

Sidelights of the Issue

Reod All About It!

For a long period of time now, ELEC. TRONIC DESIGN has been expanding is news coverage to give the reader wider and better knowledge of the week-by-week happenings in the design field.
We have devoted progressively more space to news; we have published an increasing number of reports in depth on design opportunities in fields such as oceanography and anti-submarine warfare. Our news reports have tried to keep on top of the latest developments and we have tried to show in each story the significance of the event to the design engineer.
Beginning with this issue, we are inaugurating another service. By a special arrangement, we have pushed back the deadine for a number of pages in our News department, so that developments can be reported days later than was previously possible. What this means to the reader is that the copy of ELEC. TRONIC DESIGN which he reads will contain not only fresher news, but that ED's editors will have severat more days in which to dig for information and to develop stories. This, we believe, will help make our news coverage more pointed and more informative than any other publication's.

Dust off that Computer

Too often, in electronic design, have engineers let one of their best tools gather figurative dust. The tool, of course, is the digital computer. To help overcome this oversight, ED has gotten together a roundup of digital computer applications by design engineers.
In presenting this roundup, we have tried to depart from the usual method of treating a specific application in depth. Rather, we have gotten together dozens of applications in breadth, in the hope that even those engineers who don't find their particular problems listed to think about-Designing with Digitol Computers. The article begins on p tol
28.

Folding the WESCON Tent

Now that the WESCON dust has cleared and we have had time to collect our thoughts a bit, we have gotten logether two reports on the show. One appears in this issue beginning on p 8 ; the other will appear in our Sept. 14 issu:. To those of you who found time to crop by the ED booth in Los Angeles, it vas good to see you. To those of you who couldn't make it, see you at the RE Show or next year at WESCON.

Circle 2 on reader-service card >

WHICH 0 YOU NEED?
 LONG LIFE

You Get Them All With The Raytheon CK6611 and CK6612

There's no need to compromise when you design Raytheon CK6611 or CK6612 into your RF stages. These fully shielded, subminiature pentodes are specially designed for battery-operated communication applications where high input impedance and maximum gain along with low filament drain are required.

Military specification approval and Raytheon's intensive quality control program assure the ability of both types to meet and surpass vibration, shock, fatigue, and life test requirements. Average life expectancy, for example, is in excess of 5,000 hours. Excellent uniformity of characteristics and availability are the result of Raytheon's special production facilities and long experience in manufacturing these types.
For technical data on the CK6611 and CK6612 please write to: Raytheon, Industrial Components Division, 55 Chapel St., Newton 58, Mass.
For Small Order or Prototype Requirements See Your Local Franchised Raytheon Distributor

CHARACTERISTICS AND TYPICAL OPERATION - CLASS $\boldsymbol{A}_{\mathbf{1}}$ AMPLIFIER

	Filament Voltage (dc)	Filament Current	Plate Voltage	Grid \#2 Voltage	Grid \#1 Voltage	Transconductance
CK6611	1.25 volts	20 mA	30 volts	30 volts	0^{*}	$1,000 \mu \mathrm{mhos}$
CK6612	1.25 volts	80 mA	30 volts	30 volts	$0^{* *}$	$3,000 \mu \mathrm{mhos}$

*Grid Resistor $=5$ megohms
*Grid Resistor = 2 mezohms

RAYTHEON COMPANY

with the New Smith-Florence Chuli-Sunction IRE Meter

This versatile new instrument combines all the desirable functions of a multimeter, vacuum tube voltmeter, and exceptionally wide range $A C$ and $D C$ ammeter in one space saving, easy-touse package. Truly the design engineer's answer to bench clutter, the Smith-Florence Model 810 takes the measurements you make most for only $1 / 3$ the cost of comparable instrumentation. And These Features, Too-Individually illuminated ranges controlled by the positioning of the function switch. Two calibrating output voltages: 1 vdc and 1 vac rms square wave controlled by a zener reference circuit to an accuracy of $.1 \%$. Scope and recorder output. 1 mc dbm scale for audio work. Measures two functions simultaneously. Rack mounting at no extra cost.
OTHER INPUT IMPEDANCE, 10 megohms - POWER REQUIREMENTS, 117 vac SPECIFICATIONS $\pm 10 \%, 50.60 \mathrm{cps}$ - DIMENSIONS, $13^{\prime \prime} \mathrm{W} \times 77^{\prime \prime} \mathrm{H} \times 13^{\prime \prime} \mathrm{D}$ (cobinet) $19^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{H} \times 13^{\prime \prime} \mathrm{D}$ (rack) • WEIGHT, 18 lbs . sentative, or write the foctory. DEPI is

SMITH-FLORENCE, INC.

4228-36 23RD WEST - SEATTLE 99, WASHINGTON - ATWATER 4.0170 Another New Instrument For The Sixties From Smith.Florence

CONTENTS FOR AUGUST 31, 1960 VOL. 8 NUMBER

Consider The Digital Computer 21 An Editorial

A Special Section

Designing With Digital Computers
An Electronic Design Staff Report with dozens of computer applications by electronic design engineers

Computer-Prepared Tables Enable Design of Ultra-Flat Networks
Practical design data for ultra-flat networks -P . Geffe

Stripline Technique Produces A Simple 3-Db Directional Coupler Twenty-db isolation achieved over 30 per cent frequency range-J. R. Dent
Flow Graph Speeds Transistor Circuit Analysis
A simple drawing enables the designer to keep track of what's going on electrically in a transistor circuit-T. R. Nisbet

Coming Next Issue

In this ever-expanding industry, a new word has begun to be bandied about with ever-increasing frequency. The word: bionics The specialists at the Wright Air Development Division define it as: "The science of systems which function after the manner of, or in a manner characteristic of or resembling living systems." ELECTRONIC DESIGN, in the Sept. 14 issue, will present a full-scale report on this new specialty in electronics. We will show how design engineers are applying the knowledge of biology and biological techniques to the design of electronic devices and systems.
Our report on bionic systems will take the reader into this new electronic area and show him how engineers are working to deelectronic area and show him how engineers are working to develop adaptive or self-organizing mechanisms under biological in-
spiration. Remember the name, then-bionics. And remember to spiration. Remember the name, then-bionics. And remember
read about it in the Sept. 14 issue of ELECTRONIC DESIGN.

ELECTRONIC DESIGN
 Moydon Publishing Co．，Inc．
 d30 Third Avenue，Now York 22， N Y

Power－Sensing Circuit Protects New Line of Power Supplies Against Overload 56
Circuit measures power being dissipated in regulating transistorsSolid－State Pressure Transducer58
Represents a 10 －fold increase in the state of the transducer art4
WESCON Opens in Los Angeles with Parade of Products 4
Reader Described at AIEE Meeting Uses Rotating Rasters 10
Engineers Put Echo Balloon Satellite to Work 12
Image－Tube Development Aids Astronomers 15
Chicago Traffic Plotter Puts Traffic Data Onto Tube 18
Signal Corps Orders Radios to Replace Three Current Models 25
Washington Report 22
New Products 60
New Literature 88
Ideas for Design 92
Letters 94
Careers 98
Your Career 98
Advertisers＇Index 103
$N B P$ BPA

Elet rronic design is published bi－weekly by Hoyden Publishing Company，Inc．， 830 Third Avenue．New York 22， NY ． I R chord Goscoigne，Choirman of the Boord．Jomes 5 ．Mulholland，Jt．，President．Printed of Aildreth Press Bristol，Connt Acceited os controlled circulation of Bristol，Conn．Additional entry．New Yorkt，N．Y．Coprright 1960 Hayden Publishing Em：any，Inc．， 36657 copies this sisue

tune the piano all at once．．．

The piano tuner hasn＇t been born who can tune two keys at the same time ．．．
and strangely enough，we haven＇t sold a one of them a Wobbulator． But for electronic tunesmiths，
it＇s a different thing ．
The Wobbulator，an excellent example of Canoga＇s $R \& D$ originality，literally tunes＂the whole piano at once＂． The Wobbulator is a swept frequency signal generator which affords a new approach to vertical amplification． Best of all，it takes the place of several other instruments．

In radar systems ．．．missile range instrumentation．．．microwave telemetry ．．． microwave components ．．．missile checkout and launch equipment ．． and test equipment
¢ローローセ
CANOOA／A SUBSIDIARY OF THE UNOERWOOD CORPORATION

CIRCIE 4 ON READER－SERVICE CARD
Elt CTRONIC DESIGN • August 31， 1960

Courier Ready for Second Launch Attempt

Communications Satellite Payload on Hand;
 Try May Be Made Before End of September

\mathbf{A}^{s}SECOND attempt to orbit a Courier communications satellite is likely to be made before the end of September. Failure of the first shot has not materially slowed the project. Philco's Western Development Div., prime contractor for the payload, had readied three complete Courier satellites and has components on hand for a fourth one.
Reliability via the "Put in two of everything" method characterizes the design of Courier's electronic payload and tracking stations. The result is the most heavily instrumented satellite yet attempted, with 38 separate electronic packages crammed into the $51-\mathrm{in}$. dia. sphere. Courier's insides include:

- Five tape recorders
- Four UHF transmitters
- Four UHF receivers
- Two VHF telemetry transmitters
- Two VHF tracking beacons
- Two VHF telemetry receivers
- Two independent battery-solar cell power supplies.

On the ground, redundancy of components and methods is also specified. The tracking stations, designed by ITT Laboratories, each include four UHF and two VHF receivers. The tracking antennas, supplied by Radiation Inc., can be operated in three different modes-manual, programed scan, and automatic tracking-to maintain contact with the satellite.

Real Time Communications Also Planned

Courier's mission of proving the feasibility of active communication satellites has two aspects. In addition to its much publicized function as a
delayed repeater or "mail" pouch satellite, Courier can also operate as a real time repeater.
As a delayed repeater, Courier provides the equivalent of twenty 100 wpm teletype channels. The five 30 ips single track tape recorders have a total storage capacity of 15 megabits. Four recorders are equipped to handle NRZ teletype signals at 15 kilobits per sec. The fifth recorder will be used in experimental voice and analog transmissions.

Two-Way Transmissions Over UHF And VHF

Simultaneous two-way communication between Courier and the tracking station takes place both in the 100 to 150 mc band and in the 1700 to 2300 mc band. The lower frequency band is used for tracking and telemetry; the UHF band carries the actual message transmis

Courier ground station data flow. Message handling is by UHF transmission: telemetry is by VHF using a PAM/FM/FM system. Multiple receivers provide frequency and add redundancy for reliability. Between passes, the entire system can be checked out by aiming antenna at a transponder mounted on a tower some 200 feet distant. Ground station thus "talks to itself" to test all sub-systems in all operating modes.

Courier payload is characterized by redundant components for increased reliability. Simplified block diagram includes only a part of the 38 electronic packages in the vehicle. In addition to redundant transmitters and receivers, tape recorders and power supply can also sustain failure of individual units without interrupting communications

Feed system for Courier tracking antenna. Dome at front houses spinning dielectric lens which scans signal to provide error data for automatic tracking. Feed path for VHF is through the four extended arms; UHF is fed through waveguides down center of unit. Antenna and tracking gear is by Radiation, Inc., Melbourne, Fla.
sions and most of the ground-to-satellite commands. VHF transmissions are at approximately 100 w and UHF transmissions are at about 1 kw .
The two VHF receivers at the ground station operate together to provide polarization-diversity reception. The four UHF receivers operate together to provide both polarization and frefucney diversity reception.
The UHF receiving system employs a fourfold diversity combining scheme. Polarization diversity is accomplished with two predetection phase combiners; baseband combining is used for frequency diversity.

How Courier Is Tracked

Novel design techniques are used to facilitate acquisition and tracking of Courier. The satellite is equipped with two 50 mw VHF beacons which transmit continuously between tracking stations. The horizon sector at which the satellite is epected to appear is illuminated by the ground station antenna, operating at VHF. When the satellite's beacon signal is detected, a coded

New Developments Unveiled At WESCON

IN LOS ANGELES' Sports Arena last week, WESCON opened for thousands of exhibitors and visitors. On p 8 of this issue, ELECTRONIC DESIGN covers some of the main developments of the big event. Another, and bigger, story will be forthcoming in the Sept. 14 issue.
(picture of a KIN TEL differential amplifier at work)

6 volts of 602 common-mode noise and 6 millivolts of signal in here

2 microvolts of $60 \imath$ noise (equivalent input) and σ volts of signal out here

If you measure the output of thermocouples, and the thermocouples are bonded to a rocket engine or almost any other grounded object and the distance between thermocouples and amplifers is more than a few feet, you should consider the above illustration carefully. While we'll admit your thermocouples probably aren't producing square waves, nine chances out of ten you do have a problem with 60 -cycle common-mode noise. Nearly everybody does.
What can be done about it? Well,KIN TEL differential amplifiers reject ruinous 60 -cycle common-mode hum and noise by a factor of $\mathbf{3 , 0 0 0 , 0 0 0}$ to 1 with any unbalance up to 1000 ohms in series with either side of the input, $1,000,000$ to 1 with 10,000 ohms unbalance. Rejection for DC is practically infinite and both input and output can be floated up to ± 300 volts DC or peak AC. The secret of this exceptionally high common-mode refection in the presence of high input unbalance is isolation. Input signal terminals are isolated from chassis ground by $10,000,000$ megohms and 0.6 micromicrofarads. Input and output signal terminals are completely isolated from each other. Output signal terminais are isolated rrom ground to almost the same extent as the nput. With this virtually perfect mode noise regardless of whether load and transducer are foating or grounded balanced or unbalanced

Before you send us that letter...the input scope photo is a double exposure. The square wave input signal was taken with the scope connected across points 1 and 2 (see drawing below) with $5 \mathrm{mv} /$ division sensitivity. To show the nolse. the scope was connected between points 2 and 3 , and sensitivity was $1 \mathrm{v} / \mathrm{d} / \mathrm{l} / \mathrm{s} / \mathrm{on}$. The scope on the output was set for $1 \mathrm{v} / \mathrm{d} / \mathrm{l} / \mathrm{s}$ lon sensifivity and. of course, no nolse is evident.

Specifications other than common-mode rejection are equally impressive. Linearity is 0.01% of ful scale (10 volt) output for either polarity, 0.02% scale (10 volt) output for either polarity, 0.02%
of full scale for plus-to-minus or minus-to-plus of full scale for plus-to-minus or minus-to-plus polarities. Equivalent input arift is less than $2 \mu v$; Input impedance is 30 megohms, output impedance less than 0.25 ohms . Standard bandwidth is less than 3 db down at 80 cps , and the amplifier settles to within 99.9% of final value within 50 milliseconds for an output change of 5 volts. Plugin input and output filters allow bandwidth options from 3 cps to 120 cps , transient response as good as 25 milliseconds. Gain is 10 to 1000 in 5 steps. A front panel vernier control provides 1 to greater than 3.3 times continuous adjustment of each gain step. Gain stability is $\pm 0.05 \%$. Output capability is 10 volts at 10 milliamps. Ampliners have integral power supplies. Enclosures include mix-amplies and ports

To meet your oxact requiremente at minimum cost, iwo models ane now avallablo; the 11tA at S776, and the 114C (described) at Se7s. Dellvery on both models is currently from stock. Write for dotalled fechnical data or a demon. stratlon. Engineoring roprosentatlves in all major chties.

KINTEL

OOHU
5725 Kearny Villa Road, San Diego 11, California Phone: BRowning 7-6700.

HIGH VOLTAGE POWER SUPPLIES ${ }^{n}$ news

JOHN FLUKE precision High Voltage Power Supplies offer complete coverage up to 10 KV . In addition to high calibration accuracy, tight line-load regulation, fine voltage resolution, and excellent long term stability; many other plus features are pro vided the design engineer. For example difficulties resulting from corona, jitter, bounce or overshoot are non-existent in jf supplies. The capability of the John Fluke Co. to keep pace with industry demand is instruments have been introduced within the past year.

MODEL	VOLTAGE	CURRENT	regulation		$\begin{aligned} & \text { STABILITY } \\ & \text { PER HOUR } \end{aligned}$	MAX. RIPPLE	RESOLUTION	PRICE
			LINE	LOAD				
4081	170-1530V	0.3 ma	0.01\%	0.4\%	$\begin{aligned} & 0.02 \% \\ & \text { (Per Day) } \end{aligned}$	0.002\%	85 V steps	\$335.00
402m	500-1600V	0.1 ma	0.03\%	0.03\%	0.01\%	5 mv	100 mv	\$320.00
412A	500-2010V	0.15 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$455.00
405	600.3100V	0.15 ma	0.01\%	0.005\%	0.005\%	5 mv	10 mv	\$595.00
4081	500.6010	O-20 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$695.00
4104	1000-10.010	0.10 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$1095.00
All prices quoted, F.0.B., Factory, Seattle. Prices and technical data subiect to change without notice.								
JOHN FLUKE (7i)			MANUFACTURING CO., INC. P. O. BOX 7161, SEATTLE 33, WASHINGTON					

command from the ground station switche, Courier from the "standby" to the "active" mode. The satellite's VHF transmitter begins to telem eter, the beacons are shut down, and Courier s UHF transmitters are warmed up.

Upon receipt of VHF signals from the satellite, the ground station places the tracking antenna into a "sector scan" mode. In this mode the dish continuously scans an azimuth sector of about 10 deg , thus maintaining some contact with the satellite at all times. About 40 sec thereafter, Courier's UHF transmitters come on the air; receipt of UHF signals automatically stops sector scanning and places the antenna in an "automatic tracking" mode.

Spinning Lens for Automatic Tracking

A spinning dielectric lens conically scans the secondary pattern of the antenna. Rotation at 1800 rpm gives a 30 cps amplitude modulated signal which is compared by a phase demodulator against 30 cps signals from a reference generator. Demodulator output provides error signals to the servo system which keep the antenna pointed at the satellite.
The 28 -foot dish has a slew speed of 15 deg sec and an acceleration rate of $12 \mathrm{deg} / \mathrm{sec}$. Pointing accuracy is 0.5 deg. at maximum slew speed and increases to 0.25 deg at slower rates. Beam widths are 18 deg at VHF and 1.3 deg at UHF.
The antenna handles simultaneous two-way transmission between satellite and ground. A four-channel rotary joint in the antenna feed provides continuous signal paths for each of two orthogonally polarized signals for azimuth and elevation movement of the antenna. Transmission from the ground is circularly polarized.

Tape Recorders Read Out In Reverse

With the satellite acquired and automatically tracked on UHF, message handling begins. The satellite tape recorders, loaded with messages from another station are played back in reverse. Simultaneous two-way digital transmission is thus limited to the capacity of two recorders as two units are recording while two units are read out. There is, however, enough time during a pass to permit separate readout and recording of all four tapes if necessary.

The four UHF satellite receivers feed a baseband diversity combiner which mixes the inputs and essentially accepts the signal from the one receiver having the most favorable signal-tonoise ratio. Individual receiver failure does not interrupt communication.

The four UHF satellite transmitters operate in pairs, with one pair providing redundancy in the
ent of failure. Each of the two operating reivers are tuned to slightly different frequencies and are connected to separate antennas. Each 1ransmitter has an output of 8 watts, provided hy a planar triode of the 2C39 family. The four UHF transmitting tubes are the only tubes in (ourier.

Satellite functions, including real time or delayed message handling, are controlled by 21 different ground commands. The initial command, which prepares the satellite for message handling, is transmitted on VHF as Courier crosses the horizon. The two VHF receivers in Courier are alternately turned on for 1 sec and off for 9 sec. As soon as either unit recuives a properly modulated signal, it is locked into the circuit and the switching is discontinwed.

Telemetry Acknowledges Commands

Commands received on either VHF or UHF are acknowledged by keying of the lowest subcarrier oscillator in the VHF telemetry system. Six additional IRIG subcarriers, each commutated five times, provide 30 telemetry channels. Battery voltage, tape positions, transmitter power, received signal strength, and temperatures are among the information telemetered. However, four channels are redundant, giving a total of 26 telemetered parameters. Two telemetry transmitters, (one a spare) are installed. Each has an output of 1.5 w . Peak frequency deviation is $\pm 6 \mathrm{kc}$.
After message handling is completed, a final command shuts down the UHF and VHF transmitters and turns on the beacons. However, if tracking is interrupted at any time during the message, the satellite automatically returns to standby and turns on the beacon transmitters.

Power Supply Details

Total power consumption of Courier is 225 watts in the active mode and 10 watts in standby. Power is supplied by 19,152 silicon solar cells which charge two 12 amp-hr $28-v$ nickel cadmium batteries. Average output of the cells is about 70 w which permits a duty cycle exceeding 10 per cent.
The cells are wired in series strings of 84 cells each. Two independent arrays of cells can be arranged to charge either or both batteries. In the event one battery is disabled, all cells are switched to the surviving battery and satellite operation continues without interruption.
Four VHF antennas consisting of flexible steel probes are mounted around the equator of the sate llite. Each antenna is fed by a separate transmit er. UHF antennas are notched fin assemblies mointed at opposite points of the satellite along its , quator. = -

SILICON TRANSISTOR

 CONTROLLED OVENWhere ever temperature variations affect the "percentage" of heat required to maintain efficient operation, the new Bulova proportional control oven eliminates temperature cycling, RF interference noise, surges of oven power, and the drift of temperature differential due to aging. The oven temperature can be set to an accuracy of $\pm .5^{\circ} \mathrm{C}$ and has a range of $+40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

The stepless control of the Bulova pro portional system is accomplished by two highly stable Bulova dev sitive bridge, and (2) a transistorized amplifier supplying Department 1771. Bulova Electronics, Woodside 77, Now York.

CIRCLE 7 ON READER-SERVICE CARD
power proportional to the output of the bridge. Thus any unbalance created by resistance changes is amplified and conveyed to the heater . . . which receives only enough power to take care of heat loss with a $.01^{\circ} \mathrm{C}$ stability or better. DC propor tlonal control is employed to eliminate any interference of oven control circuitry with the internal circuitry.
If you'd like more information on how the Bulova proportional control oven can extend the life of your units

High Repetition Rate PULSE GENERATOR at same LOW COST

Rutherford moos $B-7 B$

HIGH PERFORMANCE and WIDE VERSATILITY
50 volts into 50 ohms at 30% duty factor . . . rep. rate to 2 mc. . . . widths .05 यs to 10,000 यs . . delays to 10,000 यs . .
New features for:
LONGER LIFE • EASE OF MAINTENANCE and OPERATION

- Printed Circuit Boards with all components clearly identified by schematic symbol numbers
- A new stabilized noise-free repetition rate section
- Variable rise time control
- Rack mountable-new single unit construction
- Dual-purpose fan for more efficient cooling

OTHER SPECIFICATIONS:

Rise Time: 15 mus - Fall Time: 15 mus • Attenuation: 50 db in 10 db steps, 20 db continuous control - External Trigger: ± 10 volts min. - Syn. Out (Synchronizing pulse): . 05 us wide, 25 volts amplitude. lags trigger in by 2 us - Size: $19^{\prime \prime}$ wide $\times 83 / 4^{\prime \prime}$ high $\times 12^{\prime \prime}$ deep. Weight: 35 lbs. P Power: $105 \cdot 125$ volts, $50-60$ cycles, 350 watts, 5 amps. Low Budget Price: $\$ 720.00$ F.O.B. Culver City, California.

Investigate Rutherford's complete line of Pulse accessories designed to fit all requirements. Write for our catalog sheet.

ENGINEERS: If your field is Pulse Circuitry Design, a bright future awaits you al Rutherford Electronics Company. Send resume to

Glen Stout, Personnel Director.
 "\#\#\#\#1
 utherford

ELECTRONICS CO.
Dept. ED 8318944 Lindblade Street . Culver City, California pulse generators / pulse systems / accurate time delay generators circie e on reader-service card

NEWS

WESCON Sets A New Tone

A ban against recruiting in the exhibit hall and a conspicuous absence of gimmicks were outstanding characteristics of the largest show yet staged by WESCON.

The 987 exhibit booths in the uew Los Angeles Memorial Sports Arena and heavy schedule of provocative technical sessions offered a busy four days for what was estimated would be an engineer attendance in excess of 35,000 .

As if to further emphasize the break with the past as evidenced by the ban on recruiting and special efforts to enliven technical sessions, WESCON management dispensed with opening ceremonies.

Although there was no recruiting on the convention floor, it was too early when this story was written to determine the extent to which it would be carried on outside the arena. Some hotel suites had obviously been reserved for recruiting purposes. Still WESCON officials felt that their "gentleman's agreement" ruling out recruiting would establish an important precedent for industry conventions.

Dr. Eberhardt Rechtin, Telecommunication Division Chief at Jet Propulsion Laboratories, was awarded the 1960 Achievement Award of the 7th Region of the IRE. He is currently directing construction of the U.S. deep space tracking net.

A number of technical products

Microminiature fast-switching transistor announced by TI was one of the advances shown at WESCON.
not disclosed in pre-convention ar nouncements were unveiled ol opening day. Hughes Aircraft cre ated considerable interest by show ing a "parametric transistor" in the firm's hotel suite. The development tal model, a pooling of the talen of Lenkurt Electric Co.'s Dr. Vladi mir Vodicka for the circuit design and Hughes Semiconductor's Ranic Zuleeg for the transistor, was ope ${ }_{i}$ ating as a mixer-oscillator at fou kme.

Key to the success of the tran sistor mixer-oscillator was a circui designed at Lenkurt's advanced de velopment group by Dr. Vodick last February. Basic circuit is an oscillator with the entire input in pedance of the transistor being varied for efficient amplification o the input signal. The input of the transistor is current-tuned.
"This development should help to reduce the size of microwave re ceivers, lead to pocket radios handy talkies and has many appl cations in telemetering, and fre quency diversity-with possibilitie of simultaneous operation on fun damental and harmonic frequen cies," Mr. Zuleeg told ELEC TRONIC DESIGN.
Four semiconductor manufactur ers, by announcing the availability of microtransistors in rapid succes sion, have started the bandwagor rolling. Pacific Semiconductors, Inc showed their micro- and pico-tran sistor versions as at the IRE shon in New York last March, wher they announced prototypes. Texa Instruments had silicon mesa tran sistors bearing the company nam "Micromesa." From Rheem Sem conductor came the announceme of "Microbloc," another silico mesa type. Sylvania showed "pan cake transistors," germanium alld switching units. According to Sy vania, they chose the germaniu alloy type to build because it w the most difficult. Sylvania plans market the 0.070 in . high by 0.2 in. diameter devices as a standar case size.

Sulti-layer circuit boards, a de lopment of Litton Industries, cre a major WESCON attraction. 1 or details, see story on page 20 .) Among other new products on vew were Vitramon's minute cap.icitors which the company ${ }^{c}$ laimed were the first capacitors of such small size to be encapsulated iil pre-molded cases. Vitramon said the miniature diallyl phthalate plastic cases had passed tests for reliable and superior performance imder adverse conditions
American Optical Co. made its debut in the electronics instrument market with a new recording system. Called the Trace-Master, the system has been under development at the company's Instrument Div. in Buffalo, N.Y., for two years. The system operates at an amplitude of 4 cm . The "band-amplitude" product-bandwidth times ampli-tude-is nearly six times as high as previously attainable. Each of the eight independent modules can be set up, by means of plug-in modules, for accommodation of a wide variety of inout signals.
A new line of portable oscilloscopes, completely transistorized, that operate on internal, rechargeable batteries, ac power, or lowvoltage dc, were put on view by Electro Instruments, Inc., San Diego. The instruments weigh as little as 2 lb and measure $2-3 / 4 \mathrm{x}$ $3-1 / 4 \times 5-1 / 2$ in
Spectrol had hardware samples of its Model 80 subminiature trimming potentiometer line on display Corning Glass Works' electronic components department at Bradford, Pa., came up with 5 per cent tolerance, 1- and half-watt film reistors, priced at about 6 cents each lots of 5,000 .
The Data Instruments Division of tlecomputing Corp., N. Hollywood, Calif., showed the Tranqualizer, an instrument designed for onine compensation of transducing y tems with previously determined arameters.
「his account of WESCON highlights, as noted on the opening day If the show, will be followed by a It tailed report in the Sept. 14 issue.

CIRCIE 9 ON READER-SERVICE CARD *

THE TRANSISTOR FOR 100 mc COMPUTER CIRCUITS

Philco's new 2N769 is the world's fastest commercially available fastest commercially available
switching transistor! This new addition to the Philco line of MADTs
features an 800 mc gain bandwidth features an 800 mc gain bandwidth product, low hole storage factor, and low emitter and collector diode and low emitter and collector diode
capacities. It is intended for use in saturated switching circuits at
switching rates up to 300 mc . saturated switching circuits at
switching rates up to 300 mc . For complete information, write Dept. ED 83160

ABSOLUTE MAXIMUM RATINGS				
Storage Temperature ... $100^{\circ} \mathrm{C}$				
Collector Voltage, Ve8s . 12 volis				
Collector Yolitage, $\mathrm{V}_{\text {ces }}$. 12 volits				
Collector Voltage, VEEO -7 volis				
Emithor Voltage, VEBO . -2 volts				
Collector Current, Ic . -100				
Device Dissipation @ 25°				
ELECTRICAL CHARACTERISTICS ($\mathbf{T}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)				
Characteristics	Condition	Min.	Typ.	Max.
Collector Cutoff Current, Icao	$V_{C B}=-5 v$			-3 \quad a
Current Amplification Factor, $\mathrm{h}_{\text {fo }}$	$V_{\text {CEE }}=-0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-20 \mathrm{ma}$	25		
Collector Saturation Voltage, VCE (SAT)	$\mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}, \mathrm{I}_{\mathrm{g}}=-1 \mathrm{ma}$			-0.24 volt
Base Input Voitage, YBE	$\mathrm{I}_{C}=-10 \mathrm{ma}, \mathrm{l}_{\mathrm{B}}=-1 \mathrm{ma}$	-0.30		-0.45 volf
Output Capacitance, $\mathrm{Cos}_{\mathrm{ob}}$	$V_{\text {cs }}=-5 v_{1}, I_{E}=0$			
Gain Band-Width Product, it	$V_{C E}=-5 v^{\prime}, l_{E}=7 \mathrm{ma}$	600	800	mc
Hole Storage Factor, K^{\prime} s	$\mathrm{l}_{\mathrm{B}}=-2 \mathrm{ma}$		15	$30 \mathrm{~m} \mu \mathrm{sec}$
Emither Transition Capacitance, $\mathrm{C}_{\text {TE }}$	$V_{E E}=-1 V_{1} l_{c}=0, f=1 \mathrm{mc}$		5	$8 \mu \mu^{\prime}$

Immediately available from your Philco Industrial Semiconductor Distributor.

PHILCO.
 EP Samous for Qualliy the World Over

LANSDALE DIVISION • LANSDALE, PENNSYLVANIA

NEWS

New IBM Optical Reader|ls

System Uses Rotating Rasters To Recognize Written Characters

DESCRIPTION of a rotating-raster characterrecognition system under development for two years by International Business Machin s Corp.'s San Jose Products Development Laboratory was one of the high points of the recent Pacific General Meeting of the AIEE in San Diego.

A round-table discussion of radiation effects, a survey of the radiation resistance of many electronic components by two Bendix researchers, and a group of three radiation-effects symposia added emphasis to this topic during the four-day conference. Electronic reactor controls, solid-state devices, radio communication systems, and computing equipment also played majo roles during the meeting. Power-source technology, with emphasis on solar converters, was also a major topic.

The IBM rotating-raster system has been used to identify both machine and hand printed numbers according to R. W. Weeks of the Products Development Laboratory.
Identification was performed by means of statistical probabilities based on the number of times selected straight lines in an inclined TVlike raster intersected an unknown character. The raster was rotated to different angles so that various distributions of crossings were obtained for making a decision. IBM researchers used six lines in the raster, evenly spaced across a character, with six different inclinations in order to obtain 36 matrices-one for each scan line.
Each matrix consisted of 40 elements, one element for each digit, 0 through 9 for each type of possible crossing-that is zero, one, two or three. For the 36 scan lines this gave a total of 1440 individual statistics for the recognition process. These statistics were gathered by scanning a great number of machine and hand-written characters, and the numbers for each element ranged from zero to the total number of samples used. These data were normalized to a $1,000-$ sample norm and then converted to logarithms for ease in computation after a one was added to each value to eliminate zeros.
To identify an unknown character a set of 10 accumulators, one for each of the digits 0 to 9 , was used to reach a decision. For each of the 36 lines used a single value from the appropriate column of the matrix for that line was stored in each of the accumulators.
For example, referring to the table, if a pirr-

Six scan lines are shown crossing the figure 8 at iwo different inclinations. Number of crossings for each scan line at six inclinations were used in making identi fications. Box around the number is invisible to the scanner.
ficular one of the 36 lines crossed an unknown character two times, then column 2 of the matrix would be selected. This means that 0.98 would be stored in the 0 accumulator, 0.1 would be stored in the 1 accumulator, and so on through the column with 0.5 stored in the 9 accumulator. These logarithmic probability values are summed over the 36 lines, and then the accumulator with the highest total value identifies the character being sensed.
Selection of the six lines in the raster to use at each of the six angles was performed by a logical technique using an IBM 650 computer. The first line to cross a character and the last line to cross the character were determined, and the lines in between these were divided into seven equal groups. The last line in each of the first six groups was used.
In order to prevent the machine from making false decisions a reject level was set, so that the accumulator with the highest sum had to have a certain amount higher total than the next highest accumulator for a decision to be made.
With machine-printed characters no rejects were encountered, and 100 per cent recognition was obtained
Hand-written characters were obtained by having a group of college students write numerals inside of small rectangular boxes. The students were instructed to approximately fill the boxes and an example of the type of character to print was given to them. No rejects were encountered, y: per cent of characters were identified correctly, and 8 per cent errors resulted. Various terhniques for overcoming the high error rate with the hand-written characters were attempted, but little improvement could be obtained
I machine was designed to accomplish the ch uracter recognition process using about 250 tri. nsistors, 132 magnetic cores, and about 1500 one per cent tolerance resistors. - -

EIECTRONIC DESIGN • August 31, 1960

MADT ${ }^{*}$ transistors from Sprague*

for the highest r-f operating frequency of all mass-produced transistors
for the fastest switching time of all mass-produced transistors
for storage temperatures up to $100^{\circ} \mathrm{C}$

DESIGN AROUND SPRAGUE MICRO-ALLOY DIFFUSED-BASE TRANSISTORS

available now at sensible prices you can afford!

Sprague Germanium Micro-Alloy Diffused-Base Transistors, well-known for their rugged vhf performance, are now priced below otber trausistors with comparable electrical characteristics. In many areas, this permits designers to improve circuit techniques without necessarily increasing costs. Expanded production facilities enable us to shïp quantity orders on short notice. Add to this their ultra-fast suitching time, and you have three good reasons why Sprague MADT ${ }^{*}$ Transistors have achieved their high level of acceptance.
With Sprague Transistors, circuits in vhf amplifiers and oscillators can now operate with collector currents as high as $50 \mathrm{ma} .$. with power dissipation up to $50 \mathrm{mw} .$. with collector to base voltages to 15 v . They have been application tested through the entire military electronics vhf spectrum.
The application table may well suggest the use of one or more Micro-Alloy Diffused-Base Transistor types in your latest circuit designs.
*Sprague micro-alloy, micro-alloy diffused-base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type numbers are manufactured to the same specifications and are fully interchangeable.

MICRO-ALLOY DIFFUSED-BASE TRANSISTOR APPLICATIONS	
Type	Application
2N499	Amplifier, to 100 mcs
2N501	Ulitra High Speed Switch (Storage Temperature, 85 C)
2N501A	Ultra High Speed Switch (Storage Temperature, 100 C)
2N504	High Gain IF Amplifier
2N588	Oscillator, Amplifier, to 50 mcs

For complete engineering data on the types in which you are interested, write Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Massachusetts.

You can get off-the-shelf delivery at factory prices on pilot quantities up to 999 pieces from your local Sprague Industrial Distributor.

SPRRGUE
THE MARK OF RELIABILITY

SPRAGUE COMPONENTS:
CAPACITORS • RESISTORS • MAGNETIC COMPONENTS • TRANSISTORS • INTERFERENCE FILTERS • PULSE NETWORKS MIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIEO CIRCLE 11 ON READER-SERVICE CARD

now you can choose

In designing digital systems and equipment employing EECO T-Series Transistor Circuits, you now have an extra choice- EECO Magnetic Core Circuits that are both physically and electrically compatible with the EECO T-Series. This new family of compatible magnetic core circuits for the frequency range 0 to 250 kcs includes a large selection of shift registers (in single or dual units), pulse gates, and core drivers.

ADVANTAGES

The ability of magnetic cores to maintain one of two discrete states makes them ideal for shift registers, or counters. A pulse sent through one set of windings will set the core to the "High-Level" state. A pulse sent trough ano you set lip-lop ation with the circuite on the other hand it is normally necessary to use two transistor for each flip-flop. or each flip-flop
Core circuits are used to good advantage in our line of shift registers. They offer versatility and space saving at a price lower than that of an equivalent transistor circuit.

COMPATIBILITY WITH T-SERIES
EECO Magnetic Core Circuits are electrically and physically compatible with EECO T-Series Transistor Circuits. They are packaged In T-Series containers, measuring $1 / 3^{\prime \prime}$ diameter $\times 2 K_{6}^{\prime \prime}$ seated height, and they plug into the same miniature tube sockets as the T-Series.

ENGINEERED
Write, wire, or 'phone today for detailed information on EECO Magnetic Core Circuits.
ENGINEERED ELECTRONICS COMPANY
1441 EaSt Chestnut avenue - santa ama, california KImberly 7.5651

NEWS

Engineers Putting Echo To Work

Many Organizations Use Satellite For Complex Communications Tests

WITH off-again, on-again Project Echo at last in orbit, communications engineers are working overtime to obtain maximum use from the 100 -foot balloon during the few weeks that it is expected to remain aloft.
They expressed pleasure at the satellite's performance during its first ten days in orbit. It was said that the slight shifting of orbit due to pressure of the sun's rays would change tracking methods somewhat but would not alter the prognosis on Echo's life expectancy.
At last count, three separate teams were bouncing signals off Echo's aluminized mylar hide. Bell Telephone Laboratories and Jet Propulsion Laboratories, the official participants in the National Aeronautics and Space Administration project, are exchanging small talk via Echo between Holmdel, N.J. and Goldstone, Calif. Meanwhile, Philco's research division and the Rome Air Development Center have established a communications link from Rome, N.Y., to Trinidad in the Caribbean. Also hitching a free ride on Echo with NASA blessing is

Collins Radio and its Alpha Corp. sub sidiary in a hook-up between Cedas Rapids, Iowa, and Dallas.

Tiros Used in Tracking Tests
Bell and JPL scientists spent a busy fortnight before Echo was launched. First, tracking accuracy of the parabolic horn antenna and maser receiver sensitivity at Holmdel were tested by transmitting a $2,000-\mathrm{mc} \mathrm{cw}$ signal at 10 kw from the Naval Research Laboratory in Washington to Holmdel via the Tiros I weather satellite. Tracking information was supplied by the 709 computer at naSA's Goddard Space Flight Center in Greenbelt, Md. which is now doing the same job in pointing the JPL and Bell Labs antennas at Echo.
About a week later, as a final check, the two organizations staged a two-way Kive telephone conversation via the moon using Echo equipment and frequencies all along the line. Only the satellite was different.
The JPL-Bell Labs experiments now being conducted with Echo include:

Control room at Holmdel during moon bounce experiments preceding Echo launch. Bill Jakes (left), Echo project engineer, and C. C. Cutler, Asst. Director of electronics and radio research at Bell Labs, talk to JPL via moon. Equip. ment and frequencies during this test are identical to Echo experiment.

Aiming data for Echo transmissions is computed by IBM 709 at Goddard Space Flight Center and relayed to terminals by land line. Tracking is further aided by beacon in satellite, and optical and radar tracking at Goldstone and Holmdel.

- Voice communications, including tests of the $\pm 30 \mathrm{kc}$ deviation fm system being used.
- Measurement of reflective properties of the sphere including polarization of reflected signals, faraday rotation and doppler shift.
- Check of propagation theory against measured results.
- Transmission of teletype and other modulation methods.

