCC hearings, using active satellite repeater parameters specified by Dr. John R. Pierce, director of research, communications principles, Bell Telephone Laboratories. In this case the only serious interference problem might be encountered if the ground terminal transmitter was directed at a TH receiver-and this problem is minimized by the directivity of the ground to satellite transmitter except when it is directly pointed at a TH receiver antenna. Physical separation of the stations could overcome this problem because of the line-of-sight nature of microwave transmission, and in addition the ground-to-satellite antenna could be limited to about 10 deg in elevation.
Isolated locations for ground terminals will probably be required anyway to avoid interference from aircraft and other sources in areas of dense population, the EIA said, so that compatibility will not be a severe problem.
During AT\&T testimony this view was countered by Brockway McMillan, Bell Labs director of military research, who commented that space communications systems must be engineered for the greatest economy of signal power. No margins can be afforded against possible interference because of the low-level signals that must be received from a satellite transmitter. Fundamental physical facts such as thermal noise and path loss set these limits, he said.
If the FCC decides that the AT\&T argument is valid, and that additional frequencies must be re-allocated to potential space uses, it will be difficult to find the frequencies for the shift. The government is sole user of 3.825 kmc of this land, and another 2.32 kmc is shared by govrmment and non-government services. With) ast history as a precedent it is extremely unlikely that any of this spectrum will be taken sway from the government, according to an FCC :ource.
Thus with the present common carrier, operaional fixed, government and shared services re-

This plastic is ideal for applications where changes in humidity can affect electrical values. DAPON can prevent costly "in service" failures in electrical and electronic components.

A new molded plastic potentiometer produced by New England Instrument Company features exceptional resistance to humidity, high reliability and low noise. A raised conductive plastic ring is used in place of resistance wire in these miniature units. The new potentiometers are ideal for servo and instrumentation applications where long life and extreme accuracy are important factors.
The solid resistance element, insulating base and silver terminal leads are molded in one operation with DAPON (diallyl phthalate) Resin. Result : a single, almost indestructible precision unit.

New England Instrument chose DAPON because of its superior electrical and physical properties, and its low moisture absorption. DAPON also molds easily around metal inserts without cracking, and withstands extremes of temperature, vibration and shock.

Specify DAPON (diallyl phthalate) Resin when you need:

- Low dielectric loss
- High dielectric strength
- Superior dimensional stability
- Excellent arc resistance
- High volume and surface resistance after high humidity-high temperature conditioning
Write for FMC's data sheet containing technical information about DAPON, suggested uses for this resin, and the names of DAPON compounders.

FOOD MACHINERY AND CHEMICAL

 CORPORATIONDapon Depariment 161 East 42nd Street, Now York 17, Now York

ËLECTRONIC DESIGN • September 14, 1960

Data Handling Systems

 DIGITAL

The DIDAS Transmitter

Fully Transistorized
Extremely High Speed
Compact

- Reliable

Modern Construction
■ Rugged but light
891362
243895
239810
654958
193847
901205
294736
271057
984752
379824
105447
459233
811278
532485
114857
984735
927411
210473

567482

665820
857395
948573
195847
248571
125434
354321
748275
859483 942106
772689

DIDAS receiving and recording in laboratory conditions

Speedy measurement and analysis of data has become a necessity in modern industry. Armstrong Whitworth Aircraft have developed data handling systems for measurement and remote control. The data can be transmitted at the speed of light by radio, or by cable link, with extreme accuracy. In one system (the DIDAS vehicle system), over 250,000 different readings can be obtained in one minute. Analogue/digital and digital analogue convertors, working at over 50,000 conversions a second, eliminate processing bottlenecks. Systems can be engineered to customers' requirements.

SIR W. G. ARMSTRONG WHITWORTH AIRCRAFT LIMITED, Baginton, Coventry, England (A member of Hawker Siddeley Aviation)

GLOucester 66781

NEWS

Space Frequencies

moved from the band only about 2 kmc remain sprinkled lightly over amateur, television rela and studio link, fixed and mobile, and radionavigation services. Although little equipment is $y \in t$ being used at these high microwave frequencies, it would appear to be unfair to private users to) deprive them of these small tokens of hard-fought-for spectrum.

There is a possibility that the FCC may feel that some of the frequencies a little over the 10 kmc band might be easier to re-allocate. Another common carrier allocation at 10.7 to $11 . \%^{7}$ kmc might be usable as one of the 500 mc links requested.

Alternate Modulation Technique Possible

AT\&T frequency requests were made on the basis of a wide-deviation F.M modulation technique using FM demodulation feedback receivers. This technique, based on a feedback receiver conceived by J. G. Chaffee of Bell Labs in the early 1930° s, permits a significant reduction in noise levels. Shannon's information theory work indicates that a broader band permits an increase in signal to noise ratio without increasing transmitter power-a vital consideration in space systems. Using FM accomplishes this, but if the band is made too wide noise increases until a break point is reached, and only a hiss can be heard. The Chaffec FM receiver responds to only a narrow band of frequencies at any instant, but a feedback loop enables the narrow band tuning to continuously track the incoming modulated signal. Noise can be reduced by a factor of about 100 over a conventional wide band FM system by using this technique.

AT\&T plans call for a 5 -mc baseband and a $100-\mathrm{mc}$ total band. Different frequencies are required by the receiver and the transmitter in an active repeater type satellite so that retransmission does not affect the satellite receiver. With 25 mc guard bands for each frequency a total of 250 mc is therefore required for a one-way transmission link. Two-way transmission for telephone service leads to the 500 mc figure.
This calculation is used to show what might be accomplished with equipment that is now available or in the laboratory. It does not assume future technical breakthroughs, such as the maser, which might make much more efficient modulation techniques feasible, greatly reducing bandwidth requirements. As AT\&T points out. breakthroughs can not be assumed because no one knows when they will happen or what direction they will take.

Table 2. Frequency Usage for Planned Ranger Moon Vehicle

Service	Purpose	Freq. Area, me
Guidance	Rate beacon, interrogation	7125-8400
Guidance	Pulse beacon, reply	7125-8400
Guidance	Interrogation	8400.8500
Guidance	Reply (two freq.)	9200-9500
Control	Ground to second stage	335.4-400
Control	Air to ground (two freq.)	335.4.400
Control	Synch link	335.4-400
Dato	Ground microwave link (four freq.)	7125.8400
Guidance	Ground to air	335.4-400
Guidance	Air to ground	225-260
Telemetry	Function indication (two freq.)	225-260
Telemerry	Functiorı indication	335.4-400
Range Safety	Primary	335.4-400
Range Safery	Alternate	335.4-400
Impact prediction	(two freq.)	4400-5650
Tracking Radar	(Four frequency bands)	400.9000

General Telephone \& Telegraph Corp., although agreeing with the importance of setting aside frequencies for potential space uses, stated that it did not feel that the ultimate form of such systems was yet clearly defined. It suggested the setting aside of "hopefully" two 500 mc channels for possible space uses, and urged that this requirement be given international consideration at the Extraordinary Administrative Radio Conference of the ITU scheduled for 1963.
Although the direction required for reducing bandwidth requirements can not be ascertained with certainty, some current research programs might lead to important improvements. Just looking at the figures used for calculating a space system's parameters indicates certain directions, one communications engineer commented to Electronic Design.
As satellite technology improves, he said. directional antennas should be possible from a stabilized satellite. Larger launch vehicles should permit greater weight and consequently more powerful satellite transmitters. Larger antennas could be used on the ground, and larger ground transmitters might also be used.
On the other hand, this engineer pointed out, AT\&T has been one of the most efficient users of
 for reliability and uniform characteristics. These products have been "proven-in-use" in thousands of critical military and commercial applications.

Write now for complete data and detailed specifications.

A division of
CLEVITE

Reliability In Volume..

CLEVITE TRANSISTOR

254 Crescent Street Waltham 54, Mass. Tel: TWinbrook 4-9330

48 precious metal contacts on a 12^{11} circle... maintaining .0003 т...R. planar tolerance

To SEE under the sea takes a scanning commutator with seemingly impossible tolerances to insure reliability in ship sonar. That is why compression-molded SUPRAMICA ${ }^{\ominus} 500$ ceramoplastic machinable insulation was chosen ... a proud example of Mycalex Corporation of America craftsmanship.
The specifications are most demanding, the requirements highly critical... plates must be flat within $.0003^{\prime \prime}$ and embody precisionmachined recesses to accept 48 pure silver contacts. The angular displacement of the contacts is held to ± 1 minute. The combination of contacts and SUPRAMICA 500 to
2 micro inch surface finish. The application 2 micro inch surface finish. The application requires that life of the commutator during which the environmental conditions run

General Offices and Plant:
121 Clifton Boulevard
Clifton, N. J.
the gamut of humidity and temperature.
The MYCALEX fabricating facility is not only fully qualified to furnish the fabrication of such parts but will design and provide required hardware. For gauge-like specifications on large production runs or short prototype quantities . . . our engineers are ready, capable, and equipped to assist you with your design and production requirements. Write for information on SUPRAMICA ceramoplastics offering maximum temperature endurance (unstressed) up to $+1550^{\circ} \mathrm{F}$. and SYNTHAMICA ${ }^{*}$ synthetic mica with maximum temperature endurance (unstressed) up to $+2000^{\circ} \mathrm{F}$. . . the family of the world's most nearly perfect insulation materials.

Executive Offices:
30 Rockefeller Plaza
New York 20, N. Y.

World's largest manufecturer of ceramoplastics, plass-bonded mice and synthetic mica products

NEWS

Space Frequencies

spectrum space, and if frequencies were allotted to the common carriers they would certainly not be wasted. As technology improves and more efficient modulation schemes can be used, other public services would be added to the intercortinental satellite links and existing services would be expanded in order to meet increasing traffic requirements.

Digital Speech Promising Approach

One research program which could lead to highly efficient bandwidth utilization is current work in digitalizing speech. At one time this approach did not appear too promising because of the difficulty encountered in mechanizing a faithful reconstruction of the human voice. Recent progress in this field, however, has been promising. The use of cross-correlation and other techniques is leading to greatly improved synthetic speech.
Once digital speech is possible, narrow band modulation schemes such as PCM could be used for transmission. This form of modulation using matched orthogonal filters leads to transmission efficiency approaching the theoretical limit, it was pointed out in American Rocket Society testimony to the FCC.
The wide band TV problem still remains, of course, but here again progress toward digitalizing is encouraging. A research program at Massachusetts Institute of Technology, for example, has produced fairly good quality pictures using various digital coding approaches.
Development of bandwidth compression techniques is being spurred by space requirements already foreseen by the government. Reconnaissance and weather satellites will require extensive TV transmission, and as resolution requirements stiffen even greater bandwith will be needed unless improved modulation methods can be discovered.

End to Microwave Reserve In Sight

Despite the wide bands assigned to the Government, the end to its present microwave reserve already seems to be in sight. Heavy radar and communications usage is in effect throughout the microwave region. Provisions for the man-in-space program-a single project-have dug deeply into the reserve frequency supply, testimony before the FCC indicated. Thirteen land stations and two ships, located around the world, will monitor the astronauts, the capsule. and flight progress over a myriad of transmission

Couri
wave transm the so power mercic

Courier satellite, weighing 500 lb , carries four microwave transmitters, four microwave receivers, four VHF Iransmitters and two VHF receivers. Improvements in the satellite art should permit even heavier, higher powered equipment to be reliably orbited for commercial systems.
links. The spectrum requirement for a single Ranger vehicle moon shot next year, illustrated in table 2, shows the heavy requirements that can be expected for future space missions. An example of what can be done when bandwidth problems become extreme is illustrated by AT\&T's success in tucking color television into the same $4-1 / 2 \mathrm{mc}$ channel used for black-andwhite, one communications engineer commented. Information on the black-and-white system occurs in bunches, related to the 60 field per second frequency and the $262-1 / 2$ line per field distribution occurring in TV transmission. The extra carriers required for color transmission were, in effect, slid into the cracks between the lines in the black-and-white frames through careful application of information theory.

New Design Factors in Commercial Systems
In addition to the severe frequency allocation problem, many design considerations enter into public space systems that have not been a serious problem with previous government experiments. Cost, for example, becomes an overriding factor in deciding to initiate a space communications system. Already some figures indicate that channel for channel a space communications syst.m is more economical than an underseas cable link.
The difficulty here is that certain assumptions aioout reliability must be made in order to reach this favorable cost comparison, and the equipnent with this required reliability has not yet teen developed for the 1 to 10 kmc band. ${ }^{A} \mathrm{~T} \& \mathrm{~T}$ in its testimony specified ten years relability as a reasonable goal in order to reach a f vorable cost comparison with cable links. Two rossible satellite repeater systems were suggested

New keys to better electronic design...from 3M... where research is the key to tomorrow

NEW!... Heavy-duty TFE tape, reinforced with glass, helps prevent cold flow in hi-temp applications!
"SCOTCH" Brand Electrical Tape No. X-1112 and "SCOTCH" Brand Electrical Tape No. X-1111, both new products of 3M Research, are new TFE-Fluorocarbon Tapes for high-temperature designs. No. X-1112 utilizes glass cloth to provide added strength and holding power for heavy-duty functions where cold-flow would ordinarily be a problem. No. X-1111 combines excellent chemical and electrical properties of TFE-Fluorocarbon with a new adhesive designed to resist transformer and hydraulic oils. For complete information, write: 3M Co., 900 Bush Ave., St. Paul 6, Minn., Dept. EAC-40.

[^0]
General Electric RTV*

Room
$\begin{gathered}\text { Romperoture } \\ \text { Julcenizing }\end{gathered}$
Vin

The latest addition to General Electric's R'TV family offers lower viscosity than any other avail able silicone rubber compound - a typical vis cosity of 120 poises. Easily pourable, it flows freely in and around intricate contours, making it ideal for protecting electrical and electronic components.
With RTV's new low viscosity, the range of G-E RTV compounds now extends from 120 to 12,000 poises. You can now meet your specific requirements by selecting from several G-E RTV compounds, all of which offer room temperature cure, heat and ozone resistance, and good electrical properties. Write for a free test sample, briefly describing your application.

liquid silicone rubber

New low viscosity for easier encapsulation and impregnation

General Electric silicone rubber used extensively by Aerojet-General Corp. for the Titan ICBM's propulsion-system wiring harness. Breakouts and junctions molded from G-E RTV, wiring is silicone insulated. jacketing is high-strength G-E silicone rubler - all chosen for their stable insulating properties, resistance to temperature extremes and weathering, and stability in storage for many years.

Sight amplifier module potted with RTV by the Armament and Control Section of G.E.'s Light Military Electronics Department. Used on the Lockheed CF-104 and F-104G jet aircraft, RTV provides mechanical support and vibration damping, protects unit against moisture and ozone. (Bottom photo shows module before potting.)

High-voltage, high-altitude transformers from Laboratory Fior Elec. tronics, Inc. are encapsulated with General Electric RTV to meet MII.-T. 27 A specs. This prevents flashover at maximum ratings of 2200 volts rms and 80.00 feet. Generaly and mechanical strength.

NEWS

Space Frequencies

by Dr. Pierce in FCC testimony.
One of these systems uses a 1-w traveling wave tube in an oscillator circuit in the satellite The use of a 1-w tube is made possible by a: suming a broadband modulation method, suct as wide deviation FM, Dr. Pierce pointed ou He said that the l-w TWT was assumed becaus? of Bell Labs experience in building four 5 -w travelling wave tubes which have been operating without a failure for four years.
The other possibility is the use of tunnel diodes or transistor harmonic generators as local oscillators to accomplish the offset frequency transponder function. He did not comment on the reliability that might be expected from this configuration
Higher power output from the satellite trans mitter could be accomplished if components o the necessary 10 -year reliability were available As power goes up, however, higher cathode cur rent densities in tubes are required, naturally leading to shorter life. Solid-state components designed to operate at higher power levels also suffer from a reliability standpoint. Further de velopment in both the microwave tube and solid velopments in buth the microwave tube and solid state fields must be undertaken to overcome these deficiencies.

Stationary Orbit Appears Best

From a cost analysis all studies seem to agree on the active stationary orbit satellite as the best prospect for a commercial intercontinental link. The active type seems best because of the better S / N compared to the passive satellite such as Project Echo's inflated balloon. Witl active satellites in lower orbits many more satel lites will be required to assure the line-of-sight presence of one of them between any two ground terminals at all times. Another vital requirement for such a low-orbit active system is that two transmitters and receivers are necessary at any ground terminal so that one can be picking up the next satellite while the other tracks the one presently in view, providing continuous service Interference would be a problem with this scheme, even if different channels were used by the two transmitters, because of their close proximity to each other.

A stationary system, on the other hand, could provide complete world coverage with three satellites, kept on station by systems now under development for government satellites. Only one transmitter and receiver would be needed at each ground station, and the interference problem of the low-orbit system would be eliminated.

1 stationary system, on the other hand, could rovide complete world coverage with three satellites, kept on station by systems now under development for government satellites. Only one transmitter and receiver would be needed at each ground station, and the interference problen of the low-orbit system would be eliminated. Interference would be much easier to avoid between ground and space systems using a fixed orbit satellite, the EIA pointed out during FCC testimony.

Delay Is a Difficulty

The major difficulty with the stationary scheme, aside from the increased path loss caused by the greater transmission distance, is in the delay of some 0.6 sec encountered in telephone conversations over such a distance.
Current-telephone transmission systems use the same transmission path for conversations each way in a two way system. Because of this, an annoying echo would be heard unless some means is provided for preventing it. Present systems use an echo suppressor to cut off reception at the end of the transmission line where signals are being transmitted, thus eliminating echos. Tests of echo suppressors with a half second delay, however, indicate that at times part of a conversation can be cut off because of this suppression. Further research is necesary to see if there is some method of overcoming this difficulty, but meanwhile AT\&T feels it represents a serious flaw in the stationary satellite scheme.

Commercial Use of Satellites Assured

In any event the eventual commercial use of satellites for global transmission appears to be assured. Industrialization is increasing rapidly all over the world, and existing communications links are becoming overcrowded at an ever increasing rate.
The technical solutions to satellite transmission problems appear to be well within reach. Lockheed Aircraft Corp., for example, told the FCC that if given the go-ahead it could have an international link in operation within three years. Lockheed has been prime contractor for the Discoverer, Midas, and Samos programs, and has coordinated the construction of an elaborate ground tracking network for controlling and (ommunicating with these satellites.
Meanwhile the stationary satellite scheme is planned under ARPA's Project Advent, to be carried out over the next three to four years. Militiry global communications needs are already spurring development of equipment suitable for systems such as this, and once reliable equipnent is available it will undoubtedly be pressed into public service. - \quad

Hoffman design-aid series

ro-18 Case

For unprecedented efficiency
at low signal levels plus extreme temperature stability...

HOFFMAN NOW OFFERS YOU SILICON UNI-TUNMEL*DODES

These unique devices, sometimes referred These unique devices, sometimes referred
to as "backward" diodes, utilize the tunto as "backward" diodes, utilize the tun-
neling effect to achieve high forward conneling effect to achieve high forward con-
ductance at very low voltage levels. When they are biased in the reverse direction, they are biased
the familiar tunnel diode current charac. teristic appears as a leakage current measurable in microamperes.

TYPICAL APPLICATIONS

Ability of the Uni-Tunnel diode to operate Ability of the Uni-Tunnel diode to operate
efficiently at low voltage levels eliminates efficiently at low voltage levels eniminates
the complex circuitry previously required the complex circuitry previously required
for low-level operations, resulting in lower cost, greater reliability and decreased cost, greater reliability and decreased at left). Benefits like these also make Hoffman Uni-Tunnel diodes ideal in:

- computer logic
- detectors choppers a clampers
- tunnel diode circuitry

SPECIFICATIONS

Twelve types available with minimum forward currents as high as 10 mA (at .25 V) and maximum reverse currents as low as $5.0 \mu \mathrm{~A}$ (at 0 to 0.5 V). Operating and storage temperature range is $-85^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.

STANDARD AND CUSTOM-ENGINEERED
 UNITS AVAILABLE IMMEDIATELY IN
 qUANTITY

Contact factory, El Monte, California, or your local Hoffman sales office for further information. Ask for Technical Data Sheet 131-760 UTD.

Hoffman

ELECTRONICS

 CORPORATION Semiconducfor Division1001 Arden Drive. El Monre, Calliornia
TWX: EI Monte 973s
Plants: EI Monte. California and Evanston, Illinois

NEWS

New Pay-TV System Being Readied for Field Tests

TelePrompTer's 'Key TV' Uses Coaxial Cables, Costs Little; Field Still Wide Open for New Concepts in Equipment Design

PAY-TV, which not too long ago was dismissed as a dead issue, is back again for another try. Two systems, one brand new, the other not so new, are being readied for field tests in the near future. One system uses expensive coaxial cables but is otherwise low in cost and embodies a unique "talk-back" feature. The other operates over existing TV channels, thereby requiring FCC approval, and employs a considerable amount of electronic gear. Since it is unlikely that either system will in its present form prove convenient for nation-wide Pay-TV (if and when it becomes a reality), the field remains wide open for new design concepts.
A cable-distributed Pay-TV scheme that falls into the "Why didn't I think of it" category will be field-tested before the end of the year by the TelePrompTer Corp. of New York. Dubbed Key

TV, the system also enables the viewer to order merchandise, participate in surveys, and answer questions-all by means of a push-button control box in his living room.

Key TV is designed for use in cities already wired for Community Antenna TV systems (CATV). It rides piggy-back over the existing cables and requires little additional equipment in home or studio. Two components, a viewer control box and a tele-record box, are installed at the home; switching and recording equipment are installed at the studio.
The tele-record box contains a band elimination filter for the Pay-TV channel which is inserted into the circuit upon command from the studio. It is switched out, and the Pay-TV program received, when the viewer pushes an "Accept" button on his control box. This action also

inscribes a paper tape inside the tele-record box The tape is collected at regular intervals and the viewer billed accordingly.

The Viewer Talks Back

The viewer control box also includes "A" and "B" participation buttons which enable the viewer to "talk back" by expressing preferences ordering merchandise, etc. Depressing these but tons inscribes a mark on the paper tape in the tele-record box. In addition, studio meters indicate the percentage of viewers depressing a but ton at any given time and the percentage of viewers who are receiving a Pay-TV program.

Typical operation of the system would be as follows: A few minutes before a Pay-TV program is scheduled to begin, an amber light is turned on in the window of the viewer control boxes. This is accomplished by command from the studio and the light is visible in all boxes regardless of whether the set is tuned to the Pay-TV channel or turned on at all. The viewer may then turn to the Pay-TV channel where a sales pitch for the program is being telecast. Immediately before the program is to begin, 40 db band elimination filters for the Pay-TV channel are activated in all the tele-record boxes by studio command. If the viewer wants to receive the program he depresses the accept button on his control box. The filter is deactivated, a green light appears in the window of the control box and the recording tape is inscribed.

The participation buttons can be used in a variety of ways. After a commercial the announcer might say, "If you want to order this vacuum cleaner, press button 'A', now." When the viewer pushes the button, the recording tape is inscribed and a red light appears under the button in the window of the control box. For educational TV, multiple choice tests could be answered by pressing the buttons singly or in combination. Pollsters could run their surveys inerely by asking viewers to press the participation buttons in response to certain questions.

Since the recording tape is generally advanced by studio command after each question, viewer anonymity for "sensitive" questions can be pre-

Viewer control box for Key TV. This is the only additional component required in the home for receiving the pay programs. The box contains switches for accepting pay programs, ordering merchandise and answering questions. Lights of different colors appear on the screen to indicate the status of the system to the viewer. A key is provided to lock the control box against unauthorized use.
served by not advancing the tape. Viewers may be asked to express their choice for president by pressing the same button, but at different times. If the tape is not advanced from one time to the next, it will be marked in the same place regardless of how the viewer voted. Preference would be expressed in percentage terms by the participation meter in the studio.
In designing the control box, TelePrompTer relied on a number of psychological tricks. "This business of colored lights inside a little TV screen isn't really necessary, but it gives the viewer the idea he's doing something," H. J. Schlafly, TelePrompTer vice-president, told Electronic Design. The TV-like shape of the control box is another instance of customer psychology, as is the key supplied to lock the box against unauthorized use. "Just as Junior must have the keys to use the family car, he must have the key to the control box to see the special programs," Mr. Schlafly points out.
The present system of inscribing marks on a paper tape to be subsequently collected by route men is of course practical only on a small scale. Teleprompter is experimenting with data processing systems which can be tied into Key TV to record customer acceptances and participation at a central station. TelePrompTer claims to have six different data systems in development but is not commenting on them at this time.
First tests of Key TV are scheduled to begin his fall over channel 5 in Liberal, Kans. TelePrompTer already operates a CATV system in iberal with 2,000 homes wired to the studio by oax cable. These tests will be devoted primarily o entertainment and sports programs. Some nonths later, a second test at Farmington, N.M., vill be the pilot for educational and merchanlising aspects of Key TV. -

w" 2000 Mc BANDWIDTH

0.2 Musec RISE TIME

milli-mike ${ }^{\oplus}$ traveling wave OSCILLOSCOPE SETS NEW PERFORMANCE STANDARDS

Unquestionably the most advanced traveling wave oscilloscope available, EG \& G's new millimike is the only scope capable of many types of basic research. Its phenomenal performance gives it both single transient and repetitive signal capability. Yet its simplicity and ease of operation make it a highly versatile production-evaluation instrument.

For precise photographic recording, EG\&G's Model 850 integrated camera system is recommended. For less accurate requirements, however, any standard camera can be used to record pulse displays through an illuminated reticle attachment which completely eliminates parallax. Single transient displays can be recorded directly from the screen. . $0015^{\prime \prime}$ spot size ensures maximum resolution. This, in combination with the fact that signals as low as 5.5 mv will deflect the beam a full trace width, gives you an idea of this instrument's extreme sensitivity.

A Pulse display on illuminated reticle photographed with ordinary camera.

4 Photograph of one milli-microsecond single translent display.

For full details, write for Data Sheet 7070.

Electronics Learns from Biology

Devices Patterned After Nature's Processes Solving Some Problems; New Horizons Beckon to Designers; First Symposium Under Way

Alan Corneretto
 News Editor

N DEVELOPMENT at Stanford Research Institute is a completely new computer logic element based on network theory believed operative in the human brain. At General Electric, researchers are building an array of thin-film electroluminescent elements that they hope will behave like a neuron. At the University of Illinois, a "retina" of photocells sees differences in quantities of objects placed in its visual field -it senses "n-ness."
These projects, with many others under devel opment, probably represent the first substantial work in a new kind of electronics: bionics-the science of applying knowledge of biology and biological techniques to the design of electronic devices and equipment. Each of the projects described in this report was inspired at least in part by the way nature solves problems that face electronic designers.

Nature's know-how is now finally being tapped by investigators throughout electronics, who
hope to adapt for their own uses the methods nature has developed over the countless centuries that her creatures have been detecting, transmitting, integrating and otherwise processing information. Together, the research programs under way mark the start of what can be considered the era of bionics.
Many organizations conducting bionics R\&D have already built hardware, and some, like RCA, the University of Illinois, GE, and others, have formed special departments for such work. The first symposium completely devoted to the subject is being held this week in Dayton, Ohio. And the era may even be said to have an official beginning-the start of the 1960-61 fiscal year, when the Air Force made more than $\$ 1$ million available to Wright Air Development Division expressly for bionics research and development. The corresponding Air Force figure for the previous year was about $\$ 40,000$.

Growing Pains Hinder Bionics Progress

But though bionics is a going concept it has not gone far. There are three connected prob-
lems which are limiting its growth:

- T'o apply a knowledge of biological systems to the design of electronic systems requires a substantial knowledge of those systems. But not nearly enough is known of the way living things work. Particularly lacking is a sufficiently thorough knowledge of human processes. Neurology, physiology, and many other of the biological specialties are only now changing from descriptive to analytical sciences.
- There are not enough researchers who know both electronics and the biological sciences. The most highly rated work in bionics to date has been done by a few scattered researchers with training in both electronics or physics and one or more of biological specialties. It is believed that only at MIT, Cal Tech, and the University of Minnesota is biophysics taught at a theoretical level.
- Bionics as a concept is young and only beginning to earn acceptance. The very shallow base of useful knowledge of living systems appears to be inhibiting systematic exploitation of bionics as a concept. And at another extreme, some sci-

What Is Bionics?

In this report, the word "bionics" is used to mean the science of applying knowledge of biology and biological techniques to the design of electronic devices and systems. This is a special use of the "official" definielectronic devices and systems. This is a special use of the official defini-
tion, that given by Maj. I. E. Steele, who coined the word at Wright Air Development Division. His definition is: "The science of systems which function, after the manner of, or in a manner characteristic of or resembling living systems." This meaning is based on the Greek root and suffixes, bion, ic and ics, which were used in coining the term.

Bionics, then, is different from medical electronics or bio-electronics,
which is the specialty in which electronics is used for biological purposes whionics is also different from the discipline of studying electronics for Bionics is also different from the discip.
help in acquiring knowledge of biology.

Some work in adaptive or self-organizing mechanisms is proceeding under biological inspiration. These machines are bionic systems. Other adaptive mechanisms, however, are not related directly to biological operations and are not, therefore, considered bionic, at least within the context of this report. The dividing line between the two is admittedly dim, if, indeed, it actually exists.

The Universe of Bionics
entists believe that designing from nature has always existed and will continue, whether or not the practice is glamorized by a title.
Though these problems are slowing progress in bionics, a surprising amount of work is going on-probably scores of projects. An exact count cannot be made because of the difficulty of classifying many programs. Most projects involving both electronics and biology, apart from those in medical electronics, are not purely bionic, though they may serve bionics purposes.

Prime mover in bionics is the Air Forcespecifically two close-working groups in the Directorate of Advance Systems Technology in the Wright Air Development Division: the BioAcoustics Branch of the Aero-Space Medical Div., and the Bionics and Computer Branch of the Avionics Div. Both groups are at WrightPatterson Air Force Base, Ohio.
The Air Force's Office of Scientific Research is supporting many basic-research programs, which though not primarily bionic, are potentially important to the bionics effort, and are considered so by OSR. Rome Air Development Center has directed at least one bionics project.
The Navy, through the Office of Naval Research is also supporting much bionics research.
WADD, in contrast to other organizations, believes that bionics as a concept is not premature. The WADD group cites three reasons why such R\&D should be pursued now:

- Modern electronics technology is permitting the consideration and construction of devices with the high parts-densities, low-power requirements and other characteristics that appear to be needed by bionics systems. Electron-beam-

Major classifications of bionics	Areas of Applied Research	Electronic and Other Significance
Biological systems	Perception mechanisms Normal, abnormal psychology Perception parameters Analysis of time series	Reduced disorientation accidents Diagnostic data reduction Channel conservation Psychotherapy
Biological components	Analysis by receptors Neuronai processes Transfer functions Transducer mechanisms Organic structural properties	Optimum use of sensory channels Improved prosthetic units Effective warning devices
Analysis, theory and logic	Theory of automata Stochastic processes Theory of invariants Topology Information theory	Advanced problem formulation Iterative solutions New symbolism Reliable diagnostic tests Brain function analysis
Neoteric techniques	Non-synchronous multiplexing Concept formation Auto. focusing and tracking Automatic programing Error elimination	Secure communication Channel conservation Diagnostic potential Automatic pholo reading Self-adaptive reliability
Synthesized components	Logical transducers Synthetic neurons Non-resonant freq. analyzers Nonlinear elements Polymer \& solid-state units	Voice-controlled switching Automatic speech recognition Novel instrumentation Signal/noise enhancement Bionic sensors, transducers
Systems synthesis	Self-adaptive control Pattern recognition Association systems Logical machinery	Retrieval of information Target identification Learning machines Discrimination machines Decision formulators

etched microminiature elements, thin-film devices, and ferrites are already proving useful in bionics developments.

- The availability of computers and newly developed mathematical techniques is permitting construction of models of complicated processes, and these in turn help the direct analysis of biological data.
- The need for information-handling devices of enormous capability and probably of great complexity is increasing, and this is forcing researchers to examine novel approaches to processing information.

First Step: Neuron Simulations

Because of the pressing requirements for vastly improved information handling, most bionics research is on computer elements. These generally take the form of simulations of neurons, transducing cells that are the basic elements of nerve networks. In biological systems,
neurons permit cortex or brain tissue to receive, transfer, process, and store information to permit system operations in order to adapt to changed environments.
Among the organizations in the United States that have built electronic analogs of neurons are Rockefeller Institute, Bell Telephone Laboratories, Stanford Research Institute, Applied Physics Laboratories, GE, the University of Illinois, Aeronutronic Div. of the Ford Motor Co., Lockheed Electronics, RCA, MIT, and Litton Industries.
Much of the work of these organizations and others, like Melpar, Inc., and Raytheon, which are planning to build neuron simulations, is being pursued in the hopes that single neuron analogs could be constructed and be arranged in networks that could process information with some of the facility of living organisms. Such networks would have high reliability, high speeds and, most important would be made self-organiz-

REPORT ON BIONICS
 Electronic Neurons
 Or four practical approaches to designing the basic element of bionic information-processing systems.

This early simulation built at Rockefeller Institute is based on the classic Hodgkins-Huxley model of neuron behavior, which de scribes cell activity in terms of membrane potential, sodium-ion conductance and polarization
The voltage and time-dependent sodium resistance of the neuron's membrane is simulated by a 2 N 207 A transistor. In the saturaion region of this transistor the collector-current - collector - voltage collector-current - collector - voltage characteristic is a crude approximation of a constant resistance, the
magnitude of which depends on magnitude of which depends on
the base current. The base is driven the base current. The base is driven
by a control signal to give a resisby a control signal to give a resis-
tance voltage and time dependence similar to that of the sodium resistance of the nerve membrane.
A voltage proportional to the turn-on effort of the cell, which increases sodium conductance in an actual cell, is generated by an integrator of the membrane potential change, the output of which is change, the output of which is
clamped not to exceed a fixed

value. The integrating capacitor is discharged through the transistor, which is biased so that it is highly conducting when the membrane potential is near its resting value.

A voltage proportional to the inactivation, or turn-off effort, is generated simply by an integrator of the membrane potential change with a large time constant.

The turn-off fraction of the turn-on value of the sodium conductance is taken by a multiplier consisting of the voltage divider shown. The lower arm of the divider is the transistor, whose base is fed in the turn-off signal arranged so that as the signal decreases, the transistor conducts more heavily.

Shown above is a still more sophisticated simulation. Developed by General Electric, it is capable of adaption and could be modified for perceptron experiments.

Ten excitatory and 10 inhibitory inputs are weighted so that the cell may operate on the basis of the difference between the weighted sums of the excitatory weighted sums of the excit.
Adaption is initiated within the cell whenever the integral of the output determined over a given time interval is larger than some

specified value. This produces a brief state during which the rate at which the cell can be fired by an exciting input signal is reduced
Each of the exciting inputs has a multiplier, memory and means for changing the memory associated with it. Summation of the inputs is performed by the summing amplifier. The threshold circuit is a her. The threshold circuit is monostable vibrator that produces
a pulse whenever the output of the a pulse whenever the output of the
summing amplifier exceeds the summing amplifier exceeds the
threshold level. This pulse inthreshold level. This pulse in
creases the gain of the exciting channels that contributed to the firing of the cell.
The memory unit shown, which is the key component of the simulation, is a transfluxer on which pulse excitation is used. The unblock winding is fed from the input AND gate and serves to increase AND gate and serves to increas the transfluxor output by an in-
crement each time it is pulsed. The crement each time it is pulsed. The
block, or forget, winding receives block, or forget, winding receives
pulses from an external source at a pulses from an external source at a fixed rate and causes the transfluxor output to decrease by increment with each pulse. The dc lockup winding is provided to maintain the transfluxor in the maximum memory state once it has been reached.

Clever circuit design enabled researchers at the Applied Physics Laboratory of Johns Hopkins Uniersity to build a more ambitious neuron analog by modifying a single-shot multivibrator. Transistor A is an emitter follower included to sum several inputs without interorimg with the time without interthe base of transistor B of the multivibrator. Capacitor C_{1} simulates the

This electronic neuron, developed at Bell Telephone Laboratories is a four-transistor device with variable threshold capable of an integrating time constant of 2 msec and a refractory time constant of about 10 msec . These values approximate those of biological neurons.

Quiescent threshold is from 1 to 5 v , depending on the number of inputs connected. The output-pulse level is 10 v . These levels are many times greater than those in nerve tissue, but the ratios between threstissue, but the ratios between threshold and output levels are commensurate. These ratios in part deseveral cell outputs combine.
Output pulse duration is about 4 msec , which is considerably greater than the action spike length found in biological nerve, but it
can be shortened by use of a suit able differentiating network. Out put characteristics are compatible with the excitatory and inhibitory input requirements such as a chain or network can be readily assem bled. One unit will drive up to 100 others without serious deterioration of output waveform or output level
L. D. Harmon, of Bell Labs, reports that the simulation can be used to give either single-pulse out puts or variable-frequency pulse trains, aepending on the nature of the input.
Photoresistive cadmium selenide cells have been used with this model to simulate some of the sim ple structures and functions of the retina. The relatively simple unit is said to cost less than $\$ 10$ to construct.
second-order rise (or exponential rise, depending on the reference used) of the membrane. R_{T} and C_{T} determine the pulse width, as in a conventional multivibrator. Capacitor C_{3} is the feedback, which was added to achieve the refractory period, also determined to some extent by C_{2}.
By varying C_{2} and C_{3} it is possible to vary the refractory period sible to vary the refractory period
from 1 or 2 msec to about 50 msec, though it becomes impractical to raise the period to 100 msec
The threshold is determined by R_{8}, which can be made to have any range desirable. In the particular simulation, the negative output was used to simulate an inhibitory pulse when three such cells were interconnected. Inputs were randomly spaced 1-msec pulses of fixed amplitude to simulate noise inputs. Output was a standard pulse of i msec and 15 v . Maximum firing rate was about 500 cps.
III. The self-organizing feature would permit deign of systems that would combine high per ormance with small size.
Current work with neuron analogs appears to all into two categories. One group of workers, ncluding some at Bell Labs and the University of Illinois, believe that because operation of the ortex networks will not be understood for a ong time, effort should be concentrated on developing neuron models patterned as closely as possible on actual neurons, rather than on connecting arrays of neurons. This would permit better understanding of neurons, which, in turn, would make possible better analogs.
Other researchers, however, like the percepron builders at Cornell Aeronautical Laboratories, are less concerned with developing precise imulations of the neuron than with interconnecting arrays of approximate analogs, the analogs having only some of the properties of neurons.
Though the approaches taken by the neuron imulators vary, the goal is generally the samean adaptive element, which, like a neuron, is a transducer with a binary output and two general ypes of inputs. Within its operating limits it takes an input signal of varying character and either fires an output signal or does not. The output signal is standard if produced at all. Input is either excitatory or inhibitory. Though some neurons can be considered binary switches, actual neurons cannot, because they have noninear characteristics.

What the Neuron Does

L. D. Harmon, of Bell Labs, describes the general properties of a biological neuron in terms of its input and output this way:
"Input. Inhibition: A particular input connection to a neuron can, while energized, inhibit firing of the neuron by other inputs.
"Excitation: Other input connections to a neuron will, if sufficiently energized, always fire the neuron if certain conditions are met.
"Threshold: A neuron may be fired if the triggering energy supplied to it exceeds a certain threshold value within a time limit. There are input pulses which have insufficient amplitude to cause firing no matter how long they last. This threshold is variable, being a function of the previous history of firing of the neuron.
"Refractory period: Immediately after firing, a neuron's threshold rises effectively to infinity and for a period on the order of a few milliseconds, no input signal can fire the neuron gain. This absolutely refractory period is fol1 .wed by a relatively refractory phase. During this second phase a decreasing threshold is ob-

NOW PRICED WITH PRECISION WIRE-WOUNDS!

At last you can get quality metal film resistors, with all their advantages, at prices competitive with precision wire-wound units. In fact, some values are actually priced lower.
EXCEEDS MILITARY SPECIFICATIONS-Ohmite metal film precision resistors exhibit great stability under load at ambient temperatures of $150^{\circ} \mathrm{C}$ and higher, as well as in high humidity. Stability in storage is also excellent. A shelf-life test (covering a period of $41 / 2$ years) of 93 units in the 60 to 300 K -ohms range showed less than 0.05% maximum change in resistance. This stability together with low temperature co-efficient, low noise level, and unexcelled high frequency characteristics, are the reasons why Series 77 metal film resistors are demanded for both military and industrial applications.
Write for Bulletin 155

OHMITE MANUFACTURING COMPANY
3643 Howard Street,
Skokie, lllinois

NEW 2-WATT SIZE

Ohmite Basic Style	MIL Sizes	Dimensions (Inches)		Full Wattage Rating at		$\begin{gathered} \text { Min_Max } \\ \text { Ohms } \end{gathered}$	Max Rated Volts
		Length	Diameter	$\begin{aligned} & 125^{\circ} \mathrm{C} \\ & \text { Amb. } \end{aligned}$	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & \text { Amb. } \end{aligned}$		
771.1	-	11/6	. 400	1/2	1/4	25-250K	350
771-2	-	1/8	. 600	1/2	1/4	251K-400K	350
772.3C	$\begin{aligned} & \text { RN65* } \\ & \text { R192 } \end{aligned}$	5/8	15/4	1/8	1/8	50-125K	300
772-3CJ	R192 \dagger	5/8	13/4	1/2	1/4	50-85K	300
772-1	-	5/8	21/4	1/2	1/4	25-250K	350
772-1C	-	5/8	21/4	1/2	1/4	25-250K	350
772-2	$\begin{aligned} & \text { RN72** } \\ & \text { R194 } \end{aligned}$	13/16	21/4	1/2	1/4	25-400K	350
772-2C	R194 \dagger	13/6	21/4	1/2	1/4	25.400K	350
772-2CS	$\begin{aligned} & \text { RN70* } \\ & \text { R194 } \end{aligned}$	13/1s	19/4	$1 / 2$	1/4	25-350K	350
772-2J	R194 \dagger	13/4	21/4	1	-	25-400K	350
		13/6	21/4	-	1/2	25-150K	350
772-2CJ	R194 \dagger	13/6	21/4	1	-	25-400K	350
		13/6	21/4	-	1/2	25-150K	350
772.8	R196 \dagger	13/8	13/2	1	1/2	100-1 meg	500
772.8C	$\begin{aligned} & \text { RN75 } \\ & \text { R196 } \dagger \\ & \hline \end{aligned}$	13/2	13/2	1	$1 / 2$	$100-1 \mathrm{meg}$	500
772-10	-	27/2	27/4	2	-	200-2.5 meg	750
772-10C	RN80*	2\%	37/4	2	-	200-2.5 meg	750

CONSISTENT RELIABILITY
in production-quantity miniature floated gyros with trimmed drift rate of
ONE HUNDREDTH DEGREE PU HOUR

Designed-in reliability and the most precise production techniques have combined to produce the new ZERO-ONE Gyro. The first in a new series of IFG-300 integrating floated gyros, the ZERO-ONE is a proud achievement in the long line of gyro developments by REEVES.

The combination of high reliability and extreme accuracy make the ZEROONE Gyro the ideal choice for guidance and stabilization systems where guaranteed performance is paramount.

For complete specifications, write for data file 209.
Qualified engineers seeking rewarding opportunities in these advanced fields are invited to get in touch with us.

REEVES INSTRUMENT CORPORATION

A Subsidiary of Dynamics Corporation of America - Roosevelf Field, Garden City, New York 7RV60

TYPICAL SPECIFICATIONS
Trimmed Drift Rate: $\mathbf{0 . 0 1}$ degrees/hr Angular Momentum: 300,000 c.g.s. units Damping: 300,000 c.g.s. units
Nominal Signal Generator Sensitivity: $10 \mathrm{mv} / \mathrm{mr} @ 50 \mathrm{ma}, 400 \mathrm{cps}$ Torque Generator Sensitivity Range: 0.05 to 3.0 degrees $/ \mathrm{hr} / \mathrm{ma}^{2}$ Time Constant: As low as 0.4 msec . Mass Unbalance: $0.4^{\circ} / \mathrm{hr} / \mathrm{g}$ Anisoelasticity: $0.003^{\circ} / \mathrm{hr} / \mathrm{g}^{2}$ Dimensions: $1.8 \mathrm{in} . \times 2.75 \mathrm{in}$.
served, approaching the pre-firing threshold and reaching it after a few tens of milliseconds.
"Summation: Two or more input pulses, each of insufficient energy to excite a neuron, can be integrated by the cell so that firing occurs. To be successful, this summation must occur within a maximum time, typically on the order of a millisecond or so. Since these inputs may arrive via different pathways, there can be both spatial and temporal summation.
"Output: The output of a neuron is 'all-ornone.' If firing occurs, then a pulse of standard amplitude and duration is produced. There are exceptions, of course, but as a first approximation the energy per output pulse may be considered constant."

Eye and Ear Neuron Analogs Coming

Workers at Bell Labs have built several versions of electronic neurons, including the one shown on p. 40, which operates in several modes and is said to be useful for simulating peripheral receptors such as retinal elements. Mr. Harmon has developed a conceptual model of an analog that would have some of the properties of an eye. It is implemented with simulated neurons. filters and other components. Work is also underway at Bell Labs on an artificial neuron patterned after neurons of the cochlea, a transducing organ of the human ear. Breadboarded
cornell Aeronautical Laboratory. Perception studies. (See p 50)
Vational Biomedical Research Foundation. How to construct and use a billion-gate computer (mathematical analysis).
. of Arizona. The antenna of moths as a model for antenna design.
municatiuseum of Nather Com in fishes.
ronutronic. Tiny magnetic integrating core (See p 40)
of Wiscons
of Wisconsin. Orientation of aquatic animals especially by olfactory processes.
of Minnesota. Electrical characteristics of living tissues and excitatory processes.
inceton U. Physiology and chemistry of biological clocks. This and following project are part of a broad program to learn more about internal clocks of living systems. bolic rate.
ke U. Migratory behavior of pigeons, of California. Physics of cell division, with emphass on information transfer.
commonwealth Research Institute (Virgin Islands). Intellectual capability of porpoises. atholic U. Setting up a biological mathematics center to interest mathematicians in biology. of Oregon. Analysis of waves in ear
racuse U. Multidimensional information theory. for analysis of patterns.
ircuits of transistors and resistors mounted on 3-by-4-in. circuit boards have been duplicated
he Artron: Neuron-Based Learning Machine An example of an application for neuron anaogs has been designed by R. J. Lee, of Melpar, Inc., who is developing a turtle-type machine with generalized learning ability. The artificial euron on which a theoretical model of the mathine is based is called the artron by Mr. Lee. Like the neuromime, it is in the breadboard tage of construction.
As shown in the drawing, the artron has two nputs, reward and punish, which correspond the excitatory and inhibitory inputs of the Bell Labs and other neuron simulations. Anoher pair of input channels is used in trans(rring signals in logical operations from artron (c) artron in conjunction with a branched output hannel. The logical gating functions of the atron operate in one direction, from the a and inputs (dendrites in actual neurons) to the otput channel (corresponding to the neuron

READ DIRECTLY $1 \mu \mu a$ and $1 \mu \nu$

10 times previous accuracy, drift less than $\pm 4 \mu v$ per day, noise less than $0.2 \mu v$!

New 425A Microvolt-Ammeter

Now make these difficult measurements quickly, easily

Engineering-minute dc potentials, difference voltages, nulls; resistances from milliohms to 10 megmegohms (with external dc source). Also use with Esterline-Angus, other recorders

Physics, Chemistry-grid, photomultiplier circuits, vacuum ion levels, thermocouple potentials, voltaic currents in chemicals
Medicine, Biology-voltages in living cells, plants, seeds, nerve voltages

Use of a photoelectric chopper instead of a mechanical vibrator, insuring low noise and drift. Protection against 1,000 volt momentary overloads. New probe minimizing thermocouple and triboelectric effects. Heavy ac filtering.

Above are but a few of the reasons why the new $-h p-425 \mathrm{~A}$ does the work of complex equipment arrays faster, more simply and with 10 times previous accuracy.
In addition to extremely small voltages and currents, Model 425 A measures resistances from milliohms to 10 megmegohms, in conjunction with an external constant current.

Get complete details today from your -hp-representative, or write direct.

SPECIFICATIONS

MICROVOLT-AMPLIFIER
Voltages: Pos, and neg. $10 \mu \mathrm{v}$ to 1 v full scale. 11 ranges, 1-3-10 sequence.
Current: Pos. and neg. $10 \mu \mu_{\text {a }}$ to 3 ma full scale. 18 ranges, 1-3-10 sequence.
Input Impedance: 1 megohm on voltage ranges, 1 megohm to 0.33 ohms on current ranges.
Accuracy: $\pm 3 \%$ full scale.
AMPLIFIER:
Frequency Range: dc 100.2 cps
Gain: 100,000 maximum
Outpuf: 0 to 1 v , adjustable
Oulput Impedance: 10 ohms,
PRICE: $\$ 500.00$ f.o.b. factory
Data subject to change without notice
HEWLETT-PACKARD COMPANY
5026K PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.
CABLE "HEWPACK" - DAVENPORT 6-7000
fielo representatives in all principal areas

REPORT ON BIONICS

Model of a turtle-type learning machine under development at Melpar, specifies a network of artificial neurons in feedback circuits to modify machine's operation in accordance with reward and punishment signals. Artron unit is a simulation of an actual neuron. Inputs a and b correspond to the dendrites of neurons. Output corresponds to neuron axons. The 16 possible logic states of the artron, which are listed at the right, are selected as required by environmental changes. A possible goal for such a machine would be keeping its source of power charged.

axon). The artron has 16 states and a dela capability.

When the axons of one artron stage are :o dered to the dendrites of another to form a net work, each artron would initially be unspe cialized. The goals of the machine would also be unspecialized. As goals are specified during the course of learning, criteria would be estib lished for adaptation to a wide range of cm vironments. The artrons would gate their a and b inputs according to the alternative binary logic available to them.

Initially, noise generators cause the logic to fluctuate in each artron. For the conditioning process, however, the model rewards or pun ishes itself by means of the goals, according to the trial-and-error feedback. By associating logi that has arisen in each stimulated artron with reward or punishment, the noise generators ar biased to make such logic more persistent less persistent, respectively.

Property Filters

Or how to save "computer" time by

 processing only needed informationAn important characteristic of biological systems has recently been established-property filtering. The concept promises to have perty filtering. The concept promises to have
far-reaching effects on sensing and input systams of the future and has already led to construction of a device that senses " n -ness."
The relationship of a property filter to sensory information processing in general can be

Intercannections s. dative
elements or NUMA--ete.

Wiring of the elements of the active array permits weighting of inputs as shown. Circuit at upper left is for npn units, circuit at lower right, for pnp units. Each photocell is 1 cm sq. Circular drawing at upper right shows relative weights of inputs; threshold corresponds to plus one half.
clarified by quoting a question put by researchers at MIIT, who verified the existence of property filtering in a frog's eye:

The assumption has always been that the eye mainly senses light-whose local distribution is transmitted to the brain in a kind of copy by a mosaic of impulses. Suppose we held otherwise, that the nervous apparatus in the eye is itself devoted to detecting certain patterns of light and their changes corresponding to particular relations in the visible world? to particular relations in the visible world? The MIT team then showed that the frog's
eye actually does deliver a filtered, highlyeye actually does deliver a
organized signal to the brain.
Described another way, a property filter is an information-processing network that preorganizes data for self-organizing systems by extracting from the set of all possible inputs a particular subset defined by the intemal strucparticular subset defined by the internal strucversity of Illinois, describes a simple electronic versity of Illinois, describes a simple electroni
property filter built at his lab as follows:
"The device consists first of the customary finite array of peripheral transducer elements, analogous to those seen almost universally in biological individuals. Secondly, these elements supply signals to a non-adaptive encoding device with a single two-valued output so that all possible input patterns are divided into two categories. When one of these categories coincides with the set of input patterns d^{-}playing what is recognized by its human operators as some particular invariant characteristic, for example, 'having four sides.' 'being a perfect third,' "being hard, ${ }^{3}$, the device can be considered a property filter.

He adds, "It should be noted that each transducer in the input array is in itself a valid property filter insofar as it has a limited or selective sensitivity to certain "environmental variables."

A device called a "numa-rete" has been built at the University of Illinois to demonstrate the concept of property filtering. It automatically counts the number of black objects that are simultaneously "presented on a light field to its 12-by-12-cell "retina," subject to inherent resolution limitations. The device has a similar 12-by-12 array of "ganglion cells" each receiving an absolutely inhibitory signal from its associated retina cell when this is in a lighted part of the pattern.
The network is a rectangular array of photocells connected point-by-point to an indentical array of flip-flops. These are connected bilaterally along rows and columns of the array such that when one is in its "on" state, it will forcethose directly connected to it to go on, provided these are connected to photocells in shadow. Lighted photocells prevent the associated flip-flops from going "on."
Operation begins with all flip-flops in the "off" state. Several distinct shadows of objects of any shape are allowed to fall on the retina, and a flip-flop connected to a photocell under one particular shadow is turned on. All other units under the shadow will go "on" while the remainder of the network is unchanged. A scanning program which turns "on," sequentially, all elements which are "off" and not inhibited by a photocell signal will thus reveal all of the objects in turn. Appropriate output signals are obtained by observing changes in state of the over-all network, there being one of these for each separate object during each scanning program.
Simple extensions of the device could yield size and position information for each object as well, state the designers. At the university, property filtering capability is being built into a sensory device that will serve as input for a sophisticated learning machine (see p 54).

xperience Means Organization

The result is to favor selective re-enforcement a stabilization of rewad logic so artrons become specialized with experience, and organization is promoted in the network. Sponaneity is replaced by consistency as learning proceeds, although the model will alter logic functions to meet changing environmental conditions. Chains or interconnecting circuits and feedback loops composed of artrons can evolve by this process, though present theory is limited fairly uncomplicated cases.
The goals are pro-survival. For example, one goal may be to keep a battery-serving as a primary power source-charged. A trainer may thus charge the battery if the machine is able to recognize elementary patterns. Or the machine may run a simple maze, in a situation not including a trainer, and obtain a charge (and hence a reward) by running up against a battery charger after proper navigation. In general, for simple situations, the machine would tend to learn whatever is necessary to keep its battery charged, or to satisfy other goals which need not be specialized to particular problems. The system would be self-actuating and programed by environment to generate solutions to whatever specific problems may arise.

Bionic "Plugsucker" in Design

A similar device is being planned at the Applied Physics Laboratory of Johns Hopkins University. However, the APL "thinking" machine will be built first with a standard logical network as its brain. Layout work is now in progress on the machine, which will be programed to ride on caterpillar tracks and seek wall sockets to recharge its batteries. The "plugsucker" will be built so its original logic net may be interchanged with a second, neuron-type network. Researchers at APL expect that by observing the organization of the first network they will learn information useful in designing the neu-ron-analog network.
V. J. Caggiano, of APL, has built a neuron simulation based on principles suggested by recent measurements of actual neuron pulse sig. nals. In this simulation, which is diagrammed on p 40 , inhibition is accomplished by "pulling out" pulses from the train of a neuron-analog's output by nullifying the effect of a positive pulse with a negative pulse so that potential at the "synapse" of the artificial neuron is kept below threshold level.
In the APL analog, nearly all of the actual reuron's characteristics are simulated by a multivibrator circuit. APL reports that a one-shot

HERE'S WHY CENTRICORES ARE PROBABLY THE MOST CONSISTENTLY UNIFORM CORES YOU CAN BUY:

The exceptional uniformity you get in tape-wound Centricores is not easy to come by. It's the result of painstaking precision at every stage of the manufacturing process -and, in fact, before manufacturing. Three principal factors help produce Centricore uniformity:
Careful classification of materials-Raw alloys are first "pedigreed"-meticulously selected, then tested for some 14 parameters, and classified by magnetic properties. We're the largest buyer of nickel alloy magnetic materials in the world... which permits us to choose material for Centricores from an unusually wide distribution of magnetic properties.
Special winding machines-We build our own machines, to die-making tolerances, for winding magnetic alloy tape into cores. We also build our own machines for applying insulating coating to the tape. These machines give us far greater uniformity in dimensions, insulation and ultimate performance of Centricores.

Closely-controlled annealing - Annealing-perhaps the most critical phase of the core-making process-is done under precisely regulated atmospheric and temperature stabilized conditions to hold Centricore magnetic performance to uniformly high levels.
Exceptional uniformity from core to core and lot to lot is further assured with Super Squaremu " 79 ", a new high-performance alloy we've developed. It has outstanding magnetic qualities and is remarkably uniform in squareness, thermal stability and gain. Super Squaremu " 79 " offers an effective solution to problems of variation in magnetic performance.
WRITE FOR BULLETIN C-3

SIZE	MATERIAL	THICKNESS
1	HIGH NICKEL Hymu 80 Squaremu 79 Super Squaremu 79	.001*•
THRU	LOW NICKEL Squaremu 49 Carpenter 49 GRAIN-ORIENTED SILICON Crystaligned Microsil	THRU

*Special sizes, shapes and thicknesses quoted on request.

"KEMET" CAPACITORS HELP CONTRIBUTE TO THE PERFORMANCE AND RELIABILITY OF THE BOEING 707 ELECTRICAL CONTROL SYSTEM

Westinghouse Electric Corporation engineers are using "Kemet" capacitors in the control for the electric power system used on the Boeing 707. This most modern a-c electrical power system - each system comprised of a generator, control panel, voltage regulator and current transformer-provides optimum performance
simplified control utomatic pro-
transport operation. components in place of conventional relay circuits to provide reliability equal to that of the equipment being protected. "Kemet" solid tantalum capacitors were specified to help achieve this purpose. These extremely rugged capacitors insure the reliability required to
"Kemet" and "Union Carbide" are registered trade-marks for products of

KEMET COMPANY

RREPORT ON BIONICS

multivibrator gives a fair simulation of the mein known properties of a neuron, except for provid ing an equivalent of the neuron's capability f_{0} adaptation.
In another APL project, neurons are being simulated on an analog computer. Although great many neuron programs exist for digita computers this is believed the only analog simu lation. F. F. Hiltz, of APL, who designed the program for an Electronic Associates 1631 B computer, reports the use of an analog com puter makes programing and wiring change simple. The computer's capability is augmented by attachments.
The program is said to describe the complet generalized cycle of neuron activity from inade quate to adequate stimulus. As in actual neu rons, spacing of pulses in the output signal of the analog computer simulation is pseudo-ran dom. The program makes use of Polissar equa tions, which describe potential across a cel membrane and how potential is transferred alon an axon. To include nonlinear characteristics in the simulator, which the Polissar analog equations do not describe, an attachment consisting of a series of five single-shot vibrators is wire into the computer.
General Electric researchers have reported neuron simulation that exhibits adaptation. In this analog, which is shown on p .40 , each o the inputs is different. Adaptation is initiated within the analog whenever the integral of th output over a given time interval is larger than some specified value. This produces a short lived state during which the firing rate of each cell is reduced.
This artificial neuron was constructed as feasibility model that originated from company studies of neural nets. Though it is not being used at present, it has enabled the company to pursue a more ambitious project under a contract let by WADD.

Neural Activity via Electroluminescence

GE's electronics laboratory at Syracuse, N.Y is developing a single-neuron analog that will be constructed of about 90 pairs of thin-film electroluminescent cells. Most of the elements have nonlinear characteristics, and the finished simulation will be adaptive. The device is reported to be based on equations for neural activity provided by WADD. These equations require the element to perform many multiplications
minimize maintenance and alterations . . . the small physical size needed to reduce power plant bulk . . . and the stability of operation demanded by the power supply to insure maximum efficiency and dependability from the associated equipment. These "Kemet" capacitors, along with the other components of this electrical system, help provide precise instrumentation data to the crew and offer increased safety and comfort to the passengers.

You can apply the proved reliability and performance of "Kemet" capacitors to your equipment. For details, write Kemet Company, Division of Union Carbide Corporation, 11901 Madison Avenue, Cleveland 1, Ohio. designed into each succeedingly larger circuit and subassembly.
The Magnavox designs, on which patents are being sought, result from a design study of a aatellite communications system that was to opvatellite communications system that was to op-
erate without maintenance for one year. So far the company reports that it has successfully designed a family of flip-flops and AND and OR gates. Plans, reportedly, call for inclusion of these logic circuits in the company's own computers. Magnavox says that computers built with conventional techniques to the reliability achievable with quadded computers would be prohibitively large.
Other new approaches to better computer design are being uncovered by bionics research. design are being uncovered by bionics research.
(continued on p 49) ended for inclusion in complex networks in large numbers is that they be reproducible at low cost. GE is attempting to deposit the photoconductive thin films on glass substrates in quantities of hundreds at a time. But the problems arising from reproducibility requirements are reported to be delaying progress. In addition, the minimum size and power requirements specified by the Air Force for the completed unit are said o be hard to meet.
Quads: Redundancy at Component Level
One characteristic of biological systems appears to be the use of redundant components and circuits to achieve reliability. This idea is being exploited at Magnavox, where engineers in the company's research laboratory are elaborating on a revolutionary approach to reliability through component redundancy that reportedly originated at the University of Michigan.
The technique is to quadruple each circuit element in a closed-H configuration with two of the four identical components in parallel and wo in series so that if in any circuit one component fails, three more of that component will emain to function; if two components fail, two will still function; and if three fail, the remaining component will carry on the function of the original four and will enable the parent circuit o operate at a tolerable efficiency.
The values of any components of any "quad" re chosen to give the complete quad circuit he nominal characteristics it needs to function within the parent circuit. This circuit is in turn designed to tolerate the variations that would esult from failure of one or more individual cesult from failure of one or more individual
components, and a similar toleration would be

The Magnavox designs, on which patents are
and summations, which the GE designers have decided will be done by analog methods. Beause the multiplications will be analog, the company is using electroluminescent rather than magnetic thin films, which would have provided digital operation.
One of the requirements of any neuron in-

DISTRIBUTION NETWORK OFFERS MAXIMUM SERVICE TO BENDIX CONNECTOR CUSTOMERS

Imporiant Supplement to Factory Facilities:
This distribution network was built to serve you promptly from strategically located stocks-and is, in effect, an extension of the same quality customer service we maintain at our Sidney plant. Rigid mer service we maintain at our sidetry assembly and quality control standards factory assembly and quality contro standards are observed at all our field locations. Check the
appropriate map section for the source nearest you.

WESTERN STATES

DISTRIBUTION CENTERS:

LOS ANGELES 16, CALIFORNIA
Avnel Corporation, 5877 Rodeo Rd.
SUNNYVALE, CALIFORNIA
Avnet Electronic Corporation of Northern Californio
1262 No. Lawrence Rd. (P. O. Box 568)
SALES OFFICE \& FACTORY BRANCH: los angeles, CALIFORNIA
117 E. Providencia Ave.
Burbank, Calif.
SALES OFFICE:
SEATTLE, WASHINGTON
8425 First Ave. S.

O
NORTHEAST \& GREAT LAKES STATES
DISTRIBUTION CENTERS:
WESTBURY, LONG ISLAND, N. Y.
Avnet Electronic Corporation
70 State St.
MELROSE PARK, ILL
Avnet Electronic Corporation of Illinois
2728 No. Mannheim Rd.
SALES OFFICES:
NEW YORK
545 Cedar Lane
Teaneck, N. J.

CHICAGO, ILL 4104 N. Harlem Ave.

SOUTHEASTERN STATES
DISTRIBUTION CENTER: SALES OFFICE: MIAMI, FLORIDA
Airwork Corporation
1740 N. W. 69th Ave.
ORLANDO F
ORLANDO, FLORIDA
1922 Taylor Ave.

SOUTHWESTERN STATES

DISTRIBUTION CENTER: SALES OFFICE:
DALLAS 7, TEXAS DALLAS 35, TEXAS
Contact Electronics, Inc. 2608 Inwood Rd.
2403 Farrington St.
MIDDLE ATLANTIC STATES
DISTRIBUTION CENTER: SALES OFFICE:
PHILADELPHIA 3, PA. WASHINGTON 6, D. C. Harold H. Powell Company 1701 K St., N. W. 2102 Market St.

EXPORT AND CANADA

EXPORT:
BENDIX INTERNATIONAL DIVIIION,
bendix aviation corporation
205 E. 42nd St.
New York 17, N. Y.

CANADA:

Aviation Electric Ltd.,
200 Laurentien Blvd.
Montreal 9, Quebec

Scintilla Division
Sidney, N. Y.

The Neuristor

Or how to synthesize digital logic functions with only one element and in possibly only one plane
H. D. Crane of the Stanford Research Institute has postulated a search Institute has postulated a neuron-like computer element
called the neuristor that may make called the neuristor that may make
possible compact, versatile compossible compact, versatile com-
puters that would have low-power puters that would have low-power
consumption and only one component.
The neuristor can be considered a two-terminal active device with some of the properties of neurons: attenuationless propagation, uniform velocity of propagation, and refractory period. It would work this way:
Consider a two-terminal distributed active device made of a strip of thermistor material (active device) connected in parallel with an equal length of a distributed capacitor (energy storage), the parallel combination being fed, along its length, by a uniform distributed current (energy source). The distributed current source develops a uniform potential corresponding to the active region of the thermistor structure. In this condition the channel is stable. If the distributed capacity has a magnitude C per unit length, then in this equilibrium condition the channel is characterized by a resting energy of $1 / 2 C V_{0}{ }^{2}$ per unit length.

If any portion of the channel is suitably triggered (ϵ levated to its active region) the energy stored at that portion is released into the channel with a corresponding increase of temperature of the local thermistor material. The increased temperature triggers the adjacent portions of channel, which in turn 'fire,' releasing their stored energy into the channel with a corresponding rise of local temperature, resulting in the subsequent firing of adjacent portions of the channel, and so on.

In this manner, the discharge propagates at a uniform velocity and without attenuation. When the energy at any portion of the channel is discharged, that portion is 'refractory' and cannot again be
fired until its associated energy storage is suitably recharged. This process is characterized in the drawing. The energy condition of the line (or channel) is shown at

the instant of a passing discharge. For some distance behind the wavefront the associated energy storage is in various states of discharge (portion labelled D at t). Behind this region the line is recovering, the associated energy storage being (re) charged from the distributed energy source. This portion is labelled C (for charge). The over-all length of the discharge and charge regions together represents the refractory distance R. A second discharge can follow immediately behind the refractory distance, but not any closer since there would then be insufficient energy to support this second discharge.

A very important consequence of the refractory period is that two discharge waves approaching each other on the same line annihilate each other upon collision, since at the instant of collision there is zero (or low) energy on either side of the collision point and neither wave can 'pass.' This condition is indicated in the time sequence of the figure.
How Neuristors Interconnect
Neuristors may be interconnected in two basically different modes, defined at T junctions and S junctions. A T junction has the property

that a discharge signal reaching it on any line triggers a discharge signal on every other connected line, each signal propagating away from the junction point with uniform velocity. T-connected lines are coupled in their T variable. An S junction has the property that the refractory period following the passage of a wave on any one line is simultaneously experienced by all S-connected lines; thus, all con-S-connected bes; thus, all confractive as the result of the passage of a wave on any one of them. S-connected lines are coupled in their S-variable (but not their Tvariable). The connected lines share a common energy source so that a propagating signal on any one line discharges the (common) energy thereby making all channels mutually refractive (but without triggering discharge waves in the connected lines). A T junction (with three branches) is indicated by the

(b)

heavy dot in the second drawing An S junction (between two channels) is indicated by the crosshatching between the connected channels.

Before considering any simple logic arrangements it is necessary to point out that two waves approaching each other on an S junction, experience the same destructive

collision process as two waves approaching on the same line. The moving block of D-and-C regions, symbolizing the propagating discharge, actually represents the state of energy storage. As a block moves onto an \mathbf{S} region, the block cannot be said to belong to either line, but rather to the pair of lines, since the state of energy is always identical for each of the S connected lines. Hence, the blocks are shown on the same side of the junction, and the collision process takes the same form as already indicated in the first drawing.

How Neuristor Logic Operates

For the development of a logic system, consider first the storage of a binary variable. If a neuristor is close-looped, and is physically longer than one refractory length, then a pulse once started in the ring will circulate indefinitely. Thus the value of a binary variable can

be 'stored' in a ring with the following representation: a pulse circu lates in the ring to represent the value one, no pulse circulates to represent the value zero. The stat of the variable can be read via a T junction as indicated in the figure. If the ring is circulating a pulse P each time the pulse passes the junction it generates a pair of pulse P^{\prime} and $P^{\prime \prime}$; the latter pulse con tinues the circulation and the former represents an output pulse During each 'revolution' of the pulse one output pulse is issued so that the output line carries a uniform pulse train if the variable has the value one, but remains unexcited for a variable value zero

lto

A basic gate structure is indi cated in this drawing. The aim is to control the $M N$ by means of a gate signal G. Thus, with no gate signal applied, a pulse may be signal applied, a pulse may be passed at will over the line $M N$ However, a single gate pulse G
inhibits the use of the line for some inhibits the use of the line for some
interval of time. As long as the interval of time. As long as the
pulse G propagates along the S junction, no pulse may be passed from M to N since it would be sure to collide with G, resulting in the annihilation of both pulses. Define τ as the time of inhibition due to the pulse G

To mhibit the line $M N$ perma nently it is only necessary to excite G from a pulse source whose pulse period T is less than T. A storage ring may be used for this purpose as indicated here, so that if variable

$x=1$ the line $M N$ is permanently inhibited to use, if $x=0$ the line is completely free for use. The struc ture shown controls pulse propaga ion from M to N only, but sym metrical control can be obtained by use of a symmetrical gate. (Note that if $T>\tau$, then a probability of pulse passage along $M N$ is obtained.)

This gate structure represents an elementary example of the logic acility possible with interconnected neuristors. This structure is somewhat analogous to a relay coil and an associated contact. Actually, al digital logic functions may be realized in a simple manner by the extension of this approach.

SARKESTARZIAN SILICON ZENER VOLTAGE REGULATORS

Tarzian silicon voltage regulators, commonly called zener diodes, are constant voltage devices used to control output voltage of power sources and as voltage reference elements capable of operating over a wide temperature range. Hermetic sealing and mechanical ruggedness provide long term reliability even under the most adverse conditions.

Three power classifications cover a wide range of applications.

1/4 Watt Zener Regulators
Specifications $25^{\circ} \mathrm{C}$.

1 Watt Zener Regulators

Specifications $25^{\circ} \mathrm{C}$.

10 Watt Zener Regulators
Specifications $25^{\circ} \mathrm{C}$.

	$\begin{gathered} \text { Tarzian } \\ \text { Type } \end{gathered}$	Zener Volt. (V)	$\begin{aligned} & \text { Test } \\ & \text { C(Mr. } \\ & \text { (Ma) } \end{aligned}$	$\begin{gathered} \text { Dyn. } \\ \text { 1mp. } \\ \text { (Ohms) } \end{gathered}$	Jedec Type	$\begin{aligned} & \text { Tarrian } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Zener } \\ & \text { Voll. } \\ & \text { V) } \end{aligned}$	$\begin{aligned} & \text { Test } \\ & \text { Cur. } \\ & \text { (Ma) } \end{aligned}$	$\begin{gathered} \text { Dyn. } \\ \text { 1mp. } \\ \text { (Ohms) } \end{gathered}$	$\begin{gathered} \text { Tarzian } \\ \text { Typo } \end{gathered}$	Zener Volf. (V)	$\begin{aligned} & \text { Tost } \\ & \text { Cur. } \\ & \text { (Ma) } \end{aligned}$	$\begin{gathered} \text { Dyn. } \\ \text { Cmp. } \\ \text { (Ohms) } \end{gathered}$	$\begin{aligned} & \text { Jodec } \\ & \text { Type } \end{aligned}$
	.25T5.6	5.6	25	3.6	1N708	1 T5.6	5.6	100	1.2	10 T 5.6	5.6	1000	1	1N1803
	.25T6.2	6.2	25	4.1	1N709	176.2	6.2	100	1.5	10 T 6.2	6.2	1000	1	1N1804
	. 25 T6.8	6.8	25	4.7	1N710	176.8	6.8	100	1.7	$10 \mathrm{T6.8}$	6.8	1000	1	1N1805
	.2557. 5	7.5	25	5.3	1N711	1 T 7.5	7.5	100	2.1	10 T 7.5	7.5	1000	1	1 1 1806
	.25T8.2	8.2	25	6.0	1N712	178.2	8.2	100	2.4	1078.2	8.2	1000	1	1N1807
	. 25 T9.1	9.1	12	7.0	1N713	$1 T 9.1$	9.1	50	3.0	10T9.1	9.1	500	1	1N1808
	.25T10	10	12	8.0	1N714	1710	10	50	3.5	10 T 10	10	500	2	1N1351
	.25711	11	12	9.0	1N715	1711	11	50	4.2	10 T 11	11	500	2	1N1352
filt	. 25 T12	12	12	10	1N716	1712	12	50	5.0	10 T 12	12	500	2	1N1353
	. 25 T13	13	12	11	1N717	1713	13	50	5.8	10 T 13	13	500	2	1N1354
	.25T15	15	12	13	1N718	1715	15	50	7.6	10 T 15	15	500	2	1N1355
	.25T16	16	12	15	1N719	1716	16	50	8.6	10 T 16	16	500	3	1N1356
	. 25 T 18	18	12	17	1N720	1718	18	50	11	10 T 18	18	150	3	1N1357
	. 25 T20	20	4	20	1N721	1120	20	15	13	10 T 20	20	150	3	1N1358
	. 25 T22	22	4	24	1N722	1722	22	15	16	10 T 22	22	150	3	1N1359
	. 25724	24	4	28	1N723	1724	24	15	18	10 T 24	24	150	3	1N1360
	.25T27	27	4	35	1 N 724	1 127	27	15	23	10 T 27	27	150	3	1N1361
	. 25 T30	30	4	42	1N725	1 T30	30	15	28	10 T30	30	150	4	1N1362
	.25733	33	4	50	1N726	1733	33	15	33	10 T 33	33	150	4	1N1363
	. 25 T36	36	4	60	1N727	1736	36	15	39	10 T 36	36	150	5	IN1364
	.25739	39	4	70	1N728	1739	39	15	45	10 T 39	39	150	5	1N1365
	. 25743	43	4	84	1N729	1743	43	15	54	10 T 43	43	150	6	1N1366
	. 25747	47	4	98	1N730	1747	47	15	64	10547	47	150	7	1N1367
	.25T51	51	4	115	1N731	1751	51	15	74	10 T 51	51	150	8	1N1368
	. 25 T56	56	4	140	1 1/32	1756	56	15	88	10 T 56	56	150	9	1N1369
	. 25762	62	2	170	1N733	1762	62	5	105	$10 T 62$	62	50	12	1 1N1370
	. 25768	68	2	200	1N734	1768	68	5	125	10 T 68	68	50	14	1N1371
	.25775	75	2	240	1N735	1 T 75	75	5	150	10 T 75	75	50	20	1N1372
	. 25782	82	2	280	1N736	1782	82	5	175	10 T 82	82	50	22	1N1373
	. 25 T91	91	1	340	1N737	1791	91	5	220	10 T 91	91	50	35	1N1374
	.25T100	100	1	400	1N738	17100	100	5	260	10 T 100	100	50	40	1N1375

NOTES: Standard tolerance is $\pm 10 \%$ however, closer or wider tolerances are available on request.
(a) Special voltage ratings.
(b) Symmetrical double anode types (for clippers).

DIMENSIONS

DIMENSIONS
[ain wixp

SARKES TARZIAN SILICON VOLTAGE REGULATOR ZENER DIODES Characteristics and Application

Dynamic Impedance

Dynamic impedance is a measure of voltage change effects on operating current and provides a practical measure of regulating performance.Dynamic impedance is measured by superimposing a small AC current upon
the DC test current and measuring the resultant voltage across the diode.

The following curves show the effects of voltage and current on dynamic impedance.

TYPICAL CURVE FOR $1 T 7.5$

Temperature Coefficient

The operating voltage of a silicon regulator changes with operating temperature. This characteristic must be considered in design. The following curve shows temperature-voltage relationships typical in silicon zener diodes.

