
(2)

GIVE YOUR PRODUCTS MORE RELIABILITY AND BETTER PERFORMANCE WITH

- Meets all requirements of MIL-T-27A
- Small size and weight
- Ideal for computer apalications

MAGNETIC AMPLIFIERS - Hermetically Sealed To MIL Specification

- No Tubes
- No Tubes
- Direct Operation from Line Voltage
- Fast Response
- Long Life Trouble Free Operation
- Phase Reversible Outpur
\downarrow Power Gain $2 \times 100 \quad \square$

low frequency HIGH " Q " REACTORS Solve your low frequency selective problems by using FREED QGC REACTORS
- Available from stock
- Meots MIL-T-27A specification
- Low hum pick-up
- Low voltage coefficient
- Low temperature coefficient Inductors with maximum " 0 " at very low frequencies
special order.
special orde

	INouctance	
	100 70 25 10 5 5 1 1	r^{1+6}
	$\begin{aligned} & 75 \\ & \hline 50 \\ & 25 \\ & 10 \\ & 10 \\ & 5 \\ & 1 \\ & \hline \end{aligned}$	
	$\begin{aligned} & \text { so } \\ & 20 \\ & 10 \\ & 10 \\ & 5 \end{aligned}$	
	10 10,5 3 2.5 2.5 0.5	

FREED QUALITY INSTRUMENTS FOR PRECISION LABORATORY TESTING NO. 1110-AB INCREMENTAL INDUCTANCE BRIDGE INDUCTANCE BRIDGE

Send for NEW TRANSFORMER AND INSTRUMENT CATALOGS

Transistor Data Chart
(Cover)
The 1959 Seventh Annual sistor Data Chart is tailor-made the design engineer. Over : listed numbers have been separe into six categories-audio, frequency, power, low-level high-level switching and spe: types. In each category the vo of a key parameter determines location of a particular type. Ros selection of type numbers, with rernate sources of supply, is ofeen by this chart.

Flip-Flop Silicon Trigistor
New prpa silicon device, desigr: for fip-flop circuits, can replace "t transistors plus several compone

Self-Oscillating Beta Tester 76
An accurate measurement of "ac small signal Beta" obtained using the transistor und test as the active element of of oscillator circuit.

Circulators' Size and Weight Reduced
The series CIL circ especially useful in radic airborne and other criti tions where size and w

Next Issue WESCON Produ
Preview of new, prev nounced products to be
WESCON.

- CIRCIE I ON READER-SER : CAR

ELEC IONIC DESIGN Hayden Publishing Co., inc., 830 Third Avenve, New York 22, N. Y.

Electrostatic Printing Process

EDITORIAL

U.S. Leads U.S.S.R. in Transistor Progress

TRANSISTOR DATA CHART

Transistor types are separated into six categories-values of key parameters determine sequence of listing

FEATURES

Understanding Transistor Voltage Breakdown
A review of the basic types of transistor voltage breakdown
H. E. Schauwecker

High Frequency Figure of Merit
A proposal for a realistic figure of merit based on power amplification .. R. E. Seifert
New Approach to Transistor DC Bias
Straightforward design approach to single stage transistor amplifier stubilization
J. P. White

Transistor Types, 1959
Analysis of transistor fabrication techniques with comments on the present state of the art
W. C. Hittinger

Measuring Transistor Parameters With Wayne Kerr RF Bridges

Transistor parameters can be quickly and simply measured over a
uide frequency range with Wayne Kerr rf bridges R. M. Scarlett
Cathodic Envelope Energizer
New battery design offers high energy content at low cost per hour operation
Three Selected Semiconductor Circuits
Building-block type circuits chosen from "Selected Semiconductor
Circuit Handbook" S. Schwartz
Flip-Flop Silicon Trigistor
Bistable multivibrator circuits can be reduced to a minimum number of components with the use of a "Trigistor", a pnpn silicon device
Self-Oscillating Beta Tester
Transistor tester uses the transistor being tested as the only active element
Circulators' Size and Weight Reduced
Series CLL circulators are especially useful where size and weight are important considerations
Can An Employment Agency Help You Find The Right Job?
T uo agency heads give the low-down

DEPARTMENTS

Washington Report
Meetings
Ideas for Design
Patents
Careers
Career Opportunities Brochures
Career News
Books

22 Russian Translations 108
24 German Abstracts 110
80 Report Briefs 112
88 Services for Designers 120
92 New Literature 122
Production Products 130
96 New Products 134
98 Letters 184
104 Advertisers' Index
circle 2 on reader-service card *

> Abnormal and persistent vibration in rotating equipment usually means costly trouble. Robertshaw. Fulton's Vibraswitch Detectors and Model 651 control units detect vibration and shut down valuable equipment before damaging trouble develops.
> Two G-V Red Line Thermal Time Delay Relays are used in each control unit. One blocks out the vibration detector while the protected equipment is starting up. The second times the duration of vibration and permits shut-down only if trouble persists.
> Absolute reliability of every component is vital in a protective system of this sort. G-V Red Line Delay Relays meet this requirement for reliability ... at surprisingly low cost. Apply them in your equipment and be safe.

> Write for Publication 131.

G-V CONTROLS INC. LIVINGSTON, NEW JERSEY

STAFF

EDITOR: Edward E. Grazda: MANAG ING EDITOR: J. A. Lippke; ASSOCIATE EDITORS: L. D Shergalis, G. H. Rostk H. Bierman; ASSISTANT EDITORS: T. E Mount, D. S. Viebig, L. N Tolopk A. Corneretto, F. Muehleck, A. Caprioglio: EDITORIAL ASSISTANTS: M. S Buckley, J. R. Feder, A. M. Sickler A. R. Abramoff, R. N. Ross: ART DIRECTOR: R. A. Schulze; TECHNICAL ILLUSTRATOR: B. L. Armstrong; ART ASSISTANTS: C. Bank, M. J. Malatak: PRODUCTION MANAGER: T. V Se dita: ASST PRODUCTION MANAGER H DePolo. PRODUCTION ASSISTANT - C. Alexich CIRCUL ATION MAN C. N. M AGER: N. M. Elston; ASST. CIRCULAett: READER SERVICE: J. E. Medina.

CO-PÜBLISHERS

T. Richard Gascoigne

James S. Mulholland, Jr

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering title, your company's main products, and description of your de sign duties. The letter must be signed by you personally.
ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECESSITATE A REstatement of these qualificaTIONS. Subscription rate for non-qualified subscribers- $\$ 25.00$ per year U.S.A. $\$ 30.00$ per year all other countries. Single copy $\$ 1.50$

ADVERTISING REPRESENTATIVES

ADVERTISING SALES MANAGER Bryce Gray, Jr.: NEW YORK: Owen A Kean, Robert W. Gascoigne. Richard Parker, Blair McClenachan, James P Quinn 830 Third Avenue, PLaza 1-55.50 CHICAGO: Thomas P. Kavooras. Berry Conner, Jr., Fred T. Bruce 664 N. Mulw igan Avenue, SUperior 7-8054: LOS A.V. GELES: Robert E. Ahrensdorf. John Quillman, Stanley I. Ehrenclou 32 is shite Blud, DUnkirk 2-7337; SOUTP. EASTERN. Lucien Neff 15 Castle Harlut Isle, Fort Lauderdale Floride LOur 6-5656.

NB

ELECTRONIC DESIGN is published b-neeily Horden Publishing Compony. Inc.. 830 Thitd A... New York 22. N. Y., T. Richord Gossogne A. dent James S . Mulholiond. Jt, Vice-pres dite Treasuret: ond Covid 8 lands. Secrecor, Pentes Hildreth Presss. Bristol, Conn. Accepteo os corr, York. N.Y. Copryight 1959 Horden Publisn ing C York. N.Y. Copyright los9 Hoyde

Electrostatic Printing Process

Paves Way for . . . Faster Computer Output
. . . High Speed Facsimile Printing
. . . Remote Display of 'Live' Subjects

USING, a completely new component, printers have been developed which can keep pace with some of today's fastest digital computers. The new component, an electrostatic printing tube, enables printout of 230000 characters per sec. That's about ten times the rate possible with (onventional electromechanical printers.

The Paper Flies

With this new "Videngraph" process a printer can spew forth three printed sheets of $8-1 / 2 \times 11 \mathrm{in}$. paper per sec -180 ft of paper a minute. This paper format can carry six lines per vertical in. with 100 letters, numbers, or symbols per line.

Prints What the Eye Can See

The Videograph Printer, developed by the A. B. Dick Co. of 5700 W. Touhy Ave., Chicago, Ill., can record anything visible to the human eye. It can reproduce graphic material such as original documents, microfilm reords, or photographs. It can even print out pictures of objects moving in tront of a specially adapted TV camera.
In this last application it has been used to provide permanent remote pords of railroad freight cars moving into and out of marshalling yards. Pitures of trains moving past the camera station, while not as sharp as 3ond photographs or television images, can still provide valuable informabon (car numbers, railroad designation, etc.), and can be referred to later.

Printing Tube Uses TV-like Scan

tt the heart of the Videograph process is an electrostatic printing tube diveloped for A. B. Dick by the Stanford Research Institute at Menlo Fark, Calif. This EPT is basically a cathode ray tube with a flared, rectanplar faceplate. The glass faceplate supports a matrix of 250 stainless steel xires per in.
The EPT's electron gun fires a beam which is swept across the ends of the be insulated wires. The beam is modulated by video signals applied to the oid of the electron gun.

How the Printing Tube Works

The nodulated electron beam forms a pattern of negative charges on the wir ends. This charge pattern, corresponding to the desired image, is transer dod to the paper, which is carried past the front of the tube. There Rhorms latent electrostatic image as shown in the accompanying drawing.
(Continued on following page)

Basic operation of the electrostatic printing tube. The fine wire ends leave a negative charge pattern on the paper. This pattern later attracts positively-charged powder which is fixed by heat to form a per.nanent printed image.

NEWS

What is an attenuator？

An attenuator is a resistive network，either fixed or variable，designed to reduce the power output of a signal system by a definite amount． Furthermore，it can keep the input impedance or output impedance，or both impedances，constant，depending on the type of network．

What are the uses of attenuators？

－Volume controls in multi－channel mixers－Meter multiplier controls
－Equalizer controls－Sound level controls • Video and R．F．line controls
－Controls in transmission systems and transmission measuring equipment

Why use a step－type attenuator？

A high degree of accuracy and repeatability is obtainable in a step－type，since the resistors are individually calibrated－The switch contact noise is practically eliminated by the use of precious metal contacts－Life of the unit is increased greatly over units in which the rotor arm makes contact with the resistor elements－Indexing by positive detent action is available for resetting of readings at an exact resistive position，or a position with a specific decibel loss．

Where can complete information be obtained on the various types and designs of attenuators？

From the Daven Attenuator Catalog－the＂BIBLE＂of attenuator users．Daven has over 2，000 listed catalog types to solve your problem．Step－type Potentiometers， Ladder Networks，＂T＂Pads，Balanced＂H＂Units．Attenuators are available covering the audio，video or R．F．frequency ranges．Fixed pads ．．．plus variable units with $10,20,30$ and 45 steps are but some of the units covered．

Our Engineering Department will be glad to work with you on attenuators for specialized applications．

THE D）$\sqrt{\square}$ I

Videograph prinfer which can print 20，000 character per second．The opened door at the left conceals the cabinet which houses the drive circuitry for the printing tube and the power supplies．The printing tube is housec above the opened left door．The paper drive is in the upper part of the photo．
Normally concealed by the left door are the char acter generator and code－conversion circuitry．

This negatively－charged latent image on the moving paper then attracts a positively－charged pigmented，thermoplastic resin powder．The powder adheres to the paper to form a visible image．The image is then fixed permanently as the paper passes before a heater．

Two Basic Signal Sources

The video signals applied to the grid of the electron gun in the EPT may originate at two types of sources．For non－digital applications，the signal may start at a remote scanner which in cludes a modified television type camera．The sig nals may travel great distances over coavial cables or microwave links．

When the printer is used with digital data processing equipment，the signals come from a character generator which converts a marallel six－bit pulse code from the digital equipunt into video information．－E

Correction

The Arthur D．Little min－IR－cooler for rared cells pictured in the June 10 issue of Eler onic Design should have been described as by of $0.25-\mathrm{in}$ ．diameter and able to cool to－213 The proposed maser cooler will chill to－271

BBC ands Video Photos Through Atlan ic Cable's $4.5-\mathrm{kc}$ Channel

Cont ession of video signals into a narrow tele-
phone- He channel has made possible the fastest transni ion so far of TV pictures across the Atlanti, Ocean.
The rocess, developed by the British Broadcasting Corp., has successfully relayed short news telecast of Queen Elizabeth II between Great Britain und the United States and vice versa.
Trammission with the new process, which spueezed a usable moving image into the cable's 45 kc chamnel, was at the rate of about an hour tor each :30 seconds of TV film; every second trame of a $16-\mathrm{mm}$ news film was sent. This is still tan slow for transmission of full-length TV proerams, but it is said to be 75 times faster than previous methods of facsimile transmission. Picture channels in the U.S. are normally 4 mc .
The sistem is described as a "break-down and huild-up" (one, in which the video signal from a film scamner is used to modulate a carrier for transmission. At the receiving station, the signals are demodulated and used to operate a slow-speed film telerecorder.
Development of the process is viewed as an inportant step toward the goal of intercontinental live television. And the signal-compression feature may prove important in permitting more broadating stations of all types to find room on the air.

Yes, It Works

Working model of solar-powered thermoelectric genEtoror cin produce 2.5 w according to its designers, Nies F. Thuh, of Westinghouse, (left), and Ralph Ta!. Ithicl B-eing. problems.

Write for special filter bulletin MTF to help solve your circuit problems.
-missiles

EECTRONIC DESIGN • July 22, 1959

The new Burneli $\overline{8}$ Co. MT 34 and MT 35 microminiature Kernel toroidal inductors are made to order for the engineer who isn't content with outer husk solutions but gets right to the core of second generation missile communication

MT 31 microminiature Kernels can be supplied with in. ductances up to 500 mhys and the Kernel MT 35 is available in inductances up to 200 mhys . MT 34 Kernels are recommended for frequencies to 30 kcs and the MT 35 is applicable to frequencies up to 200 kcs depending on inductance values. Q for the MT 34 is greater than 55 at 25 kc and for the MT 35 more than 60 at 100 kcs .
Size of the MT 34 is $.437^{\prime \prime}$ OD $\times 9 / 32^{\prime \prime}$, spacing between leads $.3^{\prime \prime} \times 1^{\prime \prime} L$ with a weight of .06 ounces.
The new microminiature Burnell MT 34 and MT 35 Kernels provide maximum reliability as well as considerable economy in printed circuit use. Completely encapsulated, the Kernels will withstand unusually high acceleration, shock and vilbration environments.

(1)

HIGH SPEED alphanumeric PRINTER with integrated storage and programming electronics

A stream of ammonia mole. eules will be sent throogh wit glass tub to.
The win resonont covily ofles: maser portion of the atomic clock to be orbited in a check on Einstein's Theory of Relativity. The clock is expected neither to goin nor lose one second per thousanc years.

U. S. Will Orbit Maser Clock

In New Check on Relativity

HUGHES Aircraft Co. will develop for the National Aeronautics and Space Agency an ammonia maser clock weighing about 30 pounds with batteries and occupying roughly half a cubic foot.

The extremely compact, accurate clock will be orbited in an $18,000-\mathrm{mph}$ satellite to check Einstein's proposition that a clock running in a different gravitational field above the earth would apparently run fast relative to a clock on the ground.

This is the primary purpose of the project. After the check is made. Hughes would like to use the clock satellite to:

- Measure precisely the earth's shape. The atomic clock would permit accurate timing of signals and would make exact triangulation possible.
- Investigate whether space is the same in all directions. The velocity of light could be measured for different satellite speeds and directions.
- Measure the velocity of light or radiu waves.
The electronically controlled maser clock will work this way:
A beam of ammonia molecules with $\mathrm{N}^{1.5}$ atoms in their nuclei will he sent through a chemically evacuated thibe to a double-resonant cavity, where the mole cules will release their energy as 24.000 mc waves-the vibrating frequency of the nitrogen atoms in the ammonu molecules.
The high-frequency emissions will drive a phase-locked servo in a frequency-divider circuit that will synchroniz a low frequency (quartz crystal timer with the maser clock.

Gold-bonded germanium diock- vill be used in the maser clock. Ultimatel ill the circuitry will be transistorized.
The clock will be designed for lfe of 500 hours. - -

SS D igns in BuAer's

 'Prete red Circuits'Incl d in the new supplement (1) the Preferred Circuits" handbook of the Navy Bureau of Aeronautics tre two transistorized circuits: a nower supply for a 7 kv crt, and a video amplifier.
In the second supplement to the handbouk, due next month, two more trinsistorized circuits will be mincluded.
Othes designs in the current pub-
lication are: five instrument servo sircuits. two de regulator circuits, and a pulsed automatic frequency cuntrol with a 30 mc if.
The handbook and its supplements. intended to help designers reduce the number of circuits serving similar functions, are outgrowths of a six-year-old study that showed about lo(x) circuits could be used in more than 70 per cent of military dectronic equipment without performance loss.

Unused Corporate Patents Sought

Patents. processes and ideas dhelved by companies for lack of a natural outlet are being sought for aploitation by a new concern, the National Patent Development Corp. Vational Patent, with offices in New Fork and Washington, acts as agent in selling or licensing the unused discoveries to other companies prepared to develop and manufacture hem.

Soviet Fuel Cells Burn Gasoline

Russian researchers have reported emonstrations of fuel cells that birn gusoline. Experimental solidtectrohite cells, although shortlied, were said to have developed Vourrent of 1 to 1.5 amp at a poten0 a of 15 jo 0.7 i . The cells were found t work best at temperatures 50m 70 to 7.50 C .
The, ictrolyte was prepared by ligh-ten verature mixing of sodium Carhonat sodium silicate, cerium tuxide id tungsten trioxide.

CTCLE 7 ON READER-SERVICE CARD \rightarrow

PHILCO. Stlicon Microwave Mixer Diodes Offer Unequalled Performance and Sensitivity ...at 18,000 me and 24,000 me

Performance Data

IN26 IN26A IN26B				
Conversion Loss	8.5	7.5	7.5	(db)
Noise Ratio	2.5	2.0	1.5	(times)
RF Impedance	-	1.6	1.5	(VSWR)
Over-all Receiver Noise	13.1	11.3	10.0	(db)

IN78					
IN78A IN78B IN78C					
Conversion Loss	7.5	7.0	6.5	6.0	(db)
Noise Ratio	2.5	1.5	1.3	1.3	(times)
RF Impedance	-	1.6	1.6	1.5	(VSWR)
Over-all Receiver Noise	11.8	9.8	8.8	8.3	(db)
Burn-Out	0.3	0.3	$\mathbf{0 . 3}$	0.6	(ergs)

- Lowest Over-all Receiver Noise Figure
- Operating Temperature More Than Doubled - Hermetic Seal for Maximum Reliability
- Burn-Out Rating Doubled
*Immediately available only from PHILCO
Write Special Components Dept. ED-759-Lansdale Tube Company Division, Philco Corporation, Lansdale, Pa.

PHILCO.

LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

The result of extensive research and development by Philco, the two newest diodes in these families provide better performance, greater reliability and increased sensitivity in both the $16,000 \mathrm{mc}$ and $24,000 \mathrm{mc}$ regions. Operating temperatures of all diodes in hoth families are more than doubled . . . to $150^{\circ} \mathrm{C}$. All Philco Diodes are packaged in hermetically sealed cases for extreme reliability under adverse environmental conditions. The newest diodes (1N26B, 1N78C) offer the lowest overall noise figure in these series . . . immediately available only from Philco. If you are designing for maximum performance and sensitivity, to meet rigid specifications . . . write for detailed data and application information on these new Philco Silicon Microwave Diodes.

We offer complese production capability for classi-
fred millimeter crystals and invite your inquiry.

12，000 Mc

directly displayed by a counter

For more information on this and other recent advances in digital frequency measuring techniques， Write for the new Data File 111. Address department D－7
Model 7580 Transfer Oscillator（bottom cabinet）with Model 7370 EPUT and Timer（top cabinet）：
Frequency measuring range Types of signals accommodated
Sensitivity
Input impedance
Accuracy
Fundamental range of trans．osc
Harmonics available
Stability of fundamenta
dc to 12 KMc CW AM，FM pulsed $\mathrm{r} \cdot \mathrm{f}$ 100 mv rms 50 mv rms up to ± 30 in 10^{-1} ． 75 to 150 Mc \＆
7.5 to 15 Mc Up thru 80th $.0001 \% / \mathrm{min}$
four－step aperation：
1．Tune to two adjacent zero beats identified by built－ in oscilloscope display．
2．Read harmonic number on calculator dial．
3．Set rotary switches to harmonic number．
4．Read frequency indication directly from counter．
Prices：Model 7580 Transfer Oscillator \qquad Model 737010 Mc EPUT \＆Timer Model 7360J 2 Mc EPUT \＆Timer（price $\$ 1325$ ）may also be used with the transfer oscillator．
d by built－ er．
1650
1975 75
so

Used in combination with the computing transfer oscilla－ tor in the cabinet beneath it，the 10 Mc EPUT® and Timer creates a direct decimal display of $12,243.15$ megacycles generated by the small klystron at the right．How？The transfer oscillator contains a computing device which auto－ matically calculates the harmonic number of a harmonic brought to zero beat with the frequency under test．Then， the gate time of the counter is multiplied by the harmonic number to produce a counter indication of actual klystron frequency．By eliminating all manual computations，the entire operation commonly takes less than one－fifth the time required using equipment previously available．

This assembly of two independent units，compatibly de－ signed，offers an unprecedented combination of range， accuracy and convenience．The transfer oscillator can also be used with either of two other BECKMAN／Berkeley EPUT Meters currently in wide use．

[^0]
NEWS

Plan 100－ft Diam Dish

A radar dish scanner 1000 feet in diameter has been designed bo Core nell University scientists for corr struction in a limestone sink in Puerto Rico．
To operate in conjunction with an extremely powerful radar，the scammer will be used to study elec trical properties of the atmosphere on Venus．The device is expected to collect electron density and tem． perature more quickly than satel． lites could．

Saturn Could Put One Ton on Moon

The Saturn space vehicle，with $1.5(0),(O K)$ pounds of thrust．coille land $1(0 \mathcal{K)}$ to $2(0) 0$ prounds of sciefl． tific instruments gently on the moon． according to the Army Ballistic Mio－ sile Agency．

Baseline Guidance Paper Wins \＄250 Carlton Award

Winners of the first M ．Barry Carlton Award for the best paper published in the IRE Transactions on Militcry Elec－ tronics receive checks from E．A Speok． man，national chairman of PGMIL．Both R．S．Grisetti，center，and E．B Mullen， right，are with General Electric Jefense systems department．Their pape Base－ line Guidance Systems，＂surve \ddagger guid ance and tracking of space thicles One conclusion was that，in aciple， ＂extremely long baselines s ching from the earth to an artificicl sellite or even the moon are feasible $o f$ offer exciting possibilities for the gure ce of interplanetary vehicles．
＜Circle e on reader－service ct
ELECTRONIC DESIGN • July 22,

High owered Radar Studies

 Vertic al Incidence Scatterin. method for studying the physics of the upper nosphere makes use of radar techniques and in roves on rocket methods for long-time tudies
By wing a high-power whe radar transmitter and sp cial antenna, the National Bureau of Standa: Is is experimentally observing vertically returned scattering from all levels of the atmosphere. It has detected scattering results from altitudes up to 400 miles.
Sigmals of 41 mc generated by a 6-megawatt-peak-power transmitter are pulsed into a specially designed fixed antenna and sent into space. Beam width of the antenna is about 4 degrees. Pulses ringe from 50 to $150 \mu \mathrm{sec}$ repeated often enough (1) maintain an average power of 40 kw .

The equipment has been placed near Long branch. III., and is expected to work at greater tunces when the present experimental setup is ut fined.

These dipoles are part of a 4-acre array of 1024 tpoles mounted 4.5 feet above a ground reflecting seen to study vertical incidence scatter from the mosphere.

Experimental Tunnel Diode

Operated at Over 1000 mc
A pinhead-sized tunnel diode, reported capable d performing nearly all the functions of a standard. low-power transistor, has been developed by ber Ravin Corporation of America.
The experimental device has been fashioned fomb a piece of germanium crystal 0.00 .3 in . in Gametw. It has been operated in the laboratory, * W reported, at frequencies higher than $1(x) 0$ mc with a 1 tential range beyond $10,(0 \times 0) \mathrm{mc}$.
The timnel diode has been applied in a new, omplific I amplifier circuit, said to have performabe ch acteristics similar to those of the paratreeric a iplifier.

(4) 2N393

Othor popelar SPRAGUE Irausistors

HIGH-SPEED, HIGH-GAIN MICRO-ALLOY TRANSISTORS for modern computer circuitry

Types 2N393 and 2N1122 Micro-Alloy Transistors combine high gain with excellent high frequency response to meet demands of high-speed computer switching applications in the megacycle range. Low saturation resistance, low hole storage, and exceptionally good life characteristics make these micro-alloy transistors top performers in general high frequency applications and computer circuits.

Made by electrochemical manufacturing techniques, Sprague Micro-Alloy Transistors are uniformly reliable, as well as reasonably priced for transistors with such excellent operating parameters.
All Sprague transistors-micro-alloy, micro-alloy diffused base, and surface barrier types-are now produced in Sprague's completely new spotless semiconductor facility.
For engineering data sheets on the types in which you are interested, write Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

Sprague micro-alloy, micro-alloy diffused base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors baving the same type numbers are manufactured to the same specifications and are fully interchangeable. You have two sources of supply when you use micro-alloy and surface barrier transistors!
 WII.T.12679N

20200/525122 for COMute SWITCHNG
$20248 / 50101$ FOR MEDIUM GAIN

201343/88102
FOR HIGH GAIN

2n24/83 103 FOR HIGH PAECUENCY oscluntors MADT FOR UTRA-HIGH STEED SWITCHING

SPRAGUE COMPONENTS:
TRANSISTORS • RESISTORS • MAGNETIC COMPONENTS • CAPACITORS•INTERFERENCE FILTERS• PULSE NETWORKS - HIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE SPRAGUE
the mark of rellabllity

NEWS

HIGH RELABILITY is A "Must" ...
Because HIGH RELABI
Wissile Enginows Specify Tithamatr CAPACITORS
"Vitramon" Capaciton for bizh reliability applications are eteuted w meet the moot stringent require ments for performance. Every capaciior ordered under the new Hiph Reliabilily Specification S-1002 undergoes testis encompasting 300.000 UNIT HOURS OF LIFE AT $125^{\circ} \mathrm{C}$ to assure an A. O. L. 12 times higher then Mil speciicatuons - and every shipcompanied by tabuluted revullis to verify extreme reliabilly. Inherent characterisitics are built into "Vitramon" Capacitors through the fuxing of guatiy through he numi and fine siver
poreclain enamel poreelain ename and one siver
10 produce A dense, homogeous truly monolithic unit that requires no cuse or hermetic seal. If you have cappacior applications requiring himp reliability, write for High Reliability Specification $\mathrm{S}-1002$, describing materials used, Ennoufficturing procecs, as well as ell tests and faiture rate.

"VITRAMON" CAPACITORS
of Proven auality
ARE USED IS
THESE MISSILES:

JUPITER	talos
LCROSSE	TARTAR
mikezzeus	aras
Bullpup	somic
corvus	FALCON
POURIS	SMARK
regulus II	TiTM
Sparpow II	VAMCunat
SPARROW	EXPL

CIICLE 10 ON READE. SEEVIIEE CARO

Some companies, most conspicuously RCA, feel that the age of color TV' is here -now-that the shadow-mask tube gives performance adequate enough to set off mass acceptance of the present dot-sequential system. Admiral is backing this thinking with money: the company has announced plans to produce color TV sets for Angust delivery. These will use the RCA tube.
What about other svstems?
DuMont Labs is still proceeeding slow!

Color TV System is Designed Around Single-gun Tube

Aided feedback correction of color registration is claimed to be key principle of this color TV system. The aided feedback is said to permir use of horizontal color strips in a relatively inexpensive one-piece, single-gun tube.

The proposed tube has three closely spaced beams that are independently modulated. The green and red beams are modulated by a weak 10 mc pilot carrier said to cause no practical interference to

In dew pment of the single-gun Lawrence tube that m . s use of phosphor strips on the tube wreen. wis work is being carried out under a cuntrac om another ABC-Paramount subsidiary, Chrom. a Labs.
Philc, "apple" tube, a beam-index design, is also st under development, though, sources nutside hilco say, on a very modest scale.
The wly other recent tube design announced ifi detall is the Andromeda, Inc., system, which trongh tesembles the apple design. (See box for design details.) The company hopes to interest the larsc manufacturers in its proposed system. No workins models have been developed, however. What are the other companies doing?
Motorola, Sylvania, Emerson, and General Electric are conducting small-scale color TV research to maintain a nucleus of experts, but in general duree with the GE representative who recently said ". . . color TV's potential at its present level of development is of questionable conseguence
The now-tamous color experiments and theories if Dr. E. H. Land may have far-ranging effects on the future of color television. But the companies working on color TV are not talking about what these effects might be. Nor is Dr. Land; he has heen quoted as having no opinion on the difficulty of making individual TV images of adequate quality and consistency based on implications of his work.
He has discovered, and the experiments of other companies have supported his findings, that waves reaching the eve appear to be not direct bearers of color information as previously thought, but are part of a coding system that helps the brain issign colors to objects seen.
He has been able to transmit color information is a ratio of the quantity of light of two wavelengths. and has taken light from two parts of the spectrum and produced pictures of many colors.
Dr. Land has made "some more-or-less routine" aperiments with TV. And Bell Labs has obtained sime occasionally good pictures with a 3-tube whor projection system modified to use only a red and white tube.
If a green-filtered black and white picture is sterlaced with a picture signal activating red phosphors on a receiver tubeface, as one writer has conjectured, a viewer might be able to see a wisfactory color picture, though blues would be d flow quality. Such a system would be stable and umple.
But with the eye evidently designed to see miaral cenes, with random color distribution, its whtlety could easily be lost in any artificially bltered fragmented, two-color viewing situation. For s me designer, then. the biggest of all pots of gold is waiting at the new-approach end of

IMMEDIATELY
AVAILABLE

FROM SPERRY

SILICON PNP TRANSISTORS FOR AIRBORNE AND MILITARY APPLICATIONS

mpecifications				
mre	coulector voltage	aETA (H_{6}) ${ }^{\text {a }}$	ta	APMICETIOEI
2NIOR 2te1025 2N1ues antimest	15 V 964 for 124		tric teat Imismint zms mins. 8-ct mist	D.C. and suep smpilimers. ueften orviation.
2N1027	10v	18 min.	sme min.	fendian heauency-smplĭat melveter
tw1028	10\%	8 rela	$\begin{array}{ll} 48 \mathrm{cet} \\ \hline \end{array}$	

These Sperry silicon transistors, made by the alloy junction process, offer important advantages for general-purpose and switching circuits in missile end airborne applications.

- Low saturation resistance
- HIgh-iomporature operation
- Uniform Input Impedance
- High conduction
- 160 Milliwats power diselpation
- Light, ruggedized dosign
- JETEC 30 (TO-B) package for automatic aseombly

For complete electrical characteristics of these Sperry PNP transistors, write for duta sheets.

ADDress all inquiries: Marketing Department, So. Norwalk, or Sperry offices in Brooklyn, Cleveland, Seattle, San Francisco, Los Angeles, New Orleans, Bosson, Balimore, Philadelphia.

Booth 3.5). 4 at Wescon

SIMPLIFIES COMPUTER CONTROL CIRCUITS, SHARPLY BOOSTS RELIABILITY

TDK PARAMISTOR amplifying logic and memory element

This inexpensice mudule performs logic and computing functions alike. Capable uf self-limiting amplification, it eliminates the need for amplifying and amplitude limiting circuits. Using only passive components, it provides near-absolute relia bility over years of operation... makes possible simple, all-magnetic digital computers and automatic control devices that are virtually maintenance-free.

Operating on ac phase relationships rather than de pulses, the Paramistor uses only about half the power needed for compa rable vacuum-tube de pulse circuitry. P'ara metric excitation causes the unit's ferrite resonant circuits to ossillate in either of two phases, 180^{*} opposed, providing bi-stable characteristics. A nonlinear react ance buildup provides precise self. regulating amplitication.

Thoroughly proted, the Paramistor is the product of four years of development a TINK and Tokyo University, and two years of successful application in Japanese industry. It is the key component, for example, in nearly half of Japan's digi, al computers and in the electronic dia whance of Yippon Teleuraph and Tele phone Corporation. Tl)K is the originator of the ferrite core, and has had more expe. of the ferrite core, and has had more expe.
rience in ferrite devices than any other rience in ferrite
firm in the world.

TIDK memory core matrices - So, that the adrantages of the Paramistor may be fully: realized. TID has created inexpensive. highly stable memory matrices for use specitically with the Paramistor. Because of the symmetric dual-frequency TI)K prin. ciple, variations in individual cores can not cause misoperation. Reliability is everemely high.

Tokjo, Japan
S Representative
Kanematsu New lork. Inc 150 Broadway Cow Sork 98 , Y. BEekman 9 -2890
 CIRCLE 12 ON READER-SERVICE CARD

NEWS

The universe, as a 60 -foot high aluminum shell, dominates the Soviet exhibit and serves as a dramatic backdrop for three Soviet Sputniks. Sputniks l's "ball" appears at the top of the photo. At the center is Sputnik II. Below it to the right is the nose of Sputnik III. Directly below the instrument package of Sputnik II is its nose cone and the doghouse which carried Laika.

What the Russians

Are Showing... in New York

'This is the last stage of our cosmic rocket, say Russian exhibition guides. They didn't divulge how many stages there were. Through the windows, one can see
. . . The instrument container with an tennas folded forward. This package housed three chemical battery-powered radio transmitters, telemetering equipment, a magneto. meter, micrometeor counters and equipment for studying the proton component of interplanetary matter. The ball weighs 80 pounds and has a diameter of 31 inches.
Asked about efforts at miniaturization, Russian guides explained that there wC : miniafurization but no concentrated drive to make things smaller. Their attifude: "Since plenty of lift power is available, why bother w inew, small components which haven: roved themselves. We'd rather use tried an usted reliable components.'
Inside view of lots of Russian e onic equipment on display reveals resistors fors, transistors, and fubes as tiny as A ricon types. Transformers, for the most $F C$ are much larger.

Russian transistors on display for the first time. At ne lower right can be seen Russia's largest transistor. A germanium type, it can dissipate 100 watts. It is used a power converters. Faster transistor can oscillate at 400 mc , and has an alpha cutoff at 100 to 200 mc . Russians manage with 39 transistor types and 25 aode types. Exhibition guides expressed pity for Ameri: 0 en engineers whe had to cope with about 1000 transisrertypes and 4000 diodes.

THE USSR Exhibition of Achievements in Science, Technology, and Culture can reveal a lot to the perceptive engineering visitor-a lot that he can't find in even the most careful exsmination of Soviet technical literature. The how gives a visitor a first-hand view of Russian ardware.
At the three-million-dollar New York show, the wriets are highlighting their most spectacular xhievements-Sputniks. All but one of the Sputaik models on di.play were shown at the recent igricultural and Indastrial Exhibition in Moscow. thotographs of the modiels at the Moscow show appeared in the June 24th issue of Electronic Disic:
The ine model which was not shown in MosΦu is that of the last stage of "Lunik," the 3250 Prund cusmic rocket fired at the moon on January - 1959. It is shown on these pages together with - view if the instrument container which can be seen thr ugh the windows of the model. - -
(pictures comtinued in following page)

Important factors in specifying toroidal inductors

The powdered molybdenum permalloy toroidal inductor is finding increasing use in today's complex electronic equipment. Excellent magnetic stability, superior temperature stability, high Q values, and small physical size are but a few of the outstanding features which explain the popularity of molybdenum permalloy toroids. To fully realize the advantages of these inductors, the components application engineer must accurately specify those parameters which are of critical importance in a given application. "Under-specification" may result in a component which fails to give adequate performance in the circuit. "Over-specification", on the other hand, may result in a component of extremely high cost. An understanding of the factors involved in the design and manufacture of toroidal inductors at Sangamo will enable the components application engineer to effectively judge the consequences of his specification in relation to the cost and performance of the final product.
THE EQUIVALENT CIRCUIT of a toroidal inductor is illustrated in figure 1.

I_{t} is the so-called "true inductance" of the toroid and is assumed to be constant at all frequencies. R represents the sum of copper losses and core losses which increase with frequency. Cd, the distributed capacitance, approximates the capacitance between turns of the winding and between the winding and core. Due to the fact that the dielectric constant of the insulation on the windings and on the core itself is not constant with frequency, the distributed capacity will also and may be neglected in the following discussion and may be neglected in the following discussion.

THE APPARENT INDUCTANCE (L_{a}) is the equivalent inductance between terminals (a) and (b). As might be exinductance between terminals (a) and (b). As might be ex-
pected, the apparent inductance varies with frequency. If R pected, the apparent inductance varies with

$$
\mathbf{L}_{\mathbf{a}}=\frac{\mathbf{L}_{\mathbf{t}}}{1-\omega^{2} \mathbf{C d}_{\mathbf{d}} \mathbf{L}_{\mathbf{t}}}
$$

Inductors for single frequency or resonant circuit applications are usually specified in terms of apparent inductance. The standard tolerance on L_{2} is 1% or one turn whichever is greater.

THE Q FACTOR is usually specified in lieu of R since most applications are concerned with the ratio of inductive reactance to equivalent resistance. The accepted method of specifying Q is to set a limit on minimum Q at the operating of a given design at a given frequency will vary some 20% of a given design at a given frequency will vary some 20% between units. Where direct current it may sometimes be desirable to ductor it may sometimes be desirable to set a limit on the circuit, assuming constant R, shows that:

$$
Q_{\text {equiv }}=\frac{\omega L_{t}}{R} \cdot \omega R C_{d} \cdot \frac{\omega^{3} L_{t}{ }^{2} C_{d}}{R}
$$

From the above equation one may deduce that anything which increases the distributed capacitance must necessarily reduce the Q.

DISTRIBUTED CAPACITY becomes most important in wide band or multiple frequency applications, since Cd will wide band or multiple frequency applications, since Cd will
determine the variation of La with frequency. The majority determine the variation of La with frequency. The majority
of users do not find it necessary to specify \mathbf{C}_{d}. Where $\mathbf{C l}_{\mathrm{d}}$ of users do not find it necessary to specify C_{d}. Where Cd_{d} the maximum allowable distributed capacitance. An alternative method of specifying C_{d} is to set a tolerance on the tive method of specifying Cd is to set a tolerance on the apparent inductance to be measured at two different frequencies encountered in a given application). The design engineer controls the $\mathrm{C}_{\boldsymbol{d}}$ by varying the method of winding the inductor. In decreasing order of capacity he may choose 1) random continuous windings; 2) progressive winding, or segmented winding. Unfortunately, winding costs increase as distributed capacity decreases. Wax or varnish impregnation will increase the distributed capacity. In applications where it is necessary to insure that L_{a} be reasonably constant over a wide frequency range, it is also usually desirable that La be reasonably constant with temperature and with time. These features are best achieved using a stabilized core, a low capacity winding, and an unfilled hermetically sealed enclosure. In this way, the undesirable effects of impregnation may be avoided.
REQUIREMENTS FOR STABILITY OF INDUCTANCE with temperature, with a-c voltage level, and with direct current are additional factors which will influence the cost and the size of a given inductor. Temperature stabilized cores are available only in certain core sizes and are, of course, values of a-c voltage and direct current will lead to larger cores and increased cost.

The Sangamo design engineering department is ready to discuss your inductive components problems. Typical examples of specialty components designed and produced by Address: Sangamo Electric Company, Inductive Components Address: Sangamo Electric

SANGAMO ELECTRIC COMPANY, Springfield, Illinois --designing towards the promise of tomorrow

These new transistor bases supplement Constantin's expanding line of semiconductor base designs now numbering well over 500 configurations.

By far the largest existing selection, many of these designs are available on open tooling.

Original Equipment Manufacłurers:
Design and Packaging Engineers: Let us help solve your problems. The engineering facilities, skills and experience responsible for these designs stand ready to help you grow.

NEWS

Nosecone of sun-circling "Lunik" dominates prominent part of Soviet display.

Underwater TV uses a 625 line sinusoidal sweep with an image orthicon tube. Lens angle of view can be changed from 30 to 60 degrees electronically.
At the left rear is shown the miniaturized sweep generator and power supply chassis. At the bottom right, the tiny box is a remote control unit, behind which there is a remote monitor.

Inside view of the sweep generator and powe ppl chassis reveal components and layout very n like those in American systems.

All tronsistorized, general-purpose analog computer cos 24 operational amplifiers including six integrators. fix of the 50 feedback networks are nonlinear. The computer contains 250 germanium transistors and 200 diodes. Most of the latter are silicon. A plug-in package is shown in the foreground.

New Radiotelescopes Announced: 2 for U.S.S.R., One Giant for U.S.