Horn Antenna Cuts Thermal Noise

Transmissions from Holmdel to Goldstone are at 960 mc . Simultaneous transmission in the opposite direction is at 2390 mc , with power in each instance 10 kw . Signals are received at Holmdel by a $50-\mathrm{ft}$ long steerable parabolic horn antenna having a $400-\mathrm{ft}$ sq aperture. This design minimizes back and side lobes which pick up thermal noise from the earth. The resultant temperature of the antenna is about 2 K .
The horn feeds into a pair of right-and-left polarized, three-level traveling-wave maser amplifiers. The stronger of the two polarizations is selected for boosting and conversion to 70 mc by parametric amplifier converters.
Holmdel transmissions are via a 60 foot parabelic dish. At Goldstone, twin, $85-\mathrm{ft}$ diam parabr loids are used both for transmission and recejtion. The JPL receiver employs a varactor dinde parametric amplifier instead of a maser an plifier because of the lower frequency of the

TO COMPUTER MATRIX PROBLEMS

LOW LEAKAGE TRANSISTORS AND FAST RECOVERY, LOW CAPACITANCE DIODES FROM FAIRCHILD
Approach to the ideal matrix. 2N1613 silicon transistors and FD200 silicon diodes from Fairchild are unique in making feasible the ideal matrix. They give you low leakage and low capacitance with high conductance and high speed, even at high ambient temperatures. These characteristics are combined only in Fairchild Planar devices. With them you can now largely ignore stray leakage or capacitance build-up across the matrix. Temperature effects and long-term per formance decay are no longer critical. You can eliminate complex circuitry previously necessary in designing around these losses.

Fairchild's Planar structure for transistors and diodes features the industry's most advanced diffusion and surface passivation techniques. Current leakage is reduced to $10 \mathrm{~m} \mu \mathrm{~A}$ maximum (2 N 1613) and $0.1 \mu \mathrm{~A}$ maximum (FD 200) at $25^{\circ} \mathrm{C}$. Maximum values at $150^{\circ} \mathrm{C}$ are $10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$

Surface passivation also prevents significant degeneration of parameters during circuit life which could introduce error or failure in the matrix. This technique also lends itself to precisely controlled manufacture, assuring excellent product uniformity.

FO200 ELECTRICAL SPECIFICATIONS $25^{\circ} \mathrm{C}$ except as noted)

symbol	Chametaristic	min.	Typical	max.	Test Conalitions
$v_{\text {F }}$	Forward Voltoge			1.0 V	If $=100 \mathrm{~mA}$
IR	Revorse Current			0.1 m	$V_{R}=-150 \mathrm{~V}$
IR	Reverse Current ($150^{\circ} \mathrm{C}$)			$100 \mu \mathrm{~A}$	$V_{R}=-150 \mathrm{~V}$
Bv	Breakdown voltage	200 V			$i_{R}=100 \mu A$
$t_{\text {tr }}$	Reverse Recovery			$\begin{aligned} & 50.0 \\ & m_{\mu} \mathrm{sec} \end{aligned}$	$\begin{array}{ll} 1 \\ I_{8}=30 & =30 \mathrm{~mA} \end{array} R_{L}=15012$
c_{0}	Capacitance			5.0رn ${ }^{\text {\% }}$	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \quad 1=1 \mathrm{mc}$
RE	Rectification Forward Vollage Yomperatura coefficient	35\%	-1.8 mV/oc		100 mc

ElECTRONIC DESIGN • August 31, 1960

$\triangle O \square$

ADVANCING THE ART OF

LOGICAL DESIGN

The basic simplicity of subsystems developed by American Electronics is a notable result of Logical Design achievements at the Instrument Division. Maximum reliability and efficiencyat minimum cost-are achieved through advanced circuitry and skilled packaging of components. Another result of this approach has been the substantial reduction in system weight and size while maintaining rigid per. formance and accuracy standards.
Combining years of experience in precision component manufacturing with creative subsystem engineering, American Electronics offers a record of proven capability, serving many of the nation's leaders in space and flight control Shown left is an AEI Digital Servo System used by a leading missile manufacturer to tune a radar klystron to a precise frequency. This compact system embodies an error-sensing device, an amplifier-logic circuit and a pulse motor with special design features offering exceptionally long life and high reliability.
American Electronics subsystem engineers have applied Logical Design principles to solve many space age problems. Analysis of your problems is invited. Please write for detailed information.

AMERICAN ElECTRONICS. INC. instrument division
9503 WEST JEFFERSON BLVO, CULVER CITY, CALIF,

NEWS

Parabolic horn antenna at Holmdel tracks Echo with minimum thermal noise. "There seems to be little room for improvement insofar as ncise is concerned," said one Bell Labs engineer of the big horn. Maser amplifier and other receiving gear are housed in cab at the small end of the horn.
east-to-west transmission. Over-all system noise of the JPL antenna-receiver combination is about 300 K in contrast with approximately 6 K of noise for the horn-maser combination at Bell Laboratories.

Miniature Beacons Aid Tracking

Tracking of the balloon has been greatly facilitated by the mounting of two miniature radio beacons onto the satellite. Last April, at the time of the first attempt to orbit Echo, considerable difficulty in tracking the balloon was expected. "About 80 per cent of our effort in terms of manpower and equipment involves tracking," a JPL scientist said. An engineer at Bell Labs noted that "A beacon on the satellite would make our job a darn sight easier."

The delay in a second launching attempt permitted the development of suitable beacons for the purpose by RCA. The beacons are mounted on opposite sides of the balloon and linked together by thin, printed circuit cables. Each unit consists of a $0.5-0 z$ transistorized transmitter, a miniature storage battery and an array of 70 solar cells. The components are encased in a molded foam plastic disc weighing 11 oz and 10 in . across. The beacons fit snugly against the side of the balloon and contain spring loaded whip antennas which unfold upon ejection of the balloon from its container.
Each of the solar cell arrays is sufficient to power both units. The transmitters radiate about 5 mw at 107.94 and 107.97 mc . - -

mage-Tube Development Provides mportant Aids To Astronomers

Photoelectric image intensifiers or image tubes ave already increased telescope speeds by as mich as 30 times, and have the potential of ineasing them by a factor of 100 .
Three recent investigations using image tubes, well as development of the tubes used in two of these three projects, were sponsored by the ational Science Foundation.
Development of image tubes has been carried on by the Carnegie Institution of Washington through the Carnegie Committee on Image Tubes for Telescopes, initially with funds provided by the Carnegie Corp. and more recently under NSF grants totaling $\$ 385,000$.
One investigation used an image tube called an "electronic camera" developed with French Government funds by A. Lallemand and M. Duchesne of the Paris Observatory. Lallemand is a pioneer in image-tube development and was one of the first to point out the potential advantages of such a device. In the LallemandDuchesne tube, the electrons are focused directly on a photographic plate, rather than on a phosphor screen.

202A FUNCTION GENERATOR-Down to 0.008 cps; transient-free!

Uses: Electrical simulation of mechanical phenomena, vibration studies, servo research and testing, medical research, geophysical problems, subsonic and audio testing.
Advantages: No switching transients, continuously variable 0.008 to $1,200 \mathrm{cps}$ range, 30 v output peak-to-peak constant, hum less than 0.05%, square, triangular or electronically synthesized sine waves, 1% stability, 0.2 db response, less than 1% distortion (sine waves) on all but x 100 range.
Price: $\$ 525.00$ (cabinet model), $\$ 510.00$ (rack mount).
650A TEST OSCILLATOR-Flat within $1 \mathrm{db}, 10 \mathrm{cps}$ to 10 MC !
Uses: Testing TV amplifiers or wide-band systems, measuring filter transmission characteristics and tuned circuit response, determining receiver alignment, making telephone carrier and bridge measurements.
Advantages: No zero set, no adjustments during operation, output voltage range $30 \mu \mathrm{v}$ to 3 v , less than 1% distortion, 20 cps to 100 KC ; less than $2 \%, 100 \mathrm{KC}$ to 1 MC ; approx. 5% at 10 MC . Hum less than 0.5%, output voltage attenuator, self-contained voltmeter, 2% to 3% stability.
Price: $\$ 490.00$ (cabinet model), $\$ 475.00$ (rack mount).
Easy to operate, highly stable, wide range

PRECISION OSCILLATORS

(4) precision oscillators perform a wide variety of audio, video, and low frequency tests. They offer the outstanding advantages of flexibility and broad usefulness at moderate cost. Employing the pioneered RC resistance capacity circuit, the units combine accuracy and reliability with ease of operation and minimum adjustment.

205AG AUDIO SIGNAL GENERATOR-Six instruments in one; 20 cps to $\mathbf{2 0 ~ K C !}$
Uses: Measure amplifier gain and network frequency response, measure broadcast transmitter audio and loudspeaker response, drive bridges, use in production testing or as precision source for voltages. Monitors oscillator output, measures output of device under test.
Advantages: Self-contained instrument, no auxiliary equipment needed. 5 watts output, $\pm 1 \mathrm{db}$ response, less than 1% distortion, hum more than 60 db down, no zero setting, output and input meters read v and dbm ; four output impedances.
Price: $\$ 500.00$ (cabinet model), $\$ 485.00$ (rack mount)

- 206A AUDIO SIGNAL GENERATOR-Less than 0.1\% distortion; 20 cps to 20 KC !
Uses: Convenient, precision audio voltage source; checks FM transmitter response, makes high quality, high fidelity amplifier tests, transmission measurements.
Advantages: Continuously variable audio frequency voltage, (output 15 dbm) 0.2 db response, hum 75 db down, 2% frequency accuracy, less than 0.1% distortion. 111 db attenuator with 0.1 db steps.
Price: $\$ 750.00$ (cabinet model), $\$ 735.00$ (rack mount).
Data subject to change without notice. Prices f.o.b. factory.

HEWLETT-PACKARD COMPANY

1031 K Page Mill Road Palo Alto, California, U.S.A Cable "HEWPACK"

Palo Alto, California, U.S. D S.A.
HEWLETT-PACKARD S.A. Rue du Vieux Billard No. 1, Geneva, Switzerland Cable "HEWPACKSA" Tel. No. (022) 26. 43. Field representatives in all principal areas

NEW TI GENERAL-PURPOSE SILICON MESA TRANSISTORS

TI 2N1564 series GUARANTEES -55 ${ }^{\circ} \mathrm{C}$ beta, $600-\mathrm{mw}$ dissipation and gain at 30 mc

NEWS

Peltier Cooling Uset Wi

Holds Unit Temperature to 110 F: 64 Thermocouples in Cooling Plate

PELTIER cooling is employed in a new pack age designed to dissipate heat generated b_{i} gyro servo components. The manufacturer claims the development can get rid of 65.3 w of heat to ambient air at 140 F .

The component holds the gyro unit temperature to 110 F . Heat is transferred via internal air to the case, from the case by conduction to a stable-platform aluminum housing, which, in turn is cooled by the new unit.

Manufactured by Airesearch Manufacturing Div. of the Garrett Corp., Los Angeles, the heat pump uses 64 thermoelectric couples formed into a cooling plate. Heat in the gyro platform housing is drawn out by the thermoelectric couples and vented overboard by a fan through a plate and fin heat exchanger.
A total of $20 \mathrm{amp}, 5.5 \mathrm{v}$ dc-110 w power in-put-is needed for the Peltier unit. According to Alfred L. Johnson, Jr., senior project engineer, and William Ferris, project design engineer, the new gyro platform cooler is first in a line of Peltier heat pumps. A more complex unit using two fans and more complex heat exchanging construction is currently on the drawing boards. "Gyro platforms must exist in a 140 C environment according to specifications," Mr. Johnson says, "but they're usually built to withstand only 140 C. No margin for error." Another unit being designed will cool down to -125 C , according to Mr. Johnson. New materials are expected to

Designers Ferris and Johnson (right) show their new cooling package using Peltier technique. Heat in gyro plafform is drawn out by thermoelectric couples and vented overboard by a fan through a plate and fin heat exchanger.
ELECTRONIC DESIGN • August 31, 1960

Design now with industry's first small-signal silicon mesa transistors...the new TI 2N1564-
series! Take advantage of guaranteed $-55^{\circ} \mathrm{C}$ betas of 12,20 and 40 ...guaranteed $600-\mathrm{mw}$ free-air dissipation . guaranteed current gain at 30 mc . Apply the design flexibility of 1 to 50 ma collector current operating range; $20-50,40-100$ and $80-200$ beta spreads at $25^{\circ} \mathrm{C}$ and 60 -v collector-emitter breakdown voltage to your audio, medium-power and higher frequency amplifier and switching designs... Specify the new TI 2N1564-series.

Avallable TODAY in production quantitios through all TI Salos Offices and Authorized TI Distributors.

circle 15 ON reader-service card

Note 1: The voltage at which $h_{\text {FB }}$ approaches one when the emitter-base diode is open circuited. This value can be exceeded in applications where the dc circuit resistance (R_{BE}) between base and emitter is a finite value. Note 2: Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $8.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Note 3: Derate linearly to $175^{\circ} \mathrm{C}$ ambient temperature at the rate of 4.0 $\mathrm{mw} /{ }^{\circ} \mathrm{C}$.

Instruments
INCORPOR ATED

ARD
2N1565 2N1566 the header. High dissipation capabilities permit you to design conservatively for maximum reliability!
masas give you maximum mechanical rugoedness . Note how active element is bonded directly to header, close to unit's center of gravity - for maximum resistance to vibration and shock.

With Gyro Components

1ermit a 50 per cent increase in efficiency of I eltier coolers within about two months, and, Mr. Johnson says, there is no reason Airesearch (i)uldn't get down to liquid nitrogen temperatures with this efficiency increase. This would provide a refrigerator system for cryogenic gyros, among other applications.
Peltier cooling uses electrons as an energy transport fluid. As electrons pass from one leg of a thermocouple to another they pass from one energy level to another. "So far as the math is concerned," Mr. Johnson says, "the system is identical to a standard Freon system. At a lower energy level, the electrons are close together like the molecules in the liquid Freon state. At the higher energy level, the electrons are farther apart, corresponding to the gaseous Freon state."
The difference in electron energy is made up by absorbing or rejecting thermal energy, pumping it from a cool source to the heat sink. Advantages of Peltier cooling include good reliability, higher heat sink temperatures, and the ease with which a given static temperature may be maintained. ■ -

TWT's Used in Program For Space Temperature Research

The radio telescope at Bonn University Observatory in Germany will be used for an intensive investigation into the temperatures prevailing in interstellar gas.
Special dual channel amplifying equipment using two low noise type N1017 Traveling Wave Tubes in cascade in each channel, has been supplied to the university by Marconi's Wireless Telegraph Co., Ltd.
The radio telescope, an $83-\mathrm{ft}$ diam parabolic mirror mounted on a pyramidal tower about 60 ft high, scans the sky picking up the cosmic continuum radiation emanating from galactic and extragalactic radio sources. The signals in the neighborhood of the hydrogen line frequency $(1+20 \mathrm{mc})$ are amplified by one pair of traveling wave tubes, the other amplifying reference noise signals from a resistor at a known temperature. The outputs from the two amplifying channels ari detected, integrated and compared and the ef ctive cosmic temperature determined; from thise, data contour maps are prepared. So accu ate has the system proved in initial tests that a liscrimination of 0.1 K has been achieved.

Tung-Sol/Chatham CROWBAR Thyratrons

PROTECT HIGH-POWER CIRCUITS AGAINST DESTRUCTIVE ARCS

Any one of a host of causes can trigger internal arcs in highpower tubes with little or no warning . . . even if the tubes are well designed, operate in well-engineered circuits, and have conservative demands placed upon them. Cosmic rays, linevoltage transients, parasitic oscillations, spurious primary and secondary electrons and material whiskers are just a few of the potential sources of these highly destructive arcs.

But by engineering Tung-Sol/Chatham high reliability crowbar hydrogen thyratrons into your design, you can safeguard against costly arc-generated breakdowns. By short-circuiting destructive currents, these zero bias "arc-busters" extinguish the arcs before circuit elements can be damaged.

Instantaneous response and the ability to carry extremely large currents make these rugged thyratrons ideally suited for this purpose. Moreover, they are able to conduct these heavy surge currents even after having been idle for long periods. Each fube contains a hydrogen reservoir which promotes long life and permits optimum gas pressure adjustment for various operating conditions. Write for full technical details. Tung-Sol Electric Inc., Newark 4, N. J. TWX: NK 193

Technical ossistance is available through the following soles offices: Atlanto, Ga.; Columbus, Ohio: Culver City, Colif;; Dallas, Texas, Denver, Colo.; Detroil, Mich.; Irvington, N. J.; Melrose Park, III.; Nowark, N. J.; Philadelphia, Pa.; Seattle, Wash. Conada: Toronto, Ont.

Typleal applleaflon: A crowbar thyratron is connected in series with a suitable impe dance across the filter of the high voltage power supply for a high frequency amplifier tube. Whenever an arc occurs in the power
lube, the rising current is used to deliver o suitable signal to the grid of the thyratron The thyrotron immediately conducts to shon circuit the power supply, until the protecive circuil breaker opens 01 second later.

Type	DC. Anode Fonword Voltage	Peok Cothode Current
7559	18 KV	1500 A
7568	25 KV	800 A
7605	25 KV	2500 A

(5) TUNG-SOL

CIRCLE 16 ON READER-SERVICE CARD
el :CTRONIC DESIGN • August 31, 1960

Metallurgical Memo from General Electric

He'll get surge protection results with G-E Thyrite varistors

TRY IT YOURSELF SEND FOR GENERAL ELECTRIC ENGINEERING APPRAISAL KITS

Kit \#1 (illus.) contains 12 miniature disc varis Kit \#1 (illus.) contains 12 miniature dise varistors, color-coded and with connecting leads. Price: $\$ 5.00$. Also, Kir \#2 containing 10 colorPrice: $\$ 5.00$. Test heir properties. they can holp you. Send for yours foday.

. . . and so can you with the assistance of a G-E engineer in your circuit planning

Sudden interruption of an inductive current produces high surge voltages which must be limited to a safe value. The engineer who plans his circuit to include a General Electric Thyrite varistor is "buying" the best and lowest cost surge protection available.
Thyrite varistors are voltage-sensitive resistors which limit voltage surges and stabilize current. Available in rods, discs, or washers with or without leads, and as assemblies ready for installationThyrite varistors are made with a wide variety of volt-ampere characteristics for components rated from 6 to 10,000 volts.
For more information on Thyrite varistors - or for the assistance of a G-E engineer to help you with a specific problem - write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Street, Edmore, Michigan

MAGNETIC MATERIALS SECTION GENERAL (96) ELECTRIC

 tron plots trip lines from the tape and displays them on a cathode-ray tube whose image is focused on a photographic plate. Since any number of trips can be plotted on the tube during a single exposure, the result is a map showing traffic density. Tape data can be selected to generate traffic maps for a variety of conditions such as rush hours, truck trips only, or city-bound traffic only. The entire trip, or merely the origin and destination points can be plotted as required.Information from about 370,000 questionnaires gathered by the Chicago Area Transportation

Automobile traffic density in Chicago area as plotted by the Cartographatron. Each trip made by a vehicle is represented by a trace from its point of origin to its destination. Together, the thousands of traces provide a visual display of traffic density.

ELECTRONIC DESIGN • August 31, 1960
Time, origin, destination, and other trip data derived from the questionnaires are stored in digital form on magnetic tape. The Cartographa-

Map of Auto Density Results From Data Fed Into Computer

\mathbf{A}^{p}PHOTOGRAPHIC data plotter for rapid and convenient display of automobile traffic distribution has been developed at the Illinois Institute of Technology, Chicago. Called the Cartographatron, the instrument records on film the thousands of trips made by Chicago motorists who answered questionnaires in a recent trans portation survey.

tte
 Puts Theory Onto Tube

CONDITIONS ON SELECTION FACTORS

Cortographatron processes traffic data from mag netic tape to give visual display of traffic density. Decision unit is programed to select only those trips required for a particular study. Origin and destination of each trip is then plotted on the cathode-ray tube. If required, the two points can be connected by a trace.

Study is contained in 21 reels of tape which can be processed in about 3-1/2 hours. Trip records are read and displayed at a rate of approximately 48 per sec.
Only one Cartographatron has been built to date-this at a cost of $\$ 68,500$. Having completed its work in Chicago, the device will next be used for transportation studies in Pittsburgh and for air traffic studies by the Federal Aviation Agency. - -

Signal Corps Orders Radios To Replace 3 Current Models

The Signal Corps has authorized the Speciality Electronics Development Corp., Syosset, N.Y., to produce a radio receiver to replace three existing models.

The FM receivers, which will be part of communications sets that cover the range 19.9 to 70.1 mc , were termed "interim" models by the Signal Corps. Depending on the design of the transmitter to be used in conjunction with the receivers, they ultimately may be modified or rejected. -
The receivers produced under the $\$ 600,000$ negotiated contract use transistors and tubes in circuits designed and developed by the Signal Corps. The units use modular construction and have the dimensions $5 \times 7 \times 9 \mathrm{in}$.
Designated as R745, the receivers will be part of the pack and vehicular communications apparatus PRC-12 or VRC-25. The receivers replace R105, R109 and R110, each covering a third of the band to be covered by one unit.

For switching and computer applications in missiles, satellites, and airborne equipment . . . where considerations of space, weight, temperature and reliability combine to create an acute problem of transistor selection
turn to these Raytheon subminiature silicon mesas. All embody top Raytheon quality, hermetically sealed in the industry's only welded submin package, for utmost shelf life and reliability under extreme conditions.

2N745 and 2N746. Subminiature versions of the popular 2N337 and 2N338, with no decrease in power dissipation, plus over 5 times the speed of conventional types.

2N747, 2N748, 2N749, 2N750, 2N751. Subminiature versions of the popular Raytheon types 2N1386, 2N 1387, 2N1388, 2N1389 and 2N1340; high speed switches and high frequency amplifiers for your most critical circuits.
2N789, 2N790, 2N791, 2N792, 2N793. Subminiature versions of the popular 2N332, 2N333, 2N334, 2N335 and 2N336; with lower leakage current, higher breakdown voltages and higher alpha cutoffs.

Off-the-shelf delivery! Contact your local authorized Raytheon distributor!
Raytheon Silicon Submin with Mesa Construction

\dagger	Type	$\underset{\mu A}{\text { IEO }}$	$\underset{\mu A}{\text { Ico }}$	$\begin{aligned} & \text { Yce } \\ & \text { Maxt } \\ & \text { Molits } \end{aligned}$	Hre	$\begin{aligned} & \text { Veat } \\ & \text { Volts } \end{aligned}$	$\begin{gathered} \text { Cob } \\ \text { fioke } \\ \text { 100ke } \end{gathered}$	$\begin{gathered} \mathrm{abb} \\ \mathrm{Mc} \end{gathered}$
NPN	2N745	0.05	0.05	45	35	1.5	2.0	10
Temp.	2 2746	0.05	0.05	45	60	1.5	2.0	20
Range	2N747	0.008	0.008	25	60	0.6	4.0	25
$-65{ }^{\circ} \mathrm{C}$ 80	2N748	0.008	0.008	30	30	0.6	4.0	25
$+175^{\circ} \mathrm{C}$	2N748	0.01	0.01	45	10*	-	4.0	60
	2 27750	0.01	0.01	50	$7 *$	-	4.0	25
	2N751	0.01	0.05	20	4*	-	4.0	12
	2N789	0.05	0.05	45	15	1.0	7.0	6
	2N790	0.05	0.05	45	25	1.0	7.0	d
	2N791	0.05	0.05	45	40	1.0	7.0	11
	2 W792	0.05	0.05	45	60	1.0	7.0	8
	2N793	0.05	0.05	45	150	1.0	7.0	13

${ }^{*} h_{\text {le }}$ @ $6 m c$
tValues are average parameter measurements. For individual test tValues are average parameter measurements. For ind
conditions refer to respective technical specifications.

NAYTHEON

SEMICONDUCTOR DIVISION

RAYTHEON COMPANY - Silicon and Germanium Diodes and Transistors • Silicon Rectifiers • Circuit-Paks
ENGLEWOOD CLIFFS, N. J., LOwell $7-4911$ (Manhattan Phone. WIsconsin 7-6400) • BOSTON. MASS., Hillcreat 4-6700 • CHICAGO, III., NAtional 5-4000 LOS ANGELES, CAI.., PLymouth $7-3151 \cdot$ ORLANDO, FLA., GArden $3-0618 \cdot$ SYRACUSE, N. Y..GRanite 2-7751• BALTIMORE, MD., SOUthfield 1-0450 CLEVELAND O. WInton 1-7716 • DETROIT, MICH. TRinity 1-1710 • SAN FRANCISCO, CAL. (Redwood City). EMerson 9.5566 CANADA: Waterloo, Ont., SHerwood 5.6831 • GOVERNMENT RELATIONS: Washington, D.C., MEtropolitan 8 -52115

NEWS

Multi-layer Printed Circuits Are Announced at WESCON

Commercially available multi-layer printed circuit boards were announced by Litton Industries, Beverly Hills, Calif. at WESCON.

Development of the multi-layered etched laminates was described at the Electronic Circuit Packaging Symposium at the University of Colorado a few days before WESCON opened. Norman J. Schuster, Litton design engineer, disclosed that the multi-layer boards are now being in cluded in a Litton airborne digital computer which has 70,000 to 80,000 parts. The use of fourlayer rather than conventional single-layer boards reduced size by over 50 per cent for regular cards and 70 per cent for the logic section of the computer, including coiling and other equipment but not power supplies or memories. Cards are now available commercially.
Getting required dimensional stability to match up thousands of contacts could not be achieved using a thermoplastic teflon base, Mr. Schuster reported. Excellent results were achieved, however, when Litton shifted to a thermosetting material.
High interbus capacitance, where bus strips must parallel each other along the cards, was one of the problems encountered. In one application, this factor was found to be an advantage because shunt capacitance to ground was added to a circuit for better filtering action.
Several boards are printed, plated and etched in the Litton process, and then bonded together. Pin-type connectors are brought of the end of the boards. Experiments showed that platedthrough holes could be used, although this has not yet been found necessary in Litton designs.

Microfilmed Missile Documents

All of the engineering documents for the entire guided missile program are stored in the cabinets above. Small space is all that is required at Redstone Arsenal Ala., to maintain this active file of 850,000 documents on microfilm in aperture cards.

ICROBLOC RT697M

Rheem's new solid-design silicon mesa transistor!

WELDED HERMETIC SEAL

The MICROBLOC RT697M is the first microminiature silicon mesa transistor with a guaranteed welded hermetic seal. The glass sealing and weltion are the same techniques the industry production are the same techniques the industry has tested and perfected over the years, in the manufacture of milions of transistors. Each -a helium leak test and a, Joy bomb test-to re a vacuum-tight seal.

RO SIZE

MICROBLOC RT697M is .063 inches flat, 211 es in diameter, weighs only $1 / 4, \mathrm{gram}$. and occupies $1 / 7$ th the volume of the standard 2N697

ROVED ELECTRICAL CHARACTERISTICS

new Rheem transistor has a three watt power pation-50\% more than the standard 2N697. At: cooler running junctions to assure wider y margins and greater reliability. The MICROC RT697M also has a 35 volt guaranteed miniswitchback voltage with base open, controlled signal parameters and meets or exceeds every specification of the 2N697.

ID DESIGN

ts name suggests, MICROBLOC is virtually a block - a silicon crystal embedded in an optimum
dimensioned, gas tight, hermetically sealed, welded block that is essentially all heat sink. There are no fragilely suspended internal leads or non-integrated elements, and the crystal is protected from welding mechanically the MICROBLOC RT697M design is mechanically more stable, more resistant to shock and stand at least 1500 Grevious transistor. It will withand is guaranteed to survive thermal shock and temperature cycling per MIL-S-19500B. (Additional data will be published as more stringent tests are completed.)

APPLICATION

The MICROBLOC RT697M is tailored for highdensity applications, such as micro modules and minruture circuit boards. In addition, because of its cooler ment for standard size transistors in applications where wider safety margins and great reliability are required. (Rheem will also continue to offer its standard 2N697, TO-5 package, per MIL-S-19500/99A.)

OTHER MICROBLOC TYPES

Rheem is now producing a complete new series of MICROBLOC silicon mesa transistors. There is a MICROBLOC type for every electrical function that can be performed by transistors up to a 1 amp . current level. For full details, see your Rheem representative. AVAILABLE IMMEDIATELY

Discoverer XIV Carrying Gear For Optical Tracking Experiment

Discover XIV, whose instrument capsule was snared in mid air by a U.S. Air Force plane as it came down over the Pacific, carried an additional payload for comparative tracking tests in connection with the Navy's Transit --A navigation satellite.
The mid air catch, widely regarded as a noteworthy achievement, was overshadowed, however, by the recovery in the Soviet Union of a five-ton space vehicle carrying two dogs and other life.

A doppler transmitter package and a flashing light beacon are along for the ride and tracking stations are comparing results obtained with both doppler and optical tracking. The experiment is continuing beyond the usual lifetime of Discoverer satellites, whose value terminates with ejection of the capsule shortly after launching.
The Applied Physics Laboratory of Johns Hopkins, designers of the Transit system supplied the payload for Discoverer XIV and is manning tracking stations in Florida, New Mexico and Hawaii.
The flashing lights are seen on earth with a brightness equivalent to an eighth-magnitude star and must be observed through a telescope. If optical tracking proves feasible, Transit's future value to navigation may extend to vessels unable to afford receiving and computing equipment required to make use of the system.

Project Mercury Consoles Completed

Project Mercury display console is checked over before shipment from Stromberg-Carlson-San Diego, Div. of General Dynamics Corp., to Cape Canaveral. Several control center consoles built under subcontract to Bell Telephone Labs have been delivered to the Cape and Bermuda, where another control station will be located. A Project Mercury flight controller team will monitor data about an astronaut, the capsule and the flight.

AXIMUM RATINGS AT $25^{\circ} \mathrm{C}$ AMBIENT (unless otherwise noted)

ollector-- Base Voltage
Dllector--Emitter Voltage (Base Open Circuit)
mitter--Base Voltage
anse $25^{\circ} \mathrm{C}$.
All units are stabilized before testing at $300^{\circ} \mathrm{C}$

ECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C}$ AMBIENT

PARAMETERS
Collector Reverse Current
D.C Forward Current Transfer Ratio Collector-Emitter Saturation Voltage
A.C Common-Emitter Forward

Current Transfer Ratio
Collector Capacitance
ALL SIGNAL PARAMETERS
Small Signal Forward Transfer Ratio
Common Base Input Impedance
Common Base Voltage Feedback Ratio
Common Base Output Admittance
enlarged microbloc OUTLINE
DIMENSIONS IN INCHES
$\mathbf{V}_{\mathrm{cB}}=30 \mathrm{v} \quad \mathrm{I}_{\mathrm{E}}=0$
$\mathbf{I}_{\mathrm{c}}=150 \mathrm{ma} \quad \mathrm{V}_{\mathrm{CE}}=10 \mathrm{v}$
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{ma} \quad \mathrm{I}_{\mathrm{B}}=15 \mathrm{ma}$
$\mathrm{I}_{\mathrm{C}}=50 \mathrm{ma} \quad \mathrm{V}_{\mathrm{CE}}=10 \mathrm{vf}=20 \mathrm{mc}$
$\mathrm{I}_{\mathrm{E}}=0 \quad \mathrm{~V}_{\mathrm{CB}}=10 \mathrm{vf}=\mathrm{ImC}$
$\mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{c}}=5 \mathrm{v}$
$=1 K C$

$$
c=5 v
$$

\square

| MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| - | .005 | 1.0 | $\mu \mathrm{~A}$ |
| 40 | 75 | 120 | - |
| - | 0.7 | 1.5 | v |
| 2.5 | 5 | - | - |
| - | 20 | 35 | $\mu \mu \mathrm{f}$ |
| 30 | 70 | - | - |
| 20 | 26 | 30 | ohms |
| 160×10^{-6} | 250×10^{-6} | | |
| | | 1.0 | μ mhos |

EEM SEMICONDUCTOR CORPORATION

A SUBSIDIARY OF RHEEM MANUFACTURING COMPANY Dept. G1, P.O. Box 1327, Mountain View, California - YOrkshire 8-9211

Helpful new booklet suggests drafting, engineering shortcuts

Just published-"DRAFTING SHORTCUTS" is a completely new booklet of helpful ideas and aids for engineers, draftsmen and students. It is well illustrated, clearly and logically written. It contains a wealth of time-saving tips to speed both routine and specialized tasks.
The ideas selected were submitted by professionals and judged by an impartial panel of widely recognized authorities on the various topics covered.
As an example, the section covering Calculating Ideas includes a simple means of locating stress points on cantilevered beams, also a simple method for retaining fundamental trigonometric relations.

In the section on Drafting Shortcuts, our editors have come up with topics like a simplified, fast and easy method for drawing gear teeth profiles and a rapid means of showing twisted wire elements.

The Engineering Data section covers new, easy-to-use shortcuts to formulas and engineering data.
There's a special section devoted to time-saving techniques on the drawing board, too. One of the suggestions on how to make life easier for the draftsman tells how to use a bent paper clip as a variable guide for making section lines.
 ENGINEERING EQUIPMENT \& DRAFTING SUPPLIES - FIELD EQUIPMENT \& DRAFTING FURNITURE

CIRCLE 20 ON READER-SERVICE CARD

WASHINGTON \& REPORT

Ephraim Kahn

MORE CONTROLLED AIRSPACE is proposed by the Federal Aviation Agency. It would drop to $14,500 \mathrm{ft}$ (from the present $24,000 \mathrm{ft}$) the floor above which exists the "continental control area." Comments on the agency's proposal will be accepted from industry and other interested parties until 0ct. 13. The increase in traffic control has been made possible because of electronic communications and improved control systems.

COMPETITION IN NEGOTIATED BUYING, a sore point with the Defense Department since it is under intermittent fire from Congressmen for letting contracts by methods other than competitive bidding, is being given careful study. To bolster its contention that negotiated contracts are often placed only after a number of firms have had a crack at meeting the military's requirements, the Defense Department has instituted a new system of reporting on new contracts. It will show the volume of negotiated pactsbut it will also indicate the extent to which design competition, price competition, technical competition, or sole-source negotiation have figured in the deal. This breakdown will be given for "follow-on" contracts as well, which have been regarded as sole-source purchases.

DEFENSE CONTRACTING RATE WILL RISE during the rest of this year and on into 1961. The Administration and the Pentagon have agreed that some of the extra $\$ 703$ million voted by Congress to the military will be spent, not saved. Furthermore, it is apparent that the military is making plans that are based on the idea that more money will be coming their way next year, no matter which candidate wins the Presidency. There are, of course, substantial amounts that have not yet been committed. In addition, cancellations of contracts will result in a turn-back of funds which can be re-apportioned to projects that seem promising.
U.S.-CANADIAN COORDINATION of military R\&D as well as purchasing has been ordered by the Defense Department. Efforts to have the U.S. buy more in Canada, or at least to give Canadian firms (including subsidiaries of U.S. companies) a "Pair opportunity" will be increased, and the Defense Department will keep closer tabs on military contracts placed there. Heretofore, much U.S. military buying in Canada has been related to the electronic earlywarning systems that are located there. To help balance international accounts, the suggestion has been made that Canada's CL-44 transport airplanes be swapped for the two squadrons of Bomarc missiles Canada plans to acquire.

NEW MAINTENANCE POLICY for military weapons and equipment will work changes in the type of work now being done by commercial firms, but probably will not have a significant effect on total volume. The new policy requires the military to do its own tactical maintenance work, but directs the use of contractors whenever feasible at higher echelons. Objective is to assure the military has "the minimum capacity necessary to insure a ready and controlled source of technical competence and resources to meet military contingencies." Recurring and predictable maintenance workloads will clearly be the most Pruitful source of work for contractors, as a general rule. But it would appear as though new weapons systems will also provide opportunities, at least until they have become thoroughly familiar to troops. The Defense Department notes that consideration to contract maintenance is to be given "when it is desirable to augment military maintenance capability for an interim period to attain an earlier operational status for new military material being introduced."

INDUSTRIAL SECURITY PROCEDURES of the Defense Department have been modified in line with a Supreme Court decision. Employes of contractors now can, in most situations, confront and cross-examine persons who accuse them of things which might result in suspension, or denial, of the employe's right of access to classified information. Documents involved may be examined, as well. Exceptions to the right of confrontation will be made if the head of the government agency involved says there is "good and sufficient reason" to refrain from disclosing the informant's identity, and if the informant is a bona fide intelligence operative or is physically unable to appear. Hearings are held before boards which have no power to subpoena. This is expected to make it more difficult for the government to substantiate allegations since witnesses in security risk cases often are reluctant to appear voluntarily.

NEED FOR SHORTER LEAD-TIME has again been stressed by General Trudeau, chief of Army R\&D. He wants "more rapid and intensive exchanges of information between industry and the Army at every stage of development . . . new procedures for expedited development such as overlapping and telescoping phases of the R\&D cycle . . . conducting user and engineering testing concurrently or on a combined basis, and starting production engineering and tooling as early in the development cycle as possible."

ARMY'S RESEARCH NEEDS for aircraft over the next decade involve substantial problems in electronics and design. Major job for design engineers in the electronics field would be instrument packages for manned deep-penetration surveillance aircraft, as well as for drones. In addition, extensive work will have to be done on the development and testing of sensors for target acquisition, equipment for processing and interpreting the data returned by the aircraft, and avionics equipment that will meet the high standards of performance and reliability that will have to be built into future manned aircraft if they are to be sufficiently effective under combat conditions.

Miniaturized POWER SUPPLIES

 FOR WIDE LOAD AND LINE VARIATIONSDesigned and manufactured to operate from an auxiliary power source such as an unmanned microwave station, these power supplies provide a wide input frequency range, offer transient and short-term short-circuit protection, and are complete with terminals for external output fusing.

SPECIFICATIONS Model No. PAI-040

ELECTRICAL CHARACTERISTICS:

ENVIRONMENT CONDITIONS:
INPUT: 108 to 132 V, 47 to 420 cycles OUTPUT: $200 V_{\text {dc }} \pm 1 \%$ at any load befween 100 to 200 MA and at any inpul between 108 to 132 V, 4710 420 cycles
RIPPLE: (Max) 300MV ${ }^{\text {BME }}$ (]) 47 cycle - $200 \mathrm{MV}_{\mathrm{zus}}$ © 60 cycle - $10 \mathrm{MV} \mathrm{BMs}^{2}$ © 400 cycle

MECHANICAL CHARACTERISTICS: ONDITIONS: AMBIENT TEMPERATURE: Operating $-40^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ $-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ with forced air cooling ALTITUDE: Operaling 10,000 Non-Operating $40,000 \mathrm{H}$. (Mil-Std-202 Method 103) SHOCK: 30 g 's (Mil-S-4456) VIBRATION: $060^{\prime \prime}$ Total Exeursion 10 55 cycles (Mil-Sid-202 Melhod 201A)

SIZE: $41 / 4^{\prime \prime} \times 5^{\prime \prime} \times 43 /{ }^{\prime \prime}$ WEIGHT: Less than 13 lbs . MOUNTING: Four $\# 1 / 4-20$ Studs WRITE FOR BULLETIN NPB-104

HST Special Products Division specializes in the design and production of power supplies for radar range circuits, tracking circuits, computers, and built-in control or evaluator portions of equipment. Comparable supplies are available in commercial counterparts. Please invite us to quote on your next special production requirements.

SPECIAL PRODUCTS DIVISION
2925 Merrell Road Dallas 29, Texas Phone Fleetwood 7.4348 CIRCLE 21 ON READER-SERVICE CARD

NEWS

Transitron Plans Research Into Passive Component Field

Transitron Electronics Corp. plans to begın research on passive electronic components in a $400,000-\mathrm{sq} \mathrm{ft}$ facility now being occupied in Buston.
The company has up to now been known for its work in semiconductors, and it has not produced passive components.
Much Transitron research effort is also being directed at the thermoelectricity field. Lead telluride elements are now being sampled. Silicides are also being investigated, according to a company spokesman.
Transitron will begin marketing tunnel diodes and microtransistors later this year

CHANGES IN

PRICE \& AVAILABILITY

ELECTROLYTIC CAPACITORS have been increased 5 per cent in price by Astron Corp. of East Newark, N.J. and General Electric Co. of Hudson Falls, N.Y.

POWER SUPPLY, Model 3225, has been reduced in price by Power Instruments Corp. of El Segundo, Calif. This unit, originally costing $\$ 198$, is now available from stock at $\$ 160$.

CRYSTAL SILICON has been reduced 6 to 28 per cent in price by Merck \& Co., Inc. of Rahway, N.J. The 150 ohm-cm P types, were cut from $\$ 1.55$ to $\$ 1.39$ a gram. Polycrystalline billets, with a boron content of less than one part in 6-million, dropped from 61 to 44 cents a gram.

TIPERSUL, a fibrous potassium titanate insulation material for $2,000 \mathrm{~F}$ applications has been reduced in price by E. I. du Pont de Nemours \& Co., Inc. of Wilmington, Dela. The loosefibre form of the material is reduced from $\$ 16.50$ to $\$ 5.10 \mathrm{lb}$. The price for lumps and cut lumps is now $\$ 4.25$ and $\$ 4.50 \mathrm{lb}$ respectively.

Accuracy Is Our Policy . . .

On p 24 of the June 8 issue, General Instrument Corp. was incorrectly identified as being located in Elizabeth, N.J. Its correct address is Newark, N.J.