VOLTS

Typical Application

REGULATOR CIRCUIT

As the input voltage increases the inverse bias across the zener diode will increase and cause a large current to flow. This increase will cause more current to flow through \mathbf{R}_{1} and increase the drop thereby adjusting the load voltage. Load variations have a similar effect. The result is a substantially constant output voltage.

Determination of $\mathbf{R}_{\mathbf{2}}$ is as follows:

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{t}}=\frac{\mathbf{E}_{\mathrm{s}}-\mathbf{E}_{\mathrm{s}}}{\mathbf{I}_{\mathbf{s}}+\mathbf{I}_{\mathrm{L}}} \\
& \mathbf{I}_{\mathbf{t}}=\left(\frac{\mathbf{E}_{0}-\mathbf{E}_{\mathrm{t}}}{\mathbf{R}_{\mathbf{1}}}\right)-\mathbf{I}_{\mathrm{L}} \\
& \mathbf{P}_{\mathbf{s}}=\left(\frac{\mathbf{E}_{\mathrm{s}}-\mathbf{E}_{\mathrm{s}}}{\mathbf{R}_{\mathbf{1}}}-\mathbf{I}_{\mathrm{L}}\right) \mathbf{E}_{\mathrm{a}}
\end{aligned}
$$

Where:
\mathbf{R}_{1} is the series resistor
\mathbf{E}_{3} is the source voltage
$\mathbf{E}_{\mathbf{1}}$ is the zener diode voltage
I_{5} is the zener diode current
I_{L} is the load current
\mathbf{P}_{s} is the zener diode power dissipation
Where the load current and input voltage are variable:

$$
\begin{aligned}
& R_{1}=\frac{E_{\mathrm{g}}(\min .)-E_{\mathrm{B}}}{1(\max .)+.1 I_{\mathrm{L}}(\max .)} \\
& P_{\mathrm{B}}(\max .)=\left(\frac{E_{0}(\max .)-E_{\mathrm{t}}}{R_{1}}-I_{\mathrm{L}}(\min .)\right) E_{\mathrm{a}}
\end{aligned}
$$

For constant load current but variable input voltage:

$$
\begin{aligned}
& \bar{R}_{1}=\frac{E_{s}(\min .)-E_{s}}{I_{L}+. I_{L}} \\
& P_{\mathrm{s}}(\max .)=\left(\frac{E_{\mathrm{g}}(\max .)-E_{\mathrm{t}}}{R_{1}}-I_{L}\right) E_{n}
\end{aligned}
$$

For constant input voltage but variable load current:

$$
\begin{aligned}
& \mathbf{R}_{1}=\frac{\mathbf{E}_{0}-\mathbf{E}_{\mathbf{R}}}{\mathbf{I}_{\mathrm{L}}(\max .)}+.1 \mathbf{I}_{\mathrm{L}}(\max .) \\
& P_{s}(\max)=\left(\frac{E_{0}-E_{s}}{R_{1}}-I_{L}\right) E_{s}
\end{aligned}
$$

t Stanford Research Institute, a program is uner way that may result in a new logical comonent promising to make possible the synthesis f conventional and unconventional digital logic fonctions with arrays of only one neuron-like dement. This component is called the neuristor y H. D. Crane who hypothesized it and who is gow completing a mathematical model of its bebavior. Though so far hypothetical, the neuristor nay be realized as a distributed two-terminal active device in the form of a length of thermistor or four-layer diode material.
The neuristor (see box on p 48 for detailed description), has attenuationless propagation, uniform velocity of propagation, and a refractory period. These are also the gross properties of the axon portion of a biological neuron. In the beuristor, a signal is propagated along a onedirectional channel as a discharge. Following the discharge is a refractory period during which a tecond discharge cannot be supported. Therefore, the neuristor may be considered a distributed version of a chain of suitably interconpected lumped-circuit monostable circuits.

Homogeneity Called Key to Neuristors

Mr. Crane calls homogeneity the key characeristic of neuristor systems. On one level neurisors are homogeneous because, as a totally distributed active-passive structure, they are both device and wire in one. Also, as mentioned, logic etworks can be derived with neuristors only, with no passively interconnected active lumps. Another form of homogeneity results from inormation signals throughout the system being lescribable in identical variables. There are no ransducers; there is only one technology inrolved in the whole system.
Still another form of homogeneity exists, Mr. Crane reports. With neuristors, any digital logic stem, planar or not, may be realized in a twodimensional plane. Neuristors need not cross in hree dimensions, but may be made to connect in a plane while preserving non-interacting propagation properties.
Mr. Crane's work is being supported by the Hfice of Naval Research.

Perceptron Research Expanding

()f all bionics projects, the most advanced in le elopment, and the most widely known, are hese connected with perceptron research. Perreptrons are systems of particular types capable of performing cognitive functions such as recg lition, classification and learning, either theoel cally or in actual practice. They may exist is nathematical analyses, computer programs or as hardware. They are self-organizing systems pa ed on principles believed operative in the * rircle 43 on reader-service card

EL:CTRONIC DESIGN • September 14, 1960

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
AmP products and engineering assistance are available through subsidiary companies in: Australia•Canade - England - France - Molland - Italy • Japan - West Germany CIRCLE 44 ON READER-SERVICE CARD

AMP PINBOARDS can do a host of dry circuit switching or commoning functions . . . permit numerous matrixes in one assembly. Complicated switching functions can be accomplished by simply inserting or removing a pin.
You can use these PINBOARDS as modular building blocks for instrumentation applications, automated tooling, test equipment, data processing any variety of size and grid arrangements in multiples of a basic 15×5 hole pattern. Contact springs can be bussed in any combination desired. And for safety, there are no exposed conducting surfaces on the rear side of the board. The conducting area of the pin is safely inside board before contact is made with mating springs.
AMP PINBOARDS are factory pre-wired to your specifications . . . with standard or special silk screen legends. Designed for simplicity flexibility . . . reliability . . . with three amperes continuous current rating.

Write for complete specifications.

T-

Waters new PT $3 / 4$ and MIL-R-19/1A

At less than half the cost of the only other comparable unit, Waters introduces a new $3 / 4^{\prime \prime}$ plastic case pot completely meeting MIL-R-19A and MIL-R-19/1A specifications! A true military pot at a commercial pot price! " O " ring shaft seal and complete internal sealing virtually eliminate humidity, salt spray and similar environmental problems. Provides the same protection as encapsulation in less space. Resistance range (ohms), $\pm 5 \%, 1$ to 20,000 . Electrical and functional rotation, 355° without stops; 300° with stops. Dissipates 1.5 W at $40^{\circ} \mathrm{C}$. Torque, .3 to 6 oz ./in. Weight, .02 lbs . Available with split or plain bushings, $1 / 4^{n}$ or $3 / 8^{n}$ in diameter. Write for Bulletin PT 760.

OTEMTIOMETERS - COIL FORMS - POT HOOK(8) PANEL MOUNTS - TORQUE WATCM® CAUCES - C'TROL(B METER/CONTROLLER - IMSTRUMENT CIRCLE 45 ON READER-SERVICE CARD

The Original Perceptron

Now hard at work on bionics research
Organization of the famous Mark I perce ron built at Cornell Aeronautical Laboratin is shown in this simplified schematic. Th sensory S-units translate the stimulus patter shown to the perceptron by an array of phote resistive cells into a set of discrete signals. Th photocell currents actuate transistor-drive photocell currents actuate transistor-drive elays which supply he excitatory and inhib tory (plus and minus) S-unit output signald plies both signal polarities to a large patcl plies both signal polarities to a large patc
board. Because 20 output connections are avail board. Because 20 output connections are avail
able for each signal from an S-unit and ther are 400 S -units, with bipolar outputs, the ran domly connected patch board has 16,000 avail able output connections.
The A-unit inputs are transistor-driven rela circuits with a common threshold. They an data-digesting units so connected and numer ous that their responses constitute a statistic analysis of input information. When an A-un becomes active, its relay closes and connect the A-unit to the output; it connects the inte grator and applies voltage to an indicatin lamp. Each A-unit integrator consists of a d motor driving a potentiometer. The voltage of the potentiometer arm provides a measure
human brain, and have as their basic elemen neuron-like components.
The original perceptron, developed by Dr Frank Rosenblatt, of Cornell Aeronautical Laboratory, grew from a mathematical, to a com puter, to an electronic, model. It is now used for experiments in further perceptron research bi teaching it to recognize and classify visual images (see above).

As an approach to designing an adaptive per ceiving machine, the original, Mark I perceptron has proved remarkably successful, in the opinion of many. In addition, it has led to much analyti-
all A -unit value. A second potentiometer on the same shaft provides a local feedback loop to all.,w decay of the A-unit value with time. Nurmally, the decay voltage is applied only during the resetting of the A -unit to its zero position for the start of tests. There are 512 A-units in the Mark I perceptron; Mark II, now in design will have many more.
The R-units are two-state devices consisting of a de amplifier driving a relay. The R -unit input signal is the sum of a set, the source set, of A -unit outputs. They complete the sequence that makes the perceptron's over-all response a function of input patterns stimuli. The R -unit provides a visual indication of this state, which is actually the perceptron's output. It also transmits a reinforcement signal to its source set of A-units. This is done by a human operator during training. If an R-unit decision is incorrect the operator forces the perceptron to correct its decision, which it does by feedback signal to the integrator motor of each active Asignal to the integrator motor of each activ
unit to cause it to reset its potentiometer.
unit to cause it to reset its potentiometer.
During training, the signal paths which are frequently active for one class of training patterns tend to have their value settings frequently modified. This becomes a selection process leading to some A-units acquiring a stronger or weaker voice in each of the various response cliques to which their connections relegate them. There are eight R-units on the Mark I. Originally built to verify mathematical analyses of perception operation, the Mark I analyses of perception operation, the Mark I
electromechanical perception now successfully electromechaterns with the help of an opera-
recognizes patter tor who forces it to make the right identification decision if the machine errs. The perceptron can identify all letters of the alphabet after 15 exposures of each, if its operator corrects mistakes during training. Bank of relaydriven A-units is shown.
cal and design work at more than a dozen organizations. Two similar experimental adaptive machines have been built that are said to be capable of perception.
One built by Aeronutronics Div., Ford Motor C_{1}., to learn logic functions, operates similarly to the Mark I perceptron but uses modified Biax m ignetic core components as storage units to give non-destructive readout (see box, p 52).
The other, an "adaptive reorganizing automaton," exists in an early version at the University of Illinois, and appears to be the most adaptive machine yet built. Its basic neuron element is

NOW AVAILABLE FROM YOUR CORNING DISTRIBUTOR

Now you can produce experimental or small-production-run printed circuits fast and economically in your own lab... just 15 minutes of simple processing with this new copper-clad FOTOCERAM grid board from Corning.
Ideal for use under severe conditions. Its strong non-organic glassceramic base material is dimensionally stable, non-flammable and unaffected by temperatures up to $250^{\circ} \mathrm{C}$. Copper circuit pattern stays put. FOTOCERAM has zero water absorption and is impervious to chemicals that tend to peel the circuits from ordinary grid boards.

Replace components again and again if you wish . . . resolder them up to 50 times without circuit-run failure. Unexcelled through-hole plating permits two-side circuitry.

Obtain FOTOCERAM grid boards fast from your distributor. . . same day delivery at factory prices. Call him now for complete information order your samples.

CORNING
ELECTRONIC COMPONENTS
Distributed exclusively by
EBL LISTRIBUTOR DIVISION

SPECIFICATIONS:

three standard sizes $3^{\prime \prime} \times 5^{4}, 6^{7} \times 8^{17}, 9^{71} \times 12^{\prime \prime}$ thickness .062". component mounting holes $.052^{\prime \prime}$ diameter $\pm .005^{\prime \prime}$ on $0.1^{1 /}$ centers.

Another SPEED NUT brand fastener...

Just a thumb-push.... and steel teeth fasten steel with Tinnerman "U" CLIPS

Twin-action gives this Tinnerman "U" Speed Clip ${ }^{n}$ extra holding power in fastening together two sheets of metal, plastic or wood without screws . . . the heat-treated spring steel tension in the " U " exerts a clamping action . . . the tiny upset barbs bite in and hold on for keeps.

Cost of assembly is substantially reduced when you use Tinnerman " U " Clips for fastening . . extra assembly steps are eliminated... no special tools or skills are required... and Tinnerman "U" Clips hold for good!

Speed Nut Brand "U" Clips are easy to apply . merely thumb-push them over the edges of the panels. A variety of Tinnerman fastener features can also be incorporated with the "U" Clip principle... cable clips, protruding legs to hold glass panels in lighting fixtures, and others.

Call your Tinnerman Speed Nut representative today . . if he's not listed in your "Yellow Pages"Directory under"Fasteners", write direct.
TINNERMAN PRODUCTS, INC. Dept. 12 . P. O. Box 6688 - Cleveland 1, Ohlo

storage units change value with each input pattern, according to a logic table, and, "forcedconditional," in which values change only if the decoder signal disagrees with that of the learning network.
The summing amplifier is a Kirchoff adder; the comparator adds a signal to a sum and detects and amplifies the resultant voltage; logical output is obtained by transistor-gating one of two clock signal sources onto the output bus.

Aeronutronic is now designing a larger version of the learning machine which will have 100 neuron-type biax elements, and, unlike the Cornell Aeronautical Laboratory perceptron, will be interconnected non-randomly. In addition, its input array of photocells will have property-filtering capability.

§:hematic of integrator in-
cudes one resistor for sum-
ring.

350° Hot Spot-125 Ambient New Precision Power Resistors

A new high-temperature coating-Thermacoatdeveloped by IRC is responsible for the outstanding performance of IRC miniature power wire wound resistors.
These resistors meet MIL Characteristic V with a hot spot temperature of $350^{\circ} \mathrm{C}$, well above the $250-275^{\circ}$ customary for resistors of this type.

Thermacoat Resistors have all the other advantages you want-small size, close tolerance, high moisture resistance, high dielectric strength, allwelded construction, high temperature tinned leads and permanent marking. And they're available at a 125° Ambient in the same wattage ratings as regular power wire wound ratings!
Write for Bulletin AE-18, International Resistance Company, 401 N. Broad St., Philadelphia 8, Pa.

Ratings: $2,3,5,7,10$ watts (125° ambient)
Standard tolerances: $1 \%, 3 \%, 5 \%$ (MIL); Special Tolerances to 05%, depending on range
Resistance ranges: Minimum 0.1 ohm; Maximum 20K to 175K ohms
Dielectric Strength: 1000V-RMS Min
Non-inductive resistors available

Leading supplier to manufaclurers of electronic equipment

ILECTRONIC DESIGN • September 14, 1960

An Active Neuron and the Automaton it Serves

This "elementary unit" of the University of Illinois "adaptive reorganizing automaton" is believed to be the only neuron simulation that is truly active-one that gives a response when there is no stimulus. It is the basic building block of the adaptive machine, which has ing block of the adaptive machine, which has learned to recognize such situations as a person
walking from left to right across the field of its walking from lef
The neuron analog in the block diagram shown above is composed of three basic units and is shown connected in one of a great many possible arrangements. In this neuron, there are three each of excitation, inhibition, threshold, and continuous threshold inputs, and one outand on the energy transducer unit. In addition, there are two inputs (plus and minus) and one output on each facilitator unit, for a total of 21 inputs and one output for only three basic components.
Each of the components is flexible. The energy transducer, which corresponds to a neuron cell body and assimilates information from all parts of the automaton, can serve as an OR or an AND circuit, a summing circuit, a pulse-repetition-rate divider or multiplier
and in many other functions. Its summing unit exercises a control function; its pulse unit generates a standard pulse when the input signal exceeds threshold.

The autonomous unit triggers the energy transducer and makes possible the active operation of the neuron simulation. Its detector unit is basically a pulse inverter. Its pulse unit has an internal control potential that increases in the absence of an input until it exceeds a threshold and triggers firing of an output pulse, which starts another cycle.

The facilitator unit, reportedly the most difficult-to-design circuit in the automaton, corresponds to the synapse of a biological neuron-in function, the plastic storage element of the cortex. The facilitator gives the automaton its ability to change its function with regard to its environment, past or present. It is a variable conductance unit which varies to increase the ability of information to flow over a path between two points when that path was used more than other paths, and is also a unit which remembers or stores this used information (not the information transferred)-for periods measured in hours.
puter lab, perceptron or adaptive machines i_{1} volve a tradeoff of complexity between that of the elementary neuron component and that of the machine as a whole. If the basic component is relatively simple, greater numbers of then have to be included and their interconnections have to be more complex. He believes such machines of the future will have relatively few but more complex and active trial-taking components, property filtering capability and the ability to forget adaptively.
Researchers at Cornell Aeronautical Laboratory, however, believe that future perceptrons may have hundreds of thousands of neuron-like elements. Such a quantity may make neuronbased machines very useful in industrial, military and many other applications, but would fall far short of the 10^{10} neurons believed contained in the human brain.

In commenting on the present perceptron, Dr. Frank Rosenblatt, of CAL, sums up the state of much bionic designs as he says, "The perceptron has been kept consistent, as far as possible, with current anatomical and physiological data on the number of neurons, logic of connections, degree of individual unit reliability, random variation in 'wiring diagram,' and types of signals em ployed in biological systems.
"The fact that a system which is consistent with these constraints begins to show some of the 'psychological' properties of biological systems suggests that we may possibly be on the right track in trying to understand the operation of such systems, but it is by no means conclusive. Viewed as a biological model, the perceptron is entirely hypothetical, and still requires experimental confirmation before any real claims can be made for it."
Making these comments, Dr. Rosenblatt speaks for many workers in bionics, who realize that only the surface of biological knowledge is being scratched for electronic applications. But unsure foundation notwithstanding, a substantial amount of developmental bionics work is going on.
In bionics there already is a state of the art and researchers are looking forward to the next generation of projects. A New York company is designing an airborne ground-speed indicator after the sensory, correlation, and control features in the navigating system of the Beetle. The Navy is thinking about a billion-gate bionic computer, and at the University of Illinois, research ers hope to interconnect electronics equipment with living creatures to bypass the design of analogs.

Bionics has a present, and appears to have a bright future. - -

NEWS

Radiation Effects on Components Studied With New Army Reactor

Radiation effects on military electronic components are being studied with a new research reactor. The reactor, capable of providing short pulses of intense nuclear energy, is being built by the Army's Diamond Ordnance Fuze Laboratory and the General Dynamics Corp.

The pulsed Training Research Isotope (Production) General Atomic reactor (TRIGA) is designed to produce intense but self-limiting pulses of neutron and gamma-ray radiations for short periods at repeated intervals.

The TRIGA reactor core will be suspended from a movable carriage, permitting the exposure of samples in either a dry, shielded exposure room or a water-filled pool. Lead shielding doors separating the exposure room from the pool irradiation area can be closed to give access to the exposure room while the core is being used for other experiments in the pool.

SEIC Issues Newsletter For Military, Civil Readers

A newsletter, highlighting events in solar energy of interest to the military, is being published by the Solar Energy Information Center.
SEIC has been established at the U. S. Army Signal R\&D Laboratory, Fort Monmouth, N.J., under the direction of the Department of Defense. The Laboratory's Power Sources Div. directs this Center for the purpose of collecting, collating, analyzing, and disseminating technical information on projects, programs, and research activities in the three military departments and those civilian organizations concerned with the collection and conversion of solar energy into forms suitable for military use.
The newsletter will emphasize those materials and processes which are related to the conversion of solar energy to electrical power. Technical information in other areas in the field of solar energy, such as heating, cooking, distillation, photosynthesis, will be reported when it may be related to the military services. Other items will also be reported.
Contributions from those persons engaged in risearch and development work relating to militiry applications of solar energy, should be sent to: SEIC Newsletter, Arizona State University, Tempe, Ariz. Requests for copies of the newslettir should be addressed to: Commanding Officer, I. S. Army Signal R\&D Laboraiory, Fort Monn outh, N.J., Attn: SIGRA/SL-PS.

A real heel might test a Fusite Terminal like thisbut he won't make it leak!

The adherence between glass and metal in a Fusite Hermetic Terminal is an easily demonstrated fact. There are several theories as to why our exclusive V-24M glass actually chemically bonds to the metal components. Cobalt and certain other metallic oxides in the glass oxidize the iron in the metal which is taken into solution. It is believed that through the solution of iron, a gradual decrease of the difference of thermal expansion
 between the glass and metal takes place at the glass-metal
interface. This inter-fusion of the two dissimilar materials gives Fusite Terminals their ability to withstand great mechanical and thermal shock and still pass Statiflux tests for glass cracks, hydrostatic pressure tests and helium mass spectrometer leak detection.
This fusion is reinforced by a strong compression of the metal ring around the glass made possible by a favorable thermal expansion balance of the glass, pins and housing.
The combination of fusion and compression provides a terminal so rugged that leaker rejection rate of components into which our terminal is fabricated is practically nil, even when roughly handled and subjected to extreme temperature changes.
Samples for your own testing are yours for the asking.
Write Dept. C-5.

© TERMINALS
m protect paoouct

THE

NEW ACCELEROMETERS-After comprehensive design-proof testing Endevco introduced the 2220 series accelerometers in 1959. The unique physical design of this series is now further enhanced by Piezite Element Type VI, a product of Endevco electroceramic research. This new crystal makes possible the unequaled combination of complete case isolation, high natural frequency (to 70 KC) and sensitivity ($\mathrm{to} 15 \mathrm{mv} / \mathrm{g}$) in a versatile configuration of small size and light weight. Now Endevco announces, ot no increase in price:

UNIQUE NEW "C" MODEL - GENERAL PURPOSE - 350° F ACCELEROMETERS HIGH NATURAL FREQUENCY - LARGE SENSITIVITY - The 2220 Series retain these essential characteristics of all Endevco Accelerometers. The natural frequency of the mounted accelerometer is determined by actual frequency response and phase shift plots. Large sensitivity insures high signal to noise ratios over a wide dynamic range.
CASE ISOLATION - Complete case isolation prevents errors due to structural bending and high acoustic noise fields.
LOW CROSS AXIS SENSITIVITY - The annular design reduces cross axis sensitivity. Nominally 2-3\% in the maximum axis and 0% in the minimum oxis. A maximum of 1% in any axis can be supplied on special order.
OPERATING TEMPERATURE OF $+350^{\circ} \mathbf{F}$-PIEZITE® Element Type VI makes possible a general purpose accelerometer with sensitivity vs. temperature linearity of $\pm 10 \%$ from $-65^{\circ} \mathrm{F}$ to $+350^{\circ} \mathrm{F}$ without external swamping capacity. A maximum of $\pm 5 \%$ variation of sensitivity vs. temperature can easily be obtained with the addition of external capacity.
NBS TRACEABILITY - Every Endevco Accelerometer is provided with complete calibration dato: Frequency response from 20 cps to 4 kc , cross axis sensitivity, capacity, voltage and charge sensitivity. Basic calibrations are traceable to the National Bureau of Standards as required by Mil. Quality Control procedures. Special calibrations of frequency, temperature and transient characteristics are available on request.

1. MODEL 2221C - The unique ring configuration permits ease of mounting in corners with long cables ottached in limited space. Integral electrical ground isolation makes the Model 2221C ideal for etther bolt or cement installation. Nominol sensitivity 15 pk -mv/pk-g-Capacity $750 \mu \mu \mathrm{fd}$-Weight 9 grams.
2. MODEL 2223C - Accurate triaxial vibration measurements can be made with minimum space (1 " $\times 1^{\prime \prime} \times 58^{\prime \prime}$) and weight (1 4 ounces) Integrol electrical ground isolation is provided Nominal sensitivity $10 \mathrm{pk}-\mathrm{mv} / \mathrm{pk}$-g - Capacity $750 \mu \mu \mathrm{fd}$ - Meets M, I-E-5272B
3. MODEL 2224C - Small size - top connector - $10-32$ or $1 / 4$ - 28 insulated mounting stud avallable for ground isolation Nominal sensitivity $10 \mathrm{pk}-\mathrm{mv} / \mathrm{pk}$-g - Capocity $750 \mu \mu \mathrm{fd}$ - Meets Mil-E-5272B
4. MODEL 2225C - NEW Shock Accelerometer Notural Frequency obove 70 kc - Nominal sensitivity 1.0 pk -mv/pk-g - Capocity $750 \mu \mu \mathrm{fd}$ - Size $9 / 16$ hex. by $052^{\prime \prime}$ high

WRITE DIRECT TO DEPARTMENT S FOR LITERATURE ENDEVCO CORPORATION 161 EAST CALIFORNIA BOULEVARD PASADENA, CALIFORNIA. TWX: 7764 CABLE: ENDEVCO SYCAMORE 5-0271

NEWS

Mobile TV Tape Recorder Used in Army Classrooms

Mobile TV tape-recording equipment is providing live quality TV pictures of vehicle mainte. nance demonstrations and other training activities for classroom viewing at the Army Transportation Training Command School at Fort Eustis, Va.
Tapes are played back over a closed-circuit TV system linked to 22 classroom receivers. In addition to two mobile units, the school's TV facilities include a main studio, equipped with three RCA cameras, for live programming and slide and film presentations.

The tape-recording equipment has enabled the Army to build a library of instruction courses on a wide variety of transportation subjects, with pictures of live pickup quality recorded at widely scattered points on the post. Also they have a permanent record of individual presentations which are readily available for classroom use when an instructor is occupied with other duties.

The recorder is carried in a specially designed van which provides space for both the recorder and allied control equipment. A second mobile unit, equipped with two RCA cameras, is used for live pickups from maintenance, repair, and other work areas, with pictures relayed over the closed circuit hookup. The units can be operated independently, or used in tandem for remote spot pickups and simultaneous recording of training scenes.

Symposium on Space Electronics To Be Held in Washington in Fall

The Professional Group on Space Electronics and Telemetry will sponsor the Fifth National Symposium concerning this field at the Shoreham Hotel in the nation's capital on September 19-21 This year's symposium will emphasize discussion of new design philosophies and advances in the state of the art.

The program is organized around ten panel sessions, each directed by a chairman prominent in a particular technical field. Plans are to prepublish the panelists' papers in the symposium proceedings and limit paper presentations to highlights.

A brief summary indicates there are many well known panelists on the program such as Dr. Law rence Rauch, University of Michigan; Dr. Sonnett, Space Technology Laboratory; David Hogg, Bell Telephone Laboratory and Dr. Eberhardt Rechtin, Jet Propulsion Laboratory.

Scandinavian Science Center Established in Washington, D.C.

A Scandinavian Documentation Center, SCANDOC, has been opened in Washington, D.C. Its purpose is to further the mutual exchange of scientific and technical information and documentation between the Scandinavian countries on the one hand, and the U.S. and Canada on the other.
SCANDOC is a non-profit organization, rendering free service to all interested parties and it is financed and directed by the Research Councils and Science Academies of four Scandinavian countries through their common Scandinavian Council for Applied Research.
Headed by Arne Sverdrup, SCANDOC will procure non-classified and non-confidential documents and information and channel this to the respective interested countries through information offices organized under the research councils and academies of the countries. It is the first time that an international office of this kind has been established in Washington.

Titan's Underground Launcher

Titan ICBM check-out missile is in firing position in the underground launcher designed and built by Imerican Machine \& Foundry Co. of New York. The nissile is fueled and guided from the underground aunching complex. During the last few minutes of the ountdown the doors open and the missile raised to jround level for launching.

This dependable Dunco relay "family" paves the way to practically any needed industrial control sequence, "memory" or operational circuitry feature.

Smaller, moderately priced and requiring less operating power, Dunco 219 Frame relays have revolutionized many control panels previously "over relayed" with larger, more costly contactor type units than needed.

Now, in matching types, Dunco offers 255
mechanical latch, electrical reset and Frame 211 sequence relays.

All feature 12 -pin plugs with heavy-duty industrial sockets. Contacts are conservatively rated at 10 amperes. Standard 150 volt electrical spacings are used throughout. All three types are designed for maximum control panel simplification and in minimum size for dependable service over millions of operations.
Write for Data Bulletins on any type to Struthers-Dunn, Inc., Pitman, N. J.

EXPERIENCE... PROVING GROUND FOR QUALITY

ITT SILICON RECTIFIERS

Product acceptance is a direct result of product quality. Case in point: ITT's broad line of silicon rectifiers. The result of years of intensive research and development by the world-wide ITT organization, these rectifiers are widely used, widely recognized for performance and dependability. The unique design characteristics of ITT rectifiers, a result of advanced diffusion tech-

niques, set new standards of reliability and efficiency for today's design engineers. Manufactured to conform with military requirements.
ITT Zener diodes available in stand ard tolerances of $\pm 5 \%$, and $\pm 10 \%$, closer tolerances available on request. Ask your distributor for ITT's new Silicon Buyer's Guide and Price Schedule.

For all your design needs, choose from ITT's world of silicon devices. Prompt off-the-shelf deliveries, factory prices up to 999 pieces, full factory warranty.
CALIFORNIA:
Zack Electronics 1422 Market St. San Francisco NEW YORK:
Progress Electronics Co. Bruno-New York Inc
107 Franklin St.
N. Y. C. Richey Electronics, Inc. Newark Electronics Corp 10816 Burbank Blvd. 4747 W. Century Blvo. North Hollywood Inglewood ILLINOIS:
Newark Electronics Corp.
223 W. Madison St.
Chicago

CIRCIE 52 ON READER-SERVICE CARD

DISTRIBUTOR PRODUCTS DIVISION INTERMATIONAL TLLEPHONE ANO TELEGRAPH CORPORATIOM
PO BOK 99. LOOI. MEW JERSEY

NEWS

Magnetic Videotape Employed On Undersea Video Recorder

An undersea magnetic videotape recorder is being used aboard the U.S. nuclear submarine Sea Dragon. The videotape will record and stare data on under-the-ice characteristics of icebergs and ice flows through use of externally installed TV cameras. The recorded information will be used to speed navigation training of U. S. Navy submarine personnel.
According to the developers, Reeves Sound craft Corp. of Danbury, Conn., Soundcraft mag. netic tape was also used in the development of the Radio Corp. of America undersea recorder. The recorder itself has been transistorized and is approximately 60 per cent smaller than exist ing videotape recorder equipment. It is reported small enough to fit on a torpedo rack

Five Major Computer Makers To Cooperate at Business Show

Five U.S. manufacturers of data-processing equipment will exhibit nearly $\$ 2$ million in equip ment at next fall's National Business Show in New York City.
A special exhibit, called "The CompuCenter," will include the following, according to present plans: the Bendix G-15 general-purpose digital computer and a line of accessory equipment Control Data Corp.'s Model 160 computer and Model 180 data collector, Philco S-2000 generalpurpose data-processing equipment, RCA 501 data-processing equipment, and Remington Rand's Univac 90.

The National Business Show will be held in the New York Coliseum from Oct. 24 to 28.

Digital Servo System Under Development at Lear

A digital servo system is being designed and de veloped by Lear, Inc. of Grand Rapids, Mich under a contract from the Lockheed Missile and Space Div.
This phase in ground-support equipment involves servo driving and controlling the tilt and translation of a mirror system capable of assuming 200 positions in each of two axes. A memory-tape device provides automatic sequencing and instantaneous readout of all positioning data. Digi-tal-control techniques are used throughout, and an error detecting system is a part of the design. The control panel offers an automatic mode
A digital servo system is being designed and translation of a mirror system capable of assuming
commanded by a tape, a pre-select mode and a m.nual mode using push-button and dials. According to Lear, it is designed in accordance with the latest human engineering specifications. A precision gear train drives a digital shaft encoder for the tilt axis and another is provided for the translation axis. A block-type reader reacts to a prepunched tape using the binary decimal system.
The design calls for off-the-shelf items of digitalized hardware and circuitry. Solid state components and miniature relays are specified to achieve a minimum package.

First Suit Designed to Protect Against RF Radiation Is Tested

A suit designed to be worn by workers in areas of high-density rf radiation is undergoing final tests by its designers.
Leonard Milton, vice president of Filtron, Co., Flushing, N.Y., which developed the suit, reports that the garment is the first one developed for protection against the hazards of rf radiation. The garment is said to give protection in environments of 10 w per sq $\mathrm{cm}-10,000$ times the limit set for Air Force personnel.
The outside covering of the four-layer garment is neoprene-coated nylon, which encloses a double interlining of coarse, dence nylon mesh. Thread filaments of the mesh are treated to reflect and absorb radiation. The inner lining is nylon silk. A wire mesh visor protects the faces.
The suit is a one-piece garment with integral socks and mittens. It requires assistance to get in and out of it, Filtron reports.

juit to protect against high-density of radiation is nade of neoprene-coated nylon with nylon linings. Visor is wire mesh.

OAK Switches for Tough Jobs!

(File these tough MILITARY and INDUSTRIAL solutions for future reference)

OVER 2,000,000 OPERATIONS PER BUTTON (AND NO MAINTENANCE) IS REQUIRED FOR THIS TICKET RESERVATION APPLICATION.

MORE THAN $5,000,000$ OPERATIONS WITHOUT FAILURE IN LIFE TEST BY ORGAN BUILDER.

NO FAILURES . . . NO MAINTENANCE IN MORE THAN 50,000 CYCLES AT THIS CONSTANT AMBIENT OF $150^{\circ} \mathrm{C}$.

(O) 疋

MANUFACTURING CO.
1260 Clybourn Ave., Dopt. D, Chicago 10, III. - Phone:MOhawk 4-2222 West Coast Div.s Oak Electronies Corp. 11252 Playa Court, Culver City, Calif.

Phones EXmont 1.6367

WITHSTANDS MORE THAN 200 G's OF SHOCK FROM GUN RECOIL, ETC. NO MAINTENANCE OR REPLACEMENT.

AFTER YEARS OF RADIO FREQUENCY SELECTION IN MIIITARY AND COMMERCIAL AIRCRAFT, THE FAIL. URE RATE IS STILL NOT CALCULABLE.

Your tough switoh job may be

 easier to handle than you thinkAlmost any environmental condition can be met within the rated capabilities of Oak Switch designs. The exotic applications, such as shown above, require merely changes in materials, finishes, and details which have been developed exclusively by Oak. Whether you require such extreme operational characteristics or not, you still receive the same basic trouble-free design. Many switch users have found that an Oak type switch does an equal or better job than other types-and at considerable savings in cost. You may, too. Send in your application, today.

NEWS

Stereo blends into Old-Boston-inspired music room.

Miniature anmoire holds dining-r(x)m TV in French Provincial dining room.

Traditional stereo design against contemporary wall.

Early-American design in stereo set fits into Southwestern decor.

MULTIPLE SOURCES MAKE GOOD SENSE-in design, in purchasing, in production. And when you develop an additional source which gives you prompt delivery, top quality, reasonable
pricing and truly creative service... you make your whole job much easier. For example: when your circuit calls for high voltage transistors, you call for Clare. C. P. CLARE TRANSISTOR CORPORATION, 260 GLEN HEAD ROAD, GLEN HEAD, L. I., NEW YORK, or contact your nearest C. P. Clare \& Co. sales office.

CLA
Characteristics at $25^{\circ} \mathrm{C}$

	$\begin{gathered} \text { Min. } \\ \mathbf{B V}_{\text {cBo }} \end{gathered}$	$\begin{aligned} & \text { Min. } \\ & \mathbf{V}_{P T} \end{aligned}$	Sab	$\begin{aligned} & \text { Min. } \\ & \mathrm{h}_{\mathrm{FE}} \end{aligned}$	Max. Rated Dissipation
2N398 (PNP)	-105Vdc	-105Vdc	-	$\begin{aligned} & 20 \mathrm{at} \\ & \mathrm{I}_{\mathrm{c}}=-5 \mathrm{mAdc} \end{aligned}$	50 mW
CP398 (PNP)	$-105 \mathrm{Vdc}$	-105Vdc	Imctyp.	$\begin{aligned} & 30 \text { at } \\ & \mathrm{I}_{\mathrm{c}}=-5 \mathrm{mAdc} \end{aligned}$	150 mW
2N1310 (NPN)	+90Vdc	+ 90Vdc	-	$\begin{aligned} & 20 \text { at } \\ & \mathrm{I}_{\mathrm{c}}=+5 \mathrm{mAdc} \end{aligned}$	120 mW
CP98 (PNP)	-65Vdc	-65Vdc	4 mc min.	$\begin{aligned} & 30 \mathrm{at} \\ & \mathrm{I}_{\mathrm{c}}=-30 \mathrm{mAdc} \end{aligned}$	150mW

CIRCLE 54 ON READER-SERVICE CARD

This Size 8 motor tach ($.75^{\prime \prime}$ diameter; weighing 2.72 ounces) is an example of the engineering and production capabilities of Sperry Rand's Wright Machinery Company. Investigate this dependable source for precision motors and related components whenever your requirements demand exacting specifications. We will be glad to work with you.

Rotor Moment of Inertia-0.18 GM.-CM. ${ }^{2}$
Mechonical Time Constont- 0.01625 SEC.
Theoretical Acceleration @ Stall-58.800 RAD./SEC. ${ }^{2}$
Average Acceleration to 63.2% N. L. S. 41,600 RAD./SEC. ${ }^{2}$

WRIGHT MACHINERY COMPANY оURНам. погтн саRоLINA DIVISION OF SPERRY RAND CORPORATION

NEWS

Ammonia Batteries Suggested For Stand-By Satellite Power

Automatically activated ammonia batteries may play a role in outer space vehicles, e pe. cially as a stand-by source of power.

This possibility was raised at the Pacific (eneral Meeting of the AIEE in a paper-Reseive. Type Ammonia Electrochemical Systems as Secondary Electric-Power Sources for Space Vehicles. It was presented by H. S. Gleason and G. S. Gunnison, of the Eastman Kodak C_{0}, Rochester, N.Y., during a symposium on power sources.

Advantages of the ammonia battery were given as:

- Hermetically sealed cases make the battery operation independent of external pressure.
- Long unactivated storage is practical be cause of the hermetically sealed cases and the reserve system of electrolyte distribution.
- Operation is feasible over a wide tempera. ture range and short time and high-rate dis. charges can be obtained with good recovery from large transient currents.
It was explained that although primarily aimed at extreme low-temperature operation, the ammonia system, operating as reserve batteries. have some characteristics that should be of use to space vehicles in general. Hermetically sealed in containers capable of withstanding space conditions, there would be no trouble with gas or electrolyte leakage.
The ammonia filling systems are usually contained within the battery case itself and require only an electrical pulse or a mechanical motion transmitted through a diaphragm or bellows to activate. Call construction is extremely rugged. and should handle any of the accelerations and vibrations encountered in launch, as well as later impacts.

Storage life is unusually long and the batteries will operate from well below -65 to 160 F .

Texas Instruments' ASR-4 Radar Slated for 34 Air Terminals

Installation of the ASR-4 radar, developed by Texas Instruments of Dallas, Tex., is planned for 34 airports during the next year and a half.
The ASR gear will aid the Federal Aviation Agency's traffic controllers in directing planes, especially jets, safely through the heavy air traffic around major airports. These radars have

Ground clutter is displayed in a metropolitan area little changes will be noticed with successive sweeps of the radar beam.
a range of 60 miles, reach an altitude of 25,000 feet.
With the new FAA radar, controllers can pick out individual airplanes on the scope. Controllers will have a choice of several types of improved presentation on the $16-\mathrm{in}$. TV-like picture tubes. They may see fixed and moving objects or moving objects only.
This FAA radar is designed to provide 24-hour safe guidance to pilots. Flexibility and precise control information are given air-traffic controllers by means of an electronic map which shows nivigation aids and ground installations. When set to present moving objects only, ground clutter is eliminated.
Modernization kits will improve older-model ai port radars so that another 48 cities will have operational capability equal to the ASR-4 in most iriportant functions.

 CERAMIC

 CERAMIC SPEAKER SPEAKER magnets magnets

 INDOX V Can Cut...

 INDOX V Can Cut... - Magnet Costs 20\% - Magnet Costs 20\% - Speaker Weight 25\% - Speaker Weight 25\% - Speaker Length 46\%

 - Speaker Length 46\%}
Performance Proven in Hundreds of Thousands of High-Fidelity Loud-speakers

A leading high-fidelity loud-speaker manufacturer realized the above savings when his Alnico speakers were redesigned to use Indox V. Here is why he changed . . . and why you, too, may achieve substantial savings by changing to Indox V .

Indox V loud-speaker magnets are guaranteed to have a minimum energy product of $\mathbf{3 . 2 5}$ million BHmax. Made of highly oriented barium ferrite material, their energy level is comparable on an equivalent weight basis to that of Indiana's Hyflux Alnico V - the most powerful magnet material available.

Now with Indox V, designers and manufacturers can look forward to:

- Speaker assemblies that are less than half as deep
- Fewer magnet parts, simpler assemblies
- Less over-all weight, lower shipping costs

Yet the advantages of comparable Alnico magnets are retained:

- Highest sound level possible
- Best transient response, assuring a full range of tones and overtones
- Truest possible reproduction of sound

Indiane offers a wide range of INDOX \vee high-fidelity loud-speaker magnets... in both standard and special sizes.

Investigate the possibility of improving your loudspeaker designs with Indox V. Indiana's experienced design engineers are available to help you solve your speaker design problems - at no cost or obligation to you. Write for Bulletin M-9, today for more detailed information.

INDIANA STEEL PRODUCTS
 Division of Indiana General Corporation Valparaiso, Indiana

In Canada: The Indiana Steel Products Company of Canada Limited Kitchener, Ontario

INDIANA PERMANENT MAGNETS

NEWS

Device Maintains Mace Missile On Round-the-Clock Alert

A rotary power conversion Unit can keep the TM-76B Mace tactical missile alert around the clock. The device was described by J. A. Hediges The Martin Co. of Baltimore, Md., and G 0 Williams, Hobart Brothers, Inc. of Troy, N.Y in a paper, Precise Rotary Power Conversion for Ground Support of Aero-Space Vehicles, pre sented at a space symposium during the Pacifi General Meeting of the AIEE.

The unit, which was developed for 24 -hou continuous service with the missile, allows 0,01 sec for voltage recovery when full-rated load is suddenly applied or removed.
Heretofore, the engineers explained, there ha been little call for precise direct current power of less than 100 v , but the advent of aero-spact vehicles of the immediate future is "bringin stringent demands for precise $28-\mathrm{v}$ sources dur ing preflight checkout.
"Mace's theory of operations is to be partially counted down and ready to go on a few min utes' notice," the paper said. The guidance sys. tem and its associated electronic and servo con trols must be energized at all times with precise dc ground power subject to the limitations of voltage between 25 and 29 v , voltage stability of plus or minus 5 per cent, recovery following transients to plus or minus 2 per cent of steady state voltage in 0.01 sec or less.
To meet these conditions, Martin subcon tracted the design and production of a rotar power conversion type generator to conver 440 v , three-phase, 60 -cycle power in 29 v , with superior qualities, including high reliability.

Packard Data-Processing System Installed At Brooklyn Shipyards

An analog-to-digital conversion data-process ing system, developed by Packard Bell Computer Corp. of Los Angeles, is in use at the U. S. Naval Shipyards at Brooklyn, N. Y.
The system is used to gather data in real time and convert it to digital form. After conversion. the data are used in the solution of the inertial navigation problem of the Navy's long-range missile ships.
Seventeen analog voltages representing acceleration and velocities and data from 30 shaft position encoders are provided as inputs to the system. After digitization, the data are inserted

Into a 14-bit shift-register, the contents of which are added to a previously accumulated value and then read out from one of the 1736 -bit accumu-

Atom-Powered Electronic 'Sentry' Under Development at Martin Co.

An automatic electronic "sentry," powered by nuclear energy and capable of recording data and transmitting it from a remote ground location, is under development at the Martin Co. The device is reportedly capable of operating for at least two years without refueling or servicing.
The device will be linked with weather instruments to measure temperature, wind speed, wind direction and barometric pressure; but it could be modified easily to detect seismic disturbances or to record continuously any other type of information in a remote area.
Energy will be supplied by a 5-w generator. which will convert heat from safely enclosed pellets containing Strontium-90 directly into a continuous flow of electricity. The complete data processing and telemetry station is scheduled for completion by early 1961.
The generator will be similar in principle to the SNAP 1-A and SNAP-3 units also built by Martin. The difference in temperature between the hot fuel cylinder and the outer wall produces a flow of electricity in sets of thermoconples connecting the two surfaces.
In the telemetry station the output of the generator will be used to recharge conventional ni kel-cadmium storage batteries. Besides translating the measurements into electronic code form, the station will use a sudden burst of po ver every three hours to broadcast the data to a manned listening station hundreds of miles anay.
The Martin Co. is developing the device under a ontract from the U. S. Atomic Energy Commision.

VECTOR FIRST

True linear Frequency Modulated output, Crystal stabilized. Ex. tremely low noise output under high shock and vibration conditions Capable of 10 watts output at higher plate voltage. Ceramic tube auxiliary RF power amplifiers available for providing 20 to 50 watts sutput. For information write Dept. E, Vector Manufacturing Company. Inc., Southampton, Pennsylvanıa.

A highly mobile electronic air defense system insuring nearly instant destruction of hostile aircraft by coordinating antiaircraft missile firing at split-second speeds has modernized the field army's air defense capabilities. This "vest pocket" air defense, mounted in standard, heavy duty $21 / 2$-ton Army trucks, is another high-quality development of one of America's leading manufacturers of military electronic systems, the Hughes Aircraft Company.

This air defense system's complex circuits are interconnected with Burndy HYFEN and coax STAPIN connectors. Contacts are toolcrimped on wire ends at the workbench, then snap-locked into in. serts on the job, reducing time and skill required to install and service, assuring dependable connections of measurable quality.

For HYFEN and STAPIN units and installation tooling engineered to your connection requirements, contact: OMATON division

NEW PRODUCT

High Density Miniature HYFEN with center jackscrew

Now available from the Burndy Corporation Omaton Division is a new miniature HYFEN connector with a center jackscrew which pro vides alignment and engaging force. This con nector is presently designed in two configura tions: 1) 104 contacts; and 2) six miniature coa contacts combined with 48 standard contacts. Contacts are crimp-type which snap-lock into and out of the connector body. Both inner and outer portions of the miniature coax contact are crimp-type. This connector may be designed ti accommodate other combinations of coax, mini ature coax, and standard contacts for particulat applications.
Crimp-type contacts are installed by tool which are full-cycling, thereby guaranteeing a complete installation every time. These installa tion tools-hand, pneumatic or semi-automaticprovide a measurable crimp, facilitating quality control.

Connector bodies are molded of high heatresistant. flame-proof diallyl phthalate with molded-in ferrules for contact retention. Jackscrews and guide pins and sockets are stainless steel. The connector can be easily polarized by varied placement of guide pins and sockets.

All contacts are gold plated with nickel plated beryllium copper locking springs. Quality materials throughout provide maximum reliable performance of this connector. This miniature HYFEN connector performs to the applicable sections of MIL-C-8384 and MIL-T-7928. Further information is available from

Burndy Corporation, Norwalk, Connect. circle 60 on reader-service card
ELECTRONIC DESIGN - September 14, 1960

EDITORIAL

Bionics-A New Discipline Emerges

For electronic designers of the future, the phenomena behind the pigeon that homes, the bat that navigates by echolation, and the frog that jumps according to light patterns will be as important as Maxwell's equations. These and other processes of Nature are already being applied to designing new electronic components and computers by specialists in bionics-the name for this new discipline. This broad new field of endeavor is comprehensively covered by Electronic Design's Staff Report which starts on p 38.

Here for the first time is information on such concepts as the neuristor, property filters and the redundant quad. And so new are some of these developments that specialists in one laboratory are completely unaware of the efforts in another. Establishing communications between bionics experts is a big problem. Establishing a sound foundation-an organized body of information for developing experts-is an even bigger problem. Specialists in life sciences and physical sciences must understand one another.

Major Jack E. Steele of the Bio-Medical Laboratory of Wright Field-Mr. Bionics to the workers in this field-appraised the situation for Electronic Design this way: "Biologists know a great many answers but very few questions-particularly questions of interest to electronic designers. In too many laboratories where biologists and engineers work together, the engineers help the biologists, rather than the other way around. Together they have to find problems that engineers and animals have in common and which the animals solve better. Only then can a way be found to adapt and adopt the animals' solution. When this is done on a large-enough scale, the character of electronics may change."

Progress in the field of bionics may very well change the character of electronics. One need only read about the neuristor to be convinced of that. Bionics is a new concept-at once a device, a machine, a system. It cannot be ignored.

NEW HIGHER ACCURACY Resistance, 0.05%-capacitance and inductance, 0.01%.
NEW GREATER RESOLUTION Four-dial Dekadial ${ }^{*}$ decade dial provides 120,005 divisions of resolution.
NEW IMPROVED RESISTORS
Extremely low temperature coefficient and high stability assure measurements of maximum accuracy.
NEW NO ZERO CAPACITANCE Requires no correction for zero capacitance inside the bridge. Simplifies making three-terminal capacitance measurements.
Includes both ac and de generators and detectors which have been specifically designed for use with the bridge, thus assuring adequale sensitivity for allaining specified accu. racy throughout the measurement range.
Price: $\$ 1095$, f.o.b., Porlland, Oregon. Delivery 30 days.

SEND FOR DESCRIPTIVE LITERATURE

1960 NEC SHOW

Воотн 450-451
Elootro Bolontifio Induetrios 7524 S.W. MACADAM - PORTLAND IS, OREGON

CHerry 6-3331
formerly ELECTRO-MEASUREMENTS, INC.
CIRCLE 61 ON READER-SERVICE CARD

Design engineers are often at a loss in applying the data scattered throughout the literature describing radiation effects on electronic components. They are confused by differences in units of measure used from report to report, and confounded by differences in gamma-neutron mix encountered from reactor to reactor. Often, the non-radiation environment parameters, which can completely change the damage picture, are not adequately specified. In this article, P. Miglicco (left) and M. Newell emphasize environmental parameters, while the radiation doses are expressed in the very basic and easily measured units of fast neutron per square centimeter (n_{I} / cm^{2}). Test results are given for many materials. Many valuable tips are given in this article for applying these findings to design problems.

T- HE RADIATION environment has a definite influence on the standard procedure for electrical design. The eight stages normally involved in developing an electronic system are as follows:

1. System requirements
2. Block diagram
3. Circuit sketches for each block
4. Circuit breadboards
5. Circuits, developed to satisfy electrical requirements
6. System prototype
7. Final units, built and electrically checked
8. System test, under required environmental conditions.
Between stages 3 and 4, a major step is missing. It is: "Find the components which satisfy both the electrical and environmental requirements which the system must meet." This step is present regardless of the type of environment required. The degree of difficulty incurred lies in the amount and types of information available.
To satisfy a design problem for a radiation application today, a designer must arm himself with all available radiation effects data on materials, components, systems, and with a radiation effects "Yardstick." Theoretical methods of predicting radiation damage can be used only for simple materials. In the area of commercial materials
and components, the gap between theoretical predictions and experimental results has not been bridged.
Parameters which influence the degree of damage in electronic components include the total dose, types of particles, average energy, intensity of the field, temperature, humidity, and atmosphere. Among the damaging particles, the two major contributors to radiation effects outside the reactor shield are neutrons and gamma rays. Convair's present electronic components program, conducted for the U. S. Air Force, is designed to separate the effects of the various nuclear parameters. This information will facilitate:
9. Solutions to system and components shielding problems
10. Optimum location or orientation of equipment within a vehicle with respect to the nuclear power plant
11. Economical and efficient proof-testing
12. Prediction of system life.

Non-Nuclear Parameters Can Greatly Influence Effects of Radiation

An example of the importance of atmosphere in radiation damage studies is the irradiation of natural rubber. When irradiated in air, the rubber cracked and decomposed from the attack of
ozone. When protected from air, the rubber withstood a higher radiation dose before breaking down. The concentration of ozone, which is al. ways present in air, is increased through the conversion of oxygen by the radiation field. Fortunately, few materials are as sensitive to ozone degradation as natural rubber.
Temperature is a parameter that must be given consideration for two reasons. The first is that frequently the type of damage due to heat is the same as, or very similar to, that due to radiation. A failure in a radiation field, may come much sooner if the component is at a marginally high temperature during the irradiation. The second reason is the problem of gamma heating. In any bulky system exposed to a gamma flux of over $5 \times 10^{12} \gamma / \mathrm{cm}^{2}-$ sec, gamma heating may be a serious problem. The amount of energy absorbed in the form of heat is a function of the density of the materials in the component. The maximum temperature is determined by this and by the heat dissipation factors. These factors depend on the size and configuration of the component and on the ambient air temperature.
A good illustration of the magnitude of this problem is shown in Fig. 1. A sheet of one-inch lead was used as shielding in a radiation test. When exposed to a gamma flux of $2 \times 10^{13} \gamma-$
$\mathrm{cm}^{2} \mathrm{sec}$, a hole developed after 1.6 hr of radiation. Heat generated by the flux melted the lead.

Radiation Can Cause Either Transient Or

 Permanent DamageRadiation effects on materials and components maly be divided into two basic types-transient and permanent. A transient effect denotes response of a component that varies with dose rate. In addition, the response of the component returns to normal immediately after removal of the radiation field. Fig. 2 is an example of a pure triusient effect. Here we see the dark current response of three different reactor power levels for an average time of 6.1 minutes per level. After irradiation, the dark current returned to its preirradiation value.
One of the transient effects which is very doserate sensitive is that of air ionization. This phenomenon can be very troublesome in dielectrics exposed to a flux of $10^{10} \mathrm{n} / \mathrm{cm}^{2}$-sec or greater: a normal 10^{15}-ohm insulation resistance may very well be reduced to 10^{7} ohms, depending on the geometry of the collecting electrodes and the electric field strength. Fig. 3 shows that the insulation resistance of mica, Glassmike, and ceramic capacitors decreased by factors of 100,55 and 10 , respectively. The change in insulation resistance during irradiation is due to air ionization and depends on electrode area and separation.
The collecting electrodes are the ends of the capacitors. This explains the different values and the order of increased resistance in Glassmike, mica, and the ceramic tubular. The increase in insulation resistance of the ceramic capacitor during irradiation is believed to be due to a residual charge on the dielectric from previous voltage applications. Post-irradiation recovery was immediate, portraying a transient effect.
A permanent effect denotes a change in response which remains after removal of the radiation field and in general is a function of the total dose received. This effect is illustrated in Fig. 4. Here the forward resistance of the 1N91 germanium diode is shown to increase as a function of the total dose received until it reached some type of damage saturation. The data taken with the radiation field removed show that the effect is permanent. Oven-heating of the irradiated diodes to 100 C and 150 C did not anneal out the damage in these cases.

Replacement Of A Few Components Can Greatly

 Improve PerformanceThe system can be expected to function imroperly when its weakest component passes its d!mage threshold. This is known as the "weakestl 1 k " concept. If analysis indicates premature f.ilure of the system, a substitution of comporents must be made prior to the radiation tests.

Fig. 1. In just over $1-1 / 2 \mathrm{hr}$, a hole was melted through this 1 -in. lead shield by gamma flux of $2 \times 10^{13} \mathrm{ycm}^{2}$-sec.

Fig. 2. In a typical transient effect, three photomultiplier types exhibit increased dark current during irradiation, return to normal afterwards.

Table 1. Electronic Component Yardstick Of Radiation Effects*

Component Class	Threshold Dose (in $\mathrm{n} / \mathrm{cm}^{2}$)	Component Material
Light Detectors	10^{12}	Photomultipliers (rate sensitive) Lead Sulfide Cells
Semiconductors	$10^{12} \text { to } 10^{14}$	Silicon Transistors Germanium Transistors Germanium Diodes Silicon Diodes
Insulators	10^{12} to over 10^{16}	Teflon Nylon Silicone Rubber Polyvinyl Chloride Silicone Resins Formex Polystyrene Polyethylene Mylar Mycalex Supramica Phenolic (Bakelite) Ceramic
Resistors	10^{13} to over 10^{16}	Fixed Composition Deposited Carbon Boron Carbon Carbon Film

Component Class	Threshold Dose (in n/ cm ${ }^{2}$)	Component Material
Relays (Time Delay Only)	10^{14}	Wirewound Pneumatic Type Fluid Damped Type
Capacitors	10^{14} to over 10^{16}	Tantalum Electrolytic Aluminum Electrolytic Paper-Solid Impregnant Paper-Oil Impregnant Glassmike Molded Mica Ceramic
Piezocrystals	over 10^{16}	Barium Titanate Quartz
Vacuum Tubes	over 10^{16}	Receiving Type
Gas Filled Tubes	over 10^{16}	Voltage Regulators
Electromagnetic		
Devices	over 10^{16}	Transformers, Chokes, Motor Type Devices, Relays (other than Time Delay)

ELECTRONIC DESIGN • September 14, 1960

Fig. 3. Post-irradiation recovery of insulation resistance is illustrated for three capacitor materials.

Fig. 4. Permanent increase of forward resistance of germanium diodes would not be reduced by annealing.

Of course, the final test is in actually operating the units under the required nuclear and nonnuclear conditions. Progressing from this point by further substitution or redesign of the circuits, a fully qualified system will develop.
Design data are being accumulated for a wide range of typical components. With these data, the components can be arranged in a comparison table, which may be called a Radiation Effects Yardstick. From the Yardstick shown in Table 1, we can determine:

1. The relative resistance of various classes of components
2. The relative resistance of the types of components within a class
3. An order of magnitude of the dose at which the response of the component will begin to change.
The Yardstick also emphasizes several other points:

In nearly every class of components there are types which will withstand what are presently considered "high" doses. However, none of the light detectors or semiconductors can withstand a high dose. The thresholds shown for insulation are due to physical rather than electrical deterioration. Though electrical insulation resistance data are sparse (because of air ionization problems), indications are that physical destruction occurs before permanent electrical degradation. Finally brought out is that inorganics are more radiation-resistant than organics.
Organic materials, when exposed to a mixed field, are damaged more by the gamma rays than by the neutrons. The thermal neutron flux has been reduced to insignificance by use of a boral shield. The mixed-field exposures have been reported in terms of fast neutrons because they can be measured more accurately than the associated gamma radiation. Hence, flux strengths are ex-
pressed as neutrons $/ \mathrm{cm}^{2}$. Gamma dosage can be calculated, if required by the gamma-neutron ratios of 175 or 2000 noted in the table.
Most electronic designers are very familiar with component terminology and with some of the trade names of the parts within each component. Few are familiar with the chemical names of the various dielectric or structural parts. An excellent plastics reference chart to be used with Table 1 may be found in reference 8 ($E D$, Sept. 3, 1958, p 20).

Dielectric Oils Break Down Because of Formation of Gas or Gel

Two principal reactions occur in the dielectric oils. The first, the results of which are illustrated in Fig. 5, is a splitting off of small fragments of the molecules which are evolved as gas. The most common gases evolved are hydrogen and methane. However, many other gases are evolved, depending on the structure of the oil. The second pronounced effect on oils is a polymerization of the molecules. This always affects the viscosity and usually results in formation of a gel. The material is considered a gel when it has become a rubbery non-pourable solid. Nearly all oils undergo this phenomenon if exposed to a sufficient dose. In some applications, no harm will occur until a gel is formed. In other applications, such as oil-filled time delay relays, a change in viscosity will change the operating characteristics of the component. The designer must consider the degree of viscosity change which will conform to this criterion. Considerable data exist on the silicone dielectrics and on some of the non-silicone dielectrics. When viscosity or gelation is the potential problem, the designer must look at G values for gelation. When pressure or gas appears to be the problem, then he must look at G values for gas formation. The G value is the number of
molecules affected or formed (according to the individual case) per 100 ergs of absorbed energy.

The fluorocarbon oils have very poor radiation resistance in regard to both gel formation and gas. The silicone oils are somewhat better, since they do not release any corrosive gases. Moreover, the G values for gas formation are lower than those for fluorocarbons. They do present a problem in gel formation. however. When a silicone oil is used, the phenyl types should be chosen over the methyl types because this type of silicone offers a lower G value for gelation.
The standard hydrocarbon oils give trouble in both gas formation and gelation. Unsaturated oils, such as castor oil, are not as good as the saturated types. Among the aromatics, polyphenyl ethers, biphenyl, and terphenyl have been exposed to over $10^{15} \mathrm{n} / \mathrm{cm}^{2}$ with almost no danger.
The electrical properties of these oils examined have not been seriously affected. The silicone oils suffer very little in dielectric strength and loss tangent. The fluorinated and chlorinated hydrocarbons were damaged more as a result of the halides formed.
Halogenated oils should be avoided wherever possible. When silicone oils are used, the phenyl type should be specified. When hydrocarbon oils are used, the aromatic type should be specified if possible. The designer must be aware of the gassing and gelatin problems in his design, and have G values for these on all available oils when specifying a dielectric oil.

Proper Choice of Solid Insulators and Parts Makes The Difference

Teflon ${ }^{\circ}$ will have to be replaced in any application where it is expected to receive over $10{ }^{12}$ $\mathrm{n} / \mathrm{cm}^{2}$ integrated flux. The other fluorinated ${ }^{\circ}$ Trade mark, E. I. du Pont de Nemours \& Co.
hydrocarbons are not much better. Fig. 6 lists the relative radiation resistance of only a few typical insilating materials.
Nylon and the present commercial silicone rubbers break down at $10^{14} \mathrm{n} / \mathrm{cm}^{2}$. There are, however, high phenyl silicone rubbers under development which should give 100 times longer life than the present commercial stocks.
The non-elastomeric resins are considerably better in radiation resistance than the commercial elastomers. This class of materials includes the resins and enamels, laminates used for structural applications, molding compounds, etc.
A number of these silicone dielectric materials have been irradiated. After irradiation to a maximum integrated flux of $10^{15} \mathrm{n}_{\mathrm{f}} / \mathrm{cm}^{2}$, no damage was found in the dielectric strength of any of the materials except Dow Corning resin 997 on glass cioth. There was a 65 per cent loss in the dielectric strength of the latter.
Physical embrittlement, evident in some silicone samples, was not serious. The per-cent water absorption of Dow Corning 301 molding compound doubled when exposed to $9.9 \times 10^{14} \mathrm{n}_{\mathrm{f}} / \mathrm{cm}^{2}$ (Table 2). Other physical properties tested, and dielectric strength underwent no detectable permanent damage at the same integrated flux. The associated gamma dose for this irradiation. using the

F g. 5. Irradiation to $10^{16} \mathrm{n}_{\mathrm{l}} / \mathrm{cm}^{2}$ caused organic impegnated paper capacitors to leak and paper capaciters to crumble.

Table 2. Water Absorption Of DC301 Molding Compound

Gamma Dose (ergs/gm) (C)	Fast Neutrons $/ \mathbf{c m}^{2}$ E greater than $\mathbf{0 . 3 3} \mathbf{~ m e v}$	\% Water absorbed $\mathbf{2 4 ~ h r}$
Control	Control	0.113
5.5×10^{6}	9.9×10^{11}	0.106
5.5×10^{7}	9.9×10^{12}	0.101
5.5×10^{8}	9.9×10^{13}	0.129
5.5×10^{9}	9.9×10^{14}	0.231

Convair Ground Test Reactor (GTR) source, was $5.5 \times 10^{9} \mathrm{ergs} / \mathrm{gm}(\mathrm{C})$, the source's characteristic. The problems are many in designing electronics for a nuclear environment. However, these problems can be solved just as problems of similar magnitude have been solved in the past for other environments. Many more answers are needed. The need for a greater understanding of radiation effects, that is air ionization, gamma heating transient damage, and permanent damage, is of utmost importance. The designer of today must choose the components which will satisfy both the electrical and the environmental requirements of the system. As in nearly all branches of science, the final proof lies in the comprehensive testing of the materials, components, and systems. -

Bibliography

1. Effect of Radiation on Electrical Properties of Electronic Components, Parts I through V, Convair-Fort Worth Reports MR-N-116, 173, 178, 185, 216, Dec. 27, 1956Aug. 22, 1958.
2. The Effects of Nuclear Radiation on Electronic Components, Admiral Corp. Scientific Reports 1 through 10 , Oct. 10, 1955-January 1958.
3. Miglicco, P. S., "Radiation Effects on Electronic Components." Electronic Equipment, July 1957.
4. McMillan, W. D., "The Effects of Reactor Radiation on the Electrical Properties of Capacitors," ConvairFort Worth Report FZM-1010, October 1957.
5. Nuclear Radiation Effects Research on Aircraft Materials, Convair-Fort Worth Report MR-N-239 (in publi(ation).
6. ${ }^{\circ}$ Dvorak, H. R., "Weakest Link Method Helps System Design for Radiation Environments." Space Aeronautics, December 1958.
7. Burrus, W. R., "Standard Instrumentation Techniques for Nuclear Environmental Testing." WADC Technical No. 57-207, December 1957.
8. Electronic Design, Sept. 3, 1958.
9. The Effects of Nuclear Radiation on B-36 Aircraft Systems, Addenda 1 and 3. Convair-Fort Worth Reports MR-N-167-1 and MR-N-167-3, August and December 1957.
10. Baker, M. L., and Gammon, E. P., "Effect of Nuclear Reactor Radiation on the Operation of Aircraft Type Gyros." Second Semi-Annual Symposium of Radiation Effects, Columbus, Ohio, Oct. 22-23, 1957. ${ }^{\bullet}$ This reference contains a complete bibliography.

NEW SOLID STATE MICROWAVE COMMUTATOR SIMGLE POLE MULTIPLE THROW COAXIAL SOLID STATE (CRYSTAL) SWITCHES

THESE COMMUTATORS ARE
INDISPENSABLE FOR:

- Antenna Lobing or Switching
- Wullenweber Antenna Arrays - Channel Switching

AND MANY OTHER FUNCTIONS
WHERE PRIMARY CONSIDERATIONS ARE

- High Spead-Faster than 1 m μ sec - Low Oporating Power - Broad Bandwidth - Reliability - Light Weight - Small Size - Temperature Insensifivity ${ }^{\circ}$ Over Wide Range COAXIAL SWITCHES AVAILABLE FROM 10 MC TO 12 KMC AND WAVEGUIDE SWITCHL AVAILABLE FROM 8.2 TO 18 KMC
 OTHER MEW MICROWAVE COMPONENTS
AMERICAN ELECTRONIC LABORATORIEB, INC. 121 N. 7in ST..
PHILADELPHIA 6. PENNA
Investigate the opportunities at AEL for creative engineers
In Canada contact: Conway Electronic Enterprises Read., Toronto, Canada CIRCLE 62 ON READER-SERVICE CARD

Multivibrator Gives Nanosecond Pulses With Variable Width, High-Duty Cycle

Abstract

Delivery of high-duty-cycle pulses in the nanosecond region is virtually beyond the capability of conventional monostable multivibrators. Rob Roy here explains why, and tells how he added to the basic circuitry to solve the problem.

Rob Roy

Autometric Corp
New York City

AREVISION of the conventional transistor monostable multivibrator combines high duty-cycle and variable width in the nanosecond region-where such characteristics have been almost impossible to obtain.
A conventional collector-coupled, monostable multivibrator is shown in Fig. 1.

Assume Q_{1} initially is OFF (nonconducting) and Q_{2} is ON (fully conducting). A positive pulse applied at A, or a negative pulse at B will turn $Q_{1} \mathrm{ON}$, and $Q_{2} \mathrm{OFF}$.

The positive swing, $E \mathrm{v}$ at A, is transmitted through capacitor C to the base of Q_{2}, holding it OFF. The capacitor C then discharges towards $-E \mathrm{v}$ with a time constant $T=R C$. When the voltage at the base of Q_{2} is more negative than the emitter, Q_{2} turns back $O N$.

The resulting positive swing at B turns and holds Q_{1} OFF until another triggering pulse arrives. The voltage at point A decays towards $-E$ v with a time constant $T=R_{I} C$.

Capacitor Must be Large

To transmit the positive pulse from A to D, the capacitance of C must be much greater than the input capacitance to Q_{2}. Because Q_{2} is $O N$, this capacitance is considerable. Hence, capacitor C is fairly well fixed for most short-pulsewidth circuits.

This time constant, $R_{L} C$, fixes the duty cycle of the circuit. Attempting to increase the duty cycle by increasing R will result in unequal pulse widths, as shown in Fig. 3. If C is made as small as possible, then R must be increased to maintain the other time constant, $R C$.

For a given R_{r}, the base resistor necessary to keep $Q_{2} \mathrm{ON}$ is $R<\beta R_{L_{L}}$. If R_{L} is small, then to maintain a given rise time, R must also be small. These two requirements for R are virtually independent and often cannot be satisfied simultaneously. If R is increased beyond the point necessary to hold Q_{2} ON, the output swing of Q_{2}, is decreased, as shown in Fig. 3. For some applications this is a serious drawback.
The circuit of Fig. 4 eliminates the disadvantages associated with the circuit of Fig. 1.

Duty Cycle Increased by Factor β

Transistor Q_{3}, an emitter follower, isolates point A from the coupling capacitor. The coupling capacitor discharges through the output impedance of Q_{3}, which is approximately the same as R_{L} / β. This action increases the duty cycle by a factor β.
Transistor Q_{4} increases the current fed to Q_{2} by a factor β. This circuit feature, known commonly as the "Darlington Connection," frees R from its two independent requirements. The resistance of R now can be increased, and the desired output swing still maintained.

Triggering of a monostable multivibrator is another problem. It was mentioned that a positive pulse at A of a negative pulse at B of Fig. would trigger the circuit. However, a positive pulse at A sees the input impedance of an ON transistor, which requires a large drive signal for triggering OFF

There is also the serious problem of loading capacitance onto point A. For the speeds and pulse times concerned. less than $1 \mu \mathrm{sec}$, this is a serious limitation. Also, triggering at this point requires a trigger signal of shorter duration than the pulse width of the multivibrator

Negative Pulse Triggering Uses Small Signal

Although triggering from point B with a negative pulse requires a smaller drive signal, than does a positive trigger at A, there is still the

Fig. 1. Conventional, collectorcoupled, monostable multivibrator.

Fig. 2. Voltage wave forms at several points of conventional multivibrator circuit for a fixed R, and low-duty cycle.

Fig. 3. The voltage waveforms of Fig. 2 when R is increased beyond $B R_{6}$, the value necessary to keep the ON transistor on. The duty cycle has increased, but voltage swing has decreased.

Fig. 4. This circuit gives high duty cycle with proper R value and maximum voliage swing.
loading capacitance problem, the pulse-width problem, and possibly a pulse-polarity problem. The use of Q_{5} eliminates most of these probcems. Transistors $Q_{\overline{5}}$ and Q_{2} serve as an "AND circuit. Either Q_{5} or Q_{2} may be switched to get switching at point B.

Transistor Q_{5} is used as the triggering transistor. A small trigger applied to the differentiating network $R_{1} C_{1}$, turns OFF Q_{5} and triggers the circuit. Thus Q_{5} isolates the trigger from point B
The positive trigger required for Q_{5} is much lass than the trigger required at point A. Differentiating allows the use of fairly broad input triggers.
The waveforms at both points A and B are of xcellent quality, having rise and fall times below 50 nsec . This allows the system designer to use he differentiated trailing edge of point A as a delyed trigger pulse. The pulse width can be hanged. using the variable R, through a $10: 1$ ange. The duty cycle is better than 95 per ent. - -

This man is using the industry's most advanced swept microwave oscillator

now available from

 Alfred electromicsNo other sweeping oscillators offer as many solid advantages as Alfred Electronics' new series $\mathbf{6 2 0}$ models, built by the industry's leading manufacturer of high quality, broadband microwave instruments. Note these features:

* Six models, covering 1 to 18 kmc . Broadest frequency range available. Electronic sweep of RF output, or extremely stable CW operation.
* Linear frequency sweep coverage over all or part of each band for rapid evaluation of reflection coefficient, gain, attenuation and other network transfer characteristics.
* Two adjustable frequency markers for convenient calibration of oscilloscopes or recorders. Markers save valuable test time by indicating either band limits or intermediate frequency values. An exclusive Alfred feature on all models.
* 0.5 microseconds rise and fall response to AM - equivalent to a 2 megacycle band pass. Another exclusive Alfred feature.
* Quick Look readout. See frequency range, markers and sweep time at a glance. No cumbersome calculating.
* Fast sweep for flicker-free oscilloscope presentation; slow sweep for mechanical recorder operation.

BRIEF SPECIFICATIONS

Model 621 Frequency Range (kmc)

622	623	626	624	625
2.4	4.8	625		6.12

 Prices $\$ 3090$ S 2990 UG/419/U

general

FREQUENCY CONTROL: Continuously adjustable with direct calibrated dial. Calibration accuracy, 1%.
POWER OUTPUT (minimum): 10 mw . Continuously adjustable from zero to maxImum.
VSWR (maximum): 2:1
SWEEP
SELECTOR: Recurrent sweep, single sweep. CW, and external on panel sweep.
switch.
CONTROL: Single sweep, triggered by panel button, or external positive going signal 20 volts or greater. SWEEP WIDTH: Continuously adjustable
from 0 to any part of entire frequency range.
TIME: 100 to 01 seconds.
MONITOR OUTPUT: POsitive linear saw. tooth, 45 volts peak; Blanking out, 75 volts negative.
EXTERNAL SWEEP: 200 volts gives full sweep width.
AMPLITUDE MODULATION
INTERNAL SQUARE WAVE: RF output alternately 0 and unmodulated CW value. Frequency 800 to 1200 cps . EXTERNAL: 30 volts maximum sienal ncreases RF output from 0 to max imum.
POWER INPUT: 105 to 125 volts; $\mathbf{6 0} \mathbf{c p s}$.

Using Alfred Model 623 Microwave Oscillator (left) to test small signal and saturation gain of Model 503 Traveling Wave Tube Amplifier. Microwave Leveler, Alfred Model 704, holds power output from oscillator constant within $\pm 1 \mathrm{db}$.

Write us for complete details of these new oscillators. We'll also send you our new short form catalog, which describes Alfred's complete line of packaged traveling wave tube amplifiers.

hlfred flectronics
 Dept. 36

897 COMMERCIAL STREET PALO ALTO, CALIFORNIA

NEW HIGH-FREQUENCY CURRENT PROBE

for Your Tektronix Oscilloscope

The P6016 AC Current Probe and Type 131 Amplifier constitute a current-detecting system for use with your Tektronix Oscilloscope. This system provides accurate displays for observation and measurement of current waveforms. Current range extends from less than one milliamp to 10 amps . Passband, with a $30-\mathrm{mc}$ oscilloscope, is 50 cps to approximately 17 mc .
A second system comprises the P6016 AC Current Probe with a Passive Termination. Although less versatile, this system provides for observation and measurement of current waveforms at frequencies to approximately 20 mc with a $30-\mathrm{mc}$ oscilloscope.
Long narrow shape and convenient thumb control make the P6016 easy to use. Just place probe slot over conductor and close slide with thumb-no direct electrical connection is required. Wiping action keeps core surfaces clean. Loading introduced is so light that it can almost always be disregarded.
CAREER OPPORTUMITIES now enist al Teltronix in
the lollowing heldas: Instivment desson, Circuit desion
Solid state and semi. conductor devices. For intormation

Tektronix, Inc.

P. O. Box 500 - Beaverlon, Oregon
Phone Mitchell $4-0161$ - TWX-BEAV 311 - Coble: TEKTRONIX

 JEKTRONIX ENGINEERING REPRESEMTAPIVES: Howthorne Electronics. Portlond. Oregon. Seotile. Wosthington. Tektronix is represented in twenty overrear countrier by qualified engineeting orgonitations. In Europe please write Tektronix Inc., Victoria Ave., St. Sampsons, Guernsey C.I., for the address of the Teklronix Representalive in your counlry.

Sensitivity with $50 \mathrm{mv} / \mathrm{div}$ Oscilloscope Input: tion switch provides calibrated sosi of $1,2,5,10,20$, and $50 \mathrm{ma} / \mathrm{div}$. . 0.1 $0.2,0.5$, and 1 amp/div, accurate with in 3%. Continuous uncalibrated ad control on the oscilloscope.

R. P II

RFI Test Equipment

Richard B. Schulz

Research Engineer
Armour Research Foundation of Illinois Institute of Technology Chicago, III.

In ELECTRONIC DESIGN's Feb. 3 is sue, containing a series of articles on radio-frequency interference (RFI), a partial listing of available measuring equipment was included. A complete, up-to-date tabulation is now presented to assist new interference-control groups to select equipment. Please note that the table does not include simplified go/no-go devices, some obsolete equip. ment or spectrum analyzers.