While the Navy was announcing recently the construction of a spectacular radiotelescope with a 6.50 -foot diam rotating dish, the Soviet Union reported completion of a 98 -foot fixed-dish radio)telescope and a 72 -foot rotating instrument.
The U.S. telescope, now being built for scientific and military research near Sugar Grove, II. Via., 30) miles from where the National Science Foundation's 140-foot telescope is going up, will be by far the world's largest, dwarfing Great Britain' 250 -foot Jodrell Bank Telescope and the iblifoot giant previously reported planned by the "'S.S.R.
The $2(0,0)(0)$-ton dish of the Navy's telescope will be subject to such stress that servos will have to be used to keep individual sections of it in ontinuous alignment. Focusing will be controlled hy an inertial guidance system.
The telescope's horn will be 100 feet high, and puwer requirements will be up in the thousands f kilowatts. Federal Communications Commisbion hat established a 1000 -square-mile "radio quiet" zune around the site.
Theoretical range of the telescope- 38 billion light yours-may exceed the size of the universe, actording to some astronomers.
The C.S.S.R.'s recent!y completed 98 -foot radinteles pe is dug into the earth and does not Molte, though the position of its horn can be changedi It was built primarily to study the sun and its bree-centimeter waves.

ACTUAL SIZE

> incredible...but true. This is a new transistorized voltage controlled subcarrier oscillator, type TS-50. It is $1-3 / 8^{\prime \prime}$ high, $7 / 8^{\prime \prime}$ deep and $1-1 / 16^{\prime \prime}$ wide. The weight is only $1-3 / 4 \mathrm{oz}$. Due to excellent repeatability the unit does not have any adjustments and is completely encapsulated. Operational temperatures range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

FOR INFORMATION WRITE DEPT. E, VECTOR MFG. CO., SOUTHAMPTON, PENNSYLVANIA

COMPLETE LINE OF

 SEMICONDUCTORS AND COMPONENTS - Same-Day Delivery - Factory Prices - Full-Year Guarantee FROM Lafayette Radio为 Your Authorized TI DistributorTo assure you immediate off-the-shelf delivery of all Texas Instruments semiconductors and components, Lafayette Radio stocks TI's complete line - in depth! TI devices are USE-PROVED by thousands of customers and GUARANTEED for one full year. ORDER FROM LAFAYETTE RADIO today for off-the-shelf delivery at factory prices in the following quantities:
silicon transistors: 1-999
germanium transistors: 1.999
sensistor silicon resistors: 1-499
silicon diodes and rectifiers: 1.999
carbon film resistors: 1.999
tan-Tl-cap tantalum capacitors: 1.99

139 W. 2nd Street Jainfield, New Jersey PL 6.4718

100 6th Ave. New York 13, N.Y. WO 6-5300 TWX NY1-648

165-08 Liberty Ave. Jamaica 33, New York AX 1-7000 TWX NY4 4.933

110 Federal Street Boston 10, Mass. HU 2.7850 TWX BS -44711

24 Central.Ave. Newark 2, New Jersey MA 2-1661

NEWS

Ceramic Circuit Takes 1300 F Temperatures

Heat of 1300 F can't damage this moly. manganese circuit printed on alumino according to its developer, Advances Vacuum Products, Inc., of Stamforc Conn. A molybdenum-manganese compound, fired onto the alumina anc brazed, is used for the wiring. Bonding is described as so adherent that it can be removed without destroying the ce:amic. The circuits are still in the de velopmeni stage.

Mathematician Envisions Machine That "Thinks"

A "thinking machine" tha! would duplicate the learning abilit! of the human brain is being sonutht in research studies by a Lo theed mathematician.
The scientist. Dr. Datid (. Willis. has developed a mathe atical model of a brain neuron. lieves that when the humat mrom is excited. change's take pl that permanently affect the a havior whenever it is subse stimulated. By retaining a I
\& CIRCLE 16 ON READER-SERVICE ?

NEWS
 Electronic Unit Measures
 Liquid-Gas Change With Optics

An electronic device that senses the preseme of liquids and any change from liguid to gas under production.
The unit is basically a light switch, with a ligh source, optical prism, solar cell, miniaturized tramsistor amplifier and a relay. It has one moring part-the relay armature. The amplifier and relay are attached to a probe but can be separater for specific applications.
Light rays from a miniaturized bull) operatt the sensor. The rays go down one side of the prism, are reflected internally from two 45 -degree surfaces and sent up the other side to the solar cell. When the prism end of the probe is dippel in liquid, the refraction changes, and the rats pan into the liquid without internal reflection. When the prism is in gas, the rays are reflected inter nally.
The equipment, being built by the Pioneer Central Division of Bendix Aviation Corp., call be used:
As a liquid flow-control signal for missile ground-support apparatus; in test devices; as part of fuel and oxidizer control systems to fill tanks and permit full use of fuels and oxidizers in flight; for stage separation of missiles when fuel has been completely used; in tank installations to sense liquid levels for rate of filling or percentage of capacity:

It will operate on $2 S$ b de with a response speed of 20 msec or less the company reported

Automatic Voice System Warns Pilot of Perils

An automatic alerting system that can announce to a pilot in a clear voice. "Warning! Do not land; your landing gear is not extended." or give other warnings has been developed tor the Air Force.
Northrop's Nortronic Div. calls the system VIP (Voice Interruption Priority) and salss it is the first automatic one using voice to alert pilot to dangers and to give them corrective direction

Present versions of VIP can continuon-i tor 12 potentially dancerous situations. I 12. sensors is activated ba dangerous a lition. a prerecorded warning with remedial dirn set oft. A logic network determines p other dangerous conditions occur while a

is being given.

According to Nortronics, the system adapted to supply verbal checklists. P training instructions, and messages for all gers.

Cock + TV Planned To Show

 pilot is Exact Locationto a mpt will be made to develop an aircraft
mior or "-is being answered electronically for one
"gineer in Lancashire, England. Using tin cans, pipes,
wes, lients and other hardware, he built Robbie the
ithol, tre keeping an eye on Junior. When baby roves on of sight, Robbie lights up.

Min anew 50 VOLT SUBMINIATURE PAPER CAPACITOR

meets requirements of m.-c-25A K characteristic

FOR

TRANSISTORIZED APPLICATIONS

Astron's new 50 volt hermetically sealed subminiature paper capacitors have the reliability required by specification MIL-C-25A.
These units operate at temperatures from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ without derating. The capacitance variation is less than $\pm 3 \%$ over the entire operating temperature range. High insulation resistance, low power factor, unusually low resonance loss are combined in this new light-weight subminiature unit.
In response to a definite engineering need, Astron's new type AO is compactly designed and offers superior performance characteristics for low voltage transistorized applitations.
Write today for complete
technical information.

SPECIALISTS IN CAPACITOR MINIATURIZATION

partial list of ratings available

CAP. MF	DIA. \times LENGTH
0.027	$.235 \times 3 / 4$
0.068	$.312 \times 7 / 8$
0.1	$.312 \times 7 / 8$
0.27	$.400 \times 1-3 / 8$
0.47	$.500 \times 1.1 / 4$
1.0	$.562 \times 1.5 / 8$
2.0	$.750 \times 2.1 / 8$

TYPICAL CAPACITANCE VS. TEMPERATURE

euthorized stocking chatribitor

Export oivision

Texas Instruments 2N705 Transistors

Available Now From These Authorized TI Distributors:

EAST

BALTIMORE 30, Maryland ELECTRONIC WHOLESALERS OF MARYLAND, INC.

BOSTON 10, Massachusotts LaFAYETHE RADIO 10 Foberal Strob/HU 2.785
BUFFALO 16, Now York GENESEE RADIO \& PARTS CO., INC. Z2S50 Dodoware Avanuo/De $96 \mathrm{~S}^{\text {i }}$
CAMDEN 2, Now Jorsey GEMERAL RADIO SUPPLY COMPANY, INC. 600 Pomi strou/wo 4-8560 WA 2-7037 (Phila.)

JAMAICA 33, Now York LAFAYETER RADIO
mewapk 2 Mow LAFAYETIE RADIO NEW YORK 6, Now York NEW YORK 6, Now York
MILGRAY ELECTRONICS, INCORPORATED Y ELECTRONICS, INCOR
NEW YORK 13, Now York LAFAYETTE RADIO
PITTSBURGH 5, Pennzylvania RADIO PARTS COMPANY INC. G401 Penn Avonue/EM 1.4600
PLAINFIELD, Now Jersey LAFAYETTE RADIO

ROCHESTER 5 Mow York ROCHESTER RADIO SUPPLY CO., INC 600 E. Main Strou/LO 2-9900
sYracuse, Mow York SYRACUSE RADIO SUPPIY CO. 620 S. Soline Stroen/GR 4-2927 WASHINGTON 1, D.C. ELECTRONIC INDUSTRIAL SALES. INC. 234 Sherman Avo., N.W. Mu 3.5200

CENTRAL

CEDAR RAPIDS, lowa DEECO, INC
S18 Firt Strox N.W. $/ \mathrm{Em}$ 4-2 293
CHICAGO 80, Illinois ALLIED RADIO CORPORATION 100 H. Western Avenve/MA 1 - 6500
CHICAGO 6, Illinois NEWARK ELECTRIC CO. 223 W . Modison Strom $/ \mathrm{ST} 2-294$ CINCINNATI 10, Ohio HERRLINGER DISTRIBUTING CO 112 E. Liberty Strom /GA 1.5882
CLEVELAND 15, Ohio PIONEER ELECTRONIC SUPPLY CO 2115 Prospect Avenuo/SU 1.910 DAYTON 4, Ohio SREPCO. INCORPORATED 314 Loo Stroo/BA 4387 l
DETROIT 38, Michigan FERGUSON ELECTRONIC SUPPLY CO 2306 Puritan Avonve/UN $1-6700$
INDIANAPOLIS, Indiana RADIO DISTRIBUTING COMPANY Ran North COpitol Avonue/ME 5-8311 MIMNEAPOLIS, MInnezota STARK RADIO SUPPLY COMPANY 71 South 12th Stroo/fE 2.1325

For high-reliability switchini

APPLICATION NOTES

VOLTAGE SWITCHING CIRCUIT

t_{d}	tr	4	4	$V_{\text {ER(0) }}$	$V_{\text {EE(1) }}$	$\mathrm{V}_{\text {E }}(2)$
$5 \mathrm{~m} \mu \mathrm{sec}$	$7 \mathrm{~m} / \mathrm{sec}$	7 masec	$7.5 \mathrm{~m} \mu \mathrm{sec}$	1.5 r	-0.6 v	1.5 v

NON-SATURATING CURRENT MODE SWITCH

$t_{d 1}$	t_{r}	$t_{d 2}$	4
$4 \mathrm{~m} \mu \mathrm{sec}$	$3.6 \mathrm{~m} \mu \mathrm{sec}$	$5.5 \mathrm{~m} \mu \mathrm{sec}$	10.4 m sec

 Gourn

MONOSTABLE MULTIVIBRATOR

t_{5}	\mathbf{t}_{4}	Pulse length (depends on $\mathbf{G}_{\mathbf{4}}$)
$20 \mathrm{~m} \mu \mathrm{sec}$	$40 \mathrm{~m} \mu \mathrm{sec}$	$120 \mathrm{~m} \mu \mathrm{sec}$

Exact product unlformity and reproduclbility is another benreproduclbility is another benbase production process. Maximum mechanlcal strength and high heat transfer characterlistlcs are a direct result of mounting the wafor directly to the header.

Highest inherent reliability provided by diffused-base 'mesa' process

- Higher reliability because of lower operating junction temperature from the industry's highest dissipation germanium ultra-high speed switcher.Increased protection against surge voltages provided by diffused junction (rugged emitter. base junction) permits greater design freedom.
Maximum resistance to shock and vibration is designed into all TI diffused-base products by fusing the semiconductor wafer directly to the header.

HNow utilize the combination of maximum reliability and ultra-high speed switching furnished by TI 2N705's. Reliability is actal size determined largely by device operating junction temperature. 2N705 300-mw dissipation at $25^{\circ} \mathrm{C}$ case temperature and operation to $100^{\circ} \mathrm{C}$ junction temperature gives you three times greater power handling capacity plus typical total switching times of $25 \mathrm{~m} \mu \mathrm{sec}$!

TRUE SWITCHING SPEED
A transistor's true switching speed in any circuit is dependent on the amount of over-drive designed in the circuit: Overdrive $=\frac{I_{\mathrm{u}} \mathrm{h}_{\mathrm{FE}}}{I_{\mathrm{F}}}$
Below is the speed-up of 2 N 705 's as a function of overdrive characteristics.

5 times actual size

\mathbf{V}_{Ea} PULSE TEST

RELIABILITY INSURED BY RUGGED DESIGN, TEST
soo-hours life test data! Check the curves on the ight for yourself and see how TI's 2N705 $\mathrm{h}_{\text {FE }}$ and ho proved-performance characteristics apply to our high speed switching requirements. Also, for bsolute assurance of conformance to specifications, 111 units are stabilized at $100^{\circ} \mathrm{C}$ for 100 hours and hen 100% production tested!
Rugged Emitter-Base Junction
For an added design safety factor, consider the rolage surge tests shown above from which the rraphic data on this page was obtained. In a circuit Filizing 2N705's a voltage pulse was applied to the mitter base diode in sufficient magnitude that it resulted in breakdown of the emitter base diode, lausing flow of a 1,5 and 10 ma current in each of tree separated device groups. This test was contined for 1000 hours and all test data indicated that levice characteristics $I_{\text {Cbo }}, h_{\text {FE }}, V_{E B}$, and $V_{\text {Cb }}$ were maffected by this 1000 hour pulse test.
Also remember, every Texas Instruments semisoductor product is guaranteed for one full year to mblished min/max ratings!
dsolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (iless otherwise specified)
Callector-Base Voltage $-15 \mathrm{v}-15 \mathrm{v}$
Emitter-Base Voltage $-3.5 \mathrm{v}-2.0 \mathrm{v}$
Collector-Emitter Voltage . . . $-15 \mathrm{v}-15 \mathrm{v}$
Horage Temperature Range -65 to $+100^{\circ} \mathrm{C}$
Enitter Current $-50 \mathrm{ma}-50 \mathrm{ma}$
Collector Current $-50 \mathrm{ma}-50 \mathrm{ma}$
Collector Junction Temperature : $+100^{\circ} \mathrm{C}+100^{\circ} \mathrm{C}$
Total Device Dissipation . . . $300 \mathrm{mw}^{\circ} 300 \mathrm{mw}^{\circ}$
'Thate an ! $\mathrm{mw}{ }^{\prime} \mathrm{C}$. This is equivalent to a maximum power rating of 300 mw at a
238 temf sture of $25^{\circ} \mathrm{C}$. The power rating in tree air at $25^{5} \mathrm{C}$ is 150 mw .
$100^{\circ} \mathrm{C}$ SHELF LIFE
$h_{\mathrm{Ft}} @ V_{\mathrm{CE}}=-1.5 \vee \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma} \mathrm{T}=25^{\circ} \mathrm{C}$

$100^{\circ} \mathrm{C}$ SHELF LIFE
$\|_{\text {cso }} @ V_{c B}=-4.5 \vee \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Evaluate the data on these pages for your requirements and call your nearby TI sales office for complete price and delivery information ... or contact your authorized TI distributor for off-theshelf overnight delivery!

Write on your company letterhead describing your application for specific detalls on TI producte.

Texas Instruments 2N705 Transistors
Available Now From These Authorized TI Distributors:

SOUTHWEST

albuaueraue, Now Moxico MIDLAND SPECIALTY COMPANY 712 Lomas Blvd., M.E/Tol: 7-023 DALLAS 35, Toxas
ENGINEERING SUPPLY COMPANY
EL PASO T 000 Denton Dres
MIDLAND SPECIALTY COMPANY 500 W. Paissmo Drive/KE 3-95s5 HOUSTON 2, Toxes HARRISON EQUIPMENT COMPANY, INC 1422 son Jocinto/CA 4-9131
TULSA 10, Oklahoma
ENGINEERING SUPPLY COMPANY 1124 Esest th Stroo/D1 3-8121

SOUTHEAST

ATLANTA 13, Georgia ACK RADIO SUPPLY CO. OF GEORGIA 331 Luckie Stron, M.W. JJA 4-477
BIRMINGHAM 5, Alabama ACK RADIO SUPPLY COMPANY

MELBOURNE, Florida ELECTRONIC SUPPLY

MIAMI 32, Florida
EIECTRONIC SUPPLY
G1 M.E. Ninth Strod/FR 7-2511
ORLANDO, Florida ELECTRONIC SUPPLY GA 5-1717
ST. PETERSBURG, Florida ELECTRONIC SUPPLY

OR 1-5171

WEST

DENVER 4, Colorado DENVER ELECTRONIC SUPPLY COMPANY 1254 Arapahoo Strea/Am C-1671
GLENDALE 1, Calliornia
R. V. WEATHERFORD COMPANY

S
LOS ANGELES 15, California
RADIO PRODUCTS SALES INC.
WEST LOS ANGELES 64, Calif CALIFORNIA ELECTRONICS SUPPLY, INC.

1501-11 W. Pico BWd./DR 2-2124
OAKLAND 7, California
ELMAR ELECTRONICS
140 Eleventh Strow/TE 4-3311
PHOENIX, Arizona ADIO SPECIALTIES AND APPLIANCE CORP. 917 Morth 7th Streot/AL 8-6121 SALT LAKE CITY 10, Utah STANDARD SUPPLY COMPANY
225 Emet Sirth South Streel/EL $5-2971$
SAN DIEGO 1, Callformi RADIO PARTS COMPAMY RADIO PARTS COMPANY
2060 India Strew/DE 9.9351
SEATTLE 9, Washington WESTERN ELECTRONIC SUPPLY CO 717 Dexter Avonue/AT 4-0200 TUCSON, Arizona STANDARD RADIO PARTS INC.

Another Tinnerman Original...

Cost-cutting Tubular SPEED CLIP ${ }^{\text {© }}$ takes positive "bite" to hold assemblies tight!

In seconds, you can front-mount trim, name plates, grilles, knobs, insulation, with Tubular Speed Curps. And at interesting savings in assembly time and costs!

Snap these quality spring-steel fasteners into holes in metal, plastic or wood. Then press the mounting studs, nails or rivets into the clips to complete the attachments... anywhere along your assembly line.

As the Speed Clip is inserted, spring fingers compress, then expand behind the panel to lock tight. The rolled-in end permits easy entrance, but bites hard into the stud to prevent back-off or vibration-loosening.
Tubular Speed Clips are available for a full range of stud sizes and panel thicknesses. Permanent lock or removable types.
Check your Sweet's Product Design File (Section $8 / \mathrm{Ti}$) for data on Tubular Speed Clips and
other Speed Nut brand fasteners. Then call your Tinnerman representative for samples and additional information. If he isn't listed under "Fasteners" in your Yellow Pages, write to:

TIN MERMAMPRODUCTE, IMC. Dept. 12 - P. O. Box 6688 - Cleveland 1, Ohlo

FASTEST THING IN FASTENINGS
wies h. the technical ability to do jobs for the sorem: int.

Air Force Using Check List

In $1 /$ with the tendency in Congress to be wliciti - of the welfare of small business, the Air Force urging prime contractors for weapons w.tem: and their major subcontractors) to farm out mure work to little companies. At present participution in the Air Force drive is voluntary. if the nsults are satisfactory, it is probable that no further steps will be taken.
So tar the Air Force has tried to induce major ontractors for prime systems to look more closely it the qualifications of small concerns in letting subcontracts. It does this by having all purchases if $\$ 10 .(H 1)$ or more checked against a "small business check list." On this document, the buying ${ }^{(}$official must show whether small outfits were asked to bid on any contract or subcontract. The results of such requests must also be noted. If no (ffort to interest small companies was made, an epplanation is in order.

Small Electronics Concerns Gain

Small electronics companies stand to benefit from this policy, according to some Pentagon officials. They believe that the check list will dissurrage in-house electronics work by some prime contractors and lead to wider competition.
They note, too, that an important function of the small-business check list is to alert the manwements of hig companies to the efforts being made in their own concerns to buy efficiently from - broad base of sources.

The data gathered in compliance with this volmutary Air Force program do not have to be bimed back to the government. But quarterly reports of the success of the program are supposed the available, on request, to Air Force or Small Business Administration personnel.

Command Urges Cooperation

With refreshing frankness, the Air Materiel Gimmand called for cooperation in the small-busiiess program by noting:
Tt has been alleged that the Air Force's weapon nstem concept might have a drastic effect on the wimber of opportunities afforded small business, wd that prime contractors who formerly gave out - large share of their work in subcontracts to small husiness now are tending to develop substems in their own plants or those of major sub©ntract rs."
The command said it was "necessary" for contrutors in modify their purchasing methods to noomp is "certain procedures that the Air Force hos proo al to be mutually beneficial for itself and small bl iness."

Al-Ilenco

THE ELECTRO MOTIVE MFG. CO., INC. WILLIMANTIC CONNECTICUT

anenufecturws of El-Monce Capocilors

- molded micae dipped mice - mie Irimmer - dipped paper - rubulor poper - ceramie - silvered miea films - coramie dises

MEETINGS

Calendar of Events

August
4-6 Annual Convention of Society of Photographic Instrumentation Engineers, Ambassador Hotel, Los Angeles, Calif.
9-12 ASME-AICE Heat Transfer Conference, University of Connecticut, Storrs, Conn.
17 National Ultrasonics Symposium (PGUE), Stanford University, Stanford, Calif.
18-21 WESCON Show and Convention, Cow Palace, San Francisco, Calif.*
23-26 AIEE, 6th Electrical Conference of the Petroleum Industry, Wilton Hotel, Long Beach, Calif.
31-2 Semiconductors Conference, Metallurgical Society of AIME, Statler Hotel, Boston, Mass.

Septembe

1-2 Conference on Chemistry in Aerodynamic and Space Flight, Air Force Office of Scientific Research, General Electric Co., University of Pennsylvania, Philadelphia, Pa.
1-3 14th National Meeting, Association of Computing Machinery, MIT, Cambridge, Mass."
7-10 6th Annual International Meeting, The Institute of Management Sciences, (TIMS), Paris, France.
17-18 Engineering Writing and Speed Symposia, IRE, Boston, Mass. and Los Angeles, Calif.*
18-19 3rd Technical Symposium, Cedar Rapids section IRE, Sheraton-Montrose Hotel, Cedar Rapids, lowa.
18-20 8th Annual High Fidelity Show, International Sight and Sound Exposition, Inc., Palmer House, Chicago, III.
20-25 14th Annual Conference and Exhibit, Instrument Society of America, Chicago, III.
21-22 Standard Engineers Society 8th Annual Meeting. Boston Section, Hotel Somerset, Boston, Mass.
23-25 4th Annual Special Technical Conference on Non-Linear Magnetics and Magnetic Amplifiers, AIEE, IRE, Shoreham Hotel, Washington, D.C.*
28-30 National Symposium on Telemetering, IRE, Civic Auditorium and Whitcomb Hotel, San Francisco, Calif.
30-1 Industrial Electronics Symposium, Mellon InstiOct. tute, IRE, AIEE, Pittsburgh, Pa.

- Includes meetings described herewith.

WESCON Show and Convention, August 18-21
The show will feature numerous exhibits which will fill the Cow Palace in San Francisco. Complementing the product lines will be papers covering all phases of professional group interests. A "new look" in the technical program is being planned this year which will limit each of the usual fo daytime sessions to three full-length papers in each. A second innovation will be the introduction of a "panel of peers." a group of experts in the field, invited to comment on the group of papers at the completion of each session. Registrants will be able to obtain and review all papers prior to their presentation through the Convention Record.
platinum clad fungsten wire is most efficient for high temperałure applications

Platinum clad tungsten wire is ideally suited to modern requirements for high power vacuum tube grid and other high temperature applications. Because of its superior physical properties at elevated temperatures, tungsten provides the more rigid, refractory core material required by high power tubes; it also exhibits lower interaction with platinum. Unlike molybdenum, platinum clad tungsten is readily hot-stretched to take a permanent setting and lends itself to fabrication into grids employing conventional fixtures and spot welding procedures. Available in diameters from .001" and ud. Write for Technical Bulletin. CIRCLE 620 ON READER-SERVICE CARD baker piatinum division - 113 astor street newark, N. J.

 "
0.01

For high-reliability and long operating life, precious metal contacts in pure or alloyed forms of silver, platinum, palladium and gold are very definitely indicated. These contacts provide unmatched high resistance to atmospheric corrosion, deformation, arc erosion, binding and metal transfer. Baker precious metal contacts are supplied as wire, rod, sheet and in a complete line of fabricated forms. Facilities are also available for manufacture to your specifications. Write for Baker Contact catalog.

CIRCLE 621 ON READER-SERVICE CARD BAKER CONTACT DIVISION - 207 GRANT AVE, E. NEWARK HARRISON P. O., N. J.

for low cost purification and drying of hydrogen and other gases

The Deoxo Catalytic Purifier is combined with on extremely efficient automatically operated drying unit to provide oxygen-free hydrogen that is ideally pure and dry. The combined units ore identified as the Deoxo Dual Puridryer. It supplies hydrogen with less than one part oxygen per million-dried to a dew point of $-100^{\circ} \mathrm{F}$. No inert gas purging is needed. The Deoxo Dual Puridryer can also be used with other gases such as: Nitrogen, Argon, Helium and saturated hydrocarbons, with equally fine performance. Write for descriptive literature.

CIRCLE 622 ON READER-SERVICE CARD ChEMICAL DIVISION - 113 ASTOR STREET NEWARK, N.J.

platinum clad sheet, tubing and wire for low cost

 corrosion-resistant equipmentPlatinum clad sheet tubing and wire make it possible to incorporate all the important corrosion resistant qualities of the noble metals in equipment, at minimum cost. Platinum clad is pure platinum or an alloy of platinum so securely bonded to a base metal body that the composite metal can be fabricated. The gauge of the platinum metal can be specified to requirements. The process guarantees continuous pin-hole-free platinum cladding to withstand high temperatures without oxidation.

CIRCLE 623 ON READER-SERVICE CARD
baker platinum division - 113 astor street NEWARK, N. J.

14th ACM National Conference, September 1-3

Conference of the Association of Computing Machinery will be held at the Massachusetts Institute of Technology, Cambridge, Mass. Technical papers to be presented will cover numerical analysis, data processing, automatic programming, language translation, digital and analog devices, and various applications of computers. Chairman of Local Arrangements is: Frank M. Verzuh, Computation Center, MIT, Cambridge, Mass.

Engineering Writing and Speech Symposia,
September 17-18
To be held simultaneously on the East and West Coast, the IRE Symposia will be devoted to "More Effective Communication of Scientific and Engineering Information." The West Coast session will be held at the Ambassador Hotel, Los Angeles, Calif., and will feature motivations that make the engineer want to improve his writing ability, what he can do to improve himself and how to go about it, and educational steps for further improvement. The East Coast session will meet at the SheratonPlaza Hotel, Copley Square, Boston, Mass. Four sessions will cover: "Communication in Modern Society," "Problems in Communications Facing the Professional Man," "How To-Do-It Topics for Engineers and Scientists," and "Writing and Editing." National Symposia Chairman: T. T. Patterson, Jr., Radio Corporation of America, Bldg. 13-2, Camden, N.J.

4th Annual Special Technical Conference on Non-Linear Magnetics and Magnetic Amplifiers, Sepf. 23-25.

To be sponsored by the AIEE and IRE and will be held at the Shoreham Hotel, Washington, D.C. The technical program will consist of sessions devoted to the theory, design, and application of: (1) magnetic amplifiers and similar saturating core devices, (2) magnetic amplifiers and semiconductor devices in circuit combinations, (3) magnetic components for switching circuits and digital computers.

Paper Deadlines

August 15: Submit by this date four copies of a 100 word abstract and a 1000 word summary of papers on any phase of computing for the 1959 Eastern Joint Computer Conference. The Conference will be held December 1-3, 1959. Forward abstracts to: J. H. Felker, Chairman, EJCC Program Committee, Bell Telephone Laboratories, Mountain Ave., Murray Hill, N.J.

with solderless contacts and interchangeable modules

OMATON DIVISION BURNDY NORWALK, CONMECT.: IN EUROPE, ANTWERP, BELGIUM: TORONTO. CANADA

NEW PRODUCT

Versatile High Speed Crimping Too

The Omaton Division of the Burndy Corpora tion has available for the electronic industry it new, extremely versatile, semi-automatic, portabli pneumatic crimping tool, type YD, which provide for controlled crimping in volume productiv work.

This magazine-fed tool automatically pr positions, feeds, and crimps contacts such as the used with BURNDY's MODULOK ${ }^{\circledR}$ and CRA ${ }^{8}$ LOK ${ }^{\$}$, STAPIN ${ }^{8}$ and HYFEN ${ }^{(8)}$ lines of connes tors. This simplifies contact installations, permit ting highly reliable connections to be made at high production rate.

The YD HYPRESS ${ }^{*}$ crimps up to 1000 contad per hour by advancing and positioning the cur tacts automatically. The YD accommodates up 70 contacts per load.

Contacts to be installed with the ID) are fut nished pre-loaded in color coded plastic expene able carry strips carrying fourteen cuntacts $p 6$ strip and packaged five strips to a magazine load The plastic strips are automatically ejected froe the tool after the contacts have been used.
The power unit of the YD HYPRESS is an 4 cylinder which is controlled pneumatically mechanical ratchets) to provide full or ling cis trol which assures that each contact it properf crimped. The tool is factory set to perate $80-100$ psi line pressure and develop -500 ild force when operated at 90 psi.

Burndy Corporation, Norwalk, C lect circle 24 on reader-service cat ELECTRONIC DESIGN • July i . ., 195

EDITORIAL

U.S. Leads U.S.S.R. in Transistor Progress

1)espite some fine theoretical work being done by the Soviet physicists in the field of semiconductors, Americans are way ahead in the production of transistors.

This is not to say the Soviets are not trying. Many of the articles being published in the U.S.S.R. and East Germany are devoted to transistor circuits. It is significant, however, that most of the references cited at the end of the articles are American.
Interesting is the fact that some of the articles on practical transistor circuits appearing in East German publications refer to Raytheon and Sylvania transistors with Philips getting some mention. Editorials in these same magazines call for greater production efforts and the opening of new plants make news items. No actual production figures are ever mentioned.
Nevertheless, the Soviets are exporting some semiconductors -38 types according to a listing supplied to us by International Rectifier Corporation. A total of 39 types are on display at the recently opened Soviet Exhibition, New York Coliseum. It is practically a pleasure to read their brief transistor data chart after studying our own rather lengthy one which includes some 816 types.
We find all types are apparently available from the U.S.S.R. except the mesa transistor. Germanium junction types for audio use include units rated at 10 w . High frequency diffused base transistors for oscillator use are rated at 120 mc . Surface barrier types for 30 mc operation are also available. Only very few lowlevel silicon units are mentioned. Very little is given in the way of switching data. One power type capable of 100 w dissipation was included in the group displayed at the Soviet Exhibition.
Soviet magazines are describing some diodes listed for high frequency use. Switching speeds in the order of 0.5 microsecond are apparently considered good.
It is heartening to conclude that in the field of semiconductors. free enterprise is certainly out-producing state-controlled enterprise. Ironically our unfettered competitive system is so prolific that we almost create problems by having too many types. Fortunately, we have a free market place and intelligent selection by transistor circuit designers should strike a balance to heep us ahead of bureaucratically-controlled production.

Understanding Transistor Voltage Breakdown

There is a plethora of misinformation on transistor voltage breakdown. Harry Schauwecker, Chief Engineer of Valor Instruments, and a lecturer at U. C. L. A., wrote this article to show how voltage breakdown takes place, its various forms, and its dependence on external circuit characteristics.

In a forthcoming issue of ELECTRONIC DESIGN, he will provide a similar enlightening treatment for leakage currents.

Harry E. Schauwecker
Valor Instruments, Inc.
Gardena, California

PROBABLY more than 95 per cent of transistor failures are attributable to exceeding the allowable voltage breakdown. There are several -breakdown voltages in the transistor which a circuit designer must be familiar with in choosing a transistor for a given circuit or in selecting the operating voltages.

Since the transistor may be represented as a combination of two diodes, the transistor will also be characterized by the breakdown voltage associated with the collector to base diode and that associated with the base to emitter diode. These two breakdown voltages associated with the diodes are commonly referred to as $V_{C \beta}$ max. and $V_{B E}$ max.

In addition to these two common types of voltage breakdown, a third type also exists which is not so well known or so well understood. This is generally referred to as the breakdown voltage$V_{C E}$ max. and results in a breakdown directly between collector and emitter under conditions of operation where physical resistance is inserted in the circuit between the base and emitter terminals of the transistor.

The breakdown voltage between collector and emitter is a function of the resistance inserted between the base and emitter leads. This may be seen by referring to the figure which shows a family of curves of collector characteristics versus base to emitter external resistance.

Almost all manufacturers state voltage breakdown in terms of $V_{C_{R}}$. Only a few state breakdown voltage from collector to emitter. Before a standard method of specifying $V_{C E}$ max. may be determined, all manufacturers must agree on standard values of resistance to use between the
base and emitter terminal. Meanwhile, there are three $V_{C E}$ ratings that are in common usage. They are:

1. $V_{C E}, I_{B}=0,\left(K_{B E}=\right.$ infinity $)$
2. $V_{C E} \max .\left(R_{B E}=40 \mathrm{ohms}\right)$
3. $V_{C E} \max .\left(R_{B E}=0\right)$

Keferring to the figure, the two distinct voltage breakdown points are those represented by the conditions where $V_{C E}$ is measured with $I_{B}=0$ and the $V_{C B}$ measurement. Since the collector characteristic curves between these two breakdown voltages show a negative resistance charac-
teristic, it is apparent that if the voltage on thim transistor exceeds the maximum breakdown woll age on a surge, the transistor will remain broki down even after the surge has disappearei Hence, caution should be exercised when using a transistor with a voltage supply greater than thin limited by $V_{C E}$ ratings.

Types of Voltage Breakdown

There are at least five types of voltage breis down. Although these five types are not stricilif independent, they may each be treated separatery Avalanche Breakdown.-Avalanche breakdow is a voltage breakdown occurring in the collectar

COLLECTOR VOLTAGE, VCE IN VOLTS
This family of curves shows how the collector to emitter breakdown voltage is a function of exter base to emitter resistance.
hase jur ion which is quite similar to the Townkend efi toccurring in gas tubes. It is due to the Wigh di -ctric field which occurs across the col-ector-h junction as the collector voltage is increase The high field accelerates the free harge curriers so that they collide with other wams. brocking loose additional free charge carbiers wlich in turn are accelerated and have Mirther c illisions.
This multiplication process occurs at an inrresin! rate as the collector voltage increases until at some voltage V_{a}, known as the avalanche wilage, the current suddenly goes to infinity.
The carrier multiplication factor, which inditates the rate of extra charge carrier gencration, way he given the symbol m and a plot of m verws collector voltage would show a variation of m from unity to infinity with a very sharp break ${ }^{2} V_{5}$, the avalanche breakdown point. This type did breakdown characterizes the maximum $V_{C B}$ Fting on most germanium pnp transistors.
Alpha Multiplication.-This type of breakdown Fs very closely related to the avalanche effect. It - produced hy the same physical phenomena that froduces avalanche but is different only as reFards the circuit configuration. Since the current lowing in the collector is:

$$
I_{\epsilon} \cong \alpha I_{\epsilon}
$$

and since the factor m which accounts for the miltiplication of charge carriers can be considceed as a multiplying factor on alpha, the collecIn current can actually be given as:

$$
I_{e} \cong m \alpha I_{e}
$$

In the common emitter configuration, then, beta * normally given as:

$$
\beta=\frac{\alpha}{1-\alpha}
$$

Taking into account the alpha multiplication istor m, the common emitter equation becomes:

$$
\beta=\frac{\alpha m}{1-\alpha m} \text { or } I_{c} \cong \frac{\alpha m}{I-\alpha m} I_{b}
$$

Thins when the product αm becomes equal to aty, the denominator becomes zero and beta Homes anfinite. This is known as alpha multiplitation hreakdown and, since beta becomes inbete, the collector current becomes infinite for ellector voltages given by the condition where $0=1$. This voltage is always much lower Pan the walanche breakdown voltage and genvally ac ounts for the collector-emitter breakWwn voli ige with base current equal to zero. Punch-Through. - The punch-through breakOwn wols ge is a voltage breakdown occurring Ptween . Hector and emitter due to space charge ver wid ing of the collector-base junction with

reads easily, at a glance ...

This new General Electric Type KT time meter measures operating time of any electrical equipment, speeds routine checking with "at-a-glance" readability. Big numbers are more than twice the size of ordinary meter digits. New low cost, too-in square, round, portable and sealed models. Totally enclosed construction means extra years of dependable operation. Increased operating temperature range (minus 67F to plus 150 F) extends meter life, reduces maintenance. What's more, a new sixth digit-standard on all G-E models-offers more accurate range of measurement at no extra cost! Pass on these important benefits to your customers with time meters from the complete KT line. Also, specify G.E.'s Type TSA interval or process timers for dependable service on your automatic time-control applications. New BIG LOOK panel meters are available, too! For the full story on any of these instruments, contact your nearby G-E Apparatus Sales Office; or, write to Section 593-306, General Electric Co., Schenectady 5, N. Y. In Canada, contact Canadian General Electric Company Limited, 940 Lansdowne Avenue, Toronto 4, Ontario.

Other General Electric Instruments for Original Equipment Manufacturers -Switchboard instruments; inking, inkless, switchboard and portable recorders; testing instruments; speed-measuring systems.

INSTRUMENT DEPARTMENT

INSTRUMENTS FOR INDUSTRY, Inc.
 101 NEW SOUTH ROAD•HICKSVILLE, LONG ISLAND, NEW YORK

WIDE BAND AMPLIFIERS

TRANSISTORIZED AMPLIFIER SERIES T-330

A new series of completely transistorized I-F amplifiers offered to fill the need for standardized, high quality units. These T-330 series amplifiers by I.f.I. are available in a variety of center frequencies and bandwidths. They also can be equipped with emitter follower, cathode detector or low noise tube input. All applicable military environmental specifications are met:

			Tise Time Arerage Power Poat Pulse Power	$.002 \text { sec. }$ $0.08 w$ -		$\begin{aligned} & \text { lood) } \\ & .0025 \mu s e c . \\ & 0.75 \mathrm{w} \end{aligned}$				
environmental specifications are met:					$\begin{aligned} & .0025 \text { usect } \\ & 3 \text { Watts } \end{aligned}$					
			300 Wetts		-					
SPECIFICATIONS					(Megative					
				3.5 V)	12 Volts				
conter ireq.	$\begin{aligned} & 7.3300 \\ & 7.3308 \end{aligned}$	$\begin{aligned} & 30 \mathrm{mc} \\ & 30 \mathrm{mc} \end{aligned}$			ams Voltage out-acrosa rated laod impodance		22 Volts			
Bandwidth	T-3304	10 me								
Cain	$\begin{aligned} & \mathrm{T}-330 \mathrm{~A} \\ & \mathrm{~T} .330 \mathrm{~B} \end{aligned}$	$\begin{gathered} 80 \text { db min. } \\ 100 \text { min } \\ \text { min. } \end{gathered}$	Pealk to Peak Voltageacrose rated laod impodance	74	62 Volts	33 Volts				
Output (max)	$\begin{aligned} & \mathrm{T} .330 \mathrm{~A} \\ & \mathrm{~T} .330 \mathrm{~B} \end{aligned}$	$\begin{aligned} & +5 \text { DBM } \\ & +10 \text { DBM } \end{aligned}$								
Input Impedance	$\begin{aligned} & \mathrm{T} \cdot 330 \mathrm{~A} \\ & \mathrm{r} .330 \mathrm{a} \end{aligned}$	50 ohm	Price including Powor Supply - A modified	\$245	\$390 ${ }^{\circ}$	\$325				
Maise Figure	T.330A	$10 \mathrm{db}$								
	T-3300				-A modified version of the M-500A which operates only in the linear mode, is the M-500 which is available at a price of $\$ 330$.					
Mean Stage Cain	$\begin{aligned} & \mathrm{T} .330 \mathrm{a} \\ & \mathrm{~T} .330 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 11.508 \\ & 14.08 \mathrm{DB} \end{aligned}$								

SERIES M500 AMPLIFIER

In combination, IFI amplifiers deliver a gain as high as 46 DB. With bandpass 200 KC . 220 MC wide, you get power output of 3 watts. Pulses with rise time as short as 3 millimicroseconds can be measured. A Model 530, for instance, driving a Model 510 , in turn connected to Model 500 and fed with a signal of 120 millivolts (peak), will furnish an amplitude of 25 volts peak. input pulse may be positive of
negative with rise time of 2 or 3 millimicro. negative with rise time of 2 or 3 millimicro.