ELECTRONIC DESIGN • August 31, 1960

Fortune Predicts 'Shakeout' For Electronics Industry

I slowdown over the next 10 years in the rate of growth of the electronics industry, resulting in a "shakeout" of vulnerable companies, is anticipated in an article in Fortune magazine.
"It is clear," says Fortune, "that the industry cannot continue to expand at the rate of the past decade, almost 15 per cent a year compounded, or three and one-half times as fast as all industrial production. On the highest projections now being made by serious economists and market researchers the industry's growth in the 1960's will not exceed 9 per cent a year. On the most conservative projections, the industry will expand by 4 per cent a year, or slightly less than the rate Fortune has projected for all industrial production."
Estimates contained in the article picture the industry growing from about $\$ 10$ billion in factory sales this year to $\$ 13-18$ billion by 1965 , and to $\$ 15.2$-19.8 billion by 1970 .
These values are based on a growth rate of the "crucial" government market estimated in the article at 3.5 to 8.7 per cent per year for the 10 -year period. The five-year average for 1955-1960 is reported to be 15 per cent.
Sales of industrial equipment, which Fortune rates as the most hopeful area of growth for the industry, are predicted to rise from about $\$ 1.8$ billion this year to $\$ 5.75$ billion by 1970 .
Because of the leveling off of the industry's growth rate and the fact that "survival requires a much broader range of attributes" than being able to develop a single innovation and riding it successfully for a while, Fortune concludes that "many companies now in the industry won't be around five or 10 years hence."

No Need to Handle Goods In Electronic Supermarket

An electronic supermarket where the customer never handles the goods, has been demonstrated in model form to retail trade experts in London. The full-scale model incorporates an automatic method of warehousing coupled with an electronic system of order-taking. The customer has no loaded wire basket to steer around the store. She simply makes her choice, which is recorded on a card pushed into a processing machine at the cashier's desk.
While the customer pays for the goods, the cashier presses a button to set in motion the aut omatic dispensing from the warehouse. By the time the customer walks to the delivery col nter, the goods are ready to collect.

Ell CTRONIC DESIGN • August 31, 1960

*SHOCKLEY 4-LAYER DIODES used in typical multiple-stage ring counter circuit.

YOU CAN COUNT ON 4-LAYER DIODES

For counting pulses...for timing...for digital read-out. The diagram shows one of several simplified ring counter circuits using Shockley 4-layer diodes. This silicon semiconductor switch is the key to circuit versatility. Apply appropriate resistors and capacitors, and speeds from less than one pulse per second to several hundred thousand per second may be obtained. At each stage enough power can be handled to operate signal lamps, enough voltage can be supplied to operate Nixie Tubes.
When broad temperature ranges and tough en-
vironmental conditions must be met, the MIL-LINE diode is available. Standard commercial 4-layer diodes are suggested for low cost, non-military ap. plications. If your circuits involve ring counters, consider Shockley 4-layer diodes for faster, more dependable operation. For application notes on ring counters, how to make flip-flops, drive relays, convert DC to AC, pulse magnetrons, or for suggestions about the use of 4-layer diodes in the circuit you are developing now...call or write your local Shockley representative or write Dept. 12-2.

Shockley transistor

 UNIT OF CLEVITE TRANSISTORSTANFORD INDUSTRIAL PARK, PALO ALTO, CALIF.
COMDVITE

"Small size is not enough!"

"Nothing fits . . . components too bulky ... have to save space . . . have to trim size . . . maybe eliminate tubes . . maybe brackets, too . . . maybe smaller relays. Yes, relays . . . if there's a smaller one that's fast enough, strong enough, tough enough. Better be careful though . . . can't sacrifice performance ... or reliability. Now, where are those sealed relay catalogs?"
We at General Electric appreciate this respect for relay performance. Relay tasks are normally too critical to risk compromising reliability no matter what the gain-small size not excepted.

That's why performance always comes first in General Electric sealed relays. But we haven't forgotten the importance of miniaturization either. In fact, General Electric designers have pioneered in minaturized relays four times in the past ten years - Miniature (1951), Micro-miniature (1955), and 4-pole and Unimite (1959). Each relay represents an advance in performance, as well as a reduction in size.
Superior performance is no accident with General Electric sealed relays. It is the product of General Electric's advanced technology, ever improving
manufacturing processes, relentless test ing, and stringent quality control.
For relays that offer top performance and reliability in the smallest available packages, turn first to your G-E Sealed Relay Catalog. As always, more information is available from your nearby General Electric Sales Engineer. General Electric Co., Specialty Control Dept., Waynesboro, Virginia.

Progress is Our Most Imporrant Product
GENERAL ELECTRIC

GENERAL ELECTRIC SEALED RELAYS-UNMATCHED FOR RELIABILITY

EDITORIAL

Consider the Digital Computer

Despite the vital role they've played and the important contributions they've made to the computer art, electronic design engineers haven't taken advantage of the digital computer as a tool. The growth of the digital computer as a mighty tool for business and industry can be attributed, in large measure, to electronics designers.
Yes, with the very important exception of those who design computers, the number of electronics engineers who use a digital computer in design is surprisingly small. There are many "reasons" for their reluctance to investigate this powerful tool, but in general, the "reasons" are faulty, as shown in this issue's staff report.
The "literature" hasn't helped the engineer; it certainly hasn't stimulated him to consider using a computer. Almost every article on applying digital computers in design work has stressed a single application. Thus, an article might explore the details of a specific application of a computer in the design of pulse transformers.
Of course, such an article can have tremendous value to pulsetransformer designers. But its value to other engineers is quite limited. More often than not, others are left with the feeling that computers are useful in pulse-transformer design, ". . . but I can't use a computer in my job."
To help offset this attitude, and to encourage designers to investigate the potential of digital computers, Electronic Design presents in this issue a completely different approach. Here are listed dozens of applications of digital computers by forward-looking electronic design engineers. None of the applications is explored in depth. Rather, all are presented in breadth with the hope that they will stimulate other electronic designers to-Consider the Digital Computer.

SIZE ... when you're pinched for pennies and panel space! This miniature precision pot is priced at $\$ 10.75$ and down; the dial at $\$ 7.75$ and down! Here's togetherness that makes seris Here's togetherness that makes serse .. when an application cries out for a
low-price pot $\&$ dial in $\% /{ }^{\circ}$ of panel space! ow-price pot \& dial in $\% /$ of panel space!
Pencil your way out of this design dilemma by simply specifying Helipot's new economy pair: the $7 / 3^{-1}$ diameter, 10 turn 7216 pot and 2600 series dial. We've restricted the size (and price)...not the designer!
The bushing mount 7216 gives you $\pm 0.5 \%$ standard linearity, 10 to 125.000 ohm resistance ranges, and plenty of environmental strength. In short, all the virtues of a precision pot at a price near that of a tolerable trimmer!
The dial is a miniature version of the RB Doodulib that counts up to 15 full turns and hundredths of each! It accommodates $1 / 6^{\prime \prime}$ shaff and $\% / 3^{\prime \prime}-32$ bushing or $1 / 8^{\prime \prime}$ shaft and $1 / 9^{\prime \prime}-32$ bushing with shafts extending as much as $43 / 64^{\prime \prime}$ from the panel!
Whenever your thoughts turn to pots (or dials)... turn to Helipot. We've got a full lihe of single- and multi-turn pôts, linear or non-linear models, with temperature ranges to $85^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $150^{\circ} \mathrm{C}$.
There's much more to tell, so help us. So help yourself and ask for Data File P-10 today.

Beckmani/Helipot ${ }^{\circ}$
POTS : MOTORS : METERS
Helipot Division of
Beckman Instruments, Inc.
Fullerton, California

George Rostky
Associare Editor

PARADOXICAL as it may seem, electronics designers, by and large, are not using digital computers. Electronics designers have raised the digital computer from its "electronic curiosity" status a decade ago to its current status of an indispensable tool for business and industry.
These men have sold the world on the advantages of using digital computers. But they have not sold themselves.
They have seen the computer industry grow from a sideline of major business-machine companies (like International Business Machines and Remington-Rand) to a vast, dynamic industry with a whole train of peripheral industries manufacturing input-output equipment, logic modules, core memories, external storage devices, and a variety of supporting products.

In a period of two or three years, they have seen small, relatively unheard-of-companies (like Control Data Corp.) become important forces in the industry with machines that rival some of the most powerful computers built. In recent months they've heard some of the country's major industrial giants (like Radio Corp. of America and General Electric) proclaim that they're out to capture a sizable chunk of the computer market.

Yet, by and large, electronics engineers do not use computers in their work.

Computer Accomplishments
 Do Not Stir Engineers

They seem unmoved by reports of the monumental accounting, operational, statistical, and other specialized problems which computers have solved for business, industry and government. They may learn, for example, that Reming-ton-Rand's Solid State 80 is keeping track of some 4 million publications issued by the Navy. Or they may learn how Remington-Rand's 1105's are helping the 1960 census.

Questioned on this score, an electronic design engineer is likely to answer: "A computer is great for paperwork. But I do creative work. A computer can't help me."

Here and there in the literature, they have seen how computers have helped civil engineers, mechanical engineers, thermodynamics engineers, optics engineers, and electrical engineers. They may have noticed that Massachusetts Institute of Technology has established a computer laboratory (with the IBM 650) for civil engineering students.

They may have read that the National Broach \& Machine Co. is using a Bendix G-15 to help design gear-shaving cutters, gear-honing tools, master gears, and broaching tools. Or they may learn that Kollmorgen Optical Corp. is using

Librascope's LGP-30 to help design lenses for precision optical systems.
Occasionally, they read about a rewarding application of digital computers by electronic design engineers. They may learn that Westing. house is using an IBM 704 to design power transformers-or that Arma is using a Burroughs 203 to design pulse transformers.
Even these dramatic examples do not seem to inspire the average electronic design engineer. "Sure, they can use computers to design trans. formers," he's likely to say, "but I design audio amplifiers. I can't use a computer."

Why Electronics Engineers

Do Not Use Digital Computers
Though several hypotheses have been offered nobody knows for certain why so few electronics engineers have taken advantage of digital computers. The leading "reasons" engineers giv include:

1. "Computers are too darned expensive."
2. "It takes too long to program a computer By the time I write a program, I could have solved the problem."
3. "We have a computer but it's only good for payrolls."
4. "We have too few major design problems to justify renting a computer. Computers are only useful to large companies with large engineering departments."

Eng neers Do Not Know

Hov Quickly They Can Learn

Of course, in many cases, engineers don't know how quickly they can learn to use a computir. Using compilers like IBM's Fortran or Remington-Rand's Mathnatic, engineers have learned to use even large computers in two days. To a usable extent, these compilers translate English into computer language
Dr. J. J. Sopka, mathematics consultant at the National Bureau of Standards in Boulder, offers still another explanation of why electronics engiheers don't use computers. "They don't think heir problems all the way through," he says.
"They like to formulate a problem in stages. They'll breadboard the first stage of a problem and wait for the answers to that before they start working on the next stage."
For small-equipment designs, Dr. Sopka points vut, this can be a satisfactory approach. But it rould be an awful way to do a job with a computer. To use a computer to best advantage, it s necessary to think a problem all the way through. As much as possible, one should give the computer alternative courses based on expected results at each stage.

Why Electronics Engineers

hould Consider The Computer

Dr. Sopka's hypothesis on why electronics angineers do not use computers is certainly plausible and its solution is rather obvious. The ther objections are answered almost as easily. 1. It is certainly true that computers are exensive, but once installed, they often seem to ind jobs for themselves, and just as often they an pay for themselves very quickly.
2. For short, "one-shot" designs, it may not be rorth while to use a computer-especially if setp time is long compared with the manuallesign time. But even for short jobs, the optinized results which a computer can yield can rake it worth while.
Further, there are many computer-users' rganizations which have programs available to olve many specific design problems. These roups include: POOL, an association of RoyalIcBee computer users; EXCHANGE, the Bendix omputer-users' group; Remington-Rand's Univac cientific Exchange; and IBM's SHARE.
3. No computers are good "only for payrolls." iven machines which are best-suited to payroll Ind large record-keeping jobs can be used by lectronics engineers. Most forward-looking comany managements are eager to have their engiers use available machine time. (Unfortunately, his time is, in many cases, available only after am on a Sunday.)
4. Even the organization with few design roblems can use computers. Where it may not
be economical to rent a computer, it may be wise to take advantage of some of the computer service organizations. Companies like C-E-I-R (Arlington, Va.), Computer Services Inc. (Englewood, N.J.), Marc Shiowitz and Associates (Hawthorne, Calif.), William M. Wolf Co. (Boston), and General Kinetics Inc. (Arlington, Va.) provide a variety of useful services.
They will rent time on their computers; they will make available the services and advice of expert programers and other computer personnel; or they will simply take over a problem and try to solve it for a fee.
There are many, many cases where an engineer will find it well worth while to discuss his design problems with a computer manufacturer or a computer service organization.
The survey which follows illustrates how many electronics engineers have reaped the benefits of computers. It is hoped that this survey will stimulate others to consider the digital computer.

Most applications of digital computers to component design are rather new. Probably, the oldest applications-dating back four or five yearsare in motor and transformer design.

Power-Transformer Design

The Recomp computer, manufactured by the Autonetics Div. of North American Aviation in Los Angeles, is one of the machines which has been applied to power-transformer design. In this application, the computer is fed information on transformer input-voltage, frequency, outputvoltage and power.

Recomp types out information on the required number of primary turns, the number of secondary turns, and the core area. The computation minimizes copper and iron losses.

Power-Inductor Design

One of the most extensive applications to inductor design can be credited to David Wildfeuer, a senior engineer at American Bosch Arma Corp.'s Arma Div. in Garden City, N.Y. Mr. Wildfeuer reports that he turned to a computer "as a matter of desperation." His Components Section just couldn't cope with its staggering
workload. A Burroughs 203 solved Mr. Wildfeuer's problem.
This computer, manufactured by the Electrodata Div. of Burroughs Corp. in Pasadena, has cut design time from 30 hours per transformer or filter choke to 3 hours. Of the 3 hours, only 6 to 10 minutes are computer time; the balance of the time is spent preparing drawings.
The 203 helps Arma design power transformers for frequencies of 60 cps to 10 kc with up to four secondaries, each capable of having. any kind of resistive or reactive loading. These transformers handle power levels of up to $2,500 \mathrm{w}$ at 400 cps. The computer helps design filter chokes just as thoroughly.

Pulse-Transformer Design

In applying the Burroughs 203 to the design of miniature pulse transformers, Arma realizes impressive savings. Using the 203 cuts the cost of designing pulse transformers from about $\$ 400$ per transformer to a dollar. It cuts the time from 40 hours to about 45 seconds.
Input to the computer, on five punched cards, includes all the design requirements. The memory stores data on magnet-wire and core-material characteristics.
Typewritten output from the computer includes: core type and size, winding schedule (order of winding primary and secondary turns), insulation type, wire size and power rating for each winding, rise and fall times, overshoot, various losses, turns ratios, as well as voltages and resistances.

Vacuum-Tube Design

The Red Bank Div. of Bendix Aviation Corp. in Eatontown, N.J., uses the technique of polynomial curve fitting in designing vacuum tubes with the Bendix G-15. The company estimates that it saves 10 engineering man-hours in computing a tenth-order polynomial and 50 sets of data.

Potentiometer Tap Selection

Nonlinear-potentiometer design is another fruitful application of digital computers. In one application of Librascope's LGP-30, the Link Div. of General Precision Inc. in Binghamton, N.Y., determines tap points for a linear potentiometer and shunting resistances necessary to provide straight-line approximations of nonlinear functions.
Before the potentiometer-tapping program is inserted in the computer, a nonlinear function is graphically approximated with a set of straightline segments. The coordinates of the points of intersection of the straight lines are entered into the computer as raw data.

The LGP-30 calculates the tap points of the
lec:(TRONIC DESIGN • August 31, 1960

LAMINATED PLASTICS What they are, where they can be used

Taylor laminated plastics, also known as reinforced plastics, are thermoset-ting-type materials formed by impregnating paper, cotton cloth, asbestos, glass cloth, nylon or other base materials with synthetic resins and fusing them into sheets, rods, tubes and special shapes under heat and pressure. These materials exhibit a valuable combination of characteristics, including high electrical insulation resistance, structural strength, strength-to-weight ratio, and resistance to chemical reaction; also adaptability to fabricating operations.

Types of laminated plastics mode by Taylor

 There are four basic types of Taylor laminated plastics commonly specified and used throughout industry today. They are as follows:

Phonolic Lominatos. Paper, cotton fabric or mat, asbestos, glass cloth or nylon bases impregnated with phenol formaldehyde resins. These provide strength and rigidity, dimensional stability, resistance to heat, chemical resistance, and good dielectric characteristics. Some Taylor grades are excellent basic materials for gears, cams, pinions, bearings and other mechanical applications. Others are widely used in terminal boards, switchgear, circuit breakers, switches, electrical appliances and motors. Also in radios, television equipment and other electronic devices; and in missiles as nose cones, exhaust nozzles, and combustion chamber liners.

Molamine Laminates. Glass cloth or cotton fabric impregnated with melamine formaldehyde resin. Taylor melamine laminates have superior mechanical strength and are especially desirable for their arc-resistant qualities. Good flame and heat resistance, good resistance to the corrosive effects of alkalis and most other common solvents, besides other favorable characteristics. Typical applications include arc barriers, switchboard panels, and circuit-breaker parts in electrical installations.

sillcone Laminates. Continuous-filament woven glass fabric impregnated with a silicone resin. These laminates combine high heat resistance (up to $500^{\circ} \mathrm{F}$. continuous) with excellent electrical and mechanical properties. They are primarily used in high-temperature electrical applications and high-frequency radio equipment.

Epoxy Laminates. Continuous-filament woven glass fabric or paper impregnated with epoxy resin. Glassfabric grades are designed for use in applications requiring high humidityresistance, good chemical resistance, CIRCLE 28 on reader-service card

and strength retention at elevated temperatures. Paper grades are used under high-humidity conditions where resistance to acids and alkalis is required. Both grades are characterized by good dielectric strength, low dielectric losses, and high insulation resistance even following severe humidity conditions.

Recent technical advances in the bonding of various metallic and nonmetallic materials to laminated plastics have opened up new design opportunities. It is now possible to bond virtually any compatible material with a laminated plastic to form a composite which combines the advantages of both. One of the first composite materials was a copper-clad laminate used for printed circuits. More recent composite laminates, usually manufactured to customer specification, include the following: Taylorite ${ }^{\circledR}$ vulcanized fibre-clad, rubber-clad, asbestos-clad, aluminumclad, beryllium-copper-clad, stainless-steel-clad, magnesium-clad, and silverand gold-clad. Any one of these materials can be sandwiched between sheets of laminates, too, and can be molded to fit specific requirements. Send for complete information about any or all of these Taylor laminates. And remember Taylor's new selection guide will simplify your problems in choosing the right laminate for your specific application. Taylor Fibre Co., Norristown 48, Pa.

Designing
With

Digital

Computers
linear potentiometer in terms of degrees of wiper rotation as well as shunt and padder resistances necessary for the straight-line approximation of the original nonlinear function.

Nonlinear-Potentiometer Design

Spectrol Electronics Corp. of San Gabriel, Calif., uses an IBM 610 to design nonlinear potentiometers. For both single and multitum potentiometers, Spectrol engineers prepare input information in the form of x and y coordinates or equations describing the parameters of a given nonlinear function. With the help of previously programmed general equations, the 610 computes manufacturing directions in terms of winding-equipment settings, cam angles, and radii.

The manufacturing directions are automati cally printed on a form which is sent to production. At the same time, punched tape is prepared to store information for repeat requirements Using the 610 reduces quote time for comples potentiometers from weeks to days, and in emergencies, to a few hours. Computations that formerly took four to six days now require only minutes.

Solenoid Design

Royal McBee Corp. of Port Chester, N.Y., use the LGP-30 (which it markets for Librascop Corp.) to evaluate solenoid designs. Information fed to the computer on punched paper tape in

Punched cards show Litton engineers which circuil board and computer-frame locations are available fo new circuits.
clu les: the gap at the pole piece when open, a time increment to be used, mass of the armature, ga. at the pole piece at closure, mechanical damping factor, a constant to indicate no curren! change, the initial armature hold-back force, the spring constant, the initial current and applicd emf, the pole-face area, number of turns, average length of a turn, wire resistance, length of the iron, and μ of the air and iron.
The LGP-30 delivers information on the steady-state operation of the solenoid in terms of the total resistance, steady-state current, steadystate flux, generated force, inductance and time constant. The entire program shows the chronological operation of the solenoid through closure and opening. When $0.1-\mathrm{msec}$ time increments are used over a closure time of about 10 msec , the entire computation on the LGP-30 requires only about 90 min .

सम्समан: Hitity
 etwork Design

There are few areas where digital computers are used more fruitfully than in network design and analysis and, more specifically, in filter design. Here, at least, there is a significant trend away from manual computation. The valuable paperwork which even small machines can deliver in a relatively short time can often save thousands of engineering hours.

Passive-Network Design

At North Hills Electric Co. of Mineola, N.Y., Philip R. Geffe used an IBM 650 to analyze and synthesize a variety of passive networks. Using punched-card input, he inserted network formulas and likely element values. The output, also on punched cards, yielded information including network element values, attenuation in db and envelope delay. One year of part-time computer isage yielded at least 10 years worth of engiheering hand-calculated data.
Engineering consultants Marc Schiowitz and Issociates of Hawthorne, Calif., have a computer program for National Cash Register's NCR-304 0 analyze steady-state linear passive networks. The program uses an iterative technique intead of the usual equation-solving methods. It s supposed to cut down computing time for nany types of networks.
Magnavox Co. of Fort Wayne, Ind., uses a Ben lix G-15 for filter design. Magnavox engi-

Now Stock w... Custom!

O蚎留 stock

 SNV COROTARY
LOW-POWER
TYPE

48-Hour Order Handling Procedures and Fast Transportation Methods Assure Quick Delivery

Now you can get fast delivery from stock of popular Oak rotary switches.

Order them as completely assembled units or as subassemblies in quantities from 1 to 249. All stock switches have one fixed and one adjustable stop; grooved shafts for "break-off" to desired length; double-wiping contacts of silver-plated brass (shorting and nonshorting types). Finishes withstand the 50 -hour salt spray test, enabling the switches to be used in most military as well as commercial applications.

These are the same, quality OEM switches which have formerly been available only as custom units in large production quantities. For years they have been the industry's standard in all types of electronic equipment.

Don't wait, call your Oak representative or the factory for complete details today.

Send For Catalog 399 Showing Complete Stock Line and Prices. Quantities Available on Letterhead Request.

SWITCHES CHOPPERS VIBRATORS ROTARY SOLENOIDS TUNERS TIMERS ELECTRONIC SUBASSEMBLIES
MANUFACTURING CO. West Coants Oak Eloctronics Conp.o 11252 Playe Court 1260 Clybourn Ave., Dopt. Di Chicege 10, III. Mener MOhowk $\$ 2229$

- 124 Different Sizes and Types
- Supplied Fully Assembled or as Subassemblies
- Subassemblies: Sections, Shafts with Index, Strut Screws, Spacers, Miscellaneous Hardware
- Phenolic and Steatite Grade Insulations
- 1 to 4 Sections-2 to 23 Positions
- Shorting and Nonshorting

PUTTING MAGNETICS TC WORK

How to build a better (audio signal) trap!

Magnetics Inc. permalloy powder cores give filter designers new attenuation and stability standards-and miniaturization to bootl

The art of trapping unwanted frequencies has been advanced during the past year with a succession of improvements in molybdenum permalloy powder cores by Magnetics Inc. Most audio filter designers now work with smaller cores, more stable cores and cores whose attenuation characteristics are ultra-sharp. Do you?
Do you, for example, specify our $160-\mathrm{mu}$ cores when space is a problem? With this higher inductance, you need at least 10 percent fewer turns for a given inductance than with the $125-\mathrm{mu}$ core. What's more, you can use heavier wire, and thus cut down d-c resistance.
What about temperature stability? Our linear cores are used with polystyrene capacitors, cutting costs in half compared to temperature stabilized moly-permalloy cores with silvered mica capacitors. Yet frequency stability over a wide swing in ambient temperatures is increased!

And what do you specify when you must rigidly define channel cut-offs, with sharp, permanent attenuation at channel crossovers? Our moly-permalloy cores have virtually no resistive component, so there is almost no core loss. The resultant high Q means sharp attenuation of blocked frequencies in high and low band pass ranges. Why not write for complete information? Like all of our components, molybdenum permalloy powder cores are performance-guaranteed to standards unsurpassed in the industry. Magnetics Inc., Dept. ED-82, Butler, Pa.

MAEDETICS inc.
MA CMETCS

Designing
 With
 Digital
 Computers

neers feed the computer information on a filter's load and its various attenuation frequencies. The machine gives the attenuation frequencies and values of all the elements in the filters.

Filter Design

In one of the most extensive applications to filter design, Kenneth Smith of Lenkurt Electric Co. in San Carlos, Calif., uses an IBM 650 for a whole series of designs. Though Lenkurt's 650 is devoted principally to factory accounting, the engineering department has used it to great ad. vantage in designing bandpass filters for tele phone and telegraph carrier systems.

Before the computer was installed at Lenkurt all filter calculations were performed on a des calculator. Solving equations for a single band pass filter required about 20 man-hours. Now the same equations, involving roughly $10,00 x$ computations are worked in five minutes by the IBM 650. In peak periods, when a design grou may be developing as many as 12 filters a week the saving can amount to 239 engineering man hours a week. Lenkurt's use of the 650 is w illustrated in the following typical problems. Problem 1. Estimate the attenuation of an image parameter filter prior to design. Computer inpu includes: (1) cutoff frequencies, (2) infinite-poin frequencies, (3) filter half-sections to be considered, (4) frequencies of the desired estimate of a tenuation.
Computer output includes: (1) frequencies desired estimate of attenuation, (2) corresponding estimate of attenuation. Average machine time- 18 minutes. Time required by a desk cal culator to do the same job-4 hours.
Problem 2. Design an image parameter filte from the best estimate in problem 1. Computa input: (1) cutoff frequencies, (2) infinite-poin frequencies, (3) filter half-sections in prope order.

Computer output: element values of each filte half-section. Machine time-6 minutes. Desk cal culator time would have been 20 hours including a double check for accuracy.
Problem 3. Combine the half-section elemen values and write an analysis program for the ner step. Computer input: element values of ead filter half-section from problem 2, and elemen Josses.

Computer output: element values of the com bined composite filter and an input program fo
th Bell Telephone Laboratories analysis deck Bl-2002. Average 650 time-3 minutes. Desk cal ulator to do the same job-4 hours.
Problem 4. Analyze response of the filters of pri blem 3 with lossy elements using the analysis deck BL-2002. Computer input: the program from problem 3 and the frequencies of desired response.
Computer output: (1) attenuation in $\mathrm{db},(2)$ phase angle in degrees, (3) insertion loss ratio as a complex number, (4) input impedance and admittance. Computer time -30 minutes. Problem is not practical with a desk calculator. It would have been necessary to build a model and test (about 20 hours).
Problem 5. Prepare a table for frequency-difference tuning of all meshes of a filter. Computer input: (1) design-center frequency of each mesh, (i) frequency tolerance of each mesh, (3) design capacity of each mesh.
Computer output: (1) upper frequency limit and upper padder-capacity value for each internal frequency difference from design center, (2) lower frequency limit and lower padder values for each internal frequency difference. Average machine time-24 minutes. Desk-calculator time would have been 20 hours.
Mr. Smith comments that Lenkurt's engineers used 396 hours of 650 time during 1959. He estimates that the same job by desk calculator would have required 20,160 man-hours.
Other companies using computer in filter-network design have realized similar savings.
Vitro Laboratories of West Orange, N.J., saved three man-months on two problems. Vitro engineers used the Bendix G-15 whose input included measured gains and outputs and values for assumed design parameters. The G-15 provided information for plotting slopes, intercepts, ind additional design parameters resulting from the solutions of simultaneous equations.

One of the broadest areas of application for igital computers lies in circuit design and analyCet even here, the computer scarcely sees ull xploitation. Relatively few circuit designers ave taken even partial advantage of this poweril $t \mathrm{ol}$. Where the computers have been used,

HYREL® ${ }^{\circledR}$ FB DEPOSITED CARBON RESISTORS are hermetically sealed in ceramic jackets against moisture and vapor... safely protected against mechanical abuse. The Hyrel FB series is intended for applications in military, commercial and telephone equipment where long life under high humidity, small size, and stability of electrical characteristics are important.

WRITE FOR ENGINEERING BULLETIN 7010B
SPRAGUE ELECTRIC COMPANY 307 MARSHALL STREET. NORTH ADAMS, MASS.

Made to far exceed MIL-R-10509C Specifications

BPRAQUE COMPONENTS:

CAPACITORS ${ }^{\circ}$ RESISTORS - MAONETIC COMPONENTS• TRANSISTORS - INTERFERENCE FILTERS • PULSE NETWORKS HIGM TEMPERATURE MAGNET WIRE CERAMIC-BASE PRINTED NETWORKS • PACKAGED COMPONENT ASSEMELIES

...to standardize digital systems...and simplify maintenance with RADILOGS

"Radilogs" are small plug-in logic modules that make possible entire digital systems, using a repetition of as few as two basic circuits. Maintenance involves consideration of only two parameters, saturation and cut-off. Simple rearrangement of a group of "Radilogs" produces entirely new configurations of logic networks. Thus, many a costly system that has served its original purpose is saved from obsolescence. New systems can be designed for greater simplicity and versatility at lower cost.

Radiation developed and presently offers "Radilogs" in three circuit configurations: NOR, Differentiator and Power Driver. Each of these is available in three speed ranges: low, medium and high. Encapsulated and color-coded, they plug into standard 9-pin miniature tube sockets.

For technical information and prices, write to Radiation Inc., Dept. ED-8, Melbourne, Fla.
the electromics field also melies on radiation for.o. TDMS - Telegraph Distortion Monitoring System pin points type and source of trouble on teletype, data processing and similar communications links without interrupting traffic. Ultra-compact TDMS can replace most test equipment now required for teletype maintenance and monitoring.
RADIPLEX-48-channel low-level multiplexer with broad data processing applications. Features rugged solidtate circuitry, almost unlimited programming flexibility sote circuirry, almost untimited programming lexibilivy coptional ease of operation and maintenance.
TELEMETRY TRANSMITTER-Model 3115 is a ruggedzed 215-260 MC unit with extremely lineor FM outpu under the most severe environmental conditions. With its record of outstanding performance in many missile programs. Model 3115 is specified by leading missile manufacturers.

RADIATION
INCORPORATED
CIRCLE 32 ON READER-SERVICE CARD

Designing
 With
 Digital
 Computers

designers have realized substantial advantages in circuit performance, as well as engineering time and costs.

Impedance Calculations

The Recomp computer has been used for cal culating complex impedances. In such applica tions, the machine receives as input, values of resistance, capacitance and inductance of a complex network and the input frequency. Recomp calculates the total impedance, equivalent series and parallel resistance, and reactance and phase angle at a given frequency, as well as other resonant frequencies.

Equivalent Circuit Analysis

At Bell Telephone Laboratories, V. R. Saari uses an IBM 650 and an IBM 704 in a variety of circuit design and analysis applications. In one application, he found equivalent circuits to fit measured black-box data. He fed the computer an analysis program based on the type of circuit whose characteristics could reasonably approximate those of the black box. He also in serted several sets of likely element and parame ter values as well as measured data on the blact box to be characterized.
The computer listed electrical characteristic to approximate the circuit in the black box and reorganized the measured data into a form mord suitable for examination and comparison with the computed characteristics. The set of element and parameter values which resulted in circuii characteristics most closely approximating tha measured data was chosen as the best one 1 describe the black box.

Mr. Saari also used these computers in analyz ing networks of various types. As input, he used measured data tabulated against frequency fo active devices and other components for whid valid equivalent circuits were not available. He also inputted values for lumped-constant ne works and other parameter values such as chas acteristic impedance and length of transmissia lines and operating temperature.
The computer yielded information on: (1) fol ward and reverse currents, voltage- and powe transfer ratios of a cascade of active devices (lumped-constant networks, or transmission lines (2) input and output impedances of such cas cades; (3) derivatives with respect to the varion
el ment and parameter values, hence reasonable to erances; and (4) total current or power drain $b!$ the network.

Araplifier Analysis

In still another application, Mr. Saari used the 650 or the 704 to determine whether or not parasitics were under control in an amplifier. He pringramed the computer to yield the electrical characteristics of an amplifier circuit or a cascade of amplifiers.
Mr. Saari also used the 650 or 704 to check the final design of an amplifier and calculate its sensitivity to changes in circuit-element or transistor parameters.

Microwave Circuił Design

At the high-frequency end of the spectrum, Leo Young of Westinghouse Electric Corp. in Baltimore teamed up a Smith chart and an IBM 650. Using the Smith chart, he first estimated the parameters of a microwave bandpass filter. He then used the 650 to analyze the preliminary design. He varied the parameters till the computer showed the new performance to be acceptable. This was his first approach to the design.
Finally, however, he programed the 650 to vary the circuit parameters till the optimum design was reached. The computer made trial and error adjustments, interpolations, and extrapolations automatically. The 650 calculated vswr, reflection coefficient, insertion loss, maximum voltage and phase difference as a function of frequency. It also made calculations for component tolerances and circuit losses.

Transisforized-Inverter Design

Bendix Aviation Corp.'s Computer Div. in Los Angeles used the Bendix G-15 to design transistorized inverters for the Bendix G-20 computer. Information fed to the G-15 included end-of-life transistor parameter values, maximum expected temperature (with a safety factor), input voltage and tolerance, special bias, maximum collector currents, and calculated resistor values and tolerances. The G-15 typed out values of resistor couplings for the transistor inverters and listed the driving currents required.
After the initial program was set up, the G-15 required about two minutes to provide a curve. Previously, using a desk calculator, 45 to 60 min utes were required.

Blocking-Oscillator Design

The Bendix G-15 was also used to design transis orized blocking oscillators and inductive integrators for the Bendix G-20. In the blockingos ifllator program input to the machine included me asured values of transistor and transformer

IN ADVANCED DIGITAL INSTRUMENTS EPSCO DELIVERS ITS SPECIFICATION

HERE ARE THE 9 FEATURES:

1. Measures $A C$ volts, $D C$ volts and ohms.
2. Parallel decimal and 4221 BCD output.
3. 4 milliseconds per conversion.
4. All solid state circuitry.
5. Modular, plug-in construction.
6. In-line, in-plane display.
7. 100 independent measurements per second. 8. Internal and external conversion command. 9. Mount two, side by side, in a RETMA rack.

[^0]

QUICK SPEC CHECK-compare with your needs: - AC and DC voltages from 0 to 1000 (four ranges)

- Resistance: 1 K to 1000 K (four ranges)
- Accuracy: DC -0.1% AC -0.25% Ohms -0.25% - 3 decimal digits plus over-ranging For complete specifications, call or write today for Bulletin 26002.

INSTRUMENTS
A division of Epsco, Incorporated, 275 Massachusetts Ave., Cambridge 39, Mess. Tolephone UNivorsity 4-4950 CIRCLE 33 ON READER-SERVICE CARD

Designing
 With
 Digital
 Computers

parameters. The input bias voltage was used as the running parameter.
The G-15 calculated the output pulse width of the oscillator and provided 70 curves in three quarters of an hour. It used to take a design engineer and a desk calculator an hour and a half for a single curve.
In designing inductive integrators, Bendix engineers fed the G-15 measured values of transistor parameters and the required timing resistance. They used clamp voltage as the running parameter. The computer provided a time delay curve in five minutes. A desk-calculator designengineer team used to require an hour and a half per curve.

Power-Supply Design

One of the popular computer applications is power-supply design and analysis. IBM has a program which treats selected polyphase and single-phase circuits. It operates not only on passive parameters but also on overlapping diode currents and non-sinusoidal input voltages. Including laboratory test and redesign, the program can help an engineer design as many as five complete power supplies in a month.

Flip-Flop Design

At the Ramo-Wooldridge Div. of Thompson Ramo Wooldridge in Los Angeles, three engineers, Tom Connolly, Bob Mellott, and Mel Gillies, used an IBM 704 to design the flip-flops for the RW-31, RW-400, and RW-41 computers. They wrote Kirchhoff equations describing the flip-flops and used thése to find the optimum value of the components which were critical to the dc stability of the circuits. They made approximations for transistor parameters, component variation, and voltage variation. The 704 gave optimum component values for various voltage levels, for leakage-current levels, and for standard resistor values (about 1,000 different cases).
Hand computation, Schmoo plots, and trial-and-error methods for flip-flop design used to require several weeks to a month. Using the 704 to compute and print out the solutions for more thorough analysis required only 20 minutes.

Nonlinear-Circuir Analysis

At the University of Illinois, L. D. Fosdick used a computer to calculate equilibrium node

Nonlinear potentiometers are designed faster and better by Spectrol Electronics Corp. with the IBM-610.
voltages and branch currents in circuits with nonlinear elements. The circuits included resistors, diodes and transistors.

 omputer Design

Few areas of design seem more appropriate for the digital computer than that of designing digital computers. The cynics of a decade ago who quipped that the "giant electronic brains" would soon be fathering "baby electronic brains" were not far off. An ironical twist, however, lies in the fact that the progeny is often more powerful than the parent.

One example of this comes from the Datamatic Div. of Minneapolis-Honeywell Regulator Co. in Newton Highlands, Mass., where engineers used the Datamatic 1000 to design the new Honeywell 800. Using the Datamatic 1000 obviated about 10,000 circuit diagrams that otherwise would have been required in manufacturing the Honeywell 800.
The Datamatic 1000 prepared wiring lists fixing the origin and termination for each of 60,000 wires, as well as the route each was to follow. In addition, tables of wire position, recorded on
magnetic tape, helped engineers check for noise pickup. The computer also checked the new machine's logic for timing errors.

Wiring-List Preparation

At IBM in Poughkeepsie, N.Y., many programs written for the IBM 704 and 705 have been used to help design new computers. With one program, a computer prepares back-panel wiring lists which describe how the components are to be interconnected in the new machine to implement the logic and to minimize interwire noise and the amount of wire used.
In a paper presented at the AIEE Winter Gen eral Meeting early this year, IBM's G. W. Alt man, L. A. DeCampo, and C. R. Warburton indicated that minimizing interwire noise, a monotonous and error-prone job, used to require two engineering man-weeks. Judgment, rather than computation, was the criterion.
Now, the average time for the first run of a panel is six hours from the start of key punching to the delivery of a completed panel-wiring list. The list printed out by the computer contains in formation about wire types, wire connections lengths and routing.

The back-panel wiring program has produced almost 3,000 panels for IBM's Poughkeepsie Product Development Group.
In a similar application, Marc Shiowitz and Associates of Hawthorne, Calif., use the Alwac III-E to generate detailed and complete wiring lists from logical design. In this service offered
$1 y$ MSA, wiring lists can be generated within a cay after a logical design is completed. When (i) sign changes are required the wiring lists can be updated immediately.
MSA's program, using Boolean equations for input, can mechanize multi-level diode or transistor logic. It allows for the use of any standardized set of digital building blocks. The service fee for computer-generated wiring lists is less than the cost of schematics or the cost of a mannally prepared list.

Automatic Logic Design

Eugen I. Bosch of Litton Industries in Beverly Hills, Calif., used-not a computer-but inexpensive peripheral equipment to design largescale computers at Litton's Tactical Systems Laboratory. Automating the logic was accomplished with off-line equipment like sorters, collators and tabulators.

An actual computer was used only to simulate the operation of the new computer before the logic was actually wired up as final hardware. Using the off-line equipment, Mr. Bosch had the handwritten logic punched on cards, then tabulated in two versions: (1) logical equations representing the inputs to active circuits, (2) a list showing all places where the output of each circuit must go.
When the logic was ready for wiring, another card deck was prepared from a logic deck. It contained one card for each circuit required to mechanize the logic. Circuit and space allocation was accomplished by manually merging this deck with pre-punched cards which represented the available circuit boards and computer-frame locations.
The merged deck was used to generate wiring lists automatically. Final printout included a logic listing (a neat alphabetized copy of the handwritten logic), and a tabulation showing the total current each signal was to supply.