Index of Manufacturers

Empire Devices Products Corp.
Amsterdam, N.Y.
Ferris Instrument Co.
Boonton, N.J.
Measurements Corp. Boonton, N.J.
Polarad Electronics Corp. Long Island City, N.Y.
Sprague Electric Co.
North Adams, Mass.
Stoddart Aircraft Radio Co., Inc. Hollywood, Calif.

Direct Current Saturation Threshold:
Maximum Breakdown Voltage Rating:
Rating:
Price, TYPE P6016 and TYPE 131 SYSTEM TyPE P6016 and PASSIVE TERM
Ype P6016, purchased separately
Type 131, purchased separately
Passive Ternination, purchased separately
o.b. factory
nsertion Impeda About 0.005 ohms or less in series with conductor under test, and typically about 1.5 picofarads between the
conductor and probe case.

Either 2 or 10 milliamps per millivol of oscilloscope sensitivity, accurate within 3%.
Risetime (with Type K or L Plug-In Oscilloscope):
16 nanoseconds (approximately 20 mc
at 3 db down). at 3 db down).
Low-Frequency Response:
At $2 \mathrm{ma} / \mathrm{mv}$-about 850 cps at 3 db down (5\% tilt of 14 microsecond square pulse). down (5% tilt of 55 microsecond Maximum Curi 15 amperes peak-to-peak.

COMMON TO BOTH SYSTEMS

I-F and R-F Transformer Assemblies T.R Switches R F Filament Chokes Audio Phase Shilt Nelworks Band Switching PI-Nelworks Cyclometer-type Counters Oscillator Coils R F and Audio Fillers R-F Chokes AIr Wound Inductors Transmilling Condensers iVarrable Alr

Frequency Mullipliers Band Switching Iurrels Turrets Rotary Coils Rolary Coils Antenna Tuning Networ Networks Baluns
Special Equipmont
Mobile Radio Mobile Radio Teletype Equipment AM SSE Transmit. lers and Receivers

Barter \& Wolliammon, Inc. Canal Street - Bristol, Penna. CIRCLE 65 ON READER-SERVICE CARD

utting

 1

R. C. Harrison, electrical circuit design coordinator for Douglas Aircraft's Missile Division, says his job is to check circuit designs, and assist younger "and, often, brighter" engineers in making effective design presentations. In this article, he offers assistance to younger-and older-engineers in formulating problems in Boolean algebra, and converting algebraic solutions into useful hardware.

R. C. Harrison

Douglas Aircraft Co.
Santa Monica, Calif.

BOOLEAN algebra can be fun. But it also can be useless unless one knows how to put a problem in its terms and extract a solution in the form of hardware-switches, relays, transistors, diodes.
The techniques of the Boolean approach can best be illustrated by a typical problem.

Suppose it was desired to adapt a Nike-Ajax launching site into a Nike-Hercules site. We must install switching to enable a remote-control center to choose either an Ajax system or any of six Hercules systems. (The Hercules uses any of three different warheads, and can fly either of two different missions.)
Specifically, the problem is to design circuits, using Boolean algebra, that compare a prepared launching configuration with a requested configuration. If the missile were of the same configuration as requested, the "Missile Prepared" relay already existing in the Ajax system would
be energized. If the missile were not of the requested configuration, the relay automatically would be opened.
It also is desirable to provide safeguards against spurious signals that might result from short or open circuits.
The first step in using Boolean algebra is to assign algebraic symbols to all functions (configuration signals) to be considered. These are indicated in Table I.
The second step is to determine how many combinations of signals are possible, what each combination includes, and which ones are acceptable for energizing the "Missile Prepared" relay-that is, what combinations of signals will indicate that prepared configurations are the same as requested configurations?
Each signal has two possible states, "ON" or "OFF," and there are 12 signals to be considered. Hence, the total number of theoretically possible combinations is 2^{12}, or 4,096 .
Without prior knowledge of which combinations are acceptable and which are not, it would

Table 1. Designation of the Variables in the Design Problem.

CONFIGURATION	REQUEST SIGNAL	PREPARED SIGNAL
NIKE-AJAX MISSILE	A	a
HERCULES MISSILE \& WH \# 1	B	b
HERCULES MISSILE \& WH \# 2	C	c
HERCULES MISSILE \& WH \# 3	D	d
FLIGHT MISSION \# I	E	e
FLIGHT MISSION \#2	F	f

Table 2. Combinations of the Variables.*

LINE	REQUESTS						PREPARED						
	A	B	C	D	E	F	a	b	c	d	e	f	RESUL
1	1	0	0	0	1	0	1	0	0	0	1	0	1
2	1	0	0	0	0	1	1	0	0	0	0	1	1
3	0	1	0	0	1	0	0	1	0	0	1	0	1
4	0	1	0	0	0	1	0	1	0	0	0	1	1
5	0	0	1	0	1	0	0	0	1	0	1	0	1
6	0	0	1	0	0	1	0	0	1	0	0	1	1
7	0	0	0	1	1	0	0	0	0	1	1	0	1
8	0	0	0	1	0	1	0	0	0	1	0	1	1
9	0	1	0	0	1	0	0	0	1	0	0	1	0
10	1	1	1	0	1	0	1	1	1	0	1	0	0
11	0	0	0	0	0	1	0	0	1	0	0	1	0

*Acceptable combinations yield the mathematical result " 1 ", unacceptable combinations yield a " 0 ".
be necessary to tabulate the 4,096 possible combinations and examine each one.
However, as in many similar problems, prior knowledge of the physical structure of the configurations indicates that most mathematically possible combinations are not physically possible. Hence, only those combinations that we know to be acceptable are listed.
In such tabulations, as in Table II, a " 1 " indicates the signal is "ON," and a " 0 " indicates it is "OFF." In the "Result" column, a " 1 " on any line indicates that the combination of signals on that line has been examined and found acceptable. A " 0 " on any line indicates the combinations on that line have been examined and found unacceptable.
In Table II, lines 9, 10 and 11 illustrate a few signal combinations for which the "Missile Prepured" relay would not be energized. Line 9 shows the prepared missile has a different confyuration than that requested; line 10 shows an abnormal condition that might result from shortc rcuited wiring; and line 11 shows another abrormal condition that might result from an open circuit in the request signal wiring.
The third step is to prepare an equation ex-
pressing all acceptable combinations of signals in algebraic terms. In this equation, the "ON" state is denoted by a letter, as assigned in Table I, and the "OFF" state is denoted by a letter with a bar under it. Thus with " A " and " A ", " A " is read "Not A." Also, algebraic multiplication denotes "and;" the algebraic plus sign " + " denotes "or."
Hence, the equation $X Y+Z=1$ would be read; " X and Y , or Z , is an acceptable combination." The equation $\underline{X}+\underline{Y Z}=1$, would be read; "Not X, or Z -and-not- Y is an acceptable combination."
In Table II, the combinations on line 1 OR on line 2, OR on line 3, etc. are acceptable. Line 1 alone would be written "ABCDEFabcdef $=1$." The equation expressing all eight acceptable combinations would be:

ABCDEFabcdef + ABCDEFabcdef +
$A \overline{B C D} E \bar{F} a \overline{b c d} \overline{e f}+A \overline{B C D E} F a \overline{b c d e f}+(1)$
$\bar{A} \overline{B C D} E \overline{F a} b \bar{c} d e \bar{f}+\overline{A B} C \bar{D} E \overline{F a b} c \bar{d} e \bar{f}+$
$\overline{A B C} \overline{D E} F \overline{a b} c \overline{d e f}+\overline{A B C} D E \overline{F a b c} d e f$
$=1$
This equation is an exact, concise statement of the circuit requirements with respect to the "Missile Prepared" relay.

The fourth step is to simplify the equation by

Item "B"-The Littelfuse Miniature Fuse Extractor Post „342012.

1 Test prod hole in knob-light tap by prod removes flash.
2 Knurled knob for sure grip.
3 Constant-tension beryllium copper coil and leaf springs for positive pressure contact.
4 Quick change bayonet lock.
5 Shortest behind panel length ($1-11 / 32^{\prime \prime}$).
6 Double flat prevents turning and facilitates positioning.
7 One piece side terminal and top fuse contact -no soldered or welded joints, low voltage drop.
8 One piece knife edge bottom contact for low voltage drop.
9 Terminals designed for easy soldering.

- High resistance to vibration and shock.
- Molded of high impact Bakelite.
- Conserves valuable behind panel space.
- Can be modified to meet many military applications.
- Standard posts meet MIL-P-14E type CFG.

Complete specifications available on request. Write to:
*Precision Engineering
$\begin{gathered}\text { Design Know-how } \\ \text { Quality Craftamanship }\end{gathered}$
DES PLAINES, ILLINCIS'
CIRCLE 66 ON READER-SERVICE CARD
mazenes Nickelonic News

DEVELOPMENTS IN NICKEL AND NICKEL ALLOYS AND THEIR APPLICATIONS
ordinary algebraic factoring, and to rewrite it thus:
$\left(A^{\prime} B C D a b c d+A B C D a b c d+A B C D a b c d^{\prime} 2\right.$ $+\underline{\overline{A B C}} \overline{\mathrm{Dab}}(d) \overline{(E \bar{F} e f}+\bar{E} F e f)=\overline{1}$
Further factoring simplifies it to:
$[C D(A B a b+A B a b) c d+A B(C D c d+3$
$\overline{C D c d}) a \bar{b}]($ EFef + EFef $)=1$
With no more possibilities of simplification ap. parent, the fifth step is undertaken. This is conversion of the simplified equation into a circlut diagram. (It could be converted into a "Logic Diagram" if Static State switching were to be used. But, because relays are to be used, it will be converted into a diagram with symbols for relay contacts.

The following rules apply to the conversion process:
(a) A letter without a bar represents a normally open contact (closed when the signal is ON),
(b) A letter with a bar represents a normally closed contact (opened when the signal is ON .)
(c) Letters, or goups of letters, connected by the "And" sign represent contacts in series.
(d) Letters, or groups of letters connected by the "Or" sign represent parallel circuits.
(e) Contacts in series give the same result regardless of the sequence in which they are written.
(f) Two or more like-acting contacts on the same relay can be replaced by a single contact of the same action.
(g) A contact in parallel with an open contact can perform the same function if the open contact is omitted.
(h) Each of the signals (represented by the letters assigned in Table I) must be considered as operating a separate relay.
The diagram is constructed, as shown in Fig. 1, by merely replacing the albegraic symbols of Eq. 3 with diagramatic symbols for relay contacts (as required by rules a, b, c, d).
Each contact is associated with the relay denoted by the letter assigned to its signal (as re-

Fig. I. The hardware equivalent of the mathematical solution. Each symbol represents a relay contact. The letter denoting the contact denotes what relay it is on. Letters with bars represent normally closed contacts: letters without bars, normally open contacts.

LECTRONIC DESIGN • September 14, 1960

Proper selection of materials enabled
G.E. engineers to eliminate both warph warpage and leakage in their four-electrode transmitting tube (GL-6251). This water-and-forced-air-cooled tube is
used as a power amplifier or oscillator used as a power amplifier or oscillator
in grounded-grid circuits with both grids maintained at radio-frequency ground potential.
When the tube is functioning, the temperature at the edge of the grid cones is as high as $850^{\circ} \mathrm{C}$, while the other portions of the cones remain much cooler. Use of Electronic Grade
"A" Nickel for these grid cones provided a material with adequate mechanical strength, combined with good, deep drawing qualities, to facilitate the manufacture of these parts.
During developmental stages of this tube, G.E. found that there was leakage at the joints of the water jacket.

This problem was solved by using asy-to-weld Monel* nickel-
High operating effi ciency is attributable to the close spacing of the electrodes, ring-seal construction, and the low-loss factor resulting from sil-ver-plated external parts and a ceramic insulator. The ring-seal design also permits quick plug-in installation.
Pertinent I.iterature: Nickel Alloys for Electronic Uses and T-5 - Engineering Properties of Monel and "R" Monel.

CIRCLE 67 ON READER-SERVICE CARD

Inconel " X " alloy wire is used for temperatures up to $370^{\circ} \mathrm{C}$. No. $1 \mathrm{Tem}-$ per wire can be used in the range between 370 and $540^{\circ} \mathrm{C}$, and Solution Treated wire between 540 and $650^{\circ} \mathrm{C}$.) The new image orthicon, type GL7629, is interchangeable with standard camera tubes. It can produce pictures of usable black-and-white quality at one foot candle of scene illumination or less, compared with ten foot candles required by black-and-white image orthicons.

Low-cost changeover

J. F. McAllister, general manager of the company's power tube department, calls the new tube "a major advance in camera tube design." He says it offers color TV much of the programming flexibility of its black-and-white counterpart.
Color-equipped stations, he points out, will be able to reduce operating costs sharply. He also says that many of the nation's regular TV studios can of the nation s regular without signifi-
be converted to color wis cant additional investment.

Reliable cathode material

According to J. S. Fitzsimmons, process control engineer in GE's camera tube department, " 220 " Nickel was selected for the cathode because they wanted a passive material that was non-contaminating. The copper, iron, manganese, and magnesium content is closely controlled and held at low levels.
Pertinent Literature: Electronic grades of Nickel and Nickel allovs - with their uses -are fully described in our booklet, Nickel Alloys for Electronic Uses. Write us for a Alloys
copy.
hUNTINGTON ALLOY PRODUCTS DIVISION
The International Nickel Company, Inc.
Huntington 17, West Virginia

Fig. 3. How to deal with parallel paths through two relays. Part (b) indicates how a careless arrangement of connections can give an undesirable output.
quired by rule h). The separate contacts of each relay are identified by subscripts-even numbers for normally open contacts, and odd numbers for normally closed contacts.
If the relays used have four terminals per double-throw pole, Fig. 1 is a complete solution to the problem. However, if the relays used had only three terminals per double-throw pole, the symbols of Fig. 1 would have to be replaced by proper symbols for this type of relay. In the interest of minimizing the number of poles, it also may be desirable to revise the sequence of some contacts.
This is the sixth and last step, and considerable care must be exercised to avoid pitfalls that could ruin an otherwise perfect solution. Figs. 2, 3, 4, show how the symbols of Fig. 1 may be converted and rearranged.

All parts of Fig. 2 give the same results, but the position of the outputs are inverted in (b), giving rise to the possibility of errors when combining this relay with other relays in the circuit. Two poles, instead of only one, are used in (c) and (d).

Fig. 3 (b) illustrates an erroneous arrangement of connections that might result from carelessness. It would be correct only if the parallel paths were intended to merge after traversing the two relays. Fig 3(c) will work, but, like 2(b), it inverts the output positions. It also uses one more relay pole than might be desirable.
Fig. 3(d) is like 3(a), except the sequence of contacts in the top half of the diagram has been reversed (rule e). Fig. 3(e), constructed from $i(d)$, is a correct arrangement, and it also mininizes the number of relay poles used. - a

INHERENT STABILITY Assured in a DALOHM WW or HW Resistor

Salt - a preservative in some instances and a gnawing destroyer in others - has no effect at all on the inherent stability that is standard in Dalohm resistors.
Stored on the shelf for months . . . or placed under continuous load... operating in severe environmental, shock, vibration and humidity
conditions . . . Dalohm precision resistors retain their stability because it has been "firmly infixed" by Dalohm design and methods of manufacture.
For all applications demanding resistors that meet or surpass MIL specifications, you can depend on Dalohm.

WIRE WOUMD • BOBBIM TYPE - ENCAPSULATED DaLOHM TYPE WW \& HW RESISTORS

- Rated at 0.1 watt to 2 walts, with a wide selection of sizes
- Resistance range from 0.1 ohm to 6 meg ohms, depending on type
- Tolerance $\pm 0.05 \%, \pm 0.1 \%$, $\pm 0.25 \%$ 。 $\pm 0.5 \%, \pm 1 \%, \pm 3 \%$
- Temperafure coefficient 20 P.P.M. per degree C.
- Operafing temperature range from $-55^{\circ} \mathrm{C} .10+125^{\circ} \mathrm{C}$. for WW Type and $-55^{\circ} \mathrm{C} .10+145^{\circ} \mathrm{C}$. for HW Type
- Smallest in size, ranging from $5 / 64^{\prime \prime} \times$ $5 / 16^{\prime \prime} 1076^{\prime \prime} \times 21 / \mathrm{c}^{\prime \prime}$
- Surpass MIL-R-93B, characteristics A and C and MIL-R-9444 (USAF).

Write for Bulletin R-26, with handy cross-reference file card.

SPECIAL PROBLEMS?
You can depend on DALOHM, too, for help in solving any special problem in the realm of development, engineering, design and production. Chances are you can find the answer in our standard line of precision resistors (wire wound, metal film and deposited carbon); (rimmer potentiometers; resistor networks; colletfilting knobs; and hysterevis motors. If not, just outline your specific situation.
from DALOHM Better things in smaller packages DALE PRODUCTS, INC.
1328 28th Ave., Columbus, Nebr.

Make Your Own Transistor Parameter Converter

James R. McDermott

Electronic Consultant
McDermort Associates
New York, N. Y.

0NE BASIC problem in transistor selection lies in non-standardization of transistor parameters appearing on manufacturers' specifications. For example, a mixture of both " h " and " T " parameters frequently appears on the same transistor specification. Also, a large percentage of
parameters are specified in terms of groundedbase circuits, while applications are almost exclusively in terms of grounded-emitter circuits. Result is, that even in making preliminary estimates, tedious conversion of parameters is almost always necessary

Making a Parameter Converter

Considerable reduction of time and effort in parameter conversion can be accomplished by constructing and using a "Transistor Circuit Calculator" with the scales reproduced here. This
handy slide rule speeds conversion of any on " h " or " T " parameter to another. It can easily, be assembled by cutting out the scales, and pas in them onto cardboard in accord with the following directions.
First, obtain three pieces of thin, tough card board, approximately 8 by 10 in . Suitable mate rials are manila file folders or thin bristol board One piece is for the A or top scale, the second i for the B or sliding scale, while the third serve as backing to hold the sliding scale against the front, as shown in Fig. 1.

For those engineers too busy converting parameters io construct their own calculator, it may be obtained for $\$ 1.00$ from McDermoH Associates, 1472 Broadway, New York 36, N.Y.

Fig. 1. Assembly details for the transistor parameter converter.
(A) TRANSISTOR CIRCUIT CALCULATOR

Provides direct conversion of \boldsymbol{h} and \mathbf{T} parameters

rc (Ohms)	
hob ($\times 10^{-6}$ Mhos)	
$h_{\text {rb }}\left(\times 10^{-4}\right)$	
.rb (Ohms)	UT OUT

$\mathrm{h}_{\text {oe }}\left(\times 10^{-6} \mathrm{Mhos}\right)$	CUT OUT
$\mathrm{h}_{\text {ob }}\left(\times 10^{-6} \mathrm{Mhos}\right.$)	
$\beta+1$	
$\boldsymbol{h}_{\text {ib }}$ (Ohms)	
$\mathbf{h}_{\text {ie }}$ (Ohms)	CUT OUT

$(\beta+1) \mathbf{r}_{\mathbf{e}}$	
$h_{\text {ob }}\left(\times 10^{-6}\right.$ Mhos)	
$h_{\text {re }}\left(\times 10^{-4}\right)$	CUT OUT

[^1]Next, center the A scale on one of the cardboards, and paste it in this position. Rubber cernent is recommended. With a sharp razor blade or Exacto knife, trim along the outside guide lines, and then cut out the areas indicated, including those portions of the scales lying within. The A scale is now prepared.
Paste the B scale in the center of the second pirce of cardboard. Lay the A scale over this and adjust until the scales are properly lined up in the windows previously cut. Hold in this position, and carefully mark the outline of the A scale on the B scale cardboard.
On the B scale, draw horizontal lines $1 / 2$-in. from the top and bottom of the A scale outline, as indicated by Trim and Save in Fig. 1. Trim the top and bottom of B flush with the top and bottom of the A scale outline. Trim the left and
right edges of the sliding portion of $B 1 / 2-\mathrm{in}$. beyond A on both sides. Trim the top and bottom guides flush with \boldsymbol{A} as shown in Fig. 1.
Set the A scale in the center of the remaining piece of cardboard, draw an outline, and trim the backing piece to the same size as A.
Place the moving B slide in the center of the backing cardboard, and glue the top and bottom guides in place. Make sure the slide moves snugly between them. Finally, apply glue to the guides and press the scale down on them. Adjust the A scale until it lines up with the B. Trim rough edges.

Scale Equations

The slide rule scales shown in the drawing below are based on the following equations, which provide close approximations:

$$
\begin{aligned}
& h_{o b}=\frac{1}{r_{c}} \\
& r_{b}=\frac{h_{r b}}{h_{o b}} \\
& h_{h_{o e}}=(\beta+1) h_{\text {ob }} \\
& h_{\text {ie }}=(\beta+1) h_{\text {ib }} \\
& r_{e}=\frac{h_{\text {io }}-r_{b}}{(\beta+1)} \\
& h_{r e}=(\beta+1) r_{c}, h_{\text {ob }} \\
& h_{f b}=\alpha \\
& h_{f c}=\beta \\
& \beta=\frac{\alpha}{1-\alpha}
\end{aligned}
$$

Grounded-collector parameters can easily be obtained from the following relations: $h_{i c}=h_{i c}$; $h_{r c}=1-h_{r e} ; h_{f c}=\beta+1 ; h_{o c}=h_{o c} . \boldsymbol{\square}$

Henry Littlejohn, who heads General Radio Co.'s standards department, often commiserates with the engineer who is losing his eyesight trying to read scales. In this article, he offers rules for selecting the number of subdivisions in a scale length, and for choosing the length of lines. The rules were determined with the limits of human eyesight in mind.

Henry Litflejohn
General Radio Co.
West Concord, Mass.

GRADUATED scales are meant for humans. This obvious fact has not deterred designers from occasionally producing scales that were almost impossible to read. Although accuracy is the prime requirement of a scale, readability is easily the second most important consideration. Without readability, accuracy is unusable.

Personal preferences for various graduated scales stem from aesthetic evaluations, traditional concepts, and habits formed by using such scales. It is possible, however, to reduce the design of all scales to a few basic principles, whose application will result in maximum readability for a given length of scale. The satisfactory use of many thousands of precision scales, designed according to these principles, is testimony to the soundness of these rules.
Graduated scales are linear or nonlinear. The design criteria are the same whether the scales are straight or curved as long as the radius of a curved scale is not small compared to the length of division lines. Two problems are involved in designing a scale: (1) selecting the optimum number of subdivisions for a particular scale interval, (2) choosing line lengths that make subdivision lines readily distinguishable.

Too Many Subdivisions
 Spoil The Scale

Scales often can be improved by having fewer rather than more subdivisions. The number of subdivisions depends on the line width, which determines the minimum distance between cen-
ters of adjacent lines. This distance should not be less than four times the line width; otherwise the scale is difficult to read.

When, for example, the distance between line centers is three times the line width, the space between lines is twice the line width, and the scale looks like a series of bars one and two units wide.
A distance between adjacent line centers of more than seven times the line width can be subdivided profitably once more, unless nonlinear scales are used or special circumstances prevail. In all cases, the line width should be as fine as possible, but should not be less than 0.005 in . which is a practical minimum for the naked eye.

The most widely used linear scales are scales of inches and centimeters. With these units the question is not how many subdivisions to use per unit, but how to select a line width no more than $1 / 4$ the subdivision required.
(This selection has been made correctly by manufacturers of inch and centimeter scales. Considcrable improvement, however, can be made in the scales of many reputable manufacturers if the criteria set forth later, on choice of line lengths, is followed. Examples of scales that need improvement are those recommended by the American Standard Association in "American Standard Scales for use with Decimal-Inch Dimensioning Z75, 1-1955.")

Consider a linear, decimally divided scale where the unit is of arbitrary length, and the objective is to divide the unit most effectively. It is apparent that the only practical subdivisions are $1 / 10,2 / 10$, and $5 / 10$. Fig. 1 shows scales of progressively shorter units subdivided, as suggested above, so the minimum interval between line centers is four times the line width; the maximum
interval is seven times the line width. In Fig. 2 the same scales have been subdivided more frequently. Consider the ease of seeing that the indicator is at 1.36 on the top scale of Fig. 1 and then on the top scale of Fig. 2.
Nonlinear scales can be of a wide variety, but one frequently encountered is logarithmic. Assuming the only practical decimal scale subdivisions are $1 / 10,2 / 10$, and $5 / 10$ it follows that three is the maximum feasible number of changes in subdivision per decade.
Dividing the decade into three equal sections puts the subdivision changes at intervals of $10^{1 / 3}$. Approximately, then, these subdivisions are at 2 , 5 , and 10. Using the previously established criterion of a minimum, center-to-center, line spacing of four times the line width, and changing spacing at 2,5 , and 10 , results in the example of Fig. 3.
In each case, the subdivisions are chosen so that as the point of maximum crowding is reached -just before 2,5 , and 10 -the spacing between line centers is no less than four times the line width. The same scales subdivided twice as frequently are shown in Fig. 4. Comparing the indicated value of 4.96 in Fig. 3 with that in Fig. 4 makes the better readability of Fig. 3 obvious.

Don't Associate Line Length With Particular Unit or Fraction

Choosing line lengths is more complicated thatn selecting the length of a subdivision. A mistake frequently made is to associate a length with a unit and other lengths with particular fractions of the unit. However, the user of a scale does not generally associate a line length with a particular unit or fraction, but simply tries to distinguish one line from another.

Rules for Scale Design

(1) Minimize the length of lines; make the shortest length about four times the line width
(2) Minimize the number of different line lengths.
(3) Make the longer of two lines that must be distinguished at least as long as the interval between the centers of these lines.
(4) Make the distance between adjacent line centers no less than four times and no more than seven times the line width.

The practice of using particular lengths for particular fractions is especially poor for nonlinear scales, as the scale in Fig. 5 indicates. In this scale. $1 / 20,1 / 10,2 / 10,5 / 10$, and unit divisions have respectively longer lines. The $1 / 10$ lines, for example, are good between 1 and 2 , but not between 4 and 5 .
The practice of arbitrarily assigning line lengths to particular units can also result in poor linear sc.ules. This is shown in the typical drafting scale shown in Fig. 6; apparently poor readability is the result of standardizing line lengths at $1 / 4$, $316,5,32$, and $1 / 8 \mathrm{in}$. This is not too bad on the edge divided into $1 / 16$ ths, but it makes readon t very difficult on the edge divided into $1 / 50$ ths. Lines are easily distinguished if:
(1) The length of the lines is minimized
(2) the longer of two lines that must be dis-

Fig. 1. Linear scales of arbitrary units divided according to rules for maximum readability.

Fig. 4. The scales of Fig. 3 subdivided twice as often. Excessive subdivision of scales reduces readability.

Fig. 7. Shortening the length of lines on logarithmic scale of Fig. 5 improves readability.

Fig. 2. The scales of Fig. I subdivided further. Too many subdivisions reduce scale readability and, hence, utility.

Fig. 5. Greatest readability results when a particular unit or fraction of unit is not associated with any particular length of line. Thus, the length that denotes one-tenth between 1 and is not used to denote onetenth between 4 and 5 .

Fig. 8. Shortening length of lines on linear scale of Fig. 6 improves readability.

A SOLUTION:

Provide an electro-magnetic clutch, spring return mechanism and rotary potentiometer. Assemble these parts into the required package with the resultant difficulties brought about by the mounting and coupling problems with a consequent increase in cost.

THE OPTIMUM SOLUTION:

Technology Instrument Corpo ration's west coast engineering facilities developed and offer a unitized package consisting of an electro-magnetic clutch, spring return mechanism and rotary potentiometer as one compact assembly. The clutch will transmit high torque without slippage and has negli-

> 7 unitized package

GENERAL INFORMATION:

Shaft Position Transducers
can be linear or nonlinear can be linear or nonlinear potentiometers, synchros linear transformers or digitizers. Spring return
mechanism can be supplic mechanism can be supplic
designed to return to any desired point. A built-in clutch can also be furnished if the input torque can exceed the rating of the clutch. error. TIC's unique spring return mech- anism will accurately return the output transducer to the desired null, yet requires low driving torque. TIC's unitized assembly replaces three (3) individual components with their inherent assembly difficulties.

TIC UNITIZED PACKAGE HAS MANY APPLICATIONS,

SUCH AS: Auto pilots, altitude controllers, machine controllers, measurement and control problems, speed control, process
control of temperature and flow, differential measurement,

expanded scale servos, or any other problem requiring an
output, commencing at some specified servo position determined by an external command signal.

TECHNOLOGY INSTRUMENT CORPORATION
Subsidiaries: Technology Instrument Corp. of Calit. Acton Laboratories, Inc., Acton, Mass.

539 Main Street Acton, Massachusetts

Direct Writing Recorder Operates Over a 100\% Wider Bandwidth

The trace-master recording system offers fidelity of reproduction over a bandwidth up to 100 per cent wider than has heretofore been practicable in direct-writing recording. The "band-amplitude" product, a performance figure of merit, is claimed to be "six times higher than was previously attainable" by company spokesmen. For square-wave monitoring a selection of optimum phase or frequency response may be made. The carbon trace produced is a thin, uniformly clear line which cannot fade and is reproducible.

Eight Independent Channels

The system contains eight independent recording channels which may be set up to accept any one of a number of signals. The user can select the characteristics desired for each channel by applying an appropriate combination of the following plug-in modules:

Match-	Gain-	Drive-
Master	Master	Master
Input		
Couplers	Amplifiers	Amplifiers
de strain gage dc 0 to 1 vzero suppression	dc differential	high impedance
direct	carrier	high impedance

The frequency response of the channels is dc to $110 \mathrm{cps} \pm 1$ per cent, de to 140 $\mathrm{c} p \mathrm{~s} \pm 3 \mathrm{db}$ with all amplifier modules. Maximum sensitivity is: with the de amplifier, 100 mv per cm ; with the de differential amplifier, 1 mv per cm ; with the carrier amplifier, $10 \mu \mathrm{v}$ per cm . Input

The Tracemaster 8 -channel direct-wiring recording system.
impedance varies from 2.500 ohms, when the carrier amplifier is used. to 100 K for the de amplifier and 1 megohm for the de differential amplifier. The amplifiers are transistorized and self-calibrating by integral, pre-aged mercury cells and a precision divider network.

Uses The Direct-Carbon-Transfer Method
The direct-carbon-transfer method of writing used produces a thin, black line that does not fade and can be repro-

Frequency and amplitude response are shown in Fig. 2a, while Fig $2 b$ depicts the square-wave response for optimum frequency and optimum phase monitoring.
duced by all conventional processes. It will clearly trace a faithful representation of minute variations in the phenomenon being recorded. The stylus may be driven at speeds up to 70 mph without discernible distortion or impairment of the trace. Recording speeds are selectable from 0.1 to 500 mm per sec. The chart speed can be changed, by pushbutton selection, in 0.2 sec, eliminating lag in chart speed stabilization. The stylus does not touch and therefore cannot distort or tear the chart paper. As it traces, the stylus is imperceptibly vibrated laterally 400 times per second to eliminate friction and static error. Changes in temperature and humidity do not affect the quality of the trace.

Under Development Two Years

Manufactured by the Instrument Division of the American Optical Co., Buffalo 15. N.Y., this system has been under development for two years, according to Vice President W. K. Hannan. He adds, "we have no doubt that the Trace-Master System is the most significant advance in direct-writing recording design in recent years."

The system is installed in a floormounting rack cabinet, and requires input power of $115 \mathrm{v} \mathrm{ac}, 60 \mathrm{cps}, 15 \mathrm{amp}$. Chart rolls are available in various widths in $1,000 \mathrm{ft}$ lengths.

For further information on this directwriting recorder turn to the ReaderService Card and circle 250.

New $\mathrm{M}_{\text {coat }}^{*}$ for resistors takes 30 cycles of MIL moisture

Moisture Resistant-Resistors with M Coat withstand 30 cycles of moisture, 300% of the MIL-R10509C Characteristic B requirement, tested in accordance with MIL Standard 202. No other RN20X style film resistor on the market matches this performance.
Damage Resistant-M Coat adds greater protection for the resistance element, eliminates handling and assembly damage.
Superior Insulation-over 100 megohms after 30 cycles of moisture.
M Coat is currently available in the $1 / 2$ watt size of IRC Precision Film Deposited Carbon Resistors, a type already noted for superior temperature characteristics, close tolerances, accuracy, and stability at high frequencies.
Rating: $1 / 2$ watt at $70^{\circ} \mathrm{C}$ Ambient Standard tolerance: $\pm 1 \%$
Range: 10 ohms to 2.49 megohms
Max. continuous working voltage: 350

Recommended Applications: Computer, amplifier, metering, and voltage divider circuits.

Write for Bulletin AE-15, International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa.

T
Excel lent form-factor and operating versatility make these ruged magnetrons ideal for many smallpackage applications including CW or pulsed radar beacons, test equipment oscillators, airborne navigation, proximity detection, surveillance, and transponder type operations.
Light, dependable, and with proven capabilities, these tubes operate at 500 to 600 peak volts and 150 ma peak pulsed current, permitting low-cost modulator components for all applications. They give a nominal power output of 1 watt CW and 15 watts peak.
Engineering programs in progress at Microwave Associates are directed towards development of this tube as a voltage-tunable magnetron within the same formfactor. Your inquiries are welcomed on these and other magnetrons.
A copy of our new 72 page Magnetron Catalog is available upon written request on your company letterhead

as

MICROWAVE ASSOCIATEE, INO. BURLINGTON, MABBACHUBETTE
Western Union FAX • TWX: Burlington, Mass., 942 • BRowning 2.3000

Transistorized Oscilloscope

The Model 150 is small enough to fit sni gly in the palm of a man's hand.

Weighs Less Than 2 Lb

THESE PORTABLE, transistorized oscilloscopes are small enough, and light enough, to hold in the palm of one hand while they are being used. Though they operate primarily on internal, rechargeable batteries, ac power or low-voltage dc can be used while the batteries are being recharged. Despite the small size of the unit, the display presentation is equivalent to those of laboratory instruments according to spokesman Joseph Davenport, vice president of Electro Instruments Co. All components are mounted on plug-in cards while an etched circuit board accepts and interconnects all the plug-ins.

Response Is From Dc To $\mathbf{1 . 5} \mathbf{~ M c}$

In the vertical deflection amplifiers, cascaded, transistorized circuitry provides the necessary high voltage and frequency deflection potentials. The sweep is generated by a gated. constant current generator with a variable charging capacitor. Battery voltage in the model 150. the one-inch display size, is con-
verted to the required higher potentials by a 5 -kc converter. This includes the $100-\mathrm{v}$ deflection supply and the $600-\mathrm{v}$ acceleration potential. The response of the vertical amplifiers is from dc to 1.5 mc , independent of the sensitivity setting. Input impedance is one megohm. The sensitivity is calibrated in seven steps to 0.1 v per division. Sweep range is in 5 calibrated steps to $1 \mu \mathrm{sec}$ per division, and is triggered from a plus or a minus slope with variable amplitude control.

Nickel Cadmium Batteries

The nickel cadmium batteries used are rechargeable through the use of an accessory power pack which will be available shortly. This power pack also contains the circuitry necessary to power the scope from ac or de sources while the batteries are being recharged. The oscilloscope can be used therefore, while charging process is taking place. For ease of maintenance and assembly all components are mounted on plug-in cards

The Oscilloscope consists of 11 parts, the case, guide rails, "mother" board, 5 circuit cards, plug-in front and rear panel assemblies.
2×3 in. in size. An etched circuit board, called a "mother board" by EI engineers, accepts all the plug-in cards and interconnects all components, thus eliminating the need for a considerable amount of wiring.

The Scope For Design and Service Engineers

Representatives of the manufacturer, the EI Laboratory Div. of Electro Instruments Inc., 1165 Morena Blvd., San Diego, Calif., describe the new line as providing the ideal oscilloscope where an accessibility or space problem exists. They compare the two-pound weight, and the $2-3 / 4 \times 3-1 / 4 \times 5-1 / 2 \mathrm{in}$. dimensions of their product with those of conventional oscilloscopes. Past experience indicates the conservative, transistorized circuitry used in the design will provide many times the reliability of conventional scopes and the improved performance and reliability, coupled with complete portability make these instruments ideal for both design and service engineers, they add. The model 150 is available with 90 -day delivery at a cost of less than $\$ 500$.
For further information on this transistorized, portable oscilloscope turn to the Reader-Service Card and circle 251.
 \title{
NOW AVAILABLE
 \title{
NOW AVAILABLE CBS MADT HIGHSPREED CBS MADT HIGHSPREED SWITCHINGTRANSISTORS
} SWITCHINGTRANSISTORS
}

20\% Faster

25\% More Efficient

MADT transistors offer you greater speed, efficiency, and performance per dollar than competitive high-speed devices in low-current switching circuits. They combine the advantages of the latest electrochemical, diffusion and micro-alloy techniques automated in mass production. Special CBS features include: cadmium junctions for increased dissipation ratings . . . hermetically sealed TO-1 package . . . over-all quality exceeding MIL-T-19500A. Check the 2N501 and 2N501A characteristics and their many advantages in the high-speed, efficient binary counter shown. Call or write for data and delivery information.

Microllatch RF LOAD RESISTORS COVER THE RANGE:

TO 6000 WATTS AND 3000 MCS.

Micra/tatela

 RF Load Resistors provide the virtually reflectionless terminations needed for accurate RF power measurement. They serve many useful purposes as nonradiating RF power absorbers, particularly in lieu of antenna systems during the measurement and alignment phase of transmitter operation.Other useful functions are in conjunction with feed-through wattmeters to form excellent absorption-type wattmeters, and as a load for side-band elimination filters or high power directional couplers.

SPECIFICATIONS		RF LOAD RESISTORS	
MODEL NO.	frequenct range (mes)	RF POWER DISSIPATION (waths)	RF CONNECTORS
601	0-3000	5	N. C or BNC
603	0.3000	20	N, C or 8NC
633	0.3000	50	N, C or HN
634	0.3000	150	N, C or HN
635	0-3000	200	N, C or HN
636	0.3000	600	N, C or HN
638	0-2000	6000	$31 / 3^{\prime \prime}$ Alange

Many other special models have been designed and manufactured to meet your particular space and input connection requirements.
For more information on RF Loads, Directional Couplers, Tuners, and RF Wattmetors, write:
M. C. JONES ELECTRONICS CO., INC.

185 N. MAIN STREET, BRISTOL, CONN. subsidiary of

BUILT in TO-9 transistor cases, a new line of wirewound trimming potentiometers is designed to be used in printed circuits. About a quarter the volume of conventional trimming pots, the new trimmers measure $1 / 3-\mathrm{in}$. in diameter, weigh 1 g ; and are useful for missile and airborne equipment.

Manufactured by Spectrol Electronics Corp., 1704 South Del Mar Ave., San Gabriel, Calif., the model 80 one-turn pots have standard resistances ranging in seven values from 50 ohms to 10 K , with ± 1.0 per cent linearity. According to chief engineer Warren Hulbert, the model 80 offers better resolution and resettability than conventional miniature trimmers, because its resistance element is almost twice as long-about 750 mils, Compared to around 400 mils .

The pots are sealed by silicone O-rings as in the cut-away drawing, to keep out moisture and to help secure the rotor
elements. Units will meet military 10 day humidity cycling and immersion in hot water tests, as well as $96-\mathrm{hr}$ salt spray tests. They are rated at 50 g shock and 30 g to 2 kc vibration.

Power rating is 1 w at 70 C . Load life is 1000 hr .

Unusual, Simple Rotor

The rotor mechanism consists of a bored Teflon post, with a precious metal spring contact inserted at right angles through the Teflon, slightly off axis. The rotor is seated on the center terminal (simply the extension of the center lead wire through the resin header), and forms the contact to the shape of the $26-\mathrm{mil}$ diam bore. This locks the contact to the rotor post, preventing its shaking loose during vibration
"Teflon," said Mr. Hulbert, "was used instead of nylon, because of nylon's instability at high temperatures." At the
pot's 150 C maximum rating (derated to zero at 150 C) nylon would work; but Spectrol hopes to upgrade the trimmer line to 175 or 200 C , where nylon gets brittle, shrinks and crumbles. "We may pack the metal case-which is a fair heat sink-with silicone grease as a further heat sink, to get up to higher temperatures," said Hulbert.
"Another reason for using Teflon," he pointed out, "is the necessity for making a center bore 26 mils in diameter and 150 mils deep; more difficult with nylon." The resistance wire is wound on a 35 -to45 -mil core, which in turn, is formed to a 260 -mil outside diameter.
Price of the model 80 is $\$ 6.00$ each for one to nine units. They are immediately available at distributors and Spectrol representatives.
For further information on this tran-sistor-size trimming pot, turn to the Reader-Service Card and circle 252.
kLYSTRONS, WAVE TUBES, GAS SWITCHING TUBES, MAGNETRONS, HIGH VACUUM EQUIPMENT, LINEAR ACCELERATORS, MICROWAVE SYSTEM COMPONENTS, NMR \& EPR SPECTROMETERS, MAGNETS, MAGNETOMETERS, STALOS, POWER AMPLIFIERS, GRAPHIC RECORDERS, RESEARCH AND DEVELOPMENT SERVICES CIRCLE 74 ON READER-SERVICE CARD

PROJECT "ECHO" 2000-MILE MICROWAVE LINK

USES UNIQUE VARIAN AMPLIFIER SYSTEM

Project "Echo" - using a passive, 100 -foot diameter, inflated sphere orbiting the earth to reflect signals-is investigating the feasibility of reliable and efficient long-range microwave communication. Radio and voice signals were bounced off the sphere between California and the East Coast. This followed earlier successful "moon-bounce" signalling between the same locations using the same transmitter.
Varian was contracted by the Jet Propulsion Laboratory (JPL)* to develop the unique klystron amplifier system built right into the 85 -foot diameter parabolic transmitter antenna. To assure maximum success in "echo transmission," the system was designed around the proved and reliable Varian VA-800 C Klystron, to provide 10kw output at the desired 2390 megacycle frequency.
-Jet Propulsion Laboratory, a research and development facility of the NASA

ECTRONIC DESIGN • September 14, 1960

B
 FEATURES ERECTOR SET SIMPLICITY WITH ...

.
CONTROL CENTER ASSEMBLY

EMC(1)

STANDARD CABINETS

The ultimate in packaging flexibility is available to help reduce costly design time and custom housing modification. The photographs above graphically illustrate the ERECTOR SET SIMPLICITY in assembly attained through the use of EMCOR Standard Cabinets. Speed of assembly is only one advantage attained with EMCOR Enclosures. Choose from over 600 basic frames plus thousands of components and associated equipment of the EMCOR MODULAR ENCLOSURE SYSTEM. Discover for yourself, the compatibility which can be attained by using any combination of frames and components, the lasting and aesthetic beauty of cabinet design and appearance plus the proven structural capabilities of the EMCOR Fine Line of Quality. Contact your local EMCOR Sales Engineering Representative or write for full details today.

Equalizer Extends Transducer Range

F- LAT FREQUENCY range of transducers can be extended three or four times by the Tranqualizer [sic], an instrument designed for on-line compensation of transducing systems with previously determined parameters. The Tranqualizer compensates for the transducer's resonance characteristics.
According to Del Kahan, director of operations for Data Instruments Div. of Telecomputing Corp., 12838 Saticoy St., North Hollywood, Calif., the company that markets the device, transducer in-puts-or components of inputs-with frequencies higher than 15 or 20 per cent of a transducer's natural frequency are amplified and delayed to varying degrees.

Sine wave inputs above the flat frequency response region undergo a change of amplitude and phase; almost any inputs of a non-sinusoidal or transient nature are distorted and may bear little resemblance to the original.
Confronted with distorted data in the past, the engineer has had to resign himself to using it or to correct the data during data reduction by involved and lengthy mathematical analysis. With the Tranqualizer, the extension of the transducer's flat range is often enough to obviate the need for mathematical treatment.

Principal use of the Tranqualiz r for on-line compensation of a two-de ree of-freedom system-pressure transdu :ers for example-with previously determ nel resonant frequencies and damping factors. The operator sets the inertia and damping controls, hi-lo range and sain controls for each channel; and a true pieture of the input function to the trans. ducer appears at the Tranqualizer output.
Used in reverse, the transducing sys. tem is excited by a known waveform like a square wave, and the Tranqualizer controls are adjusted for best compen. sation. The required parameters may be read directly from the dials.

Device is Computer

Essentially an analog computer, the Tranqualizer works by inserting a trans. fer function in the line that is the reciprocal of the transducer's transfer function. "If $H_{1}(s)$ and $H_{2}(s)$ are the transfer functions of the transducer and the Tranqualizer respectively, s being the Laplace variable," Del Kahan explains. "then H_{1} times H_{2} is equal to one. This provides a flat-frequency response up to the frequency-or close to, in practice -at which the transducer's amplification ratio drops to zero."

The linear differential equation $A_{1} x_{1}+$

$A_{1} x_{2}+B_{1} x_{1}+B_{2} x_{2}+x_{1}+x_{2}=D F(t)$ is electronically solved by the device. This equation describes physical configurations representative of physical systems like condenser microphones, doublediaphragm, condenser-type pressure transducers or thrust measuring transducers.
$F(t)$ is the quantity to be recorded. Output of the transduerer is X, where X is either x_{1} or $\left(x_{1}+x_{2}\right)$, depending on the type of transducer. The Tranqualizer operates on X such that the analog of $F(t)$ is recorded, by:

- Differentiating X twice with respect to one of the system's resonant frequencies, forming $A_{1} d^{2} x_{1} d t^{2}$ and $B_{1} d x_{1} / d t$, - Doing the same with respect to the other resonant frequency to get $A_{2} d^{2} x_{2} / d t^{2}$ and $B_{2} d x_{2} / d t$, and
- Mixing these four quantities with the original signal to form the expression on the left side of the above equation.
Weighing about 71 lb and occupying 18 in . of standard $19-\mathrm{in}$. rack space including power supplies, the Tranqualizer is capable of compensating resonant nodes up to 100 kc , and can be used with any system where the input infornation is in voltage form-analogs of nechanical, acoustic, electrical or other systems having one or two resonances. For further information on this translucer equalizing device, turn to the Reader-Service Card and circle 253.

Effect of a Tranqualizer in the line. Upper trace is a pulse driving function; middle is the output of a transducer showing ringing; bottom (tarely visible as pulse and white line at bottom edge of illustration) is the equalized Tranqualizer output. Sweep speed was $10 \mu \mathrm{sec}$ per cm .

A shock function becomes clearly legible with the addition of the transducer equalizer device. Amplitude and sweep rates are equal. Tranqualizer output had inertia setting of 94.9 and damping set full counter clockwise. Shock tube chamber pressure was 350 psig, ring frequency 78.6 kc , damping coefficient 0.008 . Normal coefficient 0.008 . Normal output above-Tranqual-
izer output below.

EVERYTHING you need for fast, easy

 SELENIUM RECTIFIER SELECTIONOver 1200 Rectifiers Fully Described

48 Pages of Solid Technical Data

Complete Information on CIRCUITS sizes
DIMENSIONS CURRENT RATINGS VOLTAGE RATINGS PRICES

INSTALLATION, efc.

$\sqrt{\sqrt{I C K E R S}}$ Grain-Oriented*SELENIUM RECTIFIERS

The unique characteristics of these rectifiers provide efficiency and economy unmatched by conventional rectifiers.

In Vickers rectifiers, the selenium is grain-oriented: crystals are aligned in the same direction, rather than in the random pattern found in ordinary rectifiers. The result? More working crystals, greater uniformity, better performance per square inch of cell area. Rectifiers provide higher current ratings without increase in cell size, and without danger of overloading; cost per watt of output is lower.

This 48 -page bulletin gives you the complete story.

Send for Bulletin EPD 3116-1, Letterhead requests only, please

VICKERS INCORPORATED ELEGTRIC PRODUGTS DIVISION

1803 LOCUST STREET • SAINT LOUIS 3, MISSOURI

Sales ST. LOUIS-CEntral 1.5830
CHICAGO-JUniper 8.2125 NEW YORK-LEnnox 9.1515
 CIRLCE 76 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader's Service Card for more information on any product. Merely circle number corresponding
to that appearing at the top of each description.

Decade Counters Display 100,000 Unifs Per Sec

The decade counters above are capable of counting 100,000 units in 1 sec . The electron-tube devices indicate the count on ten glowing cathodes in luminescent dials. The count can be converted to electrical pulses. Applications are in automatic machine programing and control and in high speed processes such as coil and transformer winding. Types CK6909 and CK6910, shown at the right, operate at up to 100 kc ; types CK6802 and CK6476, left, operate at up to 4 kc .

Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton, Mass.
Price \& Availability: CK-6802 and CK-6909, \$11.43; CK-6476 and CK-6910, \$13. 37; delivery is immediate in sample quantities.

Solid-State Relay Utilizes Modular Construction
The relay at the right is modularly constructed. It is a sold-state device said to have a life span of millions of cycles. Designated model SR-101-1A, the unit is designed for high-reliability requirements in space and air vehicles, for computers, automation, data processing and proportionate control systems. The modular "layer cake" construction permit rapid modification of special-purpose-designs. Operating voltage is 30 v dc at 60 ma max. Contacts are rated for 1 amp at 28 v . Operating time is about $\mu \mathrm{sec}$. Unit weighs 10 oz .
Leach Corp., Controls Div., Dept. ED, 5915 Avalon Blvd., Los Angeles 3, Calif.
Price \& Availability: $\$ 225$; delivery 6 to 8 weeks.

Gallium-Arsenide Mixer Diode

 For K-Band OperationSpecified for $24,000-\mathrm{mc}$ operation as a first detector, this gallium-arsenide diode, type 1 N . 3096R, is said to have a greater mobility value than did previous models, allowing a considerable increase in sensitivity. The device operates at higher temperatures than germanium or silicon components, and has an over-all noise figure of 10.5 db . The coaxial package housing is identical to that of existing silicon K-band diodes.
Philco Corp., Dept. ED, Lansdale, Pa. Price \& Availability: Single units, $\$ 75$; matched pairs (type 1N3096RM), \$187.50, are available within three weeks.

Coaxial Isolators Nearly 100\% Shielded
Magnetic fields of several huntred oersteds have a negligible iffect on the performance of these hielded coaxial line isolators. The devices have no external permanent magnets. Models D44C7, D44S7 and D44L7, for C, S, and L-band perations respectively, operate over 10% bandwidths, provide more than $15-\mathrm{db}$ isolation and have an insertion loss of less than 1 db . The nits measure $3 / 4 \mathrm{in}$. in diameter, $4-1 / 4$ to $6-5 / 8 \mathrm{in}$. long, and can be lesigned for operation from uhf to X-band frequencies. Potential applications include missile and aircraft equipment, telemetry, radar and communications systems.
Sperry Microwave Electronics Co., Dept. ED, Clearwater, Fla. Price \& Availability: C and S-band units are $\$ 225$; L-band unit is $\$ 235$; ielivery is 30 to 60 days.

Complementary Silicon
 445 Controlled Rectifiers

Providing both positive and negaive operation in controlled rectifier circuits, these complementary silicon controlled rectifiers are available in npnp as well as pnpn styles. The npnp types utilize negative gate current triggering. Designated models HCR-30N through HCR200N (npnp) and HCR-30P through HCR-400P (pnpn), the units are rated at 1 amp average-rectified-forward-current, and 1.4 amp dc at 80 C . Temperature range is -65 to +150 C. Five npnp units with voltages of $30,50,100,150$ and 200 v , and seven pnpn units with voltages of $30,50,100,150,200$, 300 and 400 v are available.
1 loffman Electronics Corp., Semicor ductor Div., Dept. ED, 3761 S. Hill St., Los Angeles 7, Calif.
Price \& Availability: $\$ 5.60$ to $\$ 60$, delending on voltage; delivery is im nediate in sample quantities.

Creative Microwave Technology

Published by MICROWAVE AND POWER TUBE DIVISION, RAYTHEON COMPANY, WALTHAM 54, MASS.. VoI. 2. No. 3

RAYTHEON 1,000,000-WATT MAGNETRON LOGS OVER 13,000 HOURS IN MOBILE RADAR

This is the first reported history of a Raytheon QK-358 magnetron substantiated with an exhibit. Still, there are numerous other cases in which these exceptional Raytheon tubes have been clocked in excess of 10,000 hours, radiating at peak power.

The case in point concerns the application of a QK-358 magnetron in an AN/FPS-8 radar, for which the General Electric Company is the prime contractor. When the tube was replaced after 13,000 hours of service for "preventative maintenance" reasons, it was returned to Raytheon where the tube was found to be operating within specifications. Findings showed it to be highly stable and still capable of radiating more than one megawatt of power.
A large measure of the reliable operation and outstanding life of the QK-358 was achieved through special attention given to its unique characteristics in the overall design of the radar transmitter.

For your information, the QK-358 is a mechanically tunable pulsed-type oscillator with an integral magnet and is designed for coupling to a standard $3^{\prime \prime} \times 6^{\circ}$ waveguide. Typical operating characteristıcs include:
Frequency Range . "L" Band
Peak Power Output . 1.3 Mw Average Power Output 1,630 W

AN/FPS-8 high-power search system by General Electric, used primarily in aircraft control and early-warning operation. The complete mobile or carried on nine trucks and two trailers.

Life testing of Raytheon tubes, such as the QK-358 magnetron, for six weeks or more serves as a quality check of their performance characteristics as recorded and plotted against time.

Excellence in Electronics
AAYTHEO

You can obtain detailed application information and special development services by contacting: Microwave and Power Tube Division, Raytheon Co., Waltham 54, Mass. In Canada: E. Waterloo, Ontario. In Europe: Zurich, Switzerland.

A LEADER IM CREATIVE MICROWAVE TECHNOLOGY

CIRCLE 77 ON READER-SERVICE CARD $>$

NEW PRODUCTS

Neon Lamps

Life is to $5,000 \mathrm{hr}$
Types SLT2-32-1, RT2-331A RLT2-27-1 and RLT2-27-1A neon lamps are for use as switches, volt age regulators, and indicators. boltages are 55 to 80 v dc; currents, 6 to 20 ma . Life is up to $5,000 \mathrm{hr}$ Some types contain a radioactive additive for reduced dark starting effect.
Signalite, Inc., Dept. ED, 37-41 Neptune Highway, Neptune, N.J. Price \& Availability: Price ranges from $\$ 0.10$ to $\$ 0.25$ ea in quantities to 100. Samples can be delivered immediately. Production quantities can be delivered in two or three weeks.

Motor-Driven Switch

554

Has voltage-sensing element

For satellites, deep space probes. or extended space flights, this mo tor-driven switch has a voltage. sensing element. It stands 40 g of vibration from 5 to 2,000 cps. Volt. age drop across typical contacts is less than 10 mv at 22 amp . No power is required to hold the switch open or closed. Up to 21 circuits can be contained in less than 14 cu in.
Kinetics Corp., Dept. ED, 410 S . Cedros Ave., Solana Beach, Calif. Availability: Built to customer specs, units can be delivered in 45 days.

Data Processing

For printed circuit boards, miniature plug-in packages . any tight place in which you must have a really small wire wound resistor, check Daven for the Super Davohm Miniatures that can solve your problem. For example. .
 except physical size, of MIL•R•93-B, and MIL•R-9444.

The overall stability of Daven Miniature Resistors is possible because of an entirely new approach to subminiature production techniques. A urique spool design permits low-stress winding of fine resistance wire...obtaining 2 to 3 times the resistance value previously supplied on a miniature bobbin. This is done under the most stringent quality control and inspection.

The industry's widest range of sizes, temperature coefficients, and tolerances is available for your requirements. Write today for further information and a complete resistor catalog.

THE DA $\triangle E A N$ co.

LIVINGSTON, NEW JERSEY

60 : 28 in . Built of solid state comporients, the system has an expandable, random-access magnetic-core memory which may consist of 1 to 8 niodules of 4096 words each.
Bendix Aviation Corp., Computer Dir., Dept. ED, Los Angeles 45, Calif.
Price \& Availability: A typical system for scientific problems is leased for less than \$10,000 per month.

Paper-Base Laminate 565

Is flame retardant
This paper-base, phenolic laminate provides flame retardance and excellent cold-punching characteristics. Designated XXXPC-476, the base stock meets NEMZ standards and UL tests. Type XXXPC-476-1 foil copper-clad laminate with standard adhesive bonding is for commercial radio and TV applications. Type XXXPC-476-2 copperclad laminate is for computer printed circuits and military applications.
National Vulcanized Fibre Co., Dept. ED, Wilmington, Del.
Price \& Availability: Price is $\$ 0.96$ per sq ft, 1/16 in. thick. Samples can be furnished immediately.

Test Sockets

 551
Come in 150 configurations

These test sockets come in 150 standard configurations to accept a wide variety of relays, chokes, packaged circuits, and other hermetically sealed components. The sockets accept headers with hook, pin, turret, and other types of terminals. All sockets have two mutually-insulated contacts for each terminal. Contacts are beryllium copper with gold plating and have a maximum resistance of 0.005 ohms. The sockets are made of mica-filled epoxy or urethane rubber.
Barnes Development Co., Dept. El), 213 W. Baltimore Ave., Lansdi inne, Pa .
Price \& Availability: Delivery time rolges from one to four weeks. Price is $\$ 24$ to $\$ 65$ with quantity di counts.

Tung-Sol tubes help chicago aerial keep 'copter blades on "right track"

CIRCLE 79 ON READER-SERVICE CARD \rightarrow
function in the conversion network. Tung-Sol 5687 series regulator tubes minimize any variations in output voltage due to load current or line voltage changes. Both tubes maintain 150 volts ± 1 volt insuring the most precise readings.
CAI adds still another name to the growing list of manufacturers who are calling upon Tung-Sol tubes and semiconductors to deliver top performance reliability. Like CAI. you can get the benefit of Tung-Sol component know-how, too. Tung-Sol makes a component for virtually every industrial and military requirement. Our applications engineers will be glad to make an impartial recommendation for the component complement that will best satisfy your design needs. Tung-Sol Electric Inc., Newark 4, N. J. TWX:NK 193.
Technical assistance is available through the following sales offices: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif; Daces. Aexas., Denver, Colo.: Detroit, Mich., Irvinglon.,
N. J.; Melrose Park, III.; Newark. N. J.; Philadelphia, Pa.; N. J.i. Melrose Park, III.; Newark, N. J.; Philadelphia, Pa.;
Seatile, Wash. Canada: Toronto, Ontario.

> Chicago Aerial Industries' automatic Electronic Blade Tracker brings new standards of accuracy to the critical job of tracking helicopter blades to assure that they are all rotating in the same plane, or track. Proper rotation means smoother flight characteristics, minimized vibration, reduced structural stresses and lower maintenance costs. It virtually makes obsolete the manual flag-tracking method.

> The Tracker uses range finding principles to triangulate for each successive blade height. Electrical signals generated by photo-cells in the electro-optical pick-up positioned beneath the rotating blades are fed to a computer analyzer. These signals are then converted to dc voltages proportional to blade height, which registers on the front-panel meter.

> Because rigid standards of reliability are man datory for this equipment, Chicago Aerial selected Tung-Sol tubes to handle the vital regulation

(3) TUNG-SOL

A NEW DIMENSION in R F Products capabilityconsolidating the design and production facilities of Amphenol Cable and Wire, Amphenol Coaxial Connectors, Industrial Products - Danbury Knudsen...

a new expanded faclilit of the amphenol-borg electronics corporation
The new R F Products division offers all capabilities required to service your R F needs. R F Products division can now promptly make available, from one source of supply, the following products: Ipc Coaxial Connectors बMPHENDO Coaxial Connectors and Amphenol Coaxial Cables D_{6} Coaxial Switches and Wave Guide Components
address all requests to
DIIIIION OF AMPHENOL-BORG ELECTRONICS CORPORATION

RF PRODUCTS

DANBURY, CONNECTICUT Ploneer 3-9272 CIRCLE 80 ON READER-SERVICE CARD

NEW PRODUCTS

Variable Delay Line
Continuous delays from 3 to $500 \mu \mathrm{sec}$

Model VM-1030 Delay Line features a continuous range of delays from 3 to $500 \mu \mathrm{sec}$ with an accuracy of $\pm 0.5 \mu \mathrm{sec}$. It has an optimum pulse input of $1 \mu \mathrm{sec}$ and can be supplied with an impedance range of 50 ohms to 4 K . Insertion loss at the end of the range is 56 db and the maximum number of pulses per second is 300 kc. The unit is 4.406 in . in length with an OD of 3.398 in . Total weight is 2 lb .

Control Electronics Co., Dept. ED, 10 Stepar Place, Huntington Sta., Long Island, N.Y. Availability: Approximately 30 days.

Synchronous Motor
508
Self-orienting within ± 5 deg

This self-orienting, synchronous motor insures synchronization of the rotor within $\pm 5 \mathrm{deg}$ with respect to the rotating stator field. No dc excitation of the rotor is required. Motor is two phase. $60 \mathrm{cps}, 115 \mathrm{v}$ ac; synchronizing pull-in torque is 0.50 oz-in.; fall-out torque is 0.65 oz -in. Unit measures 2 in . long with a $1-3 / 4 \mathrm{in}$. diam and weighs 10 oz . Units designed for 400 cps are also available.
Kollsman Motor Corp., Dept. ED, Mill St. Dublin, Pa.
Price \& Availability: Type 1497 ranges from $\$ 78.45$ to $\$ 102$; type 287 Cl ranges from $\$ 13(1.70$ to $\$ 179$. Availability is 3 to 6 mo .

Fixed Delay Line
For computer applications

Delay-line flat No. F840W is designed for computer applications and uses an elliptical core to obtain a relatively long delay at a high impedance level. The unit has an impedance of 3.300 ohms, a delay of $0.8 \mu \mathrm{sec}$ with a rise time of $0.2 \mu \mathrm{sec}$. Pulse attenuation is 0.2 db , ripple ratio is less than 5%, dc resistance is under 100 ohms. The unit is $1-7 / 8 \mathrm{in}$. long, with a crosssection of $1 / 4 \mathrm{in} . \times 11 / 16 \mathrm{in}$.
Columbia Technical Corp., Dept. ED, 61-02 31 Ave., Woodside, N.Y.

Elapsed Time Indicator

Has 1/8-in. characters
Having numerals 1/8-in. high, model 1440 elapsed time indicator provides readings from 0000 to 9999 hr . Nominal input requirements is 115 v at 400 cps , single phase. The unit meets the environmental requirements of MIL-E-5272. It weighs about 1.8 oz , has an over-all diameter of 0.67 in . and a height of $1-7 / 8 \mathrm{in}$.
Bowmar Instrument Corp., Dept. ED, 8000 Bluffton Road, Fort Wayne, Ind.
Acailability: Made on order.
Thermocouple Control Unit
518
For voltage calibration

Model TC 2R thermocouple control unit simulates thermocouples for voltage calibration of oscillograph records. Available in 12- and 18 channel capacity models, the units have sensitivity adjustments in each channel. An adjustable viltage source is included for establishing a refe ence temperature calibration point.
Pace Engineering Co., Dept. ED, 13035 Sativy St., N. Hollywood, Calif.

521

Link Analog function generator offers new level of performance

A Dialog* Building Block Sub-System

The Link ANALOG FUNCTION GENERATOR - another DIALOG building block-provides direct function generation from graphical data, ending the need for time consuming, complex data reduction and mathematical analysis. Its new level of outstanding performance for analog computation and simulation is made possible by a Link-developed, rectilinear servo motor with solid-state servo amplifiers and a ceramic film resistance element.
It offers you the reliability of module design with automatic failure protection ... the economy of simplified maintenance, standardized components and printed circuits . . and the versatility of plug board programming.

CHARACTERISTICS

Electrical specifications:

Input/Output: $\quad \pm 100 \mathrm{v}$ DC into 10,000 ohm
Accuracy: $\quad \pm 1 \%$ of full scale
Resolution:
Drift:
Frequency Response: Better than 5 cps for output amplitude
with $\pm 1 \%$ and phase error max. 5 degrees
Power requirements:
Standard:

$$
\begin{aligned}
& \pm 28 v \pm 10 \% \text { DC } \\
& \text { Average: } 50 \text { watts } \\
& \text { Maximum. }
\end{aligned}
$$

$$
110 \mathrm{v}, 60 \mathrm{cps}
$$

Function specification:

Continuous, single valued with maximum
output change $\pm 10 \mathrm{v}$ for an independent
variable variation of $\pm 1 \mathrm{~V}$
441 points on 21×21 matrix.

Physical characteristics:
Size: $\quad 83 / 4^{\prime \prime} \times 19^{\prime \prime} \times 151 / 2^{\prime \prime}$
Weight: 50 pounds
Cabinet: Independent unit or can be mounted on a standard $19^{\prime \prime}$ instrument rack.

Write to Dept. ED. Industrial Sales Department, for specific details on the many advantages and applications of the Analog Function Generator and information on Dialog Systems Building Blocks.
*DiAlog (Link Digital-Analog Systems, Components and Building Blocks)

> Another example of Link / Ability

LINK DIVISION
Binghamton, New York

GENERAL PRECISION. INC.
Other Divisions: GPL, Kearfott, Librascope,

NEW PRODUCTS

Transistor Test Set

Measures to 30 amp collector current

Power transistor measurements to 30 amp collector current and $300-\mathrm{v}$ breakdown test potentials are possible with the Type 300 precision power transistor test set. Direct meter readings of large signal current gain, $H_{V I}$ and collector characteristics, $I_{\text {CHi }}, I_{C E R}, B V_{C E C}$, and $B V_{C B O}$, can be made under conditions typical of their actual applications.

Owen Laboratories, Inc., Dept. ED, 55 Beacon Place, Pasadena, Calif.
Price: $\$ 675$ ea.

Motor Analyzer
500

For digital stepper
motors

Developed for digital stepper motors, this motor analyzer automatically checks motor response by comparing the total number of applied voltage steps with the actual number of motor mechanical steps. The analyzer consists of a square wave generator with provisions for varying the frequency, pulse width, and amplitude of the output waveform; a pick-off assembly which detects the actual mechanical rotation of the stepper motor; and counter circuits to tally and record the stepper motor input and output pulses. The test fixture provides stepping rates to 1,000 and the stepping pulse duty factor can be varied from 10% to 90%.

Mechatrol, Div. of Servomechanisms, Inc., Dept. ED, 1200 Prospect Ave., Westbury, N.Y.

SILICONE NEWS from Dow Corning

Build In Reliability

Seal Out Moisture and Humidity with Silastic RTV

Reliability of equipment starts with materials. Dow Corning Silicones have physical and electrical properties that mean extra reliability for electronic components, assemblies, systems.

For example: Silastic ${ }^{9}$ RTV, the room temperature vulcanizing Dow Corning silicone rubber, is highly resistant to ozone, corona, weathering and oxidation. Heat-stable, Silastic RTV remains operable from -60 to 250 C ; has good dielectric and physical properties.

Major uses for Silastic RTV include potting, filling, and encapsulation of electronic components and assemblies. Since it is a liquid, Silastic RTV pours easily to form a void free, rubbery mass around components. Available in several grades, Silastic RTV has set-up times ranging from several minutes to hours. Encapsulated parts can be handled in 24 hours, filled parts in even less time.

As a seal against humidity and salt water spray, Silastic RTV is used by Automatic Power, Inc., Houston, Texas to embed all tube sockets, connections, electronic com. ponents and wiring in the chassis of the control panel for their Dies-L-Air Auto matic Warning Signal. This interchange. able control panel monitors operation ol the entire warning signal system - includ. ing a diesel engine driving an integral air compressor, an air system, the control circuitry and air blast horns. Used to alert sea traffic to the presence of off-shore drill. ing equipment, reliability requirements for Dies-L-Air are continuous - and most critical during storms when the unit is beins whipped by corrosive salt water spray and lashed by wind-driven rain. By sealing the control chassis with Silastic RTV, Auto. matic Power, Inc., has assured the reliabilty of electronic components.

CIRCIE 800 ON READER SERVICE CARD

For "Silicones for the Electronic Engineer", Write Dept. 3309

first in
 silicones

Dow Corming

y...Specify Silicones

Laminates Give Extra Strength

Silicone-glass laminates, made with Dow Corning resins, have dielectric properties at high temperatures that are superior to those of other laminate materials. They resist ozone, arcing, corona, fungus - even the combination of high humidity and high voltage. Mechanical strength is good - permitting thin, rigid coil bobbin walls; more winding space and better resistance to winding pressure. These are the reasons why Foster Transformer Company, Cincinnati, Ohio, specifies coil bobbins of silicone-glass laminates for transformers they manufacture for airborne guidance control systems. The one-piece coil bobbins, like those shown, are used in continuous operation at 250 C ... tested for 1000 hours at 400 C .

CIRCIE 80I ON READER SERVICE CARD

CIRCLE 803 ON READER SERVICE CARD

CORPORATION MIDLAND, MICHIGAN
\qquad CIRCLE 800, 801, 802, 803 ON READER-SERVICE CARD

CIRCLE 802 ON READER SERVICE CARD

New Gel for "See Through" Protection

Poured as a liquid, transparent Dow Corning Dielectric Gel fills all voids, then sets up to form a heat-stable gel. Dielectric strength is excellent; stress on components almost nil. Potted components and circuitry remain clearly visible . . . can be checked by eye. Probes can be inserted for instrument checks . . . the gel re-seals itself when probes are removed. Individual components can be replaced. Dielectric Gel enabled CBS Laboratories to meet stringent reliability requirements on its Photoscan power supplies. Despite high temperatures, high voltages, and high vibration levels in this remarkably small unit, Dielectric Gel prevents arcing. Components are spaced less than $1 / 4^{\prime \prime}$ apart, yet output voltages run from 1,000 to 25,000 volts!

Improve Transistor, Diode Performance

Used in mounting diodes to heat-sink or to chassis, Dow Corning Compound forms an excellent heat-sink seal . . is easy to apply and never dries out. Its good thermal conductivity improves the heat transfer between diode-and-washer, washer-and-chassis.
Dow Corning silicone compounds don't melt, lose their grease-like consistency or dielectric properties from -70 to 200 C . Dow Corning silicone compounds have been found ideal for potting transistors. They cushion junctions against shock and vibration . . . improve heat dissipation because of their good thermal conductivity. Transistor junctions are not contaminated by Dow Corning's transistor potting compound . . . rejects from metal splatter are reduced when welding on transistor caps.

Magnetic Tape Head
For 1-in. tape

Model DTH 2132 digital magnetic-tape head is a 32 -track interlaced unit for 1 -in. tape. The gap length of the head is $10 \mu \mathrm{in}$., allowing its use at high-bit densities. The unit is shown mounted on type TG tape slot guide. A precision unit, the tape guide virtually eliminates tape skew and scrape-flutter.
Shepherd Industries, Inc., Dept. ED, 103 Park Ave., Nutley, N.J.

Feedback Control System

Called laboratory for servomechanisms, this equipment includes a master panel, a rack, a mechanical breadboard, and a controls analyzer for demonstration or development work. Necessary components are provided to perform all linear as well as many non-linear feedback-control experiments.
Superior Manufacturing \& Instrument Corp., Dept. ED, 154-01 Barclay Ave., Flushing 55, N.Y.

DC Power Supplies

Have 0.01% line and load regulation

The series 60 power supplies, providing a variable output of 0 to 60 v dc at 0 to 2.5 and 0 to 5 amp , have a line and load regulation of 0.01%. Ripple is less than 1 mv rms . The $2.5-\mathrm{amp}$ unit is programable over the entire voltage range and the $5-\mathrm{amp}$ unit is programable over any $36-\mathrm{v}$ range.
Trygon Electronics Inc., Dept. ED, 111 Pleasant Ave., Roosevelt, L.I., N.Y.
Price \& Availability: $\$ 695$ to $\$ 845 ; 4$ weeks.

NEW PRODUCTS

DC Power Supplies

All solid state
The TRHV series of regulated, high-voltage dc power supplies are all solid state. Referencing and regulating is done at low voltage. Operating temperature is -20 to +55 C . The series consists of five models with output voltages of 1 kv at 5 ma to 10 kv at 1 ma . No warm-up time is required.

Del Electronics Corp., Dept. ED, 521 Homestead Ave., Mount Vernon, N.Y.

Chopper

Microminiature

Type 40 dc -ac chopper is housed in a metal casement measuring $5 / 16 \times 1 / 2 \times 5 / 8 \mathrm{in}$. It has a rugged, taut-band armature suspension and an armature action exerting over 50 times more contact force than the firm's earlier type 20 model. Units are offered with the follow ing driving ranges: 20 to 140 cps , 400 to 600 cps , and 1,000 to 1,500 cps. Coil excitation voltages are 3 to 28 v , square or sine wave. The unit stands environmental extremes.

Rawco Instruments, Inc., Dept. ED, 3527 W. Rosedale, Fort Worth 7. Tex.

Phase Shifter

Accuracy is 20 min
Model PG-5 phase generator produces a carrier phase shift at constant amplitude which corre sponds to the rotation angle of the input shaft. The device is servomounted. Its input can be imped-ance-loaded without adverse error effects. Specifications include: phase accuracy, 20 min ; range, 0 to 360 deg, continuous; diameter, 2.5 in.; and length, 3.25 in.

Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook. N.J.

Price \& Availability: $\$ 210$; from stock.

Industrial Products Division
INTERNATIONAL TELEPHONE \& TELEGRAPH CORPORATION 15191 BLEDSOE STREET • SAN FERNANDO, CALIFORNIA
for vibration testing the ITT Model 1201 is a completely self-contained console built around the ST- 100 fifty force pound Vibration Exciter.
for vibration and shock testing the ITT Model 1205 offers all the features of the vibration console. plus shock test equipment. Both syscalibration as is seen in the graph below.

frequencr in cycles per second

Model K-111A control chassis is designed for the acquisition, storage, and translation of digital data. It features transistor buffer storage with relay contact closure output. It has a maximum capacity of six decimal digits or 24 binary bits. The output can be decimal or any required binary code. It is $8-3 / 4$ in. high, 19 in . wide, 6 in . deep and weighs 40 lb .

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

Crystal-Controlled Oscillators

Stabilities from $\pm \mathbf{0 . 1} \%$ to $\pm \mathbf{0 . 0 0 1} \%$
These crystal-controlled oscillators operate from 60 cps to 10 mc with standard stabilities from $\pm 0.1 \%$ to $\pm 0.001 \%$. Custom units with stabilities to ± 5 parts in 10^{4}, and temperature ranges from -65 to +125 C are also available. Out puts are pulse, square wave or sine wave, with load impedances from 50 ohms and up. Standard units are plug-in or stud mounted; custom configurations can be supplied.

Valpey Crystal Corp., Dept. ED Holliston, Mass.
Price \& Availability: Price is dependent upon frequency and stability required, with delivery 40 days after order is received.

Resistivity Test Set 416

For semiconductor materials
This resistivity test set is designed for semiconductor materials. Control on measurements is $\pm 2 \%$. Separate heads are provided for germanium and silicon; others can be designed for special uses. A 12 in. traversing platform is provided for long crystals. Probes project $1 / 16 \mathrm{in}$. beyond their mounting. A tolerance of 0.0001 in . variation in probe point spacing is maintained

Semimetals, Inc., Dept. ED, 18. N.Y.

133-20 91st Ave., Richmond Hill
< CIRCLE 82 ON READER-SERVICE CARD

Check ITT for your other test instrument requirements such as: Bar Graph Oscilloscopes...Frequency Synthesizers...
Large Screen Oscilloscopes and Accessories...Swept Frequency Generators...High Stability Oscillators...Storascope.
bined with a useful frequency range in excess of $50,000 \mathrm{cps}$ and the simple, one-man operation of the ST-100 greatly expands areas of practicable testing...substantially reduces testing time and expense.
After 7 years of development, the ITT Model ST-100 Vibration Exciter is now available to reliably upgrade your vibration and shock testing results, while it cuts your testing costs.
For complete technical data and applications information, contact your ITT Instruments representative. Or write us direct for Data File ED-1291-1.

The ITT Model ST-100 is the first shaker table of its type designed to be used for both vibration and shock testing. In either application, its greatly advanced design and performance features make it ideal, not only for production testing, but as an $\mathbf{R} \& D$ tool as well. In addition, its "flat" response to $10,000 \mathrm{cps}$, with negligible distortion, provides an exact method of accelerometer calibration.