I-F AMPLIFIERS-SERIES M200

SPECIFICAT	ONS OF	STANDARD	UNITS
	m-230	-7.230	- ${ }^{\text {m-235 }}$
Band center	60 mc	30 mc	30 mc
Band width.	. 10 mc	2 mc	10 mc
Voltage gain.	90 db	110 db	90 db
Input impedance.	. 50 ohms	50 ohms	50 ohm
Input V.S.W.R. less than	1.3:1	1.3:1	1.3:1
- Variationa ol th	stand	to are avilab	

m-2330 LN-Medol M-230 modified for tow noise fizure input cirevit (1.5 dit). M. 230 A-Model M-230 modified and Faturinge amilt-in dotector and cathode chims appere. Video bandwidth I me.
M. 235 -Modol M- 235 modiricd and faturing abiling detector and cathode
follemer. Video output of 2 VRMS (for 30% modulated sienal) across 400 chma a wroor Video bandwith 5 mc .
Prices of the atow units remain semp as standard M-200 Sorics amplifiers.

POWER SUPPLY REQUIREMENTS Power supply requirements for the standard units are detailed below.
 m-200-125 V a 90 mo-6.3 Y a 1.14
POWER OUTPUT CAPABILITIES
Due to the high gain available in the |FI units, it is possible to saturate the final stage of the amplifier with a relatively small applied signal voltage at full gain. Saturation occurs at the following ouput powers and voltages. Beyond this output level the amplifier will no operate linearly.

Price $\$ 180$ each

M. 230
0.056 warrs
0.007 matrs

M-230
$M-260$.

SUPER VIDEO AMPLIFIER

hack mounted or portable

 gemeral description Two new super video amplifiers, designated the M-630 and M-680 are now offered by Instruments For Industry. Two M-630 or two M-680 amplifiers can be housed in a cabinet that includes a powe supply and front panel connections las illus trated). These two amplifier sections can b operated separately, in cascade, in parallel, or in push-pull operationFor two channel purposes, each amplifier can be used as a separate amplifier with gain of 20 db (if $M-680$ sections are used) or 60 db (if M-630 sections are used.) The two sections can also be connected in push-pull operation and in this manner, it is possible to deflect most laboratory scopes full inch (approximataly 30 PP) when fed dishown

SPECIFICATIONS
200 cps to $30 \mathrm{mc}(\mathrm{M}-530)$
400 cps to $80 \mathrm{mc}(\mathrm{M}-680)$
$60 \pm 2 \mathrm{dt}(\mathrm{M} .530)$

Bandpass

Cain
Input Impecance
Output Impedance
Max. Undistorted outp
voltage-matched
Max. Pulse ourput
Max. Pulse outpor
(Matched Load)
Pulse Rise Pime
Max. Pulse Duration (10\% droop) Pulse Delay Time

Recovery Time
(100 times overload)
Noise Fizure Moise Fizure Gain Control Range Range at full gain
Ms30 or msso

Approximately 9 db
20 db Approximately 60 db $\$ 225.00$ each
3. base. lowever, in unsymmetrical transistors Whas as t drift transistors or silicon grown tranases unt dors, t! voltage breakdown from base to emitTma! econsiderably lower due to the low sistivit material in the emitter region. Breakown between base and emitter generally results destrution of the base-emitter junction.

Effect of Voltage Breakdown

Result of these breakdowns manifest themHes in arious ways on the transistor.
Avalanche breakdown generally results in Fstuction of the collector-base junction due to fassive currents. This generally results in an pening between collector and base.
Breakdown due to alpha multiplication and bermal runaway generally results in destruction If the transistor due to excessive heat dissipation. fivis shows up electrically as a short between nllector and emitter with the collector diode ven. This condition which is most common in fansistors which have been ruined is not easily letected. Ohmmeter measurements may indicate good transistor because of the sneak path llrough the collector to emitter short circuit and then through the emitter diode to the base.
On the other hand, if such a defective transisor is placed in a standard transistor tester, the hort from collector to emitter may result in Emaqe to the meter or, barring such a developwent, may result in an indicated alpha of unity which could give an erroneous indication of transtor condition.
Punch-through breakdown generally does not lamage the transistor and is a self-healing type breakdown. After the voltage is removed, the ransistor is again in satisfactory operating conBtion.
Breakdown between emitter and base may realt in either an open or short in the emitter to we diode.

Voltage Supplies for Transistors

Since most transistors should be operated with 4 aply voltages considerably less than the $V_{C B}$ Which the manufacturers generally state, a volt4 4s supply of less than 20 volts should be used for bust common junction transistors. Voltage suppios of 30 volts or less are adequate for all but b highest voltage transistors.
The engineer should select his transistor for Tomon emitter and common collector circuit replications on the basis of a $V_{C E}$ rating rather ian the $V_{C B}$ rating commonly given. It also tould be pointed out that there is not a unique oldionship between the $\mathbf{V}_{C B}$ rating and the $\mathbf{V}_{C E}$ tax, ratirg. In time, large scale usage of tranFotrs will undoubtedly require that the manuacturer specify the $V_{C E}$ rating to some prefarbed st ndard. - -

FROM PRESS FITS TO PRINTED CIRCUITS

Acheson colloidal dispersions are finding a variety of uses in the electrical and electronic industry. The unusual properties of 'dlag' brand dispersions make them readily adaptable to a wide range of new design possibilities.
The following case histories represent improved levels of assembly and performance achieved through the use of Acheson products. Similar applications are meeting with equal success . . . one of them may be yours!

-

assembly problem at Marathon Electric
As one of the nation's largest producers of electric motors and generators, Marathon Electric Manufacturing Corporation must maintain high, uninterrupted production. Up until $21 / 2$ years ago, one of Marathon's chief problems came in the armature assemproblems came in the armature assem-
bly of $371 / 2$ to 45 HP generators. Four wound pole pieces with a male dovetail are fitted to the four sides of a laminated generator spider. Both the spider channel and dove-tail are lubricated and the pieces slid together with machine pressure. White lead was used as the lubricant.
According to Ray Waldringer, Ma. chine Shop Supervisor at the company's main plant at Wausau, Wisconsin, five or six armatures were scrapped every day when the spider fins sheared under assembly pressure. Damage was traced to insufficient, uneven lubrication.
In 1956 Marathon began using Acheson 'dag' 210 - a dispersion of colloidal molybdenum disulfide in an isopropanol carrier. Since then neither a pole piece nor a spider has been scrapped because of a lubrication breakdown at this vital point in assembly!
for plating. Actual printing is by applying a plating-resist to the copper sheet conforming to the circuit pattern.
The pierced sheets are first dipped in a solution of 'dag' 154 - colloidal graphite in alcohol. After rubber-rolling excess solution from the surface and oven drying, the graphite is automatically sanded off the surface of the sheet, leaving a graphite coating only

'dog' 210, brushed on generator components before press-At assembly, has eliminated rejects at Marathon Electric.
'dag' 210 is also used at Marathon in the assembly of electric motors. Ap. plied to die-cast aluminum motor end brackets before press-fitting bronze sleeve bearings into them, this microscopically thin dry film lubricant has completely eliminated rejects caused by distortion of one or both of these pieces.
on the walls of the holes. Conductors are then plated through these holes. International Business Machines Corporation is one of many leading companies using Acheson dispersions profitably.
For additional information, call in your Acheson Service Engineer. Or write direct for Bulletin No. 433. Address Dept. ED.79.

printed circuit cards for IBM's SAGE Computer

are produced for the U.S. Air Force at the company's Kingston, New York plant. High reliability of the circuits in these printed wiring-boards is essential. Basically, the process involves piercing copper-clad phenolic laminates and sensitizing the pierced holes

ACHESON colloids Company
 PORT HURON, MICHIGAN

A division of Acheson industries, inc.
Also Achesoa Industries (Europe) Lid. and affiliztes, London, Endland
Offices in: Boston - Chicago - Cleveland - Dayton - Detroit - Los Angeles - Milwaukee New York - Philadelphia - Pittsburgh - Rochester - St. Louis
CIRCLE 28 ON READER-SERVICE CARD

Let's Use a

High Frequency Figure of Merit For Power Transistors

Abstract

Richard E. Seifert knows the semiconductor business from both ends-sales and engineering. In this article, he proposes the use of a much-neglected figure of merit that can provide a simple indication of transistor performance at high frequencies.

MOST HIGH frequency transistor applications involve poucer amplification. If current or coltage transformation alone were desired, other devices such as diodes or transformers would suffice. A high frequency figure of merit, then, should express the relationship of the transistor's maximum available power gain to operating frequency.

Neither "alphat cutoff" nor "betal cutoft" information alone call advise the designer of the power gain to be expected at a given frequency. Impedance or voltage relationships are not specified in
these expressions. But with an understanding of the general power gain versus frequency relationship and a specification of power gain at some particular frequency, the engineer can readily evaluate a transistor for any bandpass amplifier application.

Power Gain Depends on Frequency

Fig. 1 illustrates the general relationship of maximum available power gain to operating frequency. Depicted on semilog paper, this frequency response clearly displays its two basic components -the "low" and "high" frequency power gain characteristics.

The point at which power gain has decreased three decibels from its low frequency value is known as "power gain cutoff" and is analogous to the current gain figure of merit "alpha cutoff." In fact, for a given transistor and circuit configuration, the power gain and current gain frequency response curves are congruent.

Observe the 6 db /octave slope of the high frequency characteristics in Fig. 1. This relationship postulates the so-called "unilateralized," or matched, neutralized transistor amplifier. The slope steepens with departure from this condition.

Should the transistor under test be of the grownjunction variety (e.g. most whf tetrodes), the slope will be approximately 4.5 db /octave. The base lead impedance in such devices is intrinsic to the active base region and contains a capacitive component. The majority of high frequency transistors are of the alloy-junction "wafer" construction hatsing base lead impedances extrinsic to the active base region. These impedances are essentially resistive.

Richard E. Seifert Raytheon Co
Semiconductor Div.
Needham Heights, Mass.

Several Factors Control $\boldsymbol{f}_{\text {mux }}$.

It has been shown that the frequency of unity power gatin, $f_{\text {max }}$, is directly proportional to th low frequency, common-base current gain alpha It is also proportional to the frequency at whic the common-base current gain has decreased three db from its low frequency value alpha cu off. It is inversely proportional to the base lea impedance and the collector-to-base capacitance

The term $f_{\text {max }}$ is derived from the conclusia that, theoretically a transistor will oscillate up a "maximum frequency" at which its maximug available power gain is unity. For a given transio tor, this frequency may be calculated as

$$
f_{\max }=\left(\frac{\alpha_{c} f_{a}}{8 \pi r_{b}^{\prime} C_{c}\left(101^{-6}\right.}\right)^{\frac{1}{2}}
$$

where $f_{\max }=$ Frequency of unity power sain m
$\alpha=$ Low frequency common-hase curren gain (alpha),
$f_{a}=$ Alpha cutoff frequency $(\mathrm{mm} \cdot)_{\text {, }}$
$r_{b}^{\prime}=$ Base lead impedance (ohm:),
$C_{c}=$ Collector-to-base capacitance ($\mu \mathrm{H}$)
Having determined the unity power gain fr quency, the design engineer can compmite the maximum available power gain for : desire operating frequency along the high requent characteristic curve of Fig. 1:

$$
G_{p}=10 \log \binom{f_{\max }}{f}^{2}
$$

where $G_{p}=$ Maximum available powe
$f_{\text {mar }}=$ Unity power gain freque"

fig. 1. Maximum available power gain vs frequency. This curve is for a typical vhf triode transistor - o unilateralized common emitter circuir.

Fig. 3. (above) Unity power gain frequency vs alpha cutoff. This graph assumes an alpha of unity, and a constant $r_{b}{ }^{\prime} C_{c}$ product in each case.
$=$ Desired operating frequency (mc). For the designer with a particular stage gain Furement at a given operating frequency, Eq. (2) nal be rewritten:

$$
\begin{equation*}
f_{m a z}=f\left(\log g^{-1} 0.1 G_{p}\right)^{\frac{1}{2}} \tag{:3}
\end{equation*}
$$

This shows that obtaining appreciable power gain an single-stage. high frequency amplifier depends (n) haut (1-) 1 perating-frequency ratios of 10 or Dre. Fir every octave below the transistor's $f_{\text {mar }}$ at the uperating frequency is moved, an addiTonal 6 b of maximum available power gain is Fained. This gain-frequency exchange process Wotinue till the power gain cutoff region is apmacher There, the low frequency power gainViterningig impedance factors dominate.
Theref e, whereas the power gain cutoff freFency is a function of circuit configuration, the
transistor's $f_{m u x}$ is substantially independent of configuration.

Eq. (1) shows that base lead impedance and col-lector-to-base capacitance are the significant determinants of $f_{\text {max }}$ and consequently, of high frequency power gain. This assumes typical high frequency transistor alphas of 0.9 and higher. For any given transistor, unless the $r_{b}{ }^{\prime} C_{c}$ product is suitably low, poor high frequency power gain will result.
This is true even though the transistor may have an impressively high alpha cutoff, and is quite pronounced as shown in Fig. 2. Two transistors, each having an alpha cutoff of 200 mc and identical in every respect except that their $r_{b}{ }^{\prime} C_{c}$ products are at opposite ends of the normal distribution, differ in high frequency power gain characteristics by about 10 db .
Observe, incidentally, that neither unit is usable
as an amplifier or oscillator at the alpha cutoff frequency.

Available high frequency transistors offer a wide range of $r_{n}{ }^{\prime} C_{c}$ products relative to their alpha cutoff frequencies. The $f_{\text {mas }}$ of these devices may be well above or below their alpha cutoff specifications.
A convenient display of the $f_{\text {mas }}-f_{\text {arn }}$ relationship for typical constant values of $r_{b}{ }^{\prime} C_{c}$ may be constructed as shown in the graphic treatmert of Eq. (1) in Fig. 3. Thus equipped, the design engineer may readily select the transistors best suited to his high frequency amplifier and oscillator applications. -

Reference
Lloyd P. Hunter, Handbook Of Semiconductor Electronics, p. 12-19, McGraw-Hill Buok Co., Inc., New York City, N. Y., 1958.

New Approach to Transistor DC Bias

J. Paul White
Leeds \& Northrup Co
Philadelphia, Pa.

STABILIZATION of single transistor amplifier stages can be accomplished simply and easily by a straightforward though unconventional approach which takes into account variations in β. Certain simplifying assumptions are made, e.g., the usual current and voltage stability factors are ignored. In their place the high and low limits of $V_{C E}$ are used. The variation in collector current may be easily obtained once the collector to emitter voltage variation is specified, and the values of R_{E} and R_{C} known. It is assumed that the minimum value of collector cutoff current $I_{C B O}$ is zero, a conservative assumption which changes the design only slightly when the expected temperature variation is 24 C or more.

Calculating The Required Resistances

The simplifying assumptions made are that $V_{B E}=0$, and that $(\beta+1)$ may be replaced by β. The following fundamental equations apply to the usually preferred circuit, Fig. 1.

$$
\begin{gather*}
I_{C}=\left(I_{C B O}+I_{B}\right) \tag{1}\\
I_{B}=\frac{V-V_{E}}{R}-\frac{V_{E}}{R_{B}} \tag{2}\\
V_{E}=R_{E}\left(I_{C}-I_{C B O}\right) \tag{3}\\
V_{C E}=V-V_{E}-R_{C} I_{C} \tag{4}
\end{gather*}
$$

The highest value of $V_{C E}$ will occur when $I_{C B O}$ is minimum (zero used here) and β is also minimum. Similarly, the smallest collector to emitter
voltage will occur when both $I_{C B O}$ and β are maximum. Therefore, by eliminating I_{C}, I_{B} and V_{E} from the above equations, and substituting the values of $I_{C B O}$ and β for the two conditions of maximum and minimum $V_{C E}$, two equations are obtained which may be solved simultaneously for two of the four resistances in the circuit. It will be found to be most convenient to solve for R_{B} and R in terms of the other resistances, the battery voltage, and the limiting values of the other parameters.
The initial selection of V and R_{C} on the basis of desirable voltage, current and transistor power dissipation considerations, etc., is usually no problem. The selection of R_{E} may not be so obvious a matter, especially if it is desired to keep R_{E} as small as possible. Shea, discussing this selection. says that R_{E} should be made large enough to swamp the dc resistance of the emitter-base diode. ${ }^{1}$ This requirement may be readily observed by making R_{E} sufficiently large to insure that the voltage across it will be somewhat larger than the expected dc emitter base diode voltage of the transistor.
Using the following symbols, and solving for \boldsymbol{R}_{B} and R :
> $\beta=$ Minimum possible value of β.
> $\bar{\beta}=$ Maximum possible value of β.
> $I_{C B O}=$ Maximum possible value of $I_{C B O}$.
> $\underline{V}_{C E}=$ Minimum allowable value of $V_{C E}$.

Fig. 1. Preferred circuit described by eqs. (5) and (6).

Fig. 2. Circuit described by eqs. (7) and (8). Resistor R is returned to the collector.

$$
\begin{aligned}
\bar{V}_{C E} & =\text { Maximum allowable value of } V_{C E} . \\
m & =R_{C} / R_{E} . \\
U & =\frac{V}{\bar{V}_{C B}}-1 . \\
L & =\frac{V}{V_{C E}}-1 . \\
k_{1} & =1+(U+1) m . \\
k_{2} & =1+(L+1) m .
\end{aligned}
$$

$$
R_{B}=\frac{R_{E}(1+m)\left[L-U-\frac{\bar{I}_{C B O} R_{E}\left(k_{1}-1\right)}{\underline{V_{C B}}}\right.}{\frac{U_{k_{2}}}{\underline{\beta}}-\frac{L_{k_{1}}}{\beta}+\frac{I_{C B O} R_{E} k_{1}}{V_{C B}}\left[1+m+\frac{l_{2}}{\beta l_{1}}\right.}
$$

For a grounded collector stage, $m=0$; and fiod a phase splitter, $m \cong 1$.

If the resistor R is returned to the collector Fig. 2, equations similar to (1) thru (4) may be written and similarly solved. In this case it scon venient to solve for R_{k}, since R_{B} may b morct easily chosen than R_{E} (stage input impedar 3 considerations). Solving for R_{E} and R after st cting values of R_{R} and R_{C}, etc., assuming that $I=I_{t}$
and that I_{2} « I_{C}, we obtain:
$R_{B B}\left[\left(\frac{U}{\underline{\beta}}-\frac{L}{\bar{\beta}}\right) \underline{V}_{C E}+\bar{I}_{C B O} R_{C}\right.$ $\underline{I}_{C E}(L-U)-\bar{I}_{C B O} R_{B}$
If lie values calculated by Eqs. (5) and (6) or (i) und ($($) are not suitable, a reselection of the value of R_{F} or R_{B} (respectively) may be made that will wally provide an acceptable design on the next iry. In this respect, it will be noted that R_{E} and R_{B} will increase or decrease together, R_{B} chancing by a somewhat smaller percentage than k_{E}.
These equations may be useful to those desirous of being able to specify the limits of $\beta, I_{C B O}$ and $V_{C E}$, and then proceed directly to the final circuit values required to stabilize the amplifier stage.

Designing a Low Level Amplifier

It is required to operate a low level amplifier at an emitter current of 0.1 ma . at 25 C , and to limit the collector to emitter voltage to the range of 1.5 to 3 vdc. The supply is 7.5 vdc , and beta may range from 30 to 200 . The maximum collector cutoff current $\tilde{I}_{C B O}$, will be 10 microamperes. It is desired to provide dc stabilization which just meets these specifications.
Selecting the voltage across R_{E} as a generous $1.8 \mathrm{r}, R_{t}=1.90 .1 \mathrm{ma}=18 \mathrm{~K}$. The maximum voltage from collector to ground will then be $1.8+3$ $=4.8 \mathrm{v}$. The voltage across \boldsymbol{R}_{C} is therefore 7.5 $-4.8=2.7 v$ and R_{c} is $2.7 / 0.1 \mathrm{ma}=27 \mathrm{~K}$. The constants for use in equations (5) and (6) may now be determined.

$$
\begin{gathered}
m=\frac{27}{18}=1.5 \\
U=\frac{7.5}{3}-1=1.5 \\
L=\frac{7.5}{1.5}-1=4 \\
k_{1}=1+(1.5+1) 1.5=4.55 \\
k_{2}=1+(4+1) 1.5=8.5
\end{gathered}
$$

From Eq. (5), $\boldsymbol{R}_{B}=52.2 \mathrm{~K}$.
From Eq. (6):

$$
R=\frac{4.75 \times 18 \mathrm{~K}}{\frac{1}{30}+\frac{18}{52.2} \times 1.5}=151.0 \mathrm{~K}
$$

Note that in Eq. (5) $\tilde{I}_{C B O}$ is in milliamperes, and $V_{C t}$ is in millivolts. The use of the nearest 10 percent rma value will usually be satisfactory, so that the final design would have $R_{R}=56 \mathrm{~K}$ and $R=$
$15 \mathrm{~K} . \mathrm{K}=$

Referencer

1. I F. Shea, Ed., Transistor Circuit Engineering, John Wil \& Sons, New York, p. 5\%.

ELE CTRONIC DESIGN • July 22, 1959

Call on Ohmite for APPLICATION ENGINEERING SERVICE
Save valuable engineering time. Team up with Ohmite to solve your resistance problems.
Ohmite engineers are resistOnmite engineers are resistance specialists. They can quickly onalyze your neods rheostat to fit your application.

CIRCLE 29 ON READER-SERVICE CARD

(3) 4 TE ${ }^{\text {® }}$ Manufacturing Company
 3643 Moward Stroet, Skekio, Illinois
 Quality Components

RHEOSTATS RESISTORS TAP SWITCHES relays Variable transformers diodes TANTALUM CAPACITORS R. F. CHOKES

Transistor Types 1959

W．C．Hittinger
Assistant Director of Development
Bell Telephone Laboratories
Allentown，Pa．

TRANSISTORS have progressed，since their inception 11 years ago，from strictly low－ power atudio frequency devices to a family of components capable of operating in the micro－ wave region and at wattages in excess of 100 w ．
These advances are due to a steady increase in fundamental knowledge plus a continual de－ velopment of fabricating techniques．The present situation is shown in Fig． 1 for germanium and silicon transistors either commercially available or in advanced laboratory development．

Fabricating Techniques

By first outlining each of the various fabrica－ tion processes，it is possible to establish a basic comparison of their salient features．From this， potentialities and limitations can be visualized for each type．Many generalizations will be nec－ essary in making broad comparisons．A list of appropriate references is included for the reader interested in a more thorough analysis．

Point Contact

Pointed emitter and collector wires，spaced a few thousandths of an inch apart，are placed in contact with the semiconductor surface．Small junction regions are formed under each point by a combination of heat and pressure．The exact theory of the device is not well understood and very few transistors are being made，primarily because of limited performance range．However． many point contact diodes are still being pro－ duced，both as inexpensive，non－critical rectifiers and as microwave mixers and detectors．

Grown Junction

Emitter，base and collector regions are formed in a single crystal of germanium or silicon grown from the liquid．Individual transistor bars are cut from the crystal and leads are attached to each region．The theory of this and other junc－ tion devices to follow is quite well understood．
thereby allowing for improved designability in comparison to the point－contact transistor．More recent variations of this technology are the grown－diffusion and melt－back．Both of these techniques make it possible to produce narrower hase layers than obtainable by conventional growing，by using diffusion of impurities in the solid crystal to form the base layer．Since the frequency response of a transistor is inversely proportional to the square of base width，signifi－ cant performance improvement is obtained． Many grown junction transistors are being produced for use in both entertainment and in－ dustrial－military applications．Grown junction diodes have never attained significant importance．

Alloy Junction

Emitter and collector regions are formed in a semiconductor wafer by alloying appropriate element or alloy pellets into opposite sides such that they penetrate to within approximately 0.001 in ．of each other．The thin unpenetrated region serves as the base．This type represents the largest volume transistor being produced at the present time，being used in applications varying from low－power computers to high－power audio output amplifiers．The limited ability to control the depth of alloy penetration and hence base layer width limits the frequency response of this type．Many alloy diodes are being produced， ranging from small area gold bonded（alloyed） switches to large area power rectifiers．

Surface Barrier

Two small jet streams of electrolyte are di－ rected onto opposite sides of a germanium wafer． By appropriate electrical bias，pits are electrolyti－ cally etched such that they penetrate to within about 0.0005 in ．of each other．The polarity is then reversed，so that small emitter and collector deposits are plated from the jet solution into the pits．As with the alloy types，the unetched web
serves as the base．A variation of this technique involves shallow alloying of the plated deposits for improved device stability．Large quantities of these transistors have been produced for appli－ cation in high speed circuitry．The thin base region and small emitter and collector contacts limit the power handling capabilities of this type

Diffused Junction

The base layer is formed in both germanium and silicon transistors by diffusing an appropriate element from the vapor into the solid semicon． ductor．Dimensional control of penetration is about one order of magnitude better in this meth． od of diffusion than by techniques mentioned above，so that base layers as thin as 0.00002 in． can be readily produced．Emitter regions are formed in some cases by alloying，in others by diffusion．Mesa types derive the name by virtue of the means used to minimize collector capac－ itance．The active portion of the device is con－ tained in a localized，raised region of small arrea． while the remainder of the semiconductor is used as a rugged handle for mounting and puwer handling purposes．The drift transistor contains a diffused base layer and a region under the hase of high resistivity semiconductor（intrinsic laar－ rier）to reduce collector capacitance and increase breakdown voltage．The MADT transistur is

Table I．Comparison of Transistor Types
（Higher numbers signify better characteristics）

Type	Base Layer Thickness	Break down Voltage	Collector Capaci－ fance	Saturation Resist－ ance
Alloy	4	3	4	1
Grown	4	3	3	3
Surface barrier Grown－ diffused－	3	4	2	2
melf back Diffused	2	2	3	3
	1	1	1	4

Power and frequency limits of currently available transistors.
essentially a surface barrier transistor with a diffused base layer and with emitter and collector contacts which are shallow alloyed. The diffused transistor possesses the highest frequency capability of any known type. The mesa structure combines high speed and high power capabilities. Prorluction quantities of these types will constitute an ever increasing portion of the total market. Diffused diodes are in large scale production for a variety of applications varying from microwave varactor types to high power rectifiers.

Comparison of Techniques

Maximum limits for power and frequency of transistor types available are shown in Fig. 2. A rough comparison of the transistor types considered to be of economic importance at the present time is shown in Table I. The parameters choven as a basis for comparison have the following significance:

- Base-layer thickness control-the better the higher the frequency performance.
- Breakdown voltage-must be maximized for high power applications.
- Collector capacitance-must be minimized for high frequency performance.
- Saturation resistance-should be minimized for optirlum switching performance.
Parameters are rated numerically from one to four with one signifying top position. - -

Reforences

J. Bardeen and W. H. Brattain, Nature of the Forward Current in Cermanium Point Contacts, Physical Reciew, Vol. 74, pp 231, July 15, 1948.
W. Shockley, M. Sparks, and G. K. Tcal, PN Junction Transistors, Physical Reciew, Vol. 8:3, pp 151-162, July 1, 1951.
B. Cornelison and W. A. Adcock, Transistors by CirownDiffused Technique, IRE WESCON Convention Record, Vol. 1, Part 3, pp 22-27, 1957.

1. A. Lesk and R. C. Gonzalez, Germanium and Silicon Transistor Structures by the Diffused-Melthack Process Employing Two or Three Impurities, IRE Trans. on Electron Devices, July, 1958.
R. R. Law, C. W. Mueller, J. I. Pankove and C. D. Armstrong, A Developmental PNP Junction Transistor, Proceedings IRE, Vol. 40, p 1.352, Nov. 1952.
J. S. Saby, Fused Impurity PNP Junction Transistors, Proceedings IRE, Vol. 40, pp 1358-1360), Nov. 1952.
W. E. Bradley, et al., Surface Barrier Transistor, Proceedings IRE, Vol. 41, pp 1702-1720, Dec. 1953.
Rittman, Messenger, Williams and Zimmernan, Microalloy Transistor, IRE Trans. on Electron Decices, Vol. ED-5 No. 2, p 49, April 19.58.
C. A. Lee, A High-Frequency Diffused Germanium Transistor, Bell System Technical Journal, Vol. 3.5, Jan. 1956.
M. Tanenbaum and D. E. Thomas, Diffused Emitter and Base Silicon Transistors, Bell System Technical Journal, Vol. 35, Jan. 1956.
J. M. Early, PNIP and NPIN Junction Transistor Triodes, Bell System Technical Journal, Vol. 33, May 1954. A. L. Kestenbaum and N. H. Detrick, Design, Construction, and High-Frequency Performance of Drift Transistors. RCA Review, p 12, March $19.5 \overline{7}$.
C. G. Thornton, Technology of Micro-Alloy Diffused Transistors, Proceedings IRE, Vol. 48, p 1168, June 1958.

CONDUCTIVE PLASTIC Precision POTS

$10{ }^{3}$ revolutions at 2000
 rpm...
 ...AND NO END IN SIOHTI That's what life

 expectancy tests of these new conductive plastic precision pots have shown. And checks during testing have shown near-infinite resolution, no measurable change in linearity or noise, and only 5% change in total resistance.Stock resistance values are $1,2,5,10$ and 20 K . Values between 100 ohms and 10 megohms supplied on special order.

A COMPLETE LINE OF

 Wilewound plecision potsIncluded in this outstanding line is Model 158: a 4 -watt, multi-section pot that passes a rigid noise test at $-55^{\circ} \mathrm{C}$, and is available in resistances up to 150 K ohms. Also in-
 cluded in the complete NEI wirewound line are servo mounting and low torque types. Sizes range from $1 / 2^{\prime \prime}$ to $3^{\prime \prime}$ in diameter.

... AND sperial CONDUCTIVE

PLASTIC ELEMENTS
including rectilinear elements for slide-wire applications and other precisely built conductive plastic elements for use in fuel gauges, accelerometers, pressure transducers and other instruments.

NEI is the only source to offer precision wirewound AND conductive plastic potentiometers. WRITE TODAY for full information. Spec sheets and the convenient NEI Fact File are yours on request.

NEWENGLAND INSTRUMENT

350 main street, woonsocket, rhode islano
CIRCLE 96 ON READER-SERVICE CARD

Measuring Transistor Parameters With Wayne Kerr RF Bridges

Dr. R. M. Scarlett
Assistant Professor
Stanford Electronics Labs. Stanford Univ.
Stanford, Calif.

Wayne Kerr if bridges used for measuring high fre. quency transistor parameters.

MEASUREMENT of transistor parameters can be made easily and accurately by using the Wayne Kerr rf bridges. These bridges are capable of measuring either two-terminal (driving-point) admittances or transfer admittances of a three-terminal network over a wide frequency range. The bridges have an extremely wide admittance range.

Theory of Bridge Operation

The Wayne Kerr B-601 and B-801 are transformer ratio-arm bridges with internal comparison standards, which cover the frequency ranges of 15 kc to 5 mc and 1 mc to 100 mc . Although the circuits differ somewhat in detail. Fig. 1 illustrates the essential principles involved.
An input transformer with closely coupled secondary windings applies equal and opposite potentials between the neutral point and the unknown and standard admittances \boldsymbol{Y}_{s} and Y_{n} (see Fig. la). When Y_{s} is adjusted to be equal to \boldsymbol{Y}_{x},
equal and opposite currents flow through them, hence the current in the detector transformer is zero, and a null is obtained. The secondary windings on the input transformer need not have a 1 to 1 ratio. Either Y_{x} or Y_{s} may be tapped down on the detector transformer to obtain different scale factors.

The condition for balance is zero net ampereturns in the detector transformer primary, whose parts must be tightly coupled. Essentially the same principles are involved if source and detector are interchanged in Fig. 1.

An important advantage of a transformer ratioarm bridge is that any impedance appearing directly between either side of the input transformer secondary and the neutral point has no effect on the balance, since an equal impedance is reflected into the other half of the transformer-provided that the impedance is large compared with the small leakage impedance between secondary halves. Similarly, impedance appearing directly
from point to neutral is across the detector transformer, where it can affect only the bridge sensitivity.

This property makes possible the measurement of the transfer admittances of three-terminal networks. Referring to Fig. lb, the transfer admittance in question is defined as $\boldsymbol{Y}_{21}=I_{2} / V_{1}$ with $V_{2}=0$. This last condition is met at balance, since the voltage across the detector transformer is necessarily zero. Since $V_{1}=V_{s}$, despite the impedance presented by the network to V_{1}, and at balance $I_{d}=0$, or $I_{2}=-I_{s}$, the following equation is obtained,

$$
Y_{21}=\frac{I_{2}}{V_{1}}=\frac{-I_{t}}{V_{t}}=-Y_{t}
$$

Upon interchanging ends 1 and 2 of the network. the transfer admittance Y_{12} can be measured. It is important to note that the bridge measures transfer admittances with the sign reversed, which comes about simply because of the standard defi-

Fig. 1. Principles of operation of Wayne Kerr bridges. (a) Driving-point admittance. (b) Transfer admittance.

Fig. 2. Indefinite admittance matrix.
nition of transfer admittance which is usual in network theory.

Measuring Admittance Parameters

There exist simple relations between the Y parameters of the three transistor orientations. These may all be calculated from any set of four independent measurements by making use of the scheme of Fig. 2, where the sum of any row or column is zero. A preferred set for ease of measurement and accuracy of the resulting calculations is $Y_{11 e}, Y_{11 b}, \boldsymbol{Y}_{22 b}$ and $\boldsymbol{Y}_{12 e}$.
The only transfer quantity involved here is $Y_{12 e}$, where a direct measurement is often desired since it gives the neutralizing impedance required for a common type of common-emitter bandpass amplifier. The connections to the bridge for this measurement (or any other transfer admittances) can be deduced by referring to Fig. 1b. The common terminal (emitter) is connected to neutral (\mathbf{N}); \boldsymbol{Y}_{12} is the transadmittance from output to input, so that the output terminal (collector) is connected to C and the input (base) to X.
It should be mentioned that $Y_{12 e}$ is usually a rather small admittance, and may be considerably influenced by stray capacitance between the transistor leads, and from the leads to the case. If the transistor is to be used common-emitter, the case should generally be connected to the emitter so thit direct collector-to-case and base-to-case capa itance does not affect $\boldsymbol{Y}_{12 \rho}$.
ince this parameter is rather difficult to measlure. it is sometimes better to measure current gain, alp ha, and Y_{11} and calculate $Y_{21}=$ alpha Y_{11}. This

Magnetic Core Buffer Memory Sets New Design Standards for Data Handling Systems

Requires only $51 / \mathbf{4}^{\prime \prime}$ of Space in a $19^{\prime \prime}$ Rack
From General Ceramics-Four new magnetic core buffer memories that are setting new design standards among data handling system designers requiring increased efficiency in smaller physical packages.

Now available in either random access or sequential designs:
144 M4A - 144 characters in 9×16 array with a word length of four bits.
144 M8A - 144 characters in 9×16 array with a word length of eight bits.
$\mathbf{5 1 2}$ MBA - 144 characters in 16×32 array with a word length of eight bits. 1024 M8A- 1024 characters in 32×32 array with a word length of eight bits.

Design Features Include-

1. SPACE-SAVING - Require only $51 / 4^{\prime \prime}$ of standard rack space permit smaller overall system design.
2. VARIABLE CHARACTER AND BIT LENGTHS - Unique design of driver circuit permits circuitry of existing data han dling system to be enlarged without costly redesign.
3. HIGHER OPERATING TEMPERATURE RANGE - Contributes to miniaturized system design because memory functions
satisfactorily under higher ambient temperature conditions.
4. EASE OF MAINTENANCE - All components are within easy reach. All circuits are on plug-in cards except power supply which is hinged across the back; swings out for easy accessibility.
5. EXTRA FEATURES - All units are equipped with an electronic clear and output register at no extra cost.

Complete detailed technical information will be supplied promptly on request. Please address inquiries to Dept. ED.

GENERAL CERAMICS

Applied Logics Division GENERAL CERAMICS CORPORATION KEASBEY, NEW JERSEY, U.S.A.

ELECTRONIC DESIGN • July 22, 1959
gives the fourth parameter in the matrix. However. the resultant calculation of Y_{12}, if it is required, may lead to a serious loss of accuracy. One of the adaptors for the $13-601$ measures alpha directly and gives a further advantage, that the most important property of the transistor cat be established directly over the frequency range.

Other Transistor Parameters

The open circuit impedance ($\boldsymbol{Z}_{\text {) }}$) and hylorid (\boldsymbol{h}^{\prime}) parameters which are sometimes used to characterize transistors can be calculated from the Y parameters ${ }^{1}$ or driving-point quantities can, of course, be measured directly. There are two cases important enough to consider in detail.

The forward short-circuit current gain h_{21}, com-
monly denoted by, $\alpha=-h_{216}$ or $\beta=h_{21}$
may be calculated from the relationship

$$
h_{21}=r_{21} r_{11}
$$

Alternatively, a known resistor R may be placed in series with the input terminal. If R is much larger than the input impedance $h_{11}=7 / Y_{11}$, the forward transfer admittance of the combination is very nearly
$!_{121}=h_{21} R$
Thus, for the common-base connection for example, the bridge reads

$$
-Y_{21^{\prime} b}=\alpha l
$$

and the magnitude and phase angle of alpha is readily determined. A resistance of 10 K is generally large enough; its phase angle, which can be measured separately on the bridge, should be taken into account.

The open-circuit output imperdance in the (111 mon-base connect $Z_{22 b}=1 / h_{22 b}$, is important suce it consists chiefly of the space-change laver cal icitance of the reverse-biased collector-base junction This capacitance is sufficiently small in many ligh frequency transistors that interlcad and lead to case stray capacity is of importance. If desired, the lead to case capacity can be climinated from the measurement by connecting the case to the neutral terminal.
The emitter must be essentially open-circuited. the bias current being supplied through a lowcapacitance resistor of sufficiently large resistance. For many transistors, nearly the same result will be obtained if the emitter is left open altogether Measurements may be made on a transistor to determine the applicability and element values of a particular equivalent circuit.

As an example, consider the common-emitter hybrid-pi equivalent circuit shown in Fig. 3a, which is often used to represent a transistor at high frequencies. In this circuit $r_{n} \equiv k T / q I_{R}$ dc r_{b}^{\prime} is the ohmic base resistance and f_{t} is the frequency at which $\beta=1$, where β is the commenemitter current gain $h_{21 \varepsilon}$ l. The cutoff freguency is given by $\left(1-\alpha_{10}\right) f t$.

According to this equivalent circuit model, the various admittances should have the forms which are shown by the individual networks in Fig. 3b. The common-collector transfer admittances are not included. In deriving these, the apperoximation $W^{\prime}, r^{\prime}{ }_{1} C_{.}$\& 1 has been used, and to this degree of approximation, $Y_{216}=\boldsymbol{Y}_{216}$. In certain transistor structures, a relatively large direct capacitance is present from collector to base. This may be comparable or greater than C_{6}, and is denoted by C in Fig. Ba. Other direct terminal capacitances have been ignored for simplicity.
The admittances of Fig. 3b caln all be measured conveniently on the Wayne Kerr bridges. A series of such measurements will indicate the degree to which the equivalent circuit model approximates to the transistor under test. In any case, these networks serve as a qualitative guide to the form of the various admittances.
If one assumes the circuit of Fig. 3a to be a t.uir approximation, the element values are readily nibtained. Measurement of $Y_{11 c}$ at two suitably chosen frequencies will enable $r^{\prime}{ }_{b}, r^{\prime},\left(1-a_{0}\right)$ and $1 / u u_{t} r_{e}^{\prime}$ to be calculated approximately, if C is ignored. Measurement of $\boldsymbol{h}_{22 b}$ gives $\boldsymbol{C}_{c}+\boldsymbol{C}_{o}$. The accurate separation of C_{c} and C_{o} is difficult; ane method involves measurement of the commer base h_{12} (defined as V_{1} / V_{2} when $I_{1}=0$) given ty

$$
h_{12 b}=-Y_{12 b} Y_{11 b}
$$

From the circuit of Fig. 3a, this is approximat y $j \omega r^{\prime}{ }_{b} C_{c}$. The current gain α_{0} or $\beta_{i .}=\alpha_{a}(1-$ is most easily obtained by conventional low. quency techniques. The Wayne Kerr Univet I

Fig. 4. Connection to bridge terminals to counteract stray capacitances. (a) Bridge stray capacitances. (b) If common is grounded, $C_{X E}, C$, and C2 appear as shown. (c) If neutral is grounded, stray capacitances can be neglected.

Bridge 13-2.21 can be used quite effectively for this measurement since its frequency range is 50 cps to 20 kc .

Transistor Adaptors

To connect a transistor to the bridge and provide it with de bias, an adaptor is required. This will generally include a transistor socket and various hypass capacitors. Fig. 5 shows some circuits which have been found useful. In the physical construction of an adaptor, it must be remembered that the high-frequency performance of a transistor or any other component can be greatly affeel d by the arrangement of connecting leads. In ridges of this nature, which are essentially
parallel substitution instruments, the capacitance of the adaptor leads and socket appearing across the bridge is balanced out if the adaptor is connected when the bridge is initially balanced. However, the series inductance of the leads and bypass capacitors will introduce errors in the final measurement.

In Fig. 5 a is shown a suitable arrangement for measuring driving-point admittances on B-601 bridge. A transistor is shown connected for measurement of $Y_{22 b}$ (or $h_{22 b}$) as an example, with a typical biasing circuit. Bias is fed to one electrode through the bridge, which provides a low-resistance dc path, and the remaining electrodes are connected to the other side of the bridge through capacitors.