Circuit-Loading Calculation

A large general-purpose computer helped engineers at Ramo-Wooldridge design the large RIV-400 computer as well as other RW computers. From logical equations the computer prepared wiring lists for chassis and logic card assembly. It determined loading of each flip-flop and of other circuits and advised the logical designer of required changes in logic. In addition to this, the computer produced necessary checkout and maintenance information for the finished equipment.
in a paper delivered before the Association for Computing Machinery, Ramo-Wooldridge en fineers John P. Malbrain and Anthony V. Banes reported that using the computer to de-

DESIGN WITH ARNOLD 6T CORES ... SAME-DAY SHIPMENT OF STANDARD DELTAMAX CORE SIZES

Arnold 6T tape cores (aluminumcased and hermetically-sealed) offer you three very important design advantages. One: Maximum compactness, comparable to or exceeding that previously offered only by plastic-cased cores. Two: Maximum built-in protection against environmental hazards. Three: Require no supplementary insulation prior to winding and can be vacuum impregnated after winding.
Now we've added a fourth vital advantage: Maximum availability. An initial stock of approximately

20,000 Deltamax 1, 2 and 4-mil tape cores in the proposed EIA standard sizes (See AIEE Publication No. 430) is ready on warehouse shelves for your convenience. From this revolving stock, you can get immediate shipment (the same day order is received) on cores in quantities from prototype lots to regular production requirements.
Use Arnold 6T cores in your designs for improved performance and reduced cost. They're guaranteed against 1000 -volt breakdown ... guaranteed to meet military
test specifications for resistance to vibration and shock . . . guaranteed also to meet military specifications for operating temperatures. The 6 T hermetic casing method is extra rigid to protect against strains.
Let us supply your requirements. Full data (Bulletin TC-101A and Supplements) on request. © Write The Arnold Engineering Company, Main Office and Plant, Marengo, Ill.

adoriss otrp. ED-G-2

sptcialists in magnitic matirials

How to fit proved

Designing
 With
 Digital

Computers
sign new ones cut the calendar time to produc a large data processor by a year or more.

Final output from the computer gave all part; locations, wire routing, and component values After more than a year of experience, RW engi neers have found that maintenance personnel prefer computer-prepared wiring lists even when drawings exist.
The National Bureau of Standards, also, has used a computer to help design new ones. Approximately 20,000 punched cards contained information from which logical design was converted into detailed wiring plans.
Boolean equations were first checked for internal consistency, then, using additional data describing the physical location of the principal building blocks in the system, the computer automatically assigned minor components to optimum physical locations. The computer calculated optimum wire routing and prepared the topological diagram of the wiring tree showing the location of each node and its connection with other nodes in the tree.
Finally, the computer calculated the exact lengths of all wires, specifying terminal types, pin-to-pin connections, text for wire labels, and a detailed inventory of components and materials to be used. Final output data included 15,000 printed pages.

Hundreds of circuits have successfully proved out the General Electric semiconductors listed here as companions to the silicon controlled rectifier. In fact, General Electric used these very same components in developing and perfecting the revolutionary SCR. You capitalize on G.E.'s three years of unequalled SCR experience when you choose compatible G-E components. Together they form a seasoned. smooth-running team that will enhance the performance and reliability of your designs.

And remember, only G-E medium current rectifiers give you freedom from thermal fatigue (only hard solders are used) ; transient PRV ratings that save you money; reverse polarity for common heat sink mounting; and very low reverse leakage current for operation in series with SCR's.

For detailed information on SCR theory, ratings and applications, send $\$ 1.00$ for General Electric's new Controlled Rectifier Manual. Also at many G.E Distributors.

$\begin{gathered} \text { If uxing } \\ \substack{\text { c-E S Sck } \\ \text { Typoc }} \end{gathered}$	Use ©-E Roctifior Iype	Max. Curnt. Curd Sput Tomp.	$\begin{gathered} \text { Poak } \\ \text { carc } \\ \text { syucge } \end{gathered}$	$\begin{aligned} & \text { max. } \\ & \text { Mrons. } \\ & \text { RrRV. } \end{aligned}$	Slud Hox.
cio	inıl3ata-inisisa	7A @ 140C	150A	800 V	7/16"
c11	ini3ala-inibaba	7A @ 140C	150A	800 V	7/16"
c3s	INII99A-INI206A IN2154-IN2160	$\begin{aligned} & 12 A @ 150 C \\ & 25 A @ 145 C \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 200 A \end{array}$	$\begin{array}{\|l\|} \hline 800 \mathrm{~V} \\ 800 \mathrm{~V} \\ \hline \end{array}$	11/16:"
c36	INISAIA-INI348A IN1199A-IN1206A	7A@ 1100C	$\begin{aligned} & 150 A \\ & 240 A \end{aligned}$	$\begin{aligned} & 800 \mathrm{~V} \\ & 8000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 7 / 16^{\prime \prime \prime} \\ & 7 / 16^{\prime \prime} \end{aligned}$
C40	iN1I99A-INi348A IN2154-IN2160	12A@ 150C	240A	800 V	7/16"
cso	$4 \mathrm{4} 460^{\circ}$	50A @ 160C	900A	500 V	$\begin{array}{\|c} 1-19 / 32^{\prime \prime} \text { Dia. } \\ \text { Housing } \end{array}$
21301	4JA62*	50A @ 110C	9004	500V	
Compotible Uniuunction Firing Transistor: 2N1671A					

-Stack Assemblies Available

GENERAL ELECTRIC

Semiconductor Products Dept., Electronics Park, Syracuse, N. Y.
circle 35 on reader-service card

ropagation Studies

In propagation studies and in antenna design, the digital computer has not only saved time and money, it has performed tasks which would not have even been attempted without its aid.

Ionospheric-Scatter Analysis

At the National Bureau of Standards in Boulder, Gregg Merrill of the Central Radio Propagation Laboratory used an IBM 650 for a problem which could not have been approached by manual methods. He used the computer to analyze antenna radiation patterns in the lower ionosphere and fresnel zones for antennas elevated over spherical earth. The fresnel zone had

Translating Russian to English at NBS is the job of Mrs. Ida Rhodes who is developing automatic translation techniques to allow a computer to do the job.
never before been calculated over spherical earth.

Card input to the 650 represented tropospheric refraction, spherical divergence, parallax, surface refractivity, linear lapse rate, antenna height and frequency.

Output from the 650 gave the ground-voltage interference pattern between the direct wave and ground-reflected wave. Matching the direct wave and reflected wave gave the smooth pattern needed (to within 3 mm in 1200 km), over the frequency range of 30 to 55 mc . With help from the 650, Mr. Merrill established a theoretical pattern which helped him set up experiments.

He was able to determine optimum antenna height, size of the fresnel zone, near and far edges, near and far quarter-wave contours, angles of illumination through the fresnel zone, and the elevation of the zero-phase surface of the earth. Machine time on the 650 was about 400 hours.

Lightning-Flash Analysis

Using the same 650, John Kemper of the NBS Central Radio Propagation Laboratory analyzed the attenuation and phase delay due to propagation. He used the 650 to perform Fourier analyses of pulses from lightning flashes 1,000 and $2,000 \mathrm{~km}$ away.

Scope waveforms of the pulses were filmed, then transferred to a curve tracer which yielded the x and y coordinates of the waveform envelope. Mr. Kemper punched these coordinates on cards. Output from the computer represented the frequency spectrum, phase, and amplitude of the lightning pulses. These were plotted directly.

Subtracting the pulse of the near lightning flash from that of the far one showed the attenuation and phase change due to propagation. About an hour was required to trace one waveform and enter it into the 650. Eight hours of computation would have been required with a desk calculator.

NBS has used digital computers in other areas

instigate compensatory control forces or other actions. An acceleration analog output voltage is also available.
Typically, a jerkmeter installed in a jet aircraft will provide an instantaneous output proportional to the rate of change of g 's. Tiser can be used to predice ionerer constant acceleration Other applications include use wherever constant acceleration is required. Here, the Donner jerkmeter provides a "velocityfor stabilizing displacement devices. It can also be used as an inertial indicator of first motion.

If your measurement and control problem requires accurate measurement of jerk or the rate of change of acceleration, Donner Scientific's new line of precision angular and linear jerkmeters can help.
These new instruments are the only truly accurate device of this type ever made. They are designed to meet the most demanding applications. Both angular and linear jerkmeters provide an output voltage proportional to jerk which in turn can be used to
RANGES
Acceleration: $\pm 1 \mathrm{~g}$ full range to $\pm 30 \mathrm{~g}$ full range
Jerk: $\pm 0.5 \mathrm{~g} / \mathrm{sec}$ full range to $\pm 20 \mathrm{~g} / \mathrm{sec}$ full range
OUTPUT FULL SCALE
Accelerometer: $\pm 7.5 \mathrm{v}$ dc
Jerk: $\pm 7.5 \mathrm{v} \mathrm{dc}$
RESOLUTION
0.1% full scale or better
LINEARITY
0.1% full scale or better

RANGES
Acceleration: $\pm 1 \mathrm{~g}$ full range to $\pm 30 \mathrm{~g}$ full range Jerk: $\pm 0.5 \mathrm{~g} / \mathrm{sec}$ full range to $\pm 20 \mathrm{~g} / \mathrm{sec}$ full range
OUTPUT FULL SCALE
KEY SPECIFICATIONS
for Model 4405 Linear Jerkmeter

HYSTERESIS
Less than 0.1\%

POWER

+15 vdc at 10 ma and -15 vdc at 10 ma SIZE
$3^{\prime \prime}$ long, $11 / 2^{\prime \prime}$ wide, $1 \%{ }^{\text {m }}$ high
WEIGHT
7.5 ounces

We at Metex feel we have the approach to your dry circuit contact problems. - We would appreciate the opportunity to discuss their problems... the Metact...a resilient, gold plated mesh contact. Its broad range of contact applications with you. Metex also manufactures sell-wiping and anti-bounce characteristics, combined with multiple a complete line of electronic weather stripping, RF and combination contact areas, insure a greater degree of contact. These Metex engi- gaskets, and heat dissipating tube shields. There's no obligation; neered units, now available down to $1 / 2^{\prime \prime}$ in diameter, have possible why not give us a call. Metal Textile Corporation, Electronics Division, applications on relay, switch, chopper and computer design contact Roselle, New Jersey, Phone Chestnut 5-3000. TWX Roselle, N. J. 760.

THE WORLD'S LARGEST \& OLDEST PRODUCER OF KNITTED WIRE PRODUCTS - A DIVISION OF GENERAL CABLE CORPORATION

CIRCLE 37 ON READER-SERVICE CARD

Designing
 With
 Digital
 Computers

of radio-propagation research, too. These have included analyses of specular reflection of ionized meteor trails, world-wide prediction of transmission loss over ionospheric and tropospheric propagation paths and preparation of a number of maps of ionospheric and tropospheric characteristics.

Similar studies have been conducted by Stanford Research Institute of Menlo Park, Calif. SRI used an IBM 704 to determine the reliability of multi-path communications. The computer analyzed propagation parameters and geographic factors for a world-wide communications system. SRI has also used computers to develop data for antenna design and to prepare antenna radiation patterns.

Antenna Design

The Mattern Div. of Land-Air, Inc. in Chicago used a Bendix G-15 for aircraft-antenna design, for transmission-line design, and for calculating high-frequency cable attenuation and loss. In these problems, the G-15 analyzed not only cabletest parameters, but transmission-line physical parameters, antenna physical characteristics, and test results.

Information from the computer included equivalent impedance, reflection coefficient, antenna vswr, proportions of antenna dimensions, transmission-line length and transmission characteristics. In one instance, the G-15 provided a seven man-hour calculation in 23 minutes.

Engineers at Bendix Radio in Baltimore use the Bendix G-15 to design radar antennas. Information fed to the computer includes: (1) for the central section design-elevation range, distance from feed to antenna at a reference point, strength of incident beam, basic pattern desired; (2) calculation of power pattern using the central section-the polar coordinates of the antenna, strength of the incident beam, wavelength of the radiation, range of angles to be investigated. In addition, if integration is performed over the whole antenna, previously calculated Cartesian coordinates are given for various points.

The G-15 provides: (1) for the central section design-distances from feed to antenna and angles of the parabolic cross sections at specified intervals along the central section; (2) power pat-tern-this gives the relative strength of the reflected beam at various angles.

With the central section alone, only elevation angles can be investigated. But this is useful as a preliminary check for gross errors in design. For a finer check, the reflection from the whole antenna can be integrated, making it possible to find a power pattern at any combination of elevation and azimuth angles.
This involves double integration of a complex function. It is performed by summing approximately 150 vectors.
In general, the computer's design required about one or two per cent of the manual computation time. Investigation of azimuth patterns was not even attempted before the computer was turned to this task. Now the power at any point can be computed in about eight minutes. Beyond this advantage is the time saved in producing and testing scale models.

 imulation Studies

"Simulation" is more of a design or analysis technique than an area of design. Hence, it can encompass design and analysis of systems, circuits, and even active components. As with systems studies, it is very difficult to estimate cost or time savings.

Guidance-System Simulation

C-E-I-R of Arlington, Va., used an IBM 709 to simulate the electronic guidance system for the Titan ICBM. The basic problem in this application was to simulate missile flight under rapidly changing conditions. Information fed to the 709 included system equations and system logic.
The computer's output simulated the performance of Titan under the various conditions to be expected after the missile is launched.

Helicopter-Simulator Simulation

In Falls Church, Va., Melpar, Inc., a subsidiary of Westinghouse Air Brake Co., used an IBM 704 to simulate, digitally, an analog simulator for the $\mathrm{H}-37 \mathrm{~A}$ helicopter trainer. The digital simulation was used to determine if the helicopter simulator would have the same "performance characteristics," and "flying qualities" as the actual helicopter.
The 704 helped design and analyze the HSS-2 helicopter anti-submarine-warfare weapons sys-

NEW.

${ }^{\circ}$ Regatron Programmable

 CONSTANTCURRENT

Extremely low ripple . . 0.1^{σ} load regulation* . . . wide operating range... the well-known Regatron features are incorporated in these new
constant-current power supplies.
Transient response time is less than a millisecond. A modulation input is a standard feature. A vernier permits continuous zero-to-maximum coverage throughout each of 16 current ranges.
These c-c supplies are programmable too. Current output can be controlled by means of a remote resistor at any convenient location. Shunt the programming terminals with the resistor and the Regatron delivers a precise value of constant-current to your load. Voltage compliance, or load voltage capability, rises above the minimum values cited in the brief table below,
with decreasing current settings.

CIRCLE 38 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 31, 1960

A new addition to VARIAN'S G-22 Dual Channel Potentiometer Recorder

ADJUSTABLE SPAN
0-10 MV TO 0-500 VOLTS

More versatile than ever, the Varian G. 22 will now record from sources of almost any likely signal voltage. A newly available plug-in input chassis, the B. 22 attenuator type, is easily set as needed from spans as little as 10 millivolts full scale to as high as 500 volts. Front-panel adjustment is con tinuous in between for optimizing use of the chart's full width in any recording situation.

The G-22 can be your best all-purpose recorder in other ways too. Two chan. nels in themselves also mean versa-tility-they make the recorder a correlator of simultaneous variables (any two you choose). Two plug-in input chassis mean that each channel's recording characteristics can be quickly changed. And zero can be reset anywhere across the chart from left to right-each channel separately. Last
but not least don't underestimate the value of the handle on top. This recorder goes wherever there is recording to be done.*

- Varian offers rack mounted versions too- eithe singles or twins. The latter is pictured, showing how four channels of recording can be fitted within the 19 -inch width of a standard rack.
SPECIFICATIONS, OPTIONS, AND ACCESSORIES
One second full-scale balancing time - Accuracy 1% of full scale - Sensitivity 0.25% of full scale - Two chart speeds standard, four speeds optional - Wide selection of chart speeds from " " per hour to 16" per minute - Weight 33 pounds \bullet Available accessories include retransmitting slide wires, alarm contacts, event markers, etc.

For full specifications, wrile the Instrument Division.
VARIAN assoclatos
PALO ALTO 21, CALIFORNIA

Designing
 With
 Digital
 Computers

tem trainer of which the H-37A is a part. Information supplied to the 704 or stored in its memory represented performance of the helicopter rotor over its entire range, pilot actions like throttle position, collective pitch, stick position and cyclic stick position.
The computer provided answers in terms of the results of pilot action such as forward velocity, heading altitude, rate of climb, fuel flow, engine rpm, and hydraulic pressure.

Signal-Environment Simulation

W. G. James of American Machine and Foundry Co. in Alexandria, Va., used an IBM 704 to simulate the electromagnetic environment of an airborne receiver for a large deployment of electromagnetic emitters. The program simulated emitter characteristics like antenna-gain patterns and scanning cycles of such propagation phenomena as atmospheric absorption and tropospheric refraction.
Mr. James used the 704 to simulate models of all transmitter parameters and propagation phenomena which could significantly affect signal strength.

The printed out simulation results included the set-by-set signal contribution to the environment (or the mean and standard deviation of the total number of pulsed or cw signals as a function of signal level), and the cumulative prf count and duty cycle of the signal environment.

Landing-Approach Simulation

Wolf Research and Development Corp. of Boston used the Bendix G-15 for an error analysis of the equations used in the Volscan AN/ FSQ-7 (XD-1), an aircraft landing-approach control system. The exact values of the solutions were computed for a grid covering the area of interest.
These values were compared with approximations developed by the use of nonlinear potentiometers in Volscan. Error values at the grid points were typed out. Functions used for the nonlinear potentiometers were adjusted and recomputed to give a better error curve.
Input information included sample points in the nonlinear curve, and the exact analytical solution in two dimensions. In the final solution, errors developed by the nonlinear potentiometers were shown to be excessive. The Volscan cir-

ELECTRONIC DESIGN • August 31, 1960

Wiring list at Litton's Electronic Equipments Div. makes it easy to wire new computers, obviates wiring diagrams.
cuitry was redesigned to use resolvers which gave an exact solution of the problem.

Guidance-Computer Simulation

Engineers at Space Technology Laboratories, Inc. in Los Angeles used an IBM 709 to simulate a number of different airborne missile-guidance computers. Output media included magnetic tape, printer output, punched cards and paper tape. In some instances, paper tapes were sent to the ballistic missile launch site and used for pre-launch checkout. These tapes, in some cases, became part of the missile flight itself.
The simulation process included, basically, a compiler which produced a bit-by-bit, instruc-tion-by-instruction simulation of what the airborne guidance system would produce. Input to the 709, on cards, then magnetic tape, consisted of Boolean equations describing the logic in the guidance computer.
In such computer-design applications at STL, the 709 produced specifications ranging from functional logic through wiring lists. In simulation work, the computer could produce functional descriptions or discrete instructions like those of the guidance computer being simulated.
In one application, a logic checkout program saved months of time and roughly half the normal checkout effort required. The computer runs necessary for the logic checkout were completed in three days.

Using a bit-by-bit simulation, STL engineers found errors that might not have been found otherwise. These errors could have caused malfunctions during a launch. Set against the cost of an unsuccessful launch and the loss of a missile, the cost of the simulation becomes extremely slight.
STL used the logic compiler with the 709 to check out guidance computers used in the Able stries of booster vehicles and in the Titan and Minuteman ICBMs. Projects which benefited n ost from the program were those where the

New, tri-dimensional packaging and interconnecting of modern electronic functions.

Here is simplicity from start to finish . . . the most complicated designs worked out on AMP-MECA's graph layout sheets in hours rather than days or weeks . . . finished modular construction that's "building-block" easy . . . extreme reliability and complete resist. ance to shock and vibration.

YOU GOT

Electronic functions are encapsulated for complete throw away or functions are assembled in open base cells for individual component replacement. Easily replaced, pluggable AMP-Cells work independently of or in harness with each other when programmed into AMP's 3.D circuit boards.

Available in $0.1^{\prime \prime}$ or $0.2^{\prime \prime}$ grid systems, AMP-MECA offers tri-dimensional flexibility_cells can be made larger or smaller-stacked, spread or lined-up in unlimited scope to accommodate your design needs. And production can be set up to fit your goals . . . by hand, or by programmed automation.

Learn how AMP-MECA can make it simple for you. Send for the full story on simplified interconnection of circuit functions.

AMP Incorporated

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA AMP products and engineering assistance are available through subsidiary companies in: Australia - Canada - England- France - Holland - Italy - Japan - West Germany

Designing
 With
 Digital
 Computers

compiler was used in early development stages. However, even when the compiler was used after test models had been built, it provided valuable information and further verified the computer design. In one instance, the simulation showed several design errors which had not been caught during test-model checkout.

Circuit Simulation

Engineering consultants Marc Shiowitz and Associates have a computer program which, given a specific circuit with fixed parameters, generates a routine to simulate the circuit. A driving-signal-generating sub-routine is an integral part of the program.
Using this program, the computer calculates the voltages at nodes, the currents in branches, the charge within transistor base regions and temperatures at junctions as functions of time.
Models used in the simulation, such as models of transistors, diodes, driving functions, etc., may be changed without altering the program.
MSA has a subsidiary program which, given a fixed circuit with parameters variable over a specific range and a formula for figure of merit, generates a routine to seek that allowable combination of parameters which provides the best figure of merit.

Logic Simulation

At Ramo-Wooldridge, Tom Connoly developed a logical simulation compiler to generate machine instructions for the IBM 709 which was to evaluate any consistent set of Boolean equations. The logical simulation generator automatically generated instructions to simulate the airborne, RW-33 computer.

Lathritatat (adyydad
 eliability Control

In reliability analyses and in quality control, the digital computer has proven its value-not only in statistical evaluations-but even in de-

No longer needed are these hundreds of blueprints for some 10,000 circuit drawings. Wiring tables, recorded on magnetic tape, replace drawings in production of the Honeywell-800 data processor.
termining the reliability of proposed circuit designs or in weighing the cost of given levels of reliability.

Circuit-Reliability Analysis

At General Precision Laboratory of Pleasantville, N.Y., engineers used a Librascope LGP-30 to check the reliability of already designed circuits and to redesign them when necessary to improve performance or to alter input-output specifications.

GPL's Herbert A. Seidman and Philip L. Hillman described one such application-a fourtransistor flip-flop-at a meeting of the Association of Environmental Engineers. The circuit uses a basic two-transistor flip-flop with a transistorized inverting amplifier at each output.

To begin the analysis, an engineer writes separate, independent, nodal equations to satisfy the circuit. In these equations, the currents are expressed in terms of voltages across resistors. The engineer then establishes the criteria for circuit stability.

The basic equations describing the circuit and giving component values are then inserted in the LGP-30. The computer then makes a run for each set of data with different values of transistor characteristics. It assigns a value to each resistor and voltage in the circuit. Each run differs from others by a variation of one or more of the parameters involved.
The effects of aging, high temperature, fluctuations in power supplies, initial spread of transistor and other component parameters are considered. To reduce the number of machine operations the effects of several parameter changes can be lumped into a single, properlyweighted, hypothetical parameter.

If the computer finds a circuit inadequately reliable, it can "suggest" improvements by introducing modifications of component values.

Cost vs. Reliability Analysis

C-E-I-R has a program for the IBM 704 computer which determines minimum component cost for a required system reliability. Input includes cost vs tolerance information, the theoretical structure of the system expressed as a complex mathematical function, and the system reliability requirements.
The printed output gives the optimum mix of component specifications to achieve a specified reliability level at minimum cost.

Quality-Control Analysis

Autonetic's Recomp computer has been used for quality-control analysis too. In this application, Recomp computes maximum and minimum parameter limits for a product like transistors.
To determine quality acceptance limits for a lot of transistors, for example, the resistance between transistor elements is measured for each transistor in a sample lot. Measured resistance values are tabulated by number of transistors per resistance range.
The mean value of resistance for the sample lot is calculated by Recomp which finally expresses the maximum and minimum limits of acceptable transistor resistance.

Transistor Life Test Evaluation

At Lenkurt Electric Co., Kenneth Smith used the IBM 650 to evaluate the results of transistor life tests. Input to the machine included transistor parameters and performance readings of critical parameters. The computer gave informa-
ton in terms of the mean, mid-mean, median, and standard deviations.
In this application, one hour of machine time pur month replaced 40 hours of desk-calculator tine.

iㅐ률 Design

In systems design, probably more than in any other field, the designer is less likely to know how much time or money he has saved by using a computer. The savings are real. But they are more difficult to measure than, say, the savings in a component design.

Instrumentation-System Design
A particularly interesting application of the Burroughs 205 was one by Stanford Research Institute of Menlo Park, Calif. SRI used the 205 to investigate the information transfer requirements for an instrumentation system. The system included position location, simulation, evaluation, and display, and considered fluctuating demands of a variety of servicing procedures and processing times.

Communications System Design

Page Communications Engineers of Washington, D.C., used a Bendix G-15 for a variety of related communications studies. They used the G-15 for research and for designing communications system, for radio wave propagation analysis, and for antenna analysis.
Information fed to the computer included: the noise probability density function, received signal intensities, two components at right angles, antenna dimensions, and transcendental equations for the binary error rate for amplitudemodulated, digital transmission systems using diversity techniques.
The G-15 provided information on the distribution of the signal-to-noise ratio for radio relay systems in cascade, diversity advantages which could be realized from polarization, antenna power patterns, and optimum threshold for minimum binary error rate. PCE estimates that these four solutions saved, respectively, one manyeir, 30 man-weeks, 60 hours per set of antenna patterns and 40 hours.

Servo-System Analysis

An application by Douglas Aircraft Co. of Sarta Monica, Calif., shows how a machine, de-

TYPE		SIZE	CAPACITANCE (uuf)	DCVW	TC	MAX CASE SIZE
Uuf for uuf, the smallest, most stable axial lead capacitor you can buy. Probably $1 / 3$ smaller than you're used to. After load life tests at 125° with 150% of rated voltage, average change in capacitance is less than 0.4% for 1,000 hrs. less than 0.6% for $10,000 \mathrm{hrs}$. They exceed all requirements of MIL-C-11272A.		CY10 CY15 cy20 CY30	1 to 150 151 to 240 151 to 510 511 to 1,200 511 to 3,300 3,301 to 5,100 3,301 6,201 to 6,200	500 300 500 300 500 300 500 300	$\begin{aligned} & 140 \pm 25 \mathrm{ppm} \mathrm{c}^{\mathrm{c}} \mathrm{C} \text {. } \\ & \text { from } 55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} . \text { at } \\ & 100 \mathrm{kc} \text { or } 1 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 11 / 32 \times 11 / 64 \times 5 / 64 \\ & 15 / 32 \times 17 / 64 \times 1 / 64 \\ & 47 / 64 \times 27 / 64 \times 9 / 44 \\ & 49 / 6 \times 3 / 4 \times 9 / 44 \end{aligned}$
Medium-power transmitting style		$\begin{aligned} & \text { CY60 } \\ & \text { Cy70 } \end{aligned}$	Up to 56,000 Up to 150,000	Ratings to 4000 peak volts 6000 peak volts	$\begin{aligned} & 140 \pm\left. 25 \mathrm{ppm}\right\|^{\circ} \mathrm{C} . \\ & \text { from }-555^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \text { at } \\ & 100 \mathrm{kc} \text { or } 1 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 1 \times 11 / 8 \times 5 / 8 \\ & 11 / 2 \times 13 / 4 \times 3 / 4 \end{aligned}$
CY Fusion sealed. Sim lar to CY. but with glass encapsulation fusion sealed to ca pacitor and leads to make seal tight against moisture and corrosives. Insures reliable performance under extreme environmental conditions. Guaranleed four times better than MIL specs for moisture resistance.		$\begin{aligned} & \text { CYF10 } \\ & \text { CYF15 } \end{aligned}$	1 to 150 151 to 240 151 to 510 511 to 1,200	$\begin{aligned} & 500 \\ & 300 \\ & 500 \\ & 300 \end{aligned}$	$\begin{aligned} & 140 \pm 25 \mathrm{ppm} \mathrm{~m}^{\circ} \mathrm{C} . \\ & \text { from }-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{at} \\ & 100 \mathrm{kc} \text { or } 1 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 11 / 22 \times 1 / 6 \times 5 / 64 \\ & 18 / 12 \times 1 / 64 \times 1 / 64 \end{aligned}$
W,WL Wafers with or without leads. Smallest high tor available. Up uuf in .061 sa in Electrodes sealed to dielectric sheets in such a way that sea cannot be broken without destroying capacitor. Meets the performance requirements of MIL-C-11272A.		W. WL5 W, WL4 W, WL3 W, WL2 W, WL1	1 to 560 561 to 1,000 1,001 to 2,700 2,701 to 4,300 4,301 to 10,000	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$140 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. from $-55^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. at 100 kc or 1 mc	$.281 \times .218 \times .090$ $.281 \times .312 \times .090$ $.531 \times .312 \times .090$ $.531 \times .453 \times .090$ $531 \times .812 \times .090$
High temperature dielectric and radiation tolerant metal elec. trodes with tab leads. Dielectric strength is twice rated voltage applied from one to five seconds. Insulation re sistance in ohm x farads is 100 at $175^{\circ} \mathrm{C} ., 25$ at 250° C., 1 at $300^{\circ} \mathrm{C}$. and .05 at $350^{\circ} \mathrm{C}$.	耧	$\begin{aligned} & \text { HI1 } \\ & \text { HT2 } \\ & \text { HHT } \end{aligned}$	1 to 1,000 1,001 to 3,000 3,001 to 10,000	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 0-250^{\circ} \mathrm{C} .115 \pm 25 \\ & 0-300^{\circ} \mathrm{C} .140 \pm 35 \\ & 0-350^{\circ} \mathrm{C} .160 \pm 45 \end{aligned}$	$\begin{aligned} & 1 / 2 \times 3 / 0 \times 1 / x_{0} 0 \\ & 1 / 2 \times 3 / 0 \times 11_{6} \\ & 1 / 2 \times 1 \times 3 / 6 \end{aligned}$

Why you have to smash these Corning capacitors to affect their reliability

Stack alternating layers of glass ribbon and aluminum foil, fuse the stacks under heat and pressure, and you have a solid, practically indestructible capacitor.

The properties of the capacitor are entirely those of the closely controlled dielectric. They cannot be altered in processing. They stay the same under heat, moisture, and all other environmental conditions.
There's no problem with delivery. We mass produce them all.
If you need capacitors high in reliability, small in size, and light in weight, you should know more about this Corning design. The coupon will bring you complete technical data. Address: Corning Glass Works, 540 High St., Bradford, Pa.

For orders of 1000 or less, contact your distributor, serviced by Erie Distributor Division.

8CORNING ELECTRONIC COMPONENTS CORNING GLASS WORKS, BRADFORD, PA.

circle 41 ON READER-SERVICE CARD

Designing
 With
 Digital Computers

signed basically for process control application; can be used very successfully in design work. The machine, Ramo-Wooldridge's RW-300, was used by Douglas for closed-loop control of the testing of short-life, high-tolerance, airborne servo systems.
In this application, the RW-300 receives its input from a function generator. An $x-y$ plotter at the computer output plots amplitude ratio and phase angle as functions of frequency. At each frequency, the computer samples the output amplitude and performs a Fourier analysis, computing the fundamental frequency of the usually distorted output, and from this, the amplitude ratio and phase angle. In addition, the computer takes the logarithm of the amplitude ratio so the plot can be printed on a decibel scale.
Gain-margin tests are made by automatically increasing loop gain until oscillations occur. The oscillation frequency, calculated by the computer, is recorded on the frequency-response graph. In this application, the RW-300 cut testing time from 90 minutes for each servo system to less than three minutes. In addition, it enabled Douglas designers to make more elaborate tests, and to scan and check more parameters.

Flight-Data Analysis

Space Technology Laboratories of Los Angeles used a computer to design a computer-entry

Checking a tape on Recomp, C. C. McConkle of Autonetics prepares the computer for an engineering problem.

ELECTRONIC DESIGN • August 31, 1960
rocessing machine. The processor takes flight cita from ballistic missile and space flights (such a. pulse-coded telemetry data from ICBM flights) and prepares the data for entry into an li3M 709. The system is flexible enough so it can be used at the receiving end of a data-carryirg telephone link.

Computer applications by electronics designers are far from limited to those which can be encompassed by a few broad categories.

- Stanford Research Institute, for example, used a Remington-Rand 1103A to design magnetic characters for an automatic check-reading system. This led to the adoption of magnetic character reading as the standard for the American Bankers' Association.
- Engineers at Daystrom Electric in Poughkeepsie, N.Y., use an IBM-610 to calculate underwater acoustic Ray diagrams, (Ray diagrams show the path of sound waves through water under different conditions of pressure, temperature, and salinity.)
Daystrom engineers feel that, in 20 minutes with the 610, they can prepare Ray diagrams that would require at least a week of manual computation.
- The GPL Division of General Precision Inc. has used an LGP-30 for a wide variety of design applications. These include: (1) exploring the characteristics of filters for frequency trackers of doppler-radar navigation systems, (2) studies of the altitude-hole effect and its relation to antenna design in doppler systems, (3) space-navigation studies and error calculations and (4) calculations of the effects of frequency modulation in a carrier.
- The Link Div. of General Precision Inc. used an LGP-30 to prepare punched tapes to load a digital function generator, a storage bank for binary data. Input to the LGP-30 included selected points along a curve or family of curves. The LGP-30 converted the decimal numbers defining the selected points to their binary equivalents. The binary equivalents were puriched out on tape according to a prescribed fornat. It is estimated that the computer cut the time in preparing loading tapes by a factor of $30 .=$

Here's why the NEW AO TRACE-MASTER is the world's finest 8-channel direct writing recorder!

American Optical Company, famous for precision instrumentation for 138 years, introduces an electronic direct-writing recorder of unique design, in which ultra-precise electromechanics has been combined with advanced electronics to achieve truly superior performance.

Finesl Writing Method Ever

Unique direct-carbon-transfer writing method. Trace is uniformly black and up to four times thinner than that made by any other recorder. Minute variations in phenomena measured are more faithful, meaningful. Carbon trace cannot fade. may be easily reproduced.
Finest Frequency-Amplifude Performance TRACE-MASTER'S multiple-feedback wide-range Driver circuitry, combined with the advanced pen-motor design, produces wider frequency response at larger amplisudes than any other recorder. TRACE-MASTER response is flat-with. in 1%-from dc to 110 cps at 40 mm !
Band Amplitude Product (i. e. Bandwidth times Amplitude) is $5600 \ldots 140 \mathrm{cps}$ (3 db point) $\times 40 \mathrm{~mm}$!

Finest Chart-Drive Facilities
TRACE-MASTER provides widest chartspeed range... 0.1 to $500 \mathrm{~mm} / \mathrm{sec} .$. of any direct-writing recorder! Convenient
push-button selection. Take-up reel automatically stores full 1000 ft . record. Writing table tiles for easy chart annotations. Guide rails permir quick, easy paper-roll changes. Low cost chart paper makes praccical protracted recording at high speeds.
Finest Resolution, Linearity, Stability Thin carbon trace (thinner by 4 to 1 over mose recorders) and high Band Amplitude Product (higher by 6 to 1 over other recorders) provide up to 24 times the resolving power or ability to detect short, sharp variations in the record. The superior linearity ($\pm 1 \%$) and stability in rectilinear presentation permit full use of this unexcelled resolution.

Finest Sysfoms Oriented Comparability Fully transistorized circuitry...application of combined dc level and signal multiple feedback...complete interchangeability of modular signal-conditioning elements are some of the features that make the 8 -channel direct writing recorder.

See it... Try it... at the Shows WESCON! ISA!
NEC! NEREM!

Entire channel casily accessible and completely interchangeable as single unit.

Platen tilts to convenient writing angle.

Widest range chart speed. . . push-button selection through $0.1 \mathrm{~mm} / \mathrm{sec}$ to $500 \mathrm{~mm} / \mathrm{sec}$.

WRITE, WIRE, TELEPHONE TODAY FOR COMPLETE INFORMATION!
Complete Engineering Bulletins available. Field Sales Engineers at your service everywhere.

American (80) Optical
 COMPANY

mastaument division, eurfaco is, new roik

Dept. H281
Please send Engineering Bulletins on the complote AO TRACEMASTER line of recording modules and ayotems.
Name
Business Address
City_Z_Zone__State

Ell:CTRONIC DESIGN • August 31, 1960

Computer-Prepared Tables Enable Design of Ultra-Flat Networks

Philip R. Geffe*

Senior Staff Engineer
Columbia Technical Corp.
Woodside, N. Y.

RECENT ADVANCES in predistortion theory provide practical design data for ultra-flat networks. The design data included in the tables in this article have not been available before to
the extent that they are available here. The uniformly predistorted element values have been given elsewhere, but in limited fashion. The tables here offer a wider range of designs and they allow easy, accurate interpolation. In the lossy-L case, the design procedure has not been possible previously in any straightforward fashion.

People who work in modern network theorl says author Philip Geffe, have trouble convinc. ing engineers that network synthesis is a pras tical discipline. This article, with compute: prepared design tables, shows one way moder methods can solve problems which are hopeless by conventional means.

Calculations, performed on an IBM 650, have been spot-checked with hand computations Where appropriate, the results have been con pared with the Weinberg tables, and no disagreements found.
Rounding off of last figures was done in such a way that rounding off again to three figures would give the correct result. Thus, a number such as 1.25493 was rounded off to 1.254 rather than to 1.255 , since the correct 3 -figure roundoff would be 1.25 .

Theoretical Limits
 Restrict Network Choice

In critical applications it is often necessary to design selective networks in which the passband attenuation is constant within a small percentage tolerance. Severe theoretical limits on realizability greatly restrict the choice of networks which will be practical from the user's point of view.

For example, the highly selective EllipticFunction filter ${ }^{1}$ is, in general, not realizable in a ladder network ${ }^{2}$ when we choose extremely small values of pass-band ripple together with a rapid transition from pass band to stop band.

If, in taking account of this, we choose the Tschebyscheff response (with equal ripples in the pass band, and a monotonic stop band), we find that arbitrary values of pass-band ripple always lead to ladder realizability.

But a further difficulty appears. The poles of the complex response function for this type of filter lie so close to the axis of real frequencies in the S-plane that both high- Q elements and close element-value tolerances are required for precision applications. These networks, there fore, require bulky, expensive materials, and manufacturing reproducibility is poor.

When an ultra-flat pass band is the prime requirement, we must choose networks whose response poles are remote from the $j \omega$-axis. In addition, we must accurately compensate for the use of low- Q elements.

Ultra-Flat Response Shapes Suggest Butterworth Networks

These restrictions lead immediately to the choice of the Butterworth family of response

[^1] N.Y.
sl apes. These responses have been fully described in the literature. ${ }^{3,5}$ Our discussion is restricted to the normalization which employs a 1-लhm source, and the $3-\mathrm{db}$ point occurs at one rallian per second ($\omega_{c}=1$).
Selectivity is sacrificed to obtain the ultra-flat property. Since the response is maximally flat, the pass-band flatness not only exceeds any previvusly assigned tolerance in some interval which contains the origin, but the interval is larger, for the networks chosen, than it would be for any other network using the same number of reactive elements.
Because of their poor selectivity, the use of these networks is almost completely restricted to the application discussed above. One exception to this rule, however, is their use in the narrow-band case, where the inherent low- Q requirement of the network is desirable

Physical Forms of the Network
 With Loss and Without

Fig. la shows a 5 -pole low-pass network which, with lossless elements, can realize the j-pole Butterworth shape if the element values are correctly chosen. In Fig. lb, the incidental dissipation of the reactive elements is shown by inserting conductances in parallel with the
capacitors, and resistance in series with the inductors.

In the synthesis of such networks, we encounter a step which requires factoring a polynomial of high degree. This can only be done approximately, and leads to enormously high computation costs.

When the load resistance, R, is open circuited, however, factoring degenerates into a trivial calculation, and we may proceed without difficulty. In the case of most desirable response shapes (e.g., Butterworth, Tschebyscheff, Elliptic-Function), the load resistor must be considerably larger, or smaller, than the source resistor; else the network will not be realizable at all. For these reasons, the tables given here are calculated for an open-circuit load.

In Fig. 1c, we show a 5-pole network in which allowance has been made for losses in the inductors only. ${ }^{6}$ This feature corresponds closely with practical problems in which the physical capacitors are relatively lossless as compared with the inductors. In building the physical network, therefore, it is not necessary to wire physical resistors across the capacitors since uniform dissipation is not needed throughout the network, and the power losses in the filter are greatly reduced. The lossy- L designs, however, may

(c)

Fig. 1. A 5-pole, low-pass network: (a) as a lossless network; (b) as a uniformly lossy network in which dissipation of the reactive elements is represented by conductances in parallel with capacitors and resistors in series with inductors. Here, $r_{i}=d L_{i}, g_{i}=d C_{i}$ (c) as a lossy-L network in which losses are concentrated in resistors in series with the inductors. Here, $r_{i}=d L_{i}$
only be used in low-pass networks.
Fig. 2a shows a typical network whose normalized design may be taken directly from the tables. When the number of reactances is even, the first element is always a series inductor, L1.

Ele ctronic Design • August 31, 1960

When an odd number of reactances is used, the first element is a shunt capacitor, C1.
Incidental dissipation is not represented in Fig. 2, but various forms of the networks are shown there. Thus Fig. 2 employs a current source instead of a voltage source, and follows from Fig. 2a by reciprocity. In this case, the response function is not E2/E1 as in Fig. 2a, but E2/II
Fig. 2c shows the network which is dual to that in Fig. 2a, and whose transfer function is 12/E1. Element values are numerically equal to those of Fig. la, but are read in henries instead of farads, and vice versa. Fig. 2d follows from Fig. 2c by reciprocity and is dual to Fig. 2b. It is important to note that the tables are labeled for the network form shown in Fig. 2a.