With the ST-100, force levels at the table are always accurately known. Thus, unnecessary test failures are eliminated and the failure of sub-standard specimens is assured. This, com-

- useful frequency range exceeds 50 KC
- 50 force-pound rated output
- handles test samples up to 5 lbs .
- simple to operate-even by unskilled personnel

NEW PRODUCTS

Communication
 Wire Connector

Self-stripping, moisture-proof
The type UR communication wire connector is self-stripping, moisture-proof and pre-insulated. Designed to accommodate any 2 or 3-wire combination of No. 19 to 26 AWG solid or No. 20 to 26 AWG stranded wire, this connector handles all common types of insulation, has an average pull-out strength equal to 95% of wire-breaking strength.

Minnesota Mining and Manufacturing Co., Dept. ED, 900 Bush Ave., St. Paul 6, Minn.

Comparison Bridge
 381

Detects deviations of 1 in 10,000
Model 544-B comparison bridge detects deviations as small as one part in 10,000 . Resistance limits that can be measured are 3 ohms to 5 meg; capacitance limits are 500 pf to $1,000 \mu \mathrm{f}$; inductance limits are 3 mh to $10,000 \mathrm{~h}$. The instrument has three meter ranges, indicating full-scale differences of $\pm 1.5 \%$, $\pm 7.5 \%$ and $\pm 25 \%$.
Metronix, Inc., Dept. ED, Chesterland, Ohio.

Directional Coupler 382

With type N or \mathbf{C} connector
This series of dual directional couplers, for broadband applications, come with either type N or C connectors. Specifications are: coupling 30 db at 100 mc and 12.5 db at $1,000 \mathrm{mc}$; vswr is 1.15 max in the primary arm and 1.2 max in the secondary arm; directivity above coupling is 20 db min ; coupling and directivity accuracy is $\pm 1 \mathrm{db}$; nominal impedance of the unit is 50 ohms. It withstands 500 w , cw.
Maury and Associates, Dept. ED, 10373 Mills Ave., Montclair, Calif.
Price: Type N connector model is \$120, type C connector model is $\$ 130$.

OSCllators 0.01 cycle to 7425 Mc

Frequency Range	$\begin{aligned} & \text { Maximum } \\ & \text { Outqut } \\ & \text { Oponticuit } \\ & \text { Volts } \end{aligned}$	Nominal Load Impedance	Harmonic	Additional Features
$0.01 \cdot 1030$ cycles	167 mw per load of 60 $10 \mathrm{v}, \mathrm{rms}$,	phase into wye 00Ω per phase; nax. open circuit	<2\%	3-phase and 4-phase ol puts phase shift measurements of sem mechanisms and feedback circuill
20 cycles to 0.5 Mc (sine or square waves)	$\begin{aligned} & 80 \mathrm{mw} / 7 \mathrm{v} \\ & 40 \mathrm{mw} / 45 \mathrm{v} \\ & 0.30 \mathrm{v}, \mathrm{p}-\mathrm{p} \end{aligned}$	$\begin{aligned} & 500 \Omega \\ & 12,500 \Omega \\ & 2,500 \Omega \end{aligned}$	$\begin{gathered} <1.5 \% \\ \text { square waves } \end{gathered}$	Multi-purposo lab signal surre converts to Sweep Oscill tor Synchronous-Dial Drive.
20-15,000 cycles (27 fixed frequencies)	$\begin{aligned} & 18 \mathrm{mw} / 6.6 \mathrm{v} \\ & 100 \mathrm{mw} / 30 \mathrm{v} \end{aligned}$	600Ω balanced or grounded 5000 \& grounded	<0.1\%	Drift not greater than 0.22% hour after first 10 min . - Trequis range extends to 1301-pl Extension Unil (s80).
10-100,000 cycles	$40 \mathrm{mw} / 10 \mathrm{v}$ $20 \mathrm{mw} / 5 \mathrm{v}$ $80 \mathrm{mw} / 20$ v	600Ω balanced $300 \AA$ grounded 5000 \& grounded	$\begin{aligned} & <0.5 \% \\ & <0.5 \% \\ & <1 \% \end{aligned}$	Output Voltage Constant $=1.0 \mathrm{db}$
	$1 \mathrm{w} / 50 \mathrm{v}$	600Ω balanced or grounded	<1\%	Converts to Sweep Oscillator 908-P Dial Drive - high stability,1 hum. Can also be used with Giam Level Recorder.
$\begin{aligned} & \circ 200,1000 \text { cycles } \\ & \& \text { (} 2 \text { fixed frequencies }) \end{aligned}$	$6 \mathrm{mw} / 2 \mathrm{v}$	600Ω	<5\%	Battery operated, whih output much - small and compact.
400, 1000 cycles	$200 \mathrm{mw} / 60 \mathrm{v}$	8000Ω grounded or ungrounded	<3\%	
120 cycles	$400 \mathrm{mw} / 60 \mathrm{v}$	Matches input Z of 1611-B Bridge	<3\%	Compact fixed-frequency oscillue for bridge measurements, use modulators, and as general
$\begin{array}{r} 270 \mathrm{c} \\ 1000 \mathrm{c} \end{array}$	$300 \mathrm{mw} / 28 \mathrm{v}$	8008	<3\%	$\begin{aligned} & \text { tory instruments. Have builk } \\ & \text { power supplies. } \end{aligned}$
$\geq 1 \mathrm{Mc}$	$300 \mathrm{mw} / 7 \mathrm{v}$	50Ω	<3.5\%	
of sine wave: $\approx 20 \mathrm{c}-12 \mathrm{Mc}$ square wave $\frac{\mathrm{D}}{\mathrm{T}} 20 \mathrm{c}-2 \mathrm{Mc}$ 20c-2 Mc	$10 \mathrm{v} / 30 \mathrm{mw}$	attenuator output: 74Ω direct output: 820Ω	sine wave: $20 \mathrm{c}-20 \mathrm{kc} .<1.4 \%$ $20 \mathrm{kc}-12 \mathrm{Mc}$, <4\% square wave: rise time, 0.075 $\mu \mathrm{sec}$ above 300 kc	Swoep zenerator (60 c sweep pre from $20 \mathrm{kc}-12 \mathrm{Mc}$. Sweep width ${ }^{4}$ justable from 0 to $\neq 6 \mathrm{Mc}$.
400 cycles, 1000 cycies 5 kc 50 Mc	$\begin{aligned} & 0.75 w / 12 v v \\ & 1 w / 10 v \end{aligned}$	$\begin{aligned} & 50.8 \\ & 20.80 \end{aligned}$	<3.5\%	ulation - excellent shielding it bridge work.
$\begin{gathered} 05.5 \mathrm{Mc} \\ 5.50 \mathrm{Mc} \end{gathered}$	$\begin{aligned} & 1500 \mathrm{mw} \\ & 500 \mathrm{mw} \end{aligned}$	50Ω		Compact, inexpensive, well shietow - frequency increments of $0.2 \% \mathrm{om}$ division.
50-250 Mc	100 mw	50Ω	Convert to sweep 0s. cillators with 907, 908 Dial Drives, or unique 1750-A Sweep Drive	Semi-butterfly, tuned circuit with moving contacts.
$\frac{65.500 \mathrm{Mc}}{5}$	200 mw	508	1750-A Sweep Drive lated with 1263 . A Am-plitude-Regulating	Very wide range, thorough shielding.
${ }_{0}^{0} 180.600 \mathrm{Mc}$	300 mw	50Ω	Power Supply (1263-A is not recommended for use with 1208-8).	Similar to 1209-B
250.920 Mc	200 mw	50Ω	May be sine-wave modulated with extornal source.	Butterfly circuit avoids uhf tumin difficulties - excellent stability.
900-2000 Mc	200 mw	50Ω		Audio, pulse, square-wave of tra quency modulation from extera source.
8 Klystrons available - to cover 2700 to 27425 Mc range. 2	40 mw	50 』	Klystron tube prices range $\$ 49.65$ to $\$ 107.15$	Compact, low-cost microwave sount or Kiystron power supply - intem I- hc square wave modulation; puly or frequency modulation from al ternal source.
5-Mc crystal provides $10-\mathrm{kc}, 100 \mathrm{kc}, 1$ - Mc. 10. Mc lundamentals and harmonics to 1000 Mc	$\begin{aligned} & 10.30 \text { v, p-p } \\ & \text { video } \\ & \text { output } \end{aligned}$	cath, follower approx. 300Ω	Generates harmonic spectrum	Compact secondary frequency stand ard - accurate timing source tion scope calibration, etc. $-{ }^{\text {and }}$ shon term accuracy is 2 parts in 10 . lerm accuracy is 2 parts in 10 .

Each Unit Instrument provides a basic electrical function in a compact, portable electrical function in a compact, portable package. All frills are omitted in the minimum price. no concessions are made minimum price, no concessions are mad reliability.
These "building-blocks" (Unit Oscillators are indicated on this page by a (0])
permit the formation of a wide variety of low-cost measuring systems. All Unit
Oscillators, with the exception of the 1214 Oscillators, with the exception of the 1214
Series which are completely self-contained, operate from either of the two Unit Power Supplies shown at right
For a complete description of the G-R "Unit" line write for the Unit Instrumen Bulletin.

GENERAL RADIO COMPANY

NEW YORK, WOTh 4.2722 District Office in Ridgafold, N, J. whimay 3.3140	CHICAGO Oak Pork Village -9400	PHILADELPHIA Abinglon MAncoct 4.7419	WASHINGTOM, D.C. Sitver Spring Mniper 5.1080	SAN FRANCISCO Lon Altos Whitediff 8.8233	IOS ANGELES Lor Angeles HOllywood 9-s201	$\begin{aligned} & \text { IN CANADA } \\ & \text { CHeary 6-2\|> } \end{aligned}$

Automatic
 Frequency-Response Measurements

 output is flat within $\pm 0.25 \mathrm{db}$ from 20 c to 20 kc . Its frequency range is logarithmic, hence logarithmic frequency-response plots can be obtained simply by synchronizing dial rotation with paper motion.
The system shown at right is useful for studying filters, networks amplifiers, equalizers, loudspeakers, microphones, and transducers of all types.
The 1521-A Graphic Level Recorder plots frequency-response data automatically when coupled by Drive and Link Units to the 1304-B Beat-Frequency Audio Generator.
The Generator lends itself well to automatic recording, since it

Graphic Spectrum Analysis

The Recorder is readily coupled to the 1554-A Sound and Vibration Analyzer for continuous plotting of the spectrum from 25 to $250 \mathrm{c}, 250 \mathrm{c}$ to 2.5 kc , and 2.5 to 25 kc . Manual resetting of controls is necessary only between ranges. (The recorder also couples to the superseded Type 760-B Sound-Analyzer for coverage from 25 to 7500 c).

Mechanical Sweep Drives

adapt Manually-Operated Equlpment

NEW Audio-Video

eat-Frequency Generator
manual-tuning or sweep applications

1300-A Beat-Frequency Video Generator . . . $\$ 1950$ ald all-purpose instrument for wide-range frequency response
heas heasurements. i.f testing, and
itra sonic, and video ranges.
Sino-Wave Outputs: from 20 c
to 12 Mc , and 30 Mc to 42 Mc Square-Wave Output: from So to
20.
Mc
As Swoep Generator - may be centerered at any frequency

frc m 20 kc to 12 Mc or from 36 | to $n 20 \mathrm{kc}$ to 12 Mc or trom |
| :--- |
| to |
| 2 Mc and driven at any | Sw eep want $4 p$ to $=6 \mathrm{Mc}$. Sv sep rate is 60 cps. or tput for scope horizontal

de lection voltages and blank. din puises
Ivo cali
 pe int-by-point investigations
ce itered pe iterod about any froquency
ce

Output flat within $=0.25 \mathrm{db}$ from 40 c to $20 \mathrm{kc}(\pm 0.75 \mathrm{db}$ at
$20 \mathrm{c})$ and with
201 db from 20 c kc a 12 Mc 10.volt output over entire fre. quency range Built-in stop attenuator proputs
Excllent frequency stability Low harmonic distortion: less and less than 4% an range. and less than 4% on video Low hum
output

Oscillator as well as to keep the oscillator
output constant over wide ranges of frequency. It does this by comparing the rectified r-f output of the oscillator against an internal reference voltage, and applying any necessary corrections to the oscillator through its plate voltage supply. With this setup, output is maintained within 2% over the oscillator's entire frequency range.

Type 908-P Synchronous Dial Drives . . . $\$ 32$ each Self-reversing dial drives that readily attach to G-R Unit Oscillators, 1304-B and 1330-A Oscillators and other equipment with G-R Type 907 and 908 Dials-4-rpm model for use with graphic recorders; $30-\mathrm{rpm}$ model for use with oscilloscopes.

Type 907-R 144 and 908-R 96 Dial Drives Similar to 908-P but provide sweep voltage proportional to shaft position as well, for driving orizontal axes of oscilloscopes, $x-y$ plotters and motor for manual operation - 4 dpm pinion motor for manual operation - 4 rpm pinion
speed ($144^{\circ} / \mathrm{min}$. for G-R 907 Dial and $96^{\circ} / \mathrm{min}$. for 908 Dial). Model for 907 dials, S70; for 908 dials, $\mathbf{S 6 7 .}$

Equipment Chassis Slide

For left or right side of cabinet
This electronic equipment slide provides interchangeability between the left to the right side of the cabinet. Classed a thin slide, the Tronic-Slide handles a maximum of 300 lb , has a quick disconnect feature and is ball-bearing mounted with a dry-film lubricant.

Flotron Industries, Dept. ED, 1608 Centinella Ave., Inglewood 3, Calif.
Price \& Availability: Prices range from $\$ 25.90$ to $\$ 44.50$. They are available within 30) days after receipt of order.

Microwave Receiver

Solid-state circuits
Model TMR-1419 receiver is a solid-state unit composed of an orthomode X-band mixer, a lownoise transistorized preamplifier and a transistorized main amplifier. It provides an over-all noise figure of 10 db , a gain of 95 db , and a nominal $9-\mathrm{mc}$ passband. Less than $1 / 2 \mathrm{w}$ of total input power is required.
LEL Inc., Dept. ED, 380 Oak St., Copiague, Long Island, N.Y.

Microwave Coaxial Cable Connectors

377

For high-power airborne systems
These cable connectors transmit high-power microwave energy in airborne electronic systems. They are designed in straight and rightangle configurations, have a range of 50 to $5,000 \mathrm{mc}$ and handle 1,000 w. Connectors are designed for RG-119/U, RG-209/U and RG211/U coaxial cables and can be modified for other types. They operate from -54 to +95 C up to $70,000 \mathrm{ft}$. Units are moisture-sealed in either mated or unmated conditions.

Thompson Ramo Wooldridge, Inc., Dept. ED, 23555 Euclid Ave., Cleveland 17, Ohio.

Edison Sealed Thermostats are widely used in crystal ovens, electronic ovens and oscillator compartments-and many other electronic components adversely affected by temperature variations. Capable of maintaining temperatures within $0.2^{\circ} \mathrm{C}$, Edison sealed thermostats offer these special features:

- Slow-make, slow-break principle, insures small temperature differential.
- Protective gas atmosphere minimizes effects of contact arcing under heavy loads, resulting in high stability.
- Radiant energy, and conducted or convected heat is rapidly transmitted to the bimetal by the highly conductive gas fill.
- Long bimetal arm is highly sensitive to temperature changes and assures accurate control, predictable performance.

For complete data on Edison Sealed Thermostats, write for Bulletin No. 3009B.

Thomas A. Edison Industries INBTRUMENT DIVIBION

LAKESIDE AVENUE, WEST ORANGE, N. J.

New Prooucts

Voltage Regulator

For airborne use

This 5 -v regulator is designed for airborne telemetering transducer circuits. Voltage inputs are from 22 to 29 v dc; regulated outputs are from 4.975 to 5 v . Load is 0 to 100 ma . The unit operates over the temperature range of -65 to +185 F , weighs 5 oz , and occupies 1.5 cu in .
Vapor Heating Corp., Dept. ED, 6420 W . Howard St., Chicago 48, Ill.

Microwave Amplifiers

Fcr X- and C-bands

These traveling-wave-tube amplifiers are for serrodyne, amplitude, or phase-modulation applications. Type M2004-A operates in the range of 7 to 12.4 kmc and type M2203-B operates from 4 to 8 kmc . Either type provides greater than $20-\mathrm{db}$ gain and at least $10-\mathrm{mw}$ power output. The sideband suppression at a modulation rate of 150 kc is at least 35 db .

Microwave Electronics Corp., Dept. ED, 4061 Transport St., Palo Alto, Calif.
Price \& Availability: \$1,100; two-week delivery.

Static Inverter

Output is 750 v at
120 v ac

Operating from an input of 28 v dc, this static inverter provides 750 w at 120 v ac . Weight is 8.75 lb . The unit contains no moving parts. Effciencies of 80% can be achieved.
Vapor Heating Corp., Dept. ED, 6420 W. Howard St., Chicago 48, Ill.

Transitron introduces

 an exciting new device for simpler, more reliable, more economical switching circuitry
BINBTOR

conic corporation wakefield, melrose, boston, mass. SALES OfFICES IN PrINCCIPAL Cities throughout the u. S. A. AND Europe - CABLE Adoress: trelco

The Silicon NPN Tetrode binistor is a new component and a new concept for the circuit designer!
The key parameters of this bi-stable, negative resistance device are determined by external circuitry in contrast to existing devices. The significant reduction of peripheral circuitry results in outstanding savings in cost, space, weight and solder connections. For example, a typical flip-flop requires at least 13 components versus only 4 in an equivalent binistor stage. Very large current and voltage gains are realized in both on and off directions. Inputs and output are compatible in level with typical transistor and diode circuits. The tetrode binistor can operate from $-80^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
To learn more of this important new development - THE BINISTOR - and how it works write for Bulletin No. TE-1360.

CONDENSED SPECIFICATIONS TRANSITRON BINISTOR

Typical Turn-off Current Gain	50@15ma Collector Current
Operating Collector Current Range	$50 \mathrm{\mu}$ to 15 ma
$\mathrm{I}_{\mathbf{j}}$ critical	0.5 ma @ 5 ma Collector Current
Operating Temperature Range with out Temperature Compensation	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

(BY'NIS-TOR)

Leadership in Semiconductors

OFF-THE-SHELF DELUERY FROM THESE FULLY-STOCKED TRAMSITROM

ARIZONA, Phoonix Kimbalin Distributing Co 1029 N. Firss SL AL Sino 4.2539	MICHIGAN, DHTroit 27 Radio Spacialtions Co., Iac. eroadway 2.4200
CALIFORM1A, Inglewood 1	
,	ESOTA, St. Paut
zon	${ }_{\text {c }}$
CALIFORNIA,	Missourin Kanaz Cily
2310 Lone Bacch Ivid.	
CALIFORNIA. LOS	
23w Florone	Interstate Supoly co.
CALIFORNIA, Menlo Park $10700^{\circ} \cdot$ Prearaic Corp. 2 1070 0'Brien Drive	MEW HAMPSHIRE Manchester
-	Supoly Co
CALIFORNIA, Palo Alto Liberty Electronics Corp.	
	NEW MEXICO, Albuqu
OAvonport	
CALIFORNIA, San D	222 rumm St,
11151 India st.	NEW
,	
	Ploneer 88211
1321 Mission St.	NE
	117 EG
4985 Buchen St.	NEW YORK, Long 1813 no C_{1}
retent 3-7133	
CANAOA, Down	
	NEW YORK, New York)
lopado	
	BArcley 7.1717
62117 hs St	YORK.
${ }_{2-628}$	
C. Washineton	${ }^{530}$ Cmanal St.
3000 Georsia Alvo N.W.	N. CAROLIMA, Winson-Solem
Vuckerman 2.5000	
ORIDA, COCO2	
St0	Paik 5-871 Ma min
Se 6 Sti31	N. CAROLIM
FLORIDA, Miami	823 S Marshall
row Electionics,	Park 4.0541
1800 N.W. 2310	C
Florion, Orla	
cental Aye.	
	Owi
momios	
Lerim Electronics, Inc.	${ }_{3} 3235$
121 So. Water St.	
DD 2 2.1885	The
georgia, Allanta	108.112 N . Jomerson St.
Spocialty Distrtibuling Co., Inc.	BAIDwin 4-1111
	OKLAmoma, Tuis
Strial tlection	G1bson 7.9129
$\begin{aligned} & \text { B32 S. Ouoetn } \\ & \text { Tel. } 500-095 \end{aligned}$	PENNSYLVANIA, Philadolo Radio Electric Servica Co
ILLINOIS, Chicero	
5141 west Madizon si	WAlnut 5
[Stebrook 9-212	RHODEIS
INOIANA, South Bond 24	${ }^{\text {Oomambro }}$
Radio Distributing Co., Inc.	
Alontic 8.4664	
Iowa, Coder Rap	Cont
lowa Radio Supolv	P.0. Bos 10393
719 Conter Point Rd. WE.	2203 fartinetol
EMpire 4-6154	Riverside 7
KANSAS, Wich	TE
$00 \mathrm{~d}$	
MARYLAND, Ballimoie II	JAchsoll 6.6651
Kana-Ellent Electronics, Inc.	UTAM, Salt lite cliy
	EMpirs 3.5813 .
Domssachuserisi dosion	WASHINGTON, Soolte
1095 Commonwaith Ave.	
massachusetts,	main 4.835
Domimbro Radio Supply Co, Inc	
222 Summor sil	2502 Jofrorion Avo.
Prement 7.5626	ERosdway 2-3181
	onic corporation
	kofield, maseschusotte
sules offices in Pracipal	CITLES THROUSHOUT TME
MO EUROPR • CAE	I ADOAESS: TOEICO

sules orfices im mimcipac cities Thmouehout TME USA ano eumore - came nooress: traico
CIRCLE 808 ON READER-SERVICE CARD

ACTUAL SIZE

1/3 smaller and lighter than standard BNC series

DAGE manufactured prototypes of a new series miniature

 connector for the U. S. Army Signal Corps. This series replaces standard BNC connectors used with RG 58 C/U cable.The TPS series features and exclusive three-pin lock which minimizes rocking of the mated pair and eliminates electrical discontinuity due to shock and vibration. The TPS series is now available in the quantity you need.

Make your connections with DAGE
Write or call for catalog and facilities brochure

ELECTRIC COMPANY, INC. Beoch Grove, Indiana state 7-5305

NEW PRODUCTS

Microwave Filter

Range is 8.5 to 9.6 kmc

Type $6001 \overline{7}$, tunable, single-section filter operates in the range of 8.5 to 9.6 kmc . This dualmode unit has a $3-\mathrm{db}$ bandwidth that varies from 29 to 36 mc . The insertion loss is -21 db min at a center frequency of 60 mc . Insertion length is 2.75 in.

Waveline, Inc., Dept. ED, Caldwell, N.J.

Epoxy Compounds

Two types offered
Meta-Gel 103 100\% solids epoxy is particularly suited to encapsulation of mica and ceramic capacitors for MIL-C-105 requirements. Meta-Gel 151 is for heat-sensitive components such as rectifiers, tantalum capacitors, and precison resistors.
Metachem Resins Corp., Mereco Products Div., Dept. ED, 530 Wellington Ave., Cranston 10, R.I.

Waveguide Units

497Transmission lines and components

This line of large waveguide transmission lines and components meets the requirements of multimegawatt radar systems and other high-power microwave applications. The firm will provide specialized units and fitting to customer specifications.
Schutter Microwave Corp., Dept. ED, 80 E. Montauk Highway, Lindenhurst, N.Y.
Availability: Twists, elbows, and bends are available on a prompt delivery schedule.

Precision Wirewound Resistor

Type 375-P wirewound resistor is an encapsulated, precision unit that measures $1 / 8 \mathrm{in}$, long by 1.8 in . in diameter. Wattage rating is 0.05 w ; resistance is 100 K ; voltage is 50 v max. Temperature range is -65 to +125 C , standard tolerances are from 1% to 0.05%; standard temperature coefficient is $\pm 0.002 \%$ per deg C.
Kelvin Electric Co., Dept. ED, 5907 Noble Ave., Van Nuys, Calif.

Reference Power Supply
Accuracy is better than 0.01%
Model 851 programed calibration reference supply has an absolute accuracy of better than 0.01% for line-voltage variations or $\pm 10 \%$ over the temperature range of 40 to 125 F . Tracking accuracy is better than 0.005%. Output voltages range from 0 to 10 v from a constant impedance output of 10 ohms. Selection of 10 programed voltages is by mercury contactors with panel pushbuttons or remote selection.
Owen Laboratories, Inc., Dept. ED, 55 Beacon Place, Pasadena, Calif.
Price \& Availability: About $\$ 2,0(1)$; delivery is from stock to 60 days.

Elapsed-Time Indicator
502
Has digital readout

Type WT-3 elapsed-time indicator with digitil readout weighs 3.75 oz , measures $1-1 / 16 \mathrm{in}$. $O D \times 2-3 / 4 \mathrm{in}$., and operates at 360 to 440 cps "ith a $2.5-\mathrm{w}$ maximum power input. The digital 1 resentation runs to $9,999 \mathrm{hr}$ and the numerals are $5 / 32 \mathrm{in}$. high. Jewel bearings are used.
Waltham Precision Instrument Co., Dept. ED, E!l Crescent St., Waltham 54, Mass.

Unmatched for MIL-R-11 APPLICATIONS

Today's best looking resistors are every bit as good as they look. Going beyond MIL-R-11 requirements, Coldite $70+$ Resistors give important dividends in terms of load life, moisture resistance and other important characteristics.

Unmatched for EASY SOLDERING

Thanks to an exclusive extra solder coating applied after the usual tin dipping, Coldite 70+ Resistors solder readily by any method -dip or iron. Leads stay tarnish-free and solderable even after months in storage.

fixed composition RESISTORS

GET THEMIN 24 HOURS OR LESS

. . . from These Leading Distributors

BALTIMORE, MD
Kann-Ellert Electronics, Inc.
BATTLE CREEK, MICH. Electronic Supply Corp. BINGHAMTON, N. Y. Morris Distributing C_{0}., Inc.
BIRMINGHAM, ALA. MG Electrical Supply Co.
BOSTON, MASS Cramer Electronics, Inc. Sager Electrical Supply
BROOKLYN, N. Y.
Electrical Equipment Corp.
CLEVELAND, OHIO Pioneer Electronic Supply Co.
DALLAS, TEXAS Tekko
DAYTON, OHIO
Srepco, İnc.
DENVER, COLO.
Denver Electronics Supply Co.

GLENDALE, CALIF,
INDIANAPOLIS, IND.
Radio Distributing Co.
KANSAS CITY, MO
Burstein-Applebee Co.
MELBOURNE, FLA.
Electronic Supply
MIAMI, FLA.
Electronic Supply
NEW YORK, N. Y.
Electronic Center, Inc.
Harvey Radio Co.
Milo Electronics Corp.
Sun Radio \& Electronics Co., Inc.
PHILADELPHIA, PA.
Almo Radio Co.
ROANOKE, VA.
Peoples Radio \& TV Supply Co.
SAN DIEGO, CALIF.
Radio Parts Co.

SCRANTON, PA.
Fred P. Pursell
SEATTLE, WASH.
C \& G Electronics C_{0}
ST. LOUIS, MO.
Interstate Supply Co
SYRACUSE, N. Y
Morris Electronics of Syracuse, Inc.
TACOMA, WASH.
C \& G Electronics Co.
WASHINGTON, D. C.
Electronic Industriai Sales, Inc.
WATERBURY, CONN
Bond Radio Supply Co. Inc.
WEST PALM BEACH, FLA.
Goddard Distributors, Inc.
WICHITA, KANS
Interstate Electronic Supply Corp.
WILBRAHAM, MASS.
Industrial Components Corp.
WINSTON-SALEM, N. C.
Dalton-Hege Radio Supply
and G-C STACKPOLE, TOO!-Attractively packaged by G.C Electronics for service
replacement uses, Coldite 70^{+}Resistors are also available through over 800 G.C distributors.
f STACKPOLE
CIRCLE 87 ON READER-SERVICE CARD
ElECTRONIC DESIGN • September 14, 1960

Electronic Products NEWS by carborundum ${ }^{\circ}$

Need High-Power Packaged Loads? Here's an example: Custom engineered PULSE AND RF LOADS

Designed to individual customer requirements, completely assembled pulse and RF loads are offered by Carborundum's Globar Plant. They utilize GLobar ${ }^{\text {© }}$ high power, noninductive resistors mounted so as

to present the lowest possible inductance.
A typical modulator load is pictured here. Peak pulse voltage is 12 KV and the average power rating is 10 KW . The load is cooled by forced air at 300 CFM. A viewing resistor is provided so that $1 / 1000$ of the pulse voltage is available at a BNC jack. Similar loads can be designed using cooling.
Loads utilizing the non-linear characteristics of globar varistors are also supplied for simulating the characteristics of magnetrons and other microwave tubes. For information, write Globar Plant, Refractories Division, Dept. EDL-90, The Carborundum Co., Niagara Falls, N. Y.
CIRCLE 804 on reader-SERVICE CARD

BORON NITRIDE...new Carborundum material offers wide possibilities for MACHINED INSULATING SHAPES

Boron nitride is a comparatively new insulating material having high electrical resistivity, high dielectric strength, and good mechanical properties even at elevated temperatures. It differs from the usual ceramic materials in that parts can be easily

machined using standard machining techniques. No subsequent firing is involved. Close tolerances, high surface finishes and intricate shapes are readily produced. Advantages for many electronic applications will be apparent.
Production of machined shapes to customer specifications is a specialty of Carborundum's Latrobe Plant Tooling provides for long or short runs on the most economical basis. Savings in time due to simplicity of production are often considerable.
The photo shows the machining of a semi-conductor jig produced in volume for a leading electronics manufacturer. A technical bulletin giving the properties of boron nitride is available. Write Latrobe Plant, Refractories Div., Dept. EDB-90, Carborundum Co., Latrobe, Pa

CIRCLE BOS ON READER-SERVICE CARD

Close tolerances possible in ALUMINA SHAPES

Ceramics made of high purity alumina withstand most voltages. frequencies and temperatures en countered in electronic applications. Both simple and highly complex shapes are produced in volume by Carborundum. Machining and grinding operations both before and after firing make it possible to manufacture intricate O.D. and I.D. designs to extremely close tolerances.
The photo shows examples of parts designed for a radome application. Similar shapes are produced for missiles, rockets and aircraft. Three types of alumina are available from Latrobe

1. 1510 (100% alumina) special purpose porous body for vacuum devices. Can be
2. 1542

- for vacuum tube (strength, refractoriness and wear resistance

3. 1550 (85% alumina) vitreous body with high mechanical strength.
For information, write Latrobe Plant, Refractories Div., Dept. EDA 90, Carborundum Co., Latrobe, Pa. CIRCLE 806 ON READER-SERVICE CARD

LATEST INFORMATION ON KOVAR ${ }^{\circledR}$ ALLOY

Kovar is the standard matched-expansion alloy for critical glass-to-metal sealing problems. Bulletin gives data on composition.
properties and applicaproperties and applicaPlant. Refractories Div. Dept. EDK-90, Carborundum Co., Latrobe. Pa.

CIRCLE 807 ON READER-SERVICE CARD
 CIRCLE 804, 805, 806, 807 ON READER-SERVICE CARD

NEW PRODUCTS

Digital Displays
Have quick-disconnect lamps

Series 10 oooP plug-in digital displays have a quick-disconnect feature for in-the-field lamp servicing. Lamps may be changed on the spot without disturbing the internal wiring of the equipment in which the unit is used. Wiring may be potted to customer specifications. When one of the twelve lamps at the rear of the unit is lighted, it projects a corresponding digit or char acter on the front viewing screen. The character displayed is 1 -in. higl. Dimensions of the individual plug-in unit are $1-9 / 16 \times 2-58 \times 6-9 / 32$ in.

Industrial Electronic Engineers. Inc., Dept ED, 5528 Vineland Ave., N. Hollywood, Calif. Price \& Availability: $\$ 30.50 ; 30$ days.

Transistor Audio Amplifier
Measures $1 / 2 \times 1 / 4 \times 1 / 4 \mathrm{in}$.

This rectangular transistor audio amplifier, measuring $1 / 2 \times 1 / 4 \times 1 / 4 \mathrm{in}$., has four stages and a density of 416 components per cu in. The device has a gain of 65 db at 1 kc , an input impedance of 2.500 ohms, and an output of 5 mw without clipping. Response is to 20 kc . A 1.34 v mercury battery serves as power supply. The amplifier drains 1.8 to 2.4 ma .
Centralab Div., Globe Union, Inc., Dept. EI), 900 E. Keefe Ave., Milwaukee 1, Wis.

Power Triode

Ruggedized replacement for type 811A

Type 572 triode is a ruggedized, one way replacement for the prototype 811 A in most applications. Ruggedized construction includes hard glass envelope, heavy-duty tungsten lead wires, a non-frangible filament and enclosed getter taps. The manufacturer claims the 572 has a 50% increase in plate dissipation over the 811A. United Electronics Co., Dept. ED, 42 Spring St., Newark 4, N.J.

Ratio Bridge

For comparing resistors

Model 240-P Kelvin ratio bridge compares an anknown resistor to a standard resistor. The range dial permits comparison in the ratio of $10: 1$ or $100: 1$. For example, with the range dial set at 10 , the dial reads the difference between the unknown and 10 times the standard. Multiplier ratios are $0.01,0.1,1,10$ and 100. Accuracy is $\pm 0.005 \%$ on the $1: 1$ range, and $\pm 0.01 \%$ on other ranges with negligible power dissipation. The unit measures 5-1/4 $\times 19 \times 7 \mathrm{in}$.
Electro Scientific Industries, Inc., Dept. ED, 524 S. W. Macadam Ave., Portland 19, Ore. Price \& Availability: $\$ 900$; 60 days.

Telemetry Subcarrier Calibrator 519
Completely transistorized

Model TCM-411 subcarrier, 11-point calibrator provides discriminator linearity measurements in all 18 IRIG $\mathrm{fm} / \mathrm{fm}$ channels, a source for multiple frequency references, and checks of vco deviation linearity. It is completely transisto ized and is 7 in . high. The unit has 0.01% accuracy and distortion components are at least 40 d ! down. Dwell periods of $1 / 4$ to 4 sec per devi ition may be selected.
Panoramic Radio Products, Dept. ED, 520 S. Filton Ave., Mount Vernon, N.Y.

MEFP AHEAD WITH HAVEG PRECISION PLASTIC MOLDINGS

"Haveg offers the most complete precision plastic molding facilities, experience and 'know-how' available anywhere."

(a) A series of crab locks moldod from Nylon.
(b) Electrical connectors for making and breaking es many as 41 electrical cirevits of one time are used in misaile trocking equipmont.
That's a strong statement but a very important one to remember in planning any type precision molding project Haveg works with every known material to provide the most economical moldings . . . with properties necessary to meet the most rigid specifications.
Today Haveg is literally making design dreams come true . through its extensive research and development laboratory facilities as well as the best quality control laboratory within the industry.
Quality claims are made by many BUT Haveg and only Haveg provides the expert tool design and construction, equipment instrumentation, careful testing of incoming materials as well as many other specialized operations so necessary to assure highest quality precision moldings.
Haveg is justifiably proud of its unsurpassed versatility in facilities and engineering experience... we will be happy to put them at your disposal. Why not consult us on your next project ... you'll find it pays to . . . keep ahead with Haveg.

Comparator chart in bockground onlarges connectors 10 times and checks the aceuracy of all holes and insets.
(d) Pick-up head for stereophonie pecord player. This is a complicated but very small part (one third the width shown) in which three insots are molded into the hoed.

Kesp Ahead witu

finst in Eyyinerad Pustics
TAUNTON DIVISION HAVEG INDUSTRIES, INC.

336 Woir Stroot • Taunton, Massachusotts
 CIRCLE 89 ON READER-SERVICE CARD

NEW PRODUCTS

Printed Circuit Connector

The series 7009, Varitwin-Pin printed circuit connectors have 24 contacts. Wire terminations are twin taper-pin type. Insulator is one-piece, glass-filled diallyl phthalate. Contact terminations have dual connections and accept Series 53 taper pins. A polyethylene tab can polarize the unit.

Elco Corp., Dept. ED, M St. below Erie Ave., Philadelphia 24, Pa.

Function Generator

370
Uses a punched-card memory

In model 100 diode function generator, a hole pattern in a punched card replaces the setting and adjusting of potentiometers. Functions are composed of 20 contiguous line segments. Slopes range from 0.005 to 10.16 v per v . Absolute accuracy is 0.14 , long-term reperatability is 0.02%, input impedance is 1 meg , output power is ± 100 v into 10 K , and frequency response is from de to 10 kc .

General Computers, Inc., Dept. ED, 9000 W. Pico Blvd., Los Angeles 35, Calif. Price \& Availability: $\$ 2,750$; 90) days.

GENERAL INSTRUMENT SEMICONDUCTOR DIVISIONI

When JAN type diodes are required, you can be certain that General Instrument's engineering skills and manufacturing facilities will enable us to deliver them at prices that reflect years of volume production experience.
The General Instrument line of silicon and ger-

$\begin{aligned} & \text { Code } \\ & \text { No. } \end{aligned}$	Min. Fwd. DCcur. @ + IV	Max. Rov. DC Cur. @ Pest V.		$\begin{gathered} \text { Pest } \\ \text { Voltage } \end{gathered}$	Max. Inv. Vollage	Min. Ereakdown Vollogo ${ }^{\circ}$	Avg. Fwd. DC Cur. (Max.)
		$25^{\circ} \mathrm{C}$.	$150^{\circ} \mathrm{C}$.				
IN457	20 mA	. $025 \mu \mathrm{~A}$	$5 . \mu \mathrm{A}$	60 V	60 V	70 V	75 mA
IN458	7 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125V	125 V	150 V	55 mA
1N459	3 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	175V	200V	10 mA

- Reverse voltage at which a reverse current of 100 uA flows.

All ratings and characteristics are at $25^{\circ} \mathrm{C}$. unless otherwise noted.
Operating temperature range $-80^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C}$

Semiconductor Division

GENERAL INSTRUMENT CORPORATION
65 Gouverneur Street, Newark 4, N. J.
Midwest office: 5249 West Diversey Ave. Chicago 39
Western office 11982 Wilshire Bivd, Los Angeles 25

GENERAL INSTRUMENT
 SUEMINIATURE
 silicon power diode/rectifiers

designed to meet USAF MIL-E-11143 specs

These fine silicon diode/rectifiers meet and exceed the USAF specs . . . and retain their outstanding characteristics and reliability at temper. atures of $150^{\circ} \mathrm{C}$. and more. General Instrument also has available a new series of subminiature diode/rectifiers to operate at $200^{\circ} \mathrm{C}$.! Complete technical information is available upon request.

$\begin{aligned} & \text { JEDEC } \\ & \text { TYPE } \end{aligned}$No.	maximum ratings			ELECTRICAL CHARACTERISTICS			
	PEAK INV. VOLT. AGE (V)	$\begin{aligned} & \text { MAX. AVG. } \\ & \text { REETIFIED } \\ & \text { CURRENT (mA): } \end{aligned}$		MINIMUM SATURATION VOLTAGE © $100^{\circ} \mathrm{C}$. (VOLTS)	MAXIMUM REVERSE CURRENT © PIV (uA)		$\begin{gathered} \text { MAXIMUM } \\ \text { VOLTAGE } \\ \text { DROP } \\ \text { @ } 400 \mathrm{ma} \\ \text { DC } \\ @ 25^{\circ} \mathrm{C} . \\ \text { VOLTS DC } \end{gathered}$
		$\begin{gathered} \text { @ } 25^{\circ} \\ \quad \mathrm{c} . \\ \hline \end{gathered}$	$\text { @ } 150^{\circ}$		$\begin{array}{\|c\|c\|} \hline \text { @ } 25^{\circ} \\ \mathrm{C} . \end{array}$	$@_{\mathrm{c} .} 100^{\circ}$	
1N645	225	400	150	275	0.2	15	1.0
1N646	300	400	150	360	0.2	15	1.0
1N647	400	400	150	480	0.2	20	1.0
1N648	500	400	150	600	0.2	20	1.0
IN649	600	400	150	720	0.2	25	1.0

Semiconductor Division

GENERAL INSTRUMENT CORPORATION

65 Gouverneur Street. Newark 4. N. 」
Midwest office 5249 West Diversey Ave. Chicago 39
Western office 11982 Wilshire Biva Los Angeles 25

Rated at 60 v max

The L series of photoconductive cells is rated at 60 v max, with a resistance as low as 40 ohms at $100 \mathrm{ft}-\mathrm{c}$. It consists of five units of the cadmium selenide variety and two of the cadmium sulphide variety. They are available with diameters from $1 / 4$ to $1 / 2 \mathrm{in}$. and in lengths from $1 / 2$ to 1 in .

Clairex Corp., Dept. ED, 19 W. 26th St., New York 10, N.Y.
Price: $\$ 1.15$ to $\$ 4.00$ ea depending on quantity.

Static Inverter

425
Supplies 28 v of single-phase output
Designed for use in commercial and military aircraft and missile instrumentation, the PI series dc-to-ac static inverters supply a $28-\mathrm{v}$, singlephase, $400-\mathrm{cps}$, square-wave output. Input is 28 v dc. Completely transistorized, the unit occupies less than 11.5 cu in . and stands adverse conditions of temperature, altitude, vibration, and shock. Regulation is better than 8% from no load to full load. Frequency stability is $\pm 5 \%$.

Electrodynamic Instrument Corp., Dept. ED, 1841 Old Spanish Trail, Houston 25, Tex. Price \& Availability: $\$ 85$ fob Houston; 6 to 8 weeks.

Ten-Point Stepping Switch
For digital operation

Type 210 stepping switch, with ten points, is designed for digital operation. It has a maximum length of $4-5 / 16 \mathrm{in}$., weighs $1-1 / 2 \mathrm{lb}$, and is capable of over one-hundred-million operations on 12, 10 -point levels. Units with four, 30 -point levels are available.
C. P. Clare \& Co., Dept. ED, 3101 Pratt Blvd., Chicago 45, Ill.

NEW LIGHT
 is shed daily on

 microwave tube state-of-the-art by the engineers and scientists at Sperry's Gainesville, Florida plant. If existing hardware doesn't readily solve your tube application problem, call Gainesville, FRanklin 2-0411 collect, for full information about Sperry capabilities.
ELECTRONIC

 TUBE DIVISIONGainesville, Florida - A Division of Sperry Rand Corporation
A COMPLETE LINE of klystron tubes is manufactured and marmanufactured and marketed by Sperry Elec-
tronic Tube Division, tronic Tube Division,
Gainesville, Fla. The Gainesville, Fla. The
division also performs extensive research and development toward advances in klystron state-of-the-art.

SPECIFY RAPIDLY AND ACCURATEIY WITH SPERRY'S SPECI-FILE

Now you can have Sperry's complete family of klystron and traveling wave tubes right at your fingertips for faster, more accurate tube selection. Attractively packaged and comprehensively indexed, the Sperry Speci-File gives you complete electronic and physical characteristics of every tube in the Sperry line.

TO GET YOUR FREE

Speci-File, use this coupon:
SPERRY
ELECTRONIC TUBE DIVISION
Gainesville, Fla.
Please send mo a FREE Sperry
Specl-Flle:
Name
Title
Company
Address
City
State
Lenern
CIRCLE 247 ON READER-SERVICE CARD
fiff clactronic

GAINESVILLE, FLORIDA
A Division of Sperry Rand Corporation

DLY El, Y

NEN PRODUCTS

Digital Tape System

Transfers 300,000 characters per sec

The Series 700 of Miniature Variable Delay Networks has been designed and created by ESC to meet the increasing demand for smaller units of high acturacy for printeă circuit mounting

Serles 700 Specifications

MODEL NO.	TIME DELAY*	IMPEDANCE	PULSE RISE TIME**
701	.125 usec.	1500 ohms	.03 usec. (max.)
702	.25 usec.	1800 ohms	.06 usec. (max.)
703	.50 usec.	1000 ohms	.10 usec. (max.)
704	.75 usec.	680 ohms	.15 usec. (max.)
705	1.0 usec.	560 ohms	.20 usec. (max.)
706	1.25 usec.	470 ohms	.25 usec. (max.)
707	1.50 usec.	390 ohms	.30 usec. (max.)
708	.65 usec.	93 ohms	.10 usec. (max.)

Pulse Attenuation - 1.0 db (max.) all units
DC Working Volts - 500 volts (max.)

[^2] Mechanical and electrical modifications available on special order exceptional employment opportunities for engineers experienced in computer components...excellent profit-sharing plan.

NEW PRODUCTS

Insulating Material

Combines fibre and

 phenolic propertiesAnilite insulating material com bines the electrical properties and mechanical strength of vulcanized fibre with the low moisture absorp. tion of phenolic laminates. It is flame resistant and has the atc red sistance of vulcanized fibre. It can be drawn or formed into perma. nent shapes, and can be punchell and machined.
National Vulcanized Fibre C_{0} Dept. ED, 1060 Beech St., Wil mington 99, Del.

Transmitting
 Antennas

Feature wide frequency coverage
This series of transmitting anten. nas gives wide frequency coverage for outdoor service on microwave antenna test ranges. Features in. clude high gain, optimum side lobe-bandwidth characteristics, and easily interclangeable feeds. Reflectors are spun aluminum pad raboloids which vary in diameter from 1 to 10 ft .
Scientific-Atlanta, Inc., Dept ED, 2162 Piedmont Road, N.E. Atlanta 9, Georgia.

PNPN Silicon Switch 392

Device is bistable
Type 3280 silicon switch is a bi. stable device of the pnpn class transistors having four terminals. It can be used in circuit designs utilizing 2,3 or 4 terminals. The device can be turned on or off with current to either or both of the control bases. The switch is designed for computer devices requiring low current and fast switching operation. It is packaged in a fourlead TB-4 base measuring 0.217 in. in diameter $x 0.34 \mathrm{in}$. high.

Electronic Computer Co., Dept. ED, 618 Maple St., Conshohocken. Pa.
Price \& Availability: Delivery from stock ut \$10.

New! Switching Transistor

SYIVANIA 21444

features improved

Collector to Base Voltage Collector to Emitter Voltage

Power Dissipation at $55^{\circ} \mathrm{C}$
Power Dissipation at $70^{\circ} \mathrm{C}$

2M404-A CHANGES TO 12 VOLT I ${ }_{\text {ceo }}$ DURING 1000 HOUR LIFE OPERATING LIFE AT
MAXIMUM RATED DISSIPATION MAXIMUM SURAGETION LIFE AT
TEMPERATURE

ELECTRICAL STABILITY ASSURED BY TIGHT AQLS

- POWER DISSIPATION OF 150mW

- voltage ratings of -40V
- OPERATING TEMPERATURE CAPABILITIES OF $100^{\circ} \mathrm{C}$

Sylvania introduces the 2N404A, PNP germa-nium-alloy switching transistor-unilaterally interchangeable with the popular 2N404. A medium-speed switching transistor, Sylvania2 N 404 A is recommended for service where high reliability, electrical stability and resultant longlife expectancy are prime performance considerations. Reliability is assured by a tighter AQL. Sylvania-2N404A must meet a 1% combined AQL for the following parameters: collector cutoff current at $25^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$; emitter cutoff current; emitter floating potential; saturation voltage at 12 mA and 24 mA ; input voltage at 12 mA and 24 mA ; and stored base charge.
Designing now? Sylvania-2N404A is available now! Contact your Sylvania Field Office or your local franchised Sylvania Semiconductor Distributor for price and delivery information. For technical data, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 189, Woburn, Massachusetts.

gylvania

Subsidiary of GENERAL TELEPHONE \& ELECTRONICS

- premium Quality
switching Transistor 4 SVLVANIA
2N4O4A OEM prices
through your rough yo un
 today!

NEW PRODUCTS

Silicon Bridge Rectifier

Is compact, shock resistant
This single-phase, full wave, silicon bridge rectifier is designed for compact, shock resistant power supplies. It is molded in epoxy resin to withstand extreme environments. It has a surge current rating of 35 amp , a recurrent peak rating of 5 amp and a piv of 200 . Operating temperature range is -65 to +120 C .
Ledex, Inc., Dept. ED, 123 Webster St., Dayton 2, Ohio.
Availability: From stock.

Rack and Panel

Connectors

Micro-miniature size

Series 7030 microminiature rack and panel connectors are available in units to accommodate $5,7,9,11$ $14,20,26,29,34$, and 44 wires. Locked-in floating contacts are individually self-aligning. Positive polarization is assured by pairs of opposed guide pins and guide sockets.

Precision Connectors Inc., Dept ED, P. O. Box 96, Mineola, Long Island, N.Y.
Availability: From stock.

Relays

Miniature, multipole
These multipole relays require as little operating power as 25 mw per pole. Model 52C is a dpdt unit and the 54 C is a 4 pdt unit. Both types have self-wiping contacts that are rated at: $2 \mathrm{amp}, 28 \mathrm{v}$ dc and 115 v ac, for the $25-\mathrm{mw}$ version; and $5 \mathrm{amp}, 28 \mathrm{v}$ dc and 115 v ac, for the 50 - and $100-\mathrm{mw}$ versions. The units can be supplied with coil resistances of less than 1 ohm to 20,000 ohms.

Kurman Electric Co., Dept. ED, 191 Newel St., Brooklyn 22, N.Y. Price \& Availability: $\$ 5.30$ to $\$ 7.40$; from stock.

TO MEET ALL APPLICATION REQUIREMENTS ..

General Electric Now Offers You Industry's

LIGHTHOUSE - MINIATURE CERAMIC

Ulira-reliable for high-gain, low noise applications to $\mathbf{3 0 0 0} \mathbf{~ m c}$. Noise figure of 4.3 db and gain of 18.5 db at 450 mc . Operational warranty is 1000 hours. This UHF-SHF tube has high shock and vibration re sistance and is conduction-cooled, This fube and its derivatives are only $1^{\prime \prime}$ high.

Its application is as a Class A_{1} RF amplifier

This is a Class C version of tube type GL-6299. It operates up to 6000 mc . Its power output is 65 mw at 5400 mc. Moreover, its power output is greater than 0.5 watts a 500 mc. This now, metal-ceramic UHF-SHF low-power triode features conduction cooling and has a grounded grid.

Principal application is as a Class C CW oscillator.

This derivative of type GL-6299 operates up to 3000 mc , and is notable for its high spike resistanc. capabilities. The tube is unilaterally interchangeable with type GL-6299. Only recently announced, this sturdy. UHF, low-noise and low-power triode features a grounded grid and con. duction cooling.

It is especially suitable for application as a Class A_{1} RF amplifier.

The frequency range for this fube is up to approximately 3000 me If is a low-noise, high-gain UHF trode, similar in all respects to the GL-6299 except that it is designed with an isolated heater. It features a grounded grid and is conduction cooled.

It is recommended for applicatio as a Class A_{1} RF amplifier.

USE CERAMIC

n-mu Jan
, appror.
2 kw use.
at 3500
i00 watts
! 39/64".
de Class
lixer and
iixer and
d pulsed
high-gain, high-mu, closed-spaced iode with useful output in excess 500 mw at $4000 \mathrm{mc}, \mathrm{CW}$ and doder pulsed conditions. Severa ndred mw obtainable at 6000 mc . atures low interelectrode capacinees and rugged planar construc n. Height is $239 / 64^{\circ}$.
commended for low and inter. diate level amplifier and multi ier applications because of its exptional gain.

This version of the 2C39 family is especially suited to high-frequency peration. Has 100 wat anode dis sipation. Gives 30% efficiency and 10 db gain at 1860 mc and 600 volts. Height is 2 11/16". Efficien pulse performance to 3000 mc .
Notable for consistent high-gain performance, resulting from closely controlled manufacturing and procassing tolerances and thorough char acteristic testing in accordance with MIL-E-1/1037B.

This tube is a finless version of type GL-6897 for applications where there are space limitations, and the full plate dissipation of the GL-6897 is not required. Height is $23 / 4$ ".

Possible applications include pulsed airborne navigational equipment and airborne communications. The tube is operable as a Class C pulsed or CW amplifier, oscillator, and frequency multiplier.

A conduction-cooled version of type GL-6897, for grounded-grid Class C power amplifiers, oscillators, or frequency-multiplier circuits up to 2500 mc. 35 watts plate dissipation readily oblainable. Features same rugged disc-seal construction as type GL-6897. Gives consistent high performance. Height is $2 \% /{ }^{\prime \prime}$

Designed specifically for missile and other non-air-cooled applications.

's Most Complete Line of Microwave Triodes

 Illustrated on these two pages are just twelve of the more than twenty microwave triode types General Electric now offers industry's most complete line. Rugged, versatile G-E "lighthouse" triodes are now available for all types of microwave communication, navigation, identification and radar equipment . . . for all ground, sea and airborne applications.For more information on General Electric's complete line of microwave triodes, and for competent application engineering assistance, contact your General Electric Power Tube Sales Office.

Calculated Noise Perform ance for Noise-matched, Grid return Circuit Operation, Input Circuit Losses Neglected.
GL-6299•GL-7644•Z-5435
Operating Conditions
$\mathrm{E}_{\mathrm{t}}=6.3$ volts
$\mathrm{E}_{\mathrm{c}}=0$ volts
$\mathrm{E}_{\mathrm{h}} / \mathrm{I}_{\mathrm{b}}=10$ milliamperes
NEW ENGLAND
701 Washington
EASTERN
200 Main Avenue
Clifton, New Jersey
2 Telephone: GRegory 3-6387
Dial direct from New York City
WIsconsin 7-4065-6-7-8
CENTRAL
3800 No. Milwaukee Avenue
Chicago 41, Illinois
Telephone: SPring 7-1600 Telephone: SPring 7-1600
Newtonville: Street Tenville, Massachusetts Tephone. WOodward 9-9422
SYRACUSE
1224 West Genesee Street Syracuse, New York Telephone: HArrison 2-1030 SCHENECTADY Building 267
Schenectady 5, New York Telephone: FRanklin 4-2211 Ext: 5-3433

DAYTON
118 West First Street
Dayton 2, Ohio
Telephone: BAldwin 3-7151
11840 West Olympic Boulevard Los Angeles 64, California Telephone: GRanite 9-7765
WASHINGTON
Wyatt Building-Room 1313 771-14th Street, N. W.
Washington, D. C.
Telephone: EXecutive 3-3600

POWER TUBE DEPARTMENT

Receiving System

Stability is $\mathbf{0 . 0 1 \%}$ or better at 540 kc
The SP-600-SSB receiving system, made up of the SP-600 receiver and the SPC-10 SSB converter, with or without speaker, is designed for commercial and military communications. The receiver has a stability range of 0.01% or better at 540 kc to better than 0.001% at 54 mc . Image rejection is 74 db down. The converter provides vernier passband tuning control of 3 kc .

Hammarlund Manufacturing Co., Inc., Dept. ED, 460 W. 34th St., New York 1, N.Y.

Power Supply

Rated at 28 vdc
Model M-1560 power supply has an output of 28 v dc at a continu-ous-duty rating of 7.5 amp . It has magnetic amplifier regulation and hermetically sealed silicon rectifiers for high temperature operation. Regulation is $\pm 1 \%$ for combined variations of line and load; ripple is 5% rms max. It meets specifications of Mil-E-4970.

Perkin Engineering Corp., Dept. ED, El Segundo, Calif.

High-G Rotary Accelerator

For testing miniature components
This compact centrifuge is designed for acceleration testing of subminiature components up to $20,000 \mathrm{~g}$. Capabilities include operation up to $15,300 \mathrm{rpm}$ at a g rating of 20,000 with a speed variation of less than 1% and a speed resolution of better than 0.1%. Time from standstill to full speed is less than 20 sec and speed readings are given directly in revolutions per second.
Schaevitz Engineering, Dept. ED, Route 130 at Schaevitz Blvd., Pennsaucken, N.J.
Price \& Availability: Price is estimated at $\$ 2,286$ to $\$ 2,500$ depend ing on specifications, with delivery 12 weeks after order is received. < CIRCLE 96 ON READER-SERVICE CARD

NEW PRODUCTS

Digital Transducers 402
For flow, pressure, and temperature
The DX-100 series digital transducers measure pressure, flow, temperature, or other variables and provide a digital output in the form of contact closures for data recording or transmission. The transducers are completely mechanical and employ mechanical-force amplifiers to drive shaft-position encoders from bourdon tubes, bellows, diaphragms, or similar devices. Drive power for the unit is obtained from a small electric motor.

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

Film Recorder 393 And Viewer

Used with crt or galvanometers

The Develocorder is an automatic processing, $16-\mathrm{mm}$ film recorder and viewer which can be used with from one to 16 galvanometers to record data from dc to 20 cps (150 cps on special order). A crt can also be used with the unit to record de to 15 kc data. From 4 to 32 hr of data can be recorded on self-contained reels of standard Microfile film at speeds of 3 to 20 cm per min. Display is on a 6×17 in. screen using a two-directional, variable-speed drive. Date, time, and film number are printed during recording. Film trace width is 0.05 mm and linearity is better than 2\%. Weight is 175 lb .
The Geotechnical Corporation, Dept. ED, 3401 Shiloh Road, Garland, Tex.
Price \& Acailability: \$7,250 per unit with delivery 120 days after receipt of order.

Broadband Helical Telemetry Antenna

Has low side, back lobes
The Helicone telemetry antenna system, type 52055 (890-990), combines high gain with low side and back lobes. The broadband feed
has a relatively constant impedance and pattern over a wide frequency band. The feed is adaptable to several parabolic reflectors ranging from 6 to 28 ft and serving several frequency ranges. The antenna system is designed for severe environmental conditions and is mounted on a heavy-duty, two-axis rotator.
Andrew Corporation, Dept. ED, 363 E. 75 St., Chicago 19, Ill.
Price \& Availability: Rotator is $\$ 10,500$; antenna is $\$ 2,500$; with delivery 12 weeks after order is received.

Voltage Variation Detector

Records short-duration disturbances
This instrument is intended for detecting and recording small voltage variations and short-duration pulses. It is a transient-sensitive recording ac voltmeter, capable of recording variations or transients of 2 v with durations of less than 32 msec . Applications include monitoring regulated power supplies. The instrument is scaled from 0 to $150 \mathrm{v}, 60 \mathrm{cps}$.
Esterline-Angus Co., Dept. ED, P. O. Box 596, Indianapolis 6, Ind.

Miniature
 Servo Gearhead

For standard size 11 motor
Model E11 servo gearhead is primarily designed for mounting to a standard size 11 motor; however. adapters are available for mounting to other sizes. Ratios from 3.08:1 to $16,384: 1$ are obtained by using from two to seven gear stages and a motor output pinion. Output torque is $25 \mathrm{oz} \cdot \mathrm{in}$. continuous and the starting torque is $0.015 \mathrm{oz}-\mathrm{in}$. max. Backlash through the gear train is less than 45 sec for the twostage unit and less than 30 sec for all other units.
Exact Engineering and Manufacturing Co., Dept. ED, Oceanside, Calif.

Accelerometer

Sensitive to 0.0025 g

Low level g measurements and vibration studies are possible with model 408 accelerometer. It has a sensitivity of 100 mv per g and operates down to 0.0025 g . Maximum acceleration is $10,000 \mathrm{~g}$; frequency response is from 1 cps to 3 kc with resonance at 55 kc ; amplitude linearity is $\pm \mathbf{1 \%}$. Temperature range is -65 to +300 F , extendable to +500 F with less than 10% variation. The unit is in a stainless steel hexagonal case measuring 3/4 in. on a side and 0.45 in . high. Weight is 23.5 gm .

Columbia Research Laboratories, Dept. ED, MacDade Blvd. and B•I'ens Lane, Woodlyne, Pa.
Pric? \& Availability: For one to five units, $\$ 160$; two-week delivery.

Precision Drives

415

Operate with rotary components

These precision drives include dual-speed drives and a worm gear drive to operate with rotary components such as resolvers, synchros, potentiometers, capacitors, and timing coils. Type PDW-1 worm gear drive uses a 180:1 ratio to allow direct dial readings of 1 min of arc. Type DSD- 2 dual-speed unit is a gear reducer that positions and indicates with an accuracy of 6 min of arc. Ratios offered are through 79:1. Ratios of $20: 1$ and $36: 1$ are available with vernier. Type DSD-3 is similar but has an accuracy of 12 min of arc. Type DSD-4 gear reducer has no backlash and an accuracy of 6 min of arc. Its velocity ratio is $10: 1$ and may be increased to $1,000: 1$.

Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.

Crystal Controlled Converter

Frequency is 324 mc

This crystal-controlled converter for the $324-\mathrm{mc}$ satellite tracking frequency features a low-noise
crystal diode mixer followed by a low-noise if preamplifier. This provides a noise figure that is stable and does not deteriorate with time. Output frequencies are 30 and 60 mc with 6 and 6.5 db over-all noise figures, respectively.

Tapetone, Inc., Dept. ED, 10 Ardlock Place, Webster, Mass.
Price \& Availability: $\$ 350$ per unit, with delivery 30 days after receipt of order.

Flexible-Shaft Couplings

Two types available

These instrument type, flexibleshaft couplings have no backlash and are designed to accommodate both lateral and angular misalignment. Type MPC-1 consists of two flanged aluminum hubs and nylon or stainless steel disks with vee grooves displaced 90 deg and fastened with springs. Its over-all dimensions are $7 / 8 \times 7 / 8 \mathrm{in}$. Type MPC-2 consists of two cylindrical aluminum hubs each having two ball pivots attached. The hubs are attached to a pair of phosphor bronze flexible disks that captivate and load the ball pivots. Over-all dimensions are $3 / 4 \times 1 / 2 \mathrm{in}$.

Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.

Millivolt
 Reference Supply

Absolute accuracy is 0.02%

This reference supply, Model 850, is a programed, millivolt calibration unit with an absolute accuracy of 0.02% for line-voltage variations of $\pm 10 \%$ over the temperature range of 40 to 125 F . Calibration voltages from 0 to 0.1 v are delivered from a constant impedance output of 0.01 ohms.

Owen Laboratories, Inc., Dept. ED, 55 Beacon Place, Pasadena, Calif.
Price \& Availability: Price is approximately $\$ 2,000$ with delivery from stock and up to 60 days.

MORE NEW FANSTEEL SILICON POWER RECTIFIERS IN Series

 5 Amp. 12 Amp. Type 78$\underset{\substack{\text { Jype } 10 \mathrm{~A}}}{50 \mathrm{Amp} .} 70 \mathrm{Amp}$ Tye se \rangle
 semiconductor plant that is considered ona
dust-fil Fee buildings to be found anywhere in the world. Pictured below is its "white room", where the units are assembled and where cleanlinese in most critical. Becsuse it taliss only ond lint upeck to deatron a reotffer's reliahility, this envimoment ir loppl strict personnel controls and special wall amal worls aurfacra. Thesult: consistent reliable performance from Fumitel nilloon eower rectibers.

Write for Iatest fachnical data on Fansteel Silicon Power Rectifiers.
FANSTERL METALLURORCAL CORPORATION

CIRCLE 98 ON READER-SERVICE CARD

The trick is in the adhesive．CDF＇s Di－Clad® printed circuit boards are tested for bond strength in this precision machine．

CDF has developed special adhesives for bonding copper foil to laminated plastic boards．These adhesives produce high peel strength，have excellent hot solder resistance，etch cleanly，and provide high insulation resistance．

In addition to its own adhesives，CDF makes resins and papers．This extends quality control several steps beyond simple pressing operations ．．．provides you with Di－Clad boards of excellent and uniform properties．

CDF manufactures the largest selection of grades to meet every major civilian and military requirement． In addition to Di－Clad printed circuit boards，CDF has special combination materials to solve extra trouble－ some problems．Example：asbestos bonded vulcanized fibre for circuit breaker arc chutes where the fibre quenches the arc and the asbestos guarantees fire resistance．
If you don＇t see the grade you want in CDF＇s catalog in Sweet＇s PD file，write us．
－CONTINENTAL－DIAMOND FIBRE
a subsidiary of the fromf Company－Newark 107，del．
In Canada， 46 Hollinger Road，Toronto 16．Ont．

High reliability printed circuits for mili－
tary applications．Made from CDF＇s glass－ base Di．Clad laminated plastic． CIRCLE 99 ON READER－SERVICE CARD

[^3]
NEW PRODUCTS

Accelerometer

Potentiometric type

This potentiometeric accelerometer uses Hex． ures and dual seismic masses．The seismic mech－ anism has no rubbing parts．Cross－talk is kept at a minimum．Linearity is $\pm 2 \%$ from -55 to +70 C ．Error due to vibration is less than ± 0.03 in．displacement at 10 to 55 cps and less than 6\％under $\pm 10 \mathrm{~g}$ at 55 to 500 cps ．
Dynamic Devices，Inc．，Dept．ED， 3170 Val leywood Drive，Dayton 20，Ohio．

Molding Powder

422
Compounded of Teflon，inorganic material
The molding power is compounded of 100 ． FEP Teflon and an inorganic material such as Fiberglas or graphite．Typical applications in－ clude coil forms and bobbins，tube sockets and connector assemblies，and incapsulation of valve components．

Crane Packing Co．，Dept．ED． 6400 Oakton St．，Morton Grove，Ill．

Electro－Mechanical Programer 366

For on－off functions

The model 602 electro－mechanical programe is designed for programing on－off functions．It will handle 30，2－amp circuits．Time range is 60 to $5,000 \mathrm{sec}$ ．Accuracy is $1 \%, 3 \%$ or 5% ．Units in clude reset，solenoid latching，and a positive zero－time indicator．
The Sloan Co．，Auto－Timer Div．，Dept．ED， 7704 San Fernando Road，Sun Valley，Calif．

CIRCLE 100 ON reader－service caro ${ }^{*}$
ELECTRONIC DESIGN • September 14， 1960 ELECTRONIC DESIGN • September 14， 1960

CRIMEA AND PUNISHMENT

Ohmmeter

Provides ranges to 20 meg
This general-purpose ohmmeter provides ranges up to 20 meg . It is suitable for industrial, laboratory, and general-servicing use. Five ranges, selectable by a switch, are: 0 to 2,000 ohms, 0 to 20,000 ohms, 0 to 200,000 ohms, 0 to 2 meg , and 0 to 20 meg . The unit measures $2-34 \times 4-1 / 4 \times 1-3 / 16 \mathrm{in}$.
The Triplett Electrical Instrument Co., Dept. ED, Bluffton, Ohio.

Strain-Gage 391
 Subcarrier Oscillator

Operates on IRIG channels
 1 to 14 and A

This transistorized, subcarrier oscillator converts strain-gage bridge signals into fm subcarrier signals on IRIG channels 1 to 14 and A. Designated model 179A, the device is designed for missile and aircraft environments. It operates with a four-arm strain-gage bridge with 100 to 150 ohm elements. Reactive balancing is unnecessary. No output filter is required. Linearity is within 0.1%. The unit operates from a 25 to 29 v de source.
Electro-Mechanical Research Inc., Dept. ED, Sarasota, Fla. Price \& Availability: \$800; 60 days.

Recorder-Reproducer 399

Solid-state circuits

Recorder/reproducer PR-2300 is an all-solid-state, magnetic tape instrument which is modularized, small in size, and weighs less than $1.50 \mathrm{lb} . \mathrm{Up}$ to 14 channels of directrecord or wide-band fm analog data can be recorded and played back bi-directionally. Speeds range from $1-7 / 8$ to 60 ips . Input range is 0.25 to 25 v rms for normal record level; frequency response is 100 to $110,000 \mathrm{cps} \pm 3 \mathrm{db}$ at 60 ips for the direct record system. Input range for an fm system is 0.5 to 50 v rms for 100% modulation, drift is less $t \tan 2 \%$ and linearity is 1%.
Consolidated Electrodynamics (orp., Dept. ED, 360 Sierra Madre ' illa, Pasadena, Calif.
CIRCLE 101 ON READER-SERVICE CARD \rightarrow

At the height of the famous Charge of the Light Brigade, no less than 23 of the radar's tubes malfunctioned simultaneously. (And no wonder - for this was the year 1856-91 years Before Bomac.*) The calamity not only left the Light Brigade totally in the dark, but it very nearly lost the battle and the radar unit itself. Only the heroic action of an anonymous radio operator, later reported missing, kept the unit from falling into Russian hands.

Many years later, however, there appeared in England a man named Roland Stone, who claimed to be the missing radio operator of Balaklava. He was given a hero's welcome and was scheduled to receive the Victoria Cross for valor. He would have, too - except for a sharp-eyed, hawknosed man named Sheerluck Domes who happened to read about Stone in the newspaper.

Before the startled Queen could say a word, Domes was flashing telegraph key under Stone's nose. "If you're a radio operator," he hissed, "send me some code!" Stone stammered for a moment. His hands dropped helplessly to his sides.
"You see, your majesty!" Doomes said triumphantly. "This man is no radio operator. He wouldn't know a dot from a dash if he met therm in Covent Carden. Off with his head, I say."

After they had led Stone away, the Queen marveled: "But Domes, how could you be sure this man was an impostor? All you knew was his name."
"That," said Sheerluck, "was all I had to know. After all," he went on, "a man named Roland Stone simply couldn't be a radio oper,isor." "Why not?" asked the Queen.
"Because," the great man said, "a Roland Stone gathers no Morse."
No. 21 of a series ... BOMAC LOOKS AT RADAR THROUGH THE AGES

*Today Bomac malies the finest microveare tubes and components this side of the Grimea.

BOMAC

Leaders in the design, development and manufacture of TR, ATR, Pre-TR tubes; shutters; reference cavities; crystal protectors; silicon diodes; magnetrons; klystrons; duplexers; pressurizing windows; noise source tubes; high frequency triode oscillators; surge protectors.

Ofíass In major elties-Chicago - Kansas City - Los Angeles - Dallas • Dayton - Washington Seattle - San Francisco - Cameta: R-O-R Associates Limited, 1477 Don Mills R.
Ontario - Expmt: Maurice I. Parisier, 741 -745 Washington St., N. Y. C. 14, N. Y.
 B
org 1300 Series Direct-
Reading Microdials are worth looking into.
Designed for high-speed operation, these turnscounting dials perform at speeds of 6,000 counts per minute. Three, four and five digit models. Indexed accuracy is one part in a thousand. Compact design requires minimum control panel space. Dust sealed . . . meet military specifications. Large, one-piece, sealed window curved to provide wide-angle viewing. Complete data is on catalog sheets BED-A135 and BED-A136. See your Borg technical representative, distributor or write us today. Borg Equipment Division, Amphenol-Borg Electronics Corporation. Janestille, Wisconsin. Phone Pleasant 4-6616.

[^4] CIRCLE 102 ON READER-SERVICE CARD

NEW PRODUCTS

Ferrite Switch

Switching time $0.1 \mu \mathrm{sec}$

Switching time is $0.1 \mu \mathrm{sec}$ for the Model SX-102 ferrite switch. This switch is for the 9.0 to 10.2 kmc band; isolation is 25 db min and in sertion loss is less than 1 db . Associated electronic driver units are available.

Rantec Corporation, Dept. ED, Calabasas, Calif.
Price: Price is $\$ 550$ ea in small quantities.

Crystal Filters

Center frequency is 10 mc
Type BP-10000-40 crystal filters are for application in transistorized if amplifiers. Specifications include: center frequency, 10 mc ; ripple, 0.5 db ; stopband rejection, 70 db ; and dimensions, $1 / 2 \times 1-1 / 8 \times 2 \mathrm{in}$.
Systems Inc., Dept. ED, 2400 Diversified Way, Orlando, Fla.

Rosette Strain Gage

Resists temperature effects

This rosette strain gage is a single-plane unit designed for a maximum of sensing elements per unit area, and constructed of materials treated to resist temperature effects. Gages are available in $1 / 2$ and $1 / 4 \mathrm{in}$. sizes, in 45 and $60-\mathrm{deg}$ configurations, and on either epoxy, paper or phenolic matrices.
Baldwin Lima Hamilton Corp., Electronics \& Instrumentation Div., Dept. ED, 42 Fourth Ave., Waltham 54, Mass.

Now-from Los Angeles as well as New York

For Government Spec Wire

 the Leaders Specify....Alpha offers a complete line of Mil-W. 16878C Wire from stock for immediate delivery from your local distributor or the factory. Alpha Military Wire, produced to the highest standards.
is used by every major manufacturer engaged in defense projects Write for your free Alpha Wire catalog

MIL-W-16878C					
MIL-W-16878C	DESCRIPTION (Single conductors)	VOLT RATING	$\begin{aligned} & \text { CONDUCTOR } \\ & \text { SIZE } \end{aligned}$	STOCK COLORS	ALPHA NUMBER
TYPE B UNCOVERED PLASTIC	stranded tinned copper, $.010^{\prime \prime}$ vinyl thermoplastic insulation. $105^{\circ} \mathrm{C}$	600	16-32	*1-19	1850-1858
TYPE B NYLON JACKET	stranded tinned copper, . $010^{\prime \prime}$ vinyl thermoplastic insulation with clear nyton jacket overall. $115^{\circ} \mathrm{C}$	600	16.32	*1-19	1860-1868
TYPE C UNCOVERED PLASTIC	stranded tinned copper, .016" vinyl thermoplastic insulation. $105^{\circ} \mathrm{C}$	1000	14.24	Conductors 18-22 Colors *1-19 Conductors 14, 16, 24 Colors 1, 11-19	1830.1835
TYPE C NYLON JACKET	stranded tinned copper, .016" vinyl thermoplastic insulation with clear nylon jacket overall. $115^{\circ} \mathrm{C}$	1000	14.24	Conductors 18-22 Colors *1-19 Conductors 14, 16, 24 Colors 1, 11-19	1840.1845
TYPE D UNCOVERED PLASTIC	stranded tinned copper, .032" vinyl thermoplastic insulation. $105^{\circ} \mathrm{C}$	3000	6.24	```Conductors 18-22 Colors *1-19 Conductors 6-16 & 24 Colors *1, 11-19```	1870-1879
TYPE D NYLON JACKET	stranded tinned copper .032" vinyl thermoplastic insulation with clear nylon jacket overall. $115^{\circ} \mathrm{C}$	3000	6.24	```Conductors 18-24 Colors *1-19 Conductors 6-16 & 24 Colors *1, 11-19```	1880.1889
TYPE E EXTRUDED \& SPIRAL WRAPPED TEFLON WIRE	stranded silver plated copper, extruded or spiral wrapped Teflon insulation. $.010^{\prime \prime}$ Wall. $200^{\circ} \mathrm{C}$	600	14-30	Conductors 16-30 Colors *1-10 Conductor 14 Colors *1-6	Extruded 28512859 - Wrapperd 28812884
1. White 2. Black 3. Red 4. Green	5. Yellow 6. Lt. Blue 7. Brown 8. Orange	Gray (slat Violet (pu White/B White/R	13. White/Green 14. White/Yellow 15. White/Blue 16. White/Brown		/Orange /Gray /Violet
	ALPHA WIRE CORPORATION \qquad LORAL \qquad 200 Varick Street. New York 14. N. Y. Pacific Division: 1871 So. Orange Dr., Los Angeles 19, Callt.				

NEW PRODUCTS

Synchronous Motor

Has torque of 250 oz -in.

Type SS250 synchronous motor is designed primarily for industrial uses. It has a torque of $250 \mathrm{oz}-\mathrm{in}$. and a constant speed of 72 rpm . A dc voltage applied to its field windings converts one revolution of the motor shaft into 200 precise steps. Ratings are: input, 120 v , single phase, 40 to $70 \mathrm{cps}, 0.6 \mathrm{amp}$ max at $60 \mathrm{cps} ; 72 \mathrm{rpm}$ output at 60 cps .

The Superior Electric Co., Dept. ED, 83 Laurel St., Bristol, Conn.
Price \& Availability: Price is \$65 per unit with quantity prices on request, available from stock.

Sensing and Switching System

658
Use ultrasonic energy
With an ultrasonic beam, the Sonac can sense liquids, solids, ferrous and non-ferrous metals, opaque and transparent objects. Operation is unaffected by ambient light, dust, mist or a normal collection of residual solids on the face of the acoustic lens. The hermetically sealed sensors operate from -100 to +220 F . The unit consumes about l w.