Since extreme care must be exercised in the design and attachment of a transistor adaptor to these bridges to avoid serious errors, Wayne Kerr
has developed a group of adaptors especially designed to fit the terminals of the rf bridge B-601. The form of these adaptors is such that they introduce minimum error (usually less than 1 per cent) over the full frequency range of the bridge.

This bridge uses the transformer ratio-arm technique and provides a three-terminal measuring facility in the frequency band 15 kc to 5 mc . It covers a very wide range of measurements of resistance (10 ohm to 10 megohm) and capacitance (0.01 pf to $0.02 \mu \mathrm{f}$). Inductances $(0.5 \mu \mathrm{~h}$ to 0.05 h) are measured as equivalent negative capacitances.

The set of adaptors consists of a dc control unit and five adaptors providing the direct measurement of the input and output admittance and alpha in the ground-base configuration. The two other adaptors provide the measurement of the input and transfer admittance in the groundedemitter configuration.

Fig. 5. Transistor adaptors. (a) Photograph of different adaptors used to connect the transistor to the bridge and provide it with dc bias. (b) Adaptor circuir for drivingpoint admittance shown for $Y_{22 b}=Y_{22 e}$ on B-601 Bridge. (c) Adaptor circuit for Y_{180} transfer admittance.

Elf CTRONIC DESIGN • July 22, 1959

Cathodic Envelope Energizer ...

Energy in a Sandwich

LEAKPROOF, compact, lightweight construction, plus low cost per hour operation and high energy content are benefits offered by a new concept in carbon-zinc battery design. The guaranteed leakproof design eliminates the need for costly housings and the use of polarized plug and snap terminals obsolete the need for battery clips and holders.
Developed by the National Carbon Co., Division of Union Carbide Corp., the "Eveready Cathodic Envelope" energizers are particularly suited for transistorized equipment where size and weight must be at a minimum with operating life maintained as long as possible.

Cathodic Envelope Structure

The popular "Mini-Max" flat cell, placed on the market some twenty years ago, consists of a lamination of zinc, depolarizer mix, and other in gredients-similar to a sandwich with but "one slice of bread." High voltage B-supplies were obtained by stacking cells in series.
In the cathodic envelope construction, flat cakes of depolarizing mix are placed in contact with both sides of a zinc plate anode. Now, the sandwich has "two slices of bread." Completing the cell is a carbon-impregnated current-conducting film of flexible plastic and metal foil; this film encases the sandwich and is bonded to a plastic film wrapper which seals the cell; see Fig.1.
This arrangement effectively doubles the zinc anode area of each cell and reduces the current density in the mix; these factors provide higher electro-chemical efficiency with heavier current drains. To form a completed battery, groups of cells are connected and assembled into compact, rugged metal or plastic containers.

Pefformance Figures

In a typical application involving a 15 ma drain, the 9 v energizer (model 2762), yields 25 per cent longer service than 18 flashlight-type batteries and can deliver one year's service at a
normal discharge schedule of four hours per day. The energizer occupies just about one-half the space required for the equivalent flashlight-type batteries.
With a 50 ma load, the 4.5 v energizer (model 2731) is compared, in Fig. 2, with a single series string of three " D "-size round cells and two parallel strings of "D" cells. As shown in Fig. 2, the cathodic envelope structure gives almost three times the service of two parallel strings of three " D^{\prime} cells under a four hour per day discharge. Or, put in terms of special signaficance to portable equipment designers, the cathodic envelope battery occupies only one-third of the space required by " D " cells for equivalent service.

In Fig. 3, the same batterics are compared at 30 ma drain with a 24 hour per day schedule. Again, superior performance is shown for the cathodic design.

Consumer Benefits

Direct consumer appeal is provided by the use of terminals which can only be connected in the proper polarity; reversed polarity insertion damage is impossible.
The exceptionally long service life offered means fewer battery replacements and lower operating costs. In addition, the leakproof feature assures the consumer that equipment will not be ruined by corrosive chemical discharge. - - -

Fig. 1. Cutaway view of a typical Cathodic Envelope Cell.
solid opportunity for solid state researchers in southern california
COMPUTER ENGINEERS AND PHYSICISTS FOR ALL IEVELS OF RESEARCH

Here's an excellent opportunity to explore unknown horizons in the solid state computer field. NCR now has open 12 choice positions, including three senior ones for superior engineers and physicists.
SENIOR RESEARCH ENGINEER OR SPECIALIST with an MS or Ph. D. and strong experience in transistor circuits is needed for magnetics research.
SENIOR RESEARCH ENGINEER OR SPECIALIST, (EE or physicist) with an MS or Ph. D. and broad research back. ground including system experience, is needed for research analysis.
SENIOR PHYSICIST, MS or Ph. D., with semiconductor experience, is needed for solid state thermoelectrics research.
NINE EE's AND PHYSICISTS are needed for magneto-optics, direct character recog. nition, a parametron project, and a solid state project. Experienct range : from junior to senior level. One of the following back. grounds required: transistor circuits, logical design, digital systems, magnetics, electron and physical optics, electrochemistry, physical chemistry or chemical engineering, evaporated films, microminiature circuits or components.

At NCR Electronics Division, located in California's Riviera-like Southland, you will have a free rein to formulate and develop ideas in exciting new phases of solid state computers. You'll be part of the team that developed the magnetic Rod memory with a 4 -millimicrosecond switching speed; the pholochromic memory, based on the microencapsulation tech. nique: inhibit-core logic, using ferrite cores or Rods for greater reliability; and he NCR 304, the first wholly businessdesigned large-scale computer having allsolid state circuitry.

What's more your future is assured - you'l be working for one of the best known and best financed companies in the world.

Please contact D. P. Gillespie, director of industrial relations. All replies held in strict confidence.

elational*

The National Cash Register Company ELECTRONICS DIVISION 1401 East El Segundo Boulevard Hawthorne, Californis

Fig. 3. Comparison between a type 2731 energizer, three "D" cells in series, and six "D" cells in series-parallel with a 30 ma continuous drain.

Ferranti engineers have a depth of experience unmatched in this specialty.
We can provide stock units that have been proved in performance - or custom design to your special applications.
Features that characterize Ferranti Delay Lines: Temperature stable . . . wide temperature operating range . . High digit rates up to $1 \mathrm{Mc} / \mathrm{s}$ for delays up to 3 milliseconds . . Small size, light weight . . . No moving parts . . . Low cost, highly reliable elements for delay, storage and correlation - fixed and variable.

Write for detailed literature
FERRANTI ELECTRIC, INC. ELECTRONICS DIVISION 95 MADISON AVENUE HEMPSTEAD, N. Y.
circle 32 on reader-service card

Three Selected

Semiconductor Circuits

S. Schwartz

President
Transistor Applications, Inc. Boston, Mass

These three buildingblock type circuits have been chosen from "Selected Semiconductor Circuits Handbook" which will be completed this fall. The handbook, originally announced in ED (July 9, 1958 pg 10) was sponsored by the Bureau of Ships, prepared by Transistor Applications, Inc., with the hope of providing a handy reference of reliable circuits as well as to encourage the standardization of semiconductor circuit nomenclature and symbols.

Although the project is nearing completion, engineers engaged in transistor circuit design are invited to submit circuits with descriptive text for possible inclusion. Address material to Mr. S. Schwartz, Transistor Applications, Inc., 50 Broad St., Boston, Mass.

TRANSISTOR circuits engineers will find the following examples of well-designed contemporary circuitry useful for developing commercial and military electronic equipment:

- A flip-flop circuit, using 4-layer diodes, which provides high output voltage swing and operates over a wide voltage range.
- Conventional saturated and nonsaturated astable multivibrator, designed for reliahility and simplicity.
- Regenerative frequency divider, capable of dividing by relatively large ratios with a small number of transistors.

Negative Resistance Diode Flip-Flop

A flip-flop using 4 -layer pnpn diodes, is shown in Fig. 1. The circuit is capable of providines a high output voltage swing and operates over a wide range of voltage settings.

If $\mathrm{N}-\mathrm{CR}_{2}$, a negative resistance pnpun diode, is conducting initially, it receives a current from V_{2} through $C R_{4}$ of 20 ma and an additional current from V_{1}. The other pnpn diode $N-C R_{1}$ is cut off, since V_{1} and R_{1} establish the operating point in the cut-off region. The voltage at point A is all V and diode $C R_{3}$ is cut off.
The diodes $C R_{5}$ and $C R_{6}$ are steering diwles and are appropriately biased under the pres it circuit condition to allow an input pulse to to 17 $N-C R_{1}$ on. The diode $C R_{1}$ prevents the trip ir from developing a total voltage across $\mathrm{N}-\mathrm{C} R_{1}$ ficient to exceed the peak voltage. $N-C R_{1}$ turn n very rapidly, less than $0.1 \mu \mathrm{sec}$, and diverts
cur t from $\mathrm{N}-\mathrm{CR}_{2}$.
If ddition, when N - CR_{1} turns on, capacitor C_{1} cou s the voltage fall to $\mathrm{N}-\mathrm{CR}_{2}$ and aids in rever: q the current through $\mathrm{N}-\mathrm{CR}_{2}$. When $\mathrm{N}-\mathrm{CR}_{2}$ turl off, diode $C R_{4}$ is reverse-biased and point B is altage level V_{1}. The steering diodes are bia I so that the next input pulse will turn on $\mathrm{N}-\mathrm{Cl} \mathrm{I}$ 。
F. optimum circuit operation $V_{1}, \boldsymbol{R}_{1}$ and \boldsymbol{R}_{2} showd establish the operating point at cutoff with no intersection in the saturated region or the negative tesistance region. This requires that V_{1} be less that v_{p} where v_{p} is the peak voltage of the $v-i$ characteristic of the pnpn diode.
Also,

$$
\frac{V_{1}}{R_{1}}=\frac{V_{1}}{R_{2}}<i_{h}
$$

where i_{A} is the holding current.
To provide adequate turn on, the currents from V_{1} and V_{2} must exceed the current i_{n}.

$$
\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{3}}>i_{h}
$$

It is desirable, but not necessary, that

$$
R_{1}, R_{2}>2\left(\frac{v_{p}-V_{1}}{V_{2}-v_{p}}\right) R_{3}
$$

$$
V_{2}>v_{p}
$$

if these latter two conditions are not met, it is possible to have both $\mathrm{N}-\mathrm{CR}_{1}$ and $\mathrm{N}-\mathrm{CR}_{2}$ cut off until the trigger source is applied.

The flip-flop just described will operate with input pulses greater than 6 v . The turn-off time is about $7 \mu \mathrm{sec}$, while the turn-on is less than 0.1 $\mu \mathrm{sec}$. The capacitor C_{3} may be made smaller to reduce the turn-off time, but a higher input pulse will be required. V_{2} may be varied from 30 to 150 v with V_{1} at 30 v . With V_{2} at $100 \mathrm{v}, V_{1}$ may be varied from 17 to 40 v .

Basic Astable Multivibrator

A conventional saturated and a nonsaturated astable multivibrator are shown in Figs. 2 and 3. To understand the operation of the circuit, assume that Q_{1} has just switched on, driving the base of Q_{2} to a positive voltage negative with respect to ground and C_{2} is quickly charged to nearly $V_{c c}$. The collector of Q_{1}, the "on" transistor, is at nearly ground potential and C_{1} is discharging toward $V_{B R}$ with a time constant $R_{4} C_{1}$.

When the voltage at the base of Q_{2} starts to go negative, Q_{2} begins to conduct with the positive going waveform at the collector transferred to the base of Q_{1} through C_{2}, turning Q_{1} off and driving Q_{2} on harder. Q_{1} remains off until C_{2} has discharged with a time constant $R_{2} C_{2}$ from $V_{O C}$ to a
slightly negative value at which time Q_{1} turns on. Then the cycle repeats.

The time intervals of conduction are easily determined. Assume that

$$
\begin{align*}
& R_{1} C_{1} \ll R_{2} C_{2} \tag{1}\\
& R_{3} C_{2} \ll R_{4} C_{1} \tag{2}
\end{align*}
$$

When Q_{1} turns on, the base of Q_{2} is reverse biased by $\left|V_{C C}\right| . C_{1}$ discharges toward $V_{B B}$ with a time constant $R_{4} C_{1} . Q_{1}$ turns off when the voltage across the base of Q_{2} becomes negative. Similar statements apply to the situation for Q_{2} on.

$$
T_{1}=R_{4} C_{1} \ln \frac{V_{C C}+V_{B B_{2}}}{V_{B B_{2}}}
$$

where T_{1} is the time that Q_{1} is in conduction and $V_{B B_{2}}$ is the voltage to which R_{4} is returned.

$$
T_{2}=R_{2} C_{2} \ln \frac{V_{C C}+V_{B B_{1}}}{V_{B B_{1}}}
$$

where T_{2} is the time that Q_{2} is in conduction and $V_{B B_{1}}$ is the voltage to which R_{2} is returned.

If the resistors R_{2}, R_{4} are returned to $V_{O C}$, the expressions for the conduction times become

$$
T_{1}=0.692 R_{4} C_{1}
$$

and

$$
T_{2}=0.692_{-}^{*} R_{2}{ }^{*} C_{2}
$$

The repetition frequency is the reciprocal of the

Fig. 2. (above) Conventional saturated multivibrator hoving a rise and fall time of less than one $\mu \mathrm{sec}$.
Fig. 1. (leff) Negative resistance flip-flop circuit uses four-loyer diodes,

Fig. 3. The nonsaturated multivibrator may be operated at megacycle rates using high-frequency transistors.

sum of T_{1} and T_{2}

In Fig. 2 the resistors R_{2} and R_{4} are shown returned to a common voltage, but they may be returned to separate voltages.

It is not necessary that $T_{1}=T_{2}$. The conduction times may be adjusted by variation of time constants and the base voltages. If the inequalities in Eqs. 1 and 2 are not met, the coupling capacitors do not charge to the supply voltage and the expressions for T_{1} and T_{2}, as given above, do not apply.

The output voltage amplitude is approximately 15 v and has rise and fall times of less than $1 \mu \mathrm{sec}$. If capacitors C_{1} and C_{2} are $500 \mu \mu \mathrm{f}$, the multivibrator period is about $20 \mu \mathrm{sec}$. The circuit will utilize any recommended transistor type with a maximum voltage rating of over 15 v .

The basic multivibrator shown in Fig. 2 may be made nonsaturating by using a clamping method of Fig. 3. The nonsaturated multivibrator may be operated at megacycle rates with transistors having a sufficiently high frequency response.

The design relationships given for the saturated
multivibrator hold for the nonsaturated tyre to the extent that the supply voltages are large com. pared to the voltage drops across the condu ting clamp diodes. The silicon diodes may be replaced with two germanium diodes in series.

Regenerative Frequency Divider

The regenerative frequency divider, shown in Fig. 4, is of particular interest because it is capable of dividing by relatively large ratios with a small number of transistors. In spite of this, very high reliability can be obtained and the circuit, if properly designed, will have "fail safe" characteristics. This means a failure of the input voltage, or a radical component failure will decrease the output voltage to zero.
The relative simplicity and component economy of the divider can be appreciated when it is recog. nized that a circuit employing digital techniques would require seven transistors and ten diodes to accomplish the same result.

The divider is driven at a frequency of one megacycle and produces an output at 100 kc . The

Fig. 4. High reliability, together with large ratio frequency-division, can be realized with this regenerative frequency divider.
circ : is stable and reliable, and, if properly adjust I, will not oscillate in the absence of an input. The phase stability is good and the operating ban width is such that excessively close tolerances in t.e tuned circuits need not be maintained.
I ansistor Q_{1} is a mixer that receives an input of $\quad \mathrm{v}$ rms at l mc from an external source. The outguat of the mixer is at 100 kc , is multiplied by threc twice, once in Q_{2} and again in Q_{3} to produce 900 kc . This multiplier stage drives the emitter of Q_{1} to produce a frequency difference of 100 kc , which is selected by means of a tapped tuned circuit.
The 4700 ohm resistor is connected in series with the collector of the transistor to suppress a forn of negative resistance oscillation that is encountered with high frequency junction transistors when bottoming occurs. It also serves the very useful function of limiting the peak collector current to a satisfactory value.
The frequency multiplier, Q_{2}, is driven from a capacitive tap on the 100 kc tuned circuit through a series isolating resistor, R_{8}, which also helps to prevent vhf parasites.
The second frequency multiplier, Q_{3}, produces the 900 kc voltage required for the mixer. The output amplifier, Q_{4}, is driven by the mixer output, and has sufficient gain to deliver 20 mw to a 50 ohm load. The 10,000 ohm resistor R_{16} across the tuned circuit of Q_{4} stabilizes the amplifier and also prevents an excessively high voltage from being developed at this point in the absence of a load. The frequency-multiplier stages and the output amplifier also contain series collector resistors for the reasons given above.
The alignment of the divider is best accomplished by driving the base of each transistor separately at the frequency of the collector tuned circuit. The tuned circuit is then adjusted for maximum response while the input is decreased if necessary, to avoid limiting. An input of 0.7 v ms at 1 mc should then be applied to Q_{1}. The system should oscillate and, as a final step, each tuned circuit should be adjusted to the center of the range where correct operation is obtained.
When properly adjusted the divider should work as the supply is varied from 5 to 40 v . Increasing the voltage beyond 40 v may cause transistor damage, and should not be attempted. The output should be zero in the absence of an input, except for a small amount of noise. The operating bandwidth should be at least ± 2 per cent at the middle of the supply-voltage range.
The divider is relatively insensitive to temperature and has been tested over the range from 0 to 60 C . The upper temperature limit is determined by the characteristics of the germanium transistors. The lower limit could be extended by the use of more stable tuned circuits such as those based up.n powdered-iron toroids. - ■

GENERAL INSTRUMENT SEMICONDUCTOR DIVISION

When JAN type diodes are required, you can be certain that General Instrument's engineering skills and manufacturing facilities will enable us to deliver them at prices that reflect years of volume production experience.
The Radio Receptor line of silicon and germa-
nium diodes is the most complete available to the industry - with the widest possible range of characteristics. You'll find them at authorized distributors across the country. Complete information and data sheets are available upon request.

Code No.	Min. Fwd. DCcur. @ +iv	Max. Rov. DC Cur. @ Tont V.		$\begin{gathered} \text { Pest } \\ \text { Vollage } \end{gathered}$	Max. Inv. Volicge	Min. Imakdown Vethego ${ }^{\circ}$	Avg. Fwad. DC Cur. (Mex.)
		$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$				
IN457	20 mA	. $025 \mu \mathrm{~A}$	$5 . \mu \mathrm{A}$	60 V	60 V	70 V	75 mA
IN458	7 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125 V	125V	150V	55 mA
1N459	3 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175 V	175V	200V	40 mA

- Reverse voltage at which a reverse current of 100 uA flows.

All ratings and characteristics are at $25^{\circ} \mathrm{C}$. unless otherwise noted.
Operating temperature range $-80^{\circ} \mathrm{C} .10+200^{\circ} \mathrm{C}$.

GENERAL INSTRUMENT CORPORATION
65 Gouverneur Strect. Newark 4 N J
RR

mity 11 A

Call Your Nearest Philco Indus rial Semicenductor Distributor for Fast EASTERN REGION
ACK RADIO SUPPIY CO.
Birmingham, Alabamo
CHEMCIITY RADIO \& ELECTRIC
Knoxville, Tennessee
Chorleston, West Virginia
Kingsport, Tennessee
Beckley, West Virginia
CRAMER EIECTRONICS, INC
Boston, Massachusells
ELECTRONIC SUPPIY CO.
Melbourne, Florida
Miami, Florida
St. Petersburg, Florida Orlando, Florida
ELECTRONIC WHOLE
Washington. D.C.
GENERAL RADIO SUPPLY CO.
Comden, New Jersey
LAFAYETIE RADIO CORPORATION New York, New York Jamaica, New York
Newark, Now Jersey
Plownifid, New Jersey
MILGRAY ELECTRONICS, INC.
milgray electronics, inc.
Now York, New York,
PHILADELPHIA ELECTRONICS, INC.
Philodelphia, Pennsylvonia
Norristown, Pennsylvania
SUMMIT DISTRIBUTORS, INC
SUMMIT DISTRIBUTO
TERMINAL New York
New York, New York
New York, New York
MIDWEST REGION
allied radio corporation
Chicago, Illinois
newark electric
PIONEER ELECTRONIC SUPPLY
Cleveland, Ohio
RADIO ELECTRONIC SUPPLY
Grand Rapids, Michigan
RISSI ELECTRONIC SUPPIY
Delroit, Michigan
SREPCO, INCORPORATED
Dayton, Ohio
STARK RADIO SUPPLY CO
Minneapolis, Minnesota
St. Paul, Minnessota
St. Paul, Minnesota
Duluth, Minn
STEVENSON'S
St. Cloud, Minnesot
VAN SICKLE RADIO CO
St. Lovis, Missouri
SOUTHWEST REGION
CENTRAL ELECTRONICS
Dollas, Texas
Fort Worth, Texas
DENVER ELECTRONIC SUPPLY CO.
Denver, Colorado
RADIO SPECIALTIES, INC.
Phoenix, Arizono
Alamogordo, New Mexico
Flogstoff, Arizona
STANDARD RADIO MARTS
Tucson, Arizona
TANDARO SUPFY co
StERING RADIO PRODUCTS, INC.
Houston, Texas
C \& G RADIO SUPPLY CO
Tacoma, Woshington Bremertion, Washington Olympio, Washington Aberdeen, Washington Ceniralia, Washington ELMAR ELECTRONICS KIERULFF ELECTRONICS, INC. Los Angeles, Colifornio Los Angeles, Colifornic
NEWARK EECraic co.
RADIO PRODUCTS SALES, INC.
Los Angeles Califomic WESTERN RADIO \& TELEVISION SUPY Y San Diego, Colifornia
\& CIRCLE 34 ON READER-SERVICE C D

For Reliable Performance

These field proven Philco Silicon Transistors (SAT*) permit complete are subjected gh ambient temperatures. temperatures ranging from $-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$.
Type 2N495 is a general purpose silicon transistor designed for plifer and oscillator applications at frequencies through is mc.

年 It gives the designer the advantages of low saturation resistance and low voltage operation, at high junction temperatures.
These units are environmentally tested in accordance with -19500A

Complete information will be supplied upon request. Write Lansdale Tube Company, Division of Philco Corporation, Lansdale, Pa., Dept. ED 759

cmaractenistic	CONOITION	trical value	
		2N409	2×496
Current Amplification Factor, hfe	$\begin{aligned} & V_{\mathrm{Cg}}=-\mathbf{6 v} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{ma} \end{aligned}$	20	
Current Amplification Factor, h_{F}.	$\begin{aligned} & V_{\mathrm{CB}}=-0.5 \mathrm{v} \\ & \mathbf{I}_{\mathrm{C}}=-15 \mathrm{ma} \end{aligned}$		16
Output Capacitance, Cob	$\begin{aligned} & V_{c \mathrm{c}}=-6 \mathrm{~V} \\ & I_{\mathrm{B}}=1 \mathrm{ma} \end{aligned}$	$7 \mu \mu \mathrm{f}$	$7 \mu \mu$ f
Maximum Frequency of Oscillation, f_{06} max.	$\begin{aligned} & V_{c \mathrm{E}}=-6 \mathrm{v} \\ & \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} \end{aligned}$	21 mc	
Frequency for Beta $=1, f_{i}{ }^{\circ}$	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{cz}}=-6 \mathrm{v} \\ \mathrm{I}_{\mathrm{R}}=1 \mathrm{ma} \\ \mathrm{f}=4 \mathrm{mc} \end{array} \end{aligned}$		18 mc
Cutoff Current, $I_{\text {cno }}$ or $I_{\text {800 }}$	V_{CB} or $\mathrm{V}_{\mathrm{ER}}=-10 \mathrm{v}$. $001 \mu \mathrm{a}$. $001 \mu \mathrm{a}$
Maximum Power Dissipation- 150 mw	Maximum Collector V	$\begin{aligned} & \text { ltage } 2 \mathrm{~N} 48 \\ & 2 \mathrm{~N} 48 \end{aligned}$	$195-25 \mathrm{~V}$
- $\boldsymbol{f}_{\mathrm{t}}$ (the Irequency at which beta is unity) is typically 85% of the alpha cutoll frequency.			

Immediately available in quantities 1 to 99 from your Philco Industrial Semiconductor Distributor

PHILCO
 LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

Transistor Data Chart

For an additional copy of this chart, furn to the Reader's Service card and circle number 850.

ELECTRONIC DESIGN's Seventh Annual Transistor Data Chart has been specially tailored to meet the specific needs of the design engineer.
Contrary to existing lists which group transistors by manufacturer or in numerical sequence (fine for salesmen, of limited use to engineers), the 1959 Data Chart has transistors organized into six application categories:
Audio units are mostly general purpose types, under one watt power rating. Types are listed in order of increasing forward-current transfer ratio.
High frequency units include these ranging up to and above the vhf range and are tabulated in order of increasing alpha-cutoff frequency.
Power devices include transistors that are rated at one watt and above and are listed in order of increasing collector power dissipation.
High-level switching devices include those intended for handling high currents and are listed in order of increasing alpha-cutoff frequency.

Low-level switching transistors are low power devices for switching signal circuits. They are tabulated in order of increasing alpha-cutoff frequency.
For both high- and low-level switching devices, rise, storage and fall time are given. Where spreads in characteristics were supplied by manufacturers, an average value has been used.
Special types such as phototransistors and unijunction units are included in this section.
By this system of listing transistors, the design engineer is offered a rapid method of selecting a particular type based on a parameter value. In addition, close substitutes are apparent and multiple sources of supply are listed when applicable.
For example, if a five watt power transistor is required, it is merely necessary to scan down the " W_{0} " columns in the "Power Transistor" group until " 5 w " is found. Various units, together with significant characteristics and manufacturers, will be tabulated. Immediately several types are shown and final selection is up to the design engineer. Similar arrangement of the other groups by a key parameter grouping offers rapid selection and sufficient information for initial guidance to proper types.
Foreign types have not been included since they are currently unavailable in large quantities; signs point, however, to a mass deluge of imports during the coming year.
One word of caution is included. Quite a few similar number types, made by several companies, were submitted with different characteristics due to the non-conformity in test methods among manufacturers. It is thus advisable to use this listing as a guide to selection and then follow up with a detailed evaluation of specific test methods and data as outlined in each manufacturer's spec sheet.
A cross index is included to identify a type number with its listed category. The JEDEC type numbers are tabulated in numerical order and the category group is shown at its right.

AUDIO-Under one watt power rating.
Listed in order of increasing beta.

1959 Transistor Data Chart
The Coming Year
Prospects for the coming year in transistor technology include mesa transistors with alpha cutoff frequencies as high as 300 mc and switching speeds in the order of 100 musec . Althoug the mesa device has been heralded quite promitienths over the past year, production quantities have been rather limited; several manufacturers now promise consistent output within several months. Some concern has been expressed by some com. panies on the subject of increased Japanese imports of general purpose, entertainment-type transistors. From 10,000 units shipped last year, clost to 50,000 have been sent during the first quarter of this year. Over a half dozen new plants have been recently set up in Japan to fabricate enough transistors to meet their heavy domestic demands as well as the lucrative export market.
Initial response from users indlicates that the quality of the imported transistors, used in such consumer products as radios and intercoms, equals that of domestic types; the low prices quoted point to strong competition for major \mathbf{U}. S. manufacturers.

The coming year will find a rapid rise in imported semiconductors in U.S.-made products. The possible availability of cheap wh transistors mat open the door to inexpensive FMi and TV re ceivers of transistorized design.

Index of Manufacturers

Abbrev. Company
Location
AMP Amperex Electronic Hicksville, N.Y. Company
BE Bendix Aviation
BO Bogue Electric Mfg Long Branch, N.J Paterson, N.J. Lowell, Mass. CBS-Hytron, S
Operations
CL Clevite Transistor Waltham, Mass Products
DE Delco, Gene Motors Corporation
FA Fairchild Semicond. Palo Alro, Calif Syracuse, N.Y. General Electric Company
GT General Transistor Jamaica, N.Y. Los Angeles, Co L. I. C., N.Y.

IND Industro Transistor
MH Minneapolis. Minneapolis-
Honeywell

Minneapolis, M

Motorola,
Semiconductor Philco Corporation Pacific

Semiconductors, Inc.

Radio Corp. of America	Somerville, N.J.
Raytheon Mfg. Company	Newton, Mass.
Rheem Mfg. Co.	Mountain View, Calif.
Silicon Transistor Corporation	L. I. C., N.Y.
Solid State Products	Salem, Mass.
Sperry Semiconductor Div.	South Norwalk, Conn
Sprague Electric Company	North Adams, Mass.
Sylvania Semiconductor Div.	Woburn, Mass.
Texas Instruments, Inc.	Dallas, Texas
Transitron Electronic Corporation	Wakefield, Mass.
Tung-Sol Electric, Inc.	East Orange, N.J.
Western Electric Company, Inc.	New York, N.Y.
Westinghouse	Youngwood, Pa.

Abbreviation of Terms

Alloyed Junction
Diffused Base
Double Diffused
Grown Diffused
Diffused Junction
Diffused Mesa
Drift
Fused Alloy
Fused Junction
Grown Diffused
Germanium
Grown Junction
Grown Rate
Meltback
MADT
Micro Alloy
Mesa
Rate Grown
Silicon
Surface Barrier
Collector to emitter capacitance measured
across the output terminals with the input ac
open-circuited.
Frequency at which the magnitude of the for-
ward-current transfer ratio (small-signal) is 0.707
of its low frequency value.
Common Emitter-Small signal forward current
transfer ratio
Common Emitter-Static value of short-circuited
forward current ratio
Collector current when collector junction is re-
verse biased and emitter is ds open-circuited

Alloyed Junction
Double Diffused
Grown Diffused
Diffused Junction
Drift
Fused Alloy
Grown Diffused
Germanium
Grown Junction
Grown Rate
MADT
Micro Alloy
Mesa
Rate Grown
Surface Barrier
Collector to emitter capacitance measured across the output terminals with the input ac
ward-current transfer ratio (small-signal) is 0.707 of its low frequency value.
Common Emitter-Small signal forward current transfer ralio
forward current rati
verse biased and emitter is de open-circuited

AUDIO—Under one watt power rating. Listed in order of increasing beta.

Type No.	Mfg	Type	$\begin{gathered} h_{\text {fe }} \\ \text { or } \\ h_{\text {FE }} \end{gathered}$	Max. Retings					Cherectoristic:				Remeres	$\begin{aligned} & \text { Trpo } \\ & \text { No. } \end{aligned}$
				$\begin{gathered} W_{e} \\ (m w) \end{gathered}$	T_{i} (c)	mw/o ${ }_{c}$	$\begin{gathered} v_{e} \\ v \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{c}} \\ & \mathrm{mo} \end{aligned}$	$\begin{aligned} & I_{c o} \\ & \mu \mathrm{c} \end{aligned}$	$\begin{aligned} & \text { NF } \\ & d b \end{aligned}$	$\begin{aligned} & C_{c}, \\ & \mu \mu \mathrm{f} \end{aligned}$	i_{mc}		
2N104	RCA	Pnp,AJ,ge	4	150	85	-	30	50	10	12	-	0.7		2 N 10 C
2N215	RCA	pnp,AJ,ge	44	150	85	-	30	50	10	12	-	0.7		2 N 215
2N525	GE	pnp,AJ, 80	44	225	100	4	45	500	10	6	25	2.5	SY	24525
2N64	RA	pnp,fo, ge	45	100	85	-	15	10	6	22	-	-		2N4
2 N 131 A	RA	pnp, FA, ge	45	100	85	-	30	100	6	22	-	0.8		2N131A
2N238	II	pnp,AJ, 90	45	150	85	2.5	25	150	6	7.5	-	1.5		2N238
2N291	TI	pnp,AJ,ge	45	180	85	3	25	200	6	7.5	\cdots	1.5		2 N 291
2N322	GE	$p \mathrm{p}, \mathrm{AJ}, \mathrm{g}^{\circ}$	45	140	85	4	16	100	16	-	25	2.0	Driver	2N322
2N465	IND	pnp, AJ, 90	45	200	85	3	45	100	6	15	-	0.8	MO, RA	2M465
2N595	GT	npn,AJ,ge	45	100	85	1.65	20	-	2	16	15	4	Bilateral	2N595
2N1098	GE	pnp,AJ,ge	45	140	85	4	16	100	16	-	25	-	Driver	2N1098
2N1145	GE	pnp,AJ, 90	45	140	85	4	16	100	16		40	-	Driver	2N1145
CK65	RA	pnp, FA,ge	45	80	85	-	24	100	2	22		1		CK65
TRT21	IND	$p n p, A J, g e$	45	200	85	3	30	200	10	15	25	1		TR721
2N280	AM	$p \cap p, A J, g e$	47	25	75	2.5	20	10	150	10	-	0.1		2N280
OC66	AM	pnp,AJ, 90	47	50	75	1.7	5	10	-	9	\square	0.47	heoring-aid	OC66
2M13A.	GT	pnp, AJ, 90	48	155	100	-	45	-	8	10	40	2	MIL, GE	2N43A*
2N61	WH	Pnp, FJ,ge	48	180	85	3.3	25	200	15	12	40	1		2N61
2N611	WH	pnp, FJ,ge	48	180	85	3.3	25	200	15	12	40	1		2N611
TR320	IND	pnp, AJ, 90	48	200	85	3	25	100	10	-	25	2.5	2N320	TR320
2N133A	RA	pnp,FA,ge	50	100	85	-	20	100	6	6.5		0.8		2N133A
2N320	GE	pnp,AJ, ge	50	225	85	4	20	200	16	-	25	2.5		2N320
2N331	RCA	pnp,AJ, ge	50	200	85	-	30	200	16	9	-	1.16	GT, BE	2N331
2N363	IND	prp, $A J, g e$	50	200	85	3	25	100	10	-	-	1		2N363
2N422	IND	pnp,AJ, 90	50	200	85	3	35	100	6	6	-	0.8	Ro	2M122
2N461	TS	prp,AJ, ge	50	200	100	3.3	45	400	15	-				2 M 461
TR381	IND	pnp,AJ, ge	50	200	85	3	30	200	10	-	50	1.2	2N381	TR381
2M188A	GE	pnp,AJ, ge	54	200	85	4	25	200	16	-	40	1.2		2N188A
2N191	GE	pnp,AJ, 90	54	75	85	2	25	50	16	15	40	1.2	Driver	2N191
2N382	TS	pnp,AJ, ge	54	200	85	3.3	25	200	10	-	-	-		2N382
2N105	RCA	pnp,AJ, ge	55	60	85	-	25	15	7	16.5	30	0.75		2N105
2N566	IND	prp,AJ, ge	55	200	85	3	30	300	3	12	30	1		2N566
2N1097	GE	prp, AJ,ge	55	140	85	4	16	100	16	-	25	-	Driver	2N1097
2N114	GE	pnp,AJ, ge	55	140	85	d	16	100	16	-	40	-	Driver	2 N 114
9044	TI	npn,GR,si	55	150	175	1	45	25	2	25	-	8		904 A
OC54	AM	pnp, AJ, ge	55	10	55	0.7	3	5	0.1	10	10^{-}	0.01	heoring oid	0 C 54
2N226	PH	pnp, AJ, ge	60	250	75	5.0	30	150	8	-	140	0.4		2N226
2N244	TI	npn, GJ, si	60	0.75	150	6	60	60		16	5	0.08		2 N 24
2N596	GT	npn,AJ, ge	60	100	85	1.67	20	-	2	16	15	6	Bilatoral	2N596
2N633	IND	prp,AJ,ge	60	200	85	3	25	50	10	-	-	0.8	RA	2N633
905	TI	npn,GR,si	60	150	175	1	45	25	2	25		6	2N1152	
2N526	GE	pnp,AJ, 90	64	225	100	4	45	500	10	6	25	3		2N526
2N175	RCA	pnp, AJ, ge	65	50	85	-	10	2	12	6	-	0.85		${ }_{2} 2175$
2N220	RCA	pnp,AJ,ge	65	50	85	-	10	2	12	6	-	0.85		2 N 220
2N407	RCA	prp,AJ,ge	65	150	85	-	20	70	14	-	-	-	SY	2N407
2N408	RCA	pnp,AJ, ge	65	150	85	-	20	70	14	-	-	-		2N408
2N649	RCA	npn,AJ,ge	65	100	85	-	20	100	14	-	-	-		2N649
OC56	AM	prp, AJ,ge	65	10	55	0.7	3	5	120	15	-	-	hooring aid	0 C 56
2N323	GE	pnp, AJ, ge	68	140	85	4	16	100	16	-	25	2.5	Drivor	2 N 323
2N361	IND	pnp, AJ, ge	70	200	85	3	25	200	10	-	-	1	RA	2N361
2N591	RCA	pnp, AJ, 90	70	100	85	-	32	40	7	-	-	-	SY	2 N 591
2N647	RCA	npn,AJ, ge	70	100	85	-	25	100	14	-	-	-		2N647
2N1247	TR	npn,DG, si	70	30	150	0.24	6	-	0.8	-	9	5	Low-dififde anp	2N1247
571026	TR	npn,DG, si	70	30	150	0.24	6	-	0.8	-	9	5	Low-tifife ang	ST1026
2N383	TS	pnp,AJ, 90	72	200	85	33	25	200	10	-	-	-		2N383
2N241	GE	pnp,AJ,ge	73	100	85	3	25	200	16	-	40	1.3		2N2A1
2N2A1A	GE	pnp,AJ,ge	73	200	85	4	25	200	16	-	40	1.3		2N241A
2N34	SY	pnp,AJ,ge	75	150	75	3	40	100	100	-	-	0.01	Driver	2N34
2N35	SY	npn,AJ,ge	- 75	150	75	3	40	100	100	$\bar{\square}$	-	0.01	Drivar	2N35
2N60	WH	pnp, FJ,ge	75	180	85	3.3	25	200	15	12	40	1.5		2N60
2N109	RCA	pnp,AJ,ge	75	150	85	-	25	70	14	15	-			2N109
2N192	GE	pnp,AJ,ge	75	75	85	2	25	50	16	15	40	1.5		2N192
2 N 214	SY	npro, A J,ge	75	180	85	3	40	100	100	Is	-	0.01	Matchad	2 N 214
2N217	RCA	pnp, AJ, ge	75	150	85	-	25	70	14	-	-	-		2N217
2N228	SY	npn, AJ,ge	75	50	75	1	40	100	100	-	-	0.01		2N228
2N610	WH	pnp,FJ,ge	75	180	85	3.3	25	200	15	12	40	1.1		2 N 610
2N651	IND	pnp,AJ,ge	75	200	85	3	45	250	1	10	20	2.5	MO	2N651
2N654	IND	pnp,AJ,ge	75	200	85	3	30	250	1	10	20	2.5	MO	2N654
2N1059	SY	npn,AJ.ge	75	180	75	3.6	40	100	50	-	-	0.01		2N1059
2N1193	MO	pnp,AJ,ge	75	175	85	2.8	25	200	4	10	20	2		2N1193

(Continued on p. 52)

ElEC RONIC DESIGN • July 22, 1959

PHILCO Transistors operate

 $51,614,343$
in High-Speed Computer Circuits with only 8 Failures! ${ }^{\ddagger}$

Total Transistor Service Hours To Date	$\underset{\text { Transistors }}{\text { Total }}$	$\begin{gathered} \text { Total } \\ \text { Failures } \ddagger \end{gathered}$	Report
1,068,111	99	0	ELECTRONICs, Oct. 1,1957, $\text { pg. } 167$
5,460,000	600	1	ELECTRONICS, Oct. 1, 1957, pg. 167
1,250,000	125	0	$\begin{gathered} \text { PHILCO } \\ \text { REPORT, } \\ \text { Feb. } 10,1959 \end{gathered}$
16,000,00	-	2	$\begin{aligned} & \text { WIJC } \\ & \text { REPORT, } \\ & \text { Fob. } 1957 \end{aligned}$
8,640,000	8,000	2	$\begin{gathered} \hline \text { PHILCO } \\ \text { REPORT, } \\ \text { Feb. 12, } 1959 \end{gathered}$
19,196,232	18,601	3	PHILCO REPORT, Nov. 19, 1958

Carefully documented reports now reveal that Philco electro-chemical transistors have amassed more than fifty-million hours of operation in six computers under actual feld conditions. Here is proof of the outstanding performance and reliability that electronics engineers and designers have come to expect from Transistor Center, U.S.A. Of course, these transistors are still operating in their original high speed computer switching circuits...extending service life data on these transistors beyond the limits of any previously published information.
When you think of transistors, think first of Philco. Make Philco your prime source for all transistor information.

Write to Lansdale Tube Company, Division of Phileo Corporation, Lansdale, Po., Dept. ED 759
$\$$ Failures due to all causes including human error.
-Documented service hours in these six compurers only. Total eransistors hours in similar circuits are many times this amount.