How to Use the

Network Design Tables
In each table of element values, the first column gives the dissipation factor d. If, say, a low-pass 5-pole Butterworth network is desired
with coil Q's of 10 , then we use the lossy- L. tables, and enter the row of Table 13 for which $d=1 / Q=0.10$. This gives the design of Fig. 3a. It is important to realize that this network does not have the desired response. This is obtained only by adding the indicated losses, as shown in Fig. 3b.

Tables 1 through 9 are for networks in which all the reactive elements have the same Q. Tables 10 through 18 are for the lossy- L case, in which all capacitors are lossless. In the first nine tables, the column headed α gives the flat loss, in decibels.

Thus the lossy-L tables may be used only for low-pass filters, but the tables for uniform dissipation may be used for either. For instance, if paper capacitors, with a Q of 50 , are to be used with coils of the same Q, then $d=0.02$ uniformly throughout the network, and Tables 1 through 9 would be used.
If a bandpass filter were desired, it would be necessary to use tables for uniform predistortion ${ }^{\overline{7}, 8}$ and then to effect the usual low-pass to

Fig. 2. Typical networks whose normalized design may be taken directly from the table: (a) uses a voltage source; (b) uses a current source; (c) and (d) are duals of (a) and (b).

d	Table 157 -Pole						Lossy-L Networks				Table 108 -Pole			C_{6}	L_{7}	C_{8}
	C_{1}	L_{2}	C_{3}	L_{4}	C_{5}	L_{6}	C_{7}	d	L_{1}	C_{2}	L3	C_{4}	L_{5}			
0	. 2225	. 6560	1.054	1.397	1.659	1.799	1.558	0	. 1951	. 5776	. 9371	1.259	1.528	1.729	1.824	1.561
. 02	. 2255	. 6688	1.053	1.449	1.602	1.913	1.417	. 02	. 1982	. 5829	. 9613	1.243	1.602	1.648	1.963	1.398
. 04	. 2286	. 6822	1.051	1.504	1.546	2.038	1.288	. 04	. 2014	. 5884	. 9868	1.227	1.680	1.569	2.116	1.249
. 06	. 2318	. 6960	1.048	1.564	1.490	2.173	1.167	. 06	. 2047	. 5939	1.014	1.211	1.764	1.493	2.285	1.113
. 08	. 2351	. 7104	1.045	1.627	1.436	2.322	1.056	. 08	. 2081	. 5996	1.042	1.194	1.856	1.419	2.472	. 9894
. 10	. 2384	. 7255	1.043	1.694	1.382	2.484	. 9532	. 10	. 2116	. 6053	1.071	1.178	1.954	1.347	2.681	. 8768
. 12	. 2419	. 7412	1.039	1.766	1.330	2.664	. 8581	. 12	. 2152	. 6111	1.102	1.160	2.061	1.278	2.914	. 7743
. 14	. 2454	. 7575	1.036	1.842	1.278	2.862	. 7703	. 14	. 2190	. 6170	1.134	1.143	2.177	1.211	3.178	. 6810
. 16	. 2491	. 7746	1.032	1.924	1.228	3.083	. 6892	.16	. 2229	. 6231	1.169	1.124	2.302	1.147	3.477	. 5962
. 18	. 2529	. 7924	1.028	2.013	1.178	3.330	. 6144	. 18	. 2270	. 6292	1.206	1.107	2.440	1.084	3.819	. 5191
. 20	. 2568	. 8110	1.024	2.108	1.130	3.609	. 5454									
Table 17 9.Pole												le 1810	Pool			
d	C_{1}	L_{2}	C_{3}	4	C_{5}	L_{6}	C_{7}	L_{8}	C9	L_{1}	C_{2}	L_{3}	C_{4}	Ls	C_{6}	L7
0	. 1736	. 5155	. 8414	1.141	1.404	1.620	1.777	1.842	1,563	. 1564	. 4654	. 7626	1.04]	1.292	1.510	1.687
. 02	. 1761	. 5253	. 8432	1.18 i	1.371	1.716	1.672	2.006	1.377	. 1589	. 4704	. 7812	1.034	1.348	1.457	1.807
. 06	. 1786	.5354 5460	. 8450	1.221	1.338	1.821	1.571	2.189	1.211	. 1614	. 4754	. 80006	1.027	1.408	1.404	1.939
.06 .08	. 1812	. 5460	8467 8483	1.264 1.316	1.304 1	1.934 2058	1.474	2.393	1.061	. 1641	.4806	. 3209	1.019	1.472	1.353	2.084
. 08	. 1839	. 5570	. 8483	1.316	1.271	2.058	1.383	2.623	. 9261	. 1669	. 4859	. 8422	1.011	1.541	1.302	2.245
. 10	. 1866	. 5684	. 8497	1.359	1.238	2.193	1.294	2.884	. 8054	. 1697	. 4913	. 8603	1.003	1.614	1.251	2.423
. 12	. 1894	. 5802	. 8510	1.412	1.204	2.342	1.211	3.180	. 6971	. 1726	. 4969	. 8880	. 9949	1.694	1.201	2.62]
14 .16	1924 1954	.5926 .6054	.8522 8533	1.467 1.527	1.171 1.137	2.505	1.132	3.521 3.917	$\begin{array}{r}\text {. } \\ 51301 \\ \hline 132\end{array}$. 1757	. 5024	. 3127	. 9861	1.780	1.152	2.842

Q of Network Elements Must Be Considered

In all cases, it should be apparent from Fig. lb that the Q of series coils must be proportional to

Fig. 3. A low-pass, 5-pole Butter worth network with coil Q's of 10 designed with the aid of Table 13. The lossless network (which does not have the desired response) is shown at (a). Adding the indicated losses for the propet response gives the network in (b)
bandpass transformation. The bandpass proce dure, then, is summarized in the following ster 1 :

Design Procedure

For Bandpass Networks

Step 1. The normalized low-pass network (frcm Tables 1 through 9) is scaled to a cutuf frequency which is equal to the desir $3-\mathrm{db}$ bandwidth of the bandpass filter:

$$
\begin{aligned}
L^{\prime} & =\frac{L}{2 \pi\left(f_{2}-f_{1}\right)} \\
C^{\prime} & =\frac{C}{2 \pi\left(f_{2}-f_{1}\right)}
\end{aligned}
$$

where the unprimed L and C indicate the tabulated values.
Step 2. The scaled low-pass reactances are reso nated to the desired center frequency, f by inserting the appropriate capacitors series with the scaled low-pass inductor and inserting appropriate inductors in par allel with the scaled low-pass capacitors
Step 3. After the correct amount of dissipatio has been added to all the reactive branche the bandpass filter will have a bandwidtl at any given attenuation, which is equal t the bandwidth of the scaled low-pass filte which was obtained in Step 1.
Step 4. All impedances are multiplied by the desired factor. Thus, in a filter to be driven by a 600 -ohm source, all impedances would be multiplied by 600 .

requency, and the Q of shunt coils must be inversely proportional to frequency. Thus, in highprecision applications, we must use components which substantially meet these requirements.
If high- Q inductors are available, a design for low element- Q can be chosen, and resistors can he wired in series with the series elements, and in parallel with the shunt elements. If element Q is limited, then series coils should be chosen whose Q-curves show maximum Q at a relatively high frequency. For the shunt coils, the frequency of $Q_{\max }$ should be low.
In bandpass filters, it is essential that the Q of the resonant branches be carefully considered. This number, which we call Q_{B}, is the net Q of the branch coil and capacitor together, measured at the center frequency, f_{0}. If the capacitors are nearly lossless, it is substantially the Q of the inductor alone. In either case, it must meet the requirement

$$
Q_{B}=Q_{p} Q_{\epsilon}
$$

(3)
where Q_{p} is the normalized low-pass Q, i.e., $Q_{\nu}=1 / d$, where d is the number tabulated here. This figure is always evaluated at the 3 -db loss frequency. Q_{c} is the circuit- Q which is given by:

$$
\begin{equation*}
Q_{c}=\frac{f_{0}}{f_{2}-f_{1}}, f_{n}=\sqrt{f_{1} f_{2}} \tag{4}
\end{equation*}
$$

where f_{1} and f_{2} are the 3 - db frequencies of the desired bandpass filter.
The value of Q_{B} can be measured accurately by using a Wheatstone bridge with an ac signal whose frequency coincides exactly with the tuning frequency of the $L C$ branch. At resonance, the branch is entirely resistive. Once this resistance is known, the Q can be calculated from an accurate knowledge of the element values. The result can be made accurate within one percent if due care is exercised. - -

References

I. A. J. Grossman, "Synthesis of Chebyshev Parameter Symmetrical Filters," Proc. IRE, pp. 454-473, April, 1957. 2. J. Meinguet \& V. Belevitch, "On the Realizability of Ladder Filters," IRE Transactions on Circuit Theory, pp. 253-255, December, 1958.
3. L. Weinberg, "Network Design by Use of Modern Synthesis Techniques and Tables," Proc. Nat'l. Electronics Couf., 1956.
t. L. Weinberg, "A,B,C,D-Network Design Easy as Pie," Pror: Nat'l. Electronics Conf., 1957.
5. Reference Data for Radio Engineers, I.T.T. Corp., lew York, 1949, pp. 193-204, (Fourth Edition).
6. J'hilip R. Geffe, "A Note on Predistortion," IRE Transuctions on Circuit Theory, p. 395, December, 1959.
i. 1. Weinberg, "Exact Ladder Network Design Using Lov -Q Coils," Proc. IRE, April, 1958.

1. I hilip R. Geffe, "Predistorted Filter Design with a Dig tal Computer," IRE Wescon Conv. Record, 1958, pp. 10-15.
 Accuracy that counts is the by-word of a Librascope Encoder ... backed by the
superior technology and reputation of one of the world's largest producers of Computers that Pace Man's Expanding Mind.

		Llbrase	encoders		Resolution per input shaft turn		
		Code	Model no.	Full scale capacity			
new	new	Binary	773	13 bits	128 counts		
noncontact	subminiature		0.773	oil-filled unit for increased life			
magne ic encoder $^{\text {a }}$	size 8 encoder	Binary	710	10 bits	1024 counts		
		Binary	707 (7070)	7 bits			
MODEL NO. 807			713 (7130 ${ }^{\text {) }}$	13 bits	128		
	MODEL NOS. 787 \& 793		717 (7170\%)	17 bits	128		
FEATURES: Long life, high reliability, high speed, natural binary V-Scan readout.	reatures: Low torgue, low inertia, long life, high reliability, withstands severe environments. severe environments.		719 (7190)	oil-tilled unit for increased life			
		Self-Decoding	0.713				
SPECIFICATIONS: Output Code: natural binary Resolution: (Der input shaft turn) 28 counts Full Scale Capacity: 7 bits ${ }^{\circ}$ Speed: operating from 0 to 10.000 rpm Life Expectancy: 20,000 hours Starting Torgue: 0.1 in-oz. max Diameter: 2 Length: $1^{13 / 16^{\circ}}$ ©also available in 13, 17, and 19			74010 bits 1024 counts	10 bits	1024 counts		
	SPECIFICATIONS: Output Code: natural binary desoution: (Der input shaft Purn) 128 counts Full Scale Capacity: 7 bits, 13 bits Speed: operating 200 rpm ,	B/C/D	723 (7230\%)	2,000 counts	200 "		
			724 (724D*)	20.000	200		
			733 (7330\%)	3,600	200		
			734 (7340)	36,000	200		
			735	360,000	200		
	Life Expectancy: 2×10^{6} Stavitions Torque: O. ${ }^{5}$ oring maximum Diameter: 750°	Sine/Cosine	757.5**	4 quadrants Der turn	7 bits per quadrant + limit 1		
			$7558 .{ }^{\circ}$	4 quadrants per turn	8 bits per quad rant + limit 1		
		Gray	708	8 bits	256 counts		
	Weight: 3 ounces	-Contain isolation diodes for multiplexing		- Servo driven, hermetically'sealed			
NE AVAILABLE	LIBRASCOPE DIVISION	NC.					
write today	GENERAL PRECISION,						
your copy	100 East Tujunga • Burbank, Calif.					neering Emp	

new
noncontact

MODEL NO. 807
FEATURES:
Long life, high reliability, high speed
natural binary V-Scan readout. SPECIFICATIONS:
Output Code: natural binary
Resolution: (per input shaft
Resolution: (per input shaft turn)
128 counts 128 counts
Full Scale Capacity: 7 bits
Speed
operating from 0 to
Speed: operating from 0 to
10.000 rpm
Life Expectancy: 20,000 hours
at 4,000 rom; 4×109 revolutions
Starting Torgue: 0.1 in-oz. max.
Diameter: $2^{\prime \prime}$
Length: $1^{\prime \prime} 13 / 16^{\prime \prime}$
Weight: 5 ounces
also avallable
Bit capacitits.
new CATALOG AVAILABLE for your copy
new
subminiature

MODEL NOS. 787 \& 793 rEATURES: Low torgue, low inertia, long
life, high reliability, withstands severe environments. SPECIFICATIONS: Output Code: natural binary
Resolution: (per input shaft turn) 128 counts
Full Scale Capacity: 7 bits, 13 bits
Speed: operating 200 pmon Speed: operating 200 rpm ,
slew 600 rpm Life Expectancy: 2×106 revolutions at 200 rpm
Starting Torque: Starting Torque:
0.5 zon in. maximum Diameter: $.750^{\circ}{ }^{\circ}$

BURBANK BRANCH

 LIERASCOREDIVISION 100 East Tujunga • Burbank, Calif.
Stripline Technique Produces A Simple 3－Db Directional Coupler

In this article，author John Dent describes a 3－db directional coupler which employs stripline techniques and provides directivity in excess of 20 db over a 30 per cent frequency band．The unit demonstrates excellent power division char acteristics and contains no critical dimensions or construc－ tion practices．

John R．Dent，

Electronic Engineer，
Melpar，Inc．
Falls Church，Va

E^{2}MPLOYING stripline techniques in the design E of clirectional couplers has led to a class of device that is compact and lightweight．This，to－ gether with the lack of an external termination， results in a unit well suited to airborne and mis－ sile applications．Fig． 1 illustrates one possible configuration of this device．
Radio－frequency power entering at A is divided equally between lines $A B$ and $A C$ by virtue of the symmetry of the directional coupler design．The resulting fields at B and C are equal in phase and amplitude．The result is that no power is dissi－ pated in resistor R when matched loads are con－ nected to the output terminals．However，by choosing the proper circuit components，a high de－ gree of isolation between terminations（or sources）
connected to terminals $Z O B$ and $Z O C$ will exist for power entering at either terminal．Experimen－ tal results of two units，operating about the 1100 － mc and $3000-\mathrm{mc}$ frequency bands，are shown in Figs． 2 and 3 respectively．
To obtain isolation，two possible paths of propa－ gation are provided between B and C for power entering at terminals $Z O B$ or $Z O C$ ．These paths must offer equal impedances to the signal，and they must be separated by 180 deg at resonance．
By making the line lengths from A to B and A to）$C 1 / 4$－wavelength long，and by choosing the proper line impedance and resistor value，an equal power split and proper impedance match－ ing exist．
A signal entering at terminal $Z O B$ is split equally at junction B ，and travels toward junction C via the resistor and the $1 / 2$－wavelength long path，B to A to C ．At junction C ，the two parts of the signal are of equal amplitude and 180 deg

Fig．1．The stripline directional coupler with a $3-\mathrm{db}$ insertion loss shown here is designed about a simple path－length difference．
out of phase，if the path length through the re sistor is considered to be negligible，and complete cancellation occurs．This makes junction C a volt tage－null point with zero impedance．As a result． no power will be transmitted to terminal ZOC，

Fig．2．Experimental stripline directional coupler achieved directivity of 20 db over a 33 per cent frequency band at $1,100 \mathrm{mc}$ ，with an insertion loss of 3 db ．

Fig．3．A second stripline directional coupler，operating at a frequency of about 3,00 mc ，achieved a $20-\mathrm{db}$ directivity of 20 db over a 36 per cent frequency band．

Fig. 4. Construction of the stripline directional coupler, as shown in this c.ploded view, is simplicity itself.

the re-
mplete
and the power will be equally divided between the resistor and the termination (or source) connected to terminal ZOA.
By making impedance $Z O A=Z O B=Z O C$, the impedance of lines $A B$ and $A C$ for proper impeedance matching can be determined from the quarter-wave transformer expression:
$Z A B=Z A C=\sqrt{(2 Z O A)(Z O C)}$

$$
=\sqrt{(2 \mathrm{ZOA})(\mathrm{ZOB})}=\sqrt{2(\mathrm{ZOA})(1)}
$$

The impedance of the resistor is determined readily since junction C appears as a point of minimum impedance for signals entering at terminal ZOB. Conversely, junction B appears as a point of minimum impedance for signals entering at terminal ZOC. This minimum impedance at C is reflected along the $1 / 4$-wavelength transformer, line ΛC, as an open circuit at junction A. The path impedance toward junction A from junction B is, therefore, the impedance ZOA transposed along the $1 / 4$-wavelength transformer, line $A B$ as 2 ZOA .
Ky making the value of the resistor equal to ?ZOA, an equal power split can exist at junction B for power entering at $Z O B$ and at junction C for power entering at ZOC (a requirement for mavimum isolation), and proper impedance matching will exist.
Io determine if the design could be realized in pratice, units were constructed using the techniques shown in Fig. 4. The configuration was lan 1 -cut in register on both sides of a copper-clad leflen fiberglass boarcl $1 / 16$-in. thick, with $3 / 16$ -

Fig. 5. The high frequency unit, minus the housing, comprises the stripline mounted in register on both sides of a 3 -in. sq. of copper-clad teflon fiberglass.
in. ground place spacing. The strip widths for the desired impedance were determined from reference 1. The resistors employed are of the evaporated film type designed for microwave use. The higher frequency unit, less its housing, is shown in Fig. 5.

With proper choice of dielectric materials, highfrequency resistors and connectors, this unit can be readily adapted to a wide variety of multiplexing and coupling applications, both commercial and military.

References

1. S. B. Colin, "Characteristic Impedance of the ShieldedStrip Transmisison Line", IRE Transactions on Microwave Theory and Techniques, Vol. MTT-2, No. 2, pp 52-57; July, 19.54.

INSTEAD OF THIS...

YOU'LL DO THIS...

with American Aluminum Quality ... Dependability ... Service!

And when it comes to quality and dependable service . . . everyone at American Aluminum gets in the act. The minute you call American Aluminum, all members of our family concentrate on giving you the aluminum products that serve your specific needs. From the design to the finished product, all under one roof, you can depend on American Aluminum for quality and service . . . when you need it!

SPECIALISTS IN CONTRACT MANUFACTURING

 OF ALUMINUM FOR THE ELECTRONICS INOUSTRYComplete fabricating facilities for Deep Drawing, Heat Treating, Spinnings, Assembly, Brake Work, Stampings, Anodizing, Welding, Finishing.

Complete die making facilities stock dies on hand for many shapes
Complete inspection facilities

Send for brochure "ALUMINUM FABRICATING FOR INDUSTRY"

american aluminum company

Manufacturers of Aluminum Products for industry since 1910

Sheffield Street, Mountainside, New Jersey CIRCLE 45 ON READER-SERVICE CARD

Fig. 1. Generalized transisior circuit.

Fig. 2. Flow graph for generalized transistor circuit of Fig. 1.

Fig. 3. Electrical equivalent of generalized circuit derived from flow graph of Fig. 2.

Flow Graph Speeds Transistor Circuit Analysis

What's going on electrically in a transistor circuit can be determined readily, and without looking up equations, from a flow graph. This application of flow graphs, presented by T. R. Nesbit, enables the designer to easily keep track of resistive parameters, hybrid parameters, voltages and currents.

T. R. Nisbel

Lockheed Aircraft Corp.
Palo Alto, Calif.

THE FLOW GRAPH is a useful device for tying together the equivalent circuit, the characteristic curves and the definitions of the various h-parameters of a transistor.

Fig. 1 defines what is meant by v_{i}, i_{i}, v_{o}, and i_{o} without reference to the type of circuit connection.

The flow graph, Fig. 2, illustrates all the relevant equations. Note the distinction between dependent and independent variables. To determine y in the equation $y=a x+b$, one must allocate a value to x. With the flow graph, one must allocate a value to the independent variables \boldsymbol{i}_{i} and v_{o} to evaluate the dependent variables v_{i} and i_{0}.

Allocating a zero value gives the definitions.

For example, if $\varepsilon_{v}=0$, then v_{o} contributes nothing along the h_{r} path to v_{i} (Fig. 2), so that v_{s} is equal to $i_{i} \cdot h_{i}$. In conventional form, $h_{i}=v_{i} / i_{i}$] $v_{n}=0$.
When the independent variables are not zero the system equations can be written from the flow graph. For example:

$$
v_{i}=\left[h_{i} \cdot i_{i}+h_{t} \cdot v_{o}\right]
$$

Because generators in an equivalent circuit represent dependent variables, it is easy to construct an equivalent circuit from the flow graph, as in Fig. 3.

When drawing a graph, one intuitively puts the independent variable on the X axis. The commonemitter characteristic curves therefore are plotted as in Fig. 4, with the second independent variable. input (base) current as a parameter. Similarly the input characteristic would be plotted as base
voltage (X axis) vs base current (Y axis) with col lector voltage as a parameter.

The T equivalent-circuit parameters for the common emitter connection are shown in Fig. and the flow graph in Fig. 6. The flow graph wit the path i_{c} to $v_{c e}$ inverted is shown in Fig. 7.

Comparison of the flow graph Fig. 7 and Fig. shows that the arrangement of input and outpu variables is the same. Therefore to express h_{r} if terms of the equivalent-circuit parameters, not where it appears in the flow graph, in Fig. 2, and write down, from flow graph rules, (see ED, Deq 9, 1959, p 32) an expression for the same path if Fig. 7; by implication, the "unused" independen variable, i_{i} or i_{b} is set equal to zero in both case There is one loop, so h_{r} is evaluated as:

$$
h_{r}=\frac{1}{r_{d}} \cdot r_{e}\left[\frac{1}{1+r_{e} / r_{d}}\right]=\frac{r_{e}}{r_{d}+r_{e}}
$$

Fig. 4. Common emitter characteristic curves.

Fig. 5. Common emitter equivalent T circuit.

Fig. 6. Flow graph for equivalent T circuit of Fig. 5.

Fig. 7. Equivalent T flow graph with $i_{c^{-}}$ 10- $\mathrm{v}_{c e}$ path inverted.

"FRIGID MIDGET" for electronic systems

Creative
Engineering. .
for

輠OPTIMUM DESIGN FOR A BALANCED COOLING SYSTEM \ldots. . and the customer receives perfection in miniature, assured performance . . . plus single-source responsibility from Pesco - the only manufacturer that produces all its own micromatched components for electronic cooling packages. Designed by a creative team of Pesco engineers, this compact package features a liquid flow rate of $1 \mathrm{gpm} \ldots$ high heat transfer of $21 / 2 \mathrm{KW}$ at $212^{\circ} \mathrm{F}$ and 50,000 feet altitude .. . liquid temperature range from -65° to $+212^{\circ} \mathrm{F}$. . . plus built-in thermal bypass for low temperature operation requiring no cooling. It is particularly adaptable to electronic systems utilizing liquid-cooled power tubes in either airborne or ground installation where space and weight are of critical importance. For customized cooling packages engineered to meet your environmental requirements, contact the Pesco Sales Office nearest you or write today to .

PESCO PRODUCTS DIVISION

Borg-Warner Corporafion
24700 North Miles Road • Bedford, Ohio

EXPORT SALES: Borg-Warner Infernational Corp., 36 South Wabash Avenue, Chicago 3, Illinoit CIRCLE 46 ON READER-SERVICE CARD

The unit illustrated is the largest transformer manufactured by NWL. It can be made in either air, air-blast or oil-filled versions. The pulse transformer has an output of 10,000 ampere pulses at 1000 volts. The approximate weight is $11,000 \mathrm{lbs}$. This transformer is typical of the many special units currently being produced by NWL. Pulse transformers can be manufactured up to 200 KV and up to 50,000 KW peak power.
Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you according to your individual requirements.

nothelfer winding laboratories, inc. P. O. Box 455, Dept. ED8 Trenton, N. J. (Specialists in custom-buildine)
CIRCLE 47 ON READER-SERVICE CARD

Power Sensing Circuit

Protects New Line of Power Supplies Against Overload

A
CIRCUIT which provides overload and short circuit protection by sensing the power being dissipated in the output-regulating transistors, is the outstanding feature of the CE's new line of transistorized power supplies. Designed by General Electric's Low Voltage Switchgear Dept. (6901 Elmwood Ave., Philadelphia 42, Pa.), the supplies are available in 30 standard models with output voltages ranging from 1.5 to 100 \therefore. Current output is rated up as 20 amp .

The supplies are protected against overload by a patentable "constantwatts" circuit. Because the patent has only recently been applied for, a complete discussion of this circuit cannot be given. However, some details have been made available.
The diagram shows how the constantwatts circuit is placed across the seriesregulating transistors. Voltage across, and the current through the transistors are measured. These parameters are then mixed in a nonlinear network whose output is proportional to the power dissipated in the transistors.

If excessive power dissipation exceurs (as would be cansed by an overload), the operating point of the transistors is shifted to a position having a safe dissipation level. When the overload condition is removed, normal operation is alltomatically resumed within $3 \mu \mathrm{sec}$.

Thus, the effect of the constant-watts circuit is to superimpose power-limited operation on the voltage-regulating systom of the supply. This is illustrated by the graph which plots the voltage and current passing through the regulating transistor. The dashed line represents the locus of constant transistor dissipation and shows where the power-limiting circuit will take over from the voltage-regulating one. This curve, which approximates the constant dissipation hyperbola in the middle range, is produced by the nonlinear multiplying network

Also shown is the power supply's out put current-voltage characteristic. The direction of the arrows indicates the change from no load to short circuit comditions. It can be noted that with shorted output, some current is still be

Current-voltage characteristics are shown for the output of the supply and for the regulating transistors. Arrows show direction of operation as loading increases from no load to short circuit. (Curves are to scale and apply approximately to each unit.)
ing supplied-that is, the supply is not completely shut off. This characteristic makes these units very suitable for certain applications where initially the load is approximately a short. Such applications would include the charging of capacitors and de motor starting.
All ratings in the standard line of supplies are for 11.5 or $220-\mathrm{v}$ single-phase, (fi)-cps input. Units are also available for $40(0)-\mathrm{c} p \mathrm{~s}$, and three-phase inputs. Output voltage is variable from 0 to 100 per cent volts.
Line regulation is less than 10 mv for line changes of ± 10 per cent, or 0.03 per cent, whichever is greater. Load regulation is less than 0.1 per cent or 30 mv, whichever is greater, for load changes of zero to 100 per cent. The dynamic regulation is 0.1 per cent instantancously for 5 per cent step line, (ir a 50 per cent step load change.
The units are designed for mounting in 19 in. racks, or for bench mounting, and are convection cooled. Prices range from $\$ 350$ to $\$ 1100$ with slight increase in cost for such optional features as remote sensing and output voltage control, in tantaneous overvoltage protection, and multiple-unit packaging.
For more information on these power su plies circle Reader-Service 251.

V44 - the new, ultra-stable, all-electronic digital voltmeter

No longer must you trim decade or amplifier gain potentiometers to make accurate, highspeed measurements with an all-electronic digital voltmeter. The new transistorized NLS V44 has no pots at all in its decade circuits because of ultra-stable electronic switches . . . no pots at all in the amplifier because amplifiers are used only within the feedback loop, where amplifier drift becomes inconsequential. Here is the speed you need - 3 milliseconds per reading - for measuring high-speed transient data . . . for multichannel data logging. Contact NLS for complete information.

BRIEF SPECIFICATIONS: Accuracy $\pm 0.01 \%$ speed 3 milliseconds per reading . . . input impedance 10 megohms . . "anti-jitter" circuit . . DC voltage ranges ± 9.999 /99.99/999.9 . . millivolt ranges with preamplifier $\pm 99.99 / 999.9$. . AC ranges with AC/DC converter 9.999/99.99/999.9 from 30 cps to 10 kc . . . 98% plug-in modular construction . . . digital output in both decimal and binary coded decimal form simple plug-in accessories for automatic data logging and measuring systems . . . complete, $\$ 6,150$.
non-linear systems, inc.
del mar (SAN DIEGO), CALIFORNIA

TO 600,000 VDC

... somathing new in high voltage!

ELECTROSTATIC GENERATORS FOR INDUSTRY

SAMES Electrostatic Generators, producing substantial amounts of output power at voltages up to 600 kv , are the first such generators ever designed for day-to-day industrial use. They're marketed in the U.S. exclusively by Sorensen.
Output voltage is very nearly pure d-c, marked by the almost complete absence of ripple or other a-c components. Voltage regulation ranges from 4% to 0.33% for medium stability models and from 0.1% to 0.001% for high stability models.
You'll find these advanced high-voltage d-c sources described in the new 6-page Sames brochure. A new 32-page Sorensen catalog is also available which lists more than 400 models of high-precision power supply equipment and gives valuable selection and application data. Write for your copies today. Sorensen \& Com-

... THE WIDEST LINE MEANS THE WISEST CHOICE

ASOLID-STATE pressure transducer that is reported to combine the best over-all characteristics of both strain gage and potentiometer-type transducers, but has the disadvantages of neither, is available from Fairchild Controls Corp. The unit, which is compatible with microminiature solid-state amplifiers, withstands military transducer environments.

Designated type 3S-G, the transducer is "conservatively regarded as representing a 10 -fold increase in the state of the transducer art," according to the Fairchild Controls Corp. It "obviates the need for an amplifier, required by conventional strain gage transducers, to increase output signal strengths from an average 20 to 40 mv to approximately 5 v dc." it was added.

The transducer consists essentially o three modules contained in an anodized aluminum case $1-1 / 8 \mathrm{in}$. in diameter and 3 in . long. These modules perform the functions of energy conversion, signal conditioning, and calibration.
Energy conversion is accomplished by a sensitive element made of several piezzoresistive semiconductor elements coupled to a resilient, high-alloy steel, lowmass diaphragm. These elements form the resistive arms of a Wheatstone bridge. The diaphragm is proportioned to fit selected pressure ranges from 0 to 100 psi and from 0 to $10,000 \mathrm{psi}$, full scale. Pressures which deflect the dia phragm create an unbalance in the bridge, producing a dc signal proportional to the deflection. Input excitation to the transducer is from 10 to 25 v dc

BENDIX PTO2E-10-6P CONNECTOR (REWORKED) MATING CONNECTOR SUPPLIEO WITH INSTRUMENT

Diagram illustrates the configuration of the pressure transducer. and transducer excitation and output.
${ }^{11}$ minnal; it can take up to 30 v dc with(wit damage. Input impedance is approxin ately 700 ohms with an output imprdance of less than 4,500 ohms. Input pressures up to 150 per cent of rated have negligible effect on instrument calibration while pressures in excess of 200 per cent have caused no damage.
Signal conditioning is accomplished by a completely transistorized amplifier which receives the differential signal generated in the sensing element and produces the output signal. The trans ducer transfer function is 25 per cent. giving a 5 -v dc output signal for a full range change in pressure at 20 vdc .
Calibration is accomplished by an in-ternally-contained shunt resistor. When it is keyed across one leg of the Wheatstone bridge, the transducer produces an output signal equivalent to one-half full scale rating.
The 3S-G transducer, made by Faircliild Controls Corp., Components Div. $\because 25$ Park Ave., Hicksville, N.Y., is re sponsive to static pressures and to dynamic pressures in the kilocycle range. Frequency response is limited only by the type of plumbing that conducts the ineasured pressure media to the 3S-G pressure port. It has better than ± 0.1 per cent linearity, an 0.1 per cent hysteresis over a temperature range of -65 to +250 F ; it has infinite resolution Both zero and full range sensitivity change less than ± 0.5 per cent over any 100 F temperature excursion within the rated temperature range. Designed to meet the Mil-E-5272C environmental requirements, it can withstand 50 g vibration to $2,000 \mathrm{cps}$ without damage. Materials used allow the measurement of all gaseous and liquid media, including liquid oxygen, strong alkalies and acids such as nitrozene and red fuming acid. 1 ruggedized design, which adds $3 / 16$ in. to the wall thickness, is available for usage where the most severe environments are encountered, such as a rocket test stand. The problem of noise pick-up and signal distortion are eliminated by the $5-\mathrm{v} \mathrm{dc}$ output that requires no amlification for instrumentation purposes.
These units are available in sample quantities up to 2 within 60 days, for larker quantities up to 10 the availability is 60 to 90 days after the date of order.
For more information on this solidtat. transducer, turn to the ReaderSer ice Card and circle 252.

three and one.half times actual size

- D DESIGNED ESPECIALLY FOR MISSILE CIRCUITRY AND MAXIMUM RELIABILITY APPLICATIONS
 The "Golden-D" Cannon Plugs are engineered to

 deliver superior performance in a subminiature (2) $\begin{aligned} & \text { deliver superior performance in a subminiature } \\ & \text { sizel Supplementing our famous standard } \\ & \text { D.Subminiature line, the "Golden-D" has these }\end{aligned}$ 14 ment/SEPARATION FORCES - Golden CADMIUM SHELL FINISH • MATES WITH ANY CANNON "D" OF SAME SIZE AND LAYOUT. Wherever maximum reliability is needed in a subminiature multi-contact plug-for both military and industrial applications-ask for the new "Golden-D"...another reason why you should contact the world's most experienced plug manufac turer for all your plug requirements. The "Golden-D" is available in four types with a large variety of
 contact layouts. For further information write to:

CANNON ELECTRIC COMPANY, 3208 Humboldt St., Los Angeles 31, Calif.

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader's Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

Miniature Circulators

455
Have No External Permanent Magnets
These miniaturized coaxial-line circulators have no external permanent magnets. They can be designed for operation in the C-, S and L-bands. They operate over 10% bandwidths and provide more than $20-\mathrm{db}$ isolation and less than $0.5-\mathrm{db}$ insertion loss with a maximum input vswr of 1.3 in any arm. The size of the C-band unit is 1.4 in . in diameter and 1.4 in . height, exclusive of connectors; it weighs 6 oz .
Sperry Rand Corp., Sperry Microwave Electronics Div., Dept. ED, Clearwater, Fla. Price \& Availability: C-band, \$225; S-band, \$245; L-band, \$325. Delivery is from stock for small quantities; 30 to 60 days after order for production quantities.

Miniature Wafer Switch 454 For Rotary-Type Applications

This wafer switch is designed for miniature installations requiring a rotary-type switch. As many as 20 circuits may be installed through a 1 in. hole. Plated-through segments of the hole provide contact to the desired circuits by means of a positive-stop rotary wafer. Up to 10 wafers per in. can be stacked in any design.

Allied Allegri Machine Co., Inc., Dept. ED, 141 River Road, Nutley 10, N.J.
Availability: For quantitics of 1 to 49, up to 4 weeks.

Low-Current Silicon Rectifiers

Rated from 25 to 400 V, 4.7 Amp Avg

Peak-inverse-voltage ratings from 25 to 400 v and average forward-current ratings up to 4.7 amp are provided by the series C11 low-current silicon controlled rectifiers. Typical gate current is 4 ma at 0.6 v ; maximum gate voltage to fire is 2 v . Typical turn-on and turn-off times are 2 and $15 \mu \mathrm{sec}$, respectively. Maximum reverse or forward leakage current is 4.5 ma for the $25-\mathrm{v}$ device, and 1 ma for the $400-\mathrm{v}$ unit. Peak-surgecurrent ratings are 60 amp at rated load, or 125 amp during the turn-on time interval.
General Electric Co., Dept. ED, Charles Bldg., Liverpool, N.Y.
Price: $\$ 4.50$ to $\$ 35.50$, depending on voltage rating.

Voltage Reference Diodes

Are Stable Within ± 16 And $\pm 8 \mathrm{Mv}$

Stable within ± 16 and $\pm 8 \mathrm{mv}$ from -55 to +100 C , these silicon Zener voltage-reference diodes have a temperature coefficient of $\pm 0.002 \%$ per C. Designated types 1 N1530 and 1N1530A, respectively, the units provide a reference voltage of 8.4 v at 10 -ma bias current and have a dynamic resistance of 11 ohms avg. The devices, designed for insertion into printedcircuits, measure 0.56 in . in diameter and 0.59 in . high. They are said to withstand severe shock and vibration.
International Rectifier Corp.. Dept. ED. 1521 E Grand Ave., El Segundo, Calif. Pice: 1N1530: \$18; 1N1530A: \$27.

NEW from

 JFOFIXED
MINIATURE METALIZED INDUCTORS
JFD now offers a complete line of fixed-value miniature Metalized Inductors in inductances to cover a wide variety of circuit application requirements

The new JFD Inductor series employs silver film permanently fused to a low loss dielectric glass cylinder. This lightweight monolithic construction achieves a new high in stability, durability and economy ; a new low in temperature coefficient of inductance and distributed capacitance. Assures you of utmost reliability for critical circuit operation in severe environment.

Listed above ore only six of 23 standerd JFD Motalized
mount and printed circulf types from .05 ph to 2.00 رhiz
JFD Metalized Inductors can also be designed to help solve any development, design, or production problem. The number of turns, types of windings, size and distributed capacitance, Q and other parameters can be designed to suit individual circuit requirements. Write for bulletin 223 for full specifications.

Features

1. Rugged construction affords unusually high stability 3. Low distributed capacity.
under conditions of severe shock and vibration. under conditions of severe shock and vibration.
2. Use of glass dielectric assures low temperature coefficient of inductance and operation without derating over a wide range of extreme environmental conditions.
3. Special alloy plating protects metal parts from corrosion.
4. A high \mathbf{Q} over a broad frequency range.
5. Silver plated copper leads.
6. Available in panel mount and printed circuit mount types.

JFD JFD ELECTRONICS CORPO

JFD CANADA LTD.
51 McCormack Street. Toronto, Ontario. Canada JFD international JFD Western regional division
73ii Van Nuys Boulevard, Van Nuys, calitornaia
 Si me fixeo metalizer inductone LS Moore Street, New York, w. Y. VARIABLE TAIMMER METON CAPACITONE - FIXED METALIZEI INDUCTONE - LC TUNERE. FIXED AND VARIABLE, DISTRIDUTEO AND LUMPED CONETANT DELAY LINEE • MULEE FORMINO NETWORKE • DIPLEXERE CIRCLE 51 ON READER-SERVICE CARD
a continuing series on technical topics
relating to electronic applications

Folio 11
REFERENCE DATA FILE

Considerations In Selecting Mica Capacitors

Mica Capacitors may have identical capacitance and voltage rating on their name plates, yet one may be up to a hundred times larger than another-why? It is the purpose of this article to discuss how the dc voltage rating, rf voltage rating, rf current rating, corona starting voltage, and pulse application affects size and physical configuration of mica capacitors. Examples will be given showing typical Sangamo types that are used to account for these electrical environmental variations.

DC Voltage Rating - Many electronic applications require that a mica capacitor be used in a circuit of moderate to high-voltage dc with a slight ac voltage superimposed on it. Because mica exhibits a very low dissipation factor, very little heat is generated due to the small amount of ac. Of primary concern is the dc voltage stress. Mica has a very high dielectric-strength capability. Hence, required capacity can be contained in a package that is significantly small such as Sangamo's Types D, DR, KR, CR, H and A. (Figure 1)
Fig. 1

RF Voltage and Current Rating - Like the small mica capacitors described above, capacitors of a larger size are frequently required to operate with a comparable dc voltage across their terminals. However, in transmitting rf oscillator tank circuits, radio frequency is predominant and the primary requirement is the ability to handle a large magnitude of rf current. It is therefore necessary to use a capacitor that can dissipate the heat generated

by the rf field. Because these factors are so important, transmitting capacitors are rated in rms current and peak working volts. They are usually potted in a material that has a high thermal conductivity and packaged to have a large surface area. Sangamo's Types E, F, and G are ex-
amples of high rf current application capacitors. Figure 2 shows, for example, the relative size and current-carrying ability of Types G1, G2, G3, G4 and G5.