Delavan Manufacturing Co., Electro-Sonics Div., Dept. ED, West Des Moines, Iowa.

Price \& Availability: The unit is available from stock at \$119.00.

Vibration Monitor

For control or alarm

The Sonalarm, Model 160, operates relay contacts (NC or NO) at a preset $70-$ to $100-\mathrm{db}$ sound pressure level; it has a differential of 2 db . An electronic delay prevents tripping on single impacts. An audio output jack is provided for earphone or power amplifier.
II. H. Scott, Inc., Instrument Div., Dept. ED, 111 Powder Mills Road, Maynard, Mass. Price \& Availability: Presently available only in sample quantities, the unit will be in stock by Sept. 1, 1960. Price will be about $\$ 150$ less microphone.

Only Simpson's 260° VOM Converts into 7 Different Testers

Add-A-Tester Adapters for 260 VOM

TRANSISTOR TESTER, Model 650...\$26.95

Befa Ranges: 0.10, 0-50. 0-250, (F.S.) Beta Ranges: 0.10, $0-50,0-250$, (F.S.
Beto Accuracy: $\pm 3 \%$, with $260 \pm 5 \%$ nom Beto Accuracy: $\pm 3 \%$ with $260 \pm 5 \%$ nomin
lco Range: $0-100$ va Ico Accuracy: $\pm 1 \%$, with $260 \pm 3 \%$ (F.S.)
DC VTVM, Model 651 \$32.95 Voliage Ranges: $00.5 / 1.0 / 2.5 / 5.0 / 10 / 25 /$ 50/100/250/500 Accuracy $\pm 1 \%$, with $260 \pm 3 \%(F . S$. Input Impedance: greater than 10 megs af all ranges
TEMPERATURE TESTER, Modol 632..\$38.95 Temperature Range: $-50^{\circ} \mathrm{F}$ to $+250^{\circ} \mathrm{F}$ Accuracy: with $260 \pm 2^{\circ}$ (nominal) Three lead positions provided Sensing Element: thermistor
AC AMMETER, Model 653............ $\$ 18.95$ Rangess $0.0 .25 / 1 / 2.5 / 12.5 / 25 \mathrm{omps}$ Accuracy: $\pm 2 \%$, with $260 \pm 3 \%$ nomin frequency Range 50 cycles to 3000 cycles

AUDIO WATTMETER, Model 654.... \$18.95
Lood Ranges: $4,8,16,600$ ohms
Wattage: Continuous 25 watts (80 wats ($4,16 \mathrm{ohms}$) Intermittent 50 watts (8,600 ohms) 100 watts (4,16 ohms) Accuracy: $\pm 5 \%$, with $260 \pm 10 \%$ nominal Direct reading scale from 17 microwatts to 100 woths

MICROVOLT ATTENUATOR,

Model 655.............................. $\$ 18.95$ Ronges: 2.5 microvolits to 250,000 microvolts continuously variable in decade steps
Frequency: DC to 20 KC
Aceuracy: $=1 \mathrm{db}$, with 260
BATHERY TESTER, Model 656........ \$19.95 Checks all radio and hearing aid batteries up to 90 volis at the manufacturer's
Note: All Simpson 260° Adapters provide Normal usage without disconnecting the adopter

World's Largest Manufacturer of Electronic Test Equipment

Precision Bearings

This $3.25-\mathrm{in}$., double-row, pre-loaded bearing rotates with a centerline angle variation of under three arc seconds. It is presently used to support an inertial guidance system component.

Industrial Tectonics, Inc., Dept. ED, 18301 Santa Fe Ave., Compton, Calif.

Pressure Transducer

Model CP51 pressure transducer is operable from 115 v ac and can furnish an output of 0 to 5 v dc for voltage-controlled systems or 0 to 1 ma for galvanometer recording. It accepts corrosive liquids or gases both sides and is available in ranges 0.5 to 1.000 psi differential, gage or absolute.

Pace Engineering Co., Dept. ED, 13035 Saticoy St., N. Hollywood, Calif.

Flexible Epoxy

Type TC-3047 is for coating printed-circuit boards. It can be brushed on in thicknesses of 2 to 20 mils in one application. Moisture absorption is negligible; shrinkage is low

Electronic Production \& Development, Inc., Dept. ED. 501 N. Prairie Ave., Hawthorne, Calif.

Self-Locking Nuts

These miniature floating-anchor nuts perform at high temperatures. Type LHA4259 straddle type offers a vibration-resistant method of fastening $1 / 16$ in. printed circuit boards to walls and brackets. Type LHA27M, made of a heat and corrosion resistant alloy, operates at 900 F .

Elastic Stop Nut Corp. of America, Dept. ED, 2330 Vauxhall Road, Union, N.J.

DC-AC Inverter

464
This inverter has sine wave output with a maximum distortion of 5%. Output voltage varies with input, if the unit is not used with a transistorized regulator. It can be hermetically sealed for military applications.
Freed Transformer Co., Inc., Dept. ED, 1718 Weirfield St., Brooklyn 27, N.Y.

Vidicon Tubes

The 7697 vidicon is for industrial TV cameras with automatic sensitivity control requiring a low value of signal electrode voltage held to close limits. The tube provides excellent live pick-up with as little as $0.2 \mathrm{ft}-\mathrm{c}$ illumination at the face plate.
General Electrodynamics Corp., Dept. ED, Garland, Tex.

Center-Post Insulators

These four center-post insulators have heights of $1.5,1.75,2$, and 2.25 in . Molded of fiber-glass reinforced polyester, they come with threaded hole diameters through $5 / 8 \mathrm{in}$.

The Glastic Corp., Dept. ED, 4321 Glenridge Road, Cleveland 21, Ohio.

- circle 105 on reader service card

ELECTRONIC DESIGN • Sedtember 14, 1960

This is the new Union Crystal Case Relay

The UNION 2-PDT General Purpose Crystal Case Relay is designed to consistently meet the requirements of MS 24250, Mil-R-25018, Mil-R5757C. Use it where minimum size and optimum reliability are esssential-in control systems, computers, airborne and guided missile electronic equipment.

To provide vibration immunity, we have incorporated a unique feature in this relay's armature suspension system. A torsion wire is anchored to the armature and backstrap. It acts as a biasing spring; supports the armature and eliminates end play. The relay uses the rotary principle of operation, found in the entire line of extremely reliable Union Switch \& Signal miniature relays.

The 2-pole, double throw, bifurcated contact structure increases reliability and efficiency in dry circuit applications. UNION Crystal Case Relays are designed for continuous operations in the $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.

Union Switch \& Signal's manufacturing capabilities and experience make it possible to provide these quality relays in quantity. Manufacturing techniques make it possible to provide the ultimate in reliability.

The new UNION Crystal Case Relay is available with the $0.2^{\prime \prime}$ grid-spaced header or " S " type header, with solder lugs, plug-in terminals, or 3-inch leads, and for various operating voltages.

Contact Union Switch \& Signal for additional information about this new Crystal Case Relay. Write for bulletin 1064.

Vibration: $20 \mathrm{G}-2,000 \mathrm{cps}$
Shock: 50 G
Temperature Rating: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Contact Rating: Dry circuit to 2 amp ., 28 -volt DC resistive load.

"Pioneers in Puwh-Button Science"

BSUNION SWITCH \& SIGNAL
DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18. PENNSYLVANIA

NEW PRODUCTS

Angular Motion Transducer

Linearity is $\mathbf{0 . 2 5 \%}$ over $\mathbf{4 0}$-deg movement

Type 34A rugged, angular motion Metrisite transducer converts angular motion of up to ± 40 deg to voltage outputs with 0.25% linearity. The device has a negligible reactive force. It measures $3 \times 2-5 / 8 \times 1-7 / 8 \mathrm{in}$. and weighs 20 oz .
Brush Instruments Div., Clevite Corp., Dept. ED, 37th and Perkins, Cleveland 14, Ohio.

Silicon Diode

With planar structure

Type 1N251 Planar-structure, silicon diode meets the JAN specs of MIL-E-1/1023. It is suitable for switching and rf applications requiring low shunt capacitance. Some of its specifications are: working inverse voltage, 30 v ; average rectified current, 75 ma ; forward voltage at 25 C , 1 v ; breakdown voltage, 40 v .

Fairchild Semiconductor Corp., Dept. ED, 4300 Redwood Highway, San Rafael, Calif.
Price \& Availability: $\$ 6$ ea for 1 to 99 units; immediately available in production quantities.

PNP Transistors

Germanium-alloy type

These PNP germanium-alloy transistors are designed for military and commercial applications in the audio range. Designated types 2N464, $2 \mathrm{~N} 465,2 \mathrm{~N} 466$, and 2 N 467 , the units have a maximum collector current of 100 ma , a maximum junction temperature of 100 C , and a maximum power dissipation in free air of 150 mw . Types 2N466 and 2N467 have a maximum collector-tobase voltage of 35 v ; types 2 N 464 and 2 N 465 , 45 v .
Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.
Price \& Availability: Price ranges from $\$ 1.65$ to $\$ 2.21$ ea in quantities of 1 to 99 . Units are furnished by distributors.

Time-Sharing Problem?

MAY HAVE A SOLUTION -

Abstract

Your data handling system, whether RF carrier or wire whether RF carrier or wire transmission line, may require transmission line, may require time-sharing to increase its time-sharing to increas capacity and efficiency.

In the past, the advantages of motor driven switches used for multiplexing were outweighed by their disadvantages. They were smaller lighter and simpler but, because of high contact resistance, bounce and short life, they contaminated data.

Then IDL introduced multifingered brushes traveling on the inner periphery of cylindrical sections to minimize resistance and bounce and extend trouble-free life to hundreds of hours. These concepts have been successfully applied to missiles in sampling 900 data points per second for more than 500 hours without signal contamination even in the milli-volt signal level ranges. For example, Switch No 500660 is a complete unit within a compact case, available at reasonable cost and capable of sampling up to 180 transducers. It combines 2 poles of 30 data channels with 2 poles of 60 data channels, each operating at 5 rps .

propors. inoution to
proublem.
pe-Sharing

```
IISTRUMENT DEVELOPMEIT LBBOMTORIES incorporated
```

```
Subuidiary of Royol Meloe Corporation
```

```
Subuidiary of Royol Meloe Corporation
```

35 mechanic street, attleboro, mass.

CIRCLE 107 ON reader-service card ELECTRONIC DESIGN - September 14, 1960

expert but

"I found one way of saving my company a fabulous amount of money!

I started ordering our shipping labels from Ever Ready, where you get a 'quality' job at a low, low price-because Ever Ready is one of the largest and most experienced label producers in the country."

Ever Ready's tremendous volume, twice that of most other label printers, means lower costs for us-lower prices for you. Ever Ready's shipping labels are easy to order by mail. If you use 6000 or more shipping or mailing labels per year you'll find amazing savings with Ever Ready. Just mail this coupon for our helpful brochure.

EVERREADYLABEL

 CORPORATION357 Cortlondr Stroet
[] Please send me the Spot Carbon Label folder.
] Please send me brochure on malling and shipping labels.
Nome Title
Compony
Stroot Addross
City, Zono, Stato.
CIRCLE 108 ON READER-SERVICE CARD

Epoxy Test Kit

434
This test kit contains an epoxy resin and hardener. The epoxy is engineered for permanent adhesive use for metal, glass, ceramic, hard rubber, wood, etc., It has electronic applications, will not expand or contract, and is resistant to acids, alkalies, grease and solvents.
Fybrglas Industries, Dept. ED, 3010 W. Montrose Ave., Chicago 18, Ill.

Lighted Push-Button

This lighted push-button, a turn-to-test device, is intended primarily for industrial applications such as motor and equipment remote control. The unit is oil-tight and has heavy-duty contacts. Caps are available in six colors.

Arrow-Hart \& Hegeman Electric Co., Industrial Control Div., Dept. ED, 103 Hawthorn St., Hartford 6. Conn.

Neon Panel Indicator Light

436
These plastic neon panel indicator lights are about $3 / 4 \mathrm{in}$. long, mount in 5/6 in. diameter holes, and protrude $1 / 4 \mathrm{in}$. in front of the panel. Units have speed-nut mounting. They use NE-2-H neon bulbs. MIL specs are met.

The Sloan Co., Color-Lite Div., Dept. ED, 7704 San Fernando Road, Sun Valley, Calif.

Strain Gage Transducer

437
Type 4-325 unbonded strain gage transducer is $3 / 4 \mathrm{in}$. in diameter, $1 / 3 \mathrm{in}$. high and weighs 8 g . The unit is suitable for airborne instrumentation or wind tunnel applications. Pressure ranges are 10 to 100 psi absolute, 2 to 100 psi gage, and ± 2 to ± 50 psi differential. Operating temperature range is -320 to +300 F . Excitation is 5 and 12 v rms ; carrier frequency is 0 to 20 kc . The sensing element is housed in a stainless steel case.

Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

Mass Spectrometer

438
Type 21-110 mass spectrometer is a high-resolution instrument designed for materials research applications. It is suitable for identification and estimation of trace impurities and components in semiconductors, ceramics, Cermets and high-performance materials.
Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

Subminiature Ceramics

442
These subminiature ceramics with electronic applications can be held to a tolerance of $\pm 0.001 \mathrm{in}$. with comparable tolerances on concentricity. Available in complex shapes, they are useful where coefficients of expansion must be matched.

American Lava Corp., Dept. ED, Chattanooga 5, Tenn.

Look at the specs on this brand new UNION 4-PDT-10 amp. relay

4 -pole 10 amp. rating Rotary-type armature Shock: 50 G
Vibration: 30 G-2000 cps
Temperature: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Contact Rating: 10 amp . 28-Volt DC resistive load

The new 4 -pole, 10 amp . UNION miniature relay is designed to meet the requirements of Mil-R-6106. It has exceptionally sturdy terminals and a very rugged, welded metal armature with glass-coated metal actuators. It has been designed to withstand the toughest environment.
For example:
. The balanced, rotary-type armature
gives maximum resistance to severe shock and vibration.
. The glass-coated cylindrical actuators provide full width contact drive
ators provide full width contact drive
to assure square mating of contact
surfaces.
It has an all-glass header.
"Pioneers in Push-Button Science"

UNION SWITCH \& SIGNAL
DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY -
PITTSBURGH 18, PENNSYLVANIA
CIRCLE 109 ON READER-SERVICE CARD
:LECTRONIC DESIGN • September 14, 1960

The unique combination of design features in this new UNION 4 -pole, 10 amp . relay makes it possible to have a power relay that is extremely rugged, yet takes no more space than the UNION 6-PDT, 2 -amp. relay. It is the smallest 4-pole, 10 amp. rotary-type relay now available.
Union Switch \& Signal has the manufacturing facilities to immediately handle large quantity orders for this addition to the fine family of UNION Reliable Relays. Call or write today.

NEW PRODUCTS

Speed Control

Package is $1.5 \times 1.5 \times 3$ in.
Having package dimensions of $1.5 \times 1.5 \times 3$ in., this servo speed control contains a solid state amplifier, servo motor, gear train, and a special potentiometer-switch combination $1 / 2 \mathrm{in}$. long. The pot has four electrically isolated wipers spaced 90 deg apart. Capable of driving many components, resolvers, tachometers, and other pots and switches, the unit accepts dc signals from -10 to +10 v .
Spectrol Electronics Corp., Dept. ED, 1704 S. Del Mar Ave., San Gabriel, Calif.

Chopper

For operation from - 55 to +150 C Model 150 silicon-transistor electronic chopper is designed to alternately connect and disconnect a load from a signal source. It may also be used as a synchronous demodulator to convert an ac signal to dc. Linear switching or chopping of voltages can be done from a fraction of 1 mv to $\pm 150 \mathrm{v}$. The unit can be driven from 270 cps to 30 kc and operates over the temperature range of -55 to +150 C .
Solid State Electronics Co., Dept. ED, 15321 Rayen St., Sepulveda, Calif.

Damping Compound

673

Is viscoelastic

Designated Vibrodamper, this viscoelastic material can be sprayed or trowelled onto metal plate, reducing structurally borne noise and vibration. It is suitable for use on sheet metal chassis, aircraft structures, base plates, printed circuit boards, and brackets on computers, amplifiers, gyros, and other devices. It is non-toxic and non-flammable.

The Korfund Co., Dept. ED, 48 778 32nd Place, Long Island City 1, N.Y.
Price \& Availability: $\$ 1.5 \mathrm{per}$ gal; two-week delivery time.

Plug for
 plug-ins

Alden basic building blocks give every engineer a faster, easier way to lay out and package electronic systems from off-the-shelf components. Here's the story in a nutshell.
Alden plug-in components simplify engineering, cut layout time, and speed production. These basic building blocks help you move faster from design idea right on through to completed equipment . . . beginning with planning and circuit layout.
The Alden terminal card mounting system
Alden's unique terminal card mounting system provides everything you need to make planning and layout quick and convenient: scaled layout sheets, pre-punched terminal cards, miniature terminals, card mounting tube sockets, jumper strips to eliminate wiring, brackets and tools - everything, and all available from stock.

What it adds up to is unit planes of circuitry, compactly and neatly organized, function by function as complete sub-assemblies, ready for packaging.

Packaging - the easy way

For packaging these card-mounted sub-assemblies, Alden provides a variety of basic, plug-in chassis in which circuitry is deployed in space saving vertical planes. These chassis plug in, lock, and eject with a half-turn of the wrist.

Housing - the easy way

You can house these plug-ins in your own standard racks. Or, Alden has basic "housing" units, called Uni-Racks which will help you there and give you a more compact, serviceable unit. Either mobile or stationary, they're of various heights, and offer easy accessibility, front or rear.

Tive prime plus - serviceability

All along the way, Alden makes servicing and troubleshooting simple. Matter of fact, Alden modular construction is so simple, the user's own untrained personnel can locate and correct most troubles on the spot.
For instance: monitoring elements assigned to each plug-in unit, including tiny Alden tell-tales, pinpoint and isolate trouble instantly. With spares, no plug-in need be out of operation more than 30 seconds, since chassis lock and eject with a half-turn of the wrist. Color-coding, and fool-proof matching of mating components are two more of the many thoughtful
innovations that enable any layman to make first level tests.

Get complete information - free

It doesn't cost you a cent to find out how Alden's basic building block system can help you solve problems faster . . . how Alden can help to free you from the mechanical chores associated with your job, so that you can spend more time doing what you're paid to do - design.
The coupon below has been specially designed to make it easy for you to get the specific information you need in a hurry. Take a moment to fill it out - now - and you'll receive, as a bonus, Alden's big 250 page handbook, "Ideas, Techniques, and Designs".
(Please fill out completely)

ALDEN
PRODUCTS
COMPANY 9139 Main Street, Brockton 64, Massachusetts type of organization \square Manufacturing Company \square Commercial \square Government $\square \mathrm{R}$ \& D
\square Lab, School, Consultant \square Government Agency \square Jobber, Distributor, Jobber, Distributor,
Manufacturers Rep. chief product or service

MY JOB:

\square Administration
\square Design Engineer
\square Production Enginoer
\square Purchasing

Please send me the following information: Alden Quick-Order GuideFacts on time and money-saving Alden "Get-Started" Kits (\$11.50-\$249.50)250-page Alden Handbook

Name		
Title		
Company		
Address		
City	Zone	State

Basic chassis, with sub-assemblies in place, provides for fast, easy accessibility. Simple half turn of special Serve-a-Unit lock guides, tocks or ejects for easy service, checks, repairs, or 30 -second replacement. -

"Picture Frame" rack adaptor Alden Uni-Rack available in two Pcicure frame rack adaptor
accommodates any combination of basic chassis, mounts in any standard rack or Alden Uni-Rack.
ird-mounted circuitry is snappe inched, pro-shaped chassis.

Slip Clutches

Friction type

These friction-type, adjustable slip clutches protect components against excessive shock loads or those caused by inertia. Compact and light, the clutches are adjustable over a wide torque range without having to be removed from the system. Type ASC-1 measures 7/8 $x 1 \mathrm{in}$. and type ASC-2 measures $5 / 8 \times 5 / 8 \mathrm{in}$.
Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.

Silicon Rectifier

678
Rated at 60 amp at 20 C
Style 40 double-diffused, hermetically sealed, silicon rectifier is rated at 60 amp avg at 20 C on a $7 \times 7 \mathrm{x}$ $1 / 8 \mathrm{in}$. copper-heat sink. Range of piv is 100 to 400 in $100-\mathrm{v}$ steps. Typical forward dynamic resistance is 0.0015 ohms. The temperature range is -75 to +175 C and the thermal drop from junction to case is 1 C per w. Peak surge current is $1,000 \mathrm{amp}$ for $1 / 2$ cycle of 60 -cps sine wave.
Syntron Co., Lexington Ave., Homer City, Pa.
Price \& Availability: Price ranges from $\$ 5.84$ to $\$ 24.46$ ea. depending on quantity and piv. Delivery time is 14 days.

Magnetic Disc Memory

For production line operation
This magnetic disc memory, using the Magdelay memory technique, provides on-off signal storage and retrieval synchronized with product flow in automated process lines. Line speeds from $1,000 \mathrm{ft}$ per min down to a dead stop are accommodated through the use of static flux detector heads with 1,200 -cycle reset frequency.

Automation, Inc., Dept. ED, 212
Worchester St., Wellesley Hills 82, Mass.
< CIRCIE 110 ON READER-SERVICE CARD

FOR OUTSTANDING PLOTTING PERFORMANCE...

> VARIPLOTTER. MODEL 1100E

NEW PRODUCTS

Pressure Meter

Senses 0.0001 mm of mercury
The Equibar pressure meter re ds directly differential pressures as $1 / w$ as 0.0001 mm of mercury. The in. strument is suitable for a variety of low differential pressure measure. ments, recording, and control applications. Eight ranges cover 0.01 nm to 30 mm of mercury. Response time is 10 msec . Input is about 60 w at 105 to 125 v ac. The unit provides phase-sensitive ac and polar. ized dc electrical outputs. It measures $8 \times 12-1 / 2 \times 12 \mathrm{in}$. and weighs 24 lb .
Trans-Sonics, Inc., Dept. ED, Burlington, Mass.

Meters

405
Six types available
These electrical measuring devices include the following: model 400 Transclip, a pistol design clamp-on ammeter and voltmeter; model 432 multitester, having 20,000 ohms per v sensitivity and 1.5\% accuracy; model 461, a coat. pocket size multimeter; model 477, a laboratory instrument with 44 ranges; model 301, a transistor meter; model 405, a megohmmeter with a self-contained $500-\mathrm{v}$ power supply.
Rowan Controller Co., Dept. ED Red Bank, N.J.

Oscillator

Provides hf square waves or pulses
This voltage-controlled oscillator provides hf square waves or pulses with frequency output linearly controlled by a dc input. Units are furnished with constant amplitude output and linear frequency change with varied dc or both linear amplitude and linear frequency change with dc input. Frequency ranges available are: 200 cps to $6 \mathrm{kc}, 10$ to $70 \mathrm{kc}, 30$ to $150 \mathrm{kc}, 70$ to 240 kc , and 200 kc to 1 mc . Switching time is less than $0.1 \mu \mathrm{sec}$. The units can be used in telemetering, radar gat-
< CIRCLE 111 ON READER-SERVICE CARD
irg, data multiplexing, and other applications.
Transystems Electronic Co., Dept. ED, 94A Donor Ave., E. Paterson, N.J.

Dc Power Supplies

These power supplies are of modular design for standard rack or cabinet installation. Model EA 137 operates from an input of 105 to 125 v ac, provides an output of 12 vdc at 200 ma , and has a regulation of 0.5% from 50 to 200 ma . Model EA 124 operates from an input of 28 v dc and has an output of 250 v at 250 ma with a regulation of $\pm \mathbf{1 \%}$. Model EA 134 operates from an input of 105 to 125 v at 60 cps and provides an output of 28 v dc at 130 ma . Its regulation is $\pm 1 \%$ from 30 to 130 ma .

Thermador Electrical Manufacturing Co., Dept. ED, 715 S. Raymond Ave., Alhambra, Calif.

Closed Circuit TV System

Three dimensional
This three-dimensional, closedcircuit television system consists of two of the firm's standard closed circuit TV cameras and a monitorcontrol console housing two monitors, two camera control units, and a polarized optical system. The optical system presents the overlapping images from each camera on a single viewing plane, with one image polarized horizontally and one polarized vertically. The standard console uses 14 -in. monitors, but units from 8 to 27 in . are available. The system permits accurate, remote manipulation of dangerous materials up to $1,000 \mathrm{ft}$ away.
Cohu Electronics, Inc., Kin Tel Div., Dept. ED, 5725 Kearny Villa 3oad, San Diego 11, Calif.
Price \& Availability: The standard ystem, with fixed focal length enses, is priced at about \$9500; deivery is 6 wk .

CIRCLE 112 ON READER-SERVICE CARD \rightarrow

1
Surpass MIL-R-94B Style RV6 stability under military environmental conditions including moisture resistance and thermal cycling.
Provide full $3 /$ watt power rating © $70^{\circ} \mathrm{C}$ with derating to zero at $150^{\circ} \mathrm{C}$ on most values $(25 \%$ to 50% better than MIL-R-94B Style RV6) for higher, load and temperature applications. Result of efficient ceramic-to-metal heat sink.

Other Features:

- High insulation resistance
- Internal hi temp 0 ring seal between shaft and
- For better continuity and reliability, resistance ele ment has double contactor paddles with adequate

Resistance Range
Wattage \& Temp. Rating

Stability:
Rotation Angle
Shaft Dia.:
Shaft Length:
Shaft Trim:
Standard Mounting Bushings:
Other Mounting Bushings
Special Construction:

Specifications
1000 ohms thru 1 megohm (linear taper). Tolerances : 20% or $\pm 10 \%$
$3 / 4$ watt at 70 C derated to no load at $150 \mathrm{C}(1 \mathrm{~K}$ to 250 K and 120 C on values over 250 K) with 350 VDC max. safe operating voltage across end terminals. (Compares to $1 / 2$ watt and 120 C in MIL-R-94B)
Exceeds MIL-R-94B. Characteristic Y
$295^{\circ} \pm 3^{\circ}$
$.125^{\prime \prime} \pm .001$
Variable in $1 / 8$ " increments
Available with MIL-R-94B, style RV6 standard $.031^{\prime \prime}+.005^{\circ}$ wide x $.031^{\prime \prime}+.010^{*}-.000$ screwdriver slot. Flats also avaitable
MIL-R-94B style RV6 standard $1 / 4-32$ N.E.F. -2 A by $1 / 4$ " long non-locking bushing and $1 /-32$ N.E.F. $-2 A$ by $1 / 2$ long locking bushing.
$1 /{ }^{\prime \prime \prime}-32$ N.E.F. $-2 A$ by $\%^{\prime \prime}$ long locking and non-locking bushing.
Waterseal bearing

Immediate delivery on standard types from distributors' stocks.
CTS manufactures a complete line of composition and wirewound variable resistors for military, industrial

NEW SIZE 8 SERVOMOTOR RESPONDS 3-TIMES FASTER These fast response Size 8 's have a whopping acceleration of $86,500 \mathrm{rad} /$ $\sec ^{2} . .$. and feature torque at stall of 0.22 oz . in., rotor inertia, $0.18 \mathrm{gm} . \mathrm{cm} .{ }^{2}$. That's at least three times faster than any other Size 8's available. The entire beckman ${ }^{8}$ Size 8 line is available in standard models for 26 volt or 115 -volt sources-Servomotors, Inertia-Damps, Velocity Damps, or Servomotor Rate-Generators (special models available for other voltages). For the servosystems man working with 115 -volt reference supplies, this can mean an end to accessory gear that so often compounds reliability and cost problems.
At the Breadboard stage? Several beckman(3) Size 8 and Size 11 Servomotors are available from stock for immediate delivery in prototype quantities. Check with your Helipot quan, write us for the list of stock Servomotors and for the Size 8 and Servomotors 11 Catalog.

Beckman $/$ Helipot
POTS : MOTORS : METERS
Helipot Division of
Beckman Instruments, Inc. Fullerton, California

CIRCLE 113 ON READER-SERVICE CARD

NEW PRODUCTS

Balanced Mixer

Covers C to H band

This C to H band balanced mixer uses a varying signal-local oscillator system that does not require very narrow-band, electronically tuned filters. The conversion loss is 6 db over 5200 to 5800 mc ; vswr is less than $3: 1$ over the local oscillator band of 3900 to 4500 mc and less than 1.7:1 over the signal frequency band. All components following the mixer are designed for use at a single frequency rather than a band of frequencies.
Bogart Manufacturing Corp., Dept. ED, 315 Seigel St., Brooklyn 6, N.Y.

Diffused Silicon Diodes

Fast recovery, high conductance types

Types 1N625 through 1N629 diodes are fast recovery units providing 400,000 ohms in $1 \mu \mathrm{sec}$. Types 1N482 through 1 N 485 diodes are highconductance units with a $100-\mathrm{ma}$ max avg forward current at 1.1 v . The devices are designed for airborne and industrial computers. Shock and vibration resistance exceeds MIL-STD 202A.
CBS Electronics, Semiconductor Operations, Dept. ED, 900 Chelmsford St., Lowell, Mass.

Signal Simulators

Provide serial pulse train

Model 202 simulates a precise pam or pdm serial pulse train; model 203 simulates pam-nrz (non-return to zero) as well as pam and pdm. Both models are for precise calibration of telemetry ground stations, data transmission

WAVEbuIDE bavebuide BARRE T MOUNT

Broadband-covers complete waveguice frequency range; fixed-tuned mounts; designed for average and peak power measurements; barretter replacement without returning mount; light-weight precision cast aluminum. Covers the complete frequency range, $2.6-12.4 \mathrm{kmc}$. $\$ 70$ to $\$ 150$.

COAXIAL THERMISTOR MOUNT- Model $33 B 2$ COAXIAL BARRETTER MOUNT-Model 3383

Here are 2 wide frequency range instruments, with low-SWR whose elements are easily replaceable by user. Specially designed for the Microline 31A1. May also be used with any standard power meter. SPECIFICATION8
Frequency Range $\quad 0.1-10 \mathrm{kmc}$ less than
Connectors $\quad 1.5$ Over. $1-10 \mathrm{kmc}$, Female BNC outpu

Tunable detector mounts are used extensively in microwave setups with crystals, barretters, and thermistors to detect, monitor, and measure microwave energy. Full waveguide bandwidth coverage, they have a wide tuning range for impedance matching. Same frequencies as waveguide barretter mounts, $\$ 75$ to $\$ 180$.

Sperry also stocks a complete line of Sperry Microline barretters and thermistors for use with these instruments.

sperry microwave electronics company. Clearwator, Fla., Division ol Sperry Rand Corp. CIRCLE 114 ON READER-SERVICE CARD
ELECTRONIC DESIGN - September 14, 1960
lines and data processing equipment. In addition to the IRIG standard pulse rates, they provide a ranse of 20 to $7,200 \mathrm{pps}$. Negative and positive output signals are available with provisions for introducing missing pulses, or external modulation. Linearity and stability are within 0.20%, noise and crosstalk are within 0.1%.
Telemetrics, Inc., Dept. ED, 12927 S. Budlong tve., Gardena, Calif.
Acailability: Delivery 30 days after order received.

Vane-Axial Blower
373
Delivers 64 cfm

The V-line vane-axial blower, 2-in. in diameter and $1.5-\mathrm{in}$. long, delivers 64 cfm at an SP of 0 and 3 in . at shut-off in the two-pole version. It requires an input of 37 w and has a temperature rise of 40 C max. In the four-pole design, rated at 11.000 rpm nominal, input is 8 w at 0.08 amp. Temperature rise is 15 C .
Eastern Air Devices, Inc., Dept. ED, 385 Central Ave., Dover, N.H.

Mylar Film Capacitors
498
For high-altitude space probes

The HI-Lar mylar film capacitors are for highaltitude space probe applications. Other uses are in instrument-quality recorders, pulse networks, and computers. The line is available in increments of $100,200,400$, and 600 v and in ranges of 0.0047 to $1 \mu \mathrm{f}$. Temperature range is -55 to +325 C , dielectric absorption is 0.1%, and retrace sta iility is less than 0.2%. Dissipation factor is les than 0.5 at 25 C and 100 cps .
Scientific Electronics, Inc., Dept. ED, 3810 Co'lasset St., Burbank, Calif.

MOST ACCURATE instrument of its kind on the market. Has unmatched stability. Sperry Microline 31A1 can be used to measure pulsed or C-W power of radar, radio, television, microwave and microwave relay equipment and components. Priced competitively low.

EASY TO BALANCE, In addition, two scales ($0-10 \mathrm{db}$ and $5-15 \mathrm{db}$) permit its use for direct attenuation measurements. Its frequency coverage is limited only by the range of the bolometer and mount used. D-C bias adjustment is set by a 12 -position switch.

SPERRY MIGROWAVE ELECTRONICS COMPANY, CLEARWATER. FLORIDA. DIVISION OF SPERRY RAND CORPORATION CIRCLE 115 ON READER-SERVICE CARD

NEW PRODUCTS

Insulated Cable

Conductivity is 85%

Using Alloy 63, this insulated cable has a conductivity of 85%. Other specifications include: tensile strength, $60,000 \mathrm{psi}$; ultimate elongation 8%; and yield strength, 55,000 psi. It comes in AWG sizes 16 to 38 and can be stranded or solid, bare wire, tin-plated, silver-plated, nickelplated, or silver-nickel plated.
Suprenant Manufacturing Co., Dept. ED, 172 Sterling St., Clinton, Mass.

Test Fixture
Measures heat transfer rate

Heat transfer test fixture, model T-400, measures the heat transfer rate from an electronic module to the cooling air stream in a welldefined temperature environment surrounding the module. It can accommodate a module up to $9-\mathrm{in}$. wide by $4.5-\mathrm{in}$. high. The outer structure measures $20 \times 20 \times 20 \mathrm{in}$. The fixture will condition 0.4 lb of dry inlet air per min over a temperature range of -20 to +70 C . Maximum input power is 900 w .

Melpar, Inc., Dept. ED, 3000 Arlington Blvd., Falls Church, Va.

Silicon Rectifiers

Forward-current rating is 400 ma

Designated types X4M2 through X4M6, these silicon rectifiers have a forward-current rating of 400 ma and a piv range of 225 to 600 v . Two hundred of these units occupy 1 cu in . Each rectifier junction is protected by a Tri-Seal that completely encloses the case. Reverse leakage is 1μ at 25 C and at rated piv; maximum voltage drop is 1 v at rated current, and surge current is 3 amp from -65 to +130 C . Current output is 150 ma at 100 C .

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Price \& Availability: $\$ 0.75$ to $\$ 1.75$ in quantities of 1 to 99. Production quantitics are in stock.

WhERE RELIABILITY IS CRITICAL

1. Chemelec* Stand-Off and Feed- Thry Insulators are easy to install, resis ant to heat and breakage, and-abov all -reliable under severest condit ons . . . ideal for critical electronic circuits such as missile guidance, fire con rol, tracking, radar systems. Teflon *due to its excellent dielectric, mechanical and thermal properties-is used as the insulator body. And, Chemelec Compression-Mounted Stand-Offi and Feed Thru Insulators are designed for easy installation. You simply press them into pre-drilled holes; they become self-fastening, requiring no additional hardware or adjustment. Available in compression-mounted, metalbase, miniature and sub-miniature types . . . standard R.M.A. colors, 2 wide range of sizes and terminal designs,
2. Chemelec Sub-miniaiure Tube and Transistor Sockets have body insulating material of Teflon; contact material of brass, silver-plated and gold flashed. Capacitance pin to pin . 6 MMF-pin to $\frac{1}{18}{ }^{\prime \prime}$ Chassis .7MMF. Chassis retention 50 lbs min . in $\frac{10}{}{ }^{\prime \prime}$ panel. Contact retention 4 oz . per pin. 3. Chemelec Connectors are Tefloninsulated for outstanding high frequency service. Once installed, they require no further adjustment or hardware. .040, . $050, .064$ pin size, female also in .080 size.
3. Plastic Stock Shapes and Intricate Parts, inserts, thin sections, threaded parts to precision tolerances are available. Excellent facilities and experience in compression and injection molding, extruding, machining of Teflon, Nylon, Delrin**, Kel-F \dagger or other industrial plastics.
Garlock facilities and personnel are at your disposal for design and development of new electronic products.

Garlock maintains complete electrical, chemical, and physical laboratories staffed by top-flight research and development engineers.
Find out more about what Garlock offers. Contact the Garlock Electronic Products representative near you. Call him, or write for Catalog AD-169, Garlock Electronic Products, Garlock Inc., Camden 1, New Jersey.
Registored Trademark ${ }^{* * D}$ DuPont Tradomark
Trademark, Minnosota Mining \& Manufacturing

(2)

Diode Electronic Multiplier

Has eight channels

Model C404-13 diode electronic multiplier console incorporates eight channels of multiplication, eight dc computing amplifiers, a power supply, and a metering panel. It can be expanded to a total of 16 channels of multiplication. The unit has a static multiplication accuracy of 0.125%. With the addition of a special circuit, the accuracy can be increased to 0.05%. Maximum amplitude error is 0.5% at 100 cps
Reeves Instrument Corp., Dept. ED, Garden City, N.Y.
Availability: Delivery can be made within 90 days after receipt of order.

Silicon Transistors

682
High power, diffused mesa type
This series of six high power, diffused mesa type silicon transistors will cover the full current range from $100 \mu \mathrm{a}$ to 5 amp . They provide a saturation resistance of 0.8 ohms; good beta linearity; typical cut-off frequency of $15 \mu \mathrm{c}$; voltages up to 100 v . They replace Types 2N1015-16, 2N424, 2N389, 2N1487-90.

Transitron Electronic Corp. Dept. ED, 168 Albion St., Wakefield, Mass.
Availability: Available from stock.

Silicon Glass Diodes

Can switch 0.5 amp
Types 1N690, 1N691, 1N692, and IN693 silicon glass diodes are capable of switching 0.5 amp . They are suitable for use in highcurrent pulse circuits and diode logic circuits, for high-speed computer switching, pulse clamping, gating, and blocking. The temperature range is -6.5 to +150 C . Power dissipation is 400 mw max at 25 C .

Silicon Transistor Corp., Dept. ED, Carle Place, N. Y
Availability: Immediate delivery.
< CRCLE IIG ON READER-SERVICE CARO

AVIONC COOLING

Eastern cooling packs for electronic subsystems extend operating ranges to altitudes where air cooling becomes ineffective. 'Black box' designs can be more compact-reliable even at five times the speed of sound.
These liquid cooling systems are completely self-contained-provide such components as pumps, heat exchangers, air impellers, reservoir, coolant flow and temperature interlocks and similar parts.

Cooling capacities of existing systems range from 1,000 to 22,000 watts dissipation rates. Eastern cooling packs take pation rates. Eastern cooling packs take
ambient temperatures from $-55^{\circ} \mathrm{C}$ to ambient temperatures from $-55^{\circ} \mathrm{C}$ to
$+55^{\circ} \mathrm{C}$ in stride, and perform to altitudes $+55^{\circ} \mathrm{C}$ in strid
of $60,000 \mathrm{ft}$.

Extensive experience in missile applications has enabled Eastern to develop systems unusually compact and light as well as highly reliable. At the same time, Eastern is able to provide at minimum cost equipment engineered to a specific need by using missile-proved components designed to your system configuration.

Turn to Eastern for space-, weightand cost-saving solutions to your hottest cooling problem. Write for New BULLETIN 360

liquid cooling units for 50 to 50,000 watts dissipation

Los Angeles Office: 4203 Spencer St.,
Torrance, Colif. Tel.: FRontier 6-1921
EASTERN INDUSTRIES INCORPORATED HAO SKIFF STREET CIRCLE 117 ON READER-SERVICE CARD

NEW PRODUCTS

Panel Instruments
In streamlined plastic case

The Model 25 panel meters are $2.5-\mathrm{in}$. diam units mounted in streamlined plastic cases. Microammeters, milliammeters, ammeters, and voltmeters are available in the series. The devices have self-shielding, internal core magnets.

DeJur-Amsco Corp., Electronics Div., Dept. ED, 45-01 Northern Blvd., Long Island City 1, N.Y.

Counter-Timer

For automatic checkout systems
Model 1036 programable, 1-mc counter timer is designed to Mil specs and is suitable for use in field consoles of automatic checkout systems. It measures frequency, period, time interval, frequency ratio, and phase to accuracies of 1 ppm . Systron Corp., Dept. ED, 950 Galindo St., Concord, Calif.

Low Noise Mixer Diodes

For K- and Ku-band operation

Diodes 1 N 26 BR and 1 N 78 DR are the electrically reverse versions of types 1N26B and 1N78D. With both forward and reverse types now available, balanced mixer operations are facilitated. The 1678DR has an over-all noise figure of 7.5 db , the 1N26BR over-all noise figure is 10 db . Both types can withstand 150 F operating temperatures.
Philco Corp., Lansdale Div., Dept. ED, Lansdale, Pa .
Price \& Availability: From $\$ 9$ to $\$ 72$ ea. for quantities of 100) and up; delivery within two weeks of orricr.

how to see high impedance ac signals

The Keithley Model 1028 Amplifier combines a 400-megohm input with high gain and low noise. It sharply reduces circuit loading errors when measuring outputs from accelerometers and other piezo-electric devices. It also has many uses in studies on hearing aids, phonograph pick-ups, and microphones.

Features of the Model 102B are: decade gains from 0.1 to 1000 , selectable bandwidths of 2 cps to 150 kc and 2 cps to 1.7 mc , and a 5 -volt, 50 -ohm output for scopes and recorders. Other features include:

- input impedance of 400 megohms, shunted by $3 \mu \mu$.
- low noise leval, below $10 \mu \mathrm{~V}$ from 10 cps to 150 kc at maximum gain.
- gain accuracy of 1% at midband for all gain settings.
- rise time of $0.3 \mu \mathrm{sec}$ at highest gain.
- two accessory low capacitance probes available.
- Price - $\$ 325.00$

Write today for Catalog B, containing detalled information on the Model 102B.

INSTRUMENTS. INC.
12415 Euclid Ave., Clereland 6. Ohio

CIRCLE 118 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 14, 1960

Nesco

 GRAPHIC RECORDER -offers exceptional sensitivity, speed, and accuracy...s3200
(Model JY-100)

Here is a superior quality recording potentiometer, engineered for modern laboratories, and offering these advan-tages-all standard:
Fast balance time-only $1 / 2$ second.
High accuracy- $1 / 2 \%$ of span.
Span: 10 mv (Model JY-100); 10 mv to 100 V , with 10 -step attenuator (Model JY-110)
$5^{\prime \prime}$ chart width
Hum suppressor minimizes stray 60 . cycle pickup.
Chopper stabilized-no zero•drift prob lems.
Floating high-impedance input - with separate chassis ground.
Many other quality features. Write for complete data.

INSTRUMENTS, INC.
 Wanufacturers of Precision Recording Instruments
 638 West 17th St., Costa Mesa, Calif.
 IRCLE 119 ON READER-SERVICE CARD

EI 三CTRONIC DESiGN • September 14, 1960

FOR - $100^{\circ} \mathrm{F}$ TO $500^{\circ} \mathrm{F}$ APPLICATIONS

CHR Temp-R-Tapes are easy to apply ...economical...dependable in service

Choose the right Temp-R-Tape for your job from a variety of types which combine some form of Teflon*, Fiberglas or Silicone Rubber backing with a silicone polymer adhesive. Temp-R-Tapes are all pressure-sensitive, even those which are thermal curing, and adhere securely to most materials, including Teflon, at extremely high temperatures. Each of these versatile tapes possess a superior combination of electrical, mechanical and physical properties suitable for a variety of applications where high dielectric strength, thermal stability, moisture resistance, durability, low coefficient of friction, non-stick properties, non-corrosiveness, non-aging characteristics or fuel resistance may be required.
TYPICAL USES:
Electrical - slot lining; interlayer and interphase insulation; harness bundling; splicing; wrapping for microwave components, transformer coils, capacitors and high voltage cables. Mechanical -facings for film guides in electronic instruments, heat sealing bars, forming dies, chutes, guide rails, and for protection for metals and other materials being chemically cleaned or coated. AVAILABLE FROM STOCK:
$1 / 4^{\prime \prime}$ to $2^{\prime \prime}$ widths, 18 yd . and 36 yd . rolls and $12^{\prime \prime}$ width on liner by lineal yard. Special roll widths slit to order. Temp-R-Tape is sold nationally through distributors.
FREE SAMPLE and folder - write, phone or use inquiry service.

CHR CONNECTICUT HARD RUBBER CO.

Air Blower

Type AO blowers are available in single and double units rated 115 or $230 \mathrm{v}, 60 \mathrm{cps}$. Odd voltages and frequencies can also be obtained. They are self-contained power packages with deliveries of 800 cfm .

Redmond Company Inc., Dept. ED, Owosso Mich.

Cabinet Dehydrators

492
Weighing as little as 0.06 lb , these disposable cartridge units come in plastic capsule form. They are for static air drying and purifying applications. They can be fastened within electronic cabinets or black boxes using snap-in component clips.

Robbins Aviation, Inc., Dept. ED, 2350 E. 38th St., Los Angeles, Calif.

Miniafurized Synchronizer Drive

493
Dimensions of this drive are $2.2 \times 1.4 \times 3 \mathrm{in}$. and weight is less than 1 lb . The 96 -pitch gearing has a backlash of 6 sec max. The unit has a control transformer, a motor-generator and two -signal switches, all tied together with the precision gear train. A typical application is nulling out gyro signals before an aircraft's autopilot is engaged.
Clifton Precision Products Co., Inc., Dept. ED, 9014 W. Chester Pike, Upper Darby, Pa.

Miniature Insulated Termostat

494
This $1 / 4$-in. diameter, insulated thermostat can be factory calibrated or externally adjusted for the desired actuating temperature. Its maximum differential is $1 / 2 \mathrm{C}$. Contacts are insulated from the case by two glass seal solder terminals and a ceramic tip in the adjustment screw.

Chatham Controls Corp., Dept. ED, 102 River Road, Chatham, N.J.

Transistor Washer

495
This unit washes and rinses diodes, transistors, missile and electronic parts. The purification system has a regenerative heat exchanger, cartridge holders for organic removal, demineralizing cartridges and a submicron filter. The wash system provides 5 separate rinses of pure hot water; final rinse is about 18 meg and 210 F
Barnstead Still and Sterilizer Co., Dept. ED, 333 Lanesville Terrace, Boston 31, Mass.

Instrument Case

496
This standard case for test instruments features a plug-in chassis which is quickly locked in or removed. The open-sided chassis permits use of snapin terminal cards. Accessible point of check for all leads can be graphically identified with circuit legends. Available in 2, 4, 8 in . widths, 10 in . in height.
Alden Products Co., Dept. ED, 117 N. Main St. Brockton, Mass

family potrait!

Met the whole Ace family yet? Or have your requirements to date in precision pots been only in $1 / 2^{\prime \prime}$, or wirewound? The famous Ace reliability, quality control and mass production facilties are not just limited to the above, no sir! Just consider Ace's complete range of standard sizes for instance - not just $1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}, 11 / 16^{\prime \prime}$, but sizes including A.I.A.. up to $6^{\prime \prime}$!
All these, in bushing, servo and universal mounts, in potentiometer and trimmer parameters. And . . . there are specials, multi-gangs, quick-cup-change designs. linear and non-linears and rectilinears - all in standard and special accuracies and conformities, both in wire-wound and conductive plastic. \ln short, when you can get Ace-quality in your every potentiometer need, get it the easy way: see your ACErep! Write for complete catalog!

This 3"1 AIA ACEPOT® (shown $1 / 3$-scale) meeting all MIL specs, is available, in a range of accuracies, for prompt delivery.

1 ELECTRONICS ASSOCIATES, INC.
1 -as Dovere Stroot, Somerille 4t, Mass.
Acopol: Acolrim Aconet Accohm(t) -Reg. Appl. for CIRCLE 121 ON READER-SERVICE CARD

NEW PRODUCTS

FM Subcarrier Oscillator
Is housed in a $1.5-\mathrm{in}$. cube

Designed for aircraft and missile fm telemctering systems, model 185 C fm subcarrier oscillator is housed in a $1.5-\mathrm{in}$. cube. It accepts transducer outputs of $+3, \pm 5$, or $\pm 1.5 \mathrm{v}$ and supplies a $5-\mathrm{v}$ rms output into $5,(0) 0$ ohms. It is available with IRIG channels 7 to 18 and A to E. Linearity is better than 0.1%. Data is translated with amplitude and harmonic distortion of less than 1% to a modulation index of 5 .
Electro-Mechanical Research, Inc., Dept. ED, Sarasota, Fla.

Potting Compound

Withstands 275 F continuous exposure

Type 767 potting compound is permanently flexible, polysulfide based material designed to withstand prolonged exposure to 275 F and intermittent exposure to 300 F . It is available in two parts which are blended equally by weight or volume for room temperature or heat curing.

Coast Pro-Seal and Mfg. Co., Dept. ED, 2235 Beverly Blvd., Los Angeles 57, Calif.

Inverter

Supplies 100 to 500 r

These static inverters, series 115SA, available in three power ratings, have fast response, low distortion, and lightweight design. They provide 400 cps power for airborne or missile applications at either 100,250 , or 500 v . Units, transistorized, measure $7 \times 10 \times 6 \mathrm{in}$. max and weigh from 6 to 20 lb . MIL specs are met.

Arnoux Corp., Dept. ED, 11924 W. Washington Blvd., Los Angeles 66, Calif.
sprank Nicroline highly accurate IMPEDANCE INSTRUMEITS

This carriage is machined to a high de. gree of accuracy and carefully des gned for long life and low wear of parts. Extreme rigidity and factory adjustment assure precision travel of probe within waveguide walls enabling the most accu. rate of SWR measurement.

These sections fit precisely into the Microline 21Al Universal Carriage assur. ing perfect positioning with respect to travel of the probe tip. Each slot is tapered at both ends to reduce secondary slot effects.
SPECIFICATIONS
Model Frequency Range K
21A1
(Universal Carriage) ${ }^{\text {3.95-18.0 }}$

$\begin{array}{lr}21 \mathrm{G1} & 3.95-5.85 \\ 21 \mathrm{G1} & 5.2-8.2 \\ 21 \mathrm{H1} & 7.05-10.0 \\ 21 \times 1 & 8.2-12.4\end{array}$
$1 \mathrm{Ul} \quad$ 12.4-18.0

These are precision built units for applications in S and L bands, machined and manufactured to the same fine tolerances as the 21A1 Universal Carriage. Precision slotted waveguide casting is integral with the carriage.

BROADBAMO PROBE z181

For use with all of the above units we recommend the Microline 21B1 Broadband Tunable Probe. This probe is outstanding because of its unique dual action repeatable tuning adjustments, and its complete freedom from any type of erratic operation.

sperry microwave electromics company, Clearwator, Fla. Division of Sporry Rand Cora CIRCLE 122 ON READER-SERVICE CARD
ELECTRONIC DESIGN - September 14, 1960

Magnetic Brakes and 684 Clutches

Size 11
These size 11 magnetic clutches, brake clutches, and brakes may be used in a variety of military and industrial applications. Clutch torque is typically 6 oz-in. for the magnetic clutches and 4 oz -in. for the magnetic brake clutch. Brake torque is $6 \mathrm{oz}-\mathrm{in}$. for the magnetic brake clutch and $16 \mathrm{oz}-\mathrm{in}$. for the magnetic brake. Units meet MIL-E-5272A and are rated for a life of $3,000,000$ cycles.
Kearfott Div. of General Precision, Inc., Dept. ED, 1150 McBride Ave., Little Falls, N.J.

Calorimeter Bridges 685

Frequency range is dc to 12 kmc
These calorimeter bridges measure 10 to $5,000 \mathrm{w}$ full scale with an accuracy of 2% or better. Frequency range is dc to 12 kmc It can be used with a coaxial cable or waveguide. Designed for continuous operation at full scale power, the bridges are direct reading on all scales. No thermometers or flow meters are needed. The instruments measure $22 \times 17 \times 18 \mathrm{in}$.
Electro Impulse Laboratory, Dept. ED, 208 River St., Red Bank, N.J.
dvailability: 30 days.

Temperature Test

686

Chamber

Range is -100 to +350 F
The Econ-O-Line low-high temperature test chamber has a range from -100 to +350 F . Accuracy is $\pm \mathbf{2 F}$. Internal dimensions are $14 \times 14 \times 14$ in. Chamber has a stainless steel interior and is heliarc welded. There is an externally mounted circulation motor and a $2-\mathrm{in}$. port and plug for leads and tuling. A viewing window is optio ıal.
issociated Testing Laboratories, De pt. ED, Caldwell, N.J
Price: Chamber sells for $\$ 735$; view-
ins window is $\$ 100$ extra.
circle 123 on reader-service caro

For protection against

PROBE DAMAGE

FEATURES:

- Closed Entry Contacts For

Protection Against Probe Damage

- Monobloc Insulators
- Low Engagement/Separation Forces

Golden Iridite Finsh to Meet
MIL OQ-P-416A. Type II Class 2

- Insulators to Meet MIL-M 19833 Type GDI-30

Or MIL-M-14E Type MDG.

- Fully Interchangeable With Standard "D"

CINCH "DD' SUB-MINIATURE CONNECTORS*

For Commercial Requirements
The CINCH STANDARD"D"*
designed to withstand rigid environmental

Military Specs-
, .

* Manufactured by agreement with Cannon Electric Company

AVAILABLE NOWI

Complete engineering data on both the Golden D Connector and the Standard D Connector is yours for the asking. Specification sheets and Catalog 100 , cover Cinch Connectors. D Sub-Miniature, DPX and DPA types. Phone NE 2-2000
today or write/wire.
Cince Manufacturing Corporation
1026 South Homan Avenue - Chicago 24, llinois
Divisiun of United Carr Fastener Corporation, Bosion, Massachusetts
Contrally locatod plante at Chicago, Illinols: Sholbyville, Indiana; Clity of Induatry, Californla; st. Loule, Miesourl.

NEW PRODUCTS

Microwave Absorbed Ceramic

479
This absorber ceramic, CFI-1003, has losses of 9.05 db per cm at 25 C and minimum attenuation over a wide range of frequencies. It is stable in air or vacuum at temperatures in excess of $1,000 \mathrm{C}$ in both low and high power systems.
Ceramics For Industry Corp., Dept. ED, Cottage Place, Mineola, N.Y.

Insulating And Protective Coating

480
Humiseal type $\mathrm{X}-242$ is a fast-drying coating which becomes tack-free in 10 min . Used in the manufacture of semiconductor devices affected by ultraviolet rays, it may be applied by dip, brush or spray. Maximum operating temperature is 130 C , dielectric strength is $1,700 \mathrm{v}$ per mil, dielectric constant is 2.3.

Columbia Technical Corp., Dept. ED, 61-02 31 Ave., Woodside 77, N.Y

Vacuum Pencil

481
Made to speed assembly of semiconductor devices, the vacuum pencil enables the assembler to pick-up and deposit wafers, and pellets. A choice of 24 straight and curved needle models are offered. The ID range is 0.012 to 0.033 in .

Sandland Tool and Machine Co., Dept. ED, 52 Duryee St., Newark, N.J.
Availability: Immediate.

Force Transducers

Measuring 2 in . in diameter and less than 3 in . high, these compression cells are for industrial uses in ranges of 5,000 to $50,000-\mathrm{lb}$ capacity. Applications include thrust measurement on jet engines and rocket test stands. Cells are load tested to 125% of rated capacity.

Schelm Industries, Inc., Dept. ED, 201 Anna St. East Peoria, III.

Pressure Transducers

Series IP-2010 potentiometer, pressure transducers are available in full scale ranges from 0 to 4 through 0 to $10,000 \mathrm{psi}$. In both absolute and differential pressure service, ranges are 0 to 4 through 0 to 2,000 psi. A helical bourdon tube is used as the sensing element
H. E. Sostman \& Co., Dept. ED, 347 Lincoln Ave., Cranford, N.J.

Gyro Tester

Made to operate in conjunction with rate tables for checking performance characteristics of rate gyros, this device incorporates controls and metering circuits to control and measure all gyro inputs and outputs.
Sterling Precision Corp., Instrument Div., Dept. ED, 17 Matinecock Ave., Port Washington, N.Y.

MOTOROLA now has a standard power transistor to match nearly any design requirement With the addition of the new "low silhouette" TO-36 package, Motorola is now your most complete... most dependable source for industrial and military power transistors.

11 TYPES OFFERED IN NEW "LOW SILHOUETTE" T0.36 CASE

5 AMP POWER TRANSISTORS - TO-3 CASE

maximum marimes					Ilectricalemeraeteritices		
$\underline{\text { mint }}$	${ }_{\text {Nosem }}$	${ }_{\text {\% }}$	${ }_{6}$	ant	sth		
2113\%	10	30	${ }^{100}$		8		
${ }^{211930}$	${ }_{60} 6$	43	100 100	3	${ }_{20}^{20}$	10	
${ }^{21120}{ }^{\circ}$	100		100	S	${ }_{20}^{20}$		
211133			100	,	20	8	
	10	30	100	,	35	10	
211320.	50	4	100	,	${ }^{35}$	70	
211350	80	60	100	3	${ }^{33}$	m	
$21135{ }^{\circ}$	100	13	100	3	${ }^{35}$	10	
21138	120		100	3	${ }^{35}$	10	
211320	10	30	100		50	${ }^{100}$	
zinser	60	${ }_{6} 5$	${ }_{100}^{100}$,	50	100	
211420.	100		${ }_{100}$		8	100	
2m1u2	120	s	100	,	50		
211130	40	10	100	,	's	150	3
211538	60	13	100	S	15	150	
211 ¢и*	∞	60	100	,	\%	150	3
	1120	15	${ }_{100}$		\%	30	

15 AMP POWER TRANSISTORS --T0-3 CASE

maxmum mimes							
5	${ }^{100}$		${ }_{6}{ }_{6}$	${ }_{\square}^{18}$	\cdots	${ }^{10} 50{ }^{10}$	
페닝	48		180		10	8	
2nos	${ }_{0}$	13	100	18	10	30	10
	100	15	${ }_{100}^{100}$	15	10	0	10
${ }^{2111130}$	100	30	${ }_{100}^{100}$	15	${ }_{30}$	${ }^{0}$	10 10
21150	∞	15	100	is	30	∞	10
${ }^{\text {animi }}$	∞	∞	${ }_{100}$	15	30	${ }_{\infty}$	10
${ }^{\text {mind }}$	100	15	100	15	30	60	10
21170	∞	30	100	is	50	100	10
zank	∞	43	100	15	30	100	0
	+0	8	${ }_{100}^{100}$	is	S0	100	

25 AMP POWER TRANSISTORS - TO-3 CASE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{maxuum marmes} \& \multicolumn{3}{|c|}{Chectical}

\hline timm \& ${ }^{070}$ \& ${ }_{\text {Nand }}$ \& ${ }_{4}^{1}$ \& ${ }^{16}$ \& 0 \& ${ }^{4}$ \&

\hline \% ${ }^{\text {andio }}$ \& \$0 \& $3{ }^{31}$ \& ${ }_{100}^{100}$ \& 23
28

28 \& is \& ${ }_{3} 8$ \& $\frac{33}{23}$

\hline \%1110. \& \$0 \& ${ }^{35}$ \& ${ }_{100}^{100}$ \& ${ }^{25}$ \& is \& 15 \& ${ }_{23}^{23}$

\hline 핀⒑ \& 10 \& ∞ \& 100 \& ${ }^{23}$ \& 15 \& 13 \& 23

\hline \%110. \& 100 \& ${ }_{18}{ }^{15}$ \& ${ }_{100}^{100}$ \& ${ }_{28}^{28}$ \& 18 \& is \& ${ }_{23}$

\hline
\end{tabular}

NEW 15 AMP POWER TRANSISTORS

moxmum arimes							
\%m	${ }_{\text {mem }}$	$\mathrm{mma}_{\text {mil }}$	4	\%	-	el	
${ }^{\text {mand }}$	$\stackrel{4}{0}$	${ }_{0}$	${ }_{10}^{100}$	${ }^{15}$	8	${ }_{10}$	
${ }^{3 m 3}$	\%	8	${ }_{100}^{100}$	${ }^{15}$	$\%$	0	
\%112	\cdots	0	${ }^{100}$	is	?	8	
nim	${ }_{100}^{100}$	∞	${ }_{100}^{100}$	is	n	\%	
${ }^{31212}$	${ }^{100}$	\cdots	100	15	${ }^{25}$	5	
mmm	${ }_{50}$	${ }^{3}$	${ }_{100}^{100}$	${ }^{15}$	${ }_{3}{ }^{3}$	$\stackrel{\pi}{0}$	
317	\cdots	3	100		3	\cdots	

* "A" series of these de
 "Meg.A-Lite" program. providing military quali. lity units for
applications.

- 15 amps - 150 watts
- 15 amps - 40 to 100 volts
- Requires 30% less headroom than other TO-36 packages
- 43% less thermal resistance $\left(0.5^{\circ} \mathrm{C} / \mathrm{W}\right.$ max.) than com parable types.
- hre ranges from 20-70
- $100^{\circ} \mathrm{C}$ junction temperature
- Improved internal construction

118 TYPES OFFERED IN INDUSTRY STANDARD TO-3 CASE

- 3,5,10, 15 and 25 amps
- 90 watts power dissipation
- Up to 120 volts
- $0.8^{\circ} \mathrm{C} / \mathrm{W}$ maximum dissipation
- Special "Meg-A-Life" units provide military-quality for industrial applications.
- $100^{\circ} \mathrm{C}$ junction temperature

All Motorola power transistors are stabilized at $125^{\circ} \mathrm{C}$ for 100 hours and 100% lot life-tested to assure highest reliability
IMMEDIATELY AVAILABLE - Motorola's complete power transistor line is available from your authorized Motorola Semiconductor distributor. Call him, today.
Birmingham, Ack Semiconductors, Inc. / Beston, Cramer Electronics, Inc., Lafayette Radio / Camden, General Radio Supply Co. / Cedar Raplas, Deeco inc. / Cnlease, Allied Radio Corp., Newark Electronics Corp., Semiconductor Specialists, Inc. / Donver, inter-State Radio \& Supply / Detrait, Radio Specialties Co. / Mouston, Lenert Co. / Jamalica, M. Y., Lafayette Radio / Les Angeles, Klerulff Electronics / Melbourne, Fia., Electronic Supply / Nowark, M. J., Lafayette Radio / Mow Yerk, Lafayotte Radio, Milgray San Diege, San Delco / seattle, Elmar Electronics /Washingten, C. Electronic Industrial sales.

FOR COMPLETE TECHNICAL INFORMATION.

contact your Motorola Semiconductor district office:

costow 385 Coneord Avo., Lalmont 28. Mom	H00 45070
Cricaco 39, 5234 Weil Diveriey Avenue	AVonue 2.4300
DETROIT 27, 13131 (ymdon Avenue	BRodwoy 3717
cos ancilis 1741 lvar Avenue, Hollywood 28. Calit.	Hollywood 2.0221
MIMNEAPOLIS 27, 731 Gm Avonue Nornh	Lliberty 5-2198
Y roak 1051 Bloomfiatd Avo.. Clithon, NJ.	Gliogory 2.5300
trom now York	
d Lindima, Wimo Port, flo	Midwoy 7.2507
,	Thmer 7.1020
SAN PaAmcisco 1299 Beychore Miphwey. Wur	Olamond 2.3220
racuse 101 soun soline	Granio
grom acos C	JUniper S.aces

μ

CIRCLE 124 ON READER-SERVICE CARD MOTOROLA - TRANSISTORS - ZENERS RECTIFIERS

Contact These DISTRIBUTORS

minmimenam Ack Samiconductors, Inc. 3101 fourth Ave., so airax 2.05 ess	les aneeles Klerulim Electroales
Bespom ramar Electronics, Ine. COploy $7-4700$. Copley 7-4700	meleounme. pla 1301 Elenic supply partway 3.1411
Lafayette Radio 110 Faderal St. hubbard 2.7350	mewank m. \mathbf{l}^{\prime} Radio 24 Control Avo. MArket 2.1661
CAMR General Redio supply Co. 600 Pann St wOodiawn 4-8560	100 6th Ave. orin a-s300
	milgray Electronice 138 Llberry 36 . RECtor $2-400$
cmicabe Allied Redio Corp. 100 w. warrom Avo. Haymartiot 1.680	mimer Eloctronici 140112 ms . TEmplobar 4.3311
Nowart Electrenics Corp 223 W. Madison St. rate 2-294	MoEmix Racio spaciatiter 9177.7 th 3 !
Semiconductor speclalists. Inc. $570 \% \mathrm{~W}$. North Ave. Mational 2-2360	san oieso S2n Dopleo 3nct pank
oemeta inter-Stato Redio 8 Supply 1200 Stout Stroet $7 A$ S- 2257	Crproses $8-181$ seatise Elmar Eloctronics 34 EBE E. Marolinal way
DETROIT \qquad 2775 Lymdon noedway $2-4200$	masmimetom, d. c. Electronic Industrial soles
	2345 shorman Ave., N. W.
s MMAICA, M. Y. Lstayotio Redio AXtol 1.7000 Ave か.	CAMAOA Cansalan moterole Electronics Lid. Eertioy Drivo Poronto 16 , Ontarie Pi

For Immediate Delivery Of

SPECIAL G-E GLOW LAMP (NE-68A) HOLDS VOLTAGE VARIATIONS TO LESS THAN 3 V

Here at last is a glow lamp with true voltage regulation specifications. Within a range of 52 to 65 volts, each individual General Electric NE-68A will not vary more than three volts even though current through the lamp fluctuates between .1 and .3 milliamps. Minimum maintaining voltage of all NE-68A's at .1 milliamps is 52 volts; maximum voltage at .3 milliamps is 65 volts.
The G-E NE-68A is a pre-aged glow lamp with plated leads to make soldering eásier. It contains a mild radioactive additive for reduced dark effect. Special treatment with the G-E Dri-film process insures high leakage resistance under humid conditions.

DIRECT CURRENT CHARACTERISTICS

Breakdown Voltage (in light)

$60-90$ volts d-c
Breakdown Voltage (in dark)
Maintaining Volts (.1 to .3 m.a. range) 110 volts d-c maximum $52-65$ volts d-c
Extinguishing Volts (in series with .25 megohm or more). $52-65$ volts d-c

Design Current
0.1 to 0.3 m.a.

Leakage Resistance at 75% RH and $80^{\circ} \dot{F}$
Life (at $.3 \mathrm{~m} . \mathrm{a}$. d-c for an average change of 5 volts in
maintaining voltage)
100 megohms or more
2000 hours

There is a General Electric Glow Lamp to fit your circuit requirements. For the latest information on Glow Lamps as Circuit Control Components and Indicators, write for 4 -page Bulletin \#3-0193. General Electric Co., Miniature Lamp Dept. M-034, Nela Park, Cleveland 12, Ohio.

Progress Is Our Most Important Product GENERAL

NEW PRODUCTS

Miniature Oscillograph

Capable of withstanding severe shock

This Oscillograph, model 560A, is a miniature instrument weighing less than 10 lb . It is capable of accurate data recording under severe shock accelerations. Some models have withstood twophase shocks in excess of $3,000 \mathrm{~g}$ for 2 msec and 300 g for 25 msec . The unit can record 14 different data traces on $3-5 / 8-\mathrm{in}$. wide record paper or film.
Midwestern Instruments, Dept. ED, P.O. Box 7186, Tulsa. Okla.

Resistor Decade Box

Handles 225 w

The Model 240C power resistor decade box allows selection of resistances in one-ohm steps from 1 to 999,999 ohms. Power rating is 225 w max, at 1000 v dc or 660 v ac max.

Clarostat Manufacturing Co., Inc., Dept. ED, Dover, N.H.
Price \& Availability: The unit, available from stock, is priced at $\$ 110$.

Paper Tape Reader

Rate up to 600 characters per second

The model 600 Tape Reader is capable of providing outputs at up to 600 characters per sec, on a start-stop basis. The reader, especially suited to industrial automated control systems, reads $5,6,7$, or 8 level code combinations on

Conventional Tracing Paper DRAWING TIME ... 2 hrs.

OGILVIE Tracing Media DRAWING TIME... 1 hr . the big difference-
1 hour saved!
Maximum quality-minimum drawing fime . . . and it's impessible to rill which prinf was originally drawn on Ogilvie pro-prinfed tracing modia. The big difference is the fime saved. The hair-thin grid or guide lines disappear complotely in reproduction

- all that remains is your sharp clear prinf.
Ogilvie provides drofting efficioncy by allowing rapid rondering to scalo and by oliminating the noed for constructing guide lines. And Ogilvio pro-printed popers stand the weor and fear of fime because they'r 100\% rag.

"Qualiry and Sorvice Since 1878"
OGILVIE PRESS, INC.
33 Rockwell PI., Bklyn. 17, N. Y. Please rush free sample. Also, please quole on the enclosed.
Name
Tinfe..
Firm.
Cily..
CIRCLE 127 ON READER-SERVICE CARD ELECTRONIC DESIGN•September 14, 1960

Get the Facts About These Cost-Saving Terminals and Components

STANDOFF AND

FEED THROUGH TERMINALS
Low cost and high electrical specs. the most popular in the industry. Choice of fork, single and double turret, post
 standard, minia-
ture, sub-miniature ture, sub-miniature wide variety of body ma wide variety of body ma-
terials, including diallyl terials, including diallyl phthalate and melamine,
and plating combinations.
Request Catalog SFT-1

PUSHLOCK NYLON TIP JACKS

Save time and money regardless of installation method. Just push into cabinet or chassis hole and the one-piece Pushlocks align and self-anchor. Eliminate threads, nuts, lockwashers and vibration problems.

Request literature

MELAMINE

 JACKSVery economical, yet designed electrically and mechanically for long, reliable service. Supplied in a wide range of code colors.

Request details

POINTER KNOBS

A military and industrial favorite b reason of price and practicability. Supplied in attractive black, satin-finished phenolic.

Request details

9326 Byron Streel, Sehiller Pork, Illinois IChicogo Suburb)
punched paper tape. Unit provides input to computers in data-processing applications. The sensing head, which can be used separately, is readily adapted to different block lengths.

Anelex Corp., Dept. ED, 150 Causeway St., Boston 14, Mass.

Voltage Monitor

Reacts in 50 msec

This transistorized voltage monitor reacts in less than 50 msec to voltages falling below the limiting set point. It is applicable to a wide range of uses such as diode sorting, thickness gaging, and weighing. Insensitive to positive levels, it has a hysteresis of less than 250 mv at 25 C , and uses reference levels between - 250 and +250 v . Output is 5 amp at each contact, which is spdt. The device provides limit indications with accuracies exceeding 0.05%, full scale.

General Automatics, Inc., Dept. ED, 2443 Ash St., Palo Alto, Calif.

Pulse Pattern Generator

365
Tests data-processing systems

The model 3-201 Uni-Bloc pulse pattern generator is a transistorized test instrument that provides simulated input data words for dataprocessing systems and magnetic data-storage units. The unit generates data words at rates up to 100 kc and contains separate logic levels for partial word blanking.

Applied Development Corp., Dept. ED, 12838 Weber Way, Hawthorne, Calif.
Price \& Availability: Off-the-shelf delivery at \$1,950.

HOLTZER-CABOT offers these CUSTOM FEATURES in a new stock motor

- High torque-to-inertia ratio
- Torque to meet your needs
- Several output speeds to choose from
- Control winding impedance of 5400 ohms locked rotor
- New motor end cap design for easier mounting, better heat dissipation
The RBC-2407 is available as a basic motor or with four stock gear ratios to meet your application requirements. All gear motors are electrically and mechanically interchangeable. Send coupon for free bulletin covering complete details, including physical dimensions and electrical specifications of this Model RBC-2407 instrument motor.

HOLTZER-CCBBOT MOTOR DIYISION • MATIONAL PNEUMATIC CO., IIIC.

Soles-Sorvice Representatives in Principal Cities throughout the World
Designers and manufacturers of
mechanical, pnoumatic, hydraulic

-lectric and alectronic equipment and systems

HOLTZER-CABOT MOTOR DIVISION, Department ED
National Pneumatic Co., Inc., 125 Amory St., Boston, Mass.
Please send: \square Complete details of Model RBC-2407 Servo Motors
\square Information on other H-C Instrumentation Motors
NAME \qquad TITLE

COMPANY
ADDRESS
\qquad

GEARMOTORS $3 / 4$ SMALLER

The Globe a.c. gearmotor you see superimposed against a conventional right-angle gearmotor will give your product major advantages: Globe's version is much smaller than the big style, is interchangeable with slight mounting changes, produces the same torque, and should run 5 to 7 times as long without maintenance, even with high inertia loads. Study the picture above with your application in mind.

Furthermore, Globe gives you a choice of 101 standard planetary gear ratios, and any special ratios or other features you need. The Globe gearmotor is competitive in cost even though it meets military specifications. If you don't have rigid environmental requirements Globe can furnish a commercial version in production quantities at a saving to you. If you design with induction or hysteresis synchronous gearmotors-investigate now.

Globe has available for immediate shipment prototypes of the Type FC, 115 v . a.c., 60 cycle synchronous motor in the following gear ratios: 352.6 to 1 ($10.2 \mathrm{rpm}, 160 \mathrm{oz}$. in. out), and 27.94 to 1 (64.4 rpm. , 19 oz. in. out). Other variations, including d.c., about 4 week delivery. Please request Bulletin FCB from Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio.

NEW PRODUCTS

VHF Amplifier

Model HFW-5(C)-326 vhf amplifier, having a coverage of better than three octaves, provides a $20-\mathrm{db}$ gain and an $8-\mathrm{db}$ noise figure. The range is 30 to 265 mc ; source and output impedances are low. The unit features synchronous tuning. Using five tubes, it requires 22.5 w of anode power and 1.5 w of heater power. Dimensions, not including those of the optional power supply, are $19 \times 3.5 \times 6.5 \mathrm{in}$. Weight is 7.25 lb .

Applied Research Inc., Dept. ED, 76 S. Bayles Ave., Port Washington, N.Y.

Microwave Receiver Assembly

509
Covers the 8.5 - to 9.6 -kme range

The MMX-6 matched X-band microwave receiver head end assembly covers the $8.5-$ to 9.6 kmc range with a maximum noise figure of 7.5 db . It has a typical noise figure of less than 7 db , an if bandwidth of 8 mc and an if gain of 25 db . The MMX-6 is electrically similar to the MMX-2.
LEL Inc., Dept. ED, 380 Oak St., Copiague, Long Island, N.Y.
Price \& Availability: $\$ 830$ per unit with delivery 4.5 days after order is received.

Oscilloscope

Range is dc to 450 kc

The Type 504 oscilloscope operates in the dc to 450 kc range. Its basic sensitivity is 5 mv per cm . The input stage to the vertical amplifier is electronically regulated. There are 12 calibrated steps to 20 v per cm , and to over 50 v per cm un-
cal brated. Input impedance is constant at all sensitivities. Device has an $8 \times 10 \mathrm{~cm}$ viewing area, 18 calibrated sweep rates and adaptable trigger facilities.
'lektronix, Inc., Dept. ED, P.O. Box 831, Portland 7, Ore.
Price: The type 504 oscilloscope is available at \$525. The rack-mounting model, RM504, is available at $\$ 535$.

Coaxial Termination

Two models of tunable load available

Model TL-2000 coaxial termination covers the 250 to $2,000 \mathrm{mc}$ range, the TL- 4000 covers the 2,000 to $4,000 \mathrm{kmc}$ range; both units can be tuned to a vswr of 1.02 max within their respective frequency ranges. The variable mismatch that can be introduced is 1.5 from 1,000 to $2,000 \mu \mathrm{c}$ for the TL-2000 and the same for the TL- 4000 . This is done without changing the reference plane. Impedance is 50 ohms ; power handling, 1 w cw.
Maury and Associates, Dept. ED, 10373 Mills Ave., Montclair, Calif.
Price: Both models are $\$ 120$ with the type N connector, $\$ 125$ with the type C connector.