PHILCO

LANSDALE TUBE COMPANY DIVISION
LANSDALE, PENNSYLVANIA

1959 Transistor Data Chart
AUDIO-Under one watt power rating.

Trpe No.	Mfg	Type	$\begin{aligned} & h_{f 0} \\ & \text { or } \\ & h_{\text {FE }} \end{aligned}$	Max. Ret gs			
				$\begin{gathered} W_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & (c) \end{aligned}$	mw/or	v v^{\prime}
TR81	IND	pnp,AJ,ge	75	200	85	3	25
TR382	IND	pnp,AJ,ge	75	200	85	3	25
GT74	GT	pnp,AJ,ge	75	150	100	2	25
GT81	GT	pnp,AJ,ge	75	150	100	2	25
2N185	TI	pnp,AJ,ge	80	150	85	2.5	150
2N321	GE	pnp,AJ,ge	80	225	85	4	20
OC55	AM	pnp,AJ,ge	80	10	55	0.7	3
TR321	IND	pnp,AJ,ge	80	200	85	3	30
2N527	GE	pnp,AJ,ge	81	225	100	4	45
2N324	GE	pnp,AJ.ge	85	140	85	4	16
2N65	RA	pnp, FA, ge	90	100	85	-	12
2N132A	RA	Pnp,FA,ge	90	100	85	-	2
2N224	PH	pпp, A J,ge	90	250	75	5.0	25
2N369	TI	pnp,AJ,ge	90	100	85	2	30
2N466	IND	pnp,AJ,ge	90	200	85	3	35
CK 22	RA	pnp, FA, ge	90	80	85	-	20
CK66	RA	pnp,FA,ge	90	80	85	-	20
2N59	WH	pnp, F J, ge	100	180	85	3.3	25
2N207	PH	pпp, AJ,ge	100	50	65	1.25	12
2N207A	PH	pnp,AJ,ge	100	50	65	1.25	12
2 N 207 B	PH	pnp, AJ,ge	100	50	65	1.25	12
2N360	IND	$p \cap p, A J$, ge	100	200	85	,	25
2N362	IND	pnp,AJ, ge	100	200	8	3	25
2N366	TI	npn,GJ,ge	100	150	85	2	30
2N535	PH	Pnp,AJ,ge	100	50	85	0.87	26
2N535A	PH	pnp,AJ, ge	100	50	85	0.87	20
2N535B	PH	pnp,AJ,ge	100	50	85	0.87	20
2N568	IND	pnp,AJ,ge	100	200	85	3	30
2N609	WH	pnp, FJ, ge	100	180	85	3.3	25
2N632	IND	pnp,AJ,ge	100	200	85	3	25
2N1128	PH	pnp.AJ.ge	100	150	85	2.5	25
TR383	IND	pnp,AJ.ge	100	200	85	3	25
2N223	PH	pnp.AJ,ge	110	250	75	5.0	18
2N265	GE	pnp,AJ,ge	110	75	85	2	25
GT109	GT	pnp,AJ,ge	110	150	100	2	25
2N508	GE	Pnp, AJ,ge	112	140	85	4	16
2N120	TI	npn,GR, si	150	150	175	1	45
2N359	IND	pnp,Al, ge	150	200	85		25
2N534	PH	pпp, AJ, ge	150	25	65	1.43	50
2N570	IND	pпp,AJ,ge	150	200	85	3	30
2N631	IND	pnp,AJ, ge	150	200	85	3	25
910	TI	npn,GR, si	150	150	175	1	45
2N652	IND	prp,AJ,ge	160	200	85	3	45
2N655	IND	pпp,AJ,ge	160	200	85	3	30
2 N 1130	PH	pnp,AJ,ge	160	150	85	2.5	30
2N1194	MO	Pпp,AJ, ge	160	175	85	2.8	25
2N467	IND	pnp,AJ,ge	180	200	85	3	35
CK 67	RA	pnp, FA,ge	180	80	85	-	15
2N1129	PH	pnp,AJ,ge	190	150	85	2.5	25
2N572	IND	pnp, AJ,ge	200	200	85	3	30
2 N 213	SY	npn, A J, ge	250	150	85	2.3	40
CK754	RA	pnp, FA,ge	300	100	85	-	10
GT 1200	GT	npn, AJ, ge	-	120	85		90
OCP70	AM	pnp, AJ,ge	-	25	65	2.5	7.5

Abbreviation of Terms

AJ	Alloyed Junction	GE	Germanium
DB	Diffused Base	GJ	Grown Jur ion
DD	Double Diffused	GR	Grown Rot
DG	Grown Diffused	MB	Meltback
DJ	Diffused Junction	MD	MADT
DM	Diffused Mesa	MA	Micro Allo
Dr	Drift	MS	Mesa
FA	Fused Alloy	RG	Rate Grow
FJ	Fused Junction	SI	Silicon
GD	Grown Diffused	SBT	Surface Bar

ELECTRONIC DESIGN • July 22, 159
ed in ser of increasing beta. (continued)

Che zteristics			Remerks	Type
$\begin{aligned} & \hline \mathrm{NF} \\ & \mathrm{dt} \end{aligned}$	$\underset{\mu \nu f}{C_{c}}$	$\begin{aligned} & \mathrm{f}_{\mathrm{a}} \\ & \mathrm{mc} \end{aligned}$		
5 6 16 6.5	25	1	2N382	TR81
	50	1.5		TR382
	35 35	-		GT74
	35	$\overline{2}$		2 Cl 185
	25	3	hearing aid 2N321	2N321
10	-	0.01		0 C 5
-	25	3		TR321
6	25	3.3		2 N 527
-	25	3	Driver	2N324
20	-	1	MO, RA	2N65
	,			
	125	0.57		
-	33	1.3		2 N 369
15	-	1		2M166
6.5	-	1.2		CK22
22	40	1.2		
12		1.2		$\stackrel{\text { 2N59 }}{ }$
5	-	2		
2	-	2		2N207A
2	-	2	RA	${ }_{\text {2N360 }} 2$ 207B
-	-	1		
-	-	1	RA	2 N 362
-	4.5			$2 N 366$2N535
5		3.5 2		
	-	2	RA	${ }_{2}^{2 N 535 A}$
2				
12	30	1.5		${ }^{2} \mathrm{~N} 568$
12	40	1.2		2 N 609
-				2 N 632
-	90	1	2N383	2 N 128
-	50	1.8		TR383
-	90	0.6		2N223
15	40	1.5	Driver	2N265
16	35	-		GT109
	25	3.5	Driver	${ }^{2} \mathrm{~N} 508$
20		7	RA	$2 N 120$2N359
-	30^{-}			
12		-		$\begin{aligned} & 2 N 534 \\ & \text { 2N570 } \end{aligned}$
	-	1.2	RA	2N631
201010	-	73	${ }_{\text {MO }}^{\text {2N1 }} 153$	910
	20			
	$\begin{array}{r} 20 \\ 125 \end{array}$	30.75	mo	$\begin{aligned} & \text { 2N655 } \\ & 2 N 1130 \end{aligned}$
10 15 22 12	20	2.5	MO, RA	$\begin{aligned} & \text { 2N1194 } \\ & \text { 2N467 } \\ & \text { CKK7 } \\ & \text { 2N1199 } \\ & \text { 2N572 } \end{aligned}$
	-	1.2		
	12530	1.50.75		
		3		
-	-	0.01	Driver	2N213 CK75 GT 1200 OCP70
20	-	1		
2	-	-		
			photorr.	

n = Collector to emitter capacitance measured ocross the output terminals with the input ac open-circuited.
$=$ Frequency at which the magnitude of the for-
v.ard-current transfer ratic (small-signal) is 0.707

- its low frequency value.
=Common Emilter-Small signal forward current H. Insfer ratio
= C mmmon Emitter-Static value of short-circuited
foward current ratio
$=$ C Illector current when collector junction is re-
\checkmark rse biased and emitter is de open-circuited.

handling capacity of the new Westinghouse

transistor!

Greater than 99% efficiency when used to handle 1.5 kw of power in a low-frequency DC switch! Power loss is only $10-15$ watts when handling 1.5 kw . That's just one of the impressive specifications established by a remarkable new semiconductor device-the Westinghouse Silicon Power Transistor.
This Power Transistor is remarkable in other ways, too . . .

- It is the first power transistor available in voltage ranges above 100 volts.
- It has power dissipation capability of 150 watts made possible by the low thermal resistance of $.7^{\circ} \mathrm{C} /$ watt.
- It can operate at higher temperatures than germanium $\left(150^{\circ} \mathrm{C}\right.$., compared to $85^{\circ} \mathrm{C}$).
- It has astonishingly low saturation resistance-less than .5 ohms at 5 amperes and .75 ohms at 2 amperes, an achievement made possible through extensive research and development of hyper-pure Siemens-Westinghouse Silicon.
- It is 100% power-tested under actual maximum rated specifications before leaving the plant.
- It is encapsulated in a rugged, all-welded case.

here are a few of the applications ...

- Inverters and converters - Data processing circuits Servo output circuits - Series regulated power supplies As a low frequency switch - In class A amplifiers.
Available in 2 and 5 ampere collector ratings in production quantities now. For complete specifications and details, contact your local Westinghouse representative.

1959 Transistor Data Chart

HIGH-FREQUENCY-Up to 750 mc . Listed in order of increasing alpha cutoff frequency.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Mfg	Trpe	$\begin{aligned} & f_{a} \\ & M C \end{aligned}$	Max. Retings					Choracteristics				Remorks	$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
				$\begin{gathered} W_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & (c) \end{aligned}$	$m w /{ }_{c}$	$\begin{aligned} & v_{c} \\ & v^{\prime} \end{aligned}$	$\underset{\text { mo }}{I_{c}}$	$\begin{aligned} & h_{\text {fo }} \\ & \text { or } \\ & h_{\text {fe }} \end{aligned}$	$\begin{aligned} & l_{c o} \\ & { }_{\mu 0} \end{aligned}$	$\begin{gathered} \text { NF } \\ \text { db } \end{gathered}$	$\mathrm{C}_{\mathrm{Coe}}$		
2 MHM	CBS	npn,AJ,ge	0.5	100	85	1.67	15	-	-	6	-	12		2N444
2N306	CBS	npn,AJ,ge	0.550	50	75	-	20	-	16	200	-	12		2N306
2 M 44 A	GT	npn,AJ,ge	1	150	100	2	40	-	25	2	12	14		2N444A
2N1024	SSC	pnp,AJ, si	1	150	150	1.2	15	100	9	25	-	7		2N1024
2N1025	SSC	pnp,AJ, si	1	150	150	1.2	35	100	15	25	-	7		2N1025
2 N 94	SY	npn,AJ.ge	2	50	75	1	20	50	50	50	-	-		2 N 94
2N139	SY	pnp,AJ,ge	2	50	75	1	16	15	80	50	-	-	RCA	2N139
2N193	SY	npn,AJ, 90	2	0.05	75	1	18	50	9	50	-	-	Osc	2 N 193
2N194	SY	npn, A S,ge	2	0.05	75	1	18	50	10	50	-	-	Mixer	2N194
2N194A	SY	npr,AJ, 90	2	0.05	75	1	18	50	10	50	-	-	Converter	2N194A
2N233A	SY	npm,AJ, 9°	2	50	75	1	18	50	30	50	-	-		2N233A
2M13A	SY	$p n p, A J, 90$	2	150	85	2.5	15	200	-	10	-	-		2N413A
2N515	SY	npn,AJ.ge	2	50	75	1	18	10	10	50	-	-		2N515
2N516	SY	npm,AJ.ge	2	50	75	1	18	10	10	50	-	-		2N516
2N517	SY	npm, A J, g°	2	50	75	1	18	10	10	50	-	-		2N517
2N519A	GT	pnp, AJ, 90	2	150	100	2	25	-	25	1	12	14	IND.	2N519A
2N445	CBS	npn,AJ,ge	2	100	85	1.67	15	-	-	6	-	12		2N45
2N1026	SSC	pnp.A., si	2	150	150	1.2	35	100	25	25	-	7		2N1026
2N1026A	SSC	pnp.A.J.si	2	150	150	1.2	35	100	36	25	-	7		2N1026A
2 M 13	RA	pnp,FA,ge	2.5	150	85	-	18	200	30	2.0	7	-	IND.	2N413
CK13	RA	pnp,FA,ge	2.5	80	85	-	18	200	30	2.0	7	$\overline{-}$		CK13
2N356	CBS	npn, A J,ge	3	100	85	1.67	20	-	-	5	-	12	RCA, GT, SY	2N356
2 M 388	CBS	npn,AJ, ge°	3	100	85	1.67	30	-	-	10	-	12	GT	2N438
2N438A	CBS	npr,AJ,go	3	150	85	2.5	30	-	$\overline{-}$	10	$\overline{-}$	12		2N438A
2M445A	GT	npn, $A, \ldots, g e$	3	150	100	2	30	-	70	2	12	14		2N445A
2M481	IND	pnp,AJ,ge	3	200	85		30	20	50	3	-	14	RA. Qscillator	2N481
2N614	WH	pnp, F J, ge	3	125	85	2.1	20	150	4	6	10			2N614
2N1222	GT	pnp, AJ, si	3	150	150	1.2	30	100	10	0.05	16	9		2N1222
2N482	IND	pnp,AJ, 90	3.5	200	85	3	30	20	50	3	-	12	RA, IF	2N482
2N212	SY	$n p n, A J, 90$	4	0.05	75	1	18	50	20	50	-	-	Converter	2N212
2N385	CBS	npr, AJ, 90	4	150	100	2.0	25	-	-	35	-	4	SY	2N385
2N414A	SY	pnp,AJ,ge	4	150	85	2.5	15	200	$\overline{-}$	10	-	-		2N414A
2 N 1027	SSC	pnp, AJ, si	4	150	150	1.2	15	100	18	25	-	7		2N1027
2N1058	SY	npn, A J,ge	4	0.05	75	1	18	-	15	50	-	-	Converter	2N1058
GT495	GT	pnp,AJ, si	4	150	140	1.3	25	50	10	0.05	-	6		GT495
2N94A	SY	npr,AJ,ge	5	50	75	1	20	20	50	19	-	-		2N94A
2N292	GE	npn,RG,ge	5	65	85	1.1	15	20	25	5	-	2.4		2N292
2N439	CBS	npr,AJ,ge	5	100	85	1.67	30	-	-	10	-	12	GT, SY	2N439
2N439A	CBS	npros A, 90	5	150	85	2.5	30	-	-	10	-	12		2N439A
2 N 46	CBS	npn,AJ,ge	5	100	85	1.67	15	-	-	6	-	12		2N446
2 M 48	GE	npm,RG.ge	5	65	85	1.1	15	20	25	5	-	2.4		2N448
2N520A	GT	pnp,AJ,ge	5	150	100	2	25	-	100	1	12	14	IND.	2N520A
2N615	WH	pnp, F J, g°	5	125	85	2.1	20	150	8	6	10	8		2N615
2N634	CBS	npm, AJ, ge°	5	150	85	2.5	20	-	-	5	-	12	GE	2N634
2N483	RA	pnp, FA,ge	5.5	150	85	-	12	20	60	3.0	-	-	IND	2N483
2N357	CBS	npn,AJ,ge	6	100	85	1.67	20	-	-	5	-		RCA, GT, SY	2N357
2N377	CBS	npn,A J, ge	6	150	100	2.0	25	-	-	5	-	12	SY	2N377
2 N 466	GT	npn, A J.ge	6	150	100	2	30	-	120	2	12	14		2N446A
2N1221	GT	pnp, AJ, si	6	150	150	1.2	30	100	20	0.05	16	7		2N1221
2N218	RCA	pnp,AJ,ge	6.8	80	85	-	16	15	48	6	-	-		2N218
2N409	RCA	pnp,AJ,ge	6.8	80	85	-	13	15	48	10	-	-	SY	2N409
2 M 10	RCA	pпp,AJ, g°	6.8	80	85	-	13	15	75	10	$\overline{7}$	-		2N410
2N332	TR	npn,GR,si	7	150	175	0.8	45	-	14	0.2	36	7	GE, BO	2N332
2 M 14	RA	pnd, FA, ge°	7	150	85	-	15	200	60	2.0	6	-	IND.	2N414
2N617	WH	pnp, F J, ge	7	125	85	2.1	15	150	14	6	10	8	Conv.	2N617
CX14	RA	pnp, FA, ge°	7	80	85	-	15	200	60	2.0	6	-		CK14
CT496	GT	pnp,AJ, si	7	150	140	1.3	25	50	10	0.05	-	6		GT496
ST903	TR	Hpn,GR, si	7	150	150	1.0	30	-	16	0.1	25	7		ST903
2N485	IND	$p n p, A J, g e$	7.5	200	85	3	30	20	50	3	-	12	Converter RA.	2N485
2N117	TR	npm,GR,si	8	150	175	0.8	30	-	15	0.1	20	7	USN TI	2N117
2N1684	GE	npm,RG,90	8	65	85	1.1	15	20	40	5	-	2.4		2N168A
2N169	GE	npm,RG, ${ }^{\circ}$	8	65	85	1.1	15	20	72	5	-	2.4		2N169
2N293	GE	npn,RG,ge	8	65	85	1.1	15	20	25	5	-	2.4		2N293
2N388	CBS	npn,Al,ge	8	150	100	2.0	25	-	-	5	-	12	GT, SY	2N388
2N449	GE	npn,RG, 90	8	65	85	1.1	15	20	72	5	-	2.4		2N449
2N1086	GE	npn,RG,ge	8	65	85	1.1	9	20	40	3	-	2.4		2N1086
2N1086	GE	npn,RG,ge	8	65	85	1.1	9	20	40	3	-	2.4		2N1086A
2N1087	GE	npn,RG,90	8	65	85	1.1	9	20	40	3	-	2.4		2N1087
2N1121	GE	npm,RG,90	8	65	85	1.1	15	20	72	5	-	2.4		2N1121
\$500	SSC	pnp,AJ, si	8	150	150	1.2	25	100	9	25	-	7		\$500

HIGH-FREQUENCY-Up to 750 mc .

Type No.	Mfg	Type	$\begin{aligned} & \mathbf{f}_{2} \\ & M C \end{aligned}$	Max. Ratings				
				$\begin{gathered} W_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & \text { (c) } \end{aligned}$	${ }^{m w / 0}{ }_{c}$	$\begin{aligned} & v_{c} \\ & v \end{aligned}$	$\begin{gathered} I_{c} \\ \mathrm{mo} \end{gathered}$
2N169A	GE	npn,RG,ge	9	65	85	1.1	25	20
2N333	TR	npn,GR, si	9	150	175	0.8	45	-
2N358	CBS	npr,AJ,ge	9	100	85	1.67	20	-
2N447	CBS	npn,AJ,ge	9	100	85	1.67	15	-
2N521A	GT	pnp,AJ,ge	9	150	100	2	25	-
2N616	WH	pnp, FJ,ge	9	125	85	2.1	15	150
ST904	TR	npn,GR, si	9	150	150	1.0	30	-
2N118	TR	npn,GR,si	10	150	175	0.8	30	-
2N140	RCA	pnp.AJ,ge	10	80	85	-	16	15
2N219	RCA	pnp,AJ,ge	10	80	85	-	16	15
2N335	TR	npn,GR, si	10	150	175	0.8	45	-
2NAII	RCA	pnp,AJ,ge	10	80	85	-	13	15
2N412	RCA	pnp,AJ,ge	10	80	85	-	13	15
2N416	RA	pnp,FA,ge	10	150	85	-	12	200
2N44O	CBS	npro,AJ,ge	10	100	85	1.67	30	-
2N4AOA	CBS	npn,AJ,ge	10	150	85	2.5	30	-
2N447A	GT	npn, AJ,ge	10	150	100	,	30	-
2N4T3	TR	npn,GR,si	10	200	200	1.1	15	-
2N474	TR	npn,GR,si	10	200	200	1.1	30	-
2N475	TR	npn,GR,si	10	200	200	1.1	45	-
2N484	RA	pnp,FA, ge	10	150	85	-	12	20
2N635	CBS	npn,AJ,ge	10	150	85	2.5	20	-
CK16	RA	pnp,FA,ge	10	80	85	-	12	200
ST905	TR	npn,GR,si	10	150	150	1.0	30	-
2Nil8A	TR	npn,GR, si	11	150	175	0.8	30	-
2 N 119	TR	npn,GR, si	11	150	175	0.8	30	-
2N334	TR	npn,GR,si	11	150	175	0.8	45	-
2N478	TR	npn,GR,si	11	200	200	1.1	15	-
2N479	TR	npn,GR,si	11	200	200	1.1	30	-
2N480	TR	npn,GR,si	11	200	200	1.1	45	-
ST9	TR	npn,GR, si	11	150	150	1.2	15	-
ST15	TR	npn,GR, si	11	200	200	1.1	15	-
ST29	TR	npn,GR,si	11	150	150	1.2	30	-
ST35	TR	npn,GR, si	11	200	200	1.1	30	-
ST45	TR	npn,GR, si	11	200	200	1.1	45	-
ST904A	TR	npn,GR, si	11	150	150	1.0	30	-
ST910	TR	npn,GR,si	11	150	150	1.0	30	-
2N486	IND	pnp,AJ, ge	12	-	85	3	30	20
2N336	TR	npn,GR,si	13	150	175	0.8	45	-
2N495	PH	pnp,SA, si	15	150	140	1.1	25	50
2N541	TR	npn,GR,si	15	200	200	1.1	15	-
2N542	TR	npn,GR,si	15	200	200	1.1	30	-
2N543	TR	npn,GR, si	15	200	200	1.1	45	-
2N624	SY	pnp, AJ, ge	15	100	100	1.3	20	-
2N636	CBS	npn,AJ,ge	15	150	85	2.5	20	-
2N522A	GT	pnp,AJ,ge	17	150	100	2	25	-
2 M 17	RA	pnp,FA,ge	20	150	85	-	10	200
2N602	GT	pnp,Dr,ge	20	120	85	2	20	$\bar{\sim}$
CK17	RA	Pnp,FA,ge	20	80	85	-	10	200
2N523A	GT	pnp,AJ.ge	23	150	100	2	20	-
2N1065	GT	pnp,Dr,ge	25	120	85	2	40	
2N247	RCA	pnp,Dr,ge	30	80	85	-	35	10
2N274	RCA	pnp,Dr,ge	30	80	85	-	35	10
2N370	RCA	pnp,Dr,ge	30	80	85	_	20	10
2N371	RCA	pnp,Dr,ge	30	80	85	-	20	10
2N372	RCA	pnp, Dr,ge	30	80	85	-	20	10
2N373	RCA	pnp,Dr,ge	30	80	85	-	25	10
2N374	RCA	pnp,Dr,ge	30	80	85	-	25	10
2N54	RCA	pnp, Dr,ge	30	80	85	-	18	10
2N1109	TI	prp,GD,ge	30	30	85	-	16	5
2N252	TI	pnp,GD,ge	35	30	55	-	16	5
2N308	TI	prp,GD,ge	35	30	55	-	20	5
2N309	TI	prp,GD,ge	35	30	55	-	20	5
2N310	TI	pnp,GD,ge	35	30	55	-	30	5
2N1108	TI	pnp,GD,ge	35	30	85	-	16	5
2 N 1 ll 10	TI	prp,GD,ge	35	30	85	-	16	5
2N1111	TI	pmp,GD,ge	35	30	85	-	20	5
2N1llA	TI	pmp,GD,ge	35	30	85	-	20	5
$2 \mathrm{~N} 1 \mathrm{H118}$	TI	prp,GD,ge	35	30	85	-	27	5
2N603	GT	pnp,Dr,ge	40	120	85	2	30	-

led in order of increasing alpha cufoff quency. (continued)

INDICATORS...LIGHTS...PUSHBUTTONS
or plain Tain ortored, Letored
 Speces, Sourre Inppection ofthored

NOW - FOR THE FIRST TIME - A COMPLETE LINE
All lighes shown in actual size." OF MODERN INDICATORS FOR MODERN DESIGNERS.
in cetual size:

MTL SERIES MINI-LITES

Transistor driven neon indicator, self contained and operating from signals as small as one volt. With fourteen
standard models the MINI-LITES fits most small signal standard models the MINI-LITES fits most small signal
indicator applications. Mounts in $3 / 8{ }^{\circ}$ hole. Back panel indicator applications. Mounts in
length $11 / 3^{*}$. Special variations available.

MINIATURE BUTTON LITES
Miniature Combination neon indicator and momentary contact push button switch eliminates need for separate switch and lamp hoider in applications series limiting resistora. Normally open OR normally closed contacts in conjunction with indicator; both if lamp is
omitted. Mounts in $3 / 6^{\circ}$ hole; $7 / 8^{\text {a }}$ back panel length.

$\xrightarrow{\square}$ Transintorized driver package makes it possibl
Nixie tubes directly from transistor circuitry. Controlled by signals as low as 2 V which above. on or below ground. Typical signal level: on +1 IV ; of -iv. Unit eliminates need for relay or separate drive tubes are restricted to the driver assembly.

TBL SERIES
TRANSISTORIZED BUTTON LITES

Combines features of BUTTTON-LITE and MINI-LITE Neon indicator operates from signals an small as one volt Independent push button switch with either normally open
or normally closed contacts. Four models to fit
 length. Special variations available

WRITE FOR MORE INFORMATION

Metallurgical Memo from General Electric

How to tame a "hot" transistor

Magnetic Materials Section reports on G-E thermistors . . . and how they may help you solve your temperature compensation problems

General Electric thermistors reduce their resistance substantially upon slight increases in temperature, making them especially suitable for temperature compensation of transistor circuits. Frequently, a thermistor or thermistor network is used in place of a base biasing resistor. Thermistors restrain transistors from running away at high temperatures, and often result in further economies.
For example, in some cases germanium transistors can be substituted for silicon transistors when thermistors are used. Or a higher gain in the circuit for given temperature variations may be achieved. Too, capacitors
and resistors with large temperature coefficients may be used. Thermistors compensate for all temperature effects in the circuit.
Because they are smaller and contain no moving parts. G-E thermistors are ideal for other temperature compensation applications, such as copper, magnetic amplifiers, and diodes. Other uses for thermistors include temperature measurement, time delay devices, voltage regulators, and current inrush suppressors.
Through new production facilities, General Electric can now design and manufacture thermistors to your specifications. For resistance values from 1 to $10,000,000$ ohms, and with temperature coefficients of resistance from -1% to -5% at $25^{\circ} \mathrm{C}$., there is a G-E thermistor for you. For further information, write: Magnetic Mate rials Section, 7820 N. Neff Road, Edmore, Michigan.

magnetic materials section GENERAL ELECTRIC

[^1] CIRCLE 38 ON READER-SERVICE CARD

1959 Transistor Data Chart
HIGH-FREQUENCY-Up to 750 mc

				Nax. Ratir s			
Type No.	Mig	Type	$f_{a e}$ MC	$\begin{gathered} w_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & (c) \end{aligned}$	${ }^{\mathrm{mw}} /{ }_{\circ}{ }_{c}$	$\mathrm{v}_{\mathrm{c}} \mathrm{V}$
2N1107	TI	pnp,GD,ge	40	30	85	-	16
2N640	RCA	pno, Dr,ge	42	80	85	-	34
2N641	RCA	pnp,Dr,ge	42	80	85	-	34
2N642	RCA	pnp, Dr,ge	42	80	85	-	34
SB100	PH	pnp,SB,ge	45	10	55	0.67	4.5
2N248	TI	prp,GD,ge	50	30	75	0.6	25
2N344	PH	pnp,SB,ge	50	20	55	1.33	5
2 N 345	PH	pnp,SA, ge	50	20	55	1.33	5
2N504	PH	pno.MD.ge	50	30	85	0.75	25
2N604	GT	pnp,Dr,ge	50	120	85	2	30
3N36	GE	npn,MB,ge	50	30	85	0.5	6
2N1254	HU	pnp, DJ, si	55	-	160	-	15
2N1255	HU	pnp, DJ, si	55	-	160	-	15
2N1256	HU	pnp,DJ,si	55	-	160	-	30
2N1257	HU	pnp, DJ,si	55	-	160	-	30
2N1258	HU	pnp, DJ, si	55	-	160	-	50
2N1259	HU	pnp, DJ,si	55	-	160	-	50
2N128	PH	pnp,SB, ge	60	25	85	0.39	4.5
2N393	PH	pnp.MA,ge	60	25	85	0.63	6
OC170	AM	pnp,DJ,ge	70	60	75	2	20
2N346	PH	pnp,SB,ge	75	20	55	1.3	5
3N37	GE	npn, MB,ge	90	30	85	0.5	6
2N300	PH	pnp,SB,ge	95	20	85	0.5	5
2N384	RCA	pnp,Dr, ge	100	80	85	-	30
3N34	TI	npn,GD, se	100	125	150	1	30
0 Cl 71	AM	pnp, DJ,ge	100	60	75	2	20
2N299	PH	pnp,SBT,ge	110	20	85	0.5	4.5
3N35	TI	npn, GD, si	150	125	150	1	30
XT518	PSI	npn, DM, si	170	2.8	150	2.3	120
XT519	PSI	pnp, DM, si	170	2.8	150	2.3	120
XT520	PSI	npn, DM, si	170	2.8	150	2.3	120
3N25	TI	Pnp,GD,ge	200	25	75	0.5	15
2N588	PH	pnp,MD,ge	250	30	85	0.75	15
2N503	PH	pno.MD,ge	320	25	85	0.63	20
2N499	PH	pnp,MD,ge	330	30	85	0.75	18
2N502	PH	onp,MD.ge	400	25	85	0.63	20
2N502A	PH	pnp,MD,ge	400	25	100	0.45	20
2 N 1143	TI	pnp,DB,ge	480	750	100	10	25
2 N 1142	TI	pnp,DB,ge	600	750	100	10	30
2N1141	TI	pnp,DB,ge	750	750	100	10	35
2N528	WE	pnp,DG,ge	750	100	100	5	40
2N537	WE	pnp,DG, ge	750	250	100	. 3	30
2N1094	WE	Pnp, DM, ge	750	250	100	0.3	30
2N1195	WE	pnp,DM,ge	750	250	100	0.3	30
2N312	CBS	npn, A J,ge	-	75	85	-	15
2N695	MO	pnp, DM, Ms	-	75	100	1	12
2N700	MO	Dnp, DM, Ms	-	75	100	1	25
2N701	MO	Dnp, DN, Ms	-	75	85	-	20
X T515	PSI	npn, DM, si	-	2.8	150	2.3	120
XT516	PSI	non, DM, si	-	2.8	150	2.3	120
XT517	PSI	npn,DM, si	-	2.8	150	2.3	120

Abbreviation of Terms

AJ	Alloyed Junction	GE	Germanium
DB	Diffused Base	GJ	Grown Juntion
DD	Double Diffused	GR	Grown Ror
DG	Grown Diffused	MB	Meliback
DJ	Diffused Junction	MD	(MADT)
DM	Diffused Mesa	MA	Micro Allc
Dr	Drift	Ms	Mesa
FA	Fused Alloy	RG	Rate Grcv
FJ	Fused Junction	SI	Silicon
GD	Grown Diffused	SBT	Surface Bc er

Li ed in order of increasing alpha cutoff fr iuency. (continued)

$C_{n}=$ Collector to emitter capacitance measured across the output terminals with the input ac open-circuited.
F = Frequency at which the magntiude of the for-ward-current transfer ratio (small-signal) is 0.707 of its low frequency value.
Common Emitter-Small signal forward current transfer ratio
$\mathrm{t}_{r z}=$ Common Emitter-Static value of short-circuited forward current ratio
Collector current when collector junction is reverse biased and emitter is ds open-circuited.

Now, Epoxy Products brings the mass production economy of the famous E-Pak system to diode encapsulation! It works like this: the diode is inserted into a preformed yellow epoxy E-Form pellet . . . both pellet and diode are then placed in a molded epoxy case . . . heat is applied, the pellet melts, cures, seals the unit completely. It's a quick, efficient operation that requires no expensive fixturing, yet meets all applicable Mil-Specs (including MIL Std. 202-A).

This system eliminates glass to metal seals and the accompanying disadvantages of glass
cracking, and weld contamination. Heat dissipation is exceptional.

These rugged epoxy packages are homogeneous and resistant to 95% relative humidity for 1,000 hours. They can be cycled from -55° C to $+200^{\circ} \mathrm{C}$. The yellow pellet provides immediate cathode identification and quick visibility.
If you encapsulate diodes, every other mothod is now obsolete! Write today for complete information and samples. Inquire, too, about the applications of E-Pak system to other semiconductor devices.

* Patents applied for

ELEC RONIC DESIGN • July 22, 1959

Save Design/Engineering Costs! USE STOCK UAP COLD PLATES

 FOR COOLING TRANSISTORS/DIODESJEDEC* Nos. Transistors TO-3; TO-6; TO-10; TO-13; TO-14; TO-15; TO-26; TO-31; Diodes DO-4; DO-5.
Joint Electronic Device Engineering Council

Now, you can use slock UAP aluminum cold plates to control heat generated by power transistors and diodes used in electronic circuits. Heat is transferred by conduction through the mount to cooling air forced through the cold plate. Cooling air can be ducted from any suitable source.
Adaptability of this cold plate to specific cooling re quirements can be easily determined. The maximum allowable transistor or diode base temperature and dissipation must be known or calculated. Then, using any one of the three parameters on the curve, the remaining conditions are indicated. Example: Using a transistor base temperature of $71^{\circ} \mathrm{C}$ at a dissipation of 20 Watts, and assuming air inlet temperature of $36^{\circ} \mathrm{C}$, gives a $\triangle \mathrm{T}$ of $35^{\circ} \mathrm{C}$, an air flow of $6.4 \mathrm{lbs} . / \mathrm{hr}$. with . 20 inches of water pressure drop.
Overall envelope dimensions are $2.250^{\prime \prime}$ length, $1.280^{\prime \prime}$ width, $.550^{\prime \prime}$ depth. Weight, approximately 1 oz. Finish, alodine. For complete information on prices and delivery, call. wire or write direct to UAP

STANDARD MOUNTINGS

 Hole "A" .185-. 197 dia., top plate only; Hole " B " . 185-. 197 dia., both plates Hole "C" .279-. 291 dia., both plates; Hole " D " 5-40NC thds., top plate only.
a famous family of aironafe essentials since 1929
UNITED AIRCRAFT PRODUCTS, INC.
Dept. 02. 1116 bolander avenue, dayton, ohio, Phone Baldwin 4-3841

1959 Transistor Data Chart
POWER—Above one watt dissif fion
Max. Rating

2N339	TR	npn,GR, si	1.0	0.008	150	55
2N340	TR	$n p n, G R$, si	1.0	0.008	150	85
2N341	TR	npn,GR, si	1.0	0.008	150	125
2N342	TR	npn,GR, si	1.0	0.008	150	60
2N342A	TR	npn,GR, si	1.0	0.008	150	85
2N343	TR	npn, GR, si	1.0	0.008	150	60
2N1206	TR	npn,GR, si	1.2	0.01	200	60
2N1207	TR	npn,GR, si	1.2	-	200	60
2N1092	RCA	npn, DJ, si	2	0.286	175	60
2N1172	DE	pnp,AJ,ge	4	0.07	95	40
H3A	MH	pnp,A」,ge	5	0.07	95	60
H4A	MH	pnp,AJ,ge	5	0.07	95	60
2N1067	RCA	npn, DJ, si	5	0.067	175	60
2N326	SY	npn, AJ,ge	7	0.11	85	35
2N255	BE	pnp,AJ,ge	8.5	0.3	85	15
2N256	BE	pnp,AJ,ge	8.5	0.3	85	30
2N122	TI	npn,GR,si	8.75	0.07	150	120
2N176	SY	pnp,AJ,ge	10	0.15	90	30
2N350	SY	pnp,AJ,ge	10	0.13	100	40
2N351	RCA	pnp,AJ,ge	10	1.0	90	40
2N376	RCA	pnp, AJ,ge	10	1.0	90	40
2N669	MO	Pnp,AJ,ge	10	1.5	90	30
2N1068	RCA	npn, DJ, si	10	0.133	175	60
CTP1104	CL	pnp, AJ,ge	10	2.0	85	40
CTPI105	CL	pnp, AJ,ge	10	2.0	85	40
CTP1108	CL	pnp, A L, ge	10	2.0	85	20
CTP1109	CL	pnp, AJ,ge	10	2.0	90	20
CTPIIII	CL	pnp,AJ,ge	10	2.0	90	80
2N301A	RCA	pnp,AJ,ge	11	1.0	90	60
2N301	SY	pnp.AJ,ge	12	0.2	85	40
2N325	SY	pnp,AJ,ge	12	0.2	85	35
CTP1112	CL	pnp,AJ,ge	14	1.5	90	100
CTP1117	CL	pnp,AL,ge	14	1.5	90	40
CTP1133	CL	pnp, AL,ge	14	1.5	90	40
CTP1137	CL	pnp,A,	14	1.5	90	40
2N307	BE	pnp,AJ,ge	15	0.2	75	35
2N307A	SY	pnp, AJ,ge	17	0.34	75	35
2N155	CBS	pnp,AJ,ge	20	-	85	30
2N156	CBS	pnp,AJ,ge	20	0.33	85	30
2N157	CBS	pnp,AJ,ge	20	-	85	60
2N157A	CES	pnp,AJ,ge	20	-	85	100
2N158	CBS	pnp,AJ,ge	20	-	85	60
2N158A	CBS	pnp,AJ,ge	20	-	85	80
2N255A	CBS	pnp,AJ,ge	20	-	85	15
2N256A	CBS	pnp,AJ,ge	20	-	85	25
2N401	BE	pnp,AJ,ge	20	0.5	90	40
LT.11	CBS	pnp,AJ,ge	20	-	85	80
LT. 12	CBS	pnp,AJ,ge	20	-	85	100
LT. 13	CES	pnp,AJ.ge	20	-	85	120
LT.14	CBS	pnp,AJ,ge	20	-	85	150
LT.15	CBS	pnp,AJ,ge	20	-	85	200
LT5163	CBS	npn, AJ,ge	20	-	85	60
LT5164	CBS	npn,AJ,ge	20	-	85	80
LT5165	CBS	npn, AJ,ge	20		85	30
2N234A	BE	pnp, AJ, ge	25	0.5	90	30
2N235A	BE	pnp,AJ,ge	25	0.5	90	40
2N236A	BE	pnp,AJ,ge	25	0.5	95	40
2N242	SY	pnp, AJ, ge	25	0.33	100	45
2N250	TI	pnp,AJ,ge	25	0.42	85	30
2N251	TI	pnp,AJ,ge	25	0.42	85	60
2N285A	BE	pnp, AJ, ge	25	0.5	95	40
2N296	SY	pnp,AJ,ge	25	0.33	100	60
2N350A	MO	pnp,AJ,ge	25	1.5	100	40
2 N351A	MO	pnp, AJ,ge	25	1.5	100	40
2N376A	MO	pnp,AJ,ge	25	1.5	100	40
2N399	BE	$p n p, A J, g e$	25	0.5	90	40
2N400	BE	pnp, AJ,ge	25	0.5	95	40
2N4 19	BE	pnp,AJ,ge	25	0.5	95	45
2N1146	CL	$p \cap p, A J, g e$	25	0.7	95	40
2N1146	CL	pnp	25	0.7	95	60

Liste /in order of increasing power dissipation.

Now from CIEEVITE . .

Clevite offers new types with improved reliability and power handling capacity.

EIA REGISTERED TYPES WITH:

- Improved seal for long life.
- Saturation voliage less than I Volf
at increased maximum rated current of 15 amperes.
- Average thermal resistance $0.7^{\circ} \mathrm{C}$ per watt.
- Current gain controls: 60-150 af 5 amperes.
- 100% test for resistance fo transient burn out.
- Either standard pins or solder lugs.