Corona Starting Voltage - Corona can occur in any capacitor where the conditions are right. Capacitor manufacturers are aware of this and design accordingly. Where amplitude and frequency of ac voltage across the capacitor are relatively low, a wax impregnant can be used. How ever, when voltage is low and frequency is high, a liquid impregnant is used. The difference is due to the physical nature of the impregnant. The wax, when cooling, leaves holes and promotes corona, while a liquid impregnant is homogeneous. A typical example of a liquid impregnated capacitor that is used for miniaturization, low distributed inductance, and high frequency applications is the Sangamo Button ${ }^{\circledR}$ Capacitor. (Figure 3)

Fig. 3

Type M-23

Type M-63

Type M-72

Pulse Application - Unfortunately there are no industry standards on capacitor ratings for pulse applications. Design and testing of these capacitors follow individual specifications at the present time. Applications involving highfrequency pulse operation should be reviewed carefully with regard to corona and peak stresses. These two factors are very closely related to life expectancy of the capacitor. With the growth of pulse circuitry, users and manufacturers must begin to develop meaningful specifications, standards, and test procedures for pulse capacitors. Figure 4 shows typical examples of Sangamo Capacitors designed for pulse applications. The Type N-87 is a multiple-section Sangamo mica capacitor designed for packaging with other components in a hermetically sealed, oil-filled enclosure.

Fig. 4

Type $\mathrm{N}-38$

Your inquiry for more complete information on special applications of Sangamo mica capacitors is invited.
sc60-5
SANGAMO ELECTRIC COMPANY, Springfield, Illinois
-designing toward the promlse of tomorrow

NEW PRODUCTS

Power Rheostats

Have torsion spring assembly
Types R-50, 75, 100 and 150 power rheostats have a torsion spring assembly that provides uni form pressure of the contact brush against the winding at all times. Current flows from the brush through a flexible shunt wire to a large size slip ring. Having all-ceramic construction, the rheostats can operate at extreme temperatures.

Tru-Ohm Products, Dept. ED, 2800 N. Milwau kee Ave., Chicago 18, Ill.
Availability: Available from stock 10 days to 2 weeks after order received.

Voltmeter

Accuracy is 1%

Type 300-G electronic voltmeter has an accuracy of 1% over the meter scale from 1 mv to 250 v and over the band of 20 cps to 20 kc . Accuracy is better than 2% up to $1,000 \mathrm{v}$ and from 10 cps to 250 kc . The instrument covers 1 mv to $1,000 \mathrm{v}$ in six decade ranges. It has a 5 -in., mirror-backed scale.

Ballantine Laboratories, Inc., Dept. ED, Boonton, N.J.
Price \& Availability: $\$ 315$ ea; from stock.

DC Amplifier

Stability is $\pm 1 \%$
This dc, airborne, telemetry amplifier has $\pm 1 \%$ stability and a voltage gain of 1000 , adjustable to $\pm 10 \%$. Signal input is $\pm 5 \mathrm{mv}$, resulting in an output of $\pm 5 \mathrm{v}$. Bandwidth is dc to 100 cps with less than 1% attenuation. Linearity is within 0.5% Input impedance is greater than 10 K ; output impedance is less than 1.5 K . Ripple and noise referred to the output is less than 25 mv , peak-topeak. The unit operates from $28 \pm 4 \mathrm{v}$ dc with a current drain of less than 60 ma .
Networks Electronic Corp., Dept. ED, 14806 Oxnard, Van Nuys, Calif.
Availability: The unit is made on order.

Transitron

 introducesan exciting new device for simpler, more reliable, more economical switching circuitry

1

(BY-NIS-TOR)

The Silicon NPN Tetrode binistor is a new component and a new concept for the circuit designer! The key parameters of this bi-stable, negative resistance device are determined by external circuitry in contrast to existing devices. The significant reduction of peripheral circuitry results in outstanding savings in cost, space, weight and solder connections. For example, a typical flip-flop requires at least 13 components versus only 4 in an equivalent binistor stage. Very large current and voltage gains are realized in both on and off directions. Inputs and output are compatible in level with typical transistor and diode circuits. The tetrode binistor can operate from $-80^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
To learn more of this important new development - THE BINISTOR - and how it works write for Bulletin No. TE-1360.

CONDENSED SPECIFICATIONS TRANSITRON BINISTOR

Typical Turn-off Current Gain	$50 @ 15 \mathrm{ma}$ Collector Current
Operating Collector Current Range	$50 \mu \mathrm{\mu}$ to 15 ma
I_{j} critical	0.5 ma @ 5 ma Collector Current
Operating Temperature Range with- Out Temperature Compensation	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Trangitron

electronic corporation wakefield, melrose, boston, mass. SALES OFFICES IN PRINCIPAL CITIES THROUGHOUT THE U.S.A. AND EUROPE - CABLE ADDRESS: TRELCO
"Leadership in semiconductors"

OR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.
BALTIMORE, Maryland
2319 Maryland Ave. CHesapeake 3-3220 BOSTON, Massachusetts
168-182 Albion St.
Wakefield, Mass...................... CRystal 6-5640
CAMDEN, New Jersey
227 S. Sixth St. . .
........WOodlawn 6-2877
CHICAGO, Illinois
6641 W. North Ave.
Oak Park, III. . .
.VIllage $8-5556$
CLEVELAND, Ohio
14625 Detroit Ave.
Lakewood Ohio
DALLAS, Texas
511 Braniff Airways Bldg.
Dallas 35, Texas
........FLeetwood 7.9448
DAYTON, Ohio
379 W. First St. BAldwin 4-9651
DENVER, Colorado
First National Bank Bldg.
621 Seventeenth St. AComa 2-1686
DETROIT, Michigan
2842 West Grand Blvd.TRinity 5-2440
KANSAS CITY, Missouri
Wirtham Bldg.
31st and Troost Sts. VAlentine 1-1819

LOS ANGELES, California

6362 Hollywood Blvd.
Hollywood 28, Calif. HOllywood 2-238
NEWARK, New Jersey
1060 Broad St. . . .
..........MArket 3-3151
ORLANDO, Florida
\#10 Jacklind Bldg.
205 E. Jackson St. CHerry 1-4526
phoenix, Arizona
2727 North Central Ave. CRestwood 7-3366
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave. Mldway 6-1891
SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif.. DAvenport 1-2064
sEATTLE, Washington
3466 East Marginal Way MAin 4-0783
SYRACUSE, New York
2360 James SL...................... HOward 3-4502
winston-salem, North Carolina
Nissen Building
310 W. Fourth St
.PArk 3-0363
Trangitron
alectronic corporation T wakefleld, meseachucottio
 canto ndirue Tite
CIRCLE 53 ON READER-SERVICE CARD

Here is an equipment designer's dream come true: tests prove that the greater the stress, the greater the security with Atlee holders.

PUNISHING TEST: Components mounted in Atlee holders were subjected to 500 cps vibration at 90 G peak acceleration, $2,000 \mathrm{cps}$ vibration at 65 G peak acceleration, and $200-\mathrm{G}$ shocks at right angles to and also along the axis of the holder. Force required to remove the component was measured before, during and after this punishing test.

RESULTS: Required removal force was higher by a substantial amount during and after vibration, and after the impact shocks. There was no shifting of the component in the holder, and no resonances

STATIC GRIP
 developed at any frequency under vibration.

As shock and vibration increase, this holding power automatically increases because Atlee Component Holders have been engineered to meet the most severe operating conditions.

DESIGN FOR RELIABILITY WITH aflee - Benefit from a complete line of superior heat-dissipating holders and shields of all types, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

atlee corporation
330 bear hill road, waltham, mass.

NEW PRODUCTS

Speed Control

Is power compensating

The Reactron, an ac saturable reactor, is essentially an inductor which has a laminated-iron core. It acts as a static power-compensating transformer and has a very fast response time. Typical uses are operation and control of ac-dc series universal type motors as well as dc shunt motors driven directly from an ac source.
Vee-Arc Corp., Dept. ED, Westboro, Mass. Availability: Made to customer specs.

Noise Figure Bridge
405
Frequency range is $\mathbf{2}$ to $\mathbf{2 0 0 0 ~ m c}$

The Auto-Node automatic noise figure bridge is designed to obtain noise-figure meter displays for making noise-figure adjustment. Useful frequency range is 2 to 2000 mc . Sine-wave temper-ature-modulation is 10 cps with temperatures from 300 to 400 K . Noise-figure stability is better than 3.5 db and the gain is sufficient to raise the input noise to 10 v after final detection. The bandwidth is 2 mc and center frequencies can be 30 ., 60 , or 70 . The accuracy is 0.2 db for gain or loss measurements.

Kay Electric Co., Dept. ED, Maple Ave., Pine Brook, N. J.

Guidance Package

Takes shock of 15 g
Designed to supply stable reference data to a self-guided weapon, this guidance package takes 150 g of shock and 30 g of vibration to $2,000 \mathrm{cps}$. It consists of three subminiature, floated-rate gyros, type RG-101, and two subminiature, floated-pendulous linear accelerometers, type TA-400. Each of the three gyros is oriented in one of three mutually perpendicular axes: roll, pitch, and yaw.

Fairchild Controls Corp., Components Div., 225 Park Ave., Hicksville, L.I., N.Y. Availability: Made on special order only.

GUDELACE
is engineered for
problem-free lacing \downarrow

It's no accident that Gudelace is the best lacing tape you can buy. Excellence is engineered into Gudelace. A sturdy nylon mesh is meticulously combined with the optimum amount of special microcrystalline wax. Careful selection of raw materials and superior methods of combining them give Gudelace outstanding strength, toughness, and stability. Gudelace is the original fat lacing tape which distributes stress evenly over a wide area. It is engineered to stay flat; it will not stretch out of shape when pulled. Gudelace's nonskid surface prevents slipping, eliminating the too-tight pull that causes strangulation and cold flow. Durability and dependability make Gudelace your most economic buywith no cut insulation, fingers, or feelings.
Write for Data Book with specifications on Gudelace and Gudebrod's complete line of braided lacing tapes and dial cords-Temp-Lace, Stur-D-Lace, and Gude-Glass.

Visit Gudebrod Booth No. 228 at the WESCON SHOW

GUDEBROD
 BROS. SILK CO., INC.

225 West 34th Street, New York I, N.Y.
12 South 12 th Streetive Offices
12 South 12th Street, Philadelphia 7. Pa.
CIRCLE 56 ON READER-SERVICE CARO ELECTRONIC DESIGN • August 31, 1960

Model 130 pulse generator has a repetition rate of 10 cps to 1 mc , a rise and fall time of less than $10 \mathrm{~m} \mu \mathrm{sec}$, and two pulse outputs with a relative pulse delay between them of 200 musec to 50 nsic. The instrument is suited for fast circuit ap plications in computer work, transistor testing, and missile applications.
S.-H Research Labs., Inc., Dept. ED, 163 Aclelind. St., Oakland 20, Calif.

Model 16.92 is the latest example of creative versatility from ESC, America's largest producer of custom-built and stock delay lines. The specifications: $1 / 10$ usec. delay, 1,600 ohm impedance, $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ dimensions. Only ESC produces so many different delay lines, for so many varied applications. From the largest to the smallest, ESC has the best, most economical answer to your particular delay line problem. Write today for complete technical data.

exceptional employment opportunities for engineers experienced
in computer components...excellent profit-sharing plan.

ELECTRONICS CORF_ 534 Bergen Boubvard, Palisades Park, Mow Jersay

Distributed constant delay lines - Lumped constant delay lines - Variable delay networks - Continuously variable delay lines - Step variable delay lines - Shift registers - Video transformers. Filters of all types - Pulse-forming networks - Miniature plug-in encapsulated circuit assemblies

NEW PRODUCTS

Detergent And Solvent Compounds

For epoxy and polyester resins
Meta-Terge 1405 is a safety cleanup detergent for uncured epoxy and polyester resins. It allows the insoluble resins to be cleaned with water. Meta-Strip 702 is a synergistic, non-corrosive solvent for removing and stripping cured epoxy resins. It can be used in salvaging expensive and sensitive electronic components that have been encapsulated. Both the materials are available in liquid and the thixotropic gel forms.
Metachem Resins Corp., Dept. ED, 530 Wellington Ave., Cranston 10, R.I.
Price: Meta-Strip ranges from $\$ 1.25$ to $\$ 1.50$ per $l b$, depending on quantity; Meta-Terge ranges from $\$ 0.65$ to $\$ 0.75$ per lb, depending on quantity.

DC Timing Motor

650

Speeds are $1 / 15$ to 60 rpm

Model MD-83 dc timing motor is reversible by changing polarity. Speed is directly proportional to voltage. Constant voltage speeds are $1 / 15$ to 60 rpm . Standard voltages are: 6,12 , and 28 v .

Haydon Div., General Time Corp., Dept. ED, Torrington, Conn.

Digital Computer

For scientific, industrial, military problems
Type PB250 digital computer can be applied to a broad range of scientific, industrial and military problems. For a word consisting of 21 bits plus sign, the speeds are: add-subtract, $12 \mu \mathrm{sec}$; multiply, 276μ sec; divide and square root, $252 \mu \mathrm{sec}$. The memory is expandable from 1,808 words to 15,888 words internally. The unit offers 46 commands including double precision operations, block transfer, and Gray-to-binary conversion. Programing is achieved by single-address in-

NEW TYPES EXTEND MINI-STAB INDUCTANCE RANGE TO $\mathbf{1 0 , 0 0 0}$ MICROHENRIES!

Now, from Jeffers Electronics, pioneers in Miniature, STABle inductors, come the most recent additions to the line-mini-stab Inductors Types 2 and 3. Supplementing the Jeffers Type 101 and Mini-stab Type 1 line, the two new miniatures increase the inductance values available from Jeffers to a range of 0.15 to $10,000 \mathrm{uh}$.

Miniaturization PLUS Stability

In Jeffers mini-stab inductors, miniaturization is achieved through more efficient use of coil winding space. Stability is made possible through the use of an open magnetic circuit as obtained with a conventional powdered iron coil form.

TYPICAL CHARACTERISTICS OF INDUCTOR DESIGNS BASED ON 1000 UH VALUE

INDUCTOR CHARACTERISTICS	JEFFERS MINI-STAB DESIGN	CONVENTIONAL DESIGNS	
		MINIATURIZED	NON-MINIATURIZED
Miniaturization (wt. In grams)	1.0	0.5 to 2	2 to 10
Stability of Inductance with temp. -55 to $+125^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 10 \%$	$\pm 2 \%$
with applied current (zero to 90 MA)	-1%	-30%	NIL
with applied voltage (test or signal)	G000	POOR	GOOD

-Utilizing closed magnetic circuits such as toroids, cup-cores, etc.
A comparison of typical MINI-STAB performance with that of conventional miniaturized and non-miniaturized inductors appears above. Inductor designs of the closed magnetic circuit tyne such as toroids, cup cores, etc. tend to be inherently unstable.

THIS IS THE EXPANDED MINI－STAB LINE

PART NUMBER	TYPE	INDUCTANCE （Microhenries）	MEAS． FREQ． （MC）	MiN.	$\begin{aligned} & \text { SRF } \\ & \text { MIN. } \\ & \text { (MC) } \end{aligned}$	O．C．RES． MAX．at 250 C （OHMS）	CURRENT＊ RATING （MA）	COLOR－CODINS		
								1st	2nd	3rd
1311.1	1	$18 \pm 10 \%$	2.5	50	25	1.8	315	BRN	GRY	BLK
1311－2	1	$22 \pm 10 \%$	2.5	50	24	2.0	300	RED	RED	BLK
1311－3	1	$27 \pm 10 \%$	2.5	50	20	2.8	255	RED	VLT	BLK
1321.1	1	$33 \pm 10 \%$	2.5	50	19	2.5	270	ORG	ORG	BLK
1321－2	1	$39 \pm 10 \%$	2.5	50	18	3.0	245	ORG	WHT	BLK
1321－3	1	$47 \pm 10 \%$	2.5	50	17	3.5	225	YEL	VLT	BLK
1321.4	1	$56 \pm 10 \%$	2.5	50	15	4.2	205	GRN	BLU	BLK
1321－5	1	$68 \pm 10 \%$	2.5	50	14	5.0	190	BLU	GRY	BLK
1321.6	1	$82 \pm 10 \%$	2.5	50	12	5.5	180	GRY	RED	BLK
1321.7	1	$100 \pm 10 \%$	2.5	50	11	6.0	170	BRN	BLK	BRN
1321.8	1	$120 \pm 10 \%$	0.79	50	9.0	7.0	160	BRN	RED	BRN
1321.9	1	$150 \pm 10 \%$	0.79	50	8.6	8.0	150	BRN	GRN	BRN
1321.10	1	$180 \pm 10 \%$	0.79	50	8.0	9.0	140	BRN	GRY	BRN
1321．11	1	$220 \pm 10 \%$	0.79	50	6.6	10.0	130	RED	RED	BRN
1331.1	1	$270 \pm 10 \%$	0.79	45	4.0	6.8	165	RED	VLT	BRN
1331－2	1	$330 \pm 10 \%$	0.79	45	3.6	7.4	155	ORG	ORG	BRN
1331.3	1	$390 \pm 10 \%$	0.79	45	3.4	10.6	130	ORG	WHT	BRN
1331.4	1	$470 \pm 10 \%$	0.79	45	3.1	11.5	125	YEL	VLT	BRN
1331.5	1	$560 \pm 10 \%$	0.79	55	2.9	15.2	110	GRN	BLU	BRN
1331.6	1	$680 \pm 10 \%$	0.79	50	2.6	17.0	105	BLU	GRY	BRN
1331.7	1	$820 \pm 10 \%$	0.79	50	2.4	19.0	100	GRY	RED	BRN
1331－8	1	$1000 \pm 10 \%$	0.79	45	2.2	21.3	90	BRN	BLK	RED
NEWEST MINI－STAB TYPES 2 AND 3										
1312.1	2	$1200 \pm 10 \%$	25	60	2.2	21.0	110	BRN	RED	RED
1312.2	2	$1500 \pm 10 \%$	． 25	60	2.1	24.0	105	BRN	GRN	RED
1312.3	2	$1800 \pm 10 \%$	． 25	65	1.9	27.0	100	BRN	GRY	RED
1312.4	2	$2200 \pm 10 \%$	． 25	70	1.7	30.0	95	RED	RED	RED
1312.5	2	$2700 \pm 10 \%$	． 25	70	1.6	33.0	90	RED	VLT	RED
1312.6	2	$3300 \pm 10 \%$	． 25	70	1.4	37.0	85	ORG	ORG	RED
1313.1	3	$3900 \pm 10 \%$	． 25	75	1.5	44.0	90	ORG	WHT	RED
1313.2	3	$4700 \pm 10 \%$	． 25	80	1.4	49.0	85	YEL	VLT	RED
1313.3	3	$5600 \pm 10 \%$	． 25	80	1.2	54.0	80	GRN	BLU	RED
1313.4	3	$6800 \pm 10 \%$	． 25	80	1.1	60.0	75	日LU	GRY	RED
1313.5	3	$8200 \pm 10 \%$	． 25	80	1.0	67.0	70	GRY	RED	RED
1313.6	3	$10000 \pm 10 \%$	． 25	80	0.9	75.0	70	BRN	BLK	ORG

－Ilased on a $25^{\circ} \mathrm{C}$ Maximum Temperature Rise．

MINI－STAB inducturs are capable of meeting the requirements of MIL－C－15305．Grade 1，Class B，as out－ lined in Jefiers Product Specification SK－393．Details are available on request．

욜，JEFFERS ELECTRONICS DIVISION
 SPEER CARBON COMPANY
 du bois，pennsylvania

Other Electronics Divisions of Speer Carbon Company－
Onondaga Electronics，Syracuse，N．Y．－Speer Resistor，Bradford，Pa． CIRCIE 50 ON READER－SERVICE CARD

MINI－STAB TYPE 1
structions，command indexing，and automatic double－precision operations．

Packard Bell Electronics，Packard Bell Compu－ ter Div．，Dept．ED， 12333 W．Olympic Blvd．，Los Angeles 64，Calif．
Price：$\$ 30,000$ ．

Servo Drive System

Volume is 1.75 cu in．

This solid state，subminiature servo drive sys－ tem has a volume of 1.75 cu in ．and delivers a torque of 2 in ．－lb from a change of 0.001 v ． Actuator arm speed is 270 deg per sec．The device consists of a servo amplifier，a precision gear train and a high－torque servo drive motor．
Electrosolids Corp．，Solidtronics Div．，Dept． ED， 14751 Keswick St．，Van Nuys，Calif．

Impedance Bridge
371
Portable，self－contained，direct－reading

The model 385 general－purpose impedance bridge is a portable，self－contained，direct－read－ ing unit which contains a Wheatstone bridge （ac or dc）with a range of 0 to 1 meg ，a modi－ fied capacitance bridge with a 0 to $100 \mu \mathrm{f}$ range，or an inductance bridge with a range of 0 to 100 h ．The instrument provides for tests at 1 kc as well as at dc．External signals from 60 to $10,000 \mathrm{cps}$ can be introduced．A separate os－ cillator－amplifier accessory is available．
The Winslow Co．，Dept．ED， 701 Lehigh Ave．， Union，N．J．

NEW PRODUCTS

Elastic Flexible Wire 568

Stretches to three times its length

Elasticable, elastic flexible wire, stretches to three times its relaxed length without losing its electrical properties. Cables can be furnished with single and multiple conductors. Commercial types have a natural rubber core with insulation of braided nylon and conductors of copper magnetic wire, bronze tinsel, or copper tinsel. Military types have a silicon rubber core with insulation of braided nylon and conductors of copper wire or bronze tinsel.

National Radio Co., Inc., National Co., Inc., Dept. ED, Malden, Mass.
Availability: Both commercial and military types are in stock. The products can also be made to order for individual needs.

Silicon Diodes

Are rated at 750 mo

This series of miniature silicon diodes are diffused-junction units rated at 750 ma . Reverse current is $200 \mu \mathrm{a}$, surge current rating is 50 amp peak for one cycle, and forward voltage drop is 0.92 v . Designated types X5A2, X5A4, X5A5, and X5A6, the units have piv ratings of 200 , 400,500 , and 600 v . Operating temperature range is -65 to +130 C . A typical unit measures 0.29×0.2 in., not counting leads.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.
Price: $\$ 0.95$ to $\$ 1.45$ ea in quantities to 100 .

NO MULTIPLE BREAKS OR DISCONTINUITIES

ALL PSI

 ZENER DIODES ARE 100\% SCOPECHECKED
DC Power Supply

For photo multiplier tubes

This de power supply provides an output of -55 to $-1,000 \mathrm{v}$ Its principal use is powering an RCA 6655-A photo multiplier tube. The supply operates from an input of $115 \mathrm{v} \pm 10 \%$ at $60-\mathrm{cps}$ or from the firm's model 193.5 multivibrator switch. Ripple does not exceed 0.1\% peak-to-peak.
Lumen, Inc., Dept. ED, P. O Box 905. Joliet, Ill

Pyrotechnic Free Gyro 524
For one-time missile use

Type PHM pyrotechnic free gyro is for one-time use in short range missiles. Measuring $4.5 \times 2.75 \mathrm{in}$. and weighing about 800 g , the unit stands 100 g shock. It has 2 deg of freedom. Active gyro life is 3 min with an average drift of 1 deg per min.
Greenleaf Manufacturing Co., Dept. ED, 7814 Maplewood Industrial Court, St. Louis 17, Mo.

Power Connectors

For 25- or $\mathbf{2 5 0}$-amp duty
These single-conductor plugs and receptacles with $25-$ and 250 amp ratings incorporate a fishtail plug design and provide simplified, quick assembly. All current carrying parts are of brass, goldplated for stable electrical contact and resistance to corrosion.
The Superior Electric Co., Dept. ED, Bristol, Conn.
Price \& Availability: Price ranges from $\$ 1.30$ to $\$ 5.50$. Delivery is from stock.

ucific Semiconductors: Inc.
 BSIDIARY OF THOMPSON RAMO WOOLDRIDGE INC
 12955 Chadron Avenue, Hawthorne, California

OHf ces in: newark - boston - de witt, n. Y. - ottawa baltimore - chicago (Oak Park) (DE.PHIA (Rockledge) - ST. PETERSBURG • DALLAS . DETROIT . LOS ANGELES • PALO ALTO Authorized distributors coast-to-coast

CIRCLE 59 ON READER-SERVICE CARD

YOU CAN SPECIFY savings in weight, improvements in performance, increases in reliability for your electronic systems from this box. This is Sperry's Speci-File-a complete electronic and physical biography of the traveling wave and klystron tubes offered by Sperry Gainesville. To speed your specifying, to make it more accurate, and to secure the benefits of outstanding microwave tube performance for your systems, order your free Sperry SpeciFile today. Just fill in and mail the attached coupon.

ELECTRONIC
TUBE
DIVISION
Gainesville, Florida A Division of Sperry Rand Corporation

NEW PRODUCTS

Thermal Inductor 424

Is stable from -55 to +375 C
The Therm-L high-Q, fixed i:l ductor is stable under temperitures from -55 to +375 C . It is offered in inductances from 0.06i8 to $0.56 \mu \mathrm{~h}$ and in close tolerances. Completely inorganic, the unit is of one-piece construction and consplies with MIL-C-15305-A, class C.

Essex Electronics Div., Nytronics, Inc., Dept. ED, 550 Spring. field Ave., Berkeley Heights, NJ.

Signal Generator

401
For measuring reflection coefficients
Model X775A sweep signal generator, with automatic gain control, provides a means of measuring the reflection coefficient of microwave components by direct oscilloscope presentations. The rf power source of the instrument is an electronically-swept permanent magnet type backward-wave-oscillator tube. A built-in amplifier can be used with an external detector to provide a reference source that is flat within $\pm 0.5 \mathrm{db}$ over the range of 8.2 to 12.4 kmc . Dial settings are provided for the upper and lower frequencies; dial accuracy is $\pm 1 \%$.
FXR, Inc., Dept. ED, 25-26 50th
St., Woodside 77, N. Y.

Trimmer

392

Potentiometers

Range is 10 ohms to 65 K
The W4 series trimmer potentiometers are offered in resistance values of 10 ohms to 65 K . The units are miniature. They are rated at 1 w up to 70 C , derating to 0 at 200 C .

Atohm Electronics, Dept. ED 7648 San Fernando Road, Sun Val ley, Calif.
Price \& Availability: $\$ 7.50$ to $\$ 12$
ea in quantities of 1 to 24; from stock.
\&CIRCLE 60 ON READER-SERVICE CARD

Silicon Rectifier Stack 412
With choice of two diode types
Having standard and reverse polarity double-diffused diodes, this silicon rectifier stack can be urnished with style 40 or style jl diodes. Bridge assemblies using the style 40 are rated up to 180 amp, single phase, and 270 amp three phase. Bridge assemblies up to 260 amp , single phase, and using the style 51 diodes are rated 390 amp , three phase. The design used permits rapid adaptation to any current configuration.
Syntron Co., Dept. ED, 283 Lexington Ave., Homer City, Pa. Availability: Delivery time is two to three weeks.

CONVECTION GOOLED GUARANTEED 5 YEARS

LAMBDA Transistorized Power Supplies

31/2" Panel Height on 5 AMP Models

CONDENSED DATA ON LA SERIES

LA 50.03 AM (with meters) $0-34 \mathrm{VDC}, 0-5 \mathrm{~A} \quad \$ 425$. LA 100-03AM (with meters) 0-34 VDC, 0-10A 540. LA $50-03 \mathrm{~A}$ (without meters) 0.34 VDC, 0-5A 395. LA $100-03 \mathrm{~A}$ (without meters) 0.34 VDC, $0-10 \mathrm{~A} 510$. model
voltage steps
LA 50.03 A , LA $50.03 \mathrm{AM}-2,4,8,16$ and 0.4 volt vernier LA100.03A, LA100.03AM-2, 4, 8, 16 and 0.4 volt vernier
Regulation: Line Better than 0.15 per cent or 20 millivolts (whichever is greater). For input variations from 100 130 VAC. Load Better than 0.15 per cent or 20 millivolts (whichever is greater). For load variations from 0 to full load.
AC Input: $100-130 \mathrm{VAC}, 60 \pm 0.3$ cycle. This frequency band amply covers standard commercial power lines in the United States and Canada.
Ripple and Noise: Less than 1 millivolt rms.
Ambient Temperature: $50^{\circ} \mathrm{C}$-continuous duty.
Remote DC Vernier: Provision for remote operation of DC Vernier.
Remote Sensing: Provision is made for remote sensing to minimize effect of power output leads on DC regulation, output impedance and transient response.

Size:

LA 50-03A $31 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 143 / 8^{\prime \prime} \mathrm{D}$
LA $100-03 \mathrm{~A} 7^{\prime \prime} \mathrm{H} \times 19^{\prime} \mathrm{W} \times 143 / 8^{\prime \prime} \mathrm{D}$

LT Series

1 and 2 AMP•0-32 VDC

Compact $3^{11 / 2 \prime}$ Panel Height

CONDENSED DATA ON LT SERIES

LT 1095M (with meters) 0.32 VDC, 0.1 AMP $\$ 315$. LT 2095M (with meters) 0-32 VDC, 0-2 AMP 395. LT 1095 (without meters) 0-32 VDC, 0-1 AMP 285. LT 2095 (without meters) 0.32 VDC, 0.2 AMP 365.

MODEL

LT 1095, LT-1095M LT 2095, LT-2095M

voltage bands

$0.8,8-16,16-24,24-32$
$0.8,8-16,16-24,24.32$
Regulation: Line Better than 0.15 per cent or 20 millivolts (whichever is greater). For input variations from 105125 VAC. Load Better than 0.15 per cent or 20 millivolts (whichever is greater). For load variations from 0 to full load.
AC Input: 105-125 VAC, 50-400 CPS.
Ripple and Noise: Less than 1 millivolt rms.
Ambient Temperature: $50^{\circ} \mathrm{C}$-continuous duty.
Remofe DC Vernier: Provision for remote operation of DC Vernier.
Remote Sensing: Provision is made for remote sensing to minimize effect of power output leads on DC regulation, output impedance and transient response.

Size:

LT $109531 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 143 / 8^{\prime \prime} \mathrm{D}$
LT $209531 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 143 / 8^{\prime \prime} \mathrm{D}$

SEND TODAY FOR COMPLETE DATA.

ELECTRONICECORP 11-11 131 STREET • DEPT. 2 - COLLEGE POINT 66. N. Y. - INDEPENDENCE $1-8500$

New Series of Indium Antimonide Infrared Detectors by Radiation
Electronics Co.: 1. to r.-PC-02, A-04 ($(-02$ same dewar as $P C-02)$.

Indium Antimonide Infrared Detectors

Photovoltaic detector, Model J -02, operates at liquid nitrogen temperature and exhibits high sensitivity from the visible region to 5.7 mi crons. Because of its very small area ($0.1 \times 0.1 \mathrm{~mm}^{2}$), fast response, and sensitivity, the J-02 detector permits the design of infrared systems with high optical gain, high resolution, and very rapid scanning rates. Impedance is approximately 50,000 ohms. The J-02 is efficiently coupled to both transistor and vacuum tube preamplifiers. Linear arrays of detection elements can be fabricated for special applications.

PHOTOCONDUCTIVE detector, Model PC-02, operates at the dry ice point with sensitivity from the visible region to 6 microns. The PC-02 is conveniently coupled to both transistor and vacuum tube amplifiers. Standard detector area is $1 \times 1 \mathrm{~mm}^{2}$; other detector areas available from $0.5 \times 0.5 \mathrm{~mm}^{2}$ to $2 \times 2 \mathrm{~mm}^{2}$. Time constant less than one microsecond.

PHOTOELECTROMAGNETIC (PEM)
detector, Model A-04, operates at

SPECIFICATIONS			
	PEM	Photoconductive	PHOTOVOLTAIC
Operating Temperature	$20^{\circ} \mathrm{C}$	$-78^{\circ} \mathrm{C}$	$-196{ }^{\circ} \mathrm{C}$
NEP* ($500^{\circ} \mathrm{K}$), watts	3.3×10^{-9}	1.5×10^{-10}	7×10^{-12}
NEP* (5 microns), watts	1×10^{-9}	3×10^{-11}	1.4×10^{-12}
Spectral Cutoff, microns	6.9	6.1	5.7
Sensitive Area, mm-	1×1	1×1	0.1×0.1
Time Constant. microseconds	<1	<1	<1
Typical Resistance, ohms	5	100	50.000

Ty cos bondposis ol 500 cos
ambient temperatures and does not require bias supply. Sensitive from the visible to seven microns with a time constant of less than one microsecond. Standard detector element is $1 \times 1 \mathrm{~mm}^{2}$, and other sizes from $0.5 \times 0.5 \mathrm{~mm}^{2}$ to $2 \times 1 \mathrm{~mm}^{2}$ can be furnished. Normally used with an input transformer for efficient coupling to transistor or vacuum tube amplifiers. Housed in a hermetically sealed, ruggedized package, the A-04 is supplied with a magnesium oxide window. Other window materials, such as sapphire or arsenic trisulphide, are also available.

Radiation Electronics Company also manufactures high speed radiometers, industrial radiation thermometers, thermal scanning devices, blackbody reference sources, and low noise preamplifiers. Prompt attention will be given to your special problems by our experienced scientific and engineering staff. Contact Radiation Electronics Company, Division of Comptometer Corporation, 5600 Jarvis Avenue, Chicago 48, Illinois. Dept. D.

SPECIFICATIONS

NEW PRODUCTS

DC Power Supplies

Panel height is 3.5 in .

The QR power supplies have a panel height of 3.5 in . The units have an ammeter and a voltmeter accurate to 2% of full scale. A 10 -turn potentiometer provides resolution of one part in 10,000 . Model QR-36-4, shown, has an output of 0 to 36 v at 0 to 4 amp , which may be used as negative or positive and may be floated up to 500 v above or below ground. Input is 105 to 125 v at 55 to 65 cps . Ripple is 1 mv rms , static load regulation is $\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$, static or dynamic line regulation is $\pm 0.03 \%$ or 3 mv . Maximum load transient response time is $25 \mu \mathrm{sec}$.

NJE Corp., Dept. ED, 20 Boright Ave., Kenilworth, N.J.
Price: Model QR-36-4 is priced at \$485 ea.

Triode

Type $7545 / \mathrm{XD}-45$ forced-air-cooled triode is for use in pulsed service as an amplifier and modulator switch tube. It will switch 180 amp at $25,000 \mathrm{v}$ with a duty of 0.002 . Peak power handling capacity is 3.4 megawatts. Additional ratings up to 0.06 duty are provided. Plate voltage is 25 kv de in pulse applications, 8 kv de in civ applications.

Central Electronic Manufacturers, Dept. ED, 2 Richwood Place, Denville, N.J.
Price \& Availability: $\$ 380$ ea; 30-day delivery time.

406

> Environmental conditioning
for missile ground support systems

AiResearch electronic cooling units for U.S. Army Hawk missile mobile ground radar equipment require only half the space originally allotted. These lightweight production units, with a heat rejection capacity of 10 KW , measure $20^{\prime \prime} \times 24^{\prime \prime} \times 24^{\prime \prime}$.

A complete system package, the liquid-to-air unit includes an accumulator, pump, heat exchanger, fan. switches and valves.

Contact AiResearch early in your planning and design stage for greater reliability, smaller unit size and weight. AiResearch is the leading designer and manufacturer of advanced electronic conditioning equipment and systems for missils and ground support applications.
Environmental conditioning equipment has been produced for the following electronic systems: Detection . Communication - Control • Ground Support • Guidance
Write for literature today.
THE GARRETT CORPORATIOM
AiResearch Manufacturing Division Los Angeles 45, California

CIRCLE 63 on reader-service card ELECTRONIC DESIGN • August 31, 1960

Size 8 Servo Motor
Device is viscous damped

A size 8 servo motor, type $5702-03$ is an adjustable viscous damped unit for feedback damping applications. The unit is $1-3 / 4 \mathrm{in}$. long and weighs 2 oz . Damping, gain and no-load speed are adjustable. Rotor moment of inertia is 0.65 $\mathrm{g} . \mathrm{cm}^{2}$; stall current is 0.113 -amp fixed phase and 0.077 -amp control phase; stall power is 2.4 w per phase; stall torque is $0.2 \mathrm{oz}-\mathrm{in}$. min. Housing is bright finish stainless steel.
John Oster Manufacturing Co., Avionic Div., Dept. ED, Racine, Wis.
Availability: Delivery, from stock, is about 30 days.

AC Servo Amplifier
382
For aircraft and missile use

Developed for $115-\mathrm{v}, 400-\mathrm{cps}$ servo systems sed on aircraft and missiles, this solid-state mplifier drives standard size 11 or smaller $40-\mathrm{v}$ enter-tapped servo motors. It can also be used operate $40-\mathrm{v}$ motors in larger frame sizes here the 3.5 -w output is adequate. The unit has gain stability of $\pm 2 \mathrm{db}$ over an operating (mperature of -55 to +102 C and operates rith only slightly reduced gain at +125 C . Noral power gain is 90 db max with no feedback r 70 db min with feedback.
United Control Corp., Dept. ED, 4540 Union by Place, Seattle 5, Wash.
Division

$$
\text { Price \& Availability: } \$ 250 \text { ea in quantities to } 10
$$ 24] in quantities of 11 to 25. Delivery is from

El:CTRONIC DESIGN • August 31, 1960

CHOOSE HUGHES SILICON RECTIFIERS

With over 100 different JEDEC types available, Hughes offers you one of the industry's largest selections of stud mounted and top hat silicon rectifiers. And with their hermetically sealed, corrosion resistant packages, these rectifiers give you maximum reliability!
To order any of these devices please contact the Hughes
Creating a new world with ELECTRONICS
HUGHES

Semiconductor Sales Office or Distributor nearest you. Or, for further information write Hughes, Semiconductor Division, Marketing Department, Newport Beach, California. For exportwrite:Hughes International, Culver City, California.

CIRCLE 64 ON READER-SERVICE CARD

NEW PRODUCTS

DC Voltmeter

Rated at 200,000

Model M200DC Kilovoltmeter is rated at 200.000 v dc and is constructed in two pieces for remote metering. Composed of a high-voltage multiplier resistor in a tall bakelite tube and an indicating instrument in a small metal cabinet at ground potential, the device has an input resistance of $2,000 \mathrm{meg}$. It takes an overload of 150%. The indicating instrument is $4.5-\mathrm{in}$. sq.

Peschel Electronics, Inc., Dept. ED, Towners, Patterson, N. Y.
Price d Availability: Made on order only; delivered 60 days after receipt or order. Price per unit is $\$ 800$.

Attenuator

383
For operation from de to 4 kmc

Model A 101, 10-w coaxial power attenuator is designed for operation from dc to 4 kmc . It can be supplied in attenuation values from 0 to 60 db . The attenuator accuracy of pads up to 30 db , including absolute accuracy and variation of attenuator as a function of frequency is 0.5 db ; the accuracy of pads from 30 to 60 db is 0.75 db . The units are calibrated at 1.2 kmc and 2.8 kmc and can be supplied with type N , TNC, C, and BNC connectors. The vswr of units having type N connectors is 1.3 max from dc to 4 kmc .

R L C Electronics, Inc., Dept. ED, 805 Mamaroneck, N. Y.
Price \& Availability: $\$ 115$ to $\$ 170$; delivery from stock to 30 days.

Ultrasonic Immersible Transducers

 567End fitting and bulkhead type
This line of both end-fitting and bulkhead type, immersible ultrasonic transducers can be used to add ultrasonic cleaning stages to existing tanks or vapor degreasers. They are designed for use with most cleaning solutions, solvents and detergents, mild acids and caustics at temperatures to 180 F . The transducers are produced in three standard sizes with a rated input power of 60,125 , and

Multi-Turn $-3,5,10,20$

POTENTIOMETERS

In our country's defense program, failure cannot be tolerated. The "Reliability Factor" of all elements of this defense is becoming more and more important as the arsenals of both East and West become more and more sophisticated.
In the future. less business will go to the unproven though low priced producer. Managemint has learned that the lowest initial cost does not always result in the lowest end cost.
Fairchild precision potentiometers are proven performers. They are flying with predicted excellence in many important missile, special weapon and space vehicle applications. They have earned a reputation over the years for sustained high accuracy over a wide temperature range, lowest noise level and long life - quality features that can be achieved only with experienced, precision workmanship and painstaking attention to the smallest detail.
As a result, "Fairchild Reliability" is fast becoming an industry standard.
Fairchild produces complete lines of precision multi-turn, single-turn, rectilinear and rotary trimmer pots, deposited metal FilmPot ${ }^{*}$ singleturns and trimmers, and linear displacement transducers. Variations on most standard model specifications can be obtained to suit your partitular needs.
Why not consult Fairchild? The complete servcis of our experienced Engineering Dept. are available to help you.
For more information, write or call direct, or contact any one of the many leading engineering Ind sales organizations that represent Fairchild nationally and in Canada.

Single-Turn - Linear Non-Linear Sine-Cosine

Linear Displacement Transducers

Trim-Tite ${ }^{3}$
Microminiature Trimmers

Rotary \&
Rectilinear Trimmer FilmPots ${ }^{*}$

Linear displacement transducers - with or without spring-loaded return stroke - are available in all sizes, from $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$ strokes. Smallest in the line is only $121 / 44^{\prime \prime} \times 13 / 22^{\prime \prime} \times 11 / 2^{\prime \prime}$.
Trim-Tite ${ }^{8}$ microminiature trimmers - Type 926 and 927 - can fit under a postage stamp. They meet and exceed MIL-STD-202A shock requirements ($100-\mathrm{G}$'s), vibration (25-G's at 2000 cps), temp. cycling and load life; and a wide range of resistance values.