Dual Polarized Microwave Antennas

This series of dual-polarized 6 -kmc antennas combine two microwave signals in a single antenna. The signals are fed by different waveをuides. System does not require circulators. Tower windloading, installation and maintenance costs are reduced. Antennas are available in 4, 8 , and $10-\mathrm{ft}$ sizes.
Andrew Corp., Dept. ED, P.O. Box 807, Chiago 42, IIl.
just a beautifully simple idea, translated into products which reflect the highest manufacturing skill and imagination. Not easy, we grant you . . . but not magic.
However, to keep the LEROY line constantly up to the changing requirements of the times - that does require a wizard. Fortunately, we have just such a gentleman firmly settled on the K\&E payroll. And he begs that we report several of the more recent minor miracles of LEROY right here and now. So, in the famed standard, sans-serif lettering template, let's make with a little

abracadabra

Tomplates

Every year sees new additions made to the already long list of LEROY templates. Case in point: the new electronic tube symbol templates for use in one of the most modern, fastest changing industries of them all. Also, there are foreign language templates (such as Russian and Greek), music templates, special designs, and a variety of handsome type faces (Caslon, Cartographic. Bernhardt Modern to name some newer ic. Bernhar
additions).
The best advice we can give for keeping current on LEROY templates is to have the LEROY catalog on hand. (It just so happens that we recently put out a brand new edition of the catalog, and it's yours for the asking. See coupon at right.) Finally, of course, we should add that if you don't see what you need in our catalog. don't despair. We'll produce it.
uniform, and of exactly the same density a careful balance, chosen to give good wear without sacrificing print-making quality). You never saw pencil work lonk so good.

The Pen With A "Bullt-In" Inkwell Here's your ticket to faster ink work with far fewer refills-K\&E's new LEROY Reservoir Pen. You'll be amazed at the mileage you can get between refills with this newly you can get between refills with this newly
perfected pen. Its refillable cartridge holds enough ink for many hours of smooth, uninterrupted lettering, thus eliminating the need for daily cleaning. The pen's cartridge is airtight - made of a non-porous, unbreakable, translucent material. The level of ink is always visible, and any non-solvent, waterproof India drawing ink can be used (for best results and quicker, easier filling we recommend the IEROY Keiter ing Ink-Cartridge \#2950)
Ink-Cartridge \#2950)
A tiny weighted needle inside the pen's feed tube assures a clear passage of ink from reservoir to point. Light vertica shaking of the pen activates this needle. removing any particles which may have settled in the tube when the pen was set aside. The needle also provides efficient cleansing action when you wash out the pen.
LEROY Reservoir Pens are furnished in seven sizes, from 00 to 5 , for use with all LEROY scribers. Ideal for lettering work, the points glide easily over paper, cloth or film based surfaces, producing sharp, uniform lines that reproduce crisply.

Ordor Your Lenoy Catalog Now

Other new additions and improvements too numerous to go into here - are described in the new LEROY catalog. The coupon below brings your copy, free

Some Ideas

for your file of practical information on drafting and reproduction ... from
custorn-made, to your design - as we have done for thousands of others.
a "Buile-In" Penall Point
The business of stopping work to put a sharp point on a lettering pencil is now largely over and done with, thanks to another new LEROY item. The point of the new LEROY "020" pencil never blunts o
dulls - it's permanently sharp. And that we submit, is al pretty sharp idea. The lead of this new pencil is an unvarying .020 inches in diameter, from one end to the other. All that's necessary to repoint is to advance the lead with al turn of the pencil

shaft. No need to remove it from the scriber, by the way. This new pencil fits all LEROY scribers, and guarantees faster, smoother work. As to appearance - all lines drawn with the " 020 " are perfectly

NEW-CONTINUOUS READING METER-RELAY

GIVES CONSTANT CONTROL UPSCALE OR DOWN

API's new Continuous Reading Meter-Relay (CRMR) can do a diversity of control jobs for you. It will monitor and control just about any variable that can be translated to electrical values. It will handle low-level microamp or millivolt signals without amplification. In many applications, the CRMR's high sensitivity will permit simplification of control circuitry. In any application, it will give accurate ($\pm 2 \%$ or better), non-cyclic control.
The CRMR is simple. It consists of a D'Arsonval meter with toggle-mounted contacts; a load relay does the control switching. No signal-sampling interrupters are required. Reset is automatic and instantaneous.
Reliability? The CRMR is right now in service on such critical applications as monitoring radiation level.
Our Bulletin S-2-1 shows how the CRMR works, and gives full details on available ranges and prices. The latter, not incidentally. are a lot less than you might expect for so versatile an indicating control.

ASSEMELY PRODUCTS, INC.

Chestoriand 17, Ohlo

CIRCLE 133 ON READER-SERVICE CARD

PRODUCTION PRODUCTS

Ultrasonic Cleaning System

260
Is self-adjusting
The SonBlaster Ultrasonic Cleaning System is a self-adjusting unit whose only operating control is an on-off switch. Compensations for variations of liquid-level, operating temperature, and changes in work load are automatic. It is now available in a 5 -gal size.

The Narda Ultrasonics Corporation, Dept. ED, 625 Main St., Westbury, Long Island, N.Y.
Availability: Units may be ordered on a six to eight week delivery; stock delivery available shortly.

Diode Production Machine

Produces 2,000 pieces per hr

Type 3438 automatic beading and cat-whisker welding machine produces up to 2,000 pieces per hr . The lead wire is fed from the spool, is straightened, cut-off, and beaded. The cat-whisker wire is fed from the spool, welded, cut-off, and formed. Operation is fully automatic. The machine is 5 ft 7 in . high and has a diameter of 4 ft 6 in .

Kahle Engineering Co., Dept. ED, 3322 Hudson Ave., Union City, N.J.

Transistor Welder

Handles 2,000 transistors per hr
This automatic transistor welder uses standard key components and can be tooled for dial feed or single-point operation. A table $3 \times 4 \mathrm{ft}$ accommodates a standard dry box. An operator, seated at the console and hand-loading a six station dial, can produce 2,000 transistors per hr . Dies for the projection ring are machined to suit the job requirements from standard spot-welding electrodes. The transistor cap and header are virtually self-aligning in the dies.
National Electric Welding Machines. $\because \mathrm{Co}$. Dept. ED, 1846 Trumbull St., Bay City, Mich.

FCI presents a wide range of new metallized mylar capacitors em-loying the principle of selfhealing. These capacitors offer the ultimate in miniaturization and reliability. They can withstand operating temperatures up to $125^{\circ} \mathrm{C}$ without derating.

Standard units are available up to 600 VDC in any capacity desired and have insulation resistance of 25,000 megohms per microfarad.

The new FCI Self Healing Metallized Mylar Capacitors are furnished in bathtub cases, CP70 cases, or metal shell cases. A typical size is a 4MFD/400 VDC capacitor in a hermeticaly sealed metal shell $1^{1 / 8^{\prime \prime}}$ O. D. by $21 / 4^{\prime \prime} \mathrm{L}$.

FILM CAPACITORS, INC. 3404 PaRK AVENUE - NEW YORK SG, N. Y.

A full line of irdustry standard metalized
paper capacitors are also avaliable
CIRCLE 134 ON READER-SERVICE CARD

Another of a series of files on precision products by ALINCO

DIFFERENTIAL
DC AMPLIFIER
Model 516

- wide frequency response
- HIGH OUTPUT
- totally transistorized

Designed to meet a need for a flexible general-purpose differential dc amplifier, the ALINCO Model 516 is a solid state wide band instrument. Chopper stabilized, the Model 516 features low noise of 14 microvolts rms over the full bandwidth. It has a common mode rejection of 130 db at dc and 90 db at 60 cps . The gain factor is continuously variable from 10-2000 with an accuracy of 0.5%;overload recovery time is less than 1 second and the chopper intermodulation 0.1%. Maximum modulation 0.1%. Maximum output is 80 ma at 10 V . The amplifier can faithfully reproduce signals from dc to 40 kc . Available as a single channel portable unit, or in an 8 channel module for rack mounting. Size: $21 /{ }^{\prime \prime} \times 7^{\prime \prime} \times$
$18^{1 / 4}$ ". Is ideally suited for $181 / 4^{\prime \prime}$. Is ideally suited for driving high frequency galvanometers from a low level source such as resistance strain gages and thermocouples.
For additional information on the Model 516 amplifier or for the answer to a specific amplifier requirement, write:

Allegany instrument co. A Division of Texlron Electronics, Inc.
Cumberland. Maryland Regional Soles Offices:

Conveyor Furnace

For brazing semiconductor components
Type BAC-12M Humpback Conveyor Furnace is designed for controlled brazing of semiconductor components. It has an elevated heating chamber with inclined loading and unloading sections, this insures positive flushing and purging of the assemblies before they enter the heat ing zone. Operating temperatures of $2,050 \mathrm{~F}$ are held within critical tolerances through a saturable core reactor control system. Dewpoint of the atmosphere entering the furnace is controlled to insure proper wet-ability of the bonding material.
C. I. Hayes, Inc., Dept. ED, 896 Wellington Ave., Cranston, R.I.

Wire Stripping Machine
264
For AWG 48, 49, 50 and finer

This machine is designed for stripping Formvar insulation from AWG 50 copper wire and enamel from No. 56 Nichrome. It uses two conical Grade 89 fiberglass wheels as abrasive. Dis!gnated Model 89 TwinCone wire stripping machine, the device is suitable for bench mounting and can strip wire leads to within $1 / 16 \mathrm{in}$. of component bodies.
Carpenter Mfg. Co., Inc., Dept. ED, P. O. Box 217, Highbridge Road, DeWitt 14, N. Y.

Metal Dust Hoods

265

Filter 0.5 micron particles

Called Metal Microvoid, these hoods allow dust-free handling of small, delicate assemblies. A blower forces room air through a large-area filter capable of removing particles as small as $0.5-$ micron diameter. Units are supplied either with open-front or arm-port panels which are air-tight when not in use. They are available in a variety of sizes and shapes in both aluminum and stainless steel.

Air-Shields, Inc. Dept. ED, Hatboro, Pa.
Price \& Availability: Aluminum models are $\$ 350$ without arm ports, $\$ 380$ with. Delivery time is 2 to 4 weeks for standard sizes.

BREAKTHROUGH IN THE SCIENCE OF PRESSURE CONTROL

This system, employing unique digital-servo concepts, provides instant selection of a pneumatic pressure accurate to ± 0.05 PERCENT.
Pressure in a reservoir is measured and converted to a precision frequency. This frequency is compared with a selected reference frequency. If the frequency from the pressure sensor is high with respect to the reference frequency, the comparator produces a difference frequency in the form of pulses. These pulses then drive momentary exhaust valves until the pressure drops to the pre-selected value. When the frequency is low, error signals are produced which operate momentary pressurizing valves. The Q3700 is the best answer yet to pressure control and calibration problems.

Ideal for:

- Progromming precision pressure/time Iunctions
- Automotic end-Io-end colibration ol dota and iolomelering systems
- Ropid colibration of pressure devices
- Ground chockout of instrument ond control systoms

MNGINEERING COMPANY
Precision with lasting reliability
255 North Halatead Avenue - Pasadena, Callfornia

CIRCLE 136 ON READER-SERVICE CARD

BLUE M Eletric Compary
138th and Chatham St., Blue Island, Illinois
branch: blue menginiering company, 2312 s. main st, Lot angeloe 7, Calif.
CIRCLE 137 ON READER-SERVICE CARD

PRODUCTION PRODUCTS

Ultrasonic Spot Welder

Has self-tuning circuit
Designed for joining such components as se niconductors, printed circuit boards and foil. wound transformers, this ultrasonic spot weller has a self-tuning circuit which assures weld uniformity and minimizes need for operator slill. The $100-\mathrm{w}$ generator operates on $60 \mathrm{cps}, 115 \mathrm{v}$. Nominal output is 40 kc . An automatic weld timer is adjustable from 0.1 to 5 sec.

International Ultrasonics, Inc., Dept. ED, 1/997 Elizabeth Ave., Rahway, N.J.

Slicing Machine

Cuts semiconductor samples
This slicing machine cuts semiconductor samples as thin as 0.005 in . It cuts nearly planoparallel sections which are ready for examination; they rarely need final polishing. Samples are imbedded in plastic and secured to a movable motor-driven stage assembly. Once positioned, the sample is automatically advanced at a constant speed through a balanced diamondedged wheel rotating at $6,500 \mathrm{rpm}$.
Will Corp., Dept. ED, Box 1050, Rochester 3. N.Y.

Dual-Chamber Machine

Refrigerates to - 100 F

The two chambers of this dual-chamber chilling machine can be controlled individually down to -100 F. The unit, Model SU2-80-4, is designed for testing or processing lines where operators are located on both sides of the line. Each chamber has two adjustable shelves, full opening doors, and a $1-1 / 2 \mathrm{in}$. access port. Thermal capacity is 500 BTU per hour. Entire unit measures 46 in . high, 46 in . long, and 32 in . wide. Power required is $230 \mathrm{v}, 60 \mathrm{cps}$.
Cincinnati Sub Zero Products, Dept. ED, 3930 Reading Road, Cincinnati 29, Ohio.
Availability: 45 days.

Plastic Molding Machine

Air-operated, fully automatic
The Min-matic Model 60AM80 machine is a fully automatic, air-operated unit for production of items in all thermoplastics up to $3 / 4 \mathrm{oz}$. It has horizontal clamping with molds $6 \times 5-1 / 8 \times 5$ in., four-tie rod construction, and a normal cycle time of two to four per min. Dry cycles are 480 per hr. A safety feature automatically opens the mold
and stops the operation of the machine if the part is not ejected at the end of any cycle.

Newbury Industries, Inc., Dept. ED, Newbury, Olio.

Production Glass Welder

270

Welds six terminals in 80 sec

This unit welds and seals six anode terminals in glass in 80 sec . A built-in atmosphere control regulates internal and external atmospheres on the anode. A memory circuit automatically selects from one station to another. Features offered are RF current-meter indicators, and indicating lights for the various cycles.
Induction Heating Corp., Dept. ED, 181 Wythe Ave., Brooklyn, N.Y.

Molding Compound

Is flame resistant

Resistrac grade 1403 fiber-glass reinforced alum-ina-polyester molding compound has high track and flame resistance. It is designed to take the place of ceramics in electronic apparatus of many types. No carbon formation is shown after 400 hr of ASTM testing. Impact strength is 3 to 6 lb .
The Glastic Corp., Dept. ED, 4321 Glenridge Road, Cleveland 21, Ohio.
Availability: Data and samples will be sent upon letterhead request.

Welding Head

For bench mounting

Model 1037 bench-mounted welding head has twin ball-bearing races for precise control over the placement of the weld. This permits linear movement of the upper electrode and eliminates electrode wiping action. Preset electrode pressure is variable from 2 to 50 lb .
Unitek Corp., Weldmatic Div., Dept. ED, 950 Royal Oaks Drive, Monrovia, Calif.
Price: $\$ 325$ fob Pasadena.

Insulation Laminator

For double-coated electrical tape

Type E-10 insulation laminator was designed ior use with double-coated polyester film tape. Iny insulating material may be made pressuresensitive, saving time on the production line. The aminator has feed spools for the tape and the nsulating material, with a take-up spool for the ape separation liner.
Minnesota Mining and Manufacturing Co.,)ept. ED, 900 Bush Ave., St. Paul 6, Minn.

CIRCLE 140 ON READER-SERVICE CARD

NEW Fractional Horsepower Motor Handbook
JUST PUBLISHED ...to help the machine dosigner solect and service fractional horsopower molora.

Here are 66 pages brimming with facts, figures and more than 75 diagrams, tobles, charts and illustrations, for the first time brought togother in 0 single permanenty bound book.
Contents Include (1) Appllication fundamentals, (2) Economics and spocial features, (3) Care and servicing, (4) A glossary of torms and definitions ... plus 10 pages of reforenco material.
NOW evailable ef $\$ 1.00$ per copy. Ploase send cesh, chock or monoy order enly.
BODINE ELECTRIC CO., 2528 W. Bradlay PI., Chicago 18, III.

BODINE

rachonal / horsepowe
MOTORS
the power behind the leading products
CIKLLE Ial ON READER-SERVICE CARD

CIRCLE 142 ON READER-SERVICE CARD

TRANSPAC ${ }^{\circ}$ Miniaturized SOLID STATE POWER PACKS

New Short-Circuit and Transient-Proof Circuitry ...

FEATURES:
Clowly Rogulated

- Low Rípple Coniont

Advanced Thormal Design

- Shor-Circuis Proof automatic rocovery
Improved Circuirry and Trandistor Types
- Thormal Yransistor Stud

Tomporature Monitor and
Automatic Cur-Off

- No Incroaso in Size or Woight
No Increase In Price

ERA's transistorized Trunspacs feature advanced circuit designs and improved technical specifications. New features include the incorporation of a special current limiter and protective circuitry. The current flow is monitored and in the event the load current exceeds a designated value, the current limiter reverses the control biases and prevents additional current from flowing. Also included in these units is a thermostatic device which registers transistor stud temperatures. In the event these temperatures become excessive, the thermostatic unit opens the circuit and thus prevents thermal run-away or damage to the unit or external circuit.
Wired into circuits like other components, Trunspucs supply a rugged, reliable source of DC power for all types of miniature or standard size electronic devices.
(BReg. U.S. POT. Off.
STANDARD MODELS
Input 105-125 VAC, 60 or 400 cps . Input regulation bet ter than $\pm 0.1 \%$ Output reo. lation teter on $+0.1 \%$ Ripple less than 0.05%. All semi-conductor designs.

CASE SIZES: ($W \times \mathrm{D}_{\mathrm{H}} \mathrm{H}$ inch.) $0.25 \times 3 \times 3 K_{6} \times 41 / 4$
$0.25 / 8 \times 31 / 6 \times 41 / 4$
$\mathrm{C}-23 / 8 \times 23 / 4 \times 31 h_{10}$
*Prices fos Cedar Grove Subiect to shange withoul notico

Models listed are stock units Special designi also avail able to evstomers apecifica Hions. Wirto for liferature and quotations.

NEW LITERATURE

Rotary DC Solenoids

274
Five basic frame sizes of rotary dc solenoids are illustrated and described in this six-page brochure. Detailed specifications, dimensional drawings, typical torque characteristics and applications are included. A tear-out requirement data form is incorporated. PSP Engineering Co., Maywood, Calif.

Electronic Timers

This series of technical data sheets covers engineering specifications on time delay relays. Included are typical application and ordering information. Data are in tabular form. Voi Shan Electronics, 13259 Sherman Way, North Hollywood, Calif.

Synchros

276
These two four-page brochures, Nos. 204 and 206 , cover size 8 and size 11 synchros respectively. Engineering data in tabular form lists input and output voltages, accuracy, shaft configurations, sensitivity, resistance, and impedance. Induction Motors of California, 6060 Walker Ave., Maywood, Calif.

SCR Magnefic Modulators

277
Engineering specifications for the firm's silicon controlled rectifier magnetic modulators are given in this twopage data sheet. Included are input and output voltages, pulse widths, efficiency, environmental information, temperature range, altitude, weight and physical dimensions. Voi-Shan Electronics, 13259 Sherman Way, North Hollywood, Calif.

Counters

278
Electric reset counters, manual reset counters, monodecade counters, predetermining counters, short counters with pushbutton reset, hours-minutes-seconds indicators, printing counters, heavy duty counters and impulse transmitters in the Sodeco line are described in this fourpage bulletin. Electrical properties are tabulated. Landis \& Cyr, Inc., 45 W . 45th St., New York 36, N.Y.

Insulating Resins

The firm's line of epoxy resins is c taloged in this four-page brochure. Pl /sical, mechanical, thermal and electical properties are tabulated. Marbl tee Corp., 37-31 Thirtieth St., Long Isl nd City 1, N.Y.

Laminated Plastics Guide

The "Laminated Plastics Selection Guide" combines a 12 -page manual with a quick-reference chart of characteristics of 21 common laminate grades. The manual includes a description of highpressure laminates and a discussion of their properties and specifications. A glossary of related terms appears at the end. Properties of the firm's laminates are tabulated. The table evaluates the firm's line of laminates under mechani cal, electrical and general purpose head ings. Taylor Fibre Co., Norristown, Pa

Miniature Motors

This bulletin, No. 135, describes 7/8 in. diameter permanent-magnet precision miniature motors with integral planetary gear reducers in 21 ratios from 3.82:1 to 36873:1. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio.

Electronic Component Parts

282
In 36 pages, this catalog lists the firm's lines of terminals, terminal boards and strips, banana plugs and other parts for military and commercial precision products. The catalog also contains basic information on laminates, including physical and electrical properties of those used in terminal boards and special fab. ricated parts. National Tel-Tronics Corp., 52 Saint Casimir Ave., Yonkers, N.Y.

Time Delay Relays

283
This four-page brochure, No. 359, describes and illustrates the company's line of solid state time delay relays for commercial, industrial and military applications. Marstan Electronics Corp,, 204 Babylon Turnpike, Roosevelt, L.I., N.Y.

Mugnetic Laminations

284
This two-color, 36 -page catalog, No. Ti-106, entitled "Magnetic Laminations" describes the firm's line of EE, EI, F, DU and W shape laminations. Formulae, engineering data and other information are included. G-L Electronics, Camden 5, N.J.

Epoxy Pellełs

This four-page bulletin, No. 3, describes E-form epoxy pellets. It covers the variety of compounds available and various epoxy packaging techniques including encapsulating, sealing, impregnating, ruggedizing, potting, end sealing, embedding and bonding. Epoxy Products, 137 Coit St., Irvington, N.J.

Magnets and Memory Planes 286

Three research papers entitled "Transmission Electron Diffraction of Alnico V," "Long Term Magnetic Stability of Alnico and Barium Ferrite Magnets," and "Miniature Memory Planes for Extreme Environmental Conditions" are printed in this six-page publication. The papers were presented at a recent Conference on Magnetism and Magnetic Materials. General Ceramics Div., Indiana General Corp., Keashey, N.J.

Airborne Power Supplies 287

Two bulletins, Nos. 1494A and 1540. each 2 pages, give specifications of the firm's unregulated transformer-rectifiers, Models 6RW102YF1A and 6RW162YF1, respectively. Both units are rated at 28 $\mathrm{v}, 200 \mathrm{amp}$. A photo, electrical and mechanical characteristics, graph and outline drawings are included. General Flectric Co., Schenectady 5, N. Y.

Carbon-Dioxide Cooling

The use of carbon dioxide systems for fast cooling and absolute control in enironmental testing is described in this booklet, form C-7. The firm's vapor reycle system of cooling is described and llustrated, along with descriptions of ive other methods of cooling test chamsers. Carbon-dioxide cooling and mehanical refrigeration are compared. Jardox Div., Chemetron Corp., 840 N. \Iichigan Ave., Chicago 11, Ill.

Surge Protectors
The Captivolt line of surge protectors for silicon rectifiers is described in this four-page bulletin, No. EPD 3135-1. Construction information, performance characteristic curves and tables are inclucded. Vickers Inc., Electric Products Div., 1815 Locust St., St. Louis 3, Mo.

Radio Interference Filters

290
The firm's line of standard radio interference filters is cataloged in this four-page publication. A guide for choosing the appropriate coil from specific electrical and physical requirements is included. All-Tronics, 45 Bond St., Westbury, L. I., N. Y.

Parts Catalog

291
This 252-page catalog contains detailed product listings on a wide variety of electronic parts and equipment primarily for industrial and research applications, including an extensive selection of semiconductor products and power tubes for industry and broadcast. Electronic Publishing Co., 180 N. Wacker Drive, Chicago, Ill.

Magnetic Memory Systems

292
These three four-page bulletins supply information on the firm's ferrite devices for memory systems. A Transfluxor for non-destructive readout is described in No. 500 Ml bulletin. Another bulletin, No. 100 Ml , describes a ferrite aperture plate which is the equivalent of 156 cores. High-speed ferrite cores are described in Bulletin No. 227M1. Radio Corp. of America, Semiconductor and Materials Div., Somerville, N. J.

Testing Equipment

293
This 16-page folder, No. $\mathrm{E}(6)$, describes the firm's line of laboratory and testing instruments. Fully illustrated, it contains specifications, application information and prices on six different portable potentiometers, two dc galvanometers, an ac and a dc null detector, a guarded Wheatstone bridge facility, a universal radio set and two electrolytic conductivity indicators. Leeds and Northrup Co., 4939 Stenton Ave., Philadelphia 44, Pa.

IMPULSE A DIGEST OF NEW DEVELOPMENTS IN ELECTRONICS AHD AUTOMATION

PUBLISHED BY ROME CABLE DIV. OF ALCOA, ROME, N. Y. PIONEERS IN INSTRUMENTATION CABLE ENGINEERING

SETTLED. The American Standards Association has officially adopted the long-used symbol of the Atomic Energy Commission to warn of the presence of radiation. The familiar three-bladed propeller (purple) on a yellow background is intended for use on signs at the entrance to rooms or areas where sources of radiation are present, on any kind of package containing radioactive materials, on equipment generating radiation, and on material or equipment contaminated with radioactive substances.
PROBLEMS, PROBLEMS, PROBLEMS. Electronic engineers have been handed more challenges by the government. In the area of intelligence, first there's need for completely new types of sensors and sensor systems for telling what's going on in Russia. Such sensors will be used in satellites as well as in planes and watch stations along the borders. Secondly, the Defense Department is seeking electronic machines to process the various types of information (photographs, electronic reports, translations and such) acquired through many sources. And the National Academy of Sciences-National Research Council has called for a greatly stepped-up program in oceanography. Specific hardware requirements include instruments for measuring radioactivity at all ocean depths, direct density measuring devices, precision salinometers and echo sounders, turbulence measuring devices, and underwater cameras.
PICK YOUR BAND. According to a recent report issued by the National Bureau of Standards, the best frequencies for communicating between earth and space lie between 70 and 6,000 megacyles. The actual frequency picked, of necessity, will be a compromise involving size of the antenna, beam width needed to track, and background radio noise. Up to now, 108 megacycles has been the frequency on which many United States satellites have been tracked and information relayed earthward.
BUSY SIGNAL? In case anyone should ask you, the average number of daily telephone conversations in 1959 was 266 million. Any wonder, then, that you often get that telltale buzz when you place a call?
MEDIC-ELECTRONICS. Bridging the gap between medicine and biology on the one hand, and physical science on the other, may require a new type of creative scientist who is competent in both fields. Such is the opinion of authorities in the field of medical electronics. One approach calls for a new degree in medical engineering to include the following: four years leading to a B.S. degree, two years for the M.S., and an additional four years for a Ph.D.
BIG EAR. What's thought to be the world's largest receiving antenna will soon be put through its paces. Referred to as TAHA (Tapered Aperture Horn Antenna), it is 1000 feet long, 500 feet wide, and 250 feet high.
CABLEMAN'S CORNER. The subject of cable testing is an important one. This is the phase of production that determines whether or not the cable you are purchasing is in accordance with your standards and requirements. In the field of electronics and automation, cables are required to suit various stringent electrical, mechanical, and/or chemical environments. Many years of study and testing have gone into the design of test equipment to be used for these critical tests. It is not enough to know that a cable has been tested in a manner that is "essentially" the same as the required standard. Slight variations in equipment design or methods of tests can mean the difference between conformance and non-conformance. Make sure the test data you receive gives a true picture of the performance of your cable. When you need cable, call on a cable specialist. Our number is Rome FF 7-3000, or write: Rome Cable Division of Alcoa, Dept. 11-90,Rome, New York.

These news itema represent a digest of information found in many of the publications and periodicals of the electronics industry or related induatries. They appear in brief here for easy and concontrated reading. Further information on eacch can be found in the original source material. Sources will be forward
CIRCIE 144 ON READER-SERVICE CARD

revolutionizes soldering!

No other solder provides the performance advantages of ALPHA Cen-Tri-Core Energized ${ }^{2}$ Rosin-filled Solder because no other solder is made this way.
ALPHA Cen-Tri-Core's center wire is rosin coated then inspected oisually before an extruded outer sleeve is added. Result? Every inch of its "core within a core" construction is filled with fast-acting, non-conductive flux. Meets federal specifications QQS-57IC. Write for details.
When dependability comets! In Loo Angeles, Calif.: 2343 Saybrook Avo.
In Chicago. Ill.:
ALPHALOY Corp., 2250 S. Lumber Si.

Other ALPHA products
Fluxes - Solder Proforma • High Purity Metals
CIRCLE 145 ON READER-SERVICE CARD

NEW LITERATURE

RFI Measuring Equipment

This four-page bulletin gives complete description, applications and specifications of the NM52A radio interference-field intensity measuring equipment. Outline drawings are included for the power supply, the meter unit, and dipole and broadband antennas. Stoddart Aircraft Radio Co., Inc., 6644 Santa Monica Blvd., Hollywood 38, Calif.

Rotary Switches

295
Ten decimal-to-binary rotary input switches are described in this two-page data sheet, No. 170. In addition to an outline drawing, the data sheet includes data on coded switching sequences, operating positions, electrical rating, contact arrangement and switching mechanism. Micro Switch, Freeport, Ill.

Relays

296
This four-page buyers' guide lists general parpose relays, overload relays, time delay types, latching and sensitive types, and subminiature types, among others. The illustrated bulletin in-
cludes details of application, performance and specifications of the line of Advance Elgin relays. Schweber Electronics, 60 Herrick Road, Mineola, Long Island, N.Y.

Synthetic Lubricant

This three-page bulletin describes the Pentalube TP-653-B high temperature synthetic lubricant. The bulletin covers typical properties and performance against MIL-9236B requirements. Data are included for temperature-viscosity characteristics, WADC deposition number, spontaneous ignition temperature and other mechanical and chemical standards. Heyden Newport Chemical Corp., Market Development Dept., 342 Madison Ave., New York 17, N.Y.

Stock Nylon Parts
298
This six-page catalog illustrates molded nylon parts available from stock molds. Among the assortment are bushings, washers, rollers, gears, bearings and glides. Several parts designed for specific applications are also illustrated. Nylomatic Corp., 136 W. Trenton Ave., Morrisville, Pa.

TEST INSTRUMENTS WIFI TEST INSTRUMENTS
battery eliminators battery testers bridges boxes electronic switch flyback tester
oscilloscopes probes signal and
sweep gen rube fest generators Rube es esters
transistor tester vacuum tube
voltmeters volitonm-
milliammeters the world.

- 33-00 N. Blvd., L. I. C. 1, N. Y as Braised by the experts
साCD

CIRCLE 146 ON READER-SERVICE CARD
tuners
preamplifier s preamplifiers speaker systems mam gear Cw transmitter modulator-driver
grid dip meter OVER 2 MIL ION OVER 2 MILLION
EICO Instruments EICO instruments in reader-service card

85C WET-SLUG TANTALYTIC CAPACITORS completely soled process sender provibes worst impedance, per init
 volume, of coy ceperilf orletio-GEA-7008A

General Electric offers a complete line

Application versatility and performance reliability highlight General Electric's complete line of Tantalytic* capacitors. Wherever small size, light weight, and superior performance are required-in computer, missile, ground support equipment and airborne electronic applications-there's a General Electric Tantalytic capacitor with optimum characteristics and reliability. High capacitance, stable operation, low capacitance loss, and low impedance -at maximum voltage over wide temperature ranges-are available for your particular electronic circuit applications. And the recent addition of a now high-voltage Tantalytic

Magnetic Modulators

This two-page data sheet describes the design and engineering features of magnetic modulators. Engineering specifications are listed. Illustrations of separate low and high-voltage sections as well as combination units are included. Voi-Shan Electronics, 13259 Sherman Way, N. Hollywood, Calif.

Linear Encoder System

The company's linear encoded system is described in this four-page bulletin, No. 318. The illustrated bulletin covers the three major units in the system, describes the available readout formats, and gives general specifications for the standard system. Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.

Winding Machines

301
This 40 -page catalog contains complete descriptions and specifications on the company's line of winding machines and accessories. Among the equipment included in the catalog are toroidal coil winders, tape winders and bobbin winders. Catalog No. 60 is illustrated. Boesch Manufacturing Co., Danbury, Conn.

Molded Plastics

302
Laminated plastic molded products are covered in this eight-page bulletin. Some of the products described are: a slip ring assembly; cable connector; brush block; electrical connector; missile segment, and a bus bar insulator. The illustrated bulletin gives mechanical and electrical properties of various products. Formica Corp., 4612 Spring Grove Ave., Cincinnati 32, Ohio.

Miniature Ball Bearings

303
This four-page catalog describes the RMB line of miniature ball bearings. Designated catalog No. 2-E-1, it covers dimensional data, load factors, ball sizes and weights of sealed and open radial, flanged radial and pivot type miniature ball bearings. Landis \& Gyr, Inc., 45 W. 45th St., New York 36, N.Y.

Telemetry Subcarrier Oscillator

304
A self-commutating telemetry subcarrier oscillator is described in this two-page bulletin. Specifications include: input and output characteristics; over-all system characteristics; power requirements; environmental characteristics, and physical characteristics. Electrosolids Corp., Solidtronics Div., 14751 Keswick St., Van Nuys, Calif.

SOLID TANTALYTIC CAPACITORS 4 size, to . 003 cv . in., stoble Tuitug chorecteristics, long shall h, eded operating femperatures from ,eed aporating temperatures frem 3K $16+$ ESC; reatings to 50 volts - Cuevities to 22 mid.
-6EZ-27\%A

HIGH-VOLTAGE
TANTALYTIC CAPACITORS Ratings to 300 volts of $85 C$; to 250 Reths of 12SC. Coperitome: from a.15 midd io 35 md ., both poler ond mermoler. Moximom stability, low capocipoler. Moxime teate chenge.

125C CYLINDRICAL

 TANTALYTIC CAPACITORSsmellor, lightor single-ase dosiop for Smalier, lightor single-scre dosige for 125 c operation. 10 ot 150 volls, peler
 Eullotin-GEA-700s

of TANTALYTIC CAPACITORS

capacitor has expanded the application versatility of General Electric's Tantalytic line, rep-esenting G-E efforts to meet the electronic industry's need for constantly improved ratings and performance from smaller, lighter capacitors.

For complete application and specifying information, contact your G-E sales repreventative, or write for the bulletins indicat I_{d} above to General Electric Co., Sec tion 449-17, Schenectady 5, N. Y.

Progress Is Our Most Importiant Product GENERAL (7) ELECTRIC CIRCLE 147 ON READER-SERVICE CARD

Ultra high-speed, compact, rugged and completely reliable. These are the advanced features of CAMBION'S® new bistable multivibrators. Available now in prototype quantities, these macromodule flip-flops have a superior frequency response - DC to 10 MC . They weigh only 9 grams , are .35 cubic inches in size and operate over a wide temperature range. The 12 volt logic provides a superior level output capable of driving many related circuits. The standard 7-pin base design permits easy insertion for prototype work and programming. For complete details on these exciting, new components, WRITE, WIRE, OR PHONE: Computer Components Division, Write, Wire, or phone. Computer Components Division, Cambridge Thermionic Corporation, 457 Concord Avenue, Cambridge 38, Mass. TRowbridge 6-2800.

Just publisthed by KODAK

If you are working with infrared-actuated devices, you need this new Kodak folder, Kodak Ektron Defociors. It fells what you need to know about types and ovailabilities of these photosensitive resistors.
There are curves for the six different depositions available in Ektron Defectors that give specific responsivity and detectivity (signal-to-noise ratio) against wave length. Also description of physical forms available and o quick summary of basic effects.
To gel your free copy, write to Special Products Sales,
EASTMAN KODAK COMPANY
Rochester 4, N.Y.
Kodak

CIRCLE IA9 ON READER-SERVICE CARD

standards are

W'e select military and commercial standards of interest to the electronic design engineer and brief them in the Standards \& Specs Section. Another service that saves you time and keeps you up to date on the latest design developments.

ELECTRONIC DESIGN . . . communicates ideas for ACTION.

NEW LITERATURE

Microwave Components

The Series SF-60 short form catalogs consist of three catalogs describing, illustrating and tabulating specifications on microwave products. The catalogs describe the firm's semiconductor products, their microwave components, and their microwave tubes and devices. Microwave Associates, Inc., South Ave., Burlington. Mass.

Alloys

306
This technical bulletin, "Handbook of the Alloyist," describes the properties, applications and advantages of several groups of alloys used in the electronic industries. H. T. Porter Co., Inc., Riverside, N. J.

Insulating Washers and
307 Trimmer Capacitors

This bulletin, No. CW, illustrates and describes the firm's lines of 3000 wvdc coaxial trimmer capacitors and insulating
washers for commercial, industrial ind military applications. Marstan I ес. tronics Corp., 204 Babylon Turnj ke, Roosevelt, L.I., N.Y.

Motor-Tachometer Generator

08
This data sheet, No. 6204-01, ilustrates a size 8, precision, high-temp rature motor-tachometer generator and tabulates electrical, mechanical ind physical characteristics. An outline dr w. ing, a schematic, and torque curves are included. John Oster Manufacturing Co., Avionic Div., I Main St., Racine, Wisc.

Infrared Detectors

This four-page publication, "Kodak Ektron Detectors-for the Infrared," illustrates and describes characteristics of the firm's various infrared detectors. Response and signal-to-noise ratios are graphed, and basic applications are described. Eastman Kodak Co., Rochester 4. N. Y.
 ELECTRONIC DESIGN • September 14, 1960

Copper-Clad Laminates

Technical information on copper-clad laminates is given in this four-page data sheet, No. 8-1A. Physical, mech nical and electrical properties of the laminates are included in tabular form. Taylor Fibre Co., Norristown, Pal.

Automatic Circuit Printer

311
A precision, automatic screen printer for high-speed production of printed circuit boards is described in this 6 -page illustrated bulletin. Operations and applications of the machine are described. Wyrco Projects, Inc., 66 Main St., Binghamton. N. Y.

Rotary Switch Terminals

This bulletin, No. 20, describes the different types of quick-connect terminals used on the firm's Type P 10-amp rotary switch. Photographs, dimension drawings, electrical ratings, mounting styles and contact diagrams are included. Electro Switch Corp., King Ave., Weymouth, Mass.

Acceleration Recorders

This four-page brochure describes and illustrates instruments recently added to the firm's line of acceleration recorders. Four 3-directional and a 1 -directional instrument and various accessories are included. Impact-O-Graph Corp., 1900 Euclid Ave., Cleveland 15, Ohio.

Mobile Tape Recorder

314
This four-page bulletin, No. DID-5, describe the firm's Model 3116 mobile tape recorder. The instrument is designed as the equivalent of a laboratory system in a $60-\mathrm{lb}$ mobile package. The literature includes illustrations and specifications of the instrument. Minneapolis-Honeywell Regulator Co., Industrial Systems Div., 10721 Hamna St., Beltsville. Md.

Engraving and Stamping

 315This brochure illustrates and describes engraved and stamped materials such as engraved dials and instruction data plates. Stencils for chassis marking are also shown. J. S. Packard, Inc., 200 Hudson St., New York 13, N. Y.

E ECTRONIC DESIGN • September 14, 1960

Highly precise and accurate, Kearfott two-axis accelerometers are pendulous devices which sense airframe acceleration forces acting on them. An inverted pendulum utilizing a unique Hooke's joint suspension displaces as a function of acceleration in either of 2 axes. An AC pickoff signal is rectified and applied to voice coils restoring the pendulum to null. The DC required for restoration is proportional to acceleration. Typical characteristics for these units include range of $\pm 25 \mathrm{~g}$'s, scale factor of $5.0 \mathrm{ma} / \mathrm{g}$. linearity of $\pm 0.005 \%$ and threshold of $2 \times 10^{-7} \mathrm{~g}^{\prime}$ s.

KEARFOTT DIVISION
Little Falls. New Jerse

GENERAL PRECISION. INC.
Oiter Divisions GPL.Librascope Link

NeW
 100 kc PLUG-IN CRYSTAL OSCILLATOR

This 100 ke plug-in package, Mode CCO-7G, combines a high precision sealed-in-glass quartz crystal with integral temperature control and transistorized circuitry.
Designed to deliver 100 kc output with stability of 2 parts in 10 million over ambient temperatures from $0^{\circ} \mathrm{C}$. to 50 C . With fixed ambient conditions and voltage regulation, stability of one part in 10 million can be realized. The standard unit requires 27 volts dc, 12 ma for the oscillator and 27 volts, ac or dc, 10 watts for the crystal oven. Package size, excluding octal base, is $2^{\prime \prime} \times 2^{\prime \prime} \times 4 \overline{10} 4 ; i^{\prime \prime}$.
bulletin no. 520 available

HLILEY ELECTHIC CDMPANY

UNION STATION BUILDING • ERIE, PENNSYLVANIA CIRCLE 154 ON READER-SERVICE CARD

Heart of the Control System

"DIAMOND H" Relays

Look into the heart of the control system for a missile, a computer, a nuclear submarine, or a great many other critical applications. You might be surprised how often you'll find "Diamond H" relays.

Unless, of course, you're one of the increasing number of engineers who've already selected "Diamond H" relays for a spot where they just have to work despite all sorts of adverse conditions.
Hart makes relays of three basic types: miniature, hermetically sealed, aircraft-missile relays (Series R/S); high speed, sensitive, polarized relays (Series P), and general purpose AC, DC relays (Series W).
Technical literature outlining the wide range of characteristics available with each type relay is yours for the asking. You'll find "Diamond H " engineers uncommonly adept at working out a variation of the basic designs to meet your set of specific requirements.

Tell us your needs . . . by phone, wire or letter.

TTADPM MANUFACTURING THE ATH COMPANY
 210 Bartholomew Ave., Hartford 1, Conn.
 CIRCLE 155 ON READER-SERVICE CARD

NEW LITERATURE

Tape Search Control System 316

This two-page data sheet, No. ZA-821, describes the operation and suggests applications of the type ZA-821 tape search and control system. The equipment described uses a time code detection technique in conjunction with a type ZA-801 time code generator. Electronic Engineering Co. of California, 1601 E. Chestnut Ave., Santa Ana, Calif.

Relay Catalog

In this catalog the relay lines of over 20 manufacturers are listed with descriptions and prices. A thumb-indexed table of contents is included. Relay Sales, Inc., Box 186, West Chicago, Ill.

Markers and Signs

This multi-colored, 24-page catalog describes electrical markers, numerals, letters, and identification signs. North Shore Nameplate Div., Anodyne Inc., 214-27 Northern Blvd., Bayside 61, N.Y.

Solid State Devices

19
Solid-state devices, instruments, ind components for commercial, indus rial and military applications are illustr ted and described in this bulletin, No. PL. Marstan Electronics Corp., 204 Babj lon Turnpike, Roosevelt, L.I., N.Y.

Punched Tape Programer

320
This two-page data sheet describes the firm's model TP-860 eight-channel, tinebase punched tape programer. Electronics Engineering Co., Anaheim Electronics Div., 1601 E. Chestnut Ave., Santa Ana, Calif.

Switch Catalog

321
Technical engineering data and ordering information on snap-action switches are contained in this catalog. Enclosed and open stack switches for precision applications are included. Cherry Electrical Products Corp., 1650 Deerfield Road, Highland Park, Ill.

BIMCO-GRAY

PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!

APPROVED UNDER ARMY-NAVY STANDARDS
Here's a simplo, easy means of securely fastening assemblies to withstand shock or vibration, and yet allow quick removal for inspection or repair. Instant snap action engages or releases fastener . . . no tools are required Aftor installation, fasteners never need adjustment . . . oven with re peated use.

Three sizes available for different load requirements. Large and medium sizes are requirements. Large and medium sizes are made of corrosion-resistont stainless steel. Small size is made of nickel-platod brass. and mounting plates ... special parts can also be supplied.

This two-page bulletin, No. 162-B01, des \cdot ribes a series of tapped-winding transformers intended to supply stand-ard-voltage power from an off-standard line. Physical and electrical specifications are included. Acme Electric Corp., Cuba, N.Y.

Semiconductor Microforms

323
This four-page bulletin on precisionpurity microforms for semiconductor and electronic production describes highpurity spheres, discs, dots and washers. Anchor Alloys, Inc., 968 Meeker Ave, Brooklyn 22, N.Y.

High-Impact Phenolic Parts

324
This four-page editorial reprint, "Designing High-Impact Phenolic Molded Parts," presents 12 design rules for reducing cost, based on industrial experience with fiberglass-reinforced phenolic resins. Tables giving mechanical data of the phenolics are included. Durez Plastics Div., Hooker Chemical Corp., North Tonawanda, N. Y.

Potentiometer Transducers

This four-page bulletin gives specification data for six potentiometer transducers as applied to pressure, motion, altitude, weight, flow, indicating, recording, systems and controlling. H. E. Sostman \& Co., 426 E . Lincoln Ave., Cranford, N. J.

Brazing Preforms

326
Design considerations and examples of metal joints suitable for using brazing preform are considered in this 20 -page booklet, "Designing for Preforms." Discussions of varying preform shapes and materials for specific applications are included. A section considers applications of preforms in the electronics industry. Lucas-Milhaupt Engineering Co., Cudahy, Wis.

Mulfiplexer

327
This four-page brochure describes the Radiplex 89 low-level Multiplexer. Operating specifications and applications are included. Radiation Inc., Melbourne, Fla.

El CTRONIC DESIGN • September 14, 1960

FLOATED RATE INTEGRATING GYROS

Specifically designed for missile applications, these Kearfott miniature gyros are available with short term drift rates of $0.01^{\circ} / \mathrm{hr}$. Their outstanding accuracy and performance make them superior to any comparably-sized units on the market. Wide angle displacement gyros with high torquing rates for "strap-down" applications are also being produced. Performance characteristics that are even more pre can be provided within the same dimensions.

KEARFOTT DIVISION Lillle falls, New Jersey

GENERAL PRECISION. INC. Other Divisions. GPL. Librascope. Link

CIRCLE 158 ON READER-SERVICE CARD

THERE'S A BIRTCHER RADIATOR FOR MOST TRANSISTORS!

Birtcher transistor radiators for most sizes of transistors permit you to get up to 25% to 27% better output efficiency. You can now either increase your input wattage up to 27%, or eliminate up to 27% of the heat with Birtcher radiators.
and thermal runaway is prevented!
To assure circuitry reliability ... specify Birtcher radiators. Birtcher qualification tests conducted under MIL standards prove these performance results.
for catalog and test reports write: THE BIRTCHER

B

For catalog and test reports
Sales engineering
representatives in
representatives in
principal cities.

CORPORATION industrial division
745 s. Monterey Pass Rd.
Montorey Park, Cally.
ANgelve 8 esse4
circie 159 on reader-service card

AC/DC RATIO STANDARD

For those who require an AC/DC RATIO STANDARD in a single package, Gertsch offers its Models 1001 and 1002. Like all GERTSCH RATIO STANDARDS (1000 Series), these units feature: heavy duty instrument switches, transient suppression, $A C$ Ratios up to 1.11111, bold in-line readout and extra-heavy mechanical construction to insure TRUE STANDARDS PERFORMANCE.

AC

Linearity:	1 part per million (0.0001%)	10 parts per million Resolution:
6 Place (0.0001%)	6 Place (0.0001%)	

AC Ratio Standards in the GERTSCH RATIO STANDARDS SERIES,
Models 1000, 1003 and 1004, is also available.
GERTSCH PRODUCTS, Inc.

$$
=\text { Gentsch }=
$$

CIRCLE 161 ON READER-SERVICE CARD

NEW LITERATURE

Digital Data Plotting

This eight-page brochure, No. DP6001, describes the Dataplotter, its accessories, and its capabilities in converting digital computer outputs into chart, graph or mechanical-drawing form. Electronic Associates, Inc., Long Branch, N.J.

Push Button Switch

This one-page data sheet, No. 5500, gives electrical and mechanical specifications and dimensional diagrams for the Series 5500 momentary-action push-button switches. Donald P. Mossman, Inc., Brewster, N.Y.

Tantalum Capacifors

330
This four-page catalog, No. 215 B2.1, gives technical and engineering information on Aerotan solid tantalum capacitors. Curves and reference tables are included. Aerovox Corp., New Bedford, Mass.

Air Dielectric Coaxial Cable
 31

This four-page, two-color, illustr ted bulletin describes aluminum shealsed air-dielectric coaxial cable which cas be bent into a variety of shapes and co_{1} fig. urations. American Tube Bending O_{0}., Electronics Div., P.O. Box 1841, 5 I ıwrence St., New Haven, Conn.

Instrumentation Tape Recorders ${ }^{\prime} 32$

A 16-channel, digital, magnetic-tape recorder, Model PS-216-D, is describer in this two-page catalog sheet, No. 58. Specifications and illustrations are included. Precision Instrument Co., 1/11 Commercial St., San Carlos, Calif.

High-Speed Computer

A high-speed digital computer, Model PDP-1, is described in this four-page folder. Speed, memory size and access time, programming features, input-output equipment, instruction format, instruction list and prices are included. Digital Equipment Corp., Maynard, Mass.

in this
New Pressure-to-Voltage System
A stiff metal diaphragm is the only moving part in this new Ultradyne
DCS $4 \mathrm{DC} / \mathrm{DC}$ pressure transducer DCS $4 \mathrm{DC} / \mathrm{DC}$ pressure transducer package. It gives you all the advantages of a variable-reluctance transducer wishour the disadvantages of AC rampe specifications and apolica. complete
tion data.

ransistorized Insfruments
Transistorized power supplies, dc to dc voltage regulators and a transistor checker are described in this two-page catalog sheet, No. SF1259. Specifications and prices of the instruments are inJuded. Valor Instruments, Inc., 13214 Crenshaw Blvd., Gardena, Calif.

Compressed-Sheet Mica
This 24-page catalog, No. 26, gives technical information on mica hard plates, flexibles and flexible combinations, micapaper rolls, sheets and tapes, as well as fabricated parts made to customer specifications. A section of the catalog outlines the advantages of com-
pressed sheet mica over natural mica. Data on grading and classifying types, properties and processing of natural mica is included. Insulation Manufacturers Corp., 565 W . Washington Blvd., Chicago 6, Ill.

Tantalum Capacitors

337
This four-page bulletin, No. GEA7065, describes light-weight, high-voltage tantalytic capacitors for 85 and 125 C applications. Mechanical and electrical specifications, performance characteristics and curves for the capacitors are included. General Electric Co., Capacitor Dept., Irmo, S.C.

Strain Gage

338
A mono-filament subminiature wire strain gage and a similar strain insert, with insulated lead ends to aid in alignment, are described in this four-page bulletin. Line drawings, tables and graphs supply operating data. Baldwin-Lima-Hamilton Corp., Electronics \& Instrumentation Div., 42 Fourth Ave., Waltham 54, Mass.

Available in both conventional and gimbal mounted configurations, these synchros provide component accuracies of 20 seconds of arc ol better. They permit RMS accuracy for 3 unit strings of better than
0.75 minutes. Specifically designed for precise data transmission in missile-borne applications, these components eliminate the need for 2 speed servos and complex electronics, provide increased reliability and marked improvement in over-all system performance.

GENERAL PRECISION. INC. Other Divisions GPL Librascope Limk

NOW! NEW LOWER PRICED COIL FORMS

Interchangeable with industry standards

Thermosetting epoxy cement permanently positions collars and lugs to withstand severe shock under high temperature $\left(250^{\circ} \mathrm{C}\right)$. Available in any lug configuration. severe shock under high temperature ($250^{\circ} \mathrm{C}$). Available in any lug configuration. silicone impregnated. Lightweight aluminum bushing. Silicone fibre glass washers. Unique built-in dependable tension device guarantees vibration-proof, smooth tuning. Nickel-plated parts conform to MIL-P-5879 QQ-N-190. Diameters: .205, .260, .375, . 500 . Frequencies: $11 \cdot 1.5 \mathrm{mc}, .5-10 \mathrm{mc}, 10-30 \mathrm{mc}$, requences
$30-50 \mathrm{mc}, 30-150 \mathrm{mc}, 50-200 \mathrm{mc}$, and brass slugs. Write for quotes and bulletin CF-860.

> ALSO AVAILABLE IN EXCLUSIVE RIBBED DESIGN
> CIRCLE 163 ON READER-SERVICE CARD

CIRLCE 164 ON READER-SERVICE CARD
TEST RELAYS FASTER, MORE ACCURATELY, WITH EECo'S ALL-NEW

Where knowledge of relay performance is important to your operations, here's one of the most valuable aids ever devised. It's EECo's Model RT-905, latest improvement on the most successful line of relay testers ever made available.
Measures voltage and current simultaneously, both pull-in and drop-out. Measures contact resistance, coil resistance, insulation resistance, pull-in and drop-out time, contact bounce. Automatic relay driving circuitry. Oscilloscope connections and appropriate circuitry. Write for data sheet, and turn over your relay troubles to an EECo RT-905.

Anaheim Electronics Division
Electronic Engineering Company of California 1601 East Chestrut Ave. Santa Ana, Calif. KI mberly 7.5501 • TWX: S ANA 5263

CIRCLE 165 ON READER-SERVICE CARD
El:CTRONIC DESIGN • September 14, 1960

IDEAS FOR DESIGN

Get $\$ 10.00$ plus a by-line for the time
it takes you to jot down your clever
design idea. Payment is made when
the idea is accepted for publication.
time required for N_{e} cycles to occur at the ire quency f,
then $\quad Q=\pi f t_{e}$
The oscillation decay time, t_{e}, can be set er ual to the time constant of an RC circuit, or

$$
\begin{equation*}
t_{e}=T=R C, \tag{f}
\end{equation*}
$$

Equating, Eqs. 3 and 4 yields

$$
\begin{equation*}
Q=\pi f R C^{\prime} \tag{5}
\end{equation*}
$$

In order to have a convenient, decade realing of Q, the numerical equality

$$
\begin{equation*}
Q=C_{u} \times 10^{3}=C \times 10^{4} \tag{6}
\end{equation*}
$$

should hold true, where $C \mu=$ capacitance in microfarads.

It follows from Eqs. 5 and 6 that

$$
\begin{equation*}
\frac{Q}{C_{\mu}\left(10^{3}\right)}=1=\pi f R\left(10^{-9}\right), \tag{7}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
R=\frac{10^{9}}{\pi f} . \tag{18}
\end{equation*}
$$

For $f=400 \mathrm{cps}$,

$$
I_{i}=\frac{10^{4}}{\pi\left(4 \times 10^{2}\right)}=7.9 .97 \times 10^{5} \mathrm{ohms}
$$

and is accurate to 0.5 per cent for 397.5 cps $>f>402.5 \mathrm{cps}$, which was the range of inter. est. Obviously, for other applications, the resistance could be adjusted for various frequencies
With $S_{1} A$ and $S_{1} B$ closed (the normal position) Fig. $1, e_{1}$ is applied to $T F$, whose amplified output, e_{2}, is imposed on channel A of the oscillo scope and the primary of T_{1}. Voltage e_{3}, the rectified output of T_{1} is applied across the [$\boldsymbol{R}_{t} \boldsymbol{R}_{\text {in }} /\left(\boldsymbol{R}_{t}+\boldsymbol{R}_{\text {in }}\right] C$ network, and displayed on channel B of the oscilloscope. After adjusting e_{1} to the rated valve of $T F$, the zero traces of channels A and B are superimposed. With e_{1} applied.

Fig. 1. Q-measuring circuit displays tuning fork's decay transient. The actual time constant is determined from the value of the capacitance C.

Fig. 2. Oscilloscope patterns for different values of capacitor C In practice R is held constant and C is varied, until rectified and alternating waves are lined up as in pattern (c).

CIRCLE 166 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

Fig. 3. This oscilloscope (slow sweep) pattern results when tuning fork is unbalanced (tines are at two differeni frequencies).
the maximum traces of e_{2} and e_{3} are adjusted, with the channel amplifier sensitivity controls, for congruency

Time Constants Equalized
By Scope Display
Pushing down S_{1} (A and B), which is a dpst, normally-closed, spring-loaded, push-button switch, will produce any one of the three oscilloscope patterns, shown in Fig. 2. The pattern displayed depends on the setting of capacitor C
Pattern (a) results when $R C<t_{c}$, or when the capacitance of C is too small. Pattern (b) results when $R C>t_{r}$, and pattern (c) is produced when $R C=t_{c}$. The fast sweep patterns are, of course, of exponentially decreasing amplitude. The patterns are a comparison of the decay time of the resonant system versus that of the $R C$-network When pattern 2 c is obtained, the () of the tuning fork is equal to the decade capacitor setting (to 3 significant digits) times 1,000 . It was found, in actual operation, that the fast sweep patterns of Fig. 2 give greater resolution (the zero can be suppressed) and consequently reduced operator fatigue and reading error.
Another advantage of this system is that it displays any fork unbalance (that is, two adjacent resonant peaks in its transfer function) as a sinusoid envelope of the ac decay pattern. Such a case is shown in Fig. 3.
The resistor R_{t}, which is actually a frequency scalc-factor adjustment, must be computed together with the input impedance of the oscilloscope. That is

$$
\begin{equation*}
R=7.9 .97 \times 10^{5} \text { ohms }=\frac{R_{t} R_{\text {in }}}{R_{t}+R_{\text {in }}} \tag{9}
\end{equation*}
$$

R_{t} can be a variable resistor, calibrated in 'perating frequency, should this system be applied as a Q-meter for a large frequency range. This method of Q measurement is difficult to pply for $Q<200$. The decay time, t_{c}, is too ast for an accurate reading. However, this loesn't present any difficulties, since resonant ystems with $Q<2(0)$ can be easily measured by he orthodox methods.
Walter Plywaski, Engineer, The Martin Co.,)enver, Colo.
(CIRCLE 166 ON READER-SERVICE CARD

Here's why the NEW AO

 TRACE-MASTER is the world's finest 8-channel direct writing recorder!American Optical Company, famous for precision instrumentation for 138 years, introduces an electronic direct-writing recorder of unique design, in which ultra-precise electromechanics has been combined with advanced electronics to achieve truly superior performance.

Finest Writing Meshod Ever
Unique direct-carbon-transfer writing method. Trace is uniformly black and up to four times thinner than that made by to four times thinner than that made by
any other recorder. Minute variations in phenomena measured are more faithful, meaningful. Carbon trace cannot fade.. may be easily reproduced.
Finest frequency-Amplifude Performance TRACE-MASTER'S multiple-feedback wide-range Driver circuitry, combined with the advanced pen-motor design, produces wider frequency response at larger amplitudes than any other recorder. TRACE-MASTER response is flat-with in 1% - from dc to 110 cps at 40 mm !
Band Amplitude Product (i.e. Bandwidth cimes Amplitude) is $5600 . . .140 \mathrm{cps}$ (3 db point) $\times 40 \mathrm{~mm}$.
Finest Chart-Drive Facilitios
TRACE-MASTER provides widest chartspeed range... 0.1 to $500 \mathrm{~mm} / \mathrm{sec}$... of any direct-writing recorder! Convenient

Entire channel easily accessible and completely inserchangeable as single unis.
push-button selection. Take-up reel automatically stores full 1000 fr. record. Writ ing table tilts for easy chart annotations. Guide rails permit quick, easy paper-roll changes. Low cost chart paper makes practical protracted recording at high speeds.
Finest Resolution, Linearify, Stability
Thin carbon trace (thinner by 4 to 1 over mose recorders) and high Band Amplitude Product (higher by 6 to 1 over other recorders) provide up to 24 times the resolving power or ability to detect short, perior linearity ($+1 \%$) and stability in rectilinear presentation permir full use of this unexcelled resolution

Finesf Sysfems Orienfed Compafabilify Fully transistorized circuitry...application
of combined dc level and signal multiple feedback...complete interchangeability of modular signal-conditioning elements... are some of the features that make the AO TRACE-MASTER the world's finest 8-channel direct writing recorder.

Platen silts to convenient writing angle.

See it...Try it... at the Shows

WESCON! ISA!
NEC! NEREM!

Widest range chart speed . . . push-button selection through $0.1 \mathrm{~mm} / \mathrm{sec} 80500 \mathrm{~mm} / \mathrm{sec}$.

WRITE, WIRE, TELEPHONE TODAY FOR COMPLETE INFORMATION!

Complete Engineering Bulletins available.
Field Sales Engineers at your service everywhere.
onstaument division, burfalo is, new york

UPGRADE YOUR PRINTED CIRCUIT PROGRAM

The ONCO

Problem Solver Way

IDEAS FOR DESIGN

Modified Circuit Limits Pulse Amplitude More Effectively

The pulse amplitude limiter described in $E D$'s, April 27, 1960, Ideas for Design column is not really a limiter because the output voltage is still a function of the input voltage.
Given the device shown in Fig. 1, when $\left|E_{i n}\right|>\left|E_{\psi}\right|$ the output voltage is

$$
E_{\text {out }}=\frac{\frac{E_{i n}}{R_{g}}+\frac{E_{b}}{R_{p}}}{\left[\frac{1}{R_{o}}+\frac{1}{R_{p}} \frac{1}{R_{L}}\right]}
$$

In order to truly clamp to E_{B}, R_{p} would have to equal zero. This would eliminate the use of a bled-down power supply, as the author suggests. If another power supply is used and $R_{p}=0$, then there is the danger of excessive current in the base lead if R_{y} is small.
If R_{p} is finite and $R_{6} \ll R_{p}$, the output would follow the input. In effect, all you would have is a resistive attenuator. As a matter of fact, no emitter follower action results when $\left|E_{i n}\right|>\left|E_{b}\right|$ because of the saturation of the transistor.
A more effective way of limiting or clipping is shown in Fig. 2.

LONDON CHEMICAL CO., INC.
1531 n. sieh avenue o melrose park, illinois MEMBER OF INSTITUTE OF PRINTED CIRCUITS

$$
\text { CIRCLE } 168 \text { ON READER-SERVICE CARD }
$$

Mask out solder "take" with Lonco PC\#33-R SOLDER RESIST-the hard, tough film that performs excellently over Sealbrite \#230-10. Minimizes bridging, improves soldering of uncoated areas, greatly enhances appearance of the finished board.

FLUX
 ,

Flux with a Lonco resin-flux that passes MIL F-14256 Signal Corps Copper Mirror Test, yet gives you smoother, more reliable solderability than you've ever had before. You get perfect soldering at safer, lower temperatures, too -450° to $480^{\circ} \mathrm{F}$.

Brighten with lonco copperbrite \#48, the oxide remover that does not etch away your copper, but does completely clean off surface oxides and hydrates. Copperbrite lasts indefinitely, and it increases the adhesion of plating by 100% !

PROTECT

Protect your Copperbrite surface with lonco sealbrite \#230-10. Keeps away oxides and dirt and improves ultimate soldering with its unique solder-assist coating. Effectively inhibits oxidation during high temperature cure of solder resists.

MASK

CLEAN

Clean flux residues from your boards by simple dip with a Lonco flux remover. Removers are designed to wash off flux residues at a maximum speed consistent with safety to the delicate components and materials involved.

Get the Facts... Ask for full information on any or all of Lonco's printed circuil problem solvers. Request special bulletin, Soldoring of Printed Circuits.
 MEMBER OF INSTIUTE OF PRINTED CIRCUITS

Fig. 2. With this circuit, the output voltage will clip at a value independent of the input voltage for $\left|E_{i n}\right|>\left|E_{b}\right|$.

Using an npn transistor for the emitter follower, the transistor will cut off when $|E|>\left|E_{G}\right| R_{L_{i}} /\left(R_{E}+R_{L_{l}}\right)$. Then the output voltage will clip at $E_{b}, R_{L,} /\left(\boldsymbol{R}_{E}+\boldsymbol{R}_{L}\right)$ for any $E_{\text {in }}$ whose absolute value is greater than $\left|E_{b}\right|$.
The above discussion holds for negative pulses. Obviously, a pnp transistor properly biased could be used to limit a positive pulse.
Burt H. Licbowitz, Engineer, Airborne Instruments Laboratory, Huntington, N.Y.

Voltmeter-Variable Resistor Measures Zener Current

To measure the current flowing through a Zener diode without breaking the circuit, connect a voltmeter and variable resistor across it as shown in the figure. The variable resistance is then reduced until the voltmeter reading just starts to drop. At this point the resistor is absorbing all the current which used to flow in the

Current in variable resistor equals Zener diode current when voltmeter reading begins to drop as resistance value is reduced.
diode. The resistance may then be measured and Ohm's law used to calculate the current, or an anmeter may be used as shown. The accuracy of the measurement is determined by the sharpness of the Zener breakdown, which is usually lescribed by the diode's manufacturer.
David J. Goldman, Electrical Engineer, Di/An :ontrols, Inc., Boston, Mass.

HUGHES ${ }^{\star 8}$ DIODES ARE ALL STABILIZED AND CONDITIONED
The JAN-type diodes listed above give you the ultimate in reliability. They, of course, have to be top quality to receive joint Army-Navy approval. Quality control is the keynote at Hughes. Manufacturing facilities are geared to put JAN-types through all the rigorous tests required. Hughes stabilizes every diode prior to shipment. But, what of the long list of nonJAN diodes also listed here? They are made of the same high-grade silicon or germanium. They are fabricated and hermetically sealed on the same assembly lines. They undergo the same high-temperature storage, visual and mechanical inspections, and high- and low-pressure seal tests as their JAN cousins. To you, this means a tremendous quality bonus. It lets you buy top-grade diodes without paying a premium price for them. The diodes listed here are all available in quantity now. Call the Hughes Semiconductor sales engineer or authorized distributor in your area. Or write Hughes Semiconductor Division, Marketing Department, 500 Superior Avenue, Newport Beach, California.

CREATING A NEW WORLO WITH ELECTRONICS
For export, write Hughes International, Culver City, California

HUGHES
SEMICONDUCTOR DIVISION hughes airctraft company

ELECTRONIC DESIGN • September 14, 1960

AIRPAX

EXPANDED-SCALE FREQUENCY

TYPE 5908 used on 60 CPS power source

TYPE 5907 for use on 400 CPS supply sources

SEMINOLE DIVISION - FORT LAUDERDALE, FLA. CIRCLE 171 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Simplified Conversion Eliminates Slide Rule Step

The decibel conversion method outlined in "Log-Log Slide Rule Converts Voltage, Power Ratios Directly to Db" (ED, May 11, 1960, p 231 and July $20,1960 \mathrm{p}$ 149) is more difficult to use and remember than is necessary. The difficulty lies in the assumption that the voltage or power ratio has already been determined. Actually this would require an extra setting of the slide rule. This decimal ratio must then be remembered for use after the slide rule has been set as recommended in the article. A much simpler method is available.

If the \log scale is on the stationary part of the rule, power ratios are determined by performing the ratio division on the C and D scales. The cursor is then brought to the index of the C scale, and the power decibel ratio is read directly off the log scale by moving the decimal point one place to the right.

For voltage ratios, the same procedure is used, except that in addition to moving the decimal point one place to the right on the log scale, the numbers on the log scale are also multiplied by two. This can be done by inspection. With either of these methods, it is only necessary to note whether the original ratio is greater than 10, and by how many decades. A suitable number of 10 db steps for the power ratio or $20-\mathrm{db}$ steps for the voltage ratio is added to the number read on the log scale.

If the \log scale is on the slide, the same procedure is used, except that the division must be done "in reverse." The smaller number of the ratio is set on the D scale and the larger number on the C scale. The cursor is set to the index of the D scale.
Donald E. Williamson, Williamson Development Co., Inc., West Concorl, Mass.

Measuring Primary Screen Grid Emission

The circuit shown was used to measure the reverse screen grid current of a tube and determine the extent of its primary screen grid emission.
A 60 -cps voltage $E_{y_{2}}$, is applied to the screen grid through 1N93 diodes A and B. Screen current, $\boldsymbol{I}_{c_{2}^{2}}$, flows during the positive half of the cycle causing the grid to heat. Diode C, causes the $E_{c=2}$ meter, to read on the positive half of the cycle.

Source voltage $E_{\eta 2}$, is adjusted for the maximum screen dissipation specified for the tube.

MICROMINIATURE light weight
 LONG LIFE IOw power RUGGED

frequency range 25 cps to 100 kcps Virtually immune to the effects of shock, vibration and acceleration, the models S-100 and S-200 Sinusoidal Oscillators are the smallest on the market. Designed to create a sine wave signal source, these units fea ture low distortion, these high stability over wide ranges of temperature and rugged environments.
Power supply problems are simplified by the use of a single supply with very low current drain (28 volts dc at 1 milliampere). Only three connections are required to each unit thereby simplifying interwiring. A low impedance emitter follower output is provided.

APPLICATIONS

Missile, space vehicle and industrial instrumentation, telemetering and control, carrier systems, guidance systems, frequency coding, timing circuits, synchronization, discrete event indication paging systems, magnetic tape biasing push.button oscillators, digital systems, hetero oscilat frequency modulation, bring dyning, frequency modulation, bridg supply, selected calling systems, in tercom systems, machine supervi sory control, signaling devices, fre quency standardization and calibration for miniature and portable equipment.

SOLID STATE ELECTRONICSCO 15321 Rayen St., Sepulveda, Calif EMpire 4-2271
CIRCLE 172 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

Special Sockets
 and Connectors

JETTRON PRODUCTS • INC

5 Route 10, Hanover, New Jersey Telephones: TUcker 7.0571.0572

Sales Engineers in Principal Ciries
IRCLE 173 ON READER-SERVICE CARD

Reverse screen grid current is measured after tube has been operated at rated screen dissipation for five minutes.

The equation used, $P_{c 2}=2.48 E_{c} 2 I_{\mathrm{c} 2}$ is based on positive rectified halves of a sine wave. Dissipation is applied for five minutes before readings are taken.
The screen current should conduct for 180 deg during each cycle. This is observed on an oscilloscope placed across the 10 -ohm resistor.
Control grid voltage $E_{c 1}$, is set so the screen dissipation is not exceeded before the conduc:ion angle of $I_{r 2}$ reaches 180 deg .
After dissipation has been applied for the specified time, the reverse grid current $1_{c s^{2} 2}$, or primary screen emission, is measured. This measurement is made during the negative half of the input cycle.
H. E. Wood, Engineer, Lansdale Tube Co., Lansdale, Pa.

Woods Metal Good For Plugging Plumbing

Corrobend, or Woods Metal, a fusible alloy which melts at 160 F may be used in the experimental laboratory as an easily worked material for making adjustable shorts or plugs in waveguide, cavities, etc. It gives a good mechanical and electrical fit and is easy to insert and remove. A minimum of tools are required, only a source of heat 150 to 200 F to melt the alloy in place. There is no danger of damage to the parts from excessive heat or mechanical stress, as might occur when using machined brass or aluminum plugs.

There are probably many ways in which this "liquid" technique could be used. One very satisfactory use is that of an easily adjusted short in crystal mounts or transitions. By adding to, or drilling out the material, and remelting, tolerances of 0.002 in . are casily obtained.
J. D. Stewart, National Research Council, Radio \& Electrical Engincering Dic., Ottauca, Canada.

FIRST Airborne Doppler Radar Navigation System with Simplified Transistor Circuitry Uses HERMES CRYSTAL FILTER

Hermes Crystal Filter, Model 669 U,
Typical Doppler Signal Spectrum super. imposed on attenuation characteristic urve of Hermes Crysial Filler, Model changes. Peak of curve shifls as velocily
changes. gation Syslem DN- 101 measures $31 / 2^{\prime \prime} \mathrm{L}$. $\times 31 / 6^{\prime \prime} \mathrm{W} . \times 11 / 9^{\prime \prime} \mathrm{H}$.

Collins DN-101 Doppler Radar Navigation System is an airborne radar transmitting and receiving system which directs three beams of X-band energy towards the earth and then accurately measures the amount of frequency change between the transmitted and reflected signals to determine the lateral, vertical, and horizontal velocities of the aircraft.
In order to eliminate an undesired leakage sideband in the Radar Sensor, a system selectivity with a very sharp cut-off on the lower frequency end of the passband had to be provided. Hermes Crystal Filter, Model 669 U, not only met this requirement by establishing the desired selectivity in the second IF amplifier but also made it possible to reduce the number of transistors in the accompanyigg circuit. Close cooperation between the engineering departments of the two companies contributed to the rapid solution of this critical selectivity problem. Hermes Crystal Filter characteristics, Model 669U
Center Frequency is 159.0 Kc . Bandwidth at 2 db is 6 Kc min. Attenuation increases from 2 db to 53 db in 8.1% of the passband. Insertion Loss is 10 db max. Temperature Range is $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Whether your selectivity problems are in transmission or reception, AM or FM, mobile or fixed equipment, you can call on Hermes engineering specialists to assist you in the design of your circuitry and in the selection of filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.
A limited number of opportunities is available to experienced circuit designers. Send Résumé io Dr. D. I. Kosowsky.

Hermes

(H) ELECTRONICS CO 75 cambridge parkway, cambridge 42, mass. Itek
CIRCLE 174 ON READER-SERVICE CARD
300μ VOLTS 300μ VOLTS 300μ VOLTS μ VOLTS 300μ VOLTS 300μ VOLTS 300 300μ VOLTS $300 \mu n^{\prime}$ OLTS 300μ VOLTS μ VOLTS
$300 \mu V$
μ VOLTS
$300 \mu V$
μ VOLTS
$300 \mu V$
$\mu \vee O L T S$
$300 \mu V$
$\mu V O L T S$

THE LEADER in R.F. Voltage Measurements at Low Level from $\mathbf{1 0} \mathbf{~ K C}$ to $\mathbf{6 0 0} \mathbf{~ M C}$
MODEL 91-CA 300 microvolts to 3 volts Price: $\$ 495$

MODEL 91-C 1000 microvolts to 3 volts Price: \$395

Theory and Application of Ferrites Ronald F. Soohoo, Prentice-Hall, Inc., 70 Fifth Ave., New York 11, N.Y., 288 pp, $\$ 12.00$. (For a special previcu of this book. see p (\%)().)
Designed to introduce the reader to the study of the theory and applications of ferrites at and below microwave frequencies, this text is suitable for both the practicing engineer and physicist. Theory developed in part I is applied, in part II, to the design and analysis of practical ferrite devices. Physical reasoning is stressed throughout, with the more complicated mathematical derivations collected in an Appendix.
Chapter 1 introduces the subject of ferrites while Chapter 2 deals with the general properties of matter in the solid state. Chapters 3 and 4 deal respectively with
the dielectric and magnetic properti s of ferrites. The permeability tensor is derived with ferrite losses and property measurement techniques discussed "ext. In Chapters 8 and 9 the propagation of electromagnetic waves through ferrites are treated.
Topics discussed in Part II are applica. tions of ferrites at and below microwave frequencies, various ferrite devices such as the Faraday rotator, resonance isolator, phase shifter, and recirculator. Also discussed are cut-off phenomena. ferrite behavior at large signals and finally, the system applications of micro. wave ferrites.

Numerous graphs and illustrations are included for illustrative purposes. Only material that has been experimentally: tested is included (a substantial portion

HOW FLAT IS FLAT?

It's all in the way you look at it. Many Sweep Generators have output flat within 0.5 dB , a few are flat to 0.1 dB , but only the Marconi Video Sweep Generator will measure true relative gain to 0.01 dB . Where such accuracy is needed for video amplifier and system measurements, or for transmission line matching, Model 1099 should be specified.

Matched input and output detector probes are supplied and calibration standards are built in. A 'scope is required for presentation but measurement accuracy is dependent entirely on the sweep generator.

Sweep Range:	100 kc to 20 Mc, 1 Mc markers.
Output:	0.3 to 3V, 75,
Level Constan	0.1 dB .

MEASURES RELATIVE GAIN TO 0.01 DB
 CIRCLE 176 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 14, 1960
(w. (his is original with the author). Problemis are presented at the end of each chapter.

Principles of Quantum Mechanics
William V. Houston, Dover Publications, Inc., 180) Varick St., New York 14, N.Y. $288{ }^{2} 18, \$ 1.45$.
The author, having taught a graduate course in nonrelativistic quantum mechanics, attempts to present a unified work in this field for the student or the scientist. The object of the book is to acquaint the reader with quantum mechanics on a level that will enable him to understand published work in this arca. The reader is assumed to have a working knowledge of elementary mathematical physics.
The first part of the book provides a formulation of quantum mechanics in terms of Schroedinger's wave mechanics. Subsequent chapters deal with applica-
tions in spectroscopy, collision problems, electrons in solids, and electromagnetic radiation.

Advances in Space Science Vols. I and II Frederick I. Orduay, III, Academic Press Inc., 111 Fifth Ave., New York 3, N.Y., Vol I, $412 \mathrm{pp}, \$ 12$; Vol. II, 450 pp , $\$ 13$.