CLEVITE TRANSISTOR PRODUCTS
24) Crescent St., Wolthem B4, Mess. TWinbreok 4.9930

TECHNICAL DATA
Typical Electrical Charactoristics of $25^{\circ} \mathrm{C}$

2N1147 Series has solder lugs 2N1146 Series has standard pins	$\begin{aligned} & \hline 2 N 1147 \\ & \text { 2N1146 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2N1147A } \\ \text { 2N1146A } \end{array}$	$\begin{aligned} & \text { 2N1147B } \\ & 2 \mathrm{~N} 1146 \mathrm{~B} \end{aligned}$	$\begin{array}{\|l\|} \text { 2N1147C } \\ \text { 2N1146C } \end{array}$
Collector to Emitter Voltage Shorted Base (IC = 1 amp)	$\begin{aligned} & 30 \mathrm{~V} \\ & (\mathrm{Min}) \end{aligned}$	$\begin{aligned} & 40 \mathrm{~V} \\ & (\mathrm{Min}) \end{aligned}$	$\begin{gathered} 60 \mathrm{~V} \\ (\mathrm{Min}) \end{gathered}$	$\begin{gathered} 75 \mathrm{~V} \\ \text { (Min) } \end{gathered}$
Saturation Voltage (IC = 15 amps)	$\begin{aligned} & 1.0 \mathrm{~V} \\ & (\mathrm{max}) \end{aligned}$	$\begin{aligned} & 1.0 V \\ & (\text { Max }) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~V} \\ & (\text { Max }) \end{aligned}$	$\begin{aligned} & 1.0 V \\ & (\text { Max }) \end{aligned}$
DC Current Gain $(I C=5 \mathrm{amps})$	60-150	60.150	60.150	60.150
$\begin{aligned} & \text { DC Current Gain } \\ & (\text { IC }=15 \mathrm{amps}) \end{aligned}$	35	35	35	35
Absolute Maximum Rafings				
Collector Current Collector to Base Voltage	$\begin{gathered} 15 \mathrm{amps} \\ 40 \mathrm{~V} \end{gathered}$	15 amps 60 V	$\begin{gathered} 15 \mathrm{amps} \\ 80 \mathrm{~V} \end{gathered}$	$\begin{gathered} 15 \mathrm{amps} \\ 100 \mathrm{~V} \end{gathered}$
Collector to Emitter Voltage	40 V	60 V	80 V	100V
Power Dissipation at $70^{\circ} \mathrm{C}$ Case Temperature Junction Temperature	$\begin{aligned} & 25 \mathrm{~W} \\ & 95^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 25 \mathrm{~W} \\ & 95^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 25 \mathrm{~W} \\ & 95^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 25 \mathrm{~W} \\ 95^{\circ} \mathrm{C} \end{array}$

otmer cievite divisions:
Cleveland Graphite Bronze - Brush Instruments
Clovire Electronic Componenis * Clovito Marris Products Clevife Lid - Clevifo Ordnance - Clevire Researeh Contor Intermetall G.m.b.H. - Texas Division

Diffused Alloy POWER TRANSISTORS

Features

Faster Switching Times $0.5-5 \mu \mathrm{Sec}$ Switching Currents up to 10 amperes Flatter Frequency Response 40 Kc Higher Breakdown Voltage up to 120 Volts Current Gain of 40 at 5 amperes Standard Power Transistor Package Lower Base Resistance, 2 ohms Lower Saturation Resistance, 0.1 ohm

Uses
TV Horizontal Output Hi-Fi Amplifiers Core Drivers
High Current Switching Power Converters Ulitrasonic Generators Modulators

Because no other transistor offers this combination of features and uses, you will want to try out the DAP transistor in your circuits. Get full details now on new Bendix diffused alloy power transistors by writing SEmiconductor products, bendix aviation corporation, long branch, NEW JERSEY

West Coast Soless 117 E. Providencia Ave., Burbank, Calif. Midwost Soles: 4104 N. Horlem Ave., Chicose 34, Ill.
Now Englond Soles: 4 Uoyd Rd, Towhebury, Mass
Export Saloss Bendin Intomational, 205 E, 42nd St., Now York 17. N. Y. Canadion Afflliote: Computing Devicer of Canoda, LId.
P. O. Box S08, Othawa 4, Ont

L ted in order of increasing power dissip tion. (continued)

How to get ultra-

 uniformity
in a Silicon

PNP fused alloy transistor
Through precise manufacturing techniques, Hughes PNP fused-junction silicon transistors give you uniformity of parameters by type. Result: Circuit interchangeability no longer is a problem.

Designed for switching and amplifying applications at low and medium current levels, these Hughes transistors offer you a number of advantages:

- useful Beta over a wide range of collector currents
- high punch-thru voltage ($\mathrm{BV}_{\text {cmo }}$ in excess of 100 volts in types 2N1244 and 2N1234)
- low collector cutoff current

These devices, now available in production quantities, are housed in TO-5 (single ended) and coaxial packages (double ended). Engineered for reliability, they meet MIL-T-19500A specifications.

Brankdown Voltage (a) 100 MA : cEO, cBo, EBO

Collector Cutoff Current
$V_{C E}($ max. $)\left(I_{C}=10\right.$ mAdc, $I_{B}=2$ mAdc)
$V_{C B}($ max. $)\left(I_{C}=20\right.$ mAdc. $I_{B}=2$ mAdc)

2N1238	2N1239	2N1240	2N1241	2N1242	2N1243	2N124
2N1228	2N1229	2N1230	2N1231	2N1232	2N1233	2N1234

(Powar dissipation ... 1 watt in free air (derate $7.4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$)
0.5 Peckese: Power dissipation $\quad 250 \mathrm{~mm}\left(\right.$ derate $1.8 \mathrm{~mm}{ }^{\circ} \mathrm{C}$)

Collector current limited by power dissipation. Operating and storage temeerature rence $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ - formerly JETEC 30

25 AMP

 100 VOLT POWER TRANSISTORSMotorola 2N1166 and 2N1167 PNP germanium transistors offer • more usable power output than any other transistor - low saturation resist ance (0.012 ohms-typical) for lower dissipation - high current gain - welded hermetic seal • excellent Beta linearity.
These new high-power transistors can be used to reduce the size and weight of transmitters without sacrificing power output, to extend the life expectancy of DC-DC converters and for a wide number of other high current switching and audio applications. Both units are avail able from stock. For engineering quantities contact your authorized Motorola Semiconductor distributor.
MOTOROLA'S COMPLETE RANGE OF INDUSTRIAL POWER TRANSISTORS gives you power for every purpose. Three separately designed series produced under individual specifications, enable you to select de vices best suited for your specific application

Supplied in T0.3 package with solder terminals
Mort: all twelve of the above transistors nave welded hermes
seals and ate designed to meet or exceed mechanical and en women basemen of mit iss
FOR COMPLETETECHNICALINFORMATION regarding Motorola power transistors contact your nearest Motorola Semiconductor regional office.

Regional Offices:

in fore lien countries waite: motorola mitematiomal. s.
4545 West Augusta Biro
CIRCLE 44 ON READER-SERVICE CARD

Hich-LEEVEL Lwirchnco-High current devi se.

ELECTRONIC DESIGN • July 22,

Listed in order of increasing alpha cutoff frequency.

C Hracteristics				Switching		Remarks	Type No.
$\begin{aligned} & 1 / 8 \\ & y=1 \\ & y=1 \end{aligned}$	$\begin{gathered} c 0 \\ 0 \end{gathered}$	Powr Goin db	$\begin{aligned} & \text { Powr } \\ & \text { Our } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { Rise } \\ & \text { Time } \\ & \mu \text { sec } \end{aligned}$	$\begin{aligned} & \text { Stor. } \\ & \text { Time } \\ & \mu \text { sec } \end{aligned}$		
$\begin{aligned} & 14 \\ & 32 \\ & 14 \\ & 24 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.001 \\ & 0.0001 \\ & 0.0001 \\ & 0.0001 \\ & 0.0001 \end{aligned}$						$\begin{aligned} & 2 \mathrm{~N} 1238 \\ & 2 \mathrm{~N} 1239 \\ & 2 \mathrm{~N} 1240 \\ & 2 \mathrm{~N} 1241 \\ & 2 \mathrm{~N} 1242 \end{aligned}$
$\begin{aligned} & 24 \\ & 14 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 0.0001 \\ 0.0001 \\ 10 \\ 10 \\ 10 \end{gathered}$			$\begin{aligned} & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & - \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	US,MIL only US,MIL only US,MIL only	2N 1243 2N 1244 GA52830 GA53242 GF45017
$:$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$					BE $B E, D E$ MO BE 2N639A	2N297 2N297A 2N618 2N268A
	$\begin{array}{r} 3 \\ 0.5 \\ 5 \\ 0.5 \\ 0.2 \end{array}$			$\begin{aligned} & \overline{-} \\ & \overline{12} \end{aligned}$	$\begin{aligned} & \bar{Z} \\ & \bar{Z} \\ & 12.5 \end{aligned}$	MO	$\begin{aligned} & \text { 2N375 } \\ & \text { 2N378 } \\ & \text { 2N379 } \\ & \text { 2N380 } \\ & \text { 2N456 } \end{aligned}$
:	$\begin{gathered} 0.6 \\ 1 \\ 0.5 \\ 0.5 \\ 0.2 \end{gathered}$			$\begin{array}{r} 12 \\ 12 \\ 11.2 \\ 11.2 \end{array}$	$\begin{array}{r} 12.5 \\ 12.5 \\ 2.5 \\ 2.5 \end{array}$	RCA	$\begin{aligned} & \text { 2N457 } \\ & \text { 2N458 } \\ & \text { 2N459 } \\ & \text { 2N5 11 } \\ & \text { 2N511A } \end{aligned}$
:	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$			$\begin{aligned} & 11.2 \\ & 11.2 \\ & 11.2 \\ & 11.2 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \text { 2N5118 } \\ & \text { 2N512 } \\ & \text { 2N512A } \\ & \text { 2NS } 12 \mathrm{~B} \\ & \text { 2N5 } 13 \end{aligned}$
$:$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$			$\begin{aligned} & 10.8 \\ & 10.8 \\ & 10.3 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$		2N5 13A 2N513B 2N514 2N514A
:	$\begin{aligned} & 0.2 \\ & 0.85 \\ & 0.85 \\ & 0.07 \end{aligned}$			$\begin{gathered} 10.3 \\ 12 \\ 12 \\ 0.3 \end{gathered}$	$\begin{array}{r} 2.0 \\ 12.5 \\ 12.5 \\ 0.1 \end{array}$		$\begin{aligned} & \text { 2N514B } \\ & \text { 2N1021 } \\ & \text { 2N1022 } \\ & \text { 2N545 } \end{aligned}$
$\begin{aligned} & 25 \\ & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 1.0 \\ & 0.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & -5 \\ & 5 \end{aligned}$	0.3 0.7	0.1 1.2		2N546 2N387 2N386 2N1046
!	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \bar{Z} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		W× 1015 W× 10154 W×1015B
i	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$			$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		wxiolsc W×10150 W×1015E Wx1015F WX 1016
$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$			$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		W× 1015 A W×1016B W×1016C W×1016D WX $1016 E$
8 3 38 8 8	$\begin{gathered} 10 \\ 0.001 \\ .1 \\ -1.5 \end{gathered}$			$\begin{gathered} 7 \\ 0.2 \\ 50 \\ \overline{15} \end{gathered}$	$\begin{gathered} 1 \\ 0.08 \\ 50 \\ - \\ \hline \end{gathered}$		$\begin{aligned} & w \times 1016 F \\ & 2 \mathrm{~N} 110 \\ & 2 \mathrm{~N} 1072 \\ & 2 \mathrm{~N} 115 \\ & 2 \mathrm{~N} 118 \end{aligned}$
$:$	$\begin{gathered} 0.5 \\ 1.5 \\ 0.5 \\ 2 \\ 2 \end{gathered}$			$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & \text { 2N420 } \\ & \text { 2N420A } \\ & \text { 2N637 } \\ & \text { 2N637A } \\ & \text { 2N637B } \end{aligned}$

(Continued on p.64)
CIRCLE 45 ON READER-SERVICE CARD \geqslant
are you a victim of

ANALYSIS: Transistors like ordinary fubes or cores are essentially REMEDY: Use a decimal component like Beam Switching Tubes to perform a decimal function.

LIVING PROOF:

By Actual count the all transistor circuit uses 146 components, while the Miniature Beam Switching Tube approach uses only 56 components you should know about beam switching tubes because
A single cathode controls an electron beam to any one of 10 constant current outputs each of which has individual bi-stable beam locking and high impedance switching
You will find Beam Switching Tubes being used regularly to outperform other components wherever there is: distributing, switching, multiplexing, counting, sampling, coding, timing, gating, matrixing, memory, dividing, decoding, converting, or presetting.
 WRITE FOR COMPARISON CHART WHICH OUTLINES BE, COST. TEMPERATURE, SHOCK, VIBRATION, LIFEAN RELIABILITY.
 Burroughs Corporation

NEW CATALOG contains :

UNITED
SEmiconductor
graphite
prooucts

ALL YOU SHOULD KNOW ABOUT GRAPHITE for Transistor Production

Here are some of the questions it ansucrs:

1. Why is high purity important in graphite for semiconductor processing? (answered on page 5)
2. Can Ultra Pure graphite help cut costs? (ansuered on page 5)
3. Can more reliable transistors be made through the use of Ultra Pure graphite? (answered on page 4)
4. Does United guarantee "crash" deliveries? (answered on page 14)
5. Exactly how pure is United's Ultra Pure? (answered on page 5)
6. How is United set up to help with technical questions? (anstered on pages 2.3)
7. What difference does it make whether a graphite fusion jig is molded or extruded? (ansucered on paze 6)
8. What production help can a graphite producer offer a maker of transistors? (answered on pages 12-13)
9. Does United ǧuarantee quality? (anstuered on page 15)
And these questions are but a few-a merest indication. For the whole story on United's services, and on Ultra Pure Graphite's role in improving semiconductor production. send for this new 20 page looseleaf, stiff cover brochure. Fully illustrated ... carefully compiled . . . sure to be a help to you. . . . Mail the coupon now.

CIRCLE 46 ON READER-SERVICE CARD

1959 Transistor Data Chart
HIGH-LEVEL SWITCHING-High current $d \in$ ices

Type No.	Mfg	Type	$\begin{aligned} & f_{a} \\ & \mathbf{K C} \end{aligned}$	Max. Roti 31			
				w_{0} W	$\begin{gathered} \mathrm{T}_{\mathrm{i}} \\ { }^{\circ} \mathrm{C} \end{gathered}$	$W^{\prime}{ }^{\circ} \mathrm{C}$	V_{s}
2N638	BE	pnp,AJ,ge	400	25	100	0.5	40
2N638A	BE	pnp,AJ,ge	400	25	100	0.5	70
2N638B	RE	pnp,AJ,ge	400	25	100	0.5	80
2N639	EE	pnp,AJ,ge	400	25	100	0.5	40
2N639A	BE	pnp,AJ,ge	400	25	100	0.5	70
2N6398	BE	pnp,AJ,ge	400	25	100	0.5	80
2N1011	BE	pnp,AJ.ge	400	35	95	1.2	-
2N1136	BE	pnp,AJ.ge	400	60	100	0.8	40
2N1031	BE	pnp,AJ,ge	400	50	100	1.0	30
2N1031A	BE	pnp,AJ,ge	400	50	100	1.0	40
2N 10318	BE	pnp,AJ,ge	400	50	100	1.0	70
2N1031C	BE	pnp,AJ,ge	400	50	100	1.0	80
2N1032	BE	pnp,AJ,ge	400	50	100	1.0	30
2N1032A	BE	pnp,A, ${ }^{\text {a }}$ ge	400	50	100	1.0	40
2N1032B	BE	pnp,AJ,ge	400	50	100	1.0	70
2N1032C	PE	pnp, AJ, ge	400	50	100	1.0	80
2N1120	BE	pnp,AJ,ge	400	45	95	1.0	-
2N1136A	BE	pnp,AJ,ge	. 400	60	100	0.8	70
2 N 1136 B	BE	pnp,AJ,ge	400	60	100	0.8	80
2N1137	BE	pnp,AJ,ge	400	60	100	0.8	40
2N1137A	BE	pnp,AJ,ge	400	60	100	0.8	70
2N1137B	BE	pnp,A,	400	60	100	0.8	80
2N1138	BE	pnp,AL,ge	400	60	100	0.8	40
2N1138A	BE	pnp,AJ,ge	400	60	100	0.8	70
2N1138B	BE	pnp,AJ,ge	400	60	100	0.8	80
2N1042	TI	pnp,AJ,ge	650	20	95	0.28	40
2N1043	TI	pnp, AJ, ge	650	20	95	0.28	60
2N1044	TI	pno, AJ, ge	650	20	95	0.28	80
2N1045	TI	pnp,AJ, ge	650	20	95	0.28	100
2N1073	BE	pnp,AJ,ge	1500	35	100	0.8	40
2N1073A	BE	pnp,AJ,ge	1500	35	100	0.8	80
2N1073B	BE	pnp,AJ,ge	1500	35	100	0.8	120
2N547	TR	$n p n, D J$, si	6 M	5	200	0.045	60
2N424	TR	npn, DJ, si	6 M	85	200	0.27	80
2N497	TR	npn, DJ, si	6M	4	200	0.024	60
2N498	TR	npn, DJ, si	6M	4	200	0.024	100
2N548	TR	$n p n, D J$, si	6 M	5	200	0.045	30
2N549	TR	npn, DJ, si	614	5	200	0.045	60
2N550	TR	$n p n, D J$, si	6 M	5	200	0.045	30
2N551	TR	npn, DJ, si	6M	5	200	0.045	60
2N552	TR	npn, DJ, si	6 M	5	200	0.045	30
2N656	TR	npm, DJ, si	6 M	4	200	0.024	60
2N657	TR	$n p n, D J$, si	6 M	4	200	0.024	100
2N1116	TR	npn, DJ, si	6M	5	200	0.045	60
2N1117	TR	npn, DJ, si	6 M	5	200	0.045	60
2N1250	TR	npn, DJ, si	6M	85	200	0.267	60
ST401	TR	npn, DJ, si	6 M	85	200	0.27	45
ST402	TR	npn, DJ, si	6 M	50	200	0.33	60
ST403	TR	npn, DJ, si	6M	50	200	0.33	45
2N389	TR	npn, DJ, si	8M	85	200	0.27	60
2 N 1212	TR	npn, DJ, si	10M	45	200	0.267	60
2 N 1208	TR	npn, DJ, si	12M	85	200	0.267	60
2N1209	TR	npn, DJ, si	12M	85	200	0.267	45

Abbreviation of Terms

AJ	Alloyed Junction	GE	Germanium
DB	Diffused Base	GJ	Grown Junctic
DD	Double Diffused	GR	Grown Rate
DG	Grown Diffused	MB	Meltback
DJ	Diffused Junction	MD	MADT
DM	Diffused Mesa	MA	Micro Alloy
Dr	Drift	Ms	Mesa
FA	Fused Alloy	RG	Rate Grown
FJ	Fused Junction	SI	Silicon
GD	Grown Diffused	SBT	Surface Barrie

Listt in order of increasing alpha cutoff freq ency. (continued)

6. =- Collector to emitter capacitance measured across the output terminals with the input ac open-circuited.
Frequency at which the magnitude of the for-ward-current transfer ratio (small-signal) is 0.707 of its low trequency value.
Common Emitter-Small signal forward current transfer ratio
Common Emitter-Static value of short-circuited forward current ratio
Collector current when collector junction is reverse biased and emitter is de open-circuited.

"THERMALBOND" EXCLUSIVE TUNG-SOL CONSTRUCTION
 MEANS NEW STANDARDS OF TRANSISTOR PERFORMANCE IN COMPUTER APPLICATIONS

From Tung-Sol, originator of the Cold Weld Seal, comes a new design approach to greater mechanical reliability in computer switch transistors.
TS1000 is a PNP germanium alloy junction transistor which is designed for use in high current, high speed switching applications. This new transistor provides an ideal balance of the most wanted characteristics as revealed by survey of computer designers.

N^{o}ow these Honeywell Power Transistors guarantee minimum $\alpha=1$ voltage to insure stable operation under all bias conditions up to 60 volts. This rating permits operation of both class A and class B transformer-coupled output power amplifiers from a 28 VDC source. Proper back bias extends safe operating voltage up to the collector diode design limit of 80 volts.
Contributing to the reliability of Honeywell Power Transistors is a built-in stability through improved design and processing methods, plus significant dynamic testing.
Honeywell's 2N538, 539 and 540, 2N1202 (characterized at $1 / 2 \mathrm{amp}$) and 2 N 1203 (120 volt collector diode) Power Transistor Series are rugged, hermetically sealed germanium PNP transistors suited to servo amplifier, power conversion, voltage regulation and switching applications.
The 2 N 539 can be supplied in accordance with the requirements of MIL-T-19500A/38.

These new improved Honeywell Power Transistors give you two other bonuses - new lower prices, plus 1 year warranty. For complete data on these transistors, or for a copy of Honeywell's new Technical Booklet "Fundamental Voltage Limitations of a Transistor," contact one of the following offices:

- UNION, NEW JERSEY
- BOSTON, MASSACHUSETTS.
- chicago, illinois.
- los angeles, CAlifornia..
- atlanta, georgia.

...........

Or write Minneapolis-Honeywell, Dept. ED-7-82, Minneapolis 8, Minnesota.

Honeywell

H Fut in Cantal

[^2]iste in order of increasing alpha cutoff frea ancy.
Cimeste

○

A name you know

A new source for Semiconductors

Rapidly moving to completion is Rheem's "from the ground up" new semiconductor facility at Mountain View, near Palo Alto,

California. Custom designed from laboratories to shipping dock-
America's newest, most modern semiconductor activity!

Rheem Semiconductors available

 soon! Watch for announcements!

Meantime, be sure you are on the list to receive semiconductor data from Rheem.

Send your name in today. \qquad

Rheem Semiconductor Corporation
327 Moffett Boulevard • P.O. Box No. 816 - Mountain View, California Telephone: YOrkshire 8.8391

CIRCLE 49 ON READER-SERVICE CARD

NEW

HIGH-VOLTAGE SILICON MESA TRANSISTORS

FAIRCHILD'S 2N699 OFFERS ANOTHER UNIQUE COMBINATION

120 VOLTS collector to base voltage, permits greater voltage swings in amplifier and oscillator circuits and more protection in inductive switching circuits. Maximum base-emitter turn-on voltage is only 1.3 volts for $I^{C}=150 \mathrm{~mA}$ and $I_{B}=15 \mathrm{~mA}$.
120 MEGACYCLES typical gain-bandwidth product means excellent broad-band video performance. In addition the units will provide typically 18 db neutralized gain at 30 mc and 30% efficiency in a 70 mc oscillator circuit.
$300^{\circ} \mathrm{C}$ SURVIVAL has been assured. Every transistor produced at Fairchild has been preaged a minimum of 60 hours at $300^{\circ} \mathrm{C}$ before test. This provides extra reliability at their recommended maximum operating junction temperature of $175^{\circ} \mathrm{C}$.
2 WATTS dissipation at $25^{\circ} \mathrm{C}$ - the combination of power with high frequency that is available only in double diffused silicon transistors.
In Fairchild's recent succession of new transistor- announcements, each has offered some exceptional combination of characteristics previously unattainable. The 2 N 699 combines high collector voltage rating with high-frequency performance, medium power capabilities and low saturation resistance. Its applications range from low-current high-frequency I-F circuits to high-current, low-frequency relay drivers. Other products nearing production at Fairchild promise even greater advances in the state of the art.
2 2mes-ELECTRICAL CMARACTEAISTICS (25 ${ }^{\circ} \mathrm{C}$)

Symbil	Charceteristic	Min.	Ty.	max.	Tast Cenduliom	
h_{F}	D.C. purse	40		120	${ }^{1} \mathrm{C}=150 \mathrm{ma}$	$\mathrm{v}_{\mathrm{c}}=10 \mathrm{~V}$
$V_{\text {be }}$ (zat)	Base saturation		1.0	1.3	$1 \mathrm{c}=150 \mathrm{ma}$	${ }^{1} \mathrm{~B}=15 \mathrm{me}$
$v_{\text {CE }}$ (sat)	collector saturation			5v	${ }^{1} \mathrm{C}=150 \mathrm{ma}$	${ }^{1} \mathrm{~B}=15 \mathrm{ma}$
$n \mathrm{fe}$	Small signol current	2.5	5.0		${ }^{1} \mathrm{C}=50 \mathrm{ma}$	$V_{C}=10 \mathrm{~V}$
${ }_{1}^{\text {c }}$ ço	collector capacitance Collector cutoft current		$14 \mu \mathrm{\mu m}$	$\left\|\begin{array}{c} 20 \mu \mu 4 \\ 200 \mu \mathrm{a} \end{array}\right\|$		$\begin{aligned} v_{c} & =100 \\ 1 & =25^{\circ} \mathrm{C} \\ 1 & =150^{\circ} \mathrm{C} \end{aligned}$

1959 Transistor Data Chart
LOW-LEVEL SWITCHING-Small signal d vices,

Type No.	Mfg	Type	f_{a}MC	Max. Rotiris			
				$\begin{gathered} W_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{mm}^{\circ}{ }^{\circ} \mathrm{C}$	v_{c}
2N658	RA	pnp, FA,ge	5	150	85	-	
2N1012	GT	npn,AJ,ge	5	150	100	2	10
2N1093	TI	pnp,AJ,ge	5	150	100	2.0	30
2N357	RCA	npn,AJ,ge	6	100	85	2	20
2N357A	GT	npro, A J,ge	6	150	100	2	40
2N377	SY	npm,AJ,ge	6	150	100	2	20
2N426	MO	pnp, AJ,ge	. 6	150	85	2.5	0
CK26	RA	pnp,FA,ge	6	80	85	-	18
2N1090	RCA	npn,AJ,ge	7	120	85	-	25
2N1114	SY	npn,AJ,ge	7	150	100	2	15
2N1219	GT	pnp, $A J$, si	7	150	150	1.2	30
CT 123	GT	pnp,AJ,ge	7	150	150	2	5
2N598	PH	pnp, AJ,ge	7.5	250	100	3.3	20
2N600	PH	Pпp,AJ,ge	7.5	750	100	0.1	20
2N123	GE	pnp,AJ,ge		150	85	2.5	15
2N388	GT	npn,AJ,ge	8	150	100	2	25
2N396	GE	pnp,AJ,ge	8	200	100	3.3	0
2N505	IND	pпp, AJ, ge	8	200	85	3	40
2N576A	SY	npn, AJ,ge	8	200	100	2.6	20
2N579	RCA	pnp,AJ,ge	8	120	85	-	20
2N581	RCA	pnp,AJ.ge	8	80	85	-	18
2N583	RCA	pnp, AJ,ge	8	80	85	-	18
2N662	RA	pnp,FA,ge	8	150	85	-	11
TR123	IND	pnp,AJ,ge	8	200	85	3	20
TR396	IND	pпp,AJ,ge	8	200	85	3	20
2N167*	GE	npn,GJ,ge	9	65	85	1.1	30
2N358	GT	npn, AJ,ge	9	100	85	2	30
2N358A	GT	npn,AJ,ge	9	150	100	2	40
2N394	GE	pnp, AJ,ge	9	150	85	2.5	10
2N1198	GE	npn,RG,ge	9	65	85	1.1	25
2N332	GE	npn,GD,	10	150	200	1.0	45
2N440	SY	npm, AJ,	10	100	85	1.66	15
2N518	GE	pnp,AJ,ge	10	150	85	2.5	12
2N521	IND	pnp,AJ,ge	10	200	85	3	15
2N521A	IND	pnp,AJ,ge	10	200	85	3	20
2N659	RA	pnp, FA,ge	10	150	85	-	14
2N427	GT	pnp,AJ,ge	11	150	100	2	30
2N496	PH	pnp,SB, si	11	150	140	1.1	10
CK27	RA	pnp,FA,ge	11	80	85	-	15
2N269	RCA	pnp,AJ,ge	12	120	85	-	25
2N316	GT	pnp,AJ,ge		100		2	30
2N316A	GT	pnp,AJ,ge	12	150	100	2	30
2N333	GE	npn,GD, si	12	150	200	1.0	45
2N397	GE	pnp,AJ,ge	12	200	100	3.3	15
2N4O4	RCA	pnp,AJ,ge	12	120	85	-	25
2N635	GE	$n p n, A J, g e$	12	150	85	2.5	20
TR269	IND	pnp,AJ,ge	12	200	85	3	25
2N334	GE	npn,GD,si	13	150	200	1.0	45
2N1091	RCA	npn,AJ,ge	13	120	85	-	25
2N335	GE	npn,GD,si	14	150	200	1.0	45
2N336	GE	npn,GD, si	15	150	200	1.0	45
2N580	RCA	pnp,AJ,ge	15	120	85	-	20
2N660	RA	pnp, FA,ge	15	150	85	-	11
2N428	GT	pnp,AJ,ge	17	150	100	2	30
2N636	GE	npn, AJ,ge	17	150	85	2.5	20
CK28	RA	pnp, FA,ge	17	80	85	-	12
2N522	IND	pnp,AJ,ge	18	200	85	3	15
2N522A	IND	pnp,AJ,ge	18	200	85	3	20
2N582	RCA	pnp,A A, ge	18	120	85	-	75
2N584	RCA	pnp, AJ,ge	18	120	85	-	25
2N599	PH	pnp, AJ,ge	18	250	100	3.3	0
2N601	PH	pnp, AJ,ge	18	750	100	0.1	0
2 N 317	GT	pnp,AJ,ge	20	100	85	2	10
2N317A	GT	pnp, AJ,ge	20	150	100	2	0
2N417	IND	pnp,AJ,ge	20	200	85	3	0
2N661	RA	pnp, FA, ge	20	150	85	-	9
2N1017	RA	pnp,FA,ge	20	150	85	-	O
2N523	IND	$p \cap p, A J$, ge	24	200	85	3	5
2N523A	IND	pnp,AJ,ge	24	200	85	3	5
2N1205	TR	npm,GR, si	27	150	150	-	0

For full information, write Dept.8-7.

in der of increasing alpha cutoff (continued)

YOU CAN HAVE YOUR CAKE AND EAT IT TOO!

WITH THE 3 NEW Amporoxi HIGH-GAIM YHF TRANSISTORS:

Unrivaled for-REliability,

OPERATING STABILITY and UNIFORMITY

And yet they cost no more, in many cases, than equivalent vacuum tubes and are available now in production quantities.

At last, you can realistically employ high firequency transistors for RF and IF amplifiers in production FM receivers; as mixers, oscillators and RF and IF amplifiers in mobile radio equipment, car radios and short wave receivers; and as broadband amplifiers in instrumentation and industrial applications.
Implemented and fully proven by Amperex, a unique
 manufacturing technique originating with Philips of the Netherlands now enables Amperex to provide you with production VHF transistors of unparalleled laboratory quality at truly reasonable prices.
The new Amperex "alloy-diffusion" P-N-P transistors combine the best qualities of both the alloy and the diffusion approaches to transistor construction. As a result of the special "self-jigging" techniques, a maximum degree of uniformity is achieved. Thus the necessity for "selection" is completely eliminated.
The Type OC170 is designed for use as a mixer oscillator in short wave receivers, as an IF amplifier in FM receivers, and as a broadband linear amplifier for instrumentation and industrial applications. The OC170 features a high cut-off frequency of 70 Mc and a low collector-to-base capacitance of $1.8 \mu \mu \mathrm{f}$.
The Type OC169 is designed for lower frequencies and gain.
The Type OC171 is designed for use as a local oscillator and preamplifier in FM receivers and has a cut-off frequency of 100 Mc .

The Breakthrough...

 How It Was Accomplished!This VHF transistor breakthrough was made possible by a new alloy-diffusion process, a manufacturing method that combines the best features of the currently used alloy and diffusion processes, without their drawbacks.
The limitation of the alloy process is encountered when attempting to manufacture transistors with an average cut-off above 20 Mc . In this process the collector and emitter elements are fused (or alloyed) to the base. For this to be
successfully accomplished the base must be relasuccessiuly accomplished the base must be relatrolled in order that during the fusion process the collector nd emitter elements do not flow through the base and short the transistor. This relatively thick base increases the transit time, precluaing any usable response above 20 Mc .
In the diffusion process the base is formed on the collector by gaseous diffusion in a high temperature oven. Very thin bases can be manufacvery oigh cut-off frequencies. In this process the very a base lead.
In the AMPEREX "alloy-diffusion" process, alloying and diffusion take place simultaneously. The transistor is built up on a piece of P-type germanium. Two small pellets are placed on the germanium. Pellet B, the base pellet, contains only an N-type impurity. Pellet E, the emitter pellet, contains a P-type and an N-type impurity. perature, the germanium dissolves into the metal pellets until saturation is reached, and the pellet impurities diffuse into the solid germanium. However, the P-type impurity in pellet E has such a low diffusion constant, that for practical purposes it does not penetrate into the germanium. The N-type impurity in pellets \mathbf{E} and B has a much greater diffusion constant and readily penetrates into the solid germanium to form a
When the assembly is cooled down a layer of germanium recrystallizes from the pellets as in germanium recrystalizes from the peliets as in layer of pellet E contains many atoms of the P-type impurity and is, therefore, a P-type germanium layer. The germanium layer recrystallized from pellet B is, of course, the N-type because there are no other impurities in the pellet.

Connections are made to the germanium and the metal pellets and a P-N-P transistor is obtained. The original P-type germanium is the collector, pellet 8 the base, and pellet E the emitter. This process makes it possible to mass produce for very short transit time and high cut-off frequencies. The yield is also very high which enables AMPEREX to supply these transistors at low prices.

maximum ratimes		OC169	OC170	0 C 171
$V_{\text {ce }}$		20 V	20 V	20 V
$\mathrm{Ic}_{\mathrm{P}_{c}} \ldots \ldots \ldots \ldots \ldots \ldots$		10 mA	10 mA	5 mA
		50 mw	60 mw	60 mW
trpical chanacteristics				
Cut-off frequency ${ }^{\circ} \mathrm{Cb}$ b.		70 Mc	70 Mc	100 Mc
Power gain	Pg at 0.45 Mc	35 db	57 db	-
	Pg at 10.7 Mc	20 db	31 db	-
	Pg at 100 Mc	-	-	23 db
Noise figure	Nf at 0.45 Mc	4 db	4 db	-
	NF at 10.7 Mc	5 db	5 db	-
	NF at 100 Mc	-	-	11 db

ask Amperex
the indusiry's rellable souree of qualify Pranalasors and dlodes for industrial and enfortalnment appllcallons.

Amperex Electronic Corp., 230 Duffy Avenue, Hicksville, Long Island, New York In Czaada: Rogers Electronic Tubes \& Components, 116 Vanderhoof Avenve, Toronto 17, Ontario READER-SERVICE CADO

are you silicon wait-bait?

avoid unnecessary delays GT DELIVERS SILICON TRANSISTORS IN 24 TO 48 HOURS!

No need to get hung up with delays or hooked by unkept promises! GENERAL TRANSISTOR delivers sample quantities of GT Silicon Transistors in 24 to 48 hours.. production quantities in 2 to 4 weeks!

These are not mere claims, but firm promises on which you can base your design and production schedules.
Quality? Yes - plenty of weight here without waiting. General Transistor is today one of the largest suppliers of highly dependable devices, delivering quality in quantity.

For full information - and fast delivery - call your local General Transistor representative, or contact us directly. Write for Silicon Brochure S-100.

GENERAL TRANSISTOR CORPORATION

91-27 138th Place, Jamalca 35, Now York Phone: Hickory 1-1000

A Few of the GT Alloyed Junction Silicon Transistors Now Available

- HIGH SPEED SWITCHING
- MEDIUM SPEED SWITCHING
- high voltage
- HIGH SPEED LINEAR AMPLIFIER
- medium speed linear amplifier

	2N1219	2N1220	2N1221	2N1222	2N1223
$V_{\text {coo }}$	30 v	30 v	30 v	30 v	40 v
V cro	25 v	25 v	25 v	25 v	40 v
Veso	20 v	20 v	10 v	10 v	10 v
I co.	. 1 ua max.	. 1 ua max.	. 1 us max.	. 1 ua max.	. 1 ma max.
hre	18 min .	9 min .	-	-	-
$f \mathrm{ab}$ (mc)	c) 5 min .	2 min .	5 min .	2 min .	2 typ.
hie	-	-	18 min .	9 min .	6 min .

CIRCLE 52 ON READER-SERVICE CARD

1959 Transistor Data Chart
LOW-LEVEL SWITCHING-Small signal d vies,

Abbreviation of Terms			
AJ	Alloyed Junction	GE	Germanium
DB	Diffused Base	GJ	Grown Junct in
DD	Double Diffused	GR	Grown Rate
DG	Grown Diffused	MB	Meltback
DJ	Diffused Junction	MD	MADT
DM	Diffused Mesa	MA	Micro Alloy
Dr	Drift	Ms	Mesa
FA	Fused Alloy	RG	Rate Grown
FJ	Fused Junction	SI	Silicon
GD	Grown Diffused	SBi	Surface Barr

$$
\begin{aligned}
& \text { Q. } \\
& \text { ¿. } \\
& \text { 高 } \\
& \hline
\end{aligned}
$$

1

Listed order of increasing alpha cutoff

$$
\text { freque } \boldsymbol{\text { y. }} \text { (continued) }
$$

NIJUNCTION, control, and photofransistors.

Sss. $=2.5 w+100 \mathrm{C}$ case \quad Silicon Controlled Switch
Dss. $=0.25 \mathrm{w} \cong 100 \mathrm{Camb}$.
coste Current $=1.0 \mathrm{~A}$
25 Temp -65C $10+150 \mathrm{C}$
Time $=0.2 \mu \mathrm{sec} ;$ Turn
win three ronges of
Uni iunction
Wett and fwo ranges of
rase resistance

hife $=50$	Sens $=15$ vo/ft coil	Photo
\ldots.	\ldots.	Neon light
\ldots.	\ldots.	Photo
\ldots.	\ldots.	Photo

Collector to emitter capacitance measured across the output terminals with the input as open-circuited.
Frequency at which the magnitude of the for-ward-current transfer ratio (small-signal) is 0.707 of its low frequency value.

- Common Emitter-Small signal forward current Iransfer ratio
Common Emitter-Static value of short-circuited forward current ratio
Collector current when collector junction is reverse biased and emitter is de open-circuited.

THE BEST
 SEMICONDUCTORS

KAHLE CRYSTAL GROWING MACHINES . . . featuring a single unil for lemperalure, liming, program ming, and motor control...set new high precision standards in the production of single billets of Germanium, Silicon, or related semiconductor crystals. Designed to function efficiently and economically with either RF or resistance-type heating systems, each machine is pre-lested.. under actual operating conditions... prior to shipment.
This machine is just one example of the full line of fine Kahle equipment for the production of semiconductors and electron tubes.
For detailed information, write to:

asenue, Linion Cily, Vemo Jersey LEADING DESIGNERS AND BUILDERS OF MACHINERYFOR THE ELECTRONIC INDUSTRY

1959 Transistor Data Chart

IMNOU PLUGS Solhweber For N

Yes: You can now
order up to 2500
each of such popular
Cannon Connector
types as Miniature D,
KO, DPD, DPA,
DPX, etc. Immediate
shipment at
factory prices.

fluweler

ELECTRONICS
10 HERRICKS ROAD, MINEOLA. L.I., N.Y. गONEER 6-6520 TWXG-CY-NY-5EO CIRCLE 55 ON READER-SERVICE CARD ELEC.TRONIC DESIGN • July 22, 1959

Increased Production Facilities for Cannon MS Series Plugs

MODERN PRODUCTION FACILITIES - The new modern Cannon factory building in Santa Ana has over 110,000 square feet of floor space, equipped with the latest automatic and semi-automatic processes. This increased production capability has been organized especially for the production of the Cannon MS line of plugs. QUALITY CONTROL - The Santa Ana Division utilizes the most modern methods of quality control to insure conformance to MIL-Q. 5923, MIL-C-5015, and related specifications as presented in the latest QPL Lists.

SPECIAL. ENGINEERING A complete engineering staff is maintained at Santa Ana to handle all special modification requirements on the MS Series, and to serve customers with unusual needs. FASTER DELIVERY - This new facility further increases the ability of Cannon Electric Company to provide fast deliveries of Cannon Plugs, without sacrificing quality or reliability. STOCKED BY DISTRIBU TORS - Cannon Distribu tors, located throughout the country, stock the standard types of MS Plugs and can arrange for immediate shipment.

$$
\begin{aligned}
& \text { NEW MS-R SERIES } \\
& \text { All Cannon MS Series } \\
& \text { Plugs conform to Mili- } \\
& \text { tary Specification } \\
& \text { MIL-C-5015D (ASG) } \\
& \text { CLASS R - environmental } \\
& \text { resisting (Lightweight) } \\
& \text { Cannon Plugs are a new } \\
& \text { addition to the MS Line. } \\
& \text { Class R Plugs are intended } \\
& \text { for use where the plug will } \\
& \text { be subject to heavy con- } \\
& \text { densation, rapid changes } \\
& \text { in temperature or pressure, } \\
& \text { and to high vibrations. } \\
& \text { Cannon is the only } \\
& \text { qualified source for the } \\
& \text { complete line of the } \\
& \text { new Class MS-R Plugs. } \\
& \text { MIL-C-5015D specifies } \\
& \text { that Class R Plugs shall } \\
& \text { have the "wire sealing } \\
& \text { grommets in firm contact } \\
& \text { against the rear face of the } \\
& \text { insert." This requirement. } \\
& \text { now written into the speci- } \\
& \text { fication, has always been } \\
& \text { a Cannon design criterion } \\
& \text { for all MS environmental } \\
& \text { resistant designs. } \\
& \text { on } \\
& \text { B }
\end{aligned}
$$

For further information write for the new MS.R Catalog, MS Nomenclature Guide, and Catalog on MS Insert Arrangements to: CANNON ELECTRIC COMPANY -
3208 Humbolt Street, Los Angeles, California . Please refer to Dept. 138
LARGEST FACILITIES IN THE WORLD FOR RESEARCH-DEVELOPMENT-MANUFACTURE

Factories in Los Angeles, Santa Ana, Salem, Toronto, London, Paris, Melbourne and Tokyo. Distributors and Representatives in the principal cities of the world. CIRCLE 56 ON READER-SERVICE CARD

TWO TRANSISTORS plus associated components of a flip-flop or bistable multivibrator circuit can be replaced by a single "Trigistor." Significant miniaturization along with higher reliability can be realized as a direct result of circuit simplification.

Silicon PNPN Device

The Trigistor is the first commercially available "circuit equivalent" component for many switching applications which are based on bistable multivibrator.

Developed by Solid State Products, Inc. of Salem, Mass., the Trigistor is a silicon pnpn device with the unique property of triggered turn off, as well as triggered turn on, control at its base. The Trigistor will turn on with the application of a low-level positive trigger pulse to its base. Once on, it will remain on without the need for sustaining base current. A negative trigger pulse applied to the base turns it off. It will then remain off until triggered on again.