Fairchild FilmPots© use a continuous film of evaporated

The complete line of multi-turns consists of two diam-enters- $-7 / \mathrm{s}^{\prime \prime}$ and $17 / 8^{\prime \prime}$-with four models in each diameter $-3-5-10$ - and 20-turns. All have a linearity of ± 0.25 to
$+.05 \%$ over a temperature range of $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $\pm .05 \%$ over a temperature range of $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$,
standard. Hi-temp. units available on special order. Power rating: 2.5 watts at $40^{\circ} \mathrm{C}$. This design lends Itself to multi-tapping and multi-ganging.
 alloys of precious metals as the resistance element. This exclusive Nobl-Onme resistance element provides info-
nite resolution and is electrically stable over a wide nite resolution and is electrically stable over a wide
temp. range of from $-55^{\circ} \mathrm{C}$ to $+225^{\circ} \mathrm{C}$. temp. range of from $-55^{\circ} \mathrm{C}$ to $+225^{\circ} \mathrm{C}$.
Rotary Film Pots ${ }^{*}$ (left) are available in $7 / \mathbf{a}^{\prime \prime}$ to $2^{\prime \prime \prime}$ diamotters. They can be supplied in ganged assemblies and can also be ganged with similar size Fairchild wirewound pots.
Rectilinear FilmPote trimmers (right) come in two sizes Precise adjustments are made by a $281 / 2$ turn screw Resistance ranges: 50 to 25K?; Up to 50K? on special order.
airchild components . . . built and tested beyond the specs for Reliability in Performance.

250 w , respectively; they can be used either individually or in combination.

National Ultrasonic Corp., Dept. ED, 111 Montgomery Ave., Irvington 11, N.J.
Price \& Availability: Delivered 7 days after order received; prices range from $\$ 115$ to $\$ 6.25$ for various models.

Impedance Analyzer
378
For precision measurements

Model W-2 impedance analyzer is designed for precision measurement of polar parameters, phase angle and ohmic values of impedance. It computes and directly indicates phase angle as well as its sin, cos, and tan, power factor, Q , and D. Measurements can be made at the actual operating voltage and frequency of the component being tested. Accuracy is 1^{17} from 60 cps to 12 kc , impedance measurements can be made to 1 meg .
Western Electronic Products Co., Dept. ED, 2420 N. Lake Ave., Altadena, Calif.
Price \& Availability: Price is $\$ 135$ fob Altadena, Calif., with immediate availability.

Resistive Heating Devices

For continuous use ot 450 F

These electric heating elements or power resistors use silicone rubber and fiberglass cloth insulation and are capable of continuous operaton at temperatures above 450 F . Width is 1 in ., over-all lengths are 1.5 to 12 in ., and thickness is 0.12 in . or less. Resistance per unit of length is 1.27 to 1,800 ohms per in. of heated length. Resistance tolerance is $\pm 7 \%$. Units cemented to metal dissipate up to 25 w per sq in.

Electro-Flex Heat, Inc., Dept. ED, 83 Woodbine St., Hartford 6, Conn.
Price \& Availability: Available for 1.5-1ay delivcry, units with lugs are priced at $\$ 0.33$ ca plus $\$ 0.07-1 / 3$ per in. of length (in quantities of 200 or more). Units with leads are priced at \$0.42 ea plus $\$ 0.07-1 / 3$ per in. of length.

II PROOD BELL AVIONICS

MINIATURE ACCELEROMETER

Servo Motor-Generator

Model R830-26 servo motor-generator is a si $\%$ 11 unit. It has 0 -deg phase shift and a signal-1). noise ratio of $290: 1$. It is designed primarily as a low-inertia rate generator, but can also be us d to replace most size 15 units in high-gain applications. The motor section operates on $115 \mathrm{v}, 410$ cps and draws 53 ma . The generator section requires an excitation of 115 v at 400 cps and 65 n a.
Genueral Precision Inc., Kearfott Div., Dept, ED, 1150 McBride Ave., Little Falls, N.J.

Power Supply

For servos and transistorized amplifiers

An output of 29 v dc at 300 ma , filtered and unregulated, and two isolated ac outputs rated at 4 w and 0.5 w respectively are provided b! the model H3900-01 power supply. The di source is suitable for transistorized amplifier and small servos. Input is $115 \mathrm{v}, 400 \mathrm{cps}$. The device can be used to circumvent noise and severe transient voltages in $28-\mathrm{v}$ dc lines of aircraft and missiles. Units, weighing 28 oz , are potted and sealed.
Kearfott Div., General Precision Inc., Dept.

* A new Model Y A will shortly be available with the same performance but a substantial reduction in both weight and size.

OTHER BELL AVIONICS PRODUCTS also designed and developed by Bell's Inertial Systems Laboratory under the direction of
Dr. Helmut Schlitt include:
Digital Velocity Meters
Inertial Guidance Platforms
Gyroscopes
Gravity Gradient Meters

Direct inquiries to: Instrument Laboratory • 4515 Superior Ave. - Cleveland 3, Ohio
BELL AEROSYSTEMS COMPANY formerty: Bell Aircraft Corporation BUFFALO 5, N. Y. ED, 1150 McBride Ave., Little Falls, N. J.

Magnetic Amplifiers

664

Servo-motor type

These servo-motor, magnetic amplifiers mee full Mil specs for temperature, shock, and vibra tion. Model 224, typical of the series, drives standard 3.5 w , size 11 servo motor from 115 at 400 cps . Less than 1 ma dc is required for full motor torque.

Acromag, Inc., Dept. ED, 22515 Telegrapl Road, Southfield, Mich.
Price \& Availability: Model 224 is priced at $\$ 148$ delivery is from stock.

High-Torque AC Motors

Units weigh 10 oz

These Rotorac motors, having a typical weight of 10 oz , are capable of delivering a $6 \mathrm{lb}-\mathrm{in}$. at 20 rpm from a $115-\mathrm{v}, 60-\mathrm{cps}$ source at 0.75 amp . The units have rapid starting and stopping characteristics, and are not damaged by stalls.
Airborne Accessories Corp., Dept. ED, 1414 Chestnut Ave., Hillside 5, N. J.
Price \& Availability: Units are available from stock, and are priced from $\$ 25$ to $\$ 40$ each in yuantities of 100 .

Microwave Monitor And Alarm 357

This alarm and fault-finding system will monitor as many as 480 functions in a microwave system. The system, Model MA-1, indicates station condition, over-all system conditions, and individual function condition of up to 20 functions at any of 24 remote reporting stations. Faults are indicated at a master alarm station, illustrated. Such functions as tower lights, illegal entry, operation of emergency power unit or auxiliary rf, units, high temperature or low pressure could be indicated.
Motorola, Inc., Communications and Industial Electronics Div., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill.

Handles 480 functions

General Electric RTV*

liquid silicone rubber

General Electric silicone rubber used extensively by Aerojet-General Corp. for the Titan ICBM's propulsion-system wiring harness. Breakouts and junctions molded from C.E RTV, wiring is silicone insulated jacketing is high-strength G-E silicone rubber - all chosen for their stable insulating properties, resistance to temperature extremes and weathering, and stability in storage for many years.

The latest addition to General Electric's RTV family offers lower viscosity than any other availcomponents. briefly describing your application.

EEECTRONIC DESIGN • August 31, 1960
able silicone rubber compound - a typical viscosity of 120 poises. Easily pourable, it flows freely in and around intricate contours, making it ideal for protecting electrical and electronic

With RTV's new low viscosity the range of G-E RTV compounds now extends from 120 to 12.000 poises. You can now meet your specific requirements by selecting from several G-E RTV compounds, all of which offer room temperature cure, heat and ozone resistance, and good electrical properties. Write for a free test sample,

Stght amplifier module potted with RTV by the Armament and Control Section of G.E.'s Light Military Electronics Department. Used on the Lockheed CF. 104 and $\mathrm{F} \cdot 10+\mathrm{G}$ jet aircraft, RTV provides mechanical support and vilbration damping, protects unit against moisture and ozone. (Bottom photo shows module before potting.)

High-voltage, high-altitude transformers from Laboratory For Electronics, Inc. are encapsulated with (;eneral Electric RTV to meet MIL.T-27A specs. This prevents flashover at maximum ratings of 2200 volts rms and 80,000 feet. General Electric RTV was selected for its good heat transfer, low viscosity and mechanical strength.

GENERAL ELECTRIC
 Silicone Products Department, Waterford, New York

 CIRCLE 67 ON READER-SERVICE CARD
NEW PRODUCTS

Instrument Wire

Has 1 to 6 mil insulation
This instrument wire has Teflon-insulated walls measuring from 1 to 6 mil . Silver-plated copper conductors from AWG 28 to 36 are available. The wire is rated for 300 v at temperatures from -90 to +250 C. Any length can be furnished.
Tensolite Insulated Wire Co., Inc., Dept. ED, 1000 N. Division St., Peekskill, N.Y.

Precision Band-Pass Filters

Available for 90,150 and 180 cps

The Series F bandpass filters, available in 90 -, 150 - and 180 -cps models, have bandwidths of 8 , 11 and 12 cps respectively a 1 db down. Insertion loss, input and load impedances are the same for the three units. The instruments are designed for navigational aids, instrument landing systems. receivers, control units, monitors and associated test instruments. Units are hermetically sealed in $3 \times 3-1 / 2 \times 3-13 / 16 \mathrm{in}$. metal cases. Ambient temperature range is -20 to +60 C .
Barker \& Williamson, Inc., Dept. EID, Bristol, Pa.
Availability: Units are made to order and can can be delivered in 30 days.

Image Orthicon Tube

Field mesh improves image
Type GL-799, designed to replace the standard 58.0 , uses a field mesh in the scanning section to improve beam landing by creating a more uniform electric field in back of the target. The tube is interchangeable, electrically and physically, with the 58.20 , but differs slightly in construction and operation. Spectral response is close to that of the human eye.

General Electric Co., Dept. ED, Schenectady 5. N. Y.

Price \& Availability: The tube is available in sample quantities at a user price of $\$ 1,300$.

7 he U.S. Weather Bureau used a Honeywell Model 906B Visicorder Oscillograph to record directly this diary of a thunderstorm as it passed near the observation station on M1. Washburn in Yellowstone National Park.
As the storm passed, the Visicorder measured and recurded 1) positive and negative electrical conductivity o the air, 2) the rate of ionization of air due to airborne radio-active particles and extra-terrestrial radiation, 3) the size and charge of individual raindrops, 4) the corona discharge current from an insulated tree and from a $4^{\prime} \times 6^{\prime}$ grass plot to determine current flow from the earth's surface to charge centers in the clouds, 5) times of camera exposure photographing cloud droplet size and electrical charge, 6) atmosphere potential gradient, and 7) time.
The Visicorder made this and many other records on Mt. Washburn without the use of power amplifiers. This feature, plus the extreme portability of the Visicorder, made it the ideal oscillograph for use in these studies.

Byron Phillips, U. S. Weather Bureau Scientist, monitors thunderstorm data as it is recorded by the Honeywell Model 906 Visicorder.

p in weather research

Recent Models of the 906 Visicorder incorporate time lines and taneous channels of data.

The NEW Model ilos Visisorder with many aulomatic features and the convenience of push-
button controls, is ideal for intermediate uses requiring up to 24 channels of data.

The Honeywell Visicorder is the pioneer, completely proven, and unquestioned leader in the field of high-frequency, high-sensitivity, direct-recording ultra-violet oscillography. Here are some of the reasons why Visicorders provide the most accurate analog recordings available: constant flat response and sensitivity of galvanometers: grid-lines simultaneously recorded with traces to guarantee exact reference regardless of possible paper shift or shrinkage: flash-tube timing system for greater accuracy of time lines: superior optics for maximum linearity of traces.

No matter what field you are in . . . research, develop. ment, computing, rocketry, product design, control, nucleonics . . . the high-frequency (DC to 5000 cps) Visicorder Oscillograph will save you time and money in data acquisition.

Call your nearest Minneapolis-Honeywell Industrial Sales Office for a demonstration.

Reference Data: write for Bulletins 1108, 10i2 and HC-906B
Minneapolis-Honeyuell Regulator Co.
Industrial Products Group, Heiland Division
5200 E. Evans Avenue, Denver 22, Colorado

Honeywell

H Qudumtial Prodictar Group

Displacement Transducers
353
Have solid-state circuitry

These displacement transducers have built-in solid-state circuitry and provide a dc output signal from dc excitation. Electro-mechanical response is beyond $1,000 \mathrm{cps}$. Units have germanium components for $6-\mathrm{v}$ excitation, silicon components for $10-\mathrm{v}$ dc excitation. The devices replace carrier amplifier systems to permit direct operation of recorders and indicators.
G. L. Collins Corp., 2820 E. Jullett St., Long Beach, Calif.
Price \& Availability: Units, available from stock. are priced from $\$ 87$ to $\$ 174$.

Pressure Transducers
For missile applications

Designed to meet the requirements of telemetry and control applications in advanced missiles, type Pl 104 pressure transducers measure 1 in . in diameter and 2 in . long. They weigh 3.5 oz , including pleasure and electrical connectors. Standard units are furnished in eight ranges from 0 to 500 and 0 to 5,000 psia. Output up to $75-\mathrm{v}$ full scale may be obtained without amplification. Effects of linearity, hysteresis, resolution, friction, repeatability, and interchangeability are within a static accuracy band of $\pm 1.5 \%$. Time constant is less than 2 msec and temperature sensitive is less than 0.005% per $\operatorname{deg} \mathbf{F}$ over the operating temperature range of -150 to +225 F .
Trans-Sonics, Inc., Dept. ED, Burlington, Mass.
Price \& Availability: $\$ 100$ ea, from stock.

cut costs ON BLIND

OR OPEN

FASTENING
with HIGH SPEED

Chobert

 AUTOMATIC RIVETINGThe fastest blind riveting method known ... gives uni. formly excellent fastening every time. One man, even unskilled. easily completes rivet installation from one side of the work in either open or blind riveting applica tions in less than 2 seconds. Up to 2000 rivets an hour can be set on production line work

Speeds production
-Cost is low

NEW PRODUCTS

Coaxial Mixer

Comes in frequencies of 250 to $8,000 \mathrm{mc}$
The PC-Mix printed-circuit broadband coaxial mixer is available in frequency ranges of 250 to $8,000 \mathrm{mc}$ in five basic units. Signal vswr is $2: 1$ max; line-open vswr is $1.5: 1 \mathrm{max}$; and noise figure is better than 9 db . Mixing is single or balanced. The unit is capable of withstanding severe shock and vibration.
Premier Instrument Corp., Dept. ED, New Broad St., Port Chester, N.Y.

Lead and Quadrature Rejection Amplifier

376

Rejection is $20: 1$ or better

Model 1805-0100 amplifiers provides a transistorized compensating lead network for 400 cycle servo systems. Quatrature rejection of the unit is $20: 1$ or better. Input impedance is 10 K , output impedance is 2 K . Dynamic voltage gain is 4 . Power source is 28 v dc and $115 \mathrm{v}, 400 \mathrm{cps}$. The unit is hermetically sealed and meets MIL-E-5400 specifications. It measures 1-3/16 x $1-11 / 16 \times 2-5 / 8 \mathrm{in}$. and weighs 7 oz .
M. Ten Bosch, Inc., Dept. ED, 80 Wheeler Ave., Pleasantville, N. Y.
Price \& Availability: Price is \$290; delivery is 4 weeks.

Taper-Pin Plugs

In solder and solderless types
For use in connections of all types of circuits, types 2471 and 2472 machined, taper-pin plugs are solder and solderless types, respectively. Made of brass, the plugs measure 0.053 in . in diameter with a $0.061-\mathrm{in}$. taper per in. Finish is 0.0002 -in. silver plate plus $0.0001-\mathrm{in}$. gold plate, or $0.001-\mathrm{in}$. copper plate and $0.005-\mathrm{in}$. electro-tin plate.

Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.
Price \& Availability: Type 2471, $\$ 41.75$ per 1,000 in quantities of 5,000 ; type 2472, $\$ 19.21$ per 1,000 in quantities of 5,000 . Delivery is from stock.

AMロミا

210 SOUTH VICTORY BOULEVARD - BURBANK. CALIFORNIA

Bind Wires Fast... At Low Cost with
 Heli-Twei

HELI-TUBE is a spirally-cut plastic tubing. Its shape-retaining characteristics make it ideal for binding electrical wires into cables. Wraps on like tape; holds wires together tightly; individual wires, taps, or lead-offs can be led out at any point. Earns cost back in time and labor-saving.

Available in
5 forms.

- Clear for general appli-
- Nylon -
- Nylon - wide tempera ture range . . . very light weight
- Ultraviolet-Resistant
- Firo-Resistant
- Type 275° F (High. temperature)

Each form in
three diameters

- Instrument Size: $1 / \mathrm{s}^{\prime \prime}$ 10 $1 / 2^{\prime \prime}$ dia.
- Harness Size: $1 / 4^{" 1}$ O.D. - for bundles up to $2^{\prime \prime}$ dia.
- Giant Cable Size: $1 / 2$ ${ }_{10} 4^{\prime \prime}$ dia.

At your distributor for immediate delivery or writo
M. M. NEWMAN CORPORATION

Dept. 22, 79 Clifion Ave., Marblehead, Mass.
CIRCLE 70 ON READER-SERVICE CARD

Splendid opportunities for maximum professional growth and recognition await you at the Instrumenta tion Center of Texas Instruments in Houston, the South's largest city.

- MECHANICAL DESIGN ENGINEERS-BS or MS in ME to design small electro-mechanical mechanisms.
- electrical design engineers - BS in EE or Physics to design and construct: a. Supervisory Control Systems of electro-mechanical and electronic design; b. Transistor Test Equipment, heavy experience on circuit design preferably with transistors; c. Digital Computers with experience in detailed logic design.
- SALES ENGINEERS-BS in EE, ME or Physics with sales experience in electro-mechanical instruments.
With TI . . . receive liberal company-paid benefits, including profit sharing . . . work in a completely modern suburban plant near Houston's most attractive residential areas . . . enjoy pleasant Gulf Coast living and recreations the year-around.

Please direct your resume to
D. G. Turner, Department ED

Texas Instruments

 INCORPORATED
CIRCLE 901 ON CAREER INQUIRY FORM, PAGE 99 CIRCLE 71 ON READER-SERVICE CARD

SELF-ADHERING COVERINGS

Like putting mittens on kittens, you can protect polished finishes on aluminum, stainless steel, plastics, glass....metals and materials of all kinds.. This self-stik "skin" applies quickly from the rollprovides a tough, scratch-proof covering during all provices a tough, scrach h-prooling, shipping, storage.
processing, processing, (abricating, handing, shipps.

MYSTIK
 mantim
 Mystik Adhesive Products, Ino. 2635 N, Kildare Ave., Chicago 39

CIRCLE 72 ON READER-SERVICE CARD

A pulletin illustrating the how and why
of UNISEC is yours for the asking.
W. \& L.E. GURLEY . TROY, NEW YORK

WKITE FOR BULLETIN UE

(C!RCLE 71 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 31, 1960

Oscilloscope Accessory

Provides 0 to 300 v dc

Designed for coupling to an oscilloscope, the Scope-()-Trol accessory unit provides an output of 0 to 300 v de operating from an input of 115 v at 60 cps . The unit observes on the oscilloscope the regulation, ripple, transient response and other characteristics of de power supplies by removing the de component and using the scope to its maximum capacity. Voltage adjustment of the unit is in $75-v$ steps for coarse adjustment. Ripple is less than 1 mv rms.

Acme Electric Corp., Dept. ED, Cuba, N.Y. Price \& Availability: Units are priced at $\$ 125$ and are furnished from stock.

Toggle Switch

By combining both toggle switch and circuit breaker in this miniature unit, the need for replaceable fuse, fuse holder, and switch is eliminated. Weighing less than 50 g , the unit is suitable for use in radio, aircraft, and industrial electronic equipment. Its dielectric strength is over 3.500 v . Called the 3100 series, the device can interrupt circuits carrying up to $5,000 \mathrm{amp}$ at $120 \mathrm{v}, 60 \mathrm{cps}$. Units have current ratings of 5 to 50 amp .

Wood Electric Corp., Dept. ED, 244 Broad St., Lynn. Mass.
Availability: Up to 100 pieces can be furnished from stock.

How Reader Service Can Help Solve Your Design Problems

PROBLEM:

You have narrowed the selection of a product to three or four brands. You want more detailed information . . . a sound basis for making the best selection.

PROCEDURE:
You circle the Reader Service Numbers of the advertisements or new product articles you're interested in, and mail the postagefree card to ELECTRONIC DESIGN. Our Reader Service Dept. speeds your requests to the manufacturers of the products you're considering.

RESULT:

The manufacturers then provide data in depth; product descriptions, specifications, diagrams. Your product search is simplifiedthe problem soon solved.

CONCLUSION:

When seeking more information about products displayed in ELECTRONIC DESIGN, simply circle the corresponding Reader Service Numbers. It's the fastest way-the most convenient way.

NEW PRODUCTS

Six-pdt Relay

Type JH-18 6 pdt miniature relay has 0.2 in . grid spacing, 2-amp contacts, and occupies less than 1 cu in. of space. It weighs less than 1.8 oz . Standard coils include nominal voltage ratings of 6 to 115 v dc with a power rating of 2.5 w . Dielectric strength is $1,000 \mathrm{v} \mathrm{rms}$ at sea level or 750 v rms across open contacts. Insulation resistance is 1000 meg min . The unit stands shock to 50 g and vibration of 28 to $2,000 \mathrm{cps}$ at 20 g or 5 to 28 cps at $0.5-\mathrm{in}$. double amplitude.

Allied Control Co., Inc., Dept. ED, 2 E. End Ave., New York, N.Y.

Ceramic Capacitors

Measure 0.25 in . long

The Ceramin ceramic capacitors measure only 0.25 in . long without leads. Units having a diameter of 0.098 in . are for capacitances of 47 to 560 pf and units with a $0.125-\mathrm{in}$. diameter, 680 to 1.200 pf . These barium-titanate units are turied to a tolerance of $\pm 5 \%$ up to 125 C or 10% up to $\pm 150 \mathrm{C}$. They comply with applicable portions of MIL-C-11015A and EIA-SMC-1 specs.

Electramics Corp., Dept. ED, Solana Beach, Calif.
Price \& Availability: $\$ 10$; from stock.

BRAND-REX

CABLIFMANSHIP
The Big Difference In MIL-C-13777B Neoprene Jacketed Cables!

Missile men, especially, know the advantages of Neoprene jacketed cables .. low temperature flexibility, abrasion resistance and resiliency. And missile men who are also cablemen know it pays at the count down to count on you should too.
There's more to the absolute reliability of Brand-Rex cables than just rigid adherence to specifications. Brand-Rex Cablemanship combines technology, skill, broad cable engineering services, production capability of three coast-to-coast plants and technical field service tightly-knit organization bac by the vast resources of the American Enka Corporation.
Whatever your requirements for wire or cable, regardless of the rigidity of your specifications for conductors, layup patterns, insulation materials, shielding or armemanship of Brand Rex

Write for samples and information today!

WILLIAM BRAND-REX DIVISION
American ENKA Corporation SUDBURY ROAD, CONCORD, MASS.

CIRCLE 74 ON READER-SERVICE CARD

Limit Switch

Temperature range is -65 to +250 F
Designed for missile, aircraft, and general mobile applications, this subminiature limit switch o_{0} erates over the temperature range of -65 to +250 F . The spdt switching unit is housed in a sealed enclosure which has been evacuated and filled with inert gas to insure constant operating characteristics. Electrical rating at 28 v dc is 24 -amp in-rush, 4 -amp resistive, $1.5-\mathrm{amp}$ inductive, at $100,000 \mathrm{ft}, 4-\mathrm{amp}$ motor, and $2.5-\mathrm{amp}$ lamp load.
Micro Switch, Dept. ED, Freeport, Ill. Price: $\$ 32.50$.

Servo Motor-Generator

For rate servo applications

This size 23 precision servo motor-generator designed for application as a rate servo and to provide damping in very high gain systems. Motor stall torques are available from 5.5 to in.-oz. No-load speed is $9,000 \mathrm{rpm}$. Generator characteristics include 2.9 v per $1,000 \mathrm{rpm}$ and a linearity of 0.2% to $3,600 \mathrm{rpm}$. The unit is available with either a plain or pinion shaft.
Kearfott Div., General Precision Inc., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Analog Computer

Provides real time solutions

Model CM-3 solid-state analog computer proides continuous real time solutions for mathenatical computations and real time control of ariables in process industries. A single cabinet ontains up to 12 amplifiers. Any number of amlifiers, square root and logarithmic networks may e specified according to functional requirements. wo or more of these computers can be used with heir programing boards interconnected.
Southwestern Industrial Electronics Co., Inc., lept. ED, 10201 Westheimer Road, P.O. Box 2187, Houston 27, Tex.
rice \& Availability: Made to customer specs, nite can be delivered in three to four months prices ranging from $\$ 5,000$ to $\$ 20,000$ ea.

Left: Cables can be furnished with individual coaxials, pairs, triples or other components positioned within the cable exactly to specs. Center: Brand-Rex coaxial cables use Teflon dialectrics and meets all government and commercial requirements. Right: Brand-Rex quality-control procedures cover every step of manufacture.

Registered Trademark of DuPon

DEPT. W, 39 SUDBURY ROAD, CONCORD, MASSACHUSETTS Telephone: EMerson 9-9630
Vinyl, Teflon, Polyethelene. Nylon and Silicone Rubber Wires and Cables Electrical Tubing and Sleeving - UHF Cast Plastics-Plastic Extrusions

IECTRONIC DESIGN • August 31, 1960

NEW PRODUCTS

Slicing Machine 394

Reduces scrap loss
The I/D Micro-Slicer for slicing friable materials cuts scrap loss in half and yields more wafers per ingot. Cutting wheels 0.006 to 0.01 in. thick are used. Slicing is automatic. This unit is supplied with the MTA-70 high-production, automatic slicing machine.
The DoAll Co., Dept. ED, 254 N. Laurel Ave., Des Plaines, Ill.

Printed Board Chopper 407

Operating frequencies are 1 to 500 cps
This miniature, printed-circuit board chopper package is suitable for low-level signal applications in military and commercial equipment. Models are available for operating frequencies from 1 to 500 cps. Both MBB and BBM switching configurations are offered. The package can be either directly soldered into a printed circuit board or plugged into standard transistor sockets. The temperature range is -55 to +125 C. Units stand shock to 50 g and vibration of 30 g from 10 to $2.0 \mathbf{C O}_{\mathrm{c}}^{\mathrm{cps}}$. Residual noise is less than 15 mv at 400 cps into 1 meg .
James Electronics, Inc., Dept. ED, 4050 N. Rockwell St., Chicago 18, Ill.

Coaxial Connectors 400

For 50 -ohm use

These type N , coaxial connectors for 50 -ohm use are offered in two types. Type 920 provides a vswr of less than 1.2 to 1 over the frequency range of dc to $5,000 \mathrm{mc}$. Type 921 has the same vswr range for a frequency range extending to $11,000 \mathrm{mc}$. Dimensions for both types are 0.824 in . OD and 1-13/32 in. in length.

Saga Laboratories, 3 Huron Drive, Natick. Mass.
Price \& Availability: Type 920 is priced at $\$ 12.50$ ea; type $921, \$ 40$ ea. Delivery is from stock.

it takes two...to tesit

PROFESSIONAL TEST EQUIPMENT

ast and extremely flexible. Provides easy, accurate testing. All switch settings can be made before the tube warms up . . you're ready to test before the filaments have heated to the proper temperature. Rejects burned out tubes instantly without waiting for the filaments to heat. Neon indicator shorts test. new fast and accurate. Full range filament Voltages- 0.65 to 117 in 23 steps. Full range filament Voltages- 0.65 to 117 in 23 steps.
Improved lever switching for complete control of each Improved lever switching for complete control of each
tube element. Quick-change roll chart. TV picture tube tube element. Quick-change roll chart. TV picture tube
test by means of BV adapter (available at extra cost of $\$ 5.40$) without removing tube from receiver. Large, clear-view meter has three-color GOOD-?-BAD scale.

Counter-Portable Type case. Ultra-professional appearance in dark gray leatherette covered wood: $157 / x^{\prime \prime} \times 111^{\circ} \times 61 / 2^{\circ}$. Hinged removable cover. Chrome hardware and feet. Model 3414....... 579.50

Test Power Type Transistors and Signal Type Transistors under SIMULATED OPERATING CONDITIONS. Tests for shorts and leakage. Provides for testing ICEO (at 9.5 volts), ICBO (at 9.5 volts), and BETA (at 3 volts) on both NPN and PNP transistors. Checks leakage and forward currents of Diodes. EXTREMELY SIMPLE TO OPERATE. No roll charts or special technical data required. The only charts or special technical data required. The only
information needed to make a test is the transistor information needed to make a test is the transistor
type. A ransistor socket and a set of external leads type. A transistor socket and a set of external leads
permits use with any basing arrangement. Power-115 volts. 50-60 cycles AC. No batteries are required. The recessed panel is of etched heavy-gauge aluminum. It has a natural finish with black and red markings and trim.
Counter-Portable Type case in gray leatherettecovered wood: $115 / 8^{\prime \prime} \times 85 / 8^{*} \times 51 / 8^{\circ}$. Case has rubber

Light and extra-portable. Provides leakage and gain tests for all low and medium power PNP and NPN type transistors. Measures DC BETA (current gain from base to collector with grounded emitter) of the degree of quality. Aftords an exac rest for shorts and leakage ... checks forward and reverse leakage of diodes. Prevents drain on - batteries in case of accidental shorting of leads. Battery operation eatimites in case of accidental shorting of leads. Battery operation eliminates need for external power supply. Error-proof controls.
Transistor socket and external leads for any basing layout. The panel has black and red markings etched on aluminum. The black molded case is $21 / 2^{\circ} \times 51 / 2^{\circ} \times 6^{\circ}$. Model $690 \cdot \mathrm{~A} \ldots529 .50$

TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

sitboth tubes and transistors

HiS THE ANSWER！

morg these five outstanding Triplett testers you will find those that are perfectly suited to your particular requirements for tube nd transistor analysis．Whether they be efficient lightweight models for quick readings on service calls ．．．or industrial models to solve fe most perplexing analysis problems，Triplett testers will give you dependable service and accurate measurements．

LABORATORY ANALYZERS／Model 3444 TUBE ANALYZIFR

arex

mer－Portable Type Case in gray leatherette－covered d： $15^{3} 16^{\prime \prime} \times 18^{13} 16^{\prime \prime} \times 73 / 4^{\prime \prime}$ ．Hinged removable cover accessory compartment and sloping pancl．Chrome ware and feet．Model 3490
．$\$ 399.50$

For superior transistor analyses－both power and st＿nal types．Performs numerous functions not available in other portable transistor analyzers．The perfect choice for laboratory and industrial uork．
THREE Independent Poucr Supplies
COLLECTOR Currents to 10 Amperes
INPLT Currents to 1 Ampere
Separate $41 / 2$ inch Input and Collector meters monitor emitter or hase．（Register continu－ ously：easily readable）．Continuously Variable（Variac）Collector Voltage or Current． Continuously Variable Emitter or Base Voltage or Current．Continuously Variable Tetrode Voltage．Measurement of ICO at any potential．Measurement of ICEO at any potential． Measurement of DC Alpha or Beta on Signal and Pouer types．Measurement of AC Beta on Signal types，at 1000 cycles．Contınuous Instrument Coverage，No skıp ranges．Also handles Punch through，Saturation and Floating potential measurements．Analyzes transis－ tors in cither the Common Base or Common Emitter contiguration．
Extremely versatile：．．with provision for many different parameters．You get a common hase or common emitter configuration at the turn of a switch．Prominent interlocked warning lights protect meters and transistor under test．Analyzer provides continuous current control and continuous voltage control．Hi－power silicon full wave rectitiers deliver up to 10 Amp DC collector current and I Amp input current．This model provides for Tetrode test using separate I）（ power supply．ICEO and IC（）leakage tests．
RANGES：
INPUT CURRE

人旗为
 310
 666－HH 666－R

Microwave Isolators

Covers 8,200 to $12,400 \mathrm{mc}$
Model IXH7 resonance－type iso－ lator covers X－band frequencies of 8,200 to $12,400 \mathrm{mc}$ ．It handles a peak power of 25 kw and an aver－ age power of 150 w ．Minimum iso－ lation is 23 db ，insertion loss is $0.8 \mathrm{db} \max$ and 0.5 db min ，and vswr is 1.17 max and 1.04 min ．The unit is equipped with a RG－52／U waveguide and UG－39／U flanges； it weighs 25 lb and measures 3.75 in ．long．

Raytheon Co．，Special Micro－ wave Device Operations，Dept． ED， 130 Second Ave．，Waltham 54， Mass．
Price \＆Availability：$\$ 175 ; 30$ days．

Socket Screw 397

Has up to 2－1／3 times more holding power
The Unbrako socket screw com－ bines the strong head and large bearing area of the recent 1960 series with the smoothly radiused root configuration of the Hi－Life thread．The large socket head pro－ vides up to $2-1 / 3$ times more hold－ ing power without indentation of softer materials；the new thread in－ creases fatigue performance．

Standard Pressed Steel Co．， Dept．ED，Jenkintown，Pa．

Crystal Discriminators 418

Bandwidths are 1 to 21 mc
The KCD series crystal discrimi－ nators can be made with a range of bandwidths from 1 to 21 mc ． A unit having a center frequency of 11.5 mc has a peak－to－peak bandwidth of 75 kc ，an input im－ pedance of 10 K ，an output im－ pedance of $500 \mathrm{~K}+20 \mathrm{pf}$ ，and a linearity of $\pm 20 \mathrm{kc}$ ．Its size is 1 cu ft ．The discriminators are suit－ able for close－loop feedback net－ works， fm detection，demodula－ tion，and wherever high－stability， narrow bandwidths are required．
The Keystone Electronics Co．， Dept．ED， 65 Seventh Ave．，New－ ark 4，N．J．
＜circie 76 on reader－service card

FEATURES:

- A new low in noise levels - down to $0.007 \mu \mathrm{v}$ providing $0.02 \mu \mathrm{v}$ full scale sensitivity at minimum bandwidth.
- 5 db steps
- Attenuation range of 85 dh
- FOUR regular VSWR scales plus one expanded
- All meter scales automatically normal ized when switching ranges
- Large $53 / 4^{\prime \prime}$ meter with $1 / / l_{\text {lincarity }}$
- Continuous yain control over 15 db range
- Continuously variable bandwidth control
- Front panel meter monitors bolometer bias current

SPECIFICATIONS:

Frequency: 1,000 cps: adjustable over a 2% range.
Sensitivity: $0.02 \mu \mathrm{v}$ at minimum (4 cps) bandwidth. $0.1 \mu \mathrm{~V}$ at maximum (40 cps) bandwidth.
Noise Level: 5 db below full scale (0.007 $\mu \mathrm{V}$ at minimum bandwidth)

Amplifier Q: 250 at $4 \mathrm{cps} ; 25$ at 40 cps Bandwidth: Continuously variable from 4 to 40 cps .
Calibration: Square Law. Meter reads SWR, db.
Range: 85 db . Input attenuator provides 70 db in 5 db steps. Gain control provides 15 db adjustable. Accuracy ± 0.1 db per 10 db . Maximum cumulative error of $\pm 0.2 \mathrm{db}$ at 40 cps bandwidth.
Scale Selector: Expanded. Regular, and Bolometer Current. Meter scale always normalized when switching from scale to scale or from expanded to regular.
Meter Scales: SWR: 1-4: SWR: 1.8-6; SWR: 3.2-10; SWR: 6-15; Expanded SWR: 1-1.3; db: 0-10; Expanded db : 0-2.3.
Input Selector: 220,0)(0) ohms: Crystal: Bolometer. Bias provided for high 8.4 ma bolometer or 4.3 ma low current bolometer. Bias adjustable $\pm 15 \%$. A bolometer protective circuit permits any switching operation or cable connectdisconnect without damage to bo!om ter.

Output: Jack for 1500 ohm recorder, 1 ma full scale deflection.
Input Connector: BNC Jack.
Power: $115 / 230 \mathrm{v} \pm 10 \%, 50-6^{\prime}$) cps, 40 watts.

Dimensions: Cabinet: 73/4" wide, $101 / 2^{\prime \prime}$ high, $11^{\prime \prime}$ deep.
Weigh!: 14 lbs. net.

this standinin were amplifier defies comparison

For insulating electronic components
Scotchcast XR-5026 one-part, epoxy-resin powder is for use in insulating rotors, resistors, capacitors, and intricately shaped objects. The powder adheres to a hot object, melts, flows slightly, then cures. Electrical strength is 500 to 800 v per mil, dielectric constant is 3.61 at 23 C , and dissipation factor is 0.0053 at 23 C and at 60 cps .

Minnesota Mining and Manufacturing Co., Dept. ED, 900 Bush Ave., St. Paul 6, Minn.
Price \& Availability: An aerator test kit is available from the manufacturer at the price of $\$ 25$.

Transistorized Power Supply
370
Regulated to 0.005\%

The model LQ35-2A dc power supply has an output voltage of 0 to 35 v at 0 to 2 amp . Regulation is 0.005% or 1 mv , thichever is greater, per 10% of line change at any rated load. Load regulation is less than 5 mv from no-load to fullload. Ripple is less than $50 \mu \mathrm{sec}$. Line input is 105 to 125 v ac, single phase, 60 cps . Panel measures $3-1 / 2 \times 19 \mathrm{in}$.; chassis is 17-7/8 in. deep.
Universal Electronics Co., Dept. ED, 1720 22nd St., Santa Monica, Calif.

Environmental Chamber

The new portable PRD 277-B Standing Wave Amplifier is designed to meet the present and future needs of microwave test laboratories. Due to its extremely low inherent noise, $0.007 \mu \mathrm{~V}$, weak signals which once were undetectable by conventional instruments can now be measured. Attenuation in 5 db steps combined with 4 VSWR scales and a large meter permit VSWR measurements to be made with maximum resolution and accuracy.
To find out more about the new PRD 277-B Standing Wave Amplifier, contact your local PRD representative or phone, write, or wire:

For temperature-shock, temperature-humidity work
Model WD-585-50-50-50-50 environmental chamber is for temperature-shock and tempera-ture-humidity applications. It has independent refrigeration, heating and humidity systems for the left half and the right half of the chamber; each half is controlled independently. It is possible to have +500 F on one half and -100 F on the other half of the chamber. Gages show the equipment's performance characteristics. The humidity control range is 20% to 98% from 35 F dew point to +185 F dry bulb limits.
Conrad, Inc., Dept. ED, 141 Jefferson St., Holland, Mich.
Availability: Deliveries can be made promptly.
CIRCLE 77 ON READER-SERVICE CARD

FAST, POSITIVE ACTION
LONG SERVICE LIFE. MOISTURE-PROOF
A broad line of sinusoidal toggle spring switches designed for
compactness, light weight and high reliability in airborne and ground support missile control systems. Extremely fast, audible, double break action reduces arcing and contact wear to negligible minimum. Positive snap action mechanism cannot be teased on or off contact. All contacts made of heavy coin silver for long life and low contact resistance. Available with color coded buttons. These switches exceed military requirements for vibration, shock, humidity and corrosion resistance. Western Distributor: Western-Electromotive, Inc., Los Angeles.

The UCINITE COMPANY Divibion of Unitoo-Carr Fantenor corporation, nowtonvill be, Maso. CIRCLE 81 ON READER-SERVICE CARD

NEW LITERATURE

Instrument Catalog

261
This 48-page catalog, No. 604, describes and illustrates the company's complete line of noise and field intensity meters, impulse generators, power density meters, modulation meters, coaxial attenuators and terminations, crystal mixers and microwave components. Line drawings and tabular data are included. Empire Devices Products Corp., Amsterdam, N. Y.

Telemeters

262
This 52-page bulletin, No. M1715, describes the company's Metameter telemeters. Included are principles of operation, application to various measurands, and electrical quantities. Computer control, pump control, remote control, selective calling, and Metaphone are also illustrated. Bristol Co., Waterbury 20, Conn.

Magnetic Shielding

263
Bulletin No. F-1 gives design and performance data of magnetic alloy shields for high gain input transformers and electron beam tubes. Charts show shielding efficiency of single and multiple layer rectangular as well as cylindrical shielding containers of several magnetic alloys. Magnetic Metals Co., Hayes Ave. at 21st St., Camden 1, N. J.