Of interest to scientists and engineers working in fields related to astronautics, this series endeavors to keep them abreast of the progress in this field. The first volume includes sections on interplanetary rocket trajectories, interplanetary communications, power supplies for orbital and space vehicles, and bio-astronautics. The second volume, a survey of the principles of construction and the performance of rockets and rocket engines, covers the following topics: space physics, tracking, materials, electrical propulsion, and attitude control.

HOPKINS

metallized Mylar* film capacitors - high performance in small size

These film-wrapped units are built to meet exacting requirements. For example: High insulation resistance-100,000 megohms is typical.
Operating temperature-units operate to $125^{\circ} \mathrm{C}$.
Sub-miniature size-a Hopkins .1 mfd capacitor rated at 200 volts is only $5 / 32^{\prime \prime}$ thick $\times 7 / 32^{\prime \prime}$ wide $\times 3 / 4^{\prime \prime}$ long.
Construction. These units have copperweld leads for maximum vibration resistance... are built with the highest quality materials available, and produced under rigid quality control.
Available as film-wrapped types, and in all case styles in hermetically sealed brass tubes and bathtubs. Rated .005 to 8 mfds ., 200 to 600 VDC. Prompt deliveries. Send for catalog C-103A.

- DuPont Trade Name

$$
12900 \text { Foothill Blvd., San Fernando. Calif. . Tel. EMpire 1.8691 }
$$ CIRCLE 177 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 14, 1960

Heinemann can give you any set delay from a quarter-second wink to a two-minute yawn, all wrapped up in a relay no bigger than a healthy ice cube. Called the Type A Silic-O-Netic Relay, this three-ounce time-delay unit offers S.P.D.T. or D.P.D.T. switching, with up to three amps' contact capacity. All of which is pretty good, but the real clincher is the continuous-duty coil. It permits the relay to be energized continuously, to serve as a load relay, too. This eliminates the need for auxiliary lock-in circuits. Result: substantial savings in space, wire, solder-and dollars. Bulletin 5003 gives detailed specifications; a copy is yours, of course, for the asking.
heinemann electric company

SPECIAL BOOK PREVIEW

System Applications of Ferrite Devices

by
Dr．Ronald F．Soohoo

This material is taken from the concluding chapter in Mr．Soo－ hoo＇s recently published book＂Theory and Application of Ferrites＂ （Prentice－Hall，Inc．，$\$ 12.00$ ）．One of the first in the ferrite field to include both theoretical and practical design information，it was written while the author was with Lincoln Laboratories，Lexing－ ton，Mass．He is currently Director of Research Analysis，Cascade Research Corp．，Los Gatos，Calif．

The chapter selected discusses the use of ferrite devices in micro－ wave systems to perform such functions as isolating power sources from the load，switching a source from one antenna to another，etc． The theoretical and practical design aspects of these devices－ circulators，modulators，phase shifters，and others－are discussed in earlier chapters．

Of general，as well as specific interest，this chapter illustrates both the book＇s content and method of presentation．（For a more complete review of the text，see p 166．）

1．Use of Isolators in Microwave Systems

1a．To Isolate Source from Load Reflections． Isolators can be used to improve klystron and magnetron stability．In the case of a klystron，its frequency of oscillation is affected by reflection from the load in a phenomenon known as fre－ quency pulling．Thus，if an antenna fed by a klystron were scanning the sky，the impedance seen by the antenna might be a function of its orientation．Some means of isolation must be provided if the impedance change is not to af－ fect the frequency of oscillation of the klystron source．Conventionally，an attenuator（ -6 db ）is placed between the klystron and load to absorb the energy reflected from the load．However，the conventional attenuator，being bilateral，equally attenuates the power traveling from the klystron to the load，as well．If an isolator is used in place of the attenuator，then the power loss can be made small in the oscillator－to－load（forward）
direction，and yet the attenuation in the load－to－ oscillator（reverse）direction will be large．This is accomplished hy proper orientation of the iso－ lator．
To demonstrate the power gain obtained in replacing an attenuator by an isolator，let us consider the following typical example：In Fig． la，the power transmitted to the load P_{2} is re－ duced to 25 per cent（ -6 db ）of the output value from the klystron P_{1} by insertion of the attenu－ ator．Any reffections from the load are reduced by another 6 db or to 6.25 per cent of P_{1} ．On the other hand，the power P_{2} ，reaching the load in Fig． 1 b is 93.3 per cent $(-0.3 \mathrm{db})$ that of P_{1} at the output of the klystron，owing to the insertion of the isolator．Any reflection from the load would be attenuated another 11.7 db ，or a total of 12 db ．It is noted that the attenuation of the signal through the attenuator to the load and back is also 12 db ．Thus，as far as the effect of the load mismatch is concerned，the klystrons of

Figs．la and 1 b will be equally stable．If＂ were to define a figure of merit called transm sion efficiency of the attenuator or isolator as：

$$
\eta_{T}=\frac{P_{2}}{P_{1}} \text { or } \frac{P_{2}^{\prime}}{P_{1}}
$$

we would find that $I_{t}=25$ per cent for the at tenuator and 93.3 per cent for the isolator，fo equal klystron stability．
Thus，to achieve the same stability，one hall the sum of the forward and reverse attenuation of an isolator should equal the attenuation of the attenuator in either direction of propagation．

In a similar manner，the isolator can be used eliminate long line effects，present where antem nas are located far from the source，and whid are particularly detrimental to magnetron opera tion．Since the use of an isolator greatly reduce the mismatch seen by the magnetron，it elinm nates the tendency of a magnetron to lock a some frequencies or to fail to operate at others
(a)

(

Fig. 1. Load isolation using attenuator and isolator.

Fig. 2. Use of isolators in isolating sub-systems.
Pulsed magnetrons with mismatched loads may also transmit pulses of more than one frequency. ${ }^{1}$
The variation of impedance Z_{i}, seen by the magnetron, due to a load Z_{L} at the end of a long line of length I may be seen from the following equation."

$$
\begin{equation*}
Z_{i}=Z_{0} \frac{Z_{L} \cos \beta l+j Z_{0} \sin \beta l}{Z_{0} \cos \beta l+j Z_{L} \sin \beta l} \tag{2}
\end{equation*}
$$

Since:

$$
\begin{equation*}
\beta=\frac{2 \pi}{\lambda_{g}}=\frac{2 \pi f}{c} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \tag{3}
\end{equation*}
$$

where β and λ_{y} are the phase constant and the guide wavelength, respectively. It is clearly seen that Z_{i} of Eq. 2 is a function of frequency f. The width of the frequency spectrum of a pulsed magnetron is not necessarily constant. when magnetrons are operated into a long line with a mismatched load, the frequency spectrum may tend to broaden and to vary for different pulses. A closer approach to the theoretical spectrum is obtained where an isolator is used.
lb. To Isolate Subsystems. The klystron in subsystem A, Fig. 2, is isolated from that in subsystem B for any signal coming from B to the klystron in A. Such a signal is attenuated by an annount equal to the sum of the forward attenuation of the isolator in subsystem B and the reverse attenuation of the isolator in subsystem A. Thus, not only is the load isolated from the klvstrons in subsystems A and B, but the klystrons in subsystems A and B are themselves isolated from each other.
2. Use of Modulators and Phase Shifters

2a. Amplitude Modulation. The attenuation ot a resonance isolator in the reverse direction

Magnetic tapes of "Mylar" insure reliability of recording and playback

The difficulty of duplicating test conditions means that much of the information on your magnetic tapes could not be replaced at any price. Tapes of "Mylar"* polyester film protect your investment in valuable recorded data. Their small additional cost is negligible compared with the cost of the data they contain. Here's why they provide higher reliability than any other tapes.

CHART NO. 1

Less track

displacement.

Because "Mylar" is virtually unaffected by changes in temperature or humidity, tapes do not shrink or
swell to cause shifting of tracks. Chart 1 compares lateral shifting of track due to dimensional change of "Mylar" and cellulose acetate. Tapes of "Mylar" minimize possibility of garbled or weak signals caused by track displacement.

CHART NO. 2

CUPPING

Test per MIL-T-21029 (Ships) Section 4.4.6, Average degree of cupping: 1.5 mil Cellulose Acetate- 15.9° (Range: 12.0° to 33.5°) $\quad 1.5$ mil "Mylar" -1.5°

Fewer signal dropouts.

Chart 2 compares "Mylar" with cellulose acetate in cupping due to temperature and humidity change. Insignificant change in "Mylar" minimizes possibility of signal dropout caused by loss of total contact with the recording or playback head.

Less tape breakage.

Since most breaksstart as edge nicks, the high initial tear strength of "Mylar" reduces chance of breakage
and subsequent failure to record critical information. Chart 3 compares initial tear strength of "Mylar" and acetate. In addition, "Mylar" polyester film has the highest tensile strength of any instrumentation-tape base. And "Mylar" does not lose its toughness with age, repeated playbacks or storage because it has no plasticizer to dry out.

CHART NO. 3

The superiority of "Mylar" can make an important contribution to the reliability of your magnetic-tape system. Ask your magnetic-tape supplier to recommend the specific tape of "Mylar" for your needs.

Beller Things for Betler living . . . through Chemistry

DU PONT
 MYIAR

- Du Pont's repistered trademark for its polyester film

E. I. du Pont de Nemours \& Co. (Inc

Film Department, Room 13, Wilmington 98, Delaware

Please send free, 12 -page booklet of comparative test data to help me evaluate magnetic tape reliability.
Name
Position
Company
Position
Addres
City
Zone__State
CIRCLE 179 ON READER-SERVICE CARD

micou
 a synonym for quality, stability, and dependability in CRYSTALS and CRYSTAL FILTERS

CRYTAL UNTS
The crystals that made the name of MeCoy a synonym for quality. Metal
encased, the $M-1, M-4$, and $M-5$ are encased, the M-1, M-4, and M-5 are
available in frequencies from 500.0 kc to 200.000 mc .

HC.18/U type. Meet new CR.73/U and CR.74/U specs. Available 5000 kc to 200.0 mc .

SUB-MINIATURE CRYSTAL UNITS

Fill the need for miniature crystals from
1.0 mc to 200.0 mc . Meet specs MIL-C. 30988 and ARINC No. 401

Shown Actual Size

CRYSTAL FILTERS

Band pass types from 1.0 mc to 30.0 mc center frequency with 6 db band widths of 0.01% to 4.0% of center frequency. Single side band types from 1.0 mc to 20.0 me frequency with 3 db bandwidths from 1.0 kc to 10.0 kc .

SPECIAL BOOK PREVIEW

can be varied by sweeping the dc magnetic field in the vicinity of ferromagnetic resonance. In this way, the amplitude of a cw (continuous-wave) signal may be varied as a prescribed function of time.

Similarly, a Faraday rotator may be used for amplitude modulation. The variation of the magnetic field biasing the ferrite varies the amount of rotation θ. Since the output of a Faraday rotator is usually joined to a rectangular waveguide, the amplitude of the transmitted signal is

$$
\boldsymbol{E}_{\boldsymbol{T}}=\boldsymbol{E}_{m} \cos \theta
$$

where $\vartheta=0$ represents the direction parallel to the narrow dimensions of the rectangular guide.
2b. Frequency and Phase Modulation. Since the phase velocity in a ferrite medium is a function of magnetic field bias at a fixed frequency, the phase shift of a ferrite-containing section can be varied by changing the magnetic field bias. Depending upon whether quarter-wave plates are used in the longitudinal-field type phase shifter, nonreciprocal or reciprocal phase modulation may be achieved. In the rectangular guide case, a ferrite slab, only if located at the center between side walls, gives a reciprocal phase shift.
To demonstrate the phase constant depend ence on magnetic field, let us consider the infinite medium magnetized in the direction of propagation. The permeability for the two directions of propagation are $\mu \pm K$. Thus:

$$
\begin{align*}
\beta_{ \pm} & =\frac{1}{\sqrt{\mu_{ \pm} \epsilon_{f} \mu_{0}}}=\frac{1}{\sqrt{\mu_{0} \epsilon_{j}\left(\mu \pm K^{\prime}\right)}} \tag{5}\\
& =\frac{1}{\sqrt{\epsilon\left(1+\frac{\gamma_{c} \mid M_{0}}{\mid \gamma_{\epsilon} H_{0} \mp \omega}\right)}}
\end{align*}
$$

$\beta \pm$, or the phase shift per unit length, is a function of applied field.
Frequency or phase modulation can also be accomplished by using a phase shifter. Letting the electric field be $\boldsymbol{E}_{m} \sin (\omega t+\phi)$ in which $\psi=m_{p} \sin \omega_{m} t$, we have:

$\boldsymbol{E}=E_{m} \sin \left(\omega t+m_{p} \sin \omega_{m} t\right)$

(6)

Expansion of Eq. 6 gives the (1) carrier component as well as $\omega \pm n \omega_{m}$, sideband components The amplitude of the carrier and the sidebands are determined by the maximum phase shift m_{p}.
3. Use of Circulators in Microwave Systems

3a. For Antenna Suitching. Consider the schematic diagram of a four-port circulator as shown in Fig. 3. As explained in Chapter 12, when the magnetic field is in one direction, the

FOR PERMANENCE LIKE THE CENSUS RECORDS

Only metallic computer tape assures the resistance to stretching or distortion under heat and the complete non-absorption of water necessary to preserve important data like the U. S. census indefinitely under varying environmental conditions.
And Somers Thin Strip tape provides:

1) optimum accuracy of recording and reproducing with controlled micro finish.
2) processing economy with coils of $.001^{\prime \prime}$ metal up to 14,000 feet long without joining.
For computer tape and all Thin Strip requirements make Somers your permanent source of supply. Write for Confidential analysis of your applica-tion-no charge or obligation.

FOR EXACTING STANDARDS ONIY

Somers Brass Company, Inc 116 baldwin ave., waterbury, conn. CIRCLE 181 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 14, 1960

with SELF-TUNING

Self-tuning Autosonic cleaners by Powertron clean faster, better and cheaper because they: Eliminate operator training and monitoring; Release labor for other work; Reduce rejects; Save on solvents.

HERE'S HOW IT'S DONE

The Autosonic is electronically selftuned by its exclusive feedback transducer and requires no tuning knobs or meters. A simple switch is the only control.
Only Autosonic cleaners give you consistent peak performance cleaning regardless of load, solution level or temperature, contamination or operator inattention.
Powertron's complete line of Autosonic generators, tanks, cabinet models, degreasers and immersible transducers is immediately available from stock. Ask for free demonstration by Sales Engineer.

- Case Histories on File.

WRITE FOR FREE BULLETIN 60.1 "HOW TO CLEAN ULTRASONICALLY WITH SELF TUNing'

POWERTRON

 ULTRABONICS CORP. DEPT. ED-9fatterson place oroosevelt field
(ARDEN CITY, L.I., NEW YORK - PIONEER 1-3220
CIRCLE 182 ON READER-SERVICE CARD

Fig. 3. Switching of antennas using circulator.

Fig. 4. Magnetic tuning of the resonance frequency of a fer-rite-loaded cavity.
phase relations are such that the circulation is clockwise, as indicated by path A. Thus, the oscillator output is fed into antenna 1. If the direction of the magnetic field is reversed, the phase relations are such that the circulation path is now counterclockwise, as indicated by path B. Consequently, the output of the oscillator will be radiated out of antenna 2. Therefore, by merely changing the direction of an applied magnetic field, the oscillator can be made to feed into either one antenna or another.
It may be noted that signals received from antennas 1 and 2 both would travel to the receiver by way of paths A and B, respectively. Thus, the circulator scheme enables antennas 1 and 2 to perform both transmitting and receiving functions. Without the circulator, a tr tube would have to be used for a single antenna to perform both transmitting and receiving functions.
3b. For Source and Antenna Isolation. As shown in Fig. 3, for path A, signals received from antenna 1 will go to the receiver, and in the ideal case the oscillator is completely isolated from antenna 1. The same can be said of the isolation between the oscillator and antenna 2 in path B. However, to accomplish perfect isolation between antenna and oscillator, the phase relations in the circulator must be exactly correct so that the waves coming from the antenna via different paths will interfere destructively at the oscillator terminal. Over a band of frequency, this condition is not, in general, attainable, and the isolation ratio remains finite.
One feature of the antenna switching scheme of Fig. 3 should be mentioned. While the oscillator energy is fed to antenna 1 via path A, any signal received from antenna 2 will travel toward the oscillator (of course, via path A). This may cause frequency pulling in the oscillator and thus may be objectionable.

4. Other Applications

4a. Magnetic Tuning of Cavities. The resonance frequency of a ferrite-loaded cavity may be changed by changing the magnetic field applied to the ferrite. This effect ${ }^{3,4}$ may be utilized
 final break-thru increased the armature drive over 50 times.

Now in production and available from stock are two new models.

TYPE 40 ... Interchangeable with earlier TYPE 20 except for 10° increase in phase lag and improved resistance to environmental shock and vibration.

TYPE 40-V ... For applications with extreme environmental shock and vibration. Driving coil current 35 MA @ 6 volts.
-Potents Ponding

AFFORD US THE OPPORTUNITY

to Prove we manufacture
NOT ONLY THE SMALEST CHOPPER
BUT NOW THE BEST IN ALL RESPETTS.

3527 WEST ROSEDALE
FORT WORTM 7, TEXAS

Less Than
1 Microvolt Noise Level

Elimination of Junction and
Contact Thermal E.M.F.'s.

Resistance To Shock
and Vibration

Long Life

because only the $330-\mathrm{M}$ is continuously variable from 0.2 cps to 20 kc !

Now you can cover the complete frequency range from sub-audio through audio with one convenient variable electronic filter! Its bandwidth covers the most widely used frequencies in circuitry design, testing, measurement and research. The $330-\mathrm{M}$ can replace in a $17^{\prime \prime \prime} \times 8^{\prime \prime} \times 12^{\prime \prime}$ size - banks of fixed filters, and massive inductors and capacitors.

More than this most frequently used bandwidth, the $330-\mathrm{M}$ bandpass filter offers rapid attenuation beyond the cut-offs. Unwanted signals are attenuated up to 80 db , and maximum attenuation is maintained at all frequencies beyond cut-off. Low cut-off, high cut-off maintained at all frequencies beyond cut-off. Lowle. cut-oft, high cut-of and center rrequency are all continuously variable. Cut-off requency dials are single log-scale, direct reading. Band switches give frequency ranges in five decades. Attenuation is 24 db per octave outside
the pass-band, reaching 70 db in less than three octaves. Signal-tothe pass-band, reaching 70 db in
noise ratio is greater than 80 db .

Write for full information on this wide-band, light-weight bandpass filter. Its convenient coverage of low frequencies through audio, and direct reading, continuously variable cut-offs give you real workload flexibility. Other Krohn-Hite band-pass filters include Models $330-\mathrm{A}$ (0.02 to $2,000 \mathrm{cps}$), $310-\mathrm{AB}$ (20 to $200,000 \mathrm{cps}$); and rejection filters as well. Also, Krohn-Hite Oscillators, Amplifiers and Power Supplies.

KROHN-HITE CORPORATION
580 Massachusetts Avenue - Cambridge 39, Mass.
Pioneering in Quality Electronic Instruments

SPECIAL BOOK PREVIEW

Fig. 5. Crossguide ferrite directional coupler.
for frequency modulating a klystron over a considerable bandwidth, without accompanying amplitude modulation. To accomplish this usually requires that the klystron employ an external cavity and that the ferrite sample be not too small.
With the ferrite slabs located at the sidewalls of the cavity, Fig. 4, and a magnetic field applied in the \approx direction, large negative frequency shifts may be obtained for small changes in magnetic field; when the field is applied in the y direction, very large linear shifts can be obtained. With the ferrite on the bottom of the cavity and the magnetic field applied in the x direction, small linear shifts can be obtained.
4b. Ferrite Directional Couplers. ${ }^{5}$ The incident wave in the main waveguide, Fig. 5, assumed to be of the fundamental mode, produces a dielectric polarization current parallel to the axis of the post. As far as the auxiliary waveguide is concerned, it is a dielectric antenna radiating equally in both directions. Thus, the power transfer from the main to the auxiliary waveguide is nondirectional.

The electron spins in the upper half of the ferrite post are made to precess about the orienting field $H_{d c}$ by the circularly polarized rf magnetic field of the incident wave. For a wave traveling from terminal II to terminal I, this precession amplitude is small. On the other hand, if an $H_{d c}$ nearly equal to the value required for ferromagnetic resonance is applied, power traveling from I to II may cause large precession. Because of spin-to-spin coupling, this precessional motion is transferred to the spins of the lower half of the post. Thus, the ferrite cylinder acts like a stack of magnetic dipoles rotating about its axis at the frequency of the rf field. For a fixed sense of rotation of these dipoles there is a corresponding fixed direction in which power in the auxiliary waveguide can propagate. This direction is from IV to III in Fig. 5. As the magnetic field value approaches that required for ferromagnetic resonance, the magnetic coupling

TABON TERMINALS

 and Insulating Sleeves

Design eliminates faulty connections ...assures uniform crimping.

Specially contoured insulating sleeve accurately guides terminal into position on male tab. Entry of male tab (outside of terminal) within the insulating sleeve is positively prevented.

Malco Terminals are available in chain form for rapid machine crimping to wire. Insulating sleeves are also machine applied

REQUEST
 BULLETIN

NO. 603

fig. 6. Ferrite-loaded band pass filter, $T E_{111}$ cavity

Fig. 7. Ferrite-loaded band elimination filter, $T E_{1,11}$ cavity mode.
hecomes predominant and the over-all coupling recomes directional.
Perturbation analysis shows that the coupling (or a very small ferrite post in decibels is:
Coupling $=-20 \log _{10}$

$$
\begin{equation*}
\left(\frac{\left.Q_{m} \pi\right)^{2}}{L^{2}} \sin ^{2} \frac{\pi d_{0}}{L} \frac{x-K}{x-K+2}\right) \tag{7}
\end{equation*}
$$

fion theory.

tc. Ferrite Filters. ${ }^{6}$ It is evident that a tunable cavity could be used as tunable band pass and band elimination filter. The kind of filter action depends upon the geometrical configuration and thi mode used.
rig. 6 above shows a band pass filter using a $T I_{111}$ cavity mode. Since the wave is linearly polarized, it is a bilateral device. The magnetic

Moneyalone is not a true measure of an engineer's satisfaction

But you can't eat satisfaction! That's why our pay scale matches anyone's and, in many instances, is better.

However, an engineer's inward fulfillment comes from a difficult job well done, not just from counting the digits on his check. Satisfaction from whipping a problem, finding the answer, making the answer work. Call it what you will. pride, ego, or what have you, it remains the most necessary ingredient a good engineer must possess. Our engineers have it and their fine creative performances show it.

Because RCA West Coast continues its rapid expansion movement, we're looking for this kind of satisfied engineer right now. Are you one of these:

Advanced Systems Engineers, Development and Design Engineers, and Project Engineers with experience in these areas: Electronic Countermeasures, Data Processing and Computer Systems, and Missile Ground Support Systems.
For more about us and your profitable future, follow the advice in the box at right.

RCA
 WEST COAST

Call collect or write:
Mr. O. S. Knox
EMpire 4.6485
8500 Balboa Blvd.
Dept. 360.1
Van Nuys, California

RADIO CORPORATION OF AMERICA
WEST COAST MISSILE AND SURFACE RADAR DIVISION
The name you know is the place to grow!

Here's what they've done with this remarkable READALL* instrument

Several weeks ago, we used the ad you see in the picture to ask a question and give some facts. We said that the ReadALL readout instrument was about the size of a candy bar, and that it could display, store or transfer up to 64 different numbers, letters or symbols without using complicated conversion equipment and "black boxes."
We explained that the Readall instrument was originally developed for data display in flight control equipment. We described the Readall instrument as an electro-mechanical, D.C. operated, readout device for displaying characters in accordance with a pre-determined binary code . . . a compact self-contained device . . . which can be applied to the output of digital computers, teletype receiving equipment, telemetering systems, or wherever data must be displayed. And we wound up by asking about new applications for our Readall instrument. Here are some of the answers to our question:

1. A leading aircraft corporation is using Readall instruments in a visual intercom system in patrol aircraft that's connected with anti-submarine warfare.
2. Another company uses Readall instruments in ground checkout equipment for a new Air Force bomber.
3. An oil company uses these readout instruments in a data reduction system that converts magnetic tape seismographic data to printed digital data and graphic chart strips.
4. A missile manufacturer uses Readall instruments in an automated "Missile Skin" milling machine.
5. These readout devices are being applied in nuclear reactor work for remote control and indication of rod position.
6. Readall instruments are now used in an electric power station monitoring system in Philadelphia.
7. Readall instruments are being used in display boards for the Air Defense Headquarters.
8. Another aircraft manufacturer uses Readall instruments in a flight simulator.
9. A branch of the military designed the Readall instruments into an airborne bomb-direction computer.
10. An aircraft systems manufacturer uses Readall instruments for display and print-out of data with a computer in a high altitude weather reconnaissance project.

We would be happy to tell you more about the Readall and its applications.
We would be happy to hear from you about possible applications. Please write to us at the address below.

"Pioneers in Chut-Button Science"

UNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY -

PITTSBURGH 18. PENNSYLVANIA
CIRCLE 186 ON READER-SERVICE CARD

SPECIAL BOOK PREVIEW

Frequency (kilomegacycles/sec)
Fig. 8. Ferrite resonance absorption curve showing application to receiver image reection.
field may be changed to change the resonance frequency.
At the resonance frequency of the cavity shown in Fig. 7, the cavity reflects and therefore acts as a band elimination filter. The filter uses the $T E_{1111}$ mode. Again, the resonance frequency can be changed by changing the magnetic field applied to the ferrite.
Since a ferrite has a finite resonance line width, it is a band rejection filter when biased to ferromagnetic resonance. This property has been utilized 7 to reject image frequency, as shown in Fig. 8. In order to detect a microwave signal, it can be mixed in a crystal mixer with a local oscillator signal whose frequency is lower than the signal frequency by an amount if (intermediate frequency, whose typical value of $30 \mathrm{mc} / \mathrm{sec}$ is predetermined by the center frequency of the bandpass filter in the mixer). If there is another signal at a frequency if below the local oscillator frequency, called the image frequency, the detector will give an output also. In order to insure that the detector output is indicative of the presence of the desired signal, some means must be found to suppress the signal at the image frequency.

The device is composed of a longitudinal magnetized ferrite rod forming a section of the center conductor of a coaxial line. Again, the resonance frequency can be tuned by changing the magnetic field.

4d. Ferrite Radiators. ${ }^{8,9}$ If a ferrite slab is placed at the end of a rectangular waveguide as shown in Fig. 9, there will be radiation out through the ferrite. The lobe pattern and orientation are functions of the applied field $H_{d c}$ and

Give your customers tubes they can trust. Give them Sonoto:le miniaturized electronic tubes. Produced under the highest quality cuntrol standards ... rig. orously tested to assure supe rior performance even under extreme conditions. In fact. Sonotone reliable tubes are being used right now in space and military vehicles. Over 150 different types available ... for commercial. entertainment and military purposes.
Sonotone, for quality tubes you can rely on.
$\prod_{\text {sonotone }}$
Electronic Apollicollions Division, Depl. T23.9 ELMSFORD, NEW YORK
 In Conades, contect At les Radio Corp., LUA., Torronto

CIRCLE 187 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 14, 1960

a measure of perfection... IDEAL PRECISION

Panel Meters
the complete line for every application

Here's the demand line that's setting sales records across the nation \therefore engineered and produced to the highest standards... assembled in controlled atmospheric and climatic conditions. of highest quality and dependability.

- Accurate to within $\mathbf{2 \%}$ of full scale
- All sizes and fypes available
- Scales to customers specifications
for complete information, write to

IDEAL

IDEAL PRECISION METER CO., INC
214 Franklin Street, Brooklyn 22, N. Y. Sold to Electronic Parts Distributors exclusivoly through

WALDOM

WALDOM ELECTRONICS, INC.
1625 W. 53rd Street, Chicage 32, ill. CIRCLE 188 ON READER-SERVICE CARD

Fig. 9. Ferrite radiator. 0 is measured in y-x plane. can therefore be varied with it. A similar situation occurs when an axial field is applied to a ferrite rod protruding from an open circular guide.

4e. Traveling-Wave Tube Attenuators. ${ }^{10,11}$ In a traveling wave amplifier, the reflections of the waves from the output of the tube may cause undesirable oscillations. Conventionally, an attenuator is placed somewhere along the propagating helix to attenuate the reflections. Other things being fixed, this reciprocal attenuation reduces the gain of the amplifier. If we investigate the magnetic field configuration near the helix, we find that it is nearly circularly polarized in the $r-\vartheta$ plane and elliptically polarized in the r - \sim plane. Thus, if ferrite slabs were placed near the helix and axially magnetized, or if a ferrite ring were placed around the helix and circumferentially magnetized, non-reciprocal attenuation would be obtained. The ferrite will then greatly attenuate the reflected wave to avoid oscillations without a consequent decrease in gain of the traveling wave amplifier. - ©

Reforences

1. W. L. Pritchard, "Long-Line Effects and Pulsed Magnetrons," Trans. IRE on Microwave Theory and Techniques, MTT-4, No. 2 (April, 1956) p 97.
2. S. Ramo and J. R. Whinnery, Ficlds and Waves in Modern Radio. (lst ed.) New York: John Wiley \& Sons, Inc. (1944) p 35.
3. G. R. Jones, J. C. Cacheris and C. A. Morrison, "Magnetic Tuning of Resonant Cavities and Wide-band Frequency Modulation of Klystrons," Proc. IRE, 44 (Oct. 1956) p 1431.
4. C. E. Fay, "Ferrite-Tuned Resonant Cavities," Proc. IRE, 44 (Oct. 1956) p 1446.
5. A. D. Berk and E. Strumwasser, "Ferrite Directional Couplers," Proc. IRE, 44 (Oct. 1956) p 1439.
6. C. E. Nelson, "Ferrite-Tunable Microwave Cavities and the Introduction of a New Reflectionless, Tunable Microwave Filter," Proc. IRE, 44 (Oct. 1956) p 1449. 7. J. H. Burgess, "Ferrite-Tunable Filter for Use in S Band," Proc. IRE, 44 (Oct. 1956) p 1460.
7. D. J. Angelakos and M. M. Korman, "Radiation from Ferrite-Filled Apertures," Proc. IRE, 44 (Oct. 1956) p 1463.
8. G. Tyras and G. Held, "Radiation from a Rectangular Waveguide Filled with Ferrite," Trans. IRE on Microwate Theory and Techniques, MTT-6, No. 3, (July 1958) 1) 268.
9. J. S. Cook, R. Kompfner and H. Suhl, "Nonreciprocal Luss in T-W-T Using Ferrite Attenuaturs," Proc. IRE, 42, No. 3 (March, 1954) p 1188.
10. J. A. Rich and S. E. Weher, "Ferrite Attenuators in Helixes," Proc. IRE, 43, No. 1 (January, 1955) p 100.

as easy as

falling off a log

It's entirely possible that sensitive relays frustrate you, perhaps almost as much as they do us. Even the world's finest (applicable Sigma types on request) occasionally demonstrate Flagle's Law of the Perversity of Inanimate Objects, by performing in a totally unexpected manner for reasons that are either obscure or completely mysterious.

Frequently we have found that such problems can be anticipated and thereby overcome by a ridiculously simple dodge. Con-ider the relay as three devices: (a) a motor, (b) a switch, and (c) something that may have to work extra fast, extra certainly or extra something else amid the 100 g 's, heat, dust, blood, sweat and 100 hours of salt spray tears present in both birds and barroom juke boxes.

With the problem thus neatly parceled out, you then consider whether you have an on-off, sliding current or single pulse signal for the "motor" to respond to; a resistive, inductive, horsepower or dry circuit load to hang across the switch, and for how long and how often this load will want to be turned on or off; and what sort of surroundings the relay will actually have, and whether all the tax-
payers or just one 25 \& customer will suffer if the relay doesn't operate. There are other considerations such as size and cost, which you'll have to face eventually, but it's usually best to get a, b and c straightened out first.
If it turns out that the motor, switch and environmental immunities you have to have just don't exist in a single relay, either you'll have to change something or use more than one relay - or talk somebody into building you a special relay. You can do one other thing: call up one of Sigma's application engineers and tell him your troubles.
He has all sorts of answers, is anxious to have you buy some relays (Sigma) that will work for you, and has the advantage of doing nothing but wrestling with application problems all day long. You'll have to answer a lot of questions, but that's part of the game. We can also send you technical dope sheets on various application considerations, if you'll tell us what you particularly want to know. It's surprising how well even a relay will behave, once it's applied with your eyes open. This is one important aspect of reliability that may be lost in the statistical jungle.

SICMA

SIGMA INSTRUMENTS, INC. 91 Pearl Street, So. Braintree 85, Mass. CIRCLE 189 ON READER-SERVICE CARD

The nervous system of this she,
submarine detecting set gets surgical attention at SingerBridgeport. Capability in electro-mechanical assembly and precision machining is now being demonstrated in a range of military and industrial projects at this fast growing facility.
To meet critical prime and subcontract production requirements, Singer-Bridgeport offers both engineering capability and unexcelled facilities. Test and quality control equipment encompass environmental, acceleration, vibration, shock temperature, altitude humidity and salt spray in simulation of extreme adverse operating conditions.
These extensive facilities for enginecring, test and production are described in a comprchensive brochure. It is yours for the asking.

SINGER-BRIDGEPORT
a division of the singer manufacturing company
915 Pembroke Streetr Bridgeport b, Conn.

Bridgeport 8, Conn.

CIRCLE 190 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS J. George Adashko

Designing Phase-Sensitive Transistor Circuits

S EVERAL practical circuits using semiconducStor diodes and transistors in phase-sensitive configurations are presented, together with their design equations. Using these equations, the circuits were built and then tested in such devices as signal and relay-feeding amplifiers, phasesensitive scalers, and driving amplifiers for reversing motors.

Single-Ended Phase-Sensitive
 Vacuum Tube Analog

The schematic of Fig. 1 is an analog of a phase-sensitive vacuum tube circuit. Here, the vacuum tube is replaced by a transistor-diode combination, with the diode's polarity opposite that of the collector junctions. It is similar to the vacuum tube circuit because during one half cycle of the supply voltage no load current flows. Current pulses fed to the load can be smoothed by shunting the load with a capacitor.
With the diode included, the output voltage is directly proportional to the input signal. The

Fig. 1. Single-ended phase-sensitive circuit.

Fig. 2. Push-pull phase-sensitive circuit.

TANTALUM WET SLUG

ELECTROLYTIC

 CAPACITORS... highest capacity-voltage values-low cost

Sintered tantalum anode. Silver case cathode. Insulated encasement printed with capacity, voltage and polarity. Smallest sizes and non-standards are color-coded.

- Operating temperatures from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Voltage range, 4 to 50 WVDC
- Capacity range 0.47 UF to 560 UF
- Insulated encasement

Now used in mobile radios, computers, hearing aids, control and communication equipment. Lower cost than other tantalum electrolytics. Write for bulletin 2661. (For information on iei tantalum and aluminum foil electrolytics, request bulletins 2625 and 2641).
International Electronic Industries, Inc. Box 9036-T, Nashville, Tennessee

where reliability replaces probability CIRCLE 191 ON READER-SERVICE CARD

We Can Make
Precision Ceramic-toMetal Assemblies for Your Stock or Special Requirements

On your right is a specialized ceramic-to-metal assembly that we make in small quantity.

On your left are some of our stock terminal insulators. They are made in large runs for economical, off-the-shelf delivery

Coors furnishes either metalized ceramic parts ready for brazing by the customer, or complete ceramic-to-metal assemblies in sizes up to $10^{\prime \prime}$ OD by $12^{\prime \prime}$ length.

If you need ceramic-to-metal assemblies, in quantity or prototype, get in touch with us here in Golden, contact the Coors regional sales manager nearest you, or write for new bulletin.

REGIONAI SALES MANAGERS
 Midwest...............................ohn E. Marozeck Central..Donald Dobbins East Coast.................................... Mon J. McManus Vew Englund...................Warren G. McDonald §outhwestKenneth R. Lundy uuthwest.............................illiam H. Ramsey

Coois
Almmina Ceramics
COORS PORCELAIN COMPANY 600 NINTH ST., GOLDEN, COLORADO
diode also reduces the gain of the circuit and the voltage drop across the load. However, at the same time it reduces, by a factor of approximately 3, the power consumed and dissipaterl by the transistor. This is an important consideration for high-power phase-sensitive stages.
For this circuit, the following equations ho'd.

- Current gain:

$$
k_{i d e}=\frac{k_{i}}{\pi}
$$

- Direct load current component:

$$
\begin{equation*}
I_{L}=\frac{I_{b} k_{i}}{2 \pi}(\cos \phi-1) \tag{2}
\end{equation*}
$$

where Φ varies from () to π.

- Effect of the phase shift on the direct load current component:

$$
\begin{equation*}
M=\frac{k_{i} \cdot I_{b m}}{2 \pi} \sin \phi \tag{3}
\end{equation*}
$$

- Power gain

$$
k_{p}=\frac{k_{i}^{2} \cdot R_{L}}{\pi \cdot R_{i n n}} .
$$

- Input resistance:

$$
\begin{equation*}
R_{i n f}=r_{b}+r_{e} \frac{k_{i}}{\pi} ; \tag{5}
\end{equation*}
$$

since:

$$
\begin{equation*}
r_{b} \approx r_{r} \cdot k_{i}, \quad \text { and } \quad R_{i n f} \approx \frac{2}{3} R_{i n} \tag{6}
\end{equation*}
$$

- Efficiency:

$$
\begin{equation*}
\eta=\frac{U_{o m}-U_{e f}}{U_{u m}} \tag{7}
\end{equation*}
$$

Phase-Sensitive Push-Pull Circuit
A push-pull half-wave phase-sensitive circuit, Fig. 2, is often used in phase discriminators and relay drivers. For power stages, diodes D_{1} and D_{2} can be added to the collector circuits. The sign of the dc voltage at the output depends

Fig. 3. $\mathrm{De}-$ pendence of the dc load voltage of a push-pull phase sensitive circuit on the signal, for different (but constant' emitter - base voltages $U_{t b}$.

*ALLOYIST-Our own almost-Websterial word, meaning: a single reliable source for strip, rod, wire and flat wire to serve your every need.
*ALLOYIST-A single, reliable source for nickel, nickel silver, cupro nickel, stainless steel, phosphor bronze, Monel** and Inconel**.
*ALLOYIST-A supplier of metals whose manufacturing processes are often exclusive, and always the most advanced, to insure total product superiority.
Put the Alloyist on your Design Staff, Purchasing Staff and Production Staff. We know of only one fully qualified Alloyist . . . RiversideAlloy Metal. Write today for complete information. Riverside-Alloy Metal Division, H. K. Porter Company, Inc., Riverside, N.J.
${ }^{\text {- }}$ Trademark of the International Nickel Co.. Inc.

RIVERSIDE-ALLOY

METAL DIVISION

H.K.PORTER COMPANY,INC.

ORRTER SERVES INDUSTRY with steel, rubber and Iriction products, asbestos textiles, high voltage electrical equipment, electrical wire and cable, wiring systems, motors, fans, blowers, specialty alloys, paints, refractories, tools, forgings and pipe fittings, roll tormings and stampings, wire rope and strand.

New Versatility...
Compactness...Low Cost...:

Here is the traditional reliability of instrument-type switches... with a great variety of electrical and mechanical features . . . in a compact design that measures only $13 / 4^{\prime \prime}$ square by $1^{\prime \prime}$ for the first deck, $9 / 16^{\prime \prime}$ for each additional deck.
Readily tailored for almost any application. Shallcross MINIATURE
DUAL SHAFTS: Up to 8 decks may be ganged. $1 / 8 /{ }^{\prime \prime}$ dia. inner shaft may control up to 4 decks or other devices-rheostats, pots, condensers, etc.

SPRING RETURN. 1. or 2-way actions. Up to 8 positions each side of rest position. Up to 4 decks, shorting or non-shorting.

CLUSTER ARM: Up to 32 fingers. May be ganged with standard decks. SWITCHES handle not only r-f, plate and filament currents, but also 60- and 400 -cycle power and metering circuits, maintaining a contact resistance of only 0.002 ohms for a minimum of $\mathbf{1 0 . 0 0 0}$ operations.
The basic design has silver alloy, multi-leaf wiper arms and button contacts with 1 to 32 positions per pole, 1 to 4 poles per deck, 1 to 19 decks, shorting or non-shorting action. Nylon bushings, alkyd rotors and glass-epoxy stators provide superior strength, wear, insulation, temperature and moisture characteristics.
Shallcross' unique semi-automatic assembly using stock parts insures quick delivery of the exact switches for your requirements. Complete details on this important new switch series will gladly be sent on request by Shallcross Manufacturing Co., Selma, North Carolina.

Shalleross

CIRCLE 194 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

upon the phase ratio of the input and supply voltages.

With the polarity of the input signal and the supply voltage as shown in Fig. 2. the direct current through transistor T_{1} will be amplified, while that through the other transistor will decrease. In the absence of an input signal, the collector currents of both transistors are equal and opposite, and consequently the output voltage will be zero.

The voltage $U_{6, t}$ is used to set the initial values of the collector currents of both transistors. The absolute values of the half voltage of the signal and the voltage ${ }^{1}{ }_{r, 1, m}$ should be related as follows:

$$
\begin{equation*}
\left|\frac{U_{t}}{2}\right| \leqslant\left|U_{\text {dom }}\right| \tag{8}
\end{equation*}
$$

Load current is given by:

$$
\begin{equation*}
I_{L}=\frac{U_{c m}-U_{c f}}{\pi R_{L}}+\frac{I_{b} K_{i}}{2 \pi}(\cos \phi-1) \tag{8a}
\end{equation*}
$$

The following equations also hold for the cir cuit:

When $\phi=0$

- Dc output voltage

$$
\begin{equation*}
U_{d c}=I_{L} \cdot R_{L_{\mathrm{I}}}-I_{L_{\mathrm{II}}} \cdot R_{L_{\mathrm{II}}} \tag{9}
\end{equation*}
$$

- Direct load current component

$$
\begin{equation*}
I_{L_{\mathrm{I}}}=\frac{U_{c m}-U_{c f}}{\pi R_{L}} \tag{10}
\end{equation*}
$$

Note that usually:

$$
\begin{equation*}
R_{L_{1}}=R_{L_{11}}=R_{L} \tag{11}
\end{equation*}
$$

When $\phi=\pi$

- Dc output voltage

$$
\begin{equation*}
U_{d e}=\frac{k_{i} \cdot I_{b m} \cdot R_{L}}{\pi} \tag{12}
\end{equation*}
$$

- Direct load current component

$$
I_{L_{\mathrm{II}}}=\frac{U_{c m}-U_{c f}}{\pi \cdot R_{L}}-\frac{k_{i} \cdot I_{b m}}{\pi}
$$

Fig. 4. Phase-sensitive circuit feeds load through twin transformers.

WILLIAMSGRIP single circuit quick disconnect

Williamsgrip electrical connectors provide quick connect and dis. connect with a flick of the wrist plus full positive connection insuring maximum conductivity without the use of springs, slip joints or friction methods.
The patented Williamsgrip construction and special thread design prevents slippage and corrosion, resulting in cooler operation, greater reliability and longer life.

The self-wiping action of the connector eliminates arcing and excessive heating, and allows the connector to operate from 5° to $25^{\circ} \mathrm{F}$ cooler than the cable, even under conditions of 100 percent overload. Both connectors and adapters are constructed to withstand severe environmental conditions. and have successfully withstood temperatures over $2000^{\circ} \mathrm{F}$.

These high current. single circuit connectors covering a wide range of wire and cable sizes have proved their reliability over more than a decade of versatile, rugged service for a wide variety of requirements in the military, industrial and commercial fields.

Write today for AiResearch Product Catalog on "Electrical Connectors."

AiResearch Manufacturing Division
Los Angeles 45, California
CIRCIE 195 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 14, 1960

 other AC devices Ask about the new load-regulated amplifiers for production line testing. External sync. provides master-remote features without
sacrifice in over-all stability. Complete power systems available for your specific needs.

Ultra-stable AC Power Sources

Write for NEW 1960 Calalog [D a \triangle IS a © N

International Electronic research corporation 135 West Magnolia Boulevard, Burbank, California - VIctoria 9.2481 CIRCLE 197 ON READER-SERVICE CARD

Natvar Isoglas and Isolastane afford heavy duty equipment extro protection against frequent overloads beyond Class B rating, Isoglas consists of a glass fabric coated with an isocyanate reacted resin. Isolastane is similar except that an elastomeric resin is used. These products are outstanding in their

- Thermal stability
- resistance to crazing and cracking
- resistance to solvents, Askarel, and other non-fammable synthetic insulating liquids
- loughness and scuff resistance
- wot dielectric strength
- Aexibility af low temperafures
- fungistatic qualitios

Also available laminated with other insulating materials for slot Samples.
W
pormetir the mational varmisheo mooucts compation
 241 RANDOLPM AVENUE WOODBRIDOE, NEW JERSEY CIRCLE 198 ON READER-SERVICE CARD

CIRCLE 199 ON READER-SERVICE CARD

From audio to microwave engineers, from low power to high power engineers, the subject of new power source devices will be of universal interest. Current developments in thermoelectricity, magneto hydrodynamics and thermionics are setting the stage for radically different power systems.

In the September 28th issue of ELECTRONIC DESIGN, you'll get a special view of today's progress in power sources. You'll learn what is available, materials being used, the state of the art, and what's to come.

In the next issue of ELECTRONIC DESIGN, be sure to see part I of this II part feature report.

Microwav

THE POSITIVE column in a self-maintained gas discharge is a source of noise that, at frequencies above 1 kmc , is superior to noise diodes. At high frequencies, the latter not only exhibit a reduction in shot noise caused by transit time effects, but they also present broadband matching problems.
The electron temperature in a gas discharge depends only slightly on the pressure-distance product $p \cdot r$, once this product exceedis a certain value, Fig. 1. The high energy content of the electron gas is, at least in part, radiated with a

Fig. 1. Electron temperafure, T_{c}, of various gasses as a function of discharge pressure-distance product (1 Torr $=1 / 760$ atmosphere).

rave oise Source

rellablity

In today's complicated systems and components, abnormal noise is an indication of unreliability. Four new Quan-Tech instruments, calibrated in absolute units, remove ambiguity in the basic field of noise measurements.

WAVE AND NOISE SPECTRUM ANALYZER. Model 303: For making rapid, accurate analysis of wave and nolse spectra. Of fers selection of four constant band frequency range. A basic laboratory too for noise investigation.

LOW NOISE AMPLIFIER. Model 203 A very low noise, self-contained, miniature transistor amplifier. Features a voltage gain of 100 and a frequency
range of 30 cycles to 100 kc . In . range of 30 cycles to 100 kc . In microvolt full scale.

RESISTOR-NOISE TEST SET. Model 315: Meets recommended specifications of the National Bureau of Standards and the International Electrotechnical Commission for the measure ment of noise in resistors

Available Soon

transistor noise analyzer. Model 310: Provides simul taneous analysis of transistor noise at three frequencles. System automatically corrects for variations in transistor gain. Beta, Icbo and Iebo are also Included - providing measurements of essential transistor characteristics in on instrument.

FURTHER INFORMATION AVAILABLE
CONSULT WITH US ON YOUR NOISE PROBLEMS

CIRCLE 200 ON READER-SERVICE CARD

Flexible Shaft Coupling

 For Power Transmission

Coupling is used for the transmission of power or control of movement between parts located close together in a piece of equipment. It is not a separate type of flexible shaft but an added application.
The coupling can be composed of either mono-directional or bi-directional flexible shafting although the latter is generally used due to the added advantage of its ability to rotate both clockwise and counterclockwise. Generally used between two units a few inches apart, coupling transmits power between any two parts regardless of their relative positions.

For example, the diagram above shows an advantage in using small lengths of flexible shafting in a coupling application. Although the drive end and the driven end are not exactly in line, the coupling compensates for the difference in alignment between the two.
Many manufacturers use flexible shaft coupling even where parts may be connected by solid shafts because of the savings realized in the initial and the maintenance cost as well as in time and labor
For complete information on how flexible shaft couplings may help improve your product design, write F. W. Stewart Corporation, 4311-13 Ravenswood Avenue, Chicago 13, Illinois. CIRCLE 201 ON READER-SERVICE CARD

LABORATORY PERFORMANCE AT $1 / 2$ THE COST! HEATHKIT OP-1
$\$ 18495$

PROFESSIONAL 5^{n} DC OSCILLOSCOPE KIT (OP-1) Distinguished quality, coupled with traditional Heathkit savings, highlight the OP-1 as one of the most unusual values in the test equipment field! Designed as a professional caliber research tool, the OP-1 meets critical quality standards de manded in industrial, educational or medical applications Features include; 5ADP2 CRT; DC coupled amplifiers and CR tube unblanking. Triggered sweep circuit operates on int. or ext. signals, AC or DC coupled. Send for FREE Heathkit catalog today describing this and many other money saving kits or see your nearest Heathkit dealer.

HEATH COMPANY
Benton Harbor 60. Mich.
Please send Free Heathkir Catalog.

NOTE: Prices and spec. subiect to change without notice. Deoler and Exoo

Name

CIRCLE 202 ON READER-SERVICE CARD

The new transistorized Raytheon Noise Source can generate noise power, flat within $\pm 2 \mathrm{DB}$ over the spectrum of 30 cps to 300 Kcps , at a level of 0-10 millivolts rms into a 1,000 ohm load. Designers of missile field test equipment, noise simulators, and other laboratory and production test equipment requiring a compact, low power DC-operated noise source module, will find this new Raytheon development a versatile component. For complete data on the Raytheon Wide Band Noise Source, please write to: Raytheon, Industrial Components Div., 55 Chapel St., Newton 58, Mass.

Division

ELECTRONIC DESIGN DIGEST

of recent papers and literature

The Stable Platform: Key to Inertial Guidance

STABLE plalforms are gyro instruments which provide accurate azimuth, pitch, and roll attitude information. In addition to serving as reference elements, they are used to stabilize accelerometers, star trackers, or similar devices in space.

Essentially a cluster of gyros mounted within gimbals, the gyro outputs of the stable platform control gimbals through servo loops. Different arrangements of gimbals and gyros can produce a great variety of platform types. Discussed here is the "three-gimbal, three single-degree-of-freedom gyro" type of platform. This is then compared with a four-gimbal system.

Three-Gyro Platform Controls

Roll, Pitch and Yaw
Any gyroscope mounted in gimbals tries to maintain its position fixed in space. In an ideal, frictionless gimbal structure, the gyro has a fixed reference. In reality, frictional and accelerating torques caluse the gyro to precess, or drift. This, in effect, disturbs its spatial reference. In devices which do not have to have extreme accuracy, such as vertical or free gyros, this drift is tolerable. However, increasing flight vehicle performance demands greater and greater accuracy. Today's desired drift rates of 0.001 degree per hour for inertial systems to 0.5 degree per hour for less sophisticated navigation systems can be achieved only with stable platforms. These are designed to use the gyro as a sensor. They control a null-seeking servo loop which provides power to generate a counter-torque to the gimbals and maintain the gyro reference fixed in space.
With anxiliary power available to drive the gimbals, a cluster composed of a number of gyros can be built. In a platform using single-degree-of-freedom gyros, three such gyros are mounted together with their input axes forming a mutually ortho-
gonal triad. Associated with each gyro is a gimbal servo-system which maintains the corresponding gyro axis fixed in space.
The three-gyro triad is positioned so that the input axes correspond to the roll, pitch, and yan axes of the flight vehicle. The frame to which thr three gyros are mounted is itself mounted in a sue cession of gimbals. This frame, free to move in azimuth, is called the azimuth gimbal, and its motion is controlled by the yaw gyro. The azimuth gimbal is mounted within a gimbal called the pitch gimbal which, in turn, is mounted within gimbal identified as the roll gimbal. Relative mot tion between pitch and roll gimbals is a measurf of pitch motion. The roll gimbal is mounted in case referred to as the fixed gimbal which is fastened to the airframe. The relative angle be tween the roll gimbal and the fixed case is measure of roll motion.

Single-Axis Platform

For simplicity of discussion, a single-axis plat form is first analyzed. Since each gyro controls 2 corresponding gimbal, a three-axis platform is, iin effect, three single-axis platforms with coupline inputs. These coupling inputs, however, are not considered in the single-axis analysis.
Fig. 1 illustrates a typical single-axis platform with rate integrating gyros. Laplace operator notation is used. Consider a case where the single axis platform is subjected to a torque, T_{ν}, aboul the input axis Y, and a torque, T_{s}, about the output axis, Z. The resulting motion is described br the equations:

$$
\begin{aligned}
& T_{y}=\left(s^{2} J_{y}+s F_{\nu}\right) \alpha+s H \\
& T_{z}=\left(I s^{2}+D s\right) \beta-s H \alpha
\end{aligned}
$$

where:
$\alpha=$ angular motion about input axis
s a gimh espondi

Char , and which t d in a Sl ove in az e azimut salled th l within lative m a measu

Fig. 1. Typical single axis platform with rate integrating gyros. The block diagram is used to analyze the plafform motion.
$\beta=$ angular motion about output axis
$J_{y}=$ moment of inertia of gimbal about input axis
$l=$ moment of inertia of gyro about output axis
l) = damping coefficient of gyro about output axis
$F_{y}=$ damping coefficient of gimbal about input axis
$H=$ angular momentum of gyro rotor
If a disturbing torque T_{d} is applied to the gimbal structure and to the gyro input axis, the gyro pin axis precesses about the output axis. The recession motion generates an output signal from the gyro pickoff, which is fed to an amplifier driving a gimbal torquer. The gimbal torquer produces a counter torque to the platform. The net input torque to the gimbal axis is the difference between the disturbing torque \boldsymbol{T}_{d} and the counter loryue $T_{\text {c. }}$.

$T_{\nu}=T_{d}-T_{c}$

If the disturbing torques are removed by the ervo system so that T_{y} becomes zero, the platform will not move about its input axis.
The gimbal servo loop is usually referred to as the alignment loop. It is subject to criteria of stabill ty and response over a range of operating fre-Itl-ncies, and a typical analysis is concermed with the transfer function between the disturbing lor fue T_{d} and the input angle a, or between T_{d} and the gyro precession angle β. In actual prac-

How to compensate for temperature variation in a transistorized flip-flop

This flip-flop circuit, designed by Texas Instruments, uses sensistor ${ }^{\circledR}$ silicon resistors in the cross-coupling network to compensate for increases in h_{FE} with temperature. At $125^{\circ} \mathrm{C}$, it resolves $100 \mathrm{~m}_{\mu} \mathrm{sec}$ input pulses arriving at a 5 mc rate whereas a fixed resistor version was limited to 3.6 mc . In addition, at $+125^{\circ} \mathrm{C}$ the circuit will operate at a resolution rate greater than 5 mc if the input pulse can be greater than 10 volts when the pulse width is decreased from $100 \mathrm{~m} \mu \mathrm{sec}$.
Another advantage of sensistor silicon resistors in a flip-flop using high h_{FE} transistors is the reduction in input voltage required to trigger at high temperatures. For instance, the sensistor silicon resistor circuit requires only 10 volts to trigger whereas the fixed resistor circuit required 14 volts.

Sensistor silicon resistors are temperature-sensitive devices that feature a positive temperature coefficient of $+0.7 \%$ per ${ }^{\circ} \mathrm{C}$. This predictable rate of resistance change makes sensistor resistors ideal for temperature compensation from $-50^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ at frequencies up to 250 mc .
The sensistor silicon resistor, developed by TI, provides circuit design engineers with a lightweight temperature compensating and sensing device. Commercially available for over two years, the devices have been used successfully for bias stabilization in a-c coupled stages and in the first stages of d-c amplifiers; and have found wide application in amplifiers, power supplies, servos, telemetry, magnetic amplifiers, computer switching, and thermometry.

In addition, specify from this complete line of TI precision film resistors.

Write on company letterhead for your copy of "Transistor Bias Compensation with sensjetor silicon Resistors."

Texas
INSTRUMENTS
INCORPORATED
most ondicton-components division most office eox 312 - oallas. texas

CIRCLE 204 ON READER-SERVICE CARD

Since 1956 missile and satellite programs have depended for their success, in pari, on Rantec multiplexers and filters for telemetry... unique devices which couple two, three, four or six telemetry signals to a single antenna system. A wide variety of tunable models covers the entire telemetry band. Typical specifications on recent models include Isolation between channels to 100 db with 0.5 db insertion loss VSWR-1.3 Maximum. Rantec multiplexers, hermetically sealed and helium leak-tested for storage and long-time space use, are another example of Rantec's proven capability in ground and airborne telemetry devices.

also from Rantec .. antennas ferrite devices, waveguide components, electronic components and microwave sub-systems. CIRCLE 205 ON READER-SERVICE CARD
tice, compensation networks are required to a surf that:
(a) Adequate gain margin is allowed for un usual gain changes.
(b) Adequate phase margin is provided to min mize torque resonance between T_{c} and T_{d}
(c) The phase lead and gain characteristic limit the counter-torque $T_{\text {r }}$ above the system nat ural frequency.

Three-Axis Platform

Fig. 2 shows a three-axis stable platform. Ead of the three gimbal-alignment servo loops per forms in the manner described for the single-axis platform. In addition, however, the three-axis platform requires an azimuth coordinate resolver This is because the inner cluster is free to move relative to the gimbals and, as a result, gyro input axes are not aligned with their corresponding gimbal axes. The outputs of gyros sensing roll and pitch are fed to the azimuth coordinate resolver

Fig. 2. Three-gimbal stable plat form consists basically of three single axis systems to control roll pitch and yaw. An additionol azimuth coordinate resolver also required.

Fig. 3. Four-gim bal stable platform controls azimuth, inner ro!l, pitch and outer roli. Most of the bur. den for roll sta. bilization is on the outer roll gimbal

CIRCLE 206 ON reader-service caro ELECTRONIC DESIGN • September 14, 1960

Compatibility testing of Epoxy Magnet Wire with encapsulating materials.
Thousands of Compatibility Tests help show why-

EPOXY MAGNET WIRE HELPS SIMPLIFY DESIGN AND INVENTORY PROBLEMS

Thousands of chemical and thermal stability tests in the laboratory at temperatures above $130^{\circ} \mathrm{C}$-plus over four years of field experience-show that Anaconda Epoxy Magnet Wire is compatible with virtually every varnish, encapsulating and potting compound currently in use.

This outstanding high-temperature compatibility alone is reason enough to consider Epoxy practically an "all-around" magnet wire. But this Anaconda-developed magnet wire has outstanding dielectric strength, heat shock, adherence, and flexibility properties as well. And test results show Epoxy performs well in transformer oils and exhibits excellent resistance to attack from acids, alkalis and moisture conditions.

Anaconda Epoxy is a $130^{\circ} \mathrm{C}$ (AIEE Class B) enameled magnet wire, but it costs no more than most 105° Class A magnet wires. This means you can often thermally upgrade your components to Class B at no additional cost. It's readily available, too- in a full range of round, square and rectangular
sizes. It can also be furnished in combination with Vitrotex (glass served) for positive thermal overload protection.
You can see how Epoxy offers many interesting possibilities for cutting costs and simplifying production through standardization in many totally enclosed as well as open applications.
Our technical staff and our Research and Development Laboratory facilities are available to give you assistance in your compatibility and other magnet wire problems. See the man from Anaconda. Or write: Anaconda Wire \& Cable Company, 25 Broadway, New York 4, N. Y.

> ASK THE MAN FROM
> ANACONDA
> FOR EPOXY MAGNET WIRE

ANATHERM $155^{\circ} \mathrm{C}$ (AIEE Class F)

PLAIN ENAMEL $105^{\circ} \mathrm{C}$ (AIEE Closs A) low-cost enameled magnet wire $(\mathrm{c}$

FORMVAR $105^{\circ} \mathrm{C}$ (AIEE Class A)

ANALAC $105^{\circ} \mathrm{C}$ (AIEE Closs A)
solderable magnet wire

NEM... MINIATURE RETRACTABLE PANEL FASTENERS - NO. 54

- QUICK OPENING $1 / 4$ TURN FASTENER - NO. 81

- ADJUSTABLE PAWL FASTENER - NO. 27

- DOOR RETAINING SPRING - NO. 50

Nothing shows on outside of equipment. Clean appearance. Pull open, push shut. Held firmly in both positions by spring tension. Steel spring cam, brass roller. Maximum moment: $3 / 4 \mathrm{in}$. lbs. Spring and cam locations interchangeable. Weight per 1000: 14 lbs.

Send for complete Southco Fastener Handbook. Southco Division,
South Chester Corporation, 235 Industrial Highway, Lester, Pa.

and the output of the resolver is then fed to the ginabal alignment amplifier.
The three-axis platform analysis must consider crois coupling effects between the loops and the additional degrees of freedom represented. An extended analysis must consider effects which are products of inertia, products of angular motion, and gyro pickoff response. However, an initial anallysis which considers only the gyro pickoff response usually suffices. This approach sets up the three-axis and single-axis platform equations in matrix form.
As yet, the spatial orientations that the gyros assume have not been specified. For space travel some convenient astral body could be chosen as a reference. However, the surface of the earth is still the zone of most immediate concerm for navigation systems. Travel on the surface of the earth (and lower altitudes) implies a reference based on "vertical." A platform fixed in inertial space does not provide an earth's vertical although some means is required to establish this vertical with the platform. One method gimbal-mounts a vertical sensing reference on the platform, but a more convenient and common method applies correction signals to the platform. These signals torque the platform so that it maintains vertical with respect to the earth.

Schuler Pendulum

The direction of vertical on the earth's surface can be obtained by the use of a mass suspended from a fixed support point by a string. Such an arrangement also represents a pendulum. If the mass is displaced a small angle from vertical, it oscillates with a period expressed by $T=2 \pi \sqrt{ } l \mathrm{~g}$, where l is the length of the string and g is gravity acceleration. If the support point is moved from rest, the mass is deflected from vertical by an angle θ which is expressed as $\theta=\tan ^{-1} a / g$, where a represents the acceleration of the support point. Hypothetically assuming that the support string is increased to a length equal to the radius of the earth so that the suspended mass is located at the center of the earth, the support point may move in any manner on the earth's surface. Therefore, the supporting string remains vertical regardless of accelerations to which the support may be subjected.
In effect, a simple undamped pendulum has reen created with a period $T=2 \pi V / \mathrm{L} / \mathrm{g}$, in which l_{1} is equal to the radius of the earth. The period for an earth's-radius pendulum is 84.4 min . Such a device is called a Schuler pendulum, I amed for its discoverer, Max Schuler.
A mechanical compound pendulum having the :1me period and properties as the simple 84 -min 1.endulum has insurmountable design limitations. However, an analogous system using accelerome-
 first family in subcarrier oscillators

The pencil points to Tele-Dynamics' new Type 1252 transistorized subcarrier oscillator-designed to operate directly with millivolt transducers in extreme environments. Eliminating the need for preamplification, the 1252 insures more reliable operation through your whole telemetry system.
This new oscillator converts information in the form of a low-level varying voltage-such as bridge transducer output-into an FM signal. A modified version of the 1252 is packaged with its own integral, regulated power supply to furnish instrumentation potential for the bridge.
The other oscillator in the photo is Tele-Dynamics' time-proved Type 1250, hundreds of which have been produced for aircraft, missile, and satellite applications.
Both these lightweight, transistorized oscillators offer predictable performance, excellent thermal stability, and the ability to withstand the toughest - Avallable for Immediate delivery.
environments. Neither requires a regulated power supply. Both are on-the-shelf for immediate delivery.

These oscillators are only two of a family produced by Tele-Dynamics for your specific systems needs, along with a companion transistorized wideband amplifier and mount. For detailed technical bulletins, call the American Bosch Arma sales offices in Washington, Dayton or Los Angeles. Or write to TeleDynamics Division, American Bosch Árma Corporation, 5000 Parkside Avenue, Philadelphia.

Across-the-board Competence in Tolemetering Systems and Components
Commutators-Mechanical and Electric - Pulse.Width Modulators - Subcarrier Oscillators . Wideband Amplifiers . Transmitters - Power Amplifiers - Receivers - Discriminators - Decommutators - Receiving Systems Accessories Guidance Receivers

TELE-DYNAMICS

AMERICAN BOSCH ARMA CORPORATION
Visit our booth, Nos. 51-52 at the 5th Annual Symposium on Space Electronics and Telemetry, Shoreham Motel, Washington, D. C., Sept. 19-21, 1960. CIRCLE 207 ON READER-SERVICE CARD

There's News in an Editor's Work-Week

hayden interoffice memo

Date S3Lhyat $=1,1960$
ro: Eduard E. Granda, Editss Fnon: Podert C Haarir d, Thews Elisiton. sunget: Weeten Pa~+
monor: Atter ded 1960 Design Engunce ang conference of A.S.M. E at N.Y. Colis cum. atrinded tor inteal spssiers. Cor durt tid, on the-spot interrews, sex.
ruesory: ananged Monday's notes. Tharkid news eads. Intervieis: 7 Na phone, 2 in persar. Wrote shart news tem.

Wenissory: at Coliseum Verfied notes, Nrsit.d exhibts. afternom wrote conperence stary, and prepared lackgroind material for molecichar electrome iports.
 Dert of ment tal? at 7 mon mouth Interviewed, covered new Semiconductor techneques in molecular efert. Frion:: Quangud notes of Sinnal Coys trip. Urote fust cenalt of repart Cherker (N) Nimation slu up intervenis for tav erectionic firms.

For Bob Haavind, the above is a typical work-week as a News Editor on ELECTRONIC DESIGN.
In covering places where industry news occurs, Bob concentrates on subjects of direct importance to ELECTRONIC DESIGN readers. He and his fellow News Editors know that engineers want news that applies to their work . . . news of research, development, technical trends.
That's why you get practical news . . . exclusive design coverageexclusively, in ELECTRONIC DESIGN.

DIGEST

ters can be made to behave in the same manner as a Schuler pendulum.

When the system is disturbed by an input acceleration, the error oscillation of the position output will have a period of 84.4 minutes just as in the case in which the mass of the Schuler pendulum is displaced from vertical.

Schuler Pendulum Analog Maintains

Ventical Reference

A Schuler-tuned platform system refers to a stable platform whose accelerometers are used in a loop which is an analog of the Schuler Pendulum. This loop includes a gyro precession axis torquer. Since the Schuler pendulum maintains an accurate vertical reference, it can be used to generate correction signals to tilt the gyro spin axes to a vertically referenced plane rather than its inertial space reference. The accelerometer output is proportional to aircraft acceleration. If this acceleration signal is integrated with respect to time, it represents the instantaneous velocity of the aircraft. Dividing this velocity by the earth's radius (Schuler-tuned) gives the angular velocity at which the platform must rotate to remain tangent to the earth's surface. The Schuler-tuned signal is applied to the gyro precession torquer which is properly scaled to indicate the required angular velocity.

Since the value of an oscillating reference may be questioned, system designs use auxiliary signals to provide damping. Effective damping may be provided by data available from air-speed measurements, doppler radar, or acceleration signals.

Having established a means of maintaining vertical, initial erection of the platform remains to be accomplished. Since gravity is an acceleration, common practice uses the accelerometer as a vertical reference. Its output is fed to a gyro precession torquer which actuates the gimbal alignment loop. The gimbals drive until the accelerometer output is at null, indicating vertical. In those cases where accelerometers are not required, vertical erection may be achieved by pendulous reference devices or mercury or electrolytic switches.

The Four-Gimbal System

The four-gimbal system, Fig. 3, is similar to the three-gimbal system previously described. The difference lies in the gimbal sequence and in the type of control associated with the addition of the fourth or redundant roll gimbal. The fourgimbal sequence is azimuth, inner roll, pitch, and outer roll. The outer roll gimbal receives its control signal from a pick-off mounted between the inner roll and pitch gimbals. This pick-off maintains perpendicularity between the inner roll and pitch gimbals. A gyro signal to control the outer

The Allison 201
Continuously Variable Filter

HERE'S A NEW
PASSIVE NETWORK
FILTER IN THE SUB-AUDIO RANGE

The new Allison 201 Filter goes into the sub-audio range. yet retains the desirable characteristics of Allison Filters in the audio range. The low noise, low distortion and excellent transient handling capabilities of the 201 make it excellent for heart studies, geophysical work, low frequency vibrations, servo-systems and similar subaudio frequency spectrum studies.

ALLISON 201 SPECIFICATIONS

- Impedance-600 ohms
- Passive network
- 30 db per octave
attenuation rate
- Independent high cutoff
and low cutoff sections
- Low insertion loss
- Smooth pass band
- Negligible ringing
- Frequency coverage -

1 to 256 cps

- Shipping weight: 35 lbs.
- Price: $\$ 695.00$ FOB Factory

Write for new catalog
of Allison Analyzing
Instruments

Proved

A/LISOM
 HABS.:
 쎄․

dependable in
years of service
Allison
Laboratories, Inc.
11301 OCEAN AVENUE
A HABRA. CAL IFORNIA

STROMBERG-CARLSON

"BB" SERIES RELAYS

For your automation . . computing. . . control circuit applications... "TELEPHONE QUALITY" at an ordinary price

To meet your needs for precision and durability in automation, computing and control circuitry, here is telephone quality at an ordinary price.

The "BB" Series Relay accommodates up to 100 Form A spring combinations. It incorporates such important advantages as twin contacts, knifeedge pivot and special framearmature construction. Like all Stromberg-Carlson relays, it is built to operate under extreme ranges of temperature and humidity. Prompt delivery is available on all orders.

For details, in Atlanta call TRinity 5-7467; Chicago: STate 2-4235; Kansas City: HArrison 1-6618; Rochester: HUbbard 2-2200; San Francisco: OXford 7-3630. Or write to Telecommunication Industrial Sales, 116 Carlson Rd., Rochester 3, N. Y.

डTROMEERG-CARLSON SENERAL DYNAMICS

 CIRCLE 210 ON READER-SERVICE CARO CIRCLE 210 ON READER-SERVICE CARDroll gimbal is not necessary. As a result, roll motions of an aircraft produce only low level platform disturbances. The outer roll gimbal servo bears most of the burden for roll stabilization.

Three-Gimbal vs Four-Gimbal Systems

The advantages and disadvantages of the threeand four-gimbal systems are briefly summarized below.

Three-Gimbal System
Advantages:

- Smaller size and weight
- Lower cost

Disadvantages:

- Limited maneuverability of aircraft
- Lower system accuracy
- Higher susceptibility to vibration

Four-Gimbal System
Advantages:

- Unlimited maneuverability of aircraft
- Magnitude of inner roll gimbal deflections are small (on the order of control signal level)
- Reduction of platform drift due to torque rectification
- Attenuation gyro non-linearities effects
- High system stability

Disadvantages:

- Greater size and weight due to extra gimbal
- Greater complexity due to additional servo
- Higher over-all cost

Aircraft Maneuverability

Three-Gimbal System
The use of only three gimbals poses a problem when the pitch angle approaches 90 deg . In this instance, the azimuth and roll axes coincide, and one degree of freedom is inadvertently lost (gimbal lock). For this reason, it is necessary to limit the pitch of the aircraft to ± 85 deg for a threegimbal system.

Four-Gimbal System
The four-gimbal stable platform has 360 deg of freedom about the roll, pitch and azimuth axes. This freedom of motion is maintained even when the aircraft pitches 90 deg and the redundant outer roll gimbal is inactivated by coincidence with the azimuth axis. Through the use of an output synchro on the inner-roll gimbal, roll stabilization is maintained by slaving the redundant outer roll gimbal to maintain the pitch and innerroll gimbals orthogonal. In effect the three-gimbal platform has been roll-stabilized. Thus unlimited aircraft maneuvers can be programed, since the four-gimbal platform does not suffer from limitations due to gimbal axis orientation.
Reduction of Platform Drift Due to

Torque Rectification

Drift rate of a gyroscopic stable element is af-

THERE'S A
NORTH ATLANTIC INSTRUMENT TO MEET YOUR REQUIREMENTS, TOO...
Now - from North Atlantic - you get the complete answer to AC ratio instrumentation problems - in the laboratory, on the production line, in the field.
Specialists in ratiometry, North Atlantic offers a complete line of precision instruments to handle any ratio measurement task. All are designed to meet the most demanding requirements of missile age electronics - provide high accuracy, flexibility, component compatability and service-proven performance. Some are shown above.

If your project demands total solution to ratio measurement problems, write for Data File No. 103. It provides complete specifications and application data and shows how North Atlantic's unparalleled experience in ratiometry can help you.

NORTH ATLANTIC INDUSTRIES, INC.
TERMINAL dRIVE, PLAINVIEW, L. I., N. Y. - overbrook 1.8600

DIGEST

Nom! A SINGLE instrument To

SIMULATE INPUTS MEASURE OUTPUT ANGLES RECORD DRIFT OF

 SERVO SYSTEMS

OFF-THE-SHELF-DELIVERY

SYSTEM ERROR BRIDGE TESTS

- Inertial Platforms
. Servos
. Vertical Gyros
- Navigational Computers
- Master Transmitters
- Autopilots
- Aircraft Indicators
- Antenna Pedestals

Write today for detailed technical bulletin.

GET EXACT SHAFT ROTATION

Synchros - Resolvers • Pots

THETA'S PRECISION ANGULAR DIVIDER OFF-THESHELF DELIVERY

Certified accuracy of less than 20 sec.-of-arc composite error at the point of contact with your shaft.
Ready to use - no fixturing required. Approved and used throughout the world.
Write today for detailed technical bulletin.

CIRCLE 215 ON READER-SERVICE CARD
fected by aircraft vibration. Vibration, a cyclic disturbance, is particularly detrimental when the subsequent gyro displacements are relatively large. This phenomenon is ascribed to torque rectification, which occurs when positive and negative portions of the undulating disturbances are not averaged out, but instead rectified. Resulting biased torque causes the gyros to drift at an appreciable rate, degrading system performance.

Three-Gimbal System
Torque rectifying characteristics of a three-gimbal system become evident in the presence of yaw oscillation when the aircraft is pitched. In this case, angular oscillation causes the roll gimbal to cycle, requiring the gimbal torquer to provide the motivation. Reaction torque, felt by the platform cluster, produces an undulating precession. During these undulations, a minute component of the momentum vector lies in the plane of the roll gimbal, providing the necessary conditions for a vector product. The sense of the vector product (the uncompensated torque on the gyro) remains unchanged because the projection of the momentum vector and the axis of roll oscillation are in phase. Thus the disturbance, oscillatory in nature, is rectified, and a unilateral gyro drift is, in essence, produced.

Four-Gimbal System
The four-gimbal system is relatively unaffected by torque rectification because the necessary outer roll gimbal signal is generated by the nonorthogonality of the inner roll and pitch gimbals. Since the orientation of these two gimbals, and not that of the gyros, is involved, gyro excursions are small. Consequently, platform drift due to torque rectification is minimized.
Effects Resulting From Gyro Non-Linearities
Three-Gimbal System
Gyro non-linearities are a product of large gyro displacements, and they decrease long-range platform reference stability. Direction as well as velocity of gyro excursions significantly affect the gyro damping constant. Since the magnitude of gyro drift is a function of the amplitude of gyro excursions, the latter must be limited to low levels.

Four-Gimbal System
The effects of rectification are minimized because gyro excursions are small. This lessening occurs because the method of control associated with the outer roll gimbal involves a variation in the orthogonality of the inner roll and pitch gimbals, instead of a gyro displacement. As a result, roll stabilization is accomplished at the expense of gimbal, rather than gyro, orientation. Since external disturbances are predominantly evident along the roll axis, the fourth gimbal offers a dis-

QUIET AMPLIFIER MODEL 108 - ultra low noise SELECTABLE
BANOWIDTH - LOW MICROPHONICS high input
IMpEDANCE tow output GREATER DYNAMIC

The Model 108 will find a wide variety of applications in all phases of low level measurements. It is readily adaptable as an ultra-sensitive preamplifier for use with null detection apparatus, $A C$ vacvum tube voltmeters, oscillographic and magnetic tape recorders, medical electronic instruments, accelerometers and many types of transducers.