Circuit Comparison

Far fewer components are required with Trigistor circuitry as compared with transistors or other switching elements. Thus significant miniaturization along with higher reliability can be achieved as a direct result of the circuit simplification. Usually, a single Trigistor will perform the same function as two transistors plus several associated capacitors and resistors.
Fig. 1 shows a basic Trigistor flip-flop circuit in comparison with a conventional transistor flip-flop
and illustrates the inherent simplicity of Trigistor bistable circuits. The 3C series Trigistors which are now commercially available are designed for operation in the range of 2 to 8 ma collector current with collector voltage ratings to 60 v . Maximum operating temperature is 125 C . Turn off times of $0.5 \mu \mathrm{sec}$ are typical with circuit repetition

Fig. 1. Comparison between Trigistor and conventional transistor flip-flop circuit.

Fig. 2. Analogy between two transistors, a pnp and an npn, and a single Trigistor. Trigistor's three leads correspond to terminals A, B, and C of the two-transistor circuit.

Fig. 3. Five-bit shift register using one Trigistor per bit. The individual basic Trigistor 月ipflops are coupled through a simple gating network which provides the proper polarity shift pulse to each stage.
rates 100 kc . The Trigistors are packaged in the JE JEC Standard TO-9 case.

Operation

Thi Trigistor's operation can be best understood y considering the analogy of two silicon transi ors, an npn and a pnp connected as shown in Fi. 2. The collector of the npn drives the base if the mp and the collector of the pnp drives the base the npn. This positive feedback loop has a gair equal to $B_{1} B_{2}$, the product of the current gains of the two transistors. The circuit is stable is lour as $B_{1} B_{2}$ is less than unity, but becomes self-retenerative when the loop gain reaches unity:
With a small negative current applied to terminal C, the npn transistor is biased off and the loop gain is less than unity. The only current that can flow between output terminals A and B is the (utoff collector current of the two transistors. Consequently, the impedance between A and B is very high.
When a positive current is applied to terminal c. the npn transistor is biased on, causing its pllector current to rise. Since the current gain, B1. of the npn increases with increased collector (urrent, a point is reached where the loop gain equals unity and the circuit becomes self-regenerative. Collector currents of the two transistors apidly increase to a value limited only by the etternal circuit. Both transistors are driven into paturation and the impedance between A and B ${ }^{5} 5$ very low. The positive current applied to terminal C which served to trigger the self-regenerabre action is no longer required since the collector (t) the pnp transistor supplies more than enough wurrent to drive the base of the npn.
The circuit will remain in this "on" state until I is triggered off. Turnoff is accomplished by a eqaative current pulse at terminal C which diarts the collector current of the pnp from the ase of the npn. Regenerative action is no longer estained and the two transistors return to their able cutoff condition.
In the Trigistor, the functions of the two trantors are combined into a single pnpn diffused Hicon device. The Trigistor's three leads correpond to terminals A, B, and C of the circuit alogy.
The inherent simplicity of bistable circuits -ing the Trigistor make it attractive for a wide anety of applications. The Trigistor is particuFly suited to memory, counter, gating, logic - Fing and related pulse circuits. These functions : readily performed by the addition of appro-- ate coupling networks to the basic bistable - F -fop shown in Fig. 1. A five-bit shift register - g one Trigistor per bit is shown in Fig. 3.

For more information on the Trigistor, turn to R R ader-Service Card and circle 101.

Now . . . connect 3, 6, 9 or 12 circuits simultaneously with the AMP-lok multiple connector and a simple push of the fingers.
All units are self-anchoring and require no supplementary mounting parts in through panel multiple connector applications.

AMP-lok can be used as a sate, free-hanging multiple connector also.

AMP lok ohsolleter: ail il replare: because of the following design features:

- contacts are identical , . self cleamng ,., recessed for satety
- finger grip engagement and disengagement
- polarized to eliminate circuir error
- wide panel thickness accommodation -one simple mounting hole required
- color coding available

Additional literature and samples available on request.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA

Design Flexibility with Economy Choose from over $\mathbf{3 4 0}$
Standard Joy Axivane ${ }^{\circ}$ Fans

Over 340 models with 1300 designs give the aircraft designer the flexibility of custom fans with the economy of standard fans. Horsepowers as low as $1 / 500$ th, fan efficiencies as high as 86%, and pressures up to $70^{\prime \prime}$ WG are available.

Joy Axivane Fans meet most applicable government specifications being used by a majority of airframe and missile manufacturers, including Boeing, Lockheed, Martin, Douglas and North American. Joy Axivane Fans have only three basic parts, and motors are flange mounted inside the fans to permit mounting in ducts. This simplicity of design makes the fans lightweight and compact, yet vibration and shock resistant.
Special designs to meet unusual requirements also can be furnished to your specifications. Whatever your air movement problems, Joy can provide the solution. Joy Manufacturing Company, Oliver Building, Pittsburgh 22, Pa. In Canada: Joy Manufacturing Company (Canada) Limited; Galt, Ontario.

CIRCLE SE ON READER-SERVICE CARO

Self-Oscillating

 Beta TesterB^{8}Y USING the transistor under test as the only "active" element in a simple oscillator circuit, a very accurate test can be made of "ac small-signal Beta"

$$
\left(h_{s e}=\frac{i_{c}}{i_{b}}\right)
$$

The circuit may be added to any conventional transistor test instrument or test jig, or it may be operated directly from batteries or an external circuit impedance, or the type and rating of the transistor tested.

Fig. 1 shows the simple oscillator circuit employed in the T-345 Beta check made by Armour Electronics Div., Cardinal Instrumentation Co., 4201 Redwood Ave., Los Angeles, Calif. Heart of the circuit is the tuned phase-shift network which couples the collector to the base to permit oscillation. Any of several simple passive network configurations may be used provided that:

- There is negligible dc resistance in the network circuit paths from terminals 1 to 2, and from terminals 3 to 4 .
- There is no appreciable conductive path from the 1-2 circuit to the 3-4 circuit.
- Network phase-shift at the desired frequency of oscillation is $180 \mathrm{deg}, 540 \mathrm{deg}$. etc. (some odd multiple of π radians).
- Network attenuation at the desired fre quency of oscillation is less than the minimum value of Beta to be tested.
- Input impedance of the network, at the desired frequency of oscillation is high preferably, it should "peak" at that frequency.
Fig. 2 shows these desired network characteristics graphically.

If all the requirements are met, the circuit will oscillate over a wide range of value of R. By calibrating the "set" indicator appropriately, " R " may be calibrated directly and linearly in terms of Beta.
The circuit equations which follow assume that R » $Z_{34}+h_{i e}$, a condition easily achieved in practice.
$e_{S}=-i_{c} Z_{12 .}$.
$i_{b}=\frac{e_{f}}{R}$

Fig. 1. Circuit of Armour's self-oscillating transistor beta tester.

Fig. 2. Network characteristics necessary to permit oscillation of the circuit of Fig. 1.
combining Eqs. (1) and (2).

$$
\begin{aligned}
i_{b} & =\frac{-i_{c} Z_{12} A}{R} \\
\frac{-i_{c}}{i_{b}} & =h_{f_{e}}=\frac{R}{Z_{12} A}
\end{aligned}
$$

Since Z_{12} and A are constant, for a given network and frequency, then beta is directly proportional to R.

In use, one simply adjusts R (a helical potentiometer is convenient) until the "set indicator" voltmeter reads to a pre-calibrated mark; beta is then read directly off a scale on " R " (a digital dial scale is convenient).
Accuracy improves as R becomes larger with respect to Z_{34} and $h_{i e}$; thus the higher values of beta are more accurately proportional to R than the very low values.
The frequency employed in the Model T-345 is 1 KC , the recommended MIL test frequency for most transistors.
For more information, turn to the Reader-Service Card and circle 102.

Fig. 3. How the "Beta-Check" may be used in convinci on with a conventional transistor tester.

ELE:GTRONIC DESIGN • July 22, 1959
have you checked this Remote Actuator for jobs under Shock and Vibration?

...OAIK

 ROTARY SOLENOIDS(M/d. under license from G. H. LELAND, INC.)

stepping torques from 6.4 to 64 inch-ounces

If you've been searching for an actuator that meets such specs as MIL-S-4040A, and is remarkably small for the amount of work it can do, investigate Oak Rotary Solenoids. They operate on DC and are designed for intermittent service. Standard models give steps of 25°, $35^{\circ}, 45^{\circ}, 67.5^{\circ}$, or 95° in either a left or right-hand direction. Self-stepping or externally pulsed units are also built. Oak Rotary Solenoids find wide use in both commercial and military equipment. Why not evaluate their unusual capabilities for your next project. We will be glad to help you engineer the job. Just send us a short description and sketch.

CIRCLE 59 on reader-service card

OPERATES IN ANY POSITION

EXTREMELY ADAPTABLE
 COMALETE SUCCCMASSIS

WITM SEALED
DUST CAP
MODEL 5E
SHOWN ACTUAL SIZE

1260 Cybeworn Ave, Dopt D, Chicato 10, milimola Phone: MOhawk 4-2272

SWITCHES - ROTARY SOLEMOIDS - CMOPPERS VIBRATOMS - TUMERS sumassemalies

:IELDPROVED HONEYWELL COMPONENTS

or measuring, balancing and positioning applications

CONVERTERS

These synchronously driven choppers handle d-c signals as small as 10^{-8} volt. Sensitive, stable performance. Available with special features such as fungus proofing, grounded housing, mica-filled base, various contact percentages. Weight: 10 oz . Prices from $\$ 39$.

ELECTRICAL CHARACTERISTICS					
Part Mo.	354210.2	354210.3	354210.1	354210.4	355081
Modulation Frequency	20.30 cycles	40.45 cycles	50.65 cycles	50-65 cycles	360.440 cycles
Switching Action (SPDT)	(Make-before-break) Each contact closed 55% of each cycle ($\pm 2 \%$) Other actions as specified			(Break beforemake). Each contact closed 47% of each cycle	Each contact closed 57% of each cycle ($\pm 7 \%$)
Oriving Coil Requirements	6.3 v .60 ma at rated frequency				18 v. 94 ma at rated frequency
Contact Rating	100 microwatts at 5 v max. 10 ma max.				
Electrostatic Stray Pickup	$2 \times 10^{-}$volts per ohm of input circuit impedance				2×10^{-10}
Electromagnetic Stray Pickup	Less than 2×10^{-6} volls, constant to within 2×10^{-7}				$\begin{aligned} & 2 \times 10^{-3} \text { volts } \\ & \text { constant } 10 \\ & 2 \times 10^{-0} \\ & \hline \end{aligned}$
Phase Shift	Output voltage lags driving phase by $17^{\circ} \pm 5^{\circ}$				Lags driving phase by 45° phase by ${ }^{4}{ }^{4} 50^{\circ}$ 10
Symmetry	Within 2\%				Within 7%
Shielding	Frame and coil shield, grounded thiough pin No 2				Shell and coil shield, grounded through pin No. 2
Load Characteristics	Resistive or Inductive				
Vibration Resistance	Output voltage varies less than 2% with rates of vibration from 0 to 10 g				

MOTORS

Designed for chart drives, servos and balancing circuits, these motors are available in three general types: Stack type, with easily maintained sectional housing: self-lubricated, oil-sealed type; and fungus-proofed, oil-sealed military motors. Prices from $\$ 40$

	п.P.м.	$\underset{\substack{\text { Gear } \\ \text { Rafif }}}{ }$	Intermittent Rated load (e . -in.)				$\begin{gathered} \text { Ppeee } \\ \substack{\text { Whelts) } \\ \text { Laseded }} \end{gathered}$	$\begin{gathered} \text { Current } \\ \substack{\text { camps. } \\ \text { Lexoted }} \end{gathered}$	$\underset{\substack { \text { Temp. } \\ \begin{subarray}{c}{\text { foss. }{ \text { Temp. } \\ \begin{subarray} { c } { \text { foss. } } }\end{subarray}}{ }$
Two Phase Induction Motor									
$\begin{gathered} 330 \\ 144 \\ 48 \\ 23 \end{gathered}$		$\begin{aligned} & \begin{array}{l} 44: 1 \\ 10: 1 \\ 30: 1 \\ 60: 1 \end{array} \end{aligned}$	$\begin{array}{r} 4 \\ 5 \\ 15 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 20 \\ 60 \\ 110 \\ \hline \end{array}$			$\begin{aligned} & 11.5 \\ & 11.5 \\ & 11.5 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11+\dagger \\ & 0.1 \dagger \dagger \\ & 0.11+ \\ & 0.11+ \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \\ & \hline \end{aligned}$
Synchronous									
	$\begin{gathered} 180 \\ 180 \\ 90 \\ 60 \\ 30 \end{gathered}$	$\begin{aligned} & 10: 1 \\ & 10: 1 \\ & 20: 1 \\ & 30: 1 \\ & 60: 1 \end{aligned}$			12 2.0 14 21 42 4	$\begin{aligned} & 12 \\ & 2.0 \\ & 12 \\ & 18 \\ & 36 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 11.5 \\ & 11.5 \\ & 11.5 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.21 \\ & 0.11 \\ & 0.11 \\ & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 100 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$

${ }^{-1 / 6}$ less at 50 cycles $\quad+$ Field winding 110 watts. balance in amplifier winding
All motors are available in two phase and synchronous models

AMPLIFIERS

They amplify a d-c or a-c microvolt input signal sufficiently to drive one field of a two-phase balancing motor. Three stages of voltage amplification are followed by the power-output phase discriminator stage, which supplies power for the motor. Extremely low stray pickup . . . adjustable sensitivity . . . fast response. Priced from $\$ 110$ to $\$ 250$.

Gain	Sonsifivily (Microvolts)	Nominal input Impedance (Ohms)		
10°	4.0	400	2,200	50,000
4×10^{0}	1.0	400	7,000	50,000
12×10^{0}	0.4	400	2,200	7.000
40×10^{6}	0.1	2,200		

POWER SUPPLY- 115 v., 60 cycles (fused power line)
OUTPUT-2 to 18 ma . into 12,000 ohm load
SENSITIVITY—Continuously variable screwdriver adjustment. Recessed slot protects setting
MOUNTING-Operation unaffected by mounting position
OPTIONAL FEATURES-(a) thermosouple burnout protection, (b) without desensitizing adjustment, (c) parallel T feedback, (d) velocity damping, (e) special connecting cables and plugs, (f) without tubes, shields, and converter, (g) for 25 cycles Minneapolis-Honeywell, Wayne and Windrim Aves., Phila. 44, Pa.

Honeywell

 HFunt in Contrad
CIRCIE 60 ON READER-SERVICE CARD

Circulator's Size

and

Operating in the \mathbf{L}-band, these circulators are are especialy useful for airborne and other applications where weight must be kept at a minimum.

LOW IN WEIGHT, small in size-these charac teristics make the series CLL circulators especially useful in radio-astronomy, airborne and other critical applications. Weighing a maximum 9 lb and having a 7.5 in . diam, the circulators were designed down from a weight of 125 lb and a length of about 8 ft .

Operating in the L-band, the units are suited for maser and parameteric amplifier work because of their low insertion loss. They are made by Raytheon Co., Special Microwave Devices. River St., Waltham 54, Mass.
The units are three-port devices (instead of four-port. with one arm loaded) and have typ coaxial connections. They combine a tupical sertion loss of 0.3 db with 25 db isolation an vswr of less than 1.1 centered at any freque

Weight Reduced

Typical performance characteristics for the model CLLI circulator.
from 900 to 1600 mc .
With a permanent magnet, as shown in the photograph, the insertion loss is 0.4 db max, the isolation is 20 db min , and the vswr is 1.2 over any 50 mc band. With an electromagnet, a circulator may be tuned over a 100 mc bandwidth maintaining the same performance. Units having electromagnets can be designed to meet specific requirements.
All circulators can handle an average power of ミw. The standard models available and their operating frequencies, in megacycles, are: CLLl, $12 t_{0} \pm 25$; CLL2, 1400 ± 25; CLL3, 1280 ± 25; CLLA, $1315 \pm 25 ;$ CLL5, $1420 \pm 25 ;$ CLL8, 960 $=\Sigma 5$.
For more information on these circulators, turn to he Reader-Service card and circle 103.

EllCTRONIC DESIGN • July 22, 1959

Cutting costs of Switch Installation... your job...and Centralab's

Centsalab Printed Circuit Switches

the greatest advance in switch design in decades

The centralab Series 20 Printed Circuit Switch provides these cost-saving advantages:
1 Elimination of switch wiring errors.
2 Simultaneous connection of all switch2 ing leads during dip soldering of etched circuit boards.
3 No hardware is required for rigid anchoring of switch to the board.

SPECIFICATIONS:

Construction: $13 / 4^{\prime \prime}$ high $\times 2^{\prime \prime}$ wide laminated phenolic sections. Bolted construction multiple sections and
staked single or dual section
Switching
Combinations: 1 pole- 12 positions through 6 pole- 2 positions. Also available for dual concentric shafts for A.C. line switch or equipped with printed circuit equipped
Reting: 2 amperes at 15 volts D.C., 150 ma. at 110 volts A.C. (make and break, resistive load).
Insulation: Laminated phenolic type PBE per specification MIL-P-3115. Voltagebreakdown 1000 volts RMS.
Rotational Life: $\mathbf{1 0 , 0 0 0}$ cycles minimum.
For complete physical and electrical specifications on Centralab Printed Circuit Switches ask for Bulletin EP-757.

Centralab,

A Division of Globe-Union Inc.
960G E. KEEFE AVE. - MILWAUKEE 1, WIS.
In Canada: 669 Bayview Ave., Toronto 17, Ont.

VARIABLE RESISTORS - ELECTRONIC SWITCHES • PACKAGED ELECTRONIC CIRCUITS • CERAMIC CAPACITORS • ENGINEERED CERAMICS
CIRCLE OI ON READER-SERVICE CARD

IDEAS FOR DESIGN

Tetrode Transistor Drives Rotary Solenoids

WE HAD to activate two Ledex rotary solenoid switches simultaneously at five second intervals. The solenoid coils required 2.5 amp each at 28 v dc, applied for at least 0.25 sec to insure reliable switching. One side of each coil had to be grounded.

The only power available was +28 v dc, and the circuit had to be capable of continuous operation over the temperature range of -40 to +85 C .

The system we designed is a bootstrap oscillator circuit. When the supply voltage is first applied, capacitor C1 charges through R1-R2 and the Ledex coils until the base to emitter voltage of Tl is sufficient to turn this transistor on. The resulting collector current flow in T1 caluses current to start flowing through T2 and starts voltage buildup across the Ledex coils.

As this voltage increases, Cl starts to charge through R2, and the charging current flows into the base of $T 1$, saturating this transistor. It, in turn, saturates T3 and applies nearly the full 28 v across the solenoid coils.

Five amperes then flow through the coils and continue to do so until Cl is nearly fully charged and the charging current into the base of $T 1$ is no longer sufficient to keep both transistors saturated.
At this time the voltage across the coils starts to decrease and, in so doing, swings the base of $T 1$ negative through $C 1$ and $R 1$ which cuts the whole system off. The circuit remains in the off condition until the charge on C1 has leaked off through R1, and the base to emitter voltage of T1 is sufficiently positive to allow the cycle to repeat.
The transitions from off to on are speeded up by the bootstrap effect, so the voltage impressed across the coils is essentially rectangular in shape. Diode D2 absorbs the inductive kickback voltage across the relay coils when the circuit switches off.

A tetrode power transistor was used here because of its greatly improved leakage characteristics at high temperatures when used in the common emitter configuration. Diode DI supplies 0.75 v of emitter bias when the circuit is in the off condition. The 3 K resistor insures that sufficient current flows through the diode to maintain
this bias. The diode can be left out if operation is confied to temperatures below 40 C .

With the component values shown, the off-time of the system is 5 sec and the on time 0.35 sec . Changing the values of R1, R2, and C1 enables the timing of the system to be varied over wide limits, but care should be taken to insure that $R 2$ never becomes low enough to allow excessive base current to flow in T1 while the circuit is pulling itself on. Changes in the load impedance will also vary the timing to some degree.

The circuit behaves quite well between - 50 and +95 C , with no appreciable variation in timing or efficiency.
J. Wisnia, Engineer, Comstock du Wescott, Inc., Cambridge, Mass.

Driver for two Ledex rotary solenoids. Both diodes are Tarzian LF. T1 is a $\mathrm{TI} 2 \mathrm{~N} 497, \mathrm{~T} 2$ is a Honeywell H200 E tetrode transistor, and M1 and M2 are Ledex rotary solenoid switches.

Transistor Power Supply

THE TRANSISTOR regulated power supply, shown here, provides the voltage and current requirement of many transistor circuits. It is simply designed and uses inexpensive, readilyavailable components.
The diodes and surface barrier transistors do not have critical specifications. The output voltages are approximate. They depend on the Zener diode used.
Donald A. Purland. Test Equipment Engineer, Philco Corp., Phila. 44, Pa.

Uses Low-Cost, Noncritical
Components

Low cost transistor-regulated power supply. The transformer is a Stancor RT201. Bridge diodes are Federal type 1017.

built to take it

 ...designed to tellthe whole story with impact!

MINIATURE TAPE RECORDER

Testing under severe environments . . . in extremely limited space? Inet's rugged Miniature Magnetic Tape Recorder simultaneously records data on 1 to 14 in-line channels, never loses a record because it's built to survive high impacts.

Weighs just 24 ounces and operates at tape speeds of from $1 / 4$ to 15 inches per second in a temperature range of $-50^{\circ} \mathrm{F}$ to $+200^{\circ} \mathrm{F}$. Among its features: precision in-line recording head; adjustable motor speed and tape tension; and molded rubber pressure roller and drive wheels.
APPLICATIONS: in-flight and static tests; atmospheric, blast, explosion and wind tunnel studies; and acceleration and actuation tests.

Write for complete specifications.

LEACH MINIATURES

newest

new products

from Leach/Inet

TRIAXIAL RECORDING ACCELEROMETER

The compact, self-contained unit shown above is Inet's 6-ounce Triaxial Recording Accelerometer... attached to a $11 / 2$-inch-radius missile nose section.

This rugged unit has three sensing elements-reeds-that directly sense and record data on structures and components subjected to high-acceleration loads. It operates on 6 volts in a temperature range of $-50^{\circ} \mathrm{F}$. to $+160^{\circ} \mathrm{F}$., requires no connections to external devices except a power source. The unit records data on acceleration-time history along each of three mutually perpendicular axes. Among its applications: water-entry shock studies; ground impact, blast, and explosion studies; and various other tests, including rocket motor, target impact, sled, and switch actuation tests.

Write for complete specifications.

DISTRICT OFFICES AND FIELD REPRESENTATIVES IN PRINCIPAL CITIES OF U.S. AND CANADA - EXPORT: LEACH CORP., INTERNATIONAL DIVISION CIRCLE 62 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Fast Brake For Small Motors

To minimize coasting or over-travel, it is often necessary to brake gear reduction motors. The method shown in the diagram can be used for almost instantaneous braking.
In the normally closed position of the switch, ac power is supplied to the motor to develop full rated torque. When braking is required, the switch is thrown to the normally open position.

Diode arrangement allows capacitor gear reduction motor to be braked almost instantly.

The positive half cycle is then supplied to the motor through rectifier CR1, generating a torque in the normally running direction. On the negative half cycle, current flows through CR2, through the motor but to the opposite side of capacitor C. This creates torque in the reverse direction. The net effect is a locked rotor.
This method allows a large inertia rotor to be used where a low inertia rotor (longer and narrower) would be necessary to get effective braking through ordinary means.
Richard Ceier, American Optical Co., Buffalo, N. Y.

Tune Servo Motors

With Unequal Phase Impedances

Frank Hagen's article of March 4th, "How to Use Motor Impedance Data in Designing Servo Mechanisms" was very interesting. Since series 90 deg phase leading is widely used, I was curious as to what capacitance would be required to tune motors of unequal phase impedances such as those encountered for transistor servo drives. The following is the result for maximum starting torque.

$$
X_{e}=X_{t}+\frac{\boldsymbol{R}_{\mathbf{v}}}{\boldsymbol{X}_{\boldsymbol{v}}} \boldsymbol{R}_{f}
$$

X_{c} is the fixed phase series capacitive reactance. X_{f}, X_{v} are the fixed and "variable" inductive reactances at stall. $\boldsymbol{R}_{f}, \boldsymbol{R}_{v}$ are the fixed and variable effective resistance at stall.
W. Merel, Chicf Systems Engineer, Airborne Accessories Corp., Hillside, N.J.

1.
 HI-POWER STUD-MOUNTED
 SILICON TRANSISTOR
 EXGMTNG STUD-MOUNTED RANSISTOR

	Type	v_{cb} Max. Vollts	Ic max.Amps	B Typical	RCS Typical (Ohms)
	2 N 1208	60	5	35	1.5
	2 N 1209	45	5	40	1.5
	2 N 212	60	5	25	2.5
	APPLICATIONS Regulated Power Supplies . . High Current Switching . . High Frequency Power Amplifers				

CORE SWITCH

Improved switching speed and input characteristic High-current capabilities with good power handling abiity (5 w @ $100^{\circ} \mathrm{C}$). Rated and tested at 60 v .

150 mc VERY HIGH
FREQUENCY TRANSISTOR

\section*{	Type
STA100	
APPLIC	}

		Min.	Typical	Max.	Test Conditions
D.C. Current Gain	$h_{\text {re }}$	20	40	-	$\mathrm{IC}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{V}_{\text {cE }}=6 \mathrm{~V}$
D.C. Collector Saturation Voltage	$V_{\text {ce }}$	-	. 5	0.7V	$\mathrm{IC}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}$
Collector Cutoff Current	Ico	-	2	$5 \mu \mathrm{a}$	$V_{C B}=$ Rating
Output Capacitance	Cob	-	8	$12 \mu \mu \mathrm{l}$	$\mathbf{V}_{\mathbf{C B}}=6 \mathrm{~V}_{\text {, }} \mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$
High Frequency Current Gain	hre	5	7.5	-	$\begin{aligned} & \mathrm{F}_{\mathrm{E}}=20 \mathrm{mc} . \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} \end{aligned}$
Delay Time	$1 d$	-	6		$\mathrm{m}_{\mu} \mathrm{sec}$.
Rise Time	t_{r}	-	12		musec.
Fall Time	If	-	10		musec.

This transistor features universal application (replacea 2N337, 2N338, 2N1005, 2N1006) and high frequency re2N337, 2 N338, 2 N1005, 2 N1006) and high frequency re sponse, with low saturation resistance, low input impe	Bets	C_{0} (Tyy

Type	Typ. Alpha Cutof (Mc)	$\begin{gathered} \text { Beta } \\ \text { Bypical } \end{gathered}$	$\begin{gathered} C_{0} \text { (Typical) } \\ (\mu \mu \mathrm{f}) \end{gathered}$	Max. (Volts)	Typ. Saturation Resistance (ohms)
S73031	70	- 50	2	20	40
APPLICATIONS ... flip-flops . . If and video amplifers . . .transistor logic . . . pulse amplifiers					

Designed to provide minimum storage times under severe base overdrive conditions in transistor logic circuitry. changeability; low $\mathrm{R}_{\text {a }}$ assures reliable operation at high
LOGIC TRANSISTOR

IR

DEVELOPNENTS FPOM TAANSITION... added to THE INDUSTRY'S MOST COMPLETE LINE

SILICON TRANSISTORS

JAN TRANSISTOR		$\underset{(\beta)}{\substack{\text { Minimum } \\ \text { Current } \\ \text { Gain }}}$	$\begin{gathered} \text { Maximum } \\ \text { Collector Voltage } \\ \text { (Volts) } \end{gathered}$	$\begin{gathered} \substack{\text { Tyypical } \\ \text { Cut-offea } \\ \text { (Mc) } \\ \text { Mc }} \end{gathered}$		features
$=-1$	JAN-2N118	10	30	10	1	- Only Jan Silicon Transistor

SMALL SIGNAL		$\underset{(\beta)}{\substack{\text { Minimum } \\ \text { Current Gain } \\ \hline}}$	$\underset{\substack{\text { Maximum } \\ \text { Collector Voltage } \\ \text { (Volls) }}}{\text { Vis. }}$	$\begin{gathered} \text { Typical } \\ \text { Cut-off(requency } \\ \text { (Mc) } \end{gathered}$		features
	2 2333	18	15	7	50	- Low Ico - Operation to $175^{\circ} \mathrm{C}$ - 200 mm Power Dissipation
	2 N 335	37	45	10	50	
	2N480	40	45	11	5	
	2 N 543	80	45	15	5	
	st905	36	30	10	10	

HIGH SPEED SWITCHING		$\begin{gathered} \text { Typical } \\ \text { Cut-ot Freq. } \\ \text { (MC) } \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { Collector Vollage } \\ \text { (Volls) } \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { Collection Saturation } \\ \text { Resistance (ohms) } \end{gathered}$		features
	ST3030	50	15	60	50	- High Frequency Operation - Low Saturation Resistance - Low Ico
	ST3031	70	20	65	50	
	2 N 1139	150	15	70	500	
	2 N337	20	45	150	50	
	2 N 338	30	45	150	50	

MEDIUM POWER		$\underset{\substack{\text { Dissiax Power } \\ \text { Case (ion (Mats) }}}{\text { 25 }}$	Maximum Collector Voltage (Volts)	Minimum DC Current Gain (${ }^{1}$)		features
	STA100	5	60	15	2	- Fast Switching - High Vc - Ruzeed Construction
	2 N545	5	60	15	. 3.5	
	2 N 54	5	60	20		
	2 N 998	4	100	12		
	$2 \mathrm{N551}$	5	60	20		
	$2 \mathrm{N140}$	1	40	20	2	
HIGH POWER		$\begin{gathered} \text { Maximum Power } \\ \text { Dissipation } \\ \text { Case (Watis) } 25^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Minimum DC } \\ & \text { Current Gain } \end{aligned}$ $\text { (} \beta \text {) }$	$\begin{gathered} \text { Typical } \\ \text { Collector Saturation } \\ \text { Resistance (Ohms) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { collector Vollage } \\ \text { (Volts) } \end{gathered}$	features
	ST400	85	15 (c) 2 Amps	1.5	60	- Mighn Curirent Handling - Low Saturation Resistanca - Ruged Construction
	2N389	${ }_{85}^{85}$	12 @ 12 Amp .	3.5	80	
	${ }_{2} \mathbf{2 N 1 2 0 8}$	85	12@ 15 Amp Amp	1.5	60	
	2 N 1209	85	20@2Amps	1.5	15	
	2 N1212	85	12 © 1 Amp.	2.5	60	

Write for Bulldins: TE-1353 and TE-1355

Your local authorized Transitron Distrabutur now carries in-stock inventories for immediate delivery.

To OLCDOD

electronic corporation - wakefield, massachusetts
Leadership in Semiconductors"
VISIT OUR WESCON BOOTHS, NOS. 3002 - 3004

Relay Surgery

 Makes High Voltage BuzzerOccasionally, a buzzer is required for operation on $2 \underline{20} \mathrm{v}$ or $440 \mathrm{v}, 60$ cycle lines. These buzzers are not catalog items. The usual solution is to use a minimum size step down transformer (25 va) and a low voltage buzzer. At best, the result is bulky and relatively expensive.
A five second solution consists of using any 60 cycle relay with the proper voltage coil and cutting the one or two single-turn copper shading coils imbedded in the working face of the relay magnet.
This removes the shading coil from the circuit and, in turn, removes the out-of-phase component of the current. When energized, the relay acts as a buzzer. Mounting the unit on a metal pan, which serves as a sounding board amplifier, provides a loud enough buzz for most applications.

The buzzer may be converted back to a relay by resoldering the shading coils.
M. K. Kessie, Senior Design Engineer, Atomics International, Canoga Park, Calif.

Fire VR's in Parallel Operate in Series

Approximately 145 v are needed to ignite a 100 v regulator tube such as the CK5787. Our problem was to use two such VR tubes in series for a $2(0) \mathrm{v}$ reference, but we had only 250 v dc available, instead of at least $\mathbf{2 9 0}$.

One diode and two resistors help this regulator operate with "inadequate" firing voltage.
We solved the problem by using a diode and two resistors as shown in the figure. R1 and R2 supply just enough current to bias off the diode and start the VR tubes. Once both tubes are fired, the diode is switched on. Thus, both tubes are fired in parallel and operated in series.

Teague N. Leiboff, Senior Development Engineer, Magnetic Amplifiers, Inc., El Segundo, Calif.

CIRCLE 63 ON READER-SERVICE CARD

ELEC FRONIC DESIGN • July 22, 1959

Advancing the
 solid-state
 art
 NO. 1
 Iransistors . . completely!

Check All Five
Basic "Quality-Control"
Parameters Rapidly, Easily
Accurately, Quantifatively!

You can save the price of these precision testers in weeks, speed production and testing and guarontee greater product reliability by rejecting out-of-limit transistors before they are assembled into your circuits. Statistics prove itl
Test both NPN and PNP, silicon and germanium transistors at power lovels from MW through 50 watts . . AC beta check of recommended MIL Diode tests, 100 .
$D C$ Bota- $\mathrm{H}_{\mathrm{fe}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}$
the static ratio of
the collector cur-
rent to base cur-
rent.
AC Bota-h $\mathrm{he}_{\mathrm{o}}=\frac{\mathrm{i}_{\mathrm{c}}}{\mathrm{i}_{\mathrm{b}}}$
the dynamic ratio
of small-signal col. lector current to base current
tche-
the base current
required to reduce
the collector current to zero

MODEL	DESCRIPTION	FEATURES	PRICE
T. 301	Ufility P.T.	DC Bota, kbo, keo, signal leval	\$138.00
r. 340	Profossional T.T.	OC Boto, kbo, ko,loo, wide range	\$395.00
T.34s	AC Beta Adaptor	Adds AC Boto check to T. 340	\$140.00
F.350	Advanced T.T.	AC Beta, OC Beto , kbo, ko, Jeo, voltage reg'n, wide range	\$585.00
P.375	Power P.r.	Test power transiktors under Pulse Conditions	Available in August
		ARMOUR ELECTRONICS Division of Cardinal Instrumentation Corporation 4201 Redwood Avenue. Los Angeles 66, Colifornier TRANSISTORIZED POWER SUPPIES TRANSISTOR TESTERS - LINE REGULATORS	

IDEAS FOR DESIGN

I-f can houses fm funer. The circuit for this one-fube fm funer is packed inside a shield can about the size of a standard i-f transformer. The circuit comprises a neutralized triode if amplifier and a pentode oscillatormixer. The tuner is made by the French firm Visodion. Dr. A. V. J. Martin, Cornegie Institute of Technology, Pittsburgh, Pa

Two Transistor " n " Input "Exclusive OR"

The circuits of Figs. 1 and 2 perform the "Exclusive OR" function for two or more inputs (n) with only two transistors and $2 n$ diodes. Fig. 1

Fig. 1. "Exclusive OR" with high output when some inputs are high, some low. Output is low when A, B and C are all either low or high.

AMPEX PRECISION

 REELS:Maximum Security with
Minimum Clearances
Ever have trouble with the edgetrack data on your magnetic tape? Possibly an Ampex Precision Reel could have prevented the difficulty. How? The secret is in the metal. Only Ampex makes precision reels of magnesium. It gives you thick. rigid, nontapered flanges that protect the tape. A strong hub, too, that doesn't distort under pack pressure. And because magnesium is light. Ampex achieves this ex!! 3 strength within the weight limits your recorder is accustomed to All this, together with a calculated design that means minimum clear. ances and tolerances, gives you a better tape pack - pass after pas The security of Ampex Precis Reels is available in all conventic recording sizes.

AMPEX

MAGNETIC TAFE
934 charter street. reowooo city.
CIRCLE 65 ON READER-SERVICE C ELECTRONIC DESIGN • July 22,

Fig. 2. "Exclusive OR" with low output when some inputs are high, some low. Output is high when A, B and C are all either low or high.
satisfies the function with a high output, Fig. 2 with a low output.
Stanley Maki, Senior Electronics Engineer, Convair Astronautics, San Diego, Calif.

Transistorized Multi With Fast Fall Time

Transistorized multivibrators make very good square wave generators except for the fact that they stretch the trailing edge of the wave. This is due to recharging the cross-coupling capacitor. The addition of a resistor and a diode will permit the multi to deliver excellent square waves with fast rise and fall times. The capacitor is isolated during the recharge cycle so it does not prevent the output collector from recovering rapidly.
Roy P. Foerster, Baltimore, Md.

Ade iton of diode (CR) and resistor (R) helps the output ollector recover rapidly. This gives the multivibralor c fast fall time.

$1 / 4 \mathrm{db}$ accuracy full range for low attenuation values. Maximum error at full attenuation 2 db . "One-knob" control. Super compact design-size approximately $21 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 6^{\prime \prime}$.
These are characteristics of the new, rugged, simple -hp-355A/B attenuators.
$-h p$ - 355A provides 0 to 12 db in 1 db steps. $-h p$ 355 B provides 0 to 120 db in decade steps. Together, 132 db of attenuation from DC to 500 MC is available, with simplest possible controls, pre-
mium accuracy, and no complex setup. A solidshield 50 ohm connector may be used to interconnect the two attenuators.

These new -hp-attenuators have balanced capacities and completely shielded sections. They are enclosed in a sturdy metal case, yet weigh only $11 / 2$ pounds.
Ask your -hp-representative to show you these practical, minimum-space attenuators this week.

SPECIFICATIONS

Atronuation: hp- 355A, 12 db in 1 db steps. hp. $355 \mathrm{~B}, 120 \mathrm{db}$ in 10 db steps
Frequency Range: DC to 500 MC
Overall Accuracy: •hp. $355 \mathrm{~A}, \pm 0.25 \mathrm{db}, \mathrm{DC}$ to 500 MC . hp $3558, \pm 1 \mathrm{db}, \mathrm{DC}$ to $250 \mathrm{MC}, \pm 2 \mathrm{db}, 250$ to 500 MC
Nominal Impedance: 50 ohms
Maximum SWR: 1.2 to 250 MC, 1.5 10 500 MC

Max. Insertion Loss: 0 at DC, 0.4 db at $60 \mathrm{MC}, 1 \mathrm{db}$ at 250 MC . 1.5 db at 500 MC

Power Dissipation: 0.5 wall overage; 350 v peok
Connoctors: BNC
Size: $2-3 / 16^{\prime \prime}$ wide, $2-5 / 8^{\prime \prime}$ high, $6^{\prime \prime}$ long. Net weight $11 / 2$ pounds
Price: -hp-355A, \$125.00. -hp-3558, $\$ 125.00$

Data subject to change without notice. Prices f.o.b. factory
HEWLETT-PACKARD COMPANY
4634K PAGE MILI POAD - PALO ALTO, CALIFORNIA, U.SA
CABLE "MEWPACK" - DAVENPORT 5.4451
FIELD ENGINEERS IN ALL PRINCIPAL AREAS

$\$ 19$ offers over 350 quality electronic test instruments

Where only the best
 is good enough ...

Krohn-Hite oscillators are used

In basic electronic instruments for lab or test work, less than the best may be a dangerously bad bargain. Unexpected limitations - of reliability, range, precision - can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable.
The best instrument of its type is probably a bit more expensive, but it's worth buying . . . because you can believe in it today, and will rely on it tomorrow. An example is the Krohn-Hite Model 440-A wide range push-button oscillator. Here are some facts about it.
frequency range: 0.001 cps to 100 kc , continuous coverage. CALIBRATION ACCURACY: $\pm 1 \%$ from 1 cps to $10 \mathrm{kc}, \pm 3 \%$ from 0.01 to 1 cps and from 10 kc to 100 kc .
resetabilury: exact for push-button resetting, subject only to drift of less than 0.05% per hour.
SINE WAVE OUTPUT: 10 volts rms open circuit, 100 milliwatts into 1000 ohms; amplitude constant within $\pm 0.25 \mathrm{db}$ from 0.1 cps to 10 kc .

SINE WAVE distortion: less than 0.1% from 1 cps to 10 kc , less than 1% from 0.01 to 1 cps and from 10 kc to 100 kc .
sQuare wave output: 10 volts peak to peak open circuit, 5 volts peak to peak across 1500 ohms; amplitude constant within $\pm 1 \%$ at any frequency; rise time less than 0.5 microsecond. There's a lot more you should know about the 440-A . . . and about the other Krohn-Hite oscillators, tunable electronic filters, power supplies and amplifiers. In all of them, you'll find the same far-ahead engineering, design and construction. Because K-H instruments are good enough even for tomorrow's most critical work, they are increasingly chosen today where reliability and precision are needed.

SEE US AT WESCON - BOOTHS 1818-1820
Write for your free copy of the new Krohn-Hite Catalog.

Krohn-Hite corporation

580 Massachusetts Avenue, Cambridge 39, Mass. CIRCLE 67 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Small, Simplified Pnp Beta Tester

This simplified beta tester measures the value of dc beta. It is taken at a current level of 10 ma and is a good measure of ac beta too. The accompanying beta chart, which gives beta from a voltage reading, is calculated from $\beta=50 \mathrm{~V} /(10$ $-V)$.

\mathbf{V}		β	5.0	50
0.5	2.6	5.5	61	
1.0	5.5	6.0	7.5	
1.5	8.8	6.5	9.3	
2.0		12.5	7.0	116
2.5	17	7.5	150	
3.0	21	8.0	$2(0)$	
3.5	27	8.5	28.3	
4.0	3.3	9.0	4.50	
4.5	41	9.5	9.50	

This simple de beta tester should take almost no time to build.