Resistor

A new type of glass-enclosed resistor is described in data sheet No. CE-2.02. Illustrated in the bulletin are the $1 / 8$ watt and the $1 / 4$ watt NF-60 and NF-65. Resistance range is 100 ohms to 360 K ; voltage ratings are 250 and 300 v . Write on company letterhead to Corning Glass Works, Electronic Components, Dept. ED, Bradford, Pa.

Transformer Kit

264
This catalog page gives complete technical specifications of model C-2650 microminiature transformer kit. The kit is complete with 10 precision transformers, case, technical manual and test data. James Electronics Inc., 4050 N. Rockwell St., Chicago 18, Ill.

Power Supplies

265
Information and specifications on dc-dc converters, dc-ac inverters and ac-dc power supplies for laboratory, airbome, mobile, communications and automation applications are given in this four-page brochure. Output and dimensions are covered. Electrodynamic Instrument Corp., 1841 Old Spanish Trail, Houston 25, Tex.

Trimming Potentiometers

266
Two 1/2-in., square, high-performance trimming potentiometers are featured in this four-page bulletin. Photographs, outline drawings, power input charts, electrical and mechanical specifications, standard coil data, and a list of available modifications tell the complete product story. Helipot Division of Beckman Instruments, Inc., 2500 Fullerton Road, Fullerton, Calif.

Rotary Switch

267
Manufactured to BUShips and MIL specifications, this rotary multipole switch is the subject of two-page bulletin No. 19. Included are dimensional drawings, special-assemblage drawings, technical data, and a photograph of the switch. Electro Switch Corp., King Ave., Weymouth (Boston 88), Mass.

Frequency Discriminator

268
Details of a $115-\mathrm{v}, 400$-cycle, 0 to 5 v dc frequency discriminator appear in this data sheet. Specifications, outline drawings, a schematic diagram, signal frequency graph, and a description of operation and applications are included. Magnetic Research Corp., 3160 W. El Segundo Blvd., Hawthorne, Calif.

Infrared Source

269
This data sheet describes a miniature infrared source for calibrating the seeking head of infrared guided missiles and other sensitive elements in the 200 to 600 C temperature range. Construction, operation and specifications of the infrared source and temperature controller are included. Perkin-Elmer Corp., Norwalk, Conn.

Application Notes

This four-page index of some 40 "Application Notes" issued by the firm over the past months contains abstracts of a variety of subjects for users of electronic measuring instruments. The "Application Notes" themselves describe electronic theory, measurements, and applications of the firm's instruments. Typical topics covered are traveling wave amplifiers, solid-state devices, masers, various frequency, microwave and current measurements, and applications for oscilloscopes and oscillators. Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif.

Complex Ratio Bridge

Terhnical specifications, a detailed circuitry description and a simplified block diagram of a complex ratio bridge appear in this four-page, illustrated brochure. Also shown are schematics of typical applications involving transformers, resolvers, transducers, and synchros. Gertsch Products, Inc., 3211 S. La Cienega Blvd., Los Angeles 16, Calif.

Trimmer Potentiometers
 272

Technical descriptions, outline drawings, performance data, a power rating curve, price and availability data are included in this two-page, color bulletin on trimmer potentiometers. Fairchild Controls Corp., Components Div., 225 Park Ave., Hicksville, L.I., N.Y.

Chart Drives

273
This catalog describes chart drives that offer quick, easy chart speed changing, savings in chart paper costs, and an ability to match chart speed to test requirements. Included are instructions for ordering proper models and photographs of unit installed. Barry Controls Inc., Insco Co. Div., Hollis St., Groton, Mass.

AC Motors
274
This six-page, two-color catalog presents information on horsepower, torque, speed, duty cycle, weight and size of the firm's ac motors. These motors, designed for electro-mechanical linear and rotary actuators, servos, pumps and valves, have qualified for Mil specifications. Lear Inc., P.J. Box 688, Grand Rapids 2, Mich.

Solid-State Circuits

275
The firm's capabilities in solid-state circuits is illustrated in this four-page, two-color brochure. In addition to specifications and characteristics of major circuits, the brochure outlines the design and development capabilities of the company. Pennon Electronics, Inc., 7500 S. Garfield, Bell Gardens, Calif.

Precision Bearings

276
"How to Reduce Cost and Eliminate Overdesign in the Selection of Precision Miniature Bearings" is a four-page, illustrated catalog that describes how sintered bronze bearings have been designed to replace miniature precision ball bearings in a variety of applications. Included in catalog No. 60-04 are MIL specs, design features, available styles and sizes, specifications, applications, and installation procedures. Northfield Precision Instrument Corp., 4400 Austin Blvd., Island Park, L.I., N.Y.

Trimmer Capacitors

277
Seven models of direct-traverse, trimmer capacitors with pan terminals and five models with wire terminals are described in reference sheet CE-4.01. In addition to a picture and diagrams of the trimmers, the sheet covers dimensions capacitance range, core and shaft plating material, and finish of the models. Corning Glass Works, Electronic Components Dept., Bradford, Pa.

Instrument Cases

278
Brochure No. 403-G gives details of a comprehensive line of instrument cases, covering features, sizes and colors. This 12-page, color, booklet describes the standard hardware that may be obtained when ordering the predesigned cases. TA Manufacturing Corp., 4607 Alger St. Los Angeles 39, Calif.

Pulse Switch

279
An adjustable industrial pulse switch is described in this two-page data sheet, No. 173. In contains photographs, dimensional drawings, characteristics and pricing information. Minneapolis-Honeywell Regulator Co., Micro Switch Div., Freeport, Ill.

Resistance Thermometers by REC

MODEL 152 probe features open platinum wire supported at intervals, resulting in extremely fast response and excellent thermal isoresponse and excellent thermal isolation between the element of the
probe and the head of the probe. probe and the head of the probe.
It is primarily intended for gases at It is primarily intended for gases at moderate and low velocities, useful from -260 to $+260^{\circ} \mathrm{C}$ or higher.

MODEL 172 series is a miniature element encased in a platinum. rhodium tube, useful from -260 to $750^{\circ} \mathrm{C}$ or up to 1100 C for short term use, and having a resistance of 100 ohms at $0^{\circ} \mathrm{C}$, with other values available. It can be cemented or clamped to a surface, inserted in a hole, or molded into a body.

model 152 (1/20180)

MODEL 150 probe features a min. jature element, only 0.160 OD outside the guard tube. It is useful from $-260^{\circ} \mathrm{C}$ up, and finds wide applications in LO_{2}, and LH_{2}, and is available with various immersion lengths and is normally mounted by a flare fitting.

MODEL 168A series probe uses a precision platinum resistance sensing element which is fully supported by a ceramic insulation. The element is protected by a stainless steel guard tube with additional support at the element tip for maximum protection to flow. The temperature range is $+700^{\circ} \mathrm{F}$ to -435° F , and has a normal resistance of 1380 ohms at $0^{\circ} \mathrm{C}$.

Write for further information . . .

ROSEMOUNT
 ENGINEERIMG

DEPT. MR-1 COMPANY

4900 West 78 ih St. Minneapolis 24, Minn. See us al Booth No. 1507. 1.5.A. Show, Sepl. 26-30.

Production models now available for quality control in manufacturing temperaturesensitive components such as thermistors and resistors. Write for new $5-$-page catalog.

HOLLAND, MICHIGAN Subsidiory, Crampton Mlg. Co,

CIRCLE 83 ON READER-SERVICE CARD

CIRCLE 84 ON READER-SERVICE CARD

NEW LITERATURE

Power Transistors

Specifications, illustrations and technical data for silicon, intermediate-power transistors, types 2N1047, 2N1048, 2N1049 and 2N1050, are included in this one-page data sheet. Silicon Transistor Corp., Carle Place, L.I., N.Y.

Mil-Spec Knobs

281
Illustrations and dimensional drawings of Mil-Spec knobs are included in this two-page bulletin, No. 59-3A. These knobs are available in five sizes, six styles, three shaft diameters and three finishes. National Radio Co., Inc., 37 Washington St., Melrose 76, Mass.

Oscilloscope

282
A transistorized, battery-operated, portable oscilloscope is featured in this fourpage pamphlet. Specifications, photos, block diagram, and performance details of the 3 - in. instrument are provided. Tektronix, Inc., P.O. Box 500, Beaverton, Ore.

Mobile Tracking Antenna

Specifications, antenna pattern data, and detailed information and illustrations are reported in this two-page, two-color bulletin. The antenna features a folding $28-\mathrm{ft}$ reflector, tilting mast. and hand operated azimuth. D. S. Kennedy \& Co., Cohasset, Mass.

Power Supply Transformers

Wiring diagrams and schematics of transformers for transistor power supplies are contained in this brochure, No. TY-61. Electrical and mechanical specifications on all units of the firm's line are included. Triad Transformer Corp., 4055 Redwood Ave., Venice, Calif.

Screws and Bolts

The advantages of Holtite Nylok screws are explained in this eight-page booklet. Included is a graph of manufacturing standards. Continental Screw Co., New Bedford, Mass.

Digital Voltmeter

286
Performance characteristics of a digital oltmeter designed for military applications are covered in eight-page bulletin 19-77. History, design and construction, and environmental design goals for the voltmeter are included. Kin Tel, Div. of Cohu Electronics, 5725 Kearny Villa Koad, San Diego 12, Calif.

Teflon Terminals

This 18 -page catalog, No. Tll0, provides engineering and technical data such as voltage and capacitance micromicrofarad ratings on the firm's subminiature Teflon terminals. Tri-Point Plastics Inc., 175 I.U. Willets Road, Albertson, L.I., N.Y.

Electronic Catalog

This 228-page, full file-size catalog lists specifications for hundreds of products and systems including photomultiplier tubes, klystrons and cavities, secondary emitters, travelling wave tubes, oscilloscopes, analog computers, tape decks, troboscopes, transducers, balancing ma-
chines, closed-loop TV systems, power supplies, signal generators, attenuators, and others. Write on company letterhead to Hoffman Electron Tube Corp., 804 Newbridge Ave., Westbury, L.I., N.Y.

Silicon Diode

288
Type FD200, diffused silicon diode having ultra-fast recovery and ultra-high conductance, is described in data sheet No. SL-110/1. This two-page bulletin is illustrated with performance graphs and a test circuit diagram. Fairchild Semiconductor Corp., 4300 Redwood Highway, San Rafael, Calif.

Silicon Rectifier Handbook

289
Illustrations, specifications and dimensional drawings on the firm's entire line of silicon, power rectifiers are included in this 42-page handbook. Extensive technical data on the selection and application of the products is outlined. The company's national network of representatives and a customer price list are covered. Standard Rectifier Corp., 620 E. Dyer Road, Santa Ana, Calif.

NEW PHOTOMULITPLLERS

CBS Laboratories new line of photomultipliers are specially designed for counting or scanning applications.
Unique photocathode geometry (1) and improved linear dynode structure (2) are combined to provide excellent uniformity of response across the face of the tube and extremely short transit time spread.

The new, rugged photomultipliers are available as illustrated in $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ diam. cathodes with visible (S-11) or infra-red (S-1) response and 10 stages of multiplication; or with quartz windows in $2^{\prime \prime}$ and $3^{\prime \prime}$ diam. with ultraviolet (S-13) response. Special types can be developed to order.

For technical bulletins or complete information, write: CBS Laboratories, Electron Tube Iepartment.

CIRLCE 86 ON READER-SERVICE CARD

Immediate delivery from
local stock! CLAROSTAT DIIECCT LINE SERVICE

The answer to miniaturized precision control-1.5 watts @ $40^{\circ} \mathrm{C} . \pm 5 \%$ resistance tolerance. Dielectric strength, 1000 v.a.c. for 1 minute at atmosphere. Exceeds MIL-R-19 specifications....and best of all, your local Clarostat industrial distributor has them for off-the-shelf delivery!

resistance devices as and industrial electronic right at your Clarostat industrial distributor.

CLAROSTAT MFG. CO., INC.
DOVER, NEW HAMPSHIRE
In Canada: CANADIAN MARCONI CO., LTD., TORONTO 17, ONT,

CIRCLE 87 ON READER-SERVICE CARD

NEW Couch Relay isolates

Contacts from Contamination

Organic material can't contaminate the contacts in the new Couch Type 2 M micro-miniature relay. They're hermetically sealed in a separate chamber - and without rosin flux.
Also contributing to reliability is Couch's patented rotary armature, pivoted on two sapphire jewels and virtually immune to present day levels of shock and vibration.
Designs like this, produced within an unusually narrow range of manu facturing tolerances, help explain why Couch relays are being called on to provide reliability in many complex systems.
Write for additional information.

engineering data:

Shock.
 Vibration

Dielectric Sir.................................30G's to 2,000 CPS
Dielectric Strength. 1000 Volts RMS Min.
Height.
Width.....
Thickness
Weight.. 18.40 max. $_{1}$ mram
Contact Arrangement.. 1 (2 PDT)

COUCH ORDNANCE, INC.

A Subsidiary of S. H. Couch Company, Inc

3 Arlington St., North Quincy 71. Mass. Tel.: (Buston) BLuehills $8-4147$ CIRCLE 89 ON READER-SERVICE CARD

3

ASW: How To Meet The Challenge
Although our consulting group has been in the ASW field for nearly a decade, your article covered several developments we had not seen mentioned before. Your work in delineating the ASW field in such a thorough manner is appreciated.
In my opinion, careful consideration must be given to the division of responsibility in the Department of the Navy. For example, BuShips is responsible for sonar, and BuWeapons for fire control. Without perfect coordination and the freest flow of information, we will not get the perfect ASIV system in the shortest possible time, at the lowest possible cost, when sonar is the detection means in an ASIV fire control system. Perhaps joint responsibility is the answer, as demonstrated by BuShips and the AEC in the atomic submarine program.

Since we are committed for many years to come to supplying our bases overseas by water, we are forced to strengthen our ASW posture. It is discouraging and alarming to have to vote to be on the submarine in an ASW battle. N. A. Denman -

Manager. Basic \& Experimental Physics Engineering Services Falmouth, Mass.

- The last line of the letter refers to a question the authors of the ASW article asked frequently: "In a battle between a submarine and an antisubmarine task force, would you rather be in the task force or in the submarine?" Unanimously, the answer was, "The sub."

From the Navy

You will appreciate the fact that I cannot comment on our technical advantages and disadvantages in the anti-submarine warfare field without immediately prejudicing classified information. In this technical connection 1 find the largest void in the article is its failure to mention the participation of the National Security Industrial Association in the ASW technical field.

The Anti-Submarine Advisory Committee of the NSIA is composed of representatives of about 100 industrial concerns who study all phases of ASW technical problems. The chairman of the committee made the annual report to the Secretary of the Navy at a recent meeting of the Sec-

a spot is a spot
is a high
resolution Spot with

CELCO YOKES

Celco YOKES
keep spots $\boldsymbol{\text { Smallest }}$
Celco Yokes
keep spots roundest

- Celco Yokes
keep spots sharpest

Use a CELCO DEFLECTION YOKE for your high resolution applications.
In a DISPLAY SPOT? call Celee!

Canstantine Engineering Labaratories Ca.

Main Plant: MaHwah, M. J. Davis 7-1123 - Pacific Division - Cucamonga, Califf. - Yukon 2-2688

CinClé 90 ON READER-SERVICE CARO ELECTRONIC DESIGN - August 31, 196

a measure of perfection... IDEAL PRECISION

Panel Meters
the complete line for every application

Here's the demand line that's setting sales records across the nation . . . engineered and produced to the highest standards. . . assembled in controlled atmospheric and climatic conditions ... 100% inspected at every step of production to ensure highest quality and dependability.
, Accurafe to within 2% of full scale - All sizes and types available

- Scales to customers specifications
for complete information, write to

WALDOM ELECTRONICS, INC.

 4625 W. 53rd Street, Chicago 32, III. CIRCLE 91 ON READER-SERVICE CARD ELECTRONiC DESIGN • August 31, 1960ACTUAL SIZE
The MICROCHOPPER is designed to alternately connect and disconnect a load from a signal source. It may also be used to convert a.c. signals to d.c. (as a synchronous demodulator). The MICROCHOPPER is capable of linearly switching or chopping voltages over a wide dynamic range extending from a fraction of a millivolt up to 10 volts. Having none of the inherent limitations of mechanical choppers. this transistorized chopper is an inertialess device that can be driven from d.c. to a hundred kilocycles.

The switching circuitry used operates the transistors in a manner which provides stability and freedom from drift over a wide temperature range. These units are practically immune to the effects of shock and vibra tion, making them ideal for military, space vehicle and portable applications; or where power conservation, miniaturization and elimination of maintenance is a necessity. The MICROCHOPPER has an inherently long life and is not subject to contact bounce, wear, pitting or arcing.

TYPICAL OPERATION

DRIVING VOLTAGE: Square wave - one to SIGNAL CURRENT: 100 milliampere maxi 15 volts peak-to-peak.
DRIVING SOURCE RESISTANCE: 600 ohms. DRIVING INPUT RESISTANCE: 200 ohms.
INPUT VOLTAGE: Dynamic range from fraction of a millivolt to ± 10 volts.
SOURCE RESISTANCE: Rg less than 100 ohms for minimum noise. High impedance circuits require filtering to minimize elec trostatic noise pickup.
INPUT RESISTANCE: Approximately R_{L}
OUTPUT VOLTAGE: Equals chopped input voltage.
OUTPUT RESISTANCE: Approximately Rg.
LOAD RESISTANCE: RL should be greater than 100 ohms for best operation mu
INEARITY: Less than $\pm 0.5 \%$ deviation from best straight line.
CHOPPING (DRIVING) FREQUENCY: D.C. to 100 kilocycles per second or higher.
OPERATING TEMPERATURE: $-55^{\circ} \mathrm{C}$. to $+90^{\circ} \mathrm{C}$.
OUTPUT TEMPERATURE COEFFICIENT: Nomi nal five microvolts rms per degree centigrade at 5 millivolts rms, 400 cps output ignal

OUTPUT NOISE: Approximately 20 microvolts rms or less for following combinations of maximum values for R_{g} and R_{I} in ohms. | R_{8} | $1 K$ | $.5 K$ | $.6 K$ | $.8 K$ | 1 M | infinite |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R_{1} | infinite | 100 K | 10 K | 1 K | .1 K | .01 K |

MECHANICAL

DIMENSIONS: $.38^{\prime \prime} \times .16^{\prime \prime}$ Dia. / WEIGHT: $1 / 2$ gram / ENCAPSULATION: Solid embedment in epoxy resin / SHOCK: 7000 G, no detectable effect / VIBRATION: 125 G, zero to 3000 cPS / ACCELERATION: $12,000 \mathrm{G}$ / LIFE: Unlimited at $25^{\circ} \mathrm{C}$ / HUMIDITY: To 100% relative humidity up to $90^{\circ} \mathrm{C}$. Also under varying conditions of water and frost condensation / CONNECTIONS: 1. D.C. input; 3. Chopped output; 2. and 4. Drive voltage; 5. Common for input and output.

ELECTRONIC

Write or phone for bulletins describing the above unit
 ŞTATI
 ELECTRONICS CO 15321 Rayen Street, Sepulveda, California EMpire 4-2271

CIRCLE 92 ON READER-SERVICE CARD

Edward J. Farrett
Loral Electronics Corp.
New York City
(continued on p 96)

WESTINGHOUSE ANNOUNEES

Westinghouse SILICON POWER RECTIFIERS AND TRANSISTORS

NOW IN STOCK

YOU CAN OBTAIN
UP TO 1000 PIECES OF MOST TYPES

AT
FACTORY PRICES
 ELECTRONICS

CIRCLE 93 ON READER-SERVICE CARD

50 AMP "ROCK-TOP" TRNISTORR CONTROLLED RECTIFER

PROVIDES MULTI-FUNCTIONAL CONTROL OF CURRENTS AND VOLTAGES WITH FAST SWITCHING TIME AND RESPONSE RATE

New Westinghouse Trinistor ' Rock-Top" construction provides high reliability, low maintenance, and positive protection against arcing at high voltages. Design engineers will find the improved electrical characteristics, listed below, can be used to advantage in a wide range of new control and switching applications.

- Lower Thermal Impedance
- Switching time 600 millimicroseconds
- Efficiencies in excess of 95\%
- Simplifies circuitry
- Lower forward drop than thyratrons
- Minimum noise levels

1- Parameters ideally suited for high-speed static switch functions

- Peak reverse voltage 60-360 volts

For full information or engineering assistance, contact your local Westinghouse representative, or write:
Westinghouse Electric Corporation, Semiconductor Dept., Youngwood, Pa.

INDUSTRIAL, MILITARY, AND COMMERCIAL APPLICATIONS INCLUDE: CONVERTERS / VARIABLE FREQUENCY CONTROLS / MOTOR CONTROL / VOLTAGE REGULATION / REPLACEMENT OF MAGNETIC AMPLIFIERS / HIGH POWER MODULATION / INVERTERS / REPLACEMENT OF THYRATRONS YOU CAN BE SURE...IFIT'S TVESTA1R\&10USE CIRCIE 94 ON READER-SERVICE CARD

Westinghouse

SILICON POWER RECTIFIERS

AND TRANSISTORS
NOW IN STOCK
YOU CAN OBTAIN UP TO 1000 PIECES OF MOST TYPES

AT
FACTORY PRICES
FROM

CIRCLE 95 ON READER-SERVICE CARD

PROBLEM:

Cramped for space and need BOTH INDICATOR LITES and SWITCHES?

SOLUTION:

Use TEC-LITE BUTTON LITES.
combination switch and lite units that also may be wired as push-to-test lites. Recommended for computers, data processors, control and signal systems. Mount on $9 / 16^{\prime \prime}$ centers. $1 / 2^{\prime \prime}$ diameter body. Either incandescent or neon, with series current limiting resistar if desired. Available with normally open or normally closed switch contacts.

LETTERS

(Continued from p 93)

From the Senate
My reaction to the article on anti-submarine warfare is that it is informative and timely. On the Senate floor, during the debate on the Defense Appropriations bill, I again urged greater emphasis on anti-submarine warfare capability. The following is quoted from my Senate statement:
"Anti-submarine warfare capability should be increased on a high-priority basis.
"I recommend an increase of $\$ 465$ million over and above the budget request for building up our capability in this field, and introduce an amendment for that purpose.
"This money would provide additional attack submarines, specialized aircraft. sonobuoys, torpedoes, mines, depth charges, and a wide range of electronic equipment.'

Stuart Symington
United States Senator

Sonar Is the Key
Those of us involved in helping to solve the ASW problem feel that one reason the problem exists is that very little money and effort have been put into its solution. "Very little" is used in a relative sense as compared to the kind of money that has developed radar to its present state and has given the warning networks which exist today.
We also feel that the solution rests in sonar and not in the many so-called "unsound" methods which are being pursued. There has been a lot of wishful thinking that someone will come up with a magic device which will make the oceans of the world transparent. Our feeling is that the best results will be obtained by developing the only known method of finding a submerged sub-marine-sonar.
A. M. Brown

Vice President, Edo Corp.
New York City

Naming the ASW Officer

The Anti-Submarine Warfare problem deserves
Using Fastex Plasti-Grommets to mount license plates demonstrates their use in blind applications, just one of their unique solutions to individual or mass-production fastening problems. They snap into place easily, lock tight when the screw is driven.

FASTEX

A DIVISION OF ILLINOIS TOOL WORKS 195 Algonquin Road, Des Plaines, Illinols In Canada: SHAKEPROOF/FASTEX Don Mills. Ontario CIRCLE 97 ON READER-SERVICE CARD

SELF-LOCKING WING NUTS with nylon inserts are VIBRATION-PROOF... PRECISELY ADJUSTABLE
The famous ESNA red nylon locking insert gives smooth, consistent locking torque in any position on bolt or stud. Cannot be loosened by vibration, yet is easily adjustable by finger pressure. Gives same dependable locking torque through repeated on-off usage. For full information write Dept. S51-857, Elastic Stop Nut Corporation of America, 2330 Vauxhall Road, Union, New Jersey.

ELASTIC STOP NUT

CORPORATION OF AMERICA

CIRCLE 98 ON READER-SERVICE CARD
Lepel

HIGH FREQUENCY INDUCTION

HEATING EQUIPMENT

107 Hardening • Annealing • Soldering
Brazing • Zone Refining • Crystal Growing

CIRCLE 99 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 31, 1960

It would be interesting to know the identity of the "ASW officer" who speaks with authority on a topic too frequently obscure to the design engineer. Are his views based on post-World War II experience in the ASW field?

Arthur S. Kramer
Staff Engineer
Grumman Aircraft Corp. Bethpage, N. Y.

- The officer referred to in "An ASW Officer Speaks" is Robert Shaw, currently with DuMont, a division of Fairchild Camera and Instrument Corp. Mr. Shaw spent 11 years with the fleet in ASW operations. This included time spent in actual ASW problems during the World War II, simulated submarine attacks with the latest postuar equipment available, and a tour of duty as Sonar Proiect Officer at the Surface Anti-Subma, ine Detachment in Key West cevaluating new electronic ASW equipment.

Inhale! Exhale!

In the otherwise fine article on speech making ("So You've Got to Make a Speech," ED, June 8, p 166) there are two points I would like to comment on.
Although it was widely reported in the press at the time that the American hockey team was helped by inhaling oxygen at Squaw Valley, it is doubtful if it really accounted for their victory. In the first place, the body does not store oxygen for any apr reciable length of time, especially during violent activity. The most convincing argument against the efficacy of oxygen inhalation is that another team (Canada's, I believe) inhaled from what they believed were tanks of oxygen prior to a game which they subsequently won. Later it was revealed that the valves to the oxygen tanks had never been opened and the team members had actually inhaled air. A compliment to the clean air of the Sierra Nevada perhaps, but not to O_{2}.
The second comment is more of an opinion. Breathing deeply 10 or 15 times before delivering a speech is more likely to induce dizziness than clarity, at least in my experience.
Following the Olympics of 1932, held in Los Angeles, the victory of the Japanese swimmers was attributed to their use of oxygen before each event. As in the case of the American hockey team, I believe that the effects were more psychological than physiological, the Japanese being motivated-as was, probably, our hockey teamby nationalistic fervor and the good athlete's desire to win.

Richard G. Gould
Menlo Park, Calif.

LUNAR and PLANETARY COMMUNICATION

SENIOR RESEARCH SPECIALISTS

New opportunities involving advanced research and development projects are now open at JPL in the Laboratory's Telecommunications Division for engineers and scientists capable of assuming a high level of technical responsibility.

SOME SPECIFIC OPENINGS IMMEDIATELY AVAILABLE

Communication Specialists Execution of RF tracking and communication system projects.	Radio Research Engineers Design of advanced RF transmitter / receiver equipment.
Antenna Specialists Analysis, design and evaluation of giant Antenna Structures and Servo Systems.	Research Scientists Digital data and control system analysis and synthesis.

Mathematicians or Communication System Analysts
Analog and Digital system analysis.
Noise, coding, information theory.
Linear and non-linear filter theory.

Several openings also exist for supervisors of Research and Advanced Development Projects performed by industry for JPL.

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY PASADENA. CALIFORNIA
SEND COMPLETE QUALIFICATION RESUME NOW FOR immediate Consideration CIRCLE 902 ON CAREER INQUIRY FORM, PAGE 99

YOUR CAREER ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars intended to provide the engineer w th a better knowledge of various syecialties. Our grouping includes 8 evNational Courses-those held on conescutive days and intended to draw attendees from all geographical areas: One-Day Seminars-one-day intensive seminars which move from city to city: and Regional Lectures -regional symposia or lecture series which generally run one night a week for several weeks.

National Courses
 Vibration Testing Course

The fourth in a recurring series of courses on vibration testing is being offered space age engineers from Sept. 12 to Sept. 23 by Ling Elec tronics, a division of Ling-Altec Electronics, Inc at the company's Anaheim. Calif., plant.

According to Cameron G. Pierce, president of Ling Electronics, the course covers sine, complex and random wave vibration in theory and prac tice.
Moderator of the session will be John C Jordan, research engineer for Ling and a grad uate of the Georgia Institute of Technology.
Technical information presented in the cours will include the most recent and pertinent data derived from the developments and papers 0 Pierce, Charles Theodore, vice president, marke ing, James A. Ross, vice president research and development, and many other experts.

For further information write "Study in Vibra tions Registrar," Ling Electronics Division, Ling Altec Electronics, Inc., 1515 S. Manchester Ave Anaheim, Calif.

Stevens Industries Training School

Industrial employees who wish to add to thei knowledge of electrical technology, machine an tool designing, production supervision may do s at the Stevens Industries Training School during the fall semester which starts on Wednesday Sept. 20.

Highlighting the course sequences offere during the fall and spring semesters are: Manu facturing Processes-Manufacturing Planning Plastic Product Design-Plastic Mold Design; In struction Techniques-Effective Speaking; Prop erties of Metals-Welding Processes; Human R lations I-Human Relations II; and Industrid Organization-Industrial Economics.

Courses are taught in the evening by member of the Stevens Institute of Technology faculb and by experts from nearby industries. Furthe

ELECTRONIC DESIGN • August 31, 196

Advancement Your Goal?

electromic oestan CAREER INQUIRY SERVICE

ELECTRONIC DESIGN's Confidential Caree Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in his section. Then circle the numbers at the bottom of the form that correspend to the uumbers of the ads that interest you
ELECTRONIC DESIGN will act as your sec etary, type neat duplicates of your applicaion and send them to all companies you elect-the sanie day the resume is received. The standardized form permits personnel nanagers to inspect your qualifications rapidy. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

All forms are delivered unopened to one eliable specialist at ELECTRONIC DESIGN.
Your form is kept confidential and is proc. essed only by this specialist.

The "circle number" portion of the form is detached before the application is sent to on ployer, so that no company will know how nony numbers you have circled.

- All original applications are placed in conidential files at ELECTRONIC DESIGN, and fiter a reasonable lapse of time, they are lestroyed.
If you are seeking a new job, act nowl

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)
Name \qquad
\qquad Home Address __ City __ Zone __ State \qquad
Date of Birth \qquad Place of Birth \qquad Citizenship \qquad

Position Desired \qquad

Educational History				
College	Dates	Degree	Major	Honors

Recent Special Training \qquad
\qquad

Employment History				
Company	City and Statr	Dates	Title	Engineering Specialty
-				

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of lieader Service Card. Do not write personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you

900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924

425

Bringing to life the principles of magnetic printing

This little hand-cranked model makes practical use of the principles of magnetic print-ing-principles that have been known in theory for more than a hundred years.
The model represents a big jump from theory to practice. It was developed and built by a group of IBM engineers and scientists brought together for the sole purpose of proving or disproving the feasibility of the magnetic printing process.
These IBM researchers discovered a way to "write" characters on a rotating nickel-cobalt plated drum by casting a magnetic dot image on the drum with time-sequenced electronic pulses. The latent magnetic image attracts and holds powdered iron-resin ink. The ink is transferred to paper and permanently bonded by passage through a heat and pressure fix station.
The machine at left has a working speed of 125 inches per second-equivalent to 1,000 cards a minute. It can be operated for sus-
tained periods at 160 inches per second. A full parallel printer based on these principles is capable of producing many times the output of the fastest IBM impact-type printer. Engineering Achievement
The magnetic printer project is typical of the many opportunities for achievement awaiting engineers and scientists in advanced systems development at IBM. Perhaps you might be more interested in what IBM people are doing in such areas as: semiconductors, Teleprocessing*, computer development, optics or others. If you have an engineering degree and would like to learn more about these assignments, write, outlining briefly your experience and field of interest, to:
Manager of Technical Employment IBM Corporation, Dept. 555 T5 590 Madison Avenue New York 22, New York -Trademark

IBM

ELECTRONIC DESIGN'S

Career Inquiry Form:
Your Personal Representative

"I like to select my applicants through ELECTRONIC DESIGN'S Resume Form-it saves time. Because of its completeness, I am able to match the applicants' total needs with the many opportunities at General Mills."
. . . says Mr. Graham Lambert, Personnel Manager of General Mills' Mechanical Division.

Personnel Managers throughout the electronic industry are voicing favorable comments about ELECTRONIC DESIGN'S Career Inquiry Service. They've found that it saves precious time, and allows them to get in touch with you sooner.

Why not take advantage of this convenient, time-saving form, and let it serve as your personal representative to the companies of your choice.
international business machines corporation

CAREER COURSES

information may be obtained by contacting the Industries Training School office at Castle Point Station, Hoboken, N.J.

Seminar on Creative Action

Methods of achieving "scientific creativity" in large-scale organizations will come under intensive study at a seminar for administrators of scientific and engineering functions to be held at Syracuse University's Minnowbrook Conference Center Sept. 11-17.
The Seminar on Creative Action in LargeScale Organizations will bring together managers of research institutes, training programs, engineering services, product development, development laboratories and engineering laboratories to explore some of the problems of human relations within large organizations.
Faculty for the seminar will include: William W. Bender, Director, Research Institute for Advanced Science (RIAS); Dr. Donald W. Taylor, Professor of Psychology and Personnel Administration, School of Engineering, Yale University; Dr. Joseph Tussman, Professor of Philosophy, Syracuse University.
Resident faculty for the seminar will be: n_{r}. Paul Meadow, Professor of Sociology and Chairman of the Department of Sociology and Anthropology, Syracuse University and Warner Bloomberg, Jr., Assistant Professor of Sociology, Syracuse University. The program is being offered under the direction of University College, the adult education division of Syracuse University.

One-Day Seminars

The Industrial Education Institute, Aug. 30-Sept. 29

The Industrial Education Institute of Boston, Mass., is presenting a one-day seminar on Measuring and Improving the Effectiveness of the Maintenance Department. The seminar schedule is as follows: Montreal (Hotel Sheraton-Mt. Royal)-Aug. 30; Toronto (Hotel Westbury)Sept. 19; Detroit (Hotel Sheraton-Cadillac)-Sept. 20; Cleveland (Hotel Pick-Carter)-Sept. 22; Chicigo (Hotel Sheraton-Gibson)-Sept. 27; St. Louis Hotel Sheraton-Jefferson)-Sept. 29.
The seminar will be conducted by George J. Tartin, president. The registration fee, which includes attendance, luncheon, coffee break, nec*sary supplies and a complete package of refernice material, is $\$ 50$ per man. A 10 -per-cent Tcam Discount is extended to companies having hree or more men attend. For further informaion write Industrial Education Institute, 221 Columbus Ave., Boston 16, Mass.

IECTRONIC DESIGN • August 31, 1960

THE GOAL is microelectronics. THE PROBLEM is to provide microminiature circuits which are more reliable...smaller in size... lighter in weight... lower in cost...than conventional components. THE SOLUTION is Solid Circuit* semiconductor networks-a new and rapidly expanding field at Texas Instruments.

> I his wide-ranging project - the opening of a true frontier req ires continuing and new investigations. Explorations involve such tec.ıniques as solid state diffusion, alloying of metals and semiconductors, vacuum deposition of metals, semiconductor surface chemistry, solid state physical measurements. Immediate creative application of skills in various sciences is required: solid state physics, physical chemistry, inorganic chemistry, metallurgy, electronics, and mechanical engineering.

> The need is for the scientist or engineer sufficiently experienced that he can explore this project from his own viewpoint and make immediate, significant contribution. Depending entirely on his own qualifications, he may either join a semiconductor network team or he may take charge of such a group. The opportunity for leadership - whether immediate or in the future - is here.

> The desire to see the full semiconductor technology ...curiosity concerning both circuits and devices...the ability to direct and inspire...these drives will advance the scientist at TI.

Trademark of Texas Instruments Incorporated.

This - in actual size - is an interconnected stack of 11 semiconductor networks. Solid Circuit semiconductor net vorks are complete electronic circuits synthesized within a emiconductor material, By ing conductance paths in this material, semiconductor net works have been designed to perform such works have been designed to perform such ircuit functions as amplification, switching, counting, pulse generation, etc. In addition to effecting a significant advance in microelectronics, semiconductor networks provide improved reliability and performance. This Ti development is now ated for satellite, missile and airborn applications.

Interviews are scheduled for your area. If the challenge and opportunity of the semiconductor network field at TI intrigues you, please send a confidential resume immediately to C. A. BESIO, Dept. 126.

TEXAS Bi INSTRUMENTS

SEMICONDUCTOR-COMPONENTS DIVIBION POST OFFICE BOX 312 . DALLAB. TEXAS

TEXAS INSTRUMENTS INCORPORATED Semiconductor.Components Division Semiconder.Componenis Divis

Please send me the booklet TIPS containing detalls on career openings in my field at TI S-C and information on living in Dallas.
NAME
ADDRESS
CITY \qquad
professional field
My specialty in

EE, ME, or Physics; BS, MS, Doctoral Degrees A Unique Career Spot

Investigate New Positions IN ADVANCED DEVELOPMENT AND PRODUCT ENGINEERING

- Thermoplastic Recording*

Electronic Visual Amplifiers*
for Large Screen, High Brightness, High Resolution, Information Display Systems

- High Power AM, FM, Short Wave, TV (VHF-UHF) \& Scatter Transmitters
- TV Studio Equipment - Monochrome \& Color
- TV \& AM Station Audio Equipment
- UHF, VHF, \& Microwave Antennas

Transmission Line Systems, Studio TV Transmitter Link Equipment

- Educational TV, Industrial TV
general electric's technical products operation
the "hatching place" of new commercial and military products in fields of BROADCASTING - CLOSED CIRCUIT TY - SPECIAL VIDEO \& DISPLAY BS or Advanced degrees plwe experience in one of the following areas A. Geomotric. Physical \& Electron Optics
B. Circuit Design (Semiconductor \& Tubed)
c. Mechanical design of products involving complex precision mechanisms, vacuum systoms, optics, thermodynamics.
Write in full confidence to: N. C. Murray Ens. TECHNICAL PRODUCTS OPERATION
GENERAL (-6) ELECTRIC

CIRCLE 900 ON C $A R=$ ER lIVGUIRY FORM

GROW

WITH THE FIRM THAT PIONEERS in PRECISION

Advanced Data Handling
ENGINEERS
With Systems Background

GROWTH OPPORTUNITIES

await qualified senior level engineers to assist $L \& N$'s able staff in the development and engineering of LN3000 Computer Control Systems for Industrial Processes in the Power, Petro-chemical, Steel and Ceramic industries. B.S. or M.S., preferably in E.E. required PLUS several years' design \& development experience on data handling circuits incorporating digital computer techniques.

Send Resume to WAYNE L. BESSELMAN, Coordinator Technical Employment

Pioneers in Precision
LEEDS \square NORTHRUP
Instruments - Automatic Controls - Furnaces 4901 Stenton Avenue Philadelphia 44, Pa. Evaluation

Systems Analysis

Weapons Systems analysts with BS or MS in mathematics or physics, or BSEE, to work on weapons system and component lethality, evaluations, optimization studies, feasibility studies, and concept synthesis. Also of 3 years in electronic systems of 3 years in electronic systems data handling, signal processing.
Design and Development
A number of openings now exist for experienced design and development engineers with the fol lowing qualifications:
BSEE or MSEE, minimum 3 years experience in any of these fields: Solid state circuit design, including amplifiers and switching circuitry: RF techniques, including circuit design; antenna design, propagation studies, modulation techniques. Signal processing and data handling, including techniques for encoding, decoding, storage, digital data processing, display, system integration. Also: openings for BSEE with minimum one year in synthesis servo analysis or servo application.

Evaluation

BSEE. Prefer 1-8 years in test, design, or related areas. Work involves testing specific unit systems, parts, or materials. May involve designing and building non-standard testing equipment; tests on production instruments All All above openings are in Minneapolis area. For complete information, write Allan J. McInnis, Professional Manpower Staff, Ordnance, DiN No

Honeywell

H Militany Products graup
To explore professional opportunities in other Honeywell operations, coast to coast, send your application in con-
fidence to H. D. Eckstrom, Honeywell. Minneapolis 8, Minn.

ELECTRONICS JOBS \$6,000 to \$75,000 Still Go Begging

Cadillac, the nation's largest executive \& professional placement service represents every "Blue Chip" electronics firm in America-over 450 in all. Cadillac
can offer you positions unequaled by any other firm.

OUR SERVICE FREE OF CHARGE
Our completely confidential placement service is available to you absolutely FREE OF CHARGE. At Cadillac, Electronic Engineers don't receive the "fast shuffle" prevalent in small placement firms. The Electronics Division staff of eleven experienced counsellors is ready to serve you in analyzing the hundreds of available positions.

FREE MONTHLY JOE SURVEY

Our monthly listing of top electronics positions is free o any Electronics Engineer For your free survey, send your name and home address to:

J. L. Higgins. Manager Electronics Division

Cadillac
Associates, Inc.
 Financial 6-9400

CIRCLE 907 ON CARĖER INQUIRY FORM

PAGES
MISSING
ARE NOT
AVAILABLE

[^0]: El三CTRONIC DESIGN • August 31, 1960

[^1]: ${ }^{\circ}$ Formerly with North Hills Electric Co., Inc., Mincola.