Specilications
voltage
gaim
frequemcy
FREQUEECY
RESFOMSE
(wide
100. adjustable $\pm 10 \%$ IMPUT \quad IMPEDANCE

8 megohms shunted

| | output IMPEDANCE | $\begin{gathered} 600 \text { ohms in } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | \pm ldb at 1 eps and 1

EQUIVALEMT
IMPUT MOISE
1.5 mierovolts RMS max- PRICE-
 10 ens and 1 mes. 4 mierovolits maximuin
100 te bandwidth
$\$ 215.00$ (less pow.
 sey
sybbeet to change
sithout notice)
ZACHARIAS ELECTRONICS CORPORATION
P.O. BOX 246 WHIPPANY, NEW JERSEY TU 7-1616 Writo for complete specification sheot and more detailed information CIRCLE 216 ON READER-SERVICE CARD

NOW:

Knots are

NYLON LACING TAPES

with G. E. Finish

COLD FLOW is the answer! This amazing characteristic of Nylon Lacing Tapes actually characteristic of Nylon Lacing Tapes actually
"locks" the knot, guarantees that it cannot slip.

Yes - you can be SURE, when you specify Heminway \& Bartlett Nylon Lacing Tapes for harness tying, that knots will tie easy and fast .. hold tightly without slipping. Heminway a . . hold tightly without slipping. Heminway \& Beat resistance. Tapes are stronger ... can't cut wires or hands . . . are economically priced. Try them and be convinced!

FREE
SAMPLES!
THE HEMINWAY \& BARTLETT MFG. CO.
Electronics Division: 500 Fifth Avenve, New York 36
CIRCLE 217 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

EDGEWISE METER
Large, easily read display (1 $7 / 16^{\circ "}$ scale) in only $9 / 16^{\prime \prime} \times 17 / 8^{\prime \prime}$ panel space. For horizontal or vertical mounting. Miniature, selfshielded Coaxial mechanism has stability and durability of larger instruments. Weight 1.7 oz. Supplied with combination mounting bracket and bezel (not shown). Data on request. Marion Instrument Division, Minneapolis-Honeywell Regulator Co. Manchoster, New Hampshire, U.S.A. Canada, Honew

Honeywell

$77^{5}{ }^{\text {Ph}}$
AR
CIRCLE 218 ON READER-SERVICE CARD

cernible degree of platform isolation, minimizing the gyro drift.
System Servo Stability
During aircraft motions involving large pitch angles, the gimbal roll axis (which is parallel to the aircraft roll axis) assumes an angle with respect to the stable cluster. Under this condition, the gimbal roll axis is not parallel to the plane containing the input axes of the vertical gyros. The respective gyros perceive a component of roll, while the system is required to displace the appropriate gimbals by an amount equal to the ful value of roll. This is accomplished by multiplying the gain of the roll servo by the reciprocal of the cosine of the pitch angle.

Three-Gimbal System
Over-all stability of the roll servo is a function of the open loop gain and the gyro damping feedback torque. For a three-gimbal system, both the open loop gain of the roll axis and the gyro damping feedback torque vary as the cosine of the pitch angle. The value of the cosine function is small at high pitch angles. Hence the gain and damping are also small, and it is evident that a "cone of instability" exists.

Four-Gimbal System
Various applications that do not evolve the secant expander and the variable gain associated with it are available in four-gimbal systems. Thus, the variable gain required by changing geometric orientation of the pitch gimbal is a problem that is easily resolved by a four-gimbal system. Improved system stability and extended frequency response result.

Summary

In applications which do not require a high degree of maneuverability and precision, a threegimbal stable element provides the advantages of low cost, low weight, compactness, and simplicity.
The four-gimbal platform is recommended when high accuracy and utmost reliability are essential requirements for an intertial platform. Although it is larger in size and weight and more complex than a three-gimbal stable element, the four-gimbal arrangement provides the advantages of unlimited maneuverability, system stability, and the lowest drift rate obtainable.

Digested from "The Stable Platform," a chapter in the recently published handbook Technical Information for the Engineer-Gyros by Bernard Lichtenstein of the Kearfott Corp. Other sections in the handbook deal with gyroscope theory, drift errors, vertical, free, rate, and rate integrating gyros, and precision accelerometers. Free copies can be obtained by writing on company letterhead to Dept. 9-9600, Kearfott Div., General Precision, Inc., Little Falls, N.J.

Appliad Researich inc. LOW NOISE AMPLIFIERS

NOISE FIGURES

LESS THAN

1 DB at 30 MC
3 DB at 300 MC

No Critical Alignment

Amplifier Model UH-2(A)SP is available at any preset frequency between 30 and 300 MC . This amplifier is a two tube unit with broadband response, high gain, and low noise figure. The unit requires no additional air cooling supply, as natural ventilation is used. The amplifier and its power supply are assembled on a $19^{\prime \prime} \mathrm{l} \times 31 / 2^{\prime \prime} \mathrm{H}$ panel suitable for rack mounting. Small size and low weight are featured in the rugged amplifier chassis.
Specifications of the amplifier are given below.

SPECIFICATIONS	- MODEL UH-2(A)SP AMPLIFIERS
Proquency renger	Conter freguency betwoen 30 MC and 300 MC
Sandwidth:	Up to 10\% of contor Froquency
Gain:	Greeter then 20 DB (function of frog. and BW)
Neise figure:	<1 D8 of 30 MC to <3 D8 et 300 MC (function of frog. and BW)
Sourco impodance:	50 ohms
Outper impodanco:	50 ohme
Conmectors: inpur	Trpe BNC, or N
outpue	Typo BNC, or N
powor	2 prong motor base rocopiaclo
Power requirsments:	115 VAC, $60 \mathrm{cps}, 25 \mathrm{~W}$
Dimoncionis:	$19^{\prime \prime} L \times 312^{\prime \prime} \mathrm{H} \times 612^{\prime \prime} \mathrm{D}$
Weights	12\% Wes.
Frish:	Gray enamel panol
For addirional	information writo

Ampliar hesaarah inc.

robouth serim Avenus, por Wowingmon, N. .
CIRCLE 220 ON READER-SERVICE CARD

Design with versatile, POLYPENCO ${ }^{\text { }}$ Teflon*TFE shapes

Machined from ROD
Insulators for high temperature hermetic feedthru terminals, economically machined from in transformers, capacitors, relays, etc., terminals have outstanding electrical properties and are relatively unaffected by heat or moisture. (Photo courtesy, Lundey Associates)

Cur from TAPE
POLYPENCO TFE tape, operable at temperatures to 500° F., permits miniaturization of 20 to 14 pounds. Heat resistance assists miniaturization since smaller transformers have higher temperature rises.
(Photo courtesy, Goslin Electric \& Mfg. Co.)

Stamped from STRIP
TFE washer stamped from POLYPENCO in record player. Low surface friction on contact permits easy turning of wheel. Resilience and non-adhesive characteristics were also important.
(Photo courtesy, Glaser-Steers Corp.)

TEFLON SHAPES AND SIZES

AVAILABLE FROM NATIONWIDE STOCK LOCATIONS

ROD

Diameter: $1 / /^{\prime \prime}$ to $71 / 4^{\circ}$ in various lengths TUBING
O.D. $1 / 2^{\circ}$
I.D. 14°
to 62°
3° depending on O.D

SHEET
Thickness: $1 / 10^{\circ}$ to 2°
Sizes: $12^{\circ} \times 12^{\circ}, 24^{\circ} \times 24^{\circ}$, and $48^{\circ} \times 48^{\circ}$
TAPE
Thickness: . 001° to 125°
Widths: $1 / /^{\circ}$ to $24^{\prime \prime}$
Ten fade-proof colo
SPAGHETTI TUBING
AWG sizes $\mathbf{3 0}$ to 0 .
Thin and regular wall thicknesses
Ten fade-proof colors for coding
Ten fade-proof colors for coding
THIN WALL TUBING

ROUND AND SQUARE BEADING
Round: Diam. .030 10.150°
Square: . $020^{\text {to }} .156^{\circ}$ across the side
Rectangular and Square Bars also available

Cut from TUBING
TFE spaghetti tubing in telemetering equipment maintains exceptional insulating properlies at elevated temperatures, 100% relative humidity, and under constant vibration. Tubing and flexing during assembly.

DESIGN AND ENGINEERING HELP Design and engineering assistance, or help on any industrial plastics problem is as near as
your telephone-and yours without obligation your telephone-and yours without obligation plastics know-how by calling or writing today!

- Du Pont TRADEMARK for fluorocarbon resins

The Polymer Corporation of Pennsylvania

Reading, Pa .

> Cost, Failure Time Dictate Unit Size In Reliability Test

WHAT IS the best unit of equipment-or sub-system-for reliability testing?
This report considers a system composed of two sub-assemblies, X and Y. One of the subunits, X, can be marketed on its own, and requires reliability data as an individual piece. When considered alone, or apart from the entire system, the X unit will be denoted by Z.
The question is: Should the reliability test be carried out on Z and the $X Y$ combination, or should the tests be made on Z and X and Y separately (with Z and X considered interchangeable)?

Reliability Test Would Consist
Of Running Unit for t Hours
In practice, the reliability test would consist of running the unit for t hours, without failure or a drop in top performance. The probability of successful operation for t hours is:

$$
P=e^{-\frac{1}{\mu}}
$$

where μ is the actual Mean Time Between Failure (MTBF) of the system. Therefore the cost of a successful test would be:

$$
I(a)=e^{-\frac{t}{\mu}} C_{t}
$$

where C is the cost per hour of testing. Letting a be t / μ_{s}
$I(a)=e^{-\alpha} C \alpha \mu$

CICOIL Super-Flex STRANDED-WIRE FLAT CABLE

for the ultimate in

FLEXIBILITY

CICOIL Super-Flex multi-conductor cable is ideal for use where extremes of temper ature, movement and vibration preclude the use of other materials in missile packages, computers, gyro and radar systems. They provide light, reliable and compact harnessing of even the most complex electronic circuitry.
Super-Flex cables are made of stranded conductors, precisely spaced in CICOIL's specialiy processed silicone rubber base to 8 feet and widths determined by the size and number of conductors.
Cable termination can be supplied bare or with commercial or military grade connect. ors. Special connectors can be molded by CICOIL to meet your requirements.

Write for new brochure
and complete technical data

CICOIL

CORPORATION

reliability

 basedon
experience
SFI

ultra-high precision capacitors

Southern Electronics high-precision capacitors are demonstrating their proven reliability today in twelve different missiles, analog computers, and many radar and communications applications.
SEC high-precision capacitors utilize polystyrene, providing $.01 \%$ tolerances, and nylar and teflon to meet $.5 \%$ requirements. They show excellent stability characteristics over an extended temperature range, and olerances are natiected even at extreme high altitudes. The unusual accuracy, stability and eliability of SEC capacitors are the result of engineering experience concentrated on the design and manufacture of precision capacitors only, plus rigid quality contro standards subjecting each capacitor o seven inspections during manufacture Our engineering exp
Our engineering experience enables us to meet your size requirements, while holding to exact capacitance and tolerance specifications.
SEC capacitors are manufactured in a wide range of capacitance to meet your eeds from 100 mmf to any higher value and meet or exceed the most rigid MIL-SPECS Write today for detailed technical data and general catalog.
Pioneers in custom precision capacitor engineering

CIRCLE 223 on reader-service card

The probability of unsuccessful operation for the t hour test is:

$$
P^{\prime}=\left(1-e^{-\alpha}\right)
$$

Therefore, if D is the totality of costs associated with, and incurred by, unsuccessful operation, the cost of an unsuccessful reliability run of t hours is:

$$
I(b)=\left(1-e^{-\alpha}\right) D
$$

The cost D is interpreted to include the delay in shipment from the production line when unreliability is discovered and until reliability is restored.

Probability of Unsuccessful Test

Considered in Computing Cost
Therefore, the probable cost of testing Z and the $X Y$ combination is the sum of the probable costs of successful and unsuccessful operation of Z and the $X Y$ combination:

$$
\begin{aligned}
I & =e^{-\alpha} C_{Z} \alpha \mu_{Z}+\left(1-e^{-\alpha}\right) D_{Z} \\
& +e^{-\alpha} C_{X Y} \alpha \mu_{X Y}+\left(1-e^{-\alpha}\right) D_{X Y}
\end{aligned}
$$

If the alternative method of testing were con-sidered-combining Z and X data because Z and X are interchangeable and treating Y as a separate unit-test data become available more rapidly producing lower C values. However, D values would increase because a failure in Z would delay both Z and X (and hence $X Y$) shipments. The cost equation for this alternative case is:
$I^{\prime}=e^{-\alpha}(1-s) C_{Z} \alpha\left(\mu_{Z}-\mu_{X Y}\right)$
$+0.5\left(1-e^{-\alpha(1-s)}\right)\left(D_{Z}+D_{X Y}\right)$
$+0.5\left(1-e^{-\alpha \rho}\right)\left(D_{Z}+D_{X Y}\right)+e^{-\alpha(1-s)} C_{X Y} \mu_{X Y}$
$+\left(1-e^{-\alpha(1-s)}\right) D_{X Y}$
where the subscripts denote the equipment unit to which the quantity applies and s is the ratio $\mu_{X Y} / \mu_{Z}$.

Testing X and Y Separately is Better

When MTBF's are Low
For the testing altematives considered, the following conclusions were drawn. Testing the X and Y portions of $X \boldsymbol{Y}$ separately and regarding X and Z as interchangeable is the better method when:

1) $X Y, Y$ and Z MTBF's are low.
2) The MTBF's are nearly equal.
3) Testing time is kept to a minimum.
4) Delay costs are nearly equal.

Testing $X Y$ as a combined unit is preferable if it is necessary to test to a high confidence or when there is a significant disparity between delay costs for the two methods.

Digested from Balancing Equations for Mode Selection in Reliability Analysis, by Leonard Janofsky. Delivered to Operations Research Society of America, May 19, 1960.

WIDE-RANGE TRANSISTORIZED POWER SUPPLIES:

available for immediate off-the-shelf delivery

Here is a complete line of transistorized power supplies. Exacting performance of the unique differential DC amplifier assures extremely tight static and dynamic regulation; ultrafast response . . . less than $20 \mu \mathrm{sec}_{;}$very low output impedance and a high degree of drift stability with temperature - plus complete protection from short circuits and overload.
CHECK THE FOLLOWING CHART FOR YOUR REQUIREMENTS:

	Output Voltage DC	Output Amps DC	Static Regulation		Output Impedance Ohms	Ripple Millivolts Peak-to-peak	Panel Height
			Load	Line			
T-200.C	0-10	0.3	.03\%	.03\%	. 040	2.0	$31 / 2$
T-205-C	0.10	0.10	.03\%	.03\%	. 012	2.0	$31 / 2$
T-210-C	$0 \cdot 10$	0.30	.03\%	.03\%	. 004	2.0	51/4
T-215-C	0.32	0.1	.02\%	.02\%	. 240	2.0	$31 / 2$
T-220-C	0.32	0.3	.02\%	.02\%	. 080	2.0	$31 / 2$
T-225-C	0.32	0.10	.02\%	.02\%	. 024	2.0	51/4
T-221-C	0.50	0.2	.02\%	.03\%	. 200	4.5	$31 / 2$
T-230-C	0.150	$0 \cdot 0.75$.02\%	.05\%	1.000	6.0	$31 / 2$
T-235-C	0.150	0-2	.02\%	.05\%	. 500	6.0	51/4

These transistorized supplies, contained in compact light-weight consoles, have front and rear terminals, permitting either rack or cabinet installation for such applications as laboratory, computer power (digital or analog), production testing, and ground support equipment.

Write for the Armour Stablvolt catalog describing the complete line of tran sistorized and magnetically regulated power supplies for your application.

ARMOUR/STABLVOLT
division of Magnetic Research Corp. 3160 W. EL SEGUNDO BLVD., HAWTHORNE, CALIF. CIRCI 224 ON READER-SERVICE CARD

REPORT BRIEFs;

RFI-Filters

A description is given of ratio interferen e filter F-312(XW-1)/G as delivered on contre t AF30(635)2908. The filter is a development mod I of a capacitor storage signal integrator designed for use in direction finding equipment. Designtd as a replacement for other more cumberson e equipment, it is an effective means of improvir g the signal-to-noise ratio to the point where a usable output is obtained when the input signal-to-noise ratio is 0.066 . Certain recommendations are made for further improvement and reduction in the input power requirements. Radio Interference Filter F-312(XW-1)/G, Andersen Laboratories, Inc., West Hartford, Conn., Feb. 15, 1957, 22 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 145439 from Library of Congress, Washington 25, D.C.

Reliability

Outlined is the basic program required to develop reliability prediction techniques, to standardize reliability terminology, and to provide a tentative prediction technique for verification experiments on existing systems. Application to new systems now in the system-planning stage is also discussed. Prepared early in the course of the overall program, this report is somewhat speculative in nature. However, it describes the frame of reference within which the investigation is being undertaken. Investigation of Electronic Equipment Reliability, Progress Report No. 1 on Air Force Reliability Assurance Program, Aeronautical Radio, Inc., Washington, D.C., Feb. 15, 1956, 107 pp, Microfilm \$5.70, Photocopy $\$ 16.80$. Order PB 145919 from Library of Congress, Washington 25, D.C.

Equipment Cooling

Results of a study of cooling systems for electronic equipment for vehicles operating at velocities of mach 8.0 to 20.0 at altitudes from 80,000 to $200,000 \mathrm{ft}$. Included are problems of ballistic and glide re-entry, but not of space and orbital flight and sustained-power aerodynamic flight. Comparisons are presented of expendable heat sink materials, pressurization gases, heat transport fluids and several simplified cooling systems. The effect on system weight of such things as compartment insulation, electric load, leakage, flight time, equipment operating temperature and ground operations are shown. A system using water as the heat sink, water on liquid ammonia

TADANAC BRAND High Purity
 $\square D A D$

tadanac Brand High Purity Lead is 99.9999% pure and is available in ingots, rods, powder, sheets and shot. It is also available as disc and spherical pellets and washers, suitable as solder preforms or for direct alloying with germanium in the production of alloy-junction transistors or diodes.
Other high purity TADANAC Brand metals or compounds include Special Research Grade antimony, indium and tin; High Purity Grade bismuth, cadmium, indium, silver, tin, zinc and indium antiBrand High Purity Metals.

THE CONSOLIDATEO MINMG ANO SMELTME COMPAMY OF CMMADA LImITEO
 0162

CIRCLE 227 ON READER-SERVICE CARD
 CIRCLE 228 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960
as the transport fluid and vaporized ammonia for pressurization was the lightest system of those analyzed. Study of Equipment Cooling Systems, Fred E. Schroeder, Edward E. Towe et al., Boeing Airplane Co., Seattle, Wash., Nov. 1959, 173 $p p, \$ 3.00$. Order PB 161484 from OTS, Washington 25, D.C

PCM Timing

The underlying principle of the PCM timing system is pulse transmission of data: precise timing and control functions are derived by digital techniques and sent to test-range instrument sites via a 9 -channel pulse-code-modulated uhf radio link. This report, one of a series on the entire timing system, is an introduction to the system as a whole. The NOTS PCM Timing System: An Over-All Description, J. B. Moffett, Naval Ordnance Test Station, China Lake, Calif., Aug. 1959, 67 pp , Microfilm \$3.90, Photocopy \$10.80. Order PB 145382 from Library of Congress, Washington 25, D.C.

RFI-Spurious Emissions

The mechanism for generating unwanted signals in high power microwave tubes was studied qualitatively. Several techniques for suppression of these signals are reported. These are by: (1) modulator design, (2) drive signal filtering, (3) undesired signal monitoring, (4) mode suppression and integral filtering, and (5) improved tube design. A cold-test model integral filter tube was made, and the incorporation of a harmonic filter in the vacuum envelope was found to be feasible. Measurement and Control of Harmonic and Spurious Microwave Energy. Gabriel Novick and Vernon G. Price, General Electric Microwave Laboratory, Palo Alto, Calif., May 1959, 86 pp, Microfilm \$4.80, Photocopy \$13.80. Order PB 145604 from Library of Congress, Washington 25, D.C.

Thin Magnetic Films

Magnetic properties of thin Permalloy films and also MnBi films having their easy-magnetization axis perpendicular to the plane of the film were investigated. The engineering parameters of importance for high-speed memory applications are defined. Several appendices are devoted to instrumentation that has been found useful in magnetic-film research. The Magnetic Properties of Thin Films, J. B. Goodenough and D. O. Smith, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Mass., Jan. 1959, 42 pp, Microfilm \$3.30, Photocopy \$7.80. Order PB 146498 from Library of Congress, Washington 25, D.C.

NOW

Miniature RF
Connectors
Match Electrical Specs...

REPLACE STANDARDS WITH MINIATURES! Now, bocause of GREMAR CONNECTRONICS (T), it is possible to min
Red Line Miniatures, identisied by their red Teflon ingulation, are hall the size and weight of the reliability-proved GREMAR TNC Connectore. DESIGNEDFOR USE WITH MIL-TYPE SUBMINIATURE COAXIAL CABLES, Rod Line Miniature Connectors and adapters feature:
-A new patented metal-to-metal cable clemping method which eaves up to
80% of jour cablo assembly time while ascuring a lower, more constant 80% of your cable assembly time while assuring a lower, more constant
VSWR. Nominal 50 ohm characteriatic impedance, 500 volts rms peak and 10,000 megacycles practical frequency limit.

- Operating temperature range: -65 F to +350 \%
- Meors or exceods all applicable requirements of MILSTD-202A and - Confararations for all typical applications including adapters to BNC and IC connectors.
- Metal parts are heavily silver plated for maximum corrosion-resistance . - Standard Red Lline adapters and comaectors are atocked for im-

WRITE FOR BULLETIN 9 containing complete data on Gremar Rod Lino T Miniatures. Literature on all other RF connectors is available for the asking.
 CIRCLE 229 ON READER-SERVICE CARD

STANDARDS
AND
SPECS

MIL-STD-704 Helps Designers Achieve More Performance, Reliability In Airborne Equipment

Oscar Markowitz

U. S. Naval Air Development Center Johnsville, Pa.

PROPER APPLICATION of MIL-STD-704, "Characteristics and Utilization Of Aircraft Electric Power" (6 October 1959), will help designers achieve better performance and increased reliability in electronic equipment destined for airborne use. It contains many new facets never specified previously by the Services.

MIL-STD-704, currently released by the Government Printing Office, is an extensive revision and modernization of MIL-E-7894A, "Electric Power, Aircraft Characteristics Of". MIL-E7894A was a limited-coordinated specification between the U. S. Navy and Air Force; MIL-STD-704 is a fully coordinated standard, binding on all Services. During its period of coordination, MIL-STD-704 has been used as a guide for the more sophisticated systems and a guide for missile, 400 -cps power.

Background and Philosophy of MIL-STD-704

With increasing sophistication of airborne eleclectronics, it has become clear that aircraft electric power cannot be subservient and accede to all the demands imposed by power utilization equipment. Power characteristic demands of utilization equipment vary so widely from each other, but are so narrow in themselves that many conflicts arise with many utilization equipments drawing power from the same source. It is an engineering impossibility to obtain a perfect electric power source, that is:
a. All characteristics are fixed parameters (for example: frequency, voltage) with no measurable variations,
b. There are no losses from distribution of power and protection of power source, and
c. The utilization load condition will not reflect a change of any power system characteristic.

The imperfections are considered in MIL-STD704; it defines the electric system characteristics, delineates limits of variations and, in turn, restricts the use of aircraft electric power so that the characteristics are not altered beyond their defined limits.

MIL-STD-704 implements the weapons concept by considering the aircraft as a complete functionirg unit; it considers each power characteristic as a distinct design influence on utilization equipment. An electric system characteristic is often subdivided to segregate differences of design influence on the utilization equipment, although the over-all electric system characteristic would be adequate in terms of defining electric power.

MIL-E-7894 was originally developed to end controversy between aircraft electric system designers and utilization equipment designers. Power system designers tried to maintain wide limits, while the utilization equipment designers tried to narrow the same limits. Thus, a specification was required to step between and define the characteristics of electric power at the terminals of the utilization equipment-at the point where the power system stops and utilization equipment begins. From such a specification the electric power designer will know what power characteristics he must supply before any knowledge of the connected load; and the utilization equipment designer will know what power he must use before any knowledge of the actual power source (each knowing his responsibilities in his areas). This concept is described in MIL-STD-704 as quoted below:
1.1 Scope-This standard delineates the characteristics of electric power to be supplied to airborne equipment at the equipment terminals and the requirements for the utilization of such electric power by the airborne equipment.
1.2 Purpose-The purpose of this standard is to foster compatibility between aircraft electric system and airborne utilization equipment to the extent of confining the aircraft electric power characteristics within definitive limits and restricting the requirements imposed on the electric power by the airborne utilization equipment.

Spec Helps Make
 Aircraft Integrated Weapon

Aircraft electric power equipments are developed without any knowledge of the actual aircraft loads that will be seen in service. The power system developments have lead times between one-half to three years. Utilization equipments are developed with one to five years of lead time. Utilization equipment designers seldom know in advance what electric systems will be used with their equipments. In such situations a common denominator is sorely needed; it is MIL-STD-704. Thus this spec is an essential key in coordinating electric power with utilization equipment and helping to make the aircraft an integrated weapon.

Increasing sophistication of utilization equipment is becoming more demanding on electric systems characteristics. Different utilization equipment within one aircraft often demand different limits within a characteristic in conflict with each other, creating a situation impossible for any given electric system to meet. MIL-STD-704 attempts to resolve these differences with distinct and bold limits that avoid the conflicting aspects at an early enough design stage so that only minimum penalties are absorbed by the equipments involved.

Developers of MIL-STD-704 balanced the special requirements of sophisticated airborne electronics equipments against "state of art" in airborne power. Setting the defined MIL-STD-704 limits to meet all the electronics special require-

ments would put all the weight penalty on the power system while being impossible in terms of "stite of art."
It was realized that no specification or standard could be made to include all aircraft utilization equipments and electric systems. If MIL-STD704 had been written to allow every requirement such breadth and tolerance that all electric systems could conform, then there would be no usefulness remaining as a control. All penalties would have to be built into the utilization equipment to make the over-all situation compatible. Each characteristic was weighed independently in terms of a compromise most economical to the over-all aircraft.
No compromise could be made completely satisfactory to those responsible for electric power system design and those responsible for utilization equipment design. The Services, thus, anticipate pressures from "both sides of the fence" for changes. When arguments become sufficiently potent in an individual application a deviation may be allowed by the cognizant Service for that particular case. Constant monitoring is anticipated by the Services to provide sufficient surveillance of "state of art," actual conformance to MIL-STD704, and approved or disallowed "deviations." These surveillance experiences will provide the hasis for future revisions.
Because each additional pound of equipment in a new design aircraft adds seven pounds of weight to the aircraft, minimum-weight accessory equipment are essential for the aircraft to achieve maximum range, pay load, and speed. The obvious complex between minimum weight and maximum accessory performance or reliability must be continuously explored and resolved.
Studies were made to find the common denominators for aircraft. It was considered that inclusive allowance of extremes would penalize every aircraft for the extremes of few aircraft. Each extreme was studied for validity as a factor toward the common denominators. As a result, basic decisions and assumptions were made to define the houndaries to remain consistent throughout the standard. Exclusions because of the assumptions are the rare situation that will require independent consideration and approval from the Services. For a fuller understanding and easier interpretation of MIL-STD-704, the following asalluptions and decisions are discussed:

iwelve of Spec's Assumptions Discussed

- Characteristics of the aircraft electric power istem are not summations of all the extremes of th racteristics obtained from qualification requ rements of the individual component parts this make up the electric power system. Such a

Continental Connector MINIATURE PRINTED CIRCUIT CONNECTORS

WHERE RELIABILITY IS A MUST

and space limitations are critical . . . specify Continental Miniature PC Connectors

Series 600 precision miniature printed circuit connectors provide a positive, space-saving connection between printed circuitry and conventional wiring, through printed circuit boards, tape cables or plug-mounted sub-assemblies.
SERIES 600-7-1. For ${ }^{3} /{ }^{\prime \prime \prime}$ " printed circuit board or tape cable. 18 contacts for \# 24 AWG wire. Solder lug terminations are staggered to simplify soldering operations.
SERIES 600-4PCSC13. For $1 / 22^{1 "}$ printed circuit board or tape cable. 13 staggered contacts accommodate \#22 AWG wire. Module design permits stacking of any reasonable number of single units. Contacts have minimum spacing with maximum contact wiping surface.
SERIES 600-4PC10. Accepts $1 / 32^{\prime \prime}$ printed circuit board or tape cable. Double row of 10 contacts with solder lug terminations provides a total of 20 connections. For \#22 AWG wire. Overall length only $1 /{ }^{\prime \prime}$ ".

Continental Connector's "Bellowform" contacts are used in this series and provide coil spring action grip that clasps the printed circuit board firmly over the entire contact area regardless of board tolerance variations.

Contact material is spring temper phosphor bronze with gold plate over silver plate. Body molding compound is glass reinforced Diallyl Phthalate (MIL-M-19833, Type GDI-30, green color).

Technical literature on Continental Connector Series 600 Miniature PC Connectors is available on request. Write to Electronics Division, DeJUR-AMSCO CORPORATION, 45-01 Northern Boulevard, Long Island City 1, N. Y. (Exclusive Sales Agent)

MANUFACTURED BY
CONTINENTAL CONNECTOR CORPORATION, AMERICA'S FASTEST GROWING LINE OF PRECISION CONNECTORS

IERC TRANSISTOR HEAT DISSIPATOR III
 actual size

accepts .305 to .335 variations in TO-5 cases!

Simplified installation for effective heat dissipation with IERC Transistor Heat Dissipators are illustrated: 1. Parts available in rivet or screw attaching types. 2. Single or multiple mounting on heat sink angle. 3. Back-to-back mounting.

Detailed information, performance graphs, etc. are available in latest IERC Technical Bulletin. Write for a copy today!

INTERMATIONAL ELECTRONIC RESEARCH CORPORATIOR 135 West Magnolia Boulevard, Burbank, California
Forcien Manufecturers: Europalec, Paris, France. Garrard Mig. \& Eng. Co., Ltd., Swindon, England.

STANDARD AND SPECS

summation would be unrealistic in terms of actual aircraft operation and force excessive penalties on all aircraft utilization equipments.
2. The characteristics of the electric power systems do not consider a source smaller than 1,500 va, ac, or 50 amp dc. The steady-state voltage limits and transient limits are much wider in these low-capacity power sources. Primary dc power sources of less than 50 -amp capacity are relatively rare in military aircraft. There are a few applications of transformer-rectifiers (T-R) having capacities under 50 amp dc. These T-R systems should be evaluated carefully to determine characteristics when providing power to the actual equipment. There are quite a few inverters used in military aircraft for instrument systems of capacity less than 1,500 va. These inverters were excluded because they cannot provide regulation or phase balance within limits reasonable for primary ac power systems. With increasing instruments loads for the latest aircraft and primary electric power system redundancy for reliability, the low-power inverter for instruments can become rare.
3. Electric power systems will be rated from discrete capacities such as $1.5,2.5,10,20,30,40,60$, 90 , and 120 kva ; or $50,100,200,300$, and 400 amp. This assumption was made to eliminate the cases where special required characteristics are obtained such as up-rating a generator, while other characteristics cannot be maintained at the new rating. There are many interdependent characteristics within a generating system. With generating equipment qualified for the discrete rating, over-all characteristics can be maintained only when used within the discrete rating.
4. Initial warm-up of the electric power system (first 5 min) is not included with other aircraft operations such as take-off, climb, cruise, combat, or landing operations. Limits for steady-state voltage can be narrowed considerably, if warm-up is not included. This is a valid assumption that most utilization equipments will be warming up during the electric power system warm-up period, and their maximum performance will not be required.
5. No electric generating system characteristic is included unless it is usual and normal for the generating system to be tied to the power distribution bus at the time the characteristic becomes evident. There are certain operations (such as reset after a fault) that cause the characteristics to go to extremes. Since the generating system is disconnected from the power distributing bus, these extremes are never seen by utilization equipment.
6. The electric power systems include hydraulic constant-speed drives (CSD), air turbine CSD, mechanical CSD, turboprop direct-driven gener-

```
Best
solution
to
custom
design
potentiometer
problems...
```

Merely write to The Gamewell Company, stating your requirements. Gamewell engineers will take it from there. They've been designing high there. They ve been designing high precision potentiometers and rotary
switches for a good many years. And a switches for a good many years. And a
great many of them have been customgreat many

designed

Naturally, this experience pays off. Take selection of the best resistance material for a given application as just one example. Here, Gamewell makes full use of all available alloys. And, backed by extensive files of in-service data, assures the best design of the resistance element in conjunction with the most compatible wiper-contact material.
When necessary, of course, Gamewell's complete development and test facilities are put to use. Salt spray, humidity, extreme temperature, altitude, acceleration, vibration and many more test facilities are available to insure exact matching of pot to requirements.
In production, Gamewell facilities give custom-designed "pots" and rotary switches the benefits of today's most advanced methods and machines. Extensive metal working machinery, and refined dimensional checking devices assure production of every com. ponent to high precision tolerances. All "pots" are wound on precision machines, designed and built by Gamewell. And both winding and assembly are carried out in surroundings automatically carried out in surround
kept spotlessly clean.
Thus it is that "pots" with even the most unusual electrical characteristics or mechanical features can be precisely produced in a minimum of time at Gamewell. Simplify your custom-designed potentiometer problems.
Write The Gamewell Company, 1394 Chestnut St., Newton Upper Falls 64, Massachusetts. A Subsidiary of E.W. Bliss Company.
ator, piston-engine direct-driven generators, inverters, transformer-rectifiers, and batteries supported by generators. This group provides the "state of art" $115 / 200-\mathrm{v}$ ac, 3 -phase, and $28-\mathrm{v}$ dc systems, including conversion devices. Batteries alone are considered as power sources only for emergency conditions. During other aircraft operations, batteries are normally "floated" across the dc generator power system.
7. Normal steady-state loading of an aircraft electric system is between 15 and 85 per cent of the power system basic rated capacity and will be from 30 to 85 per cent for cruise-combat conditions. Electric systems are seldom operated at 100 per cent rated capacity for these reasons: (1) Basic design of the electric system allows for a growth factor; (2) Actual operational conditions often force significant derating of the generator; (3) Paralleled generators have derating factors applied. In application, it is rare to have 100 per cent of the possible load simultaneously applied, yet the generator rating is selected on the basis of 100 per cent possible load.
8. Balance of loads in 3-phase ac electric systems is within 15 per cent, i.e., no phase (line-to-neutral) is loaded so that the volt-ampere difference between phases is more than 15 per cent of onethird the electric power system basic rated capacity. Generators are qualified to unbalance conditions of 33 per cent of the one-phase rated load. The 33 per cent unbalance is rarely encountered in actual aircraft. Certain steady-state limits are narrowed for qualified generators, with smaller unbalance usual for aircraft operation.
9. Electric power system power factor during aircraft flight will be greater than 0.85 . Ac generators are qualified to a 0.75 power factor. Since total aircraft loads normally create power factors greater than 0.85 , certain electric power system characteristics can be narrowed.
10. Any device or devices, placed between the electric power system and the utilization equipment to modify the characteristics of the power, are not considered a part of the electric power system but are considered part of the utilization equipment systems. This assumption takes care of the many types of line regulators and filters designed to improve the basic MIL-STD-704 characteristics, such as steady-state voltage, balance, wave form, which remain part of the utilization equipment.
11. Loads on the ac system are required to be three-phase loads except for very small loads. The power distribution enonomies of three-phase systems are best achieved with balanced three-phase loads.
12. There will be exceptions to MIL-STD-704 for airborne applications. These exceptions are to be analyzed individually and be approved on their merits by the procuring activity. - -

The all new Model WD-2106 Octave S-Band Isolator marks a revolutionary advancement in the microwave field by permitting the use of only one isolator for a full octave frequency range instead of covering the band in increments using a number of iso-

FERRITE ISOLATOR

lators. Ideal for use in telemetry, radar systems and transponders, the new unit offers exceptional reliability, excellent isolation to insertion loss characteristics and compactness of design.

TYPICAL SPECIFICATIONS					
MODEL	FREQ. RANGE	ISOLATION	INSERTION LOSS	V.S.W.R.	
WD.2106	$2.1-4.3$ KMC	20 DB Min.	2.0 DB Max.	1.5 Max.	
W-568-3A-2	$12.5-18.0$ KMC	20 DB Min.	1.0 DB Max.	1.15 Max.	
W-177-1K-1	9.5 KMC ± 100 MC	25 DB Min.	.7 DB Mar.	1.15 Max.	
W-277-3A-3	$5.2-5.9$ KMC	17 DB Min.	1.0 DB Max.	1.15 Max.	
W-668-1A-2	$8.5-9.6 ~ K M C ~$	10 DB Min.	0.4 DB Max.	1.10 Max.	

these are only a few of the many available models

Inquirles may be directed to: 14844 Oxnard Streot, Van Nuys, Callfornia
KEARFOTT DIVISION
GENERAL PRECISION. INC.

Little Falls, New Jersey
CIRCLE 237 ON READER-SERVICE CARD

Chationald"BIT WIRE" AMAZING NEW DEVICE FOR MEMORY AND LOGIC

"BIT WIRE"O represents a recent NCR breakthrough in magnetic data storage and logic devices. Pictured above, in a linear memory employment, "Bit Wire" linear memory employment, "Bit Wire"
is a conductive wire electrodeposited with is a conductive wire electrodeposited with
magnetic material. It offers the advantages of reliability, flexibility, and greater switching speeds...economic and compact component fabrication. In addition, this amazing wire is useful over a wide range of temperatures. Memory and logic are but a few of the applications to which it is ideally suited. Perhaps you can qualify is ideally suited. Perhaps you can qualify
for a rewarding career with this unique for a rewarding career with this unique
device... or with other challenging NCR projects...
chemuster: Plastics and polymers, micro-encapsulation (of liquids or reactive solids),
photochromic materials (compounds which can be alternated between two distinct color states), magnetic coatings. data procissing, Computer theory and component development, programming studies, high-speed non-mechanical printing and multi-copy methods, direct character recognition, systems design.
sout start phrsics, Electro, chemical, and vacuum deposited magnetic films ferrites and ferro-magnetics, advanced magnetic tape studies, electroluminescence-photoconductor investigations.
advancei incinering developments Highspeed switching circuits, random access memory systems, circuit design (conventional, printed, etched), advanced electron

THE NATIONAL CASH REGISTER COMPANY, DAYION9, OHIO
ONE OF THE WORLD'S MOST SUCCESSFUL CORPORATIONS
beam type storage. The location of the new NCR Research and Development Center is progressive, energetic Dayton, Ohio. Facilities are extensive-a veritable "city within a city."
complete information is yours by sending your rêsumé to Mr. T. F. Wade, Technical Placement Section F3-2, The National Cash Register Company, Dayton 9, Ohio. All correspondence will be kept strictly confidential.

YOUR CAREER

ENGINEER-IMPROVEMEN'T COURSES AND SEMINAR!;

Below are courses and seminars in. tended to provide the engineer wit a better knowledge of various spe cialties. Our grouping includes sev eral different types of meeting: National Courses-those held or consecutive days and intended to draw attendees from all geographical areas; One-Day Seminars-one-day intensive seminars which move from city to city; and Regional Lectures -regional symposia or lecture series which generally run one night a week for several weeks.

National Courses

Packaging, Plant Layout and Material Handling, Sept. 25-30, University of California

A course in packaging, plant layout and material handling, presented by the Department of Engineering and Engineering Extension, University of California, Los Angeles, Calif., will be given Sept. 25 through 30 at the University of California Conference Center, Lake Arrowhead, Calif.

Lectures during the morning and early afternoon will present current thinking and solutions to the general problems encountered in the average industrial plant. Evening workshops and problem sessions will consider individual problems with the emphasis placed on back-home applications. The late afternoons have been left open in order to provide ample time for informal exchange of ideas and discussion of problems.

The short course is designed for middle and operating management and executives charged with the responsibility for initiating industrial packaging, material handling and plant layout programs (military and commercial).
To ensure full opportunity for individual participation, the total number of students accepted will be limited. Enrollments will be accepted in the order in which they were received. Registration may be made by individuals or by companies. The fee for the course, including room and board, is $\$ 215$.

For further information write Engineering Ex tension, Room 6266, Engineering Bldg., Unit 11, University of California, Los Angeles 24, Calif.

Symposium Sponsored By The Texas Div. of Collins Radio Co.

A microwave and carrier communication sys-
To

ELECTRONIC DESIGN
 CAREER INQUIRY SERVICE

Advancement Your Goal?

Use COMFIDENTIAL Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediotely to companies, simply fill in the attached esume.
Study the employment opportunity ads in his section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your applicafion and send them to all companies you select-the same day the resume is received. The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to onsure that your application receives complete, confidential protection. We take the following precautions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is deached before the application is sent to an employer, so that no company will know how muny numbers you have circled.
- All original opplications are placed in confidantial files at ELECTRONIC DESIGN, and
of or a reasonable lapse of time, they are de stroyed.
\& you are seaking a naw job, act nowl

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)

Date of Birth \qquad Place of Birth \qquad Citizenship \qquad
Position Desired \qquad

College	Dates	Degree	Major	Honors

Recent Special Training \qquad

Company	City and State	Employment History	Title	Engineering Specialty

Outstanding Engineering and Administrative Experience

Professional Societies \qquad
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you
$\begin{array}{llllllllllllllllllllllll}900 & 901 & 902 & 903 & 904 & 905 & 906 & 907 & 908 & 909 & 910 & 911 & 912 & 913 & 914 & 915 & 916 & 917 & 918 & 919 & 920 & 921 & 922 & 923\end{array}$
$\begin{array}{lllllllllllllllllllllllllllllllllll}925 & 926 & 927 & 928 & 929 & 930 & 931 & 932 & 933 & 934 & 935 & 936 & 937 & 938 & 939 & 940 & 941 & 942 & 943 & 944 & 945 & 948 & 947 & 948 & 949\end{array}$

- Advanced hydrogen systems being developed by The Garrett Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.
Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

Major fields of interest are:

- Environmental Control Systems-Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems-Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems-Largest supplier of accessory power units, AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles, liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines-World's largest producer of small gas turbine engines, with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.

Excellent positions are available for qualified men with M.S., Ph. D. and Sc. D. degrees for work in these areas.

Send resume to: Mr. R. K. Richardson
THEE GARRETT
cORPORATION
AiResearch Manufacturing Divisions
Los Angeles 45, California • Phoenix, Arizona

CAREER COURSES

National Courses (cont.)

tem engineering symposium and exhibit sponsored by the Texas Div. of Collins Radio Co. is currently being conducted on a nationwide tour.
Purpose of the symposium is to acquaint management and communication personnel in governmental and industrial circles, with the engineering parameter and application techniques of microwave and carrier equipment.

The exhibit to accompany the symposium will include two terminals of operating microwave and carrier equipment.
Cities and dates of appearance include: Washington, D.C., Sept. 12-16; Chicago, Ill., Sept. 2630; Omaha, Neb., Oct. 10-14: Atlanta, Ga., Oct. 24-28; New York, N.Y., Nov. 7-11 and Minneapolis, Minn., Nov. 21-25; Denver, Colo., Nov. 28Dec. 2; Seattle, Wash., Dec. 12-18; Helena, Mont., Jan. 9-13; Portland, Ore., Jan. 23-27; San Francisco, Calif., Feb. 6-10; Los Angeles, Calif., Feb. 20-24; Albuquerque, N.M., March 6-10; New Orleans, La., March 20-24; Jacksonville, Fla., April 3-7 and Charlotte, N.C., April 17-21.

Regional Courses

1960-61 Evening Design Course
The 1961 Evening Design Course of the Design Division of the Institute of Contemporary Art in Boston aims to consider problems brought about by a wider sharing of the design decision. An evening session is planned, to begin early in October, 1960 to cover the new developments in design production and distribution. The design contributions of the non-designer, and the nondesign contributions of the designer will be examined in order to relate the designer effectively to his associates in industry and commerce.

The course will be held Wednesday evenings at the Boston Architectural Center, 16 Somerset St., Boston, subject to the latter's being available. The course is planned in three sections covering a total of 16 weekly meetings. The last eight weeks will be a workshop series in which the application of the content of the first eight weeks will take place.
Fees for the course will be $\$ 60$ for each eightweek session, or a combined fee of $\$ 110$ for the full program. A $\$ 15$ deposit is required to reserve your place in the course. For further information write: John J. McHugh, Education Director, Design Div., Institute of Contemporary Art, Soldiers Field Road, Boston 34, Mass.

offers the opportunity and the challenge of key assignments in...

GUIDED MISSILE ELECTRONICS

ELECTRONIC

ENGINEERS

MECHANICAL

ENGINEERS

Here is your chance to prove your ability doing important work on missile fuzing, beacons, guidance, pack aging and related test equipment. We have key openings that offer you the opportunity to move ahead rapidly in your profession. At Bendix York you benefit from the advantages of a small company atmosphere in a growing division of one of the nation's largest engineering and manufacturing corporations. Also you'll enjoy the "good life" in our beautiful suburban community Good salaries, all employee benefits

Drop us a card, briefly sfating

YORK DIVISION
York, Penna. / York 47.195

HALLENGING OPPORTUNITIES FLIGHT CONTROLS WITH ONEYWELL AERO FOR

analytical, systems, components engineers

Honeywell introduced the first ccessful electronic autopilot in 41 -the C-1 of World War II. ince, we have produced more ght control systems than any ther company and have develped concepts in flight controls pat are now standard in this field. oday, most top aircraft and misles are equipped with Honeywell ght controls. Honeywell's Flight ontrol Systems Group has exonded steadily and now has opengs for the following:
WALYTICAL ENGINEERS-must be capable of simulating (mathematically on paper or computers) characteristics and problems in missiles and aircraft control, stability, and control systems. Should have good math backgrounds with analog computer experience.
rSTEMS ENGINEERS-should be capable of interpreting analytical results into navigation, guidance, or flight control systems. Should be electrical engineers experienced in systems -ideally, with experience in flight control in the aviation industry.
DMPONENTS ENGINEERS-should be electronics men with emphasis on transistor circuitry. Will be responsible for designing components which go into the system. Must have circuitry design experience.
odiscuss these or other openings, write r. James H. Burg, Dept. 820, Aero-
iut cal Division utical Division, 1433 Stinson Blud.,

Honeywell

1 Miltary Producte Groups
explore professional opportunities in el Honeywell operations coast to coast, d your application in confidence to Your application in confdence to
h. Eckstrom, Honeywell, Minneapolis A innesota.
CIRCLE 905 ON CAREER INQUIRY FORM
CIRCLE 906 ON CAREER INQUIRY FORM $>$

> How to pre-test your next job without leaving your living room...

Until recently, there just hasn't been a reliable way for a man to determine the kind of engineering know-how he needs to assure success at a company before he makes application.

Because this can be mighty important to an engineer and his family, we've developed a completely new technique that should be as enjoyable as it is helpful to you-technical quizzes on Radar, Microwave, Communications, Packaging... and, for those interested in Engineering Administration, a special psychological questionnaire.

The point is that your score need never be divulged to us. The complete package is for your private use for your technical self-appraisal. (So far no one, including LMED engineers, achieved a perfect score!)

Simply check off any 2 subjects on the coupon and we'll mail you the corresponding tests, answer sheets and evaluation guides.

During a quiet evening hour, work them through and grade yourself with the answer sheet. Then, use the evaluation guide to figure out your own probability for success on the Light Military staff.

Current Areas of Activity At The Light Military Department Space Communications \& Telemetry - Missile \& Satellite Computers - Space Vehicle Guidance - Undersea Warfare Systems Thermoplastic Data Storage - Space Detection \& Surveillance Command Guidance \& Instrumentation- Infrared Missile Applications

LIGHT MILITARY ELECTRONICS DEPARTMENT GENERAL ELECTRIC

FRENCH ROAD, UTICA, NEW YORK

Mr. R. Bach Light Military Electronics Dept.
General Electric Company, French Road, Utica, New York
Please send me tests (limited to 2 subjects per individual) answer and self-evaluation sheets covering the areas checked:

\square RADAR \square MICROWAVE

\square ELECTRONIC PACKAGING (ME)
\square COMMUNICATIONS \square ADMINISTRATIVE ENGINEERING
Name

Home Address	Home Phona
city	Zone_State
Dagree(s)	_Years(s) Recolvod_

WHAT SANDERS ENGINEERS SAY ABOUT SANDERS

 (enonymous comments made to a non-company reporter)- "Channels of rechnical communication are wide open here" - "AUTHORITY GOES WITH RESPONSIBILITY"
- "Gripes get an airing and a sensible answer"
- "It's diversified - your job is not dependent on one big program -there are 20 odd development contracts now in the shop"
- "You always know where you stand professionally here"
- "Management is flexible enough to accommodate the individualists"

W "Growth prospects look good - we're up to 1300 from only 11 men 8 years ago"

If you are qualified for and interested in any of the positions described below, we will invite you to visit us in Nashua, meet some Sanders engineers as well as the manager of a group you may work with. Please send a complete resume to Roland E. Hood. Jr., Employment Manager.

MANAGER - MICROWAVE DEPARTMENT

Senior Microwave Engineer with a high degree of creativity to administratively and technically supervise a microwave department consisting of approximately 50 engineers and technicians. Should have knowledge of subcontracting, marketing, project cost control and technical familiarity with ferrite devices, parametric amplifiers, crystal mixers, antennas for multi-lement arrays (and other types of antennas), components involving strip line techniques, and systems from 1 mc to 20 kmc . Minimum BS in EE or Physics and 5 to 12 years experience.

SYSTEMS ENGINEERS

Through Project Engineer level. Should have creative abilities and background of VHF transmitters and receivers, communications systems in general, data processing techniques, propagation and must be capable of translating this knowledge into complex integrated systems. Also requires knowledge of radar systems, pulse Doppler systems, steerable beam techniques and pulse techniques.

RECEIVER DESIGN ENGINEERS

VHF electronically scanned airborne receivers, filters, problems in spurious response reduction and multiplexing.

CIRCUIT DESIGN ENGINEERS

With particular emphasis on transistor application to analog and digital techniques; data handling equipment; audio, video, RF circuitry and switching.

NASHUA, NEW HAMPSHIRE
(less than an hour from downtown Boston)

OPPORTUNITIES TO GROW

AIR DATA INSTRUMENTS \& SYSTEMS
Senior Project Engineers, EE \& ME. For aircraft and missile instrumentation 5 to 10 years' project experience in precision electromechanical devices, pressure transducers.

AUTOMATIC ASTRO TRACKING SYSTEMS

Project Engineers, EE. For automatic astro track ing systems. Up to 5 years' related experience.

STAFF ENGINEERS \& SPECIALISTS

a) Experience in the research and development of transistors in servo, digital and instrumentation application. Minimum 3 years' experience desired in transistor circuit design for military applications.
b) Experienced with IR to UV radiation proper-
ties and applications, noise theory and detectors.
c) Optics-IR through visual optical design, lens
design, materials.
d) Digital computers-logic or packaging experi-
ence.
e) Theoretical mechanics-inertial and trajectory studies.
tudies.
kollsman
INSTRUMENT CORPORATION
\rightarrow subsidiary of StAMDARD KOLLSmAM ImDUSTRIES, inc,

CIRCLE 907 ON CAREER INQUIRY FORM

In Electronlc Engineering?
Not likely. Only a few have done it. However, most electronics engineers realize that above average earnings can be theirs in the electronics market. For the man who wants challenging work $\&$ earnings reflecting his capabilifies, we are relained by 479 top electronics firms lboth "giants" and "comers")
FREE - MONTHLY OPPORTUNITIES BULLETIN
If you wish to raceive a monthly bulletin of the finest ovailable electronic opportunities, simply send us your name and home addross land if you wish, a review of your qualifications)--Our services are without cost to you through our Chicago office and our Los Angeles subsidiary, Lon Barton Associates.

Jack L. Higgins Vice President
Cadillac
Associates, Inc.
29 E. Madison Bldg. Chicago 2, III. Financial 6-9400

CIRCLE 875 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

Systems Analysis Design \& Development Evaluation

Systems Analysis

Weapons Systems analysts with BS or MS in mathematics or physics, or BSEE, to work on
weapons system and component lethality, evaluations, optimization studies, feasibility studies, and concept synthesis. Also a BSEE or MSEE with a minimum of 3 years in electronic systems with emphasis on remote control, data handling, signal processing.
Design and Development
A number of openings now exist for experienced design and development engineers with the following qualifications:
BSEE or MSEE, minimum 3 years experience in any of these including state circuit design, ing circuitry; RF techniques, including circuit design; antenna design, propagation studies, modulation techniques. Signal processing and data handling, including techniques for encoding, decoding, storage, digital data processing, display, system intewith minimum one year in synwith minimum one year in syn application.

Evaluation

BSEE. Prefer 1-8 years in test, design, or related areas. Work involves testing specific unit sysinvolve designing and building non-standard testing equipment; field or simulated field testing; tests on production instruments. All above openings are in Minneapolis area. For complete information, urite Allan J. McInnis, Professional Manpower Staff, Ordnance Division, Honeywell, 600 Second St. North, Hopkins, Minn.

Honeywell

H Militany Products graup
To explore professional opportunities
in other Honeywell operations, caast in other Honeywell operations, coast
lo coast, send your applicalion in confoceast, send your applicalion in conMinneapolis 8, Minn.

CAREER OPPORTUNITIES BROCHURES

Stromberg-Carlson

In this 24 -page illustrated brochure, the San Diego Div. of Stromberg-Carlson describes its organization, facilities, and products. Engineers are needed for work on cathode-ray tubes, transis-tor-circuit design, tube-circuit design, reliability, logical and digital design, field service, and elec-tro-mechanical devices.
Stromberg-Carlson, Div. General Dynamics Corp., Dept. ED, 1895 Hancock St., San Diego 12, Calif.

CIRCLE 870 ON READER-SERVICE CARD

E-M-R ASCOP

Electro-Mechanical Research, Inc., as outlined in its 26 -page illustrated brochure, has its main office in Sarasota, Florida. Total employment is more than 450 , of whom approximately 150 are engineers and technicians at a ratio of one to two. The ASCOP Division located in Princeton, N.J. employs over 350 . The major activities of E-M-R are in the field of instrumentation for research, both in data acquisition and processing.
Candidates for Equipment Development Engineers and Systems Engineers should be graduate electrical engineers with some previous experience. For further information contact Mr. John G. Truitt, Personnel Manager, Electro-Mechanical Research, Inc., Sarasota, Florida; Mr. Marmaduke Jacobs, Personnel Manager, ASCOP Division of E-M-R, P. O. Box 44, Princeton, N.J. circie bil on reader-service card

SECURITY

REWARDS

and CREATIVITY at

PHILCO Palo Alto

On the San Francisco Peninsula

You'll find exceptional opportunities and commensurate rewards with rapidly expanding Philco Western Development Laboratories, at the center of the San Francisco Bay Area's electronic industry. These are our immediate needs. Do they match your experience and interests?

SYSTEMS ENGINEERS

As an active participant in the formulation and design of microwave data telemetry and tracking systems, your responsibilities will include analysis of equipment design and performance, specification and technical direction of system test, analysis of flight test data, and preparation of system test report.

DESIGN ENGINEERS
Direct your ingenuity to the design of circuits forming integral parts of CW range measuring equipment and the integration of complex timing and coding circuitry for earth satellites. You will also establish and supervise test programs, direct the testing of setups, component parts, circuits and complete ranging systems, supervise and monitor electrical and environmental testing for qualification. Familiarity with transistor switching circuitry is required.
RANGE DESIGN ENGINEERS
Challenging assignments can be yours in the production of installation criteria, specifications, instructions and drawings required to implement advanced radar, telemetry, data processing, computing and communications systems.
RANGING AND TRACKING

ENGINEERS

If your experience includes low-frequency phase measurements, tracking or radar, openings exist at PHILCO WDL for engineers to de-
sign, develop and insure fabrication of specialized test equipment.
RELIABILITY ASSURANCE
Your assignments will include evaluation of electronic components, preparation of specifications and drawings of components, analysis of failure of semi-conductors, tubes, or electromechanical devices.

QUALITY ASSURANCE

Qualified engineers are required immediately for in-process, final acceptance and testing of electronic and electromechanical equipment associated with missile and satellite tracking systems. Types of equipment include data processing, UHF and VHF transmitters and receivers, antenna systems.
Consider a career at Philco Western Development Laboratories, elite electronics center on the San Francisco Peninsula. For you . . . the encouragement of graduate study on Tuition Refund basis at any of the excellent surrounding educational nstitutions, liberal employee beneits, and the facilities of Philco's lew, modern R \& D laboratories. For you and your family... the perfect climate, whether seasonal or culural, in which to pursue all-year recreational activities. Only 45 min utes from cosmopolitan, dynamic San Francisco. We invite your inquiry in confidence as a first step oward expanding your skills at Philco, Palo Alto. Resumes may be sent to Mr. J. R. Miner.

Philco Corporation
 WESTERN DEVELOPMENT LABORATORIES

3875 Fabian Way. Dedt. D-9
Palo Alto, California

ADVERTISERS' INDEX

September 14, 1960

Advertiser Page

AGA Div. of Elastic Stop Nut Corp. of
America $\ldots \ldots \ldots \ldots \ldots . . \ldots$.................. 148
AMP, Inc. 49
Ace Electronics Associates, Inc. 1:38
Adel Precision Products 155
Airpax Electronics, Inc. 164
Alden Products Co. 128, 129
Alfred Electronics 73
Alleghany Electronic Chemicals Co. 96-D
Alleghany Instrument Co. 147
Allegheny Ludlum Steel Corp. 27
Allen-Bradley Co. 160A \& B
Allison Laboratories, Inc. 186
Alpha Metals, Inc. 152
Amco Engineering C \qquad
Corp 12
American Electronic Labs., Inc. 18
American Optical Co 161
Ampex Data Products Co. 20
Anaconda Wire \& Cable Co. 184-A
Applied Research, Inc. 189
Arnold Magnetics Corp. 189
Assembly Products, Inc. 146

Barker \& Williamson, Inc. $7 \boldsymbol{\theta}$
Beckman, Berkeley Div. 6 Beckman/Helipot .. 132 Bendix Corp., Pacific Div.
\qquad Bendix Aviation Corp. Scintilla Div. 47 Bendix Corp., York Div. 200 Birtcher Corporation 1.57 Bliley Electric Company 155 Blue M. Electric Company 148 Bodine Electric Co. 149 Bomac Laboratories, Inc. 121 Boonton Electronics Corp. 166 Borg Equipment Div., Amphenol Borg
Electronics Corp. 122
Burndy Corporation 66
Burnell Coration

CBS Electronics, Semiconductor Operations
CTS Corporation
Cadillac Associates, Inc. 202 Cambridge Thermionic Corp 202 108
\qquad Celco Constantine Engineering Labs., Co. 208 Centralab. The Electronics Div. of GlobeUnion, Inc.
Cicoil Corp. 15
190
Cinch Mfg. Co. 139
139
Cinch Mfg. Co.

OURANT
DIGITAL
READ-OUT COUNTERS

Model " Y " SERIES

Model "D" SERIES
for MISSILE TRACKING, RADAR CONTROLS, COMPUTERS, NAVIGATION INSTRUMENTS, GAUGING INSTRUMENTS, and ANY other indicator applications.

- Meets military specifications.
- High speeds, lower torque, lower moment of inertia for long life.
- Nylon wheels with legible figures, nylatron pinions.
- Single, $11 / 2$, or double width wheels.
- One-piece aluminum die cast frame.
- Base mounting. Threaded mounting holes may be in frame top or ends.
- Right or left hand drive, clockwise or anti-clockwise rotation.
- "Y" Series, single or dual bank types.
- Component parts can be purchased separately to meet desiga requirements.

Your answer to an infinise number of variable demands for PRECISION CONTROLS.
sond for Catalog No. 400 instrument show sind for Caralog No. 400 BOOTM 606

193 N . Buffum Street $\quad 93$ Thurbers Avenue Nilmuukee 1. Wisconsin Providence S. R. I.
RE RESEWTATIVES IM ALL PRINCIPAL CTIIES Circle 238 on reader-service card

Clare, Transistor Corp., C. P. 81 Clevite Transistor, A Div. of Clevite Corp. 31 Cohn, Sigmund Corp. 154 Computer Engineering Associates, Inc. .. 208 Connecticut Hard Rubber Co., The 137 Consolidated Mining \& Smelting Co. 193 Continental Connector Corp. 195 Continental Diamond Fibre Co. 120
Control Switch Div., Controls Co. of
Amer.
Coors Porcelain Co. 177

Dage Electric Co. Inc. 108
Dale Products, Inc.
Daven Co., The
Del Electronics Corp
Delta Design, Inc.
Dimco-Gray Company . 79
...... 192 158
Du Pont, E.I de Nemours \& Co.... 88,
Div.

Durant Manufacturing Company 205

EICO

152
ESC Electronics Corp. 113
ESI/Electro Scientific Industries 67
Eastem Industries, Inc. 136
Eastman Kodak Company 153
Edgerton, Germeshausen \& Grier, Inc. ... 37
Edison, Thomas A., Industries 104
Electro Instruments, Inc. Cover III
Electronic Associates, Inc. 130 Electronic Engineering Co. of Calif. 159 Electronic Design 154, 180, 186 Electronic Research Associates, Inc. 150 Emcor, Ingersoll Products Div. 90 Endevco Corp. ... 58 Erie Resistor Corp. 51 Ever Ready Label Corp. 127

Fairchild Semiconductor Corp Fansteel Metallurgical Corp. 16, 118, 119 Film Capacitors, Inc. 148 Food Machinery and Chemical Corp. ... 29 Franklin Electronics, Inc. Fusite Corp., The 55

G-M Servo Labs, In 207 G-v Controls, Inc. 23 Gamewell Company, The 197 Garlock Electronic Products 134, 135 Garrett Corp., The 178, 200 General Electric Co., Light Military

Electronics Dept. Electronics Dept. 201 $\begin{aligned} \text { General } & \text { Electric Co., Miniature Lamp } \\ \text { Dept. } & 142\end{aligned}$ General Electric Co., Ordnance Dept. . . 204 General Electric Co., Power Tubes Dept. 116, 117 General Electric Co., Silicose Products General Electric Co | General Electric Co., Tantalytic Capaci- |
| :---: |
| tors $. .152, ~$ |

FLIGHT PROVEN

r-f telemetry power amplifiers
These power amplifiers are another family of flight proven airborne components used in UED FM/FM and PCM systems and also available to industry. Now in quantity production, the power amplifiers are doing service in such missiles as Minuteman and Hound Dog, and in space programs such as Midas and Samos. Characteristics common to all members of the PA-family are: 2 watt RF drive; 50 ohm input impedance; rated output into 50 ohm load; frequency range 215 to 260 mc ; bandwidth $\pm 3 \mathrm{mc}$. Each member also has the following outstanding individual characteristics:

PA-10 The smallest and lightest 10 -watt telemetry power amplifier available--45\% overall efficiency.

- Hermetically sealed.
- Vibration / 20 g's from 20 to 2000 cbs .
- Operating Temperature $/-40^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}$.
- Power Requirements / 200 V plate at 90 ma
$6.3 \mathrm{~V}, 800 \mathrm{ma}$ or $28 \mathrm{~V}, 200$ ma filament.
- Size / $2.00 \times 1.56 \times 3.00$ inches; Weight / 9 ounces.

PA-11 10 to 25 watts output with no cooling required. Complete protection against damage due to loss of RF drive. - Vibration / 10 g's from 20 to 2000 cps.

- Temperature / up to $185^{\circ} \mathrm{F}$ base plate temperature at
rated power output.
- Power Requirements / Plate 250 VDC at 105 ma .
$6.3 \mathrm{~V}, 1$ amp., or $28 \mathrm{~V}, 0.25$ amp. filament.
- Size / $3.48 \times 1.80 \times 3.25$ inches; Weight / 18 ounces.

PA-14 Self contained blower for 100 watt operation with 2 watts $R F$ drive power.

- Vibration / 10 g's from 20 to 2000 cps .
- Temperature $/-67{ }^{\circ} \circ{ }^{\circ}$ to $+176^{\circ} \circ \mathrm{F}$ at rated output.

Acceleration $/ 100 \mathrm{~g}$ s for 1 minute duration.

- Size / $3.56 \times 5.31 \times 3.00$ inches; Weight / 2.6 pounds.

UED's soundly-conceived and solidly-built systems and components can help solve your design problems. Data sheets, test reports and technical consultation on request. Write or call:

- UUnited ElectroDynamics, Inc. E MU 201134 SY 97161

210 ALLENDALE RD., PASADENA, CALIF.

Advartiser

General Instrument Corp. 110. 111 General Radio Co. 102. 10.3 Gertich Products, Inc. 158
Gohe Industries, Ine
Clobe Indu
Grayhill, Inc.
Gremar Mfg. Co., Inc.

Hart Mannufacturing Company
Haveg Industries, Inc.
Haveg Industries, Inc.
Heath Co.
Heath Co.
Heinemann Electric Company
Helipot Div. of Beckman Instruments, Inc. 22 Heminway \& Bartlett Mfy. Cu. 18
Hermes Electrunics Co. 165
Hewlett-Packard Company
Hoffman Electronics Corp.
Holtzer-Cabot Motor Div.
Honver Electronics Corp.
Hopkins Engineering Co.
Hudson Tool \& Die Co., Inc.
Hughes Aircraft Co.

ITT, Industrial Products Div
100, 101 ITT Distributor Products Div. 58 Ideal Precision Meter Co., Inc. Indiana Steel Prulucts. Ingersoll Products Div. 175 Instrument Development Labs., Inc. 126

International Electronic Industries, Inc. 176 | International Electronic Research Corp.: |
| :---: |
| Elin Div. | International Electronic Research Lahs. .. 196 International Nickel Co., Inc. 78 International Nicket Co., Inc. 53, 85

Intemational Resistance Co. 53, 85

Jettron Products, Inc. 185 Jones. M. C. Electronics Co., Inc. 88

Kearfott, a division of General Precision Inc. 155, 157, 159, 197 Keithley Instrument Co. 136 Kemet Co.
........................... 180
Kester Solder Co. 145
Keuffel \& Esser Co. 180
Kolisman Instrument Corp. 202
Krohn-Hite Corp. 172

Laboratory for Electronics 179 Leeds \& Northrup 162 Link, Div. of General Precision, Inc. 97 Littelfuse77
London Chemical Co., Inc.24-D

Lord Mfg. Co

McCoy Electronics Co.
Magnetic Metals Co. 170
Magnetic Metals Co. 45
Magnetic Research Corp. 191
Male Mig Co . . 172
Marconi Instrument 166
Marion Instrument Div., Minneapolis-
Honevwell Regulator Co. 189
Markel, L. Frank \& Sons 196
Mart in Co. 96-A, 96-C
Marshall Industries 109 . 181
.. 167

a spot is a spot
is a high
resolution Spot with

CELCO YOKES

- Celco YOKES keep spots $\boldsymbol{S m a l l e s t}$
Celco YOKES
keep spots roundest
Célco Yokes
keep spots Sharpest

Use a CELCO DEFLECTION YOKE for your high resolution applications. In a DISPLAY SPOT? call Celco!

Main Plant: mahwah, M. J. DAvis J.1123 - Pacific Division - Cucamonga, Calif. - Yukon 2-2688

CIRCLE 241 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 14, 1960

and in production quantities!

Mark $7 \operatorname{Mod} 0$ Mark 7 Mod 1 Mark $12 \operatorname{Mod} 0$ Mark 12 Mod 1 Mark $16 \operatorname{Mod} 1$... Size 15 Servo Motor ... Size 15 Servo Motor Size 15 Motor Generator Size 18 Motor Generator Size 18 Motor Generator (For transistor circuits)
The addition of our second factory means delivery in six to twelve weeks on many other G.M Servo Motors and Motor Generators as well; sizes 8 to 18, including other BuOrd items.
*Now Bureau ol Naval Weapons

CIRCLE 242 ON READER-SERVICE CARD

Advertiser

Microtran Co., Inc.
Microwave Assocs., Inc.
Minneapolis-Honeywell Co. 18. 19 19 Minneapolis-Honeywell Co., Aero Div. .. 201 Minneapolis-Honeywell Co., Ordnance Div. 203 Minnesota Mining \& Mfg. Co. 33 Motorola, Inc., Semiconductor Products Div. 140, 141
Mycalex Corp. of America 32

National Cash Register Co., The 198
Natvar Corp. 180 180
Nems-Clarke Co. 208 Nesco Industries. Inc. 137
North Atlantic Industries, Inc. 187

Oak Mfg. Co. 59
Ogilvie Press, Inc. 142
Ohmite Mfg. Co. 4
Paramount Paper Tube Corp. 157
Phelps Dodge Copper Products Corp. 24-B\&C
Philco, Lansdale Div. 9
Philco Corp. 203
Photocircuits Corp. 10
Polarad Electronic Corp. 120-A\&B
Polymer Corp. of America, The 190
Porter Co., Inc., H. K. 177, 207
Powertron Ultrasonics Corp. 171
Quan-Tech Lals. 18
R-F Products, Div. Amphenol-Borg Electronics Corp. Radiation, Inc.
Radiation, Inc. 24-A
Radio \& Materials Div. Cover IV Radio Corporation of America, West Coast Missile \& Surface Radar Div. 173 Ramsey Corp. 149 Rantec 184 Rawco Instruments, Inc. 171

Raytheon Co., Industrial Component Div. 5 Raytheon Mfg. Co., Microwave \& Power
Tube Div. 93
Raytheon Co., Semiconductor Div. 17
Reeves Instrument Corp. 42
Renbrandt, Inc. 192
Rome Cable, Div. of Alcoa 151
Sanders Assocs, Inc. 202
Sarkes Tarzian, Inc. 48A\&B
Shallcross Mfg. Co. 178
Shell Chemical Company Cover II
Sigma Instruments, Inc. 175
Simpson Electric Co. 124, 125
Singer-Bridgeport . 176
Solid State Electronics Co. 164
Somers Brass Co., Inc. 170
Sonotone Corp. 174
Southern Electronics Corp. 191
Southco, Div. of South Chester Corp. .. 184-B Sperry Electronic Tube Div. 112
Sperry Microwave Electronics Co. 132, 133, 138
Sprague Electric Co. 11

Standard Press Steel 181
Stewart, F. W. Corp. Stewart, F. W. Corp. 181
Stromberg Carlson 187 Stromberg Carison . Superior Electronics Corp.

Blower-motor units made to cool radio transmitters involving Klystron tube installations. Peerless Electric meets special dimensional needs with these continuous duty units for unmanned Vortac airline navigation beacons.

BOTH BLOWER AND MOTOR CUSTOMIZED FOR YOU

Do your electronic cooling needs call for air-moving equipment that's unique as to size and performance? Are you looking for a special blower and exactly the right motor to power it? Peerless Electric is your one-source answer for tailormade blower-motor units. For specific information, mail coupon below.

PEERLESS ELECTRIC DIVISION
phT:
H. K. PORTER COMPANY, INC.

PEERLESS ELECTRIC DIVISION, H. K. PORTER COMPANY, INC.
 Dept. 014, Warren, Ohio

Gentlemen:
My cooling problem is

Please send pertinent specification dara sheets.
NAME
COMPANY
ADDRESS
CIRCLE 243 ON READER-SERVICE CARD

Dr. Lucius Cuppington introduces... VERNITEL, heart of hoover's new FM/FM telemetering system that prolongs the life of $\mathbf{F M} / \mathrm{FM}$ systems now in use, improving their accuracy by a whole order of magnitude:

Count Vladimir Butts Binswinger shows...
hoover's new Mixer Amplifier, the palm-sized part of the Vernitel system that helps FM/FM telemetering systems live beyond their income, by prolonging their lives amazingly:

Personalities

at the
HOOVER
ELECTRONICS COMPANY
Booth 59
IRE Symposium on Space
Electronics and Telemetry

Sir Joshua Wormwood Scrubbs offers . . .
hoover's new Millivolt Transistorized Oscillator that eliminates DC amplification from telemetering, allowing from telemetering, allowing and an end to one source of error:

Dr. Herpes Zoster Introduces . .
hoover's new Transistorized Subcarrier Oscillator, for FM/FM telemetering circuits, FM/FM telemetering circuit
offering a linearity within offering a linearity within
0.3% of band-width and a 0.3% of band-width
frequency stability within 1.5 ic

See them at W'ashington's Shoreham Hotel, September 19-21.

HOOVER

ELECTRONICS COMPANY

sunsholary of tme moover company
110 WEST TIMONIUM ROAD - TIMONIUM, MARYLAND

Field Liaison Enginects
Los Angeles, Calijornia

Advertiser -- Page
Sylvania Electric Products, Inc., Electron Tube 144A\&B
Sylvania Electric Products, Inc., Semiconductor Div. 115
Synthane Corp. 25
Technic, Inc. 149
Technology Instrument Corp. 84
Tektronix, Inc. 74
Texas Instruments, Inc. 183
Theta Instrument Corp. 188
Tinnerman Products, Inc. 52
Transitron Electronic Corp. 105
Tung-Sol Electric, Inc. 95
Ultradyne, Inc. 158
Union Switch \& Signal Div., Westinghouse Air Brake Co. 126, 127, 174
United Electro Dynamics, Inc. 205
Unitek, Weldmatic Div.
Valpey Crystal Corp. 28
Varian Associates 89
Vector Manufacturing Co. Inc. 65
Vickers, Inc. 91

Waters Manufacturing, Inc. 50, 159 Westinghouse Electric Corp., Electronic Tube Div. Whitworth Aircraft Ltd., Sir W. G. Armstrong 30
Whitso Inc.
143
Wiancko Engineering Co. 147 Wright Machinery Co. 62

Zacharias Electronics Corp. 188

Advertising Representatives

ADVERTISING SALES MANAGER: Bryce Gray, Jr., NEW YORK: Owen A. Kean, Robert W. Gascoigne, Richard Parker, Blair McClenachan, James P. Quinn, Ralph Richardson, Donald J. Liska, Charles J. Stillman, Jr., 830 Third Avenue, PLaza 1-5530; CHICAGO: Thomas P. Kavooras, Berry Conner, Jr., Fred T. Bruce, 664 N. MichConner, Jr., Fred T. Bruce, 664 N. Mich-
igan Avenue, SUperior 7-8064; LOS igan Avenue, SUperior 7-8064; LOS
ANGELES: John V. Quillman, Wayne Stoops, 3275 Wilshire Blvd., DUnkirk 2-7337; SAN FRANCISCO: Stanley I. Ehrenclou, 292 Walter Hays Drive, Palo Alto, DAvenport 1-7646; SOUTHEASTERN: Pirnie \& Brown, Morgan Pirnie, Harold V. Brown, G. H. Krimsier, 1722 Rhodes Haverty Bldg., Atlanta, Ga., JAckson 2-8133; LONDON EC4: Brad Nichols, 151 Fleet Street.

> regulated... isolated... transistor

POWER SUPPLIES

 for STRAIN GAGESContinuously variable output ranges in 6 standard models from 0 to 30 v and 0 to 200 milliamps at input of 117 v (95-135) 60 cps.

Noise level across a grounded 350 ohm bridge only $1.00 \mu \mathrm{v}$ peak-topeak typical. Line voltage regulation 0.03% and load regulation 0.03% no load to full load. Isolation $0.04 \mu \mu \mathrm{f}$ of capacitive coupling to AC power line. Other specifications: also excellent. Immediate delivery with guaranteed performance.

Write today for our sales data sheet and name of nearest representative.

COMPUTER
ENGINEERING
ASSOCIATES, INC.
350 North Halstead • Pasadena, Calif. ELgin 5.7121
CIRCLE 245 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 14, 1960

PAGES MISSING ARE NOT AVAILABLE

[^0]: Electrical Products Division
 Mimmeota Mimine ame Manuractunime company $3 \mathbf{M}$

[^1]:

[^2]: *Minimum available delay at output
 **Pulse rise time at termination of delay line

[^3]: Low－Cost commercial circuits．Made
 from CDF＇s paper－based Di－Clad copper－
 clad laminate．

[^4]: Micropot Potentiometers - Turns-Counting Microdials - Sub-Fractional Horsepower Motors - Frequency and Time Standards