Benjamin H. Rose, Eatontoun, N.J.

Human Engineered Breadboard

One thing about this breadboard, made with thumbtacks and a pine board, is that it is obviously a breadboard and you waste no time trying to make it look pretty. It boasts the usual advantage claimed for breadboards; when it comes to easily salvaging parts, it is superior to most.

Materials required in addition to electronic parts are nickel plated thumbtacks, soft pine board, 10 in . wide and as long as you choose, bus wire, paper and pencil.
Construction involves only these simple six steps. 1. Draw schematic of circuit on paper. 2. Put paper on board. 3. Put thumbtacks at ends of buses on the schematic. 4. Solder bus wire between thumbtacks to provide an electrical bus over the symbolic bus on the diagram. 5. Put

No solvent acidity

... with new Freon* solvents
"Freon" solvents are high-purity chem-icals-remain noncorrosive through repeated degreasing cycles in cleaning sensitive mechanical and electrical as. semblies. Without inhibitors new "Freon'' sol vents demonstrate remarkable stability in the presence of water, oils or metals. They are ideal for cleaning where even minute corrosion could damage delicate parts.
Here are four more ways in which new "Freon"' solvents are extraordinarily safe for cleaning.

- Low roxicity - "Freon" solvents are odorless and much less toxic than ordinary solvents. Vapors won't cause nausea or headaches.
- Won't burn or explode - Underwriters' Laboratories report "Freon" solvents nonexplosive, noncombustible and nonflammable.
- Leave no residue - No residue is left on parts as they dry because no inhibitors are needed to keep "Freon" solvents neutri).

Negligible effects on plastics, elastomers, insulation and color coding - "Freon" selvents remove oil and grease with minimum ing of plastich ging ing or softening paint, wire coatings sulation.

Write for free solvents booklet. I du Pont de Nemours \& Co. (In \&), "Freon" Products Division 54i. mington 98, Delaware.

- Freon is Du Pont's registered trademark is fuorinated hydrocarbon sacents.
FREE BOOKLET : No obligation-write
lor booklet which tells Nor bookiet "Fhich" tils
now new "Freon" solvents by Du Pont minimize cleaning hazerds.

One
small
leasint
leasin!

Andrew S．Bishore，Engineer，United Electro－
dinamics，Pasadena，Calif． ut voltage may vary widely but the load re－
ains constant． This simple method is effective where the in－
vut voltage may vary widely but the load re－
 －wat antu！sod e＇rossisuas e fo uot！ppe aq．am
 Zener diodes make excellent voltage regulation Sensistor Compensates
Zener Regulator R．Purdy，Electronics Engineer，Waldorf Elec－
tronics，Huntington Station，L．I． ets were simply popped out of the rubber．lab
method has proved very convenient in the lat
for encapsulating prototype designs． When the curing was complete，the transform－
ts were simply＂popped out＂of the rubber．This lam and 1 in ．thick．By drilling a few $3 / 8 \mathrm{in}$ ．
boles in it，we had a mold to which epoxy would tiam and 1 in ．thick．By drilling a few $3 / 8 \mathrm{in}$ ． What we did find was an old test cure of sili－ few small bobbin core pulse transformers，we
found we were＂fresh out＂of release agent． cure is completed．When preparing to encapsulate leasing the component from the mold after the One of the less desirable steps in encapsulating Encapsulate in
Silicone Rubber Molds E．／sadler，Digital Devices Co．，Box 9146，San

THIS IS THE PLANT THAT QUALITY BULLT！

You，our customers，have made us one of the fastest growing companies in the power supply field．
You have shown us that you appreciate creative engineering，high quality，reliability of performance，and dependable service．
You have indicated time and again your confidence in our company＇s know－how by repeated purchases of our standard catalog power supplies，and by entrusting to us your most critical custom assignments．
This efficient new plant will permit us to serve you even more effectively
Thank you for making it possible．

－ CO CORPORATION

20 Boright Avonue，Kenilworth，New Jersey
Br 2.6000 TWX－Roselle，N．J． 51 FAX－FFP

solve

YOUR LOGIC CIRCUIT PROBLEMS WITH EPSCO'S NEW

aVAILABLE CIRCUITS
Flip.Flops and Counters
Diode AND Gates
Diode OR Gates
Nor Gates - An Epsco Exclusive
Porollel Gotes
Coscade Gotes
Inverter Amplifiers
Non-Inverting Amplifiers
Emitter Followers
Power Drivers
Delay Multivibrators
Pulse Shopers
Level Converters
Neon Indicators
Incandescent Indicators
Blocking Oscillators
Level Shopers
6, 12, 18 volt Power Supplies
Clock Multivibrators ($0-200 \mathrm{KC}$)
Coming goon complete 1 me logit circuif Iomity
ond we te odding others oll the tume
Available now . . . a complete line of fully encapsulated high. loading transistor digital CIRCuITs . . . plug-in components to give you true reliability at very low cost. Epsco TDC's save you engineering time . . . slash space requirements ... provide flexible, compatible operation.

Color Television Display Screen
Patent No. 2,578,411. Luis W. Alvarez. (Assigned to Chromatic Telecision Labs., Inc.)
Color television tubes emploving a retarding grid are subject to halo formations due to back-scattered electrons which strike adjacent color sources. As a
result, resolution is deteriorated and the colors are diluted.

However, the number of back-scat. tered electrons is proportional to the atomic number of the scattering material. Hence. halo formation is reduced bỵ depositing low atomic number materials over the light reflecting aluminum screen. The combined thickness of all layers pro-

- Save Time and Space
- Cut Costs
- Permonent Encopsulation
- Vibrafion-Moisture Resistant
- Field Proven Circuirs
- Low Power Requirements
- High Loading
- Completely Comparible
- In-Line or Tube Socket Mounting
- Easy-Access Test Points

SPECIFICATIONS
Frequency Renges.....up to 400 KC
Switching Times
Diode Logic. 0.7 msec max
Transistor Logic. 1.5 usec max
Signal Vartage Levels
± 18 vohs, ± 6 volls
Temperafure Range
$55^{\circ} \mathrm{C}$ 1o $+75^{\circ} \mathrm{C}$

$111|1| 1||||||||||||\mid$

Newport Beach, Southern California Holds The Key To Your Future!

FORD MOTOR COMPANY'S young and rapidly expanding subsidiary, Aeronutronic Systems, Inc. is now offering out standing opportunities for an exciting and highly rewarding rareer to Computer Engineers capable of making significant contributions to advanced computer technology.
AERONUTRONIC-a dynamic new name in science and re-search-is moving into the future fast. The first phases of a new Research Center are nearing completion at Newport Beach, where Californial living can be enjoyed at its finest. You'll work in an intellectual atmosphere in a community away from congestion, yet close to most of Southern California's cultural and educational centers.
These positions are now open:

Systems Engineers
Magnetic Memory Engincers
Commanications Engineers
Digital Computer Programmers
Transistorized Cir
Logical Designers Circuit Engincers Mechanical Engineers Optical Engineers

Qualified applicants are invited to send resumes or inquiries to Mr. L. R. Staple, Aeronutronic Systems, Inc, Box NJ 486, Newport Beach, California.

COMPUTER DIVISION
AERONUTRONIC
a rubstdiary of Ford Motor Compans

Epsco, Inc., Components Division
275 Massachusetts Ave. Cambridge, Mass.

Libits he escape of back-scattered elec trons hich now dissipate their energies to pr wee useful light output or heat.
In ie illustration, electron beam 29 strik the phosphor and electrons would scap to the walls of the tube along path $;$ in the absence of grid 13. Howper wie grid retards the electrons which retura along paths 37,38 , and 39 . By applyine a low atomic number overlayer puch boron carbide, the electrons are cuable to back-scatter from the screcol and h.ulo is eliminated.

Microwave Amplifier

Patent No. 2,85:3,481. Ping K. Tien. (Assigncel to Bell Telephone Labs., Inc.)
The amplifier is a three level maser using a wave guide containing a crystalline paramagnetic salt uniformly distributed along its length. Using nickel Tutton silt. a 30 kmc signal is amplified when pumping power is delivered at 74 kme . Nith appropriate matching, the signal power propagates along the slow wave circuit interacting with the negative temperature medium and thereby increases the efficiency of interaction.
The wave guide is superior to the resso-

nant cavity since the latter has narrow bandwidth, degrades the low noise quality of the maser and is inconvenient for coupling microwave power.

In the illustration, transformers 1:3 and 14 are short-circuited stuls free of the parametric salt and the stub) has a lower cut off frequency than the wave guide. Comnection is made by the inductive loops as shown. In addition guide 11 and the transformers are resonant at pumping power frequency to reduce the required pumping power.
Guide 11 cuts off at higher than signal frequency. When filled with the paramagnetic salt, the group velocity of signal power is small so that the guide acts as a distributed reactive circuit with a high unloaded Q . Large magnetic ficlds are produced with low driving power and increases the magnitude of radiation.

Writc for complete information to
VECTOR ELECTRONIC COMPANY
1100 FLOWER STREET, GLENDALE 1, CALIFORNIA
TELEPHONE: CHapman 5-1076
Visif us af Weston, Booths 1908 \& 1910 .
CIRCLE 72 ON READER-SERVICE CARD
ELEC RON:C DESIGN • July 22, 1959

BALLANTINE VOLTMETER

Model 300-D
Price: $\$ 235$.
gives you utmost
Accuracy,
Stability
and

Reliability

plus
these
features

- Long life - High input impedance - Wide voltage range
 - Large easy to read meter with overlap eHigh accuracy at any point on the scale - Light, compact, rugged

SPECIFICATIONS

VOLTAGE RANGE: 1 millivalt to 1000 volts rms in 6 decade ranges (.01, .1, 1, 10 , 100 and 1000 volis full scale).
FREQUENCY RANGE: 10 to $250,000 \mathrm{cps}$.
ACCURACY: 2% throughout vollage and frequency ranges and at all points on the mefer scale.
INPUT IMPEDANCE: 2 megohms shunted by $15 \mu \mu$ except $25 \mu \mu \mathrm{f}$ on lowest ronge. DECIBEL RANGE: -60 10 +60 decibels referred 101 volt.
STABILITY: Less than $1 / 2 \%$ change with power supply voltoge variation from 105 to 125 volts.
SCALES: Logarithmic voltage scole reading from 1 to 10 with 10% overlop at both ends; ouxiliary linear scale in decibels from 0 to 20.
AMPLIFIER CHARACTERISTICS: Maximum vollage gain of $60 . \mathrm{DB}$; maximum output
10 volls; output impedance is 300 ohms. Frequency response hat within IDS from 10 to $250,000 \mathrm{cps}$.
POWER SUPPLY: $115 / 230$ volts, $50-420$ cps, 35 wotts approx.
Write for catalog for complete information. Boonton, New Jersey

...now wind 19,000 times!

PATENTS

Electronic Circuits

Patent No. 2,882,39.5. Warren D. White. (Assigned to Cutler-Hammer, Inc.)
Resolution in a panoramic receiver increases when the output of a relatively narrow band amplifier is passed through a dispersive network. This network characterized by time delay depending upon frequency, will convert the broad amplified output pulse to a very narrow pulse.

This pulse can then be distinguished from closely adjacent pulses.
A dispersive network designed to match the scan rate will allow the scan rate to increase directly as the network compression ratio. Resolution remains the same, although the spectrum is analyzed more rapidly. Since the amplifier bandwidth is unchanged, the receiver noise figure does not deteriorate.
A typical arrangement of a receiver and dispersive network is shown. The network is a delay line tapped at successive

points corresponding to length of delay The outputs of selective filters. 54 and if turned to pass adjacent narrow frec;uency bands, are connected to the output line To delay low frequencies more than high frequencies, filter 54 passes the highest frequencies in the band and successivt filters pass successively higher frequencies. For uniformly varying time delay. many taps in the line are provided.

Semiconductor Nonlinear

Capacitance Diode
Patent No. 2,884,607. Arthur Uhlir, Jt (Assigned to Bell Telephone Labs, Inc.
A nonlinear change of capacitanct with voltage is obtained when altermate graded np and step pn junctions are connected in cascade. The capacitance diode may be formed in a single crystalline body by controlling the concentration of impurities. This device, when placed across a waveguide with the planes of the junc. tions parallel to the direction of transmis

If you re dedicated to the cause of high resolution, you could wind your oun pots and be sure. Allow yourself plenty of time, though because the secret's in the number of turns per inch. and the spacing between "em. Pack those turns right in there closely and accurately. and you might have a pot you'll be proud of!
But if you want to eliminate all bother, but not the high resolution, call on Ace! We've designed and built our own special winding equipment: we use premium. close tolerance resistance wire - and really leave no winding unturned to produce pots with the highest resolution in the industry. All AIA sizes, all mounting styles. specials and standards. So get your resolution the easy way - get
 Acepots! See your ACErep at once!

Here's highest resolution in a standard sub-miniature pot: The 500 Acepot ${ }^{1 / 2 \prime \prime}$ size, $\pm 0.3 \%$ independent linearity. Special prototype section insures prompt delivery on the Acepot - $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$. AIA sizes.

NEW "STANDARD" with SPECIAL CAPABILITIES

Those are just a few of the important performance features you get with the new Gamewell RVG-14-MT10 multi-turn potentiometer. It fully meets applicable sections of MIL-E-5272A and NAS-710 - and much more. It gives you extras that often save you the cost of a"special."

Available in 10,5 , or 3 turns, with tap locations limited only by physical spacing. Write for detailed specifications and catalog of other stand-
ard Gamewell potentiometers. Special pots supplied whenever necessary. Bring all your pot problems to The Gamewell Company, Dept. 14B, Newton Upper Falls 64, Mass.

PRECISION POTENTIOMETERS
"Infegrals of High Performance" CIRCLE 74 ON READER-SERVICE CARD

CIRCLE 75 ON RE
ELECTRONIC DESIGN - July 22,

the high impedance device varies nonlinearly with voltage as shown.

Magnefic Switching Circuit

Patent No. 2,881,331. Ben Alexander. (Assigned to International Telephone \& Telegraph Corp.)

A ferrite rectangular hysteresis core wound with gating and signal coils provides effectively infinite signal-to-noise ratio.

With core 6 set at maximum positive residual flux, simultaneous clock and pedestal pulses will overcome the bias of battery 17 to couple the output to utilization circuit 19. However, inhibitory pulse generator 10 will set the residual flux at maximum negative value so that no signal
sion. can switch moderate microwave power.
The capacitance diode shown consists of $1: 12$ regions with 1.3 alternate graded and abrupt junctions. With applied bias, ble depletion layer of the abrupt junction is less than the widening of the depletion layer of the graded junction. As a result.
couples to the output.

кav Vari-Sweep
10-BAND, 15-470 MC SWEEPING OSCILLATOR MODEL 400

SPECIFICATION

Sweep Outpur: Reg sowtooth in syne with
oselllotor. Approx. 7.0 V amplifude.
 Dim. Weight: $91 / 9^{\circ \prime} \times 191 /{ }^{\prime \prime} \times 13^{\prime \prime}, 34 \mathrm{lbs}$ Price: $\$ 795.00$, 10 b. foclory

cav DKD Attenuators

ROTARY switchables

SPECIFICATIONS

Impedance In \& Out: Choice of 50.70 , or 90 ohms: others on special order. De Switched: 119 db in $1 . \mathrm{db}$ steps.

Max. Total Error linel. above): 10 db at 250 Max. Total Error linel. abovel: 10 db at 250
m. 2.0 do. 250.500 mc . better of tower frea.
cnd/or lower attenuation.
seg us at wescon show, COOTHS 3114 ह 3116

> Wrive for | RKMY EEEECTRIE COMPPARIV

Deat. ED-8. Mapla Avo. . Pino Eroct. In. J. CApital 6.4000
Dent. ED-8
SWR:
SWR: 1.2.1 OC-500 me; useful to 1000 mc . Max. Power: 1/s me max, 250.500 mc Switches: Silver contacts set in tefon Resistors: 1% Corbon Film, Dim. \& Weight: $5^{\prime \prime}$ dia $\times 2 \frac{1 / 4 ", 4 \%}{}$ lbs Price: $\$ 195.00$, 40 b factory.

CIRCLE 76 ON READER-SERVICE CARD
EleCT OONIC DESIGN • July 22, 1959

imc

(SERVO MOTOR-GENERATORS

FOR INSTANT ERROR-SIGNAL RESPONSE

A significant result of Induction Motors' creative engineering program in recent years is the growing series of precision servo motor-generators . . . Sizes 8, 11, 18 (shown above) plus size:; 10,15 , and 20.
These units constructed to meet the latest applicable MIL specifications covering extreme environmental conditions incorporate the design objectives of light weight, high performance, and reliability at reasonable cost.
The high torque-to-inertia characteristic of these servo motor-generators offers high acceleration and immediate accurate response to error signals.
 CIRCLE 77 ON READER-SERVICE CARD RLE 77 ON READER-SERVICE CADD

SYSTEMS ENCINEERS

to work in advance

areas of
Systems - Planning,

Development

 and Design for Missile Detection on a Global ScaleThese positions are with the Missile Detection Systems Section of General Electric and require high technical and creative capacities. All assignments offer fruitful opportunities to make state-of-theart advances with an organization that encourages and rewards the individual contributor.The ability to function both through individual action and team leadership is highly valued. Current openings are in these areas

adVanced radar

SYSTEMS PIANNING
Work in this area calls for engineers able to visualize and define future deadvenced radar systems to solve them.

RADAR SYSTEMS ANALYSIS

a DEVELOPMENT

An advanced degree and/or strong background in systems analysis and design is essential for such assignments as:
. analyze and define requirements for advance detection systems and determine broader parameters for such systems; establish their feasibility.
. analyze long range missile detection systems and specify optimum configuration on the basis of utility. perform ance, cost and delivery.

SPECIALISTS IN ELECTRO-
MAGNETIC PROPAGATION
PhD or MS is required in this area. Scientists will carry out analysis of propa gation phenomena, as related to long range missile detection. Plan detailed investigations and illustrate practica sponsibility essential.

OPPORTUNITIES IND \& D OF RECONNAISSANCE RECEIVER DESIGN \& SYSTEMS EQUIPMENT
Assignments require specialized background in one or more of these areas: VHF and UHF fre quency spectra (P \& bands) ECM - Microwave; wave guide com brids; VHF and UHF transmitters.

ALSO POSITIONS IN COMPUTER

APPLICATIONS

Knowledge of large business or specia purpose computers needed) and COM UUTER PROGRAMMING (experience with IBM 704 \& 709 needed.)

Write in confidence to: Mr. James P. Kinsella, Div. 76-SMC Missile Dotection systems section HEAVY MILITARY ELECTRONIC8 DEPT.
GENERAL
ELECTRIC
se, New York

Can An Employment Agency Help You Find The Right Job?

WHATEVER your reason for seeking a new engineering job, private emplovment agencies can offer excellent help. Why? Let Al Davis and Bob Duffy, executives of two large agencies specializing in the placement of electronic engineers tell you.
Datvis, vice president in charge of Edwards Employment's executive-engincering division at 16 West 46th St., New York, N.Y., and Duffy, placement specialist of Engineering Employment Service, 217 Broadway, New York City, answered the following questions in an interview arranged exclusively for the readers of Electronic Design.

Do you have a large number of job orders for electronic engineers.
Both men reported approximately 12 to 15,(0)() open orders for electronics men. They also noted a definite increase in the number of orders flowing into their agencies-"several thousand more vacancies to be filled than at this time last year; new orders coming in every day.

The greatest demand was for men in the following areas (ranked in volume of requests):

1. designing and developing components
2. planning and designing of systems
"whi chip" company instead of a major "blue hip" manufacturer. Can you help him:
ong affirmative from both men
Dc is: "We have orders from numerous mall companies-so-called 'white chip -who are vying with the big fellows for g id men. Within the past few months we fluced several very fine men with smal ir outfits-one at $\$ 8400$, another at sill,(n)."
Dufy: "Close to 50 per cent of our placements are made with small to me-dium-sized companies. For example, we just placed a man who had been with a giant company. He came to us asking for a smaller company in a similar field. We found him a swell spot at $\$ 12,000$-and he's very happy."

Do your job orders have a wide range in terms of duties, salaries, etc.-that is, from the beginner to the top senior and executive openings?
An "across-the-board" need for juniors to top men was quoted by both men. Salaries offered ranged from $\$ 5200$ to $\$ 30,000$ a year. As to the area of greatest demand (salary-wise and experience)
Davis: "The greatest demand is for $\$ 7$ to $\$ 10,000$ a year men with a couple of vears experience."
Duffy: "Greatest demand in the whole country is for men with 2 to 5 years of experience."

What suggestions do you have for the electronics engineer who seeks your sercices to help him find a better job?
Both Davis and Duffy agreed right down the line on the following points:

- The applicant must have made up his mind on where he wants to locate.
- He must have a good idea of what he can do best-and be willing to utilize his strong points.
- He must be realistic about his true worth in the labor market. "Too many men are walking in the clouds when they appraise their value to an employer."
- He must have a sufficient supply of (lean, neat resumes.
- He shouldn't work with more than three good agencies who specialize in his feld.
- He shouldn't flood the market with resurnes in his own mailing or promotion camplaigns.
Da is used the following example to
stress the importance of not flooding the market with resumes: "A man looking for a new job, let's call him Mr. A., will often send out resumes on a scattershot basis to many potential employers. He crosses his fingers and hopes that some of his resumes will be on target
"Well, now, let's say that Company B, one of A's targets, receives one of A's resumes. Company B's personnel man scans A's resume, realizes he has no current openings that fit A's qualifications. Thus he puts A's resume aside, forgets about him for the time being.
${ }^{-}$Then A comes to us for help. He doesn't know it but Company \mathbf{B} is one of our clients and when B places an order with us for a man with A's qualifications, we send A's resume to B's personnel man.
"Now what happens. B's personnel man looks at A's resume, remembers it vaguely, and says to us 'we think we've seen that fellow before-let's see someone else.'
"You'd be surprised how often a situation like this occurs-understandable though when a personnel man is swamped with resumes."

Duffy emphasized the desirability of an applicant working closely with his agent: "The closer a man works with us, the more we can do for him. By letting us know the results of his interviews, we can guide him better on future referrals."

Speaking of resumes, do you have any suggestions on the type of resume a man should have. If he doesn't have a resume can you help him prepare one?
Davis and Duffy were in accord onbrevity being the soul of a good resume as long as it was complete and wholly accurate-no employment gaps left unexplained, no half-truths that could be tumbled by a careful reference check.

Davis: "A resume should be short, sweet, and right to the point . . . never more than two pages . . . always typed. If a man doesn't have a resume and needs help in writing one, we have a 'specimen' we give him to use as a guide."

Duffy: "We, as well as most employers. like the chronological type resume rather than the functional one. An employer partially judges a man on the companies he has worked for before and sometimes the functional resumes won't carry that information. Also, the functional resume tends to be more fancy than it is factual."
(Continued on following page)

Top Management Openings for

 ELECTRONIC ENGINEERS

 ELECTRONIC ENGINEERS AND SCIENTISTS

 AND SCIENTISTS}

at
ELECTRONIC SYSTEMS DEVELOPMENT CORP. IN VENTURA, CALIFORNIA

Electronic Systems is a wholly owned subsidiary of Solar Aircraft Company, important in air and space developments since 1927. Electronic Systems has been closely associated with the instrumentation of the U. S. NAMTC at Point Mugu, and is expanding rapidly in the development and manufacture of electronic systems and components for commercial and military use. The right men joining now will gain top positions in their fields of interest. Living conditions are ideal in Ventura, a noted California seaside resort community. Act at once

MANAGER-SCIENTIFIC STAFF

Must have proven record of outstanding technical accomplishments in electronic systems analysis and have made significant contributions in advancing the state of the art. The responsibility of this position includes active participation in the preparation of study proposals, the establishment ration of study proposals, the establishment
of advanced concepts, extensive high level theoretical investigations and systems analysis in electromagnetic navigation and tracking systems, guidance and control tracking systoms,
systems, servo-mechanisms, information syandling systems, and solid state electronic circuitry. MS or PHI) degree in Electronics or Physics is required.

MANAGER-DIGITAL SYSTEMS DEPARTMENT

Must have proven record of outstanding technical and manufacturing achievements in directing the development of digital systems and circuits. The responsibility of this position includes active participation in the development of ground-based and airborne special digital computers, digital converters and analyzers, digital data handling and recording equipment, format convert-
ers, digital servos, etc. Advanced degree in Electronics or Physics is preferred.

SUPERVISOR-ELECTRONICS
PACKACING DESIGN ENGINEERING

Must have extensive experience in the package design of analogue and digital package design of arralogue and digital transistor circuits and he thoroughly famil iar with etched arretry lar with etched circuitry, encapsulating, MIL specs, etc. Working knowledge o heat transfer and structural analysis pertaining to strength, shock, and vibration required. Must have practical and theoretcal experience in miniaturization and sub miniaturization. Degree in Mecthanical
Electrical Engineering is preferred.

ELECTRONIC ENGINEERS AND
 SENIOR ELECTRONIC

 ENGINEERSMust have experience in tho development and design of semi-conductor circuitry, analogue or digital components and subsystems and/or data handling, conversion and processing equipment. Detailed knowledge of many of the following modules is required: modulators, demodulators, choppers, inverters, converters, power supplies, IDC and AC amplifiers, Alip-llops, multivibrators, squarers, pulse amplifiers, gates, etc. Degree or advanced degree in Electronics is preferred.

SEND YOUR RESUME

Please send resume of your qualifications at the earliest opportunity to E. E. Binger, Corporate Director of Industrial Relations, Dept. ED-1, Solar Aircraft Company, 2200 Pacific Highway, San Diego 12, California.

WE MAKE THE SYSTEMS WORK

Almost unique in the world of the electronics industry，Federal Electric Corporation serves as a complete engineering service organization for the government，for industry and for its parent organization，International Telephone and Telegraph Corporation．A central engineer－ ing department，at Paramus，provides a pro－ fessional staff for systems and application engineering，layout and installation planning， equipment and systems evaluation－and pub－ lications services．
Our job is＂making the systems work＂．After complex electronic equipment or systems are designed and built，they must be installed by experts，properly aligned，tuned and tested to assure operation at peak performance．Then they must be continuously maintained to assure dependability．In some cases teams must be provided to operate the equipment，or to train
the user to operate it．All this we do－exer cising complete management responsibility．

Prime examples of Federal projects are the DEW Line of radar stations across Canada and Alaska and the White Alice communication Alaska and the White Alice communication
system in Alaska．In many parts of the world system in Alaska．In many parts of the world FEC has installed and tested TACAN and ILS systems for military and commercial use．Today
Federal is also engaged in engineering opera－ Federal is also engaged in engineering opera－ Florida and California．From the Arctic Circle o Spain Federal Electric is keeping systems working．

For further information regarding posi－ tions in our Systems Engineering staff， at Paramus，and field engineering assign－ ments in the U．S．and abroad，write ments in the U．S．and abroad，writ
W. ．Duffy，Professional Placement．

FEDERAL ELECTRIC CORPORATION
An Associate of International Telephone and Telegraph Corporation Paramus Industrial Park，Paramus，New Jersey

DESIGNING YOUR FUTURE

About hou long，on the acerage，cioes it take you to find a spot for an appli． cant？

The time varies in accordance witl the salary level，location，and specific typ of work and company a man is seeking．ac－ cording to Davis and Duffy．

Davis：＂If a man is qualified and will take a job in this area，we can frequently place him within 48 hours．If he wants an out－of－town spot，necessitating trans． mission of resumes，correspondence， scheduling of several interviews，etc．，it may take weeks．Also，of course，it takes longer to place five－figure men than it does men at $\$ 7000$ to $\$ 8000$ ．

Duffy：＂Placement is must faster in the electronic than any other field，today．But， if a man has specific requirements，if he insists on a particular location，a particu－ lar type of industry，and a particularly high salary－a dream job tailor－made to his own personal wishes－often the best help we can give him is to try to bring him down to earth．＂

And now for the all－important＂how much？＂What does it cost a man for your sercices？

Davis：＂98 per cent of our present elec－ tronic openings are fee paid－transporta－ tion and re－location expenses are also covered．＂

Duffy：＂It＇s the very rare company in the electronics field that will not pay the applicant＇s fee．＂

Summing up，what would you say are the chief advantages an agency can offer electronic engineering job applicants．？

An agent has a bruad and current knowledge of the market．He offer a confidential service．He can give realistic advice on salaries and comparative up－ portunities in various companies．He can save a job hunter hours of time，leg work． and shoe leather．

On top of these advantages，Dus added：＂don＇t forget that an applicunt benefits by the confidence that an m － plover places in our judgment．Going into an interview with an agent＇s solid rec－m－ mendation is a big help to a man．＂nd Duffy closed with the important thou ht that＂an employment agent provides in applicant with an approach to the it source－the right man to see．＂E

Advancement Your Goal?
 New Form Speeds Action

Electronic Design's new Career Inquiry Service form is designed to help engineers advertise themselves. This new service will speed applicants to the jobs they seek. It is the first such service offered in the electronics field.
To present your qualifications immediately to the personnel managers of companies that interest you, simply fill in the attached standardized short resume.
Study the employment opportunity ads in this section, and circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
Electronic Design's Reader Service Department will make photocopies of your standardized resume and send it to all companies you select . . . the same day the resume is received. (Electronic Desice will detach the circle number portion of the form, so that no company will know how many numbers you circled.)
The standardized resume will permit personnel managers to inspect your qualifications rapidly. If they are interested, they will get in tonch with you directly. In the past much time has been lost through personnel-manager requests for res umes from applicants who proved ineligible.
Readers who desire only company brochures should use the regular Reider Service card.

Mail Career Inquiry Service forl 1 to Reader Service, Electro sic Design, 830 Third Ave., Nel York 22, N. Y.

ELECTRONIC DESIGN
 CAREER INQUIRY SERVICE
 USE BEFORE SEPT. 2. 1959

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York,
(15)
(Please print with a soft pencil or type.)

Recent Special Training \qquad
\qquad

| Employment History | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Company | City and State | Title | Engineering Specialty | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

Outstanding Engineering and Administrative Experience

Professional Societies

Published Articles

Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

000	901	902	803	804	905	808	907	908	000	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924
925	928	927	928	029	930	931	932	033	834	935	936	937	988	939	940	181	942	933	946	845	948	947	90	909

Finest "in house" programs anywhere

When you work in AC's instrumentation business, AC offers free comprehensive training programs that will help you grow professionally and enhance your status. Just look at these opportunities
Program A-for recent graduate engineers-gives you a solid foundation in the theory and application of inertial guidance systems and servomechanisms. You attend classes three hours per day for four months, all on company time.
Program B-for experienced engineers-consists of upgrading studies in inertial guidance, servomechanisms, environmental problems, engineering math and physics, plus advanced state-of-the-art courses. Time-during working hours or evenings.
Program C-for all engineering supervisors-involves management training developed by a team of AC executives and University of Chicago industrial relations
experts. Sixty one-half-hour sessions give you a solid grounding in management techniques.
These thoroughly practical courses-laught by university professors or recognized AC specialists-constitute AC educational "extras." AC offers them in addition to their educational assistance programs for men who wish to study for degrees in nearby universities.

You may be eligible for training

If you are a graduate engineer in the electronics, electrical or mechanical fields, or if you have an advanced degree in mathematics or physics, you may be able to participate in these programs while you work on AC's famous AChiever inertial guidance system or a wide variety of other electromechanical, optical and infra-red devices.
For more details, just write the Director of Scientific and Professional Employment: Mr. Robert Allen, Oak Creek Plant, Dept. G, Box 746, South Milwaukee, Wisconsin.

Inertial Guidance Systems - Afterburner Fuel Controls - Bombing Navigational
Computers - Gun-Bomb-Rocket Sights - Gyro-Accelerometers - Gyroscopes
Speed Sensitive Switches - Speed Sensors - Torquemeters - Vibacall - Skyphone

SPARK PLUG THE ELECTRONICS DIVISION OF GENERAL MOTORS CIRCLE 903 ON CAREER INOUIRY FORM

CAREER OPPORTUNITIES BROCHURES

Attractive color folder highlights opportunities for engineering assignments with the company. An organizational chart for systems engincering is featured and each activity is described briefly. Company benefits and community facilities are outlined along with a map showing company location. A concise outline of engineering facilities and interests is presented.
International Electric Corp., an associate of In ternational Telephone and Telegraph Corp., Dept ED, Route 17 and Garden State Parkway Paramus, N.J.

CIRCLE 880 ON READER-SERVICE CARD

"Don't Let Chance Decide Your Career" is an eight-page, illustrated brochure describing the work of Sperry-development and production of instrumentation and control systems-and the kind of engineering position relating to each specific system. A "flow diagram" compares areas covered by Sperry and the skills required for each position. These are listed under four genernl categories: study and research, development of experimental systems, pre-production models and production program. Plant locations, advariced educational opportunities, and other benefis of the company are discussed. A brief summary of career opportunity at Sperry concludes this oncise pamphlet.

Mr. John Whitton, Technical Employ ient Supervisor, Sperry Gyroscope Co., Divisi Sperry Rand Corp., Dept. ED, Great Neck CIrcle 881 on reader-service card ELECTRONIC DESIGN • July 22,
engineers What kind of professional climate is essential

The "right" Professional Climate doesn't just happen. It has to be created - painstakingly, with careful planning, foresight and creative inspiration.
If you would like to know how General Electric's Advanced Electronics Center at Cornell University has built an ideal creative environment - and the many opporlunities and rewards that await you as an engineer or scientist at the Center-please clip and return the coupon below for your free copy of the brochure entitled "Professional Climate."

GENERAL (3) ELECTRIC

to you as a creative man?

 \square
Power Through Solid State Physics

Delco Radio is a world leader in automotive radio engineering

NOW Delco Is Offering Engineers and Scientists Opportunities in Space Age Devices:

- COMPUTERS
- STATIC INVERTERS
- THERMOELECTRIC GENERATORS
- POWER SUPPLIES

We have immediate requirements for:
ELECTRONIC ENGINEERS to design transistor circuits . . . communication circuits . . . radio circuits . . . servo-systems . . . antennas . . . or to do component and material specifications.

COMPUTER ENGINEERS for development of control type, special, or general purpose units. Experience in digital to analog and analog to digital converter design. Or magnetic core or drum type memory. Mechanical engineers for package design. Electronic engineers for test design, servo-analysis, and circuit design.

PROCESS ENGINEERS-Electronic and Mechanical for transistor and electronic production planning and follow-up.

SEMI-CONDUCTOR SALES ENGINEERS-Also customer assistance engineers. Prefer semi-conductor applications or similar experiences.

DRAFTSMAN - Minimum of 3 years experience in making complicated, detailed drawings and minor layouts.

If you are interested in becoming a part of this newly-established GM team of specialists, send your resume today to the attention of

DELCO RADIO

Mr. Carl Longshore, Supervisor-Salaried Employment.
RADIO DIVISION OF GENERAL MOTORS
Kокомо, Indiana
CIRCLE 905 ON CAREER INQUIRY FORM

AZUSA

NOTE: ELECTRONIC ENGINEERS

AZUSA is a precision, automatic missile and space vehicle tracking system that supplies continuous, non-ambiguous trajectory data in real time, consisting of slant range and two-direction cosines for impact or orbit prediction. Long used on ballistic missiles fired from Cape Canaveral, predesign and development is now under way to extend basic AZUSA techniques for use on advanced systems. When utilized for vehicle commands, telemetry, data transmission, space probe tracking and communications, these systems will perform guidance functions, supply navigational information, and determine space probe orbits.
Contracts for this development work have been received. Immediate positions, providing technical challenge and long-range advancement opportunity are open for senior
engineers with BS or MS degrees in EE, and a minimum of 3 years applicable experience. Specific needs are in: CIRCUIT DESIGN (phase comparison circuitry) ULTRA.STABLE OSCILLATORS ELECTRONIC SYSTEMS ANALYSIS MICROWAVE AND ANTENNA DESIGN SERVOMECHANISMS
MISSILE-BORNE ELECTRONIC EQUIPMENT DESIGN TECHNICAL SUB-CONTRACT LIAISON
If you feel qualified in one of these specialties, please write at once, giving full details of your background and education, to Mr. G. N. McMillan, Engineering Personnel Administrator, Department 130-90

CONVAIR-ASTRONAUTICS
 Convair Division of GENERAL DYNAMICS

5527 Kearny Villa Road, San Diego, California
CIRCLE 906 ON CAREER INQUIRY FORM

YOUR CAREER NEWS, NOTES, NOTIONS

A promotion inn't a one-way ticket for a grav train. After the first exhilaration wears off, heal aches and anxieties can appear. And they need not be related directly to the technical demand of the job. Listen to a job consultant, Lon I). Bat ton, president of Cadillac Associates, Inc., of Chi cago:
"The first few days after you are promoted will be the most critical in your career. Unless your seniority is clearly established and your duties are well-defined, you immediately become the bulls eye for every rival who wanted the promoticn This is particularly true if you have been brought in from the outside. It is a time of real peril."

The trouble, Mr. Barton explains, is that newly promoted men often aren't aware of this. They begin to act differently, to discard all the charatteristics that won them the promotion in the firs place, and they become fair game for the sharp shooters.
"The newly promoted man has to walk a fine chalk line between stepping on people and allowing them to step on him," Mr. Barton warns.

It is a rough time for every executive who has been promoted. It is particularly crucial for the man making his first move to supervisory responsibilities. For the novice executive, Mr. Barton suggests an intensive review of personnel management fundamentals. This involves getting to know subordinates and superiors and ohtaining their complete cooperation.

Whether you've been promoted from within or hired from without, Mr. Barton has found it wist to let the dust settle, to wait for the phrase "new boss" to start dying. This is an excellent time to take inventory of yourself and the job-to find out why you were promoted, what your superiors espect of you and the mood of your subordinates.
"While you're catching your breath and probably for a considerable time after it," Mr. Barton says, "you can confidently expect to be the loneliest man in your company. Your old cronies will be suspicious of your new eminence and try to trade on past friendships. The men on your neu level will be equally suspicious of the new man, low he got there, how he got a key to the washroom and what it means for them.

The loneliness may never leave. It sometimes is part of the price of executive advancement in antidote, Mr. Barton has found, is to develno new interests, hobbies, friendships outside your company. Closer family ties can help, too.

For those beset by executive anxiety, Mr Barton has a final word of comfort:
"Cheer up, the more you advance, the nore the symptoms are magnified. The greater
spon sility, the greater the reaction-until finally vou lize all this comes with advancement and are le to live with it. Some men actually are forc to resign with a complete nervous breakdow but most men make the grade, and you prol chly will, too, if you remain calm. Cheer up. It (1) id have been worse. You could have been fired
But suppose you have yet to advance. You may lee considering a switch to another company. What should you find out about a new job before takinus it? In a recent newspaper ad, General Electric advised prospective engineers for its Light Military Electronics Dept. at Utica, N.Y., to ask about these essentials in the preliminary interview:

- Company sales record and size of staff. Inquire whether there have been wide fluctuations in staff size or steady growth.
- Projects under way. Determine if the technical challenge meets your requirements.
- Salary scale. Ask how technical and administrative pay compare.
- Size of company and how management is organized. Find out who makes decisions.
Later, at the in-plant interview, GE's ad continued, you should be seeking the answers to these questions, among others:
- What will your first assignment be? This will help you gage your interest in the new job.
- What advancement opportunities lie immediately ahead? Ask about the size of the group you will work with, and try to estimate how many men will have to move up before you can be promoted. Consider whether company growth will create new lateral positions.
- How much project responsibility will you receive as a development or design engineer?
- What company aids are offered for professional growth? Find out if there are in-plant cuurses, a technical library, financial aid for graduate study, encouragement to publish technical papers.
- What technical facilities are available? Remember to note such side factors as noise in the plant, the amount of privacy and space allotted to each engineer.
- Is the company situated near a desirable residential community? You have a private life to live, too.
If a small company is your goal, CGS Labs, Inc., of 391 Ludlow St., Stamford, Conn., suggests in a booklet, "Getting an Engineering Job," that you put these questions to the interviewer: - Who owns the company? If it is a "closely held :oncern, you will want to investigate the perso If reputation of the owner or owners.
- ho really controls the company? The perSon il h control is the one who formulates policy.
(Continued on following page)

Three important openings exist within our new

Electronics Applied Research Laboratories for Space Systems

-a company sponsored facility

COMPONENTS

- Molecular and Atomic Electronics • Thin Films • Vacuum Deposition - Solid State and Surface Physics - Solar and Thermionic Energy Converters • Electroluminescence

SYSTEM TECHNIQUES

- Threshold Reduction - Bandwidth Compression - Sampling and Quantization - LongRange Tracking and Communication - Data Handling and Processing • Automation - Information Enhancing and Interpretation - Infrared Space Filtering • Application of Statistical Theory of Noise and Information Theory

INSTRUMENTATION

- Attitude Stabilization - Biotechnical Transducers • Reconnaissance Surveillance - (;eo-Astrophysical Transducers for Space Probes

Advanced degrees, while highly desirable, are not requisite if adequate experience
is apparent. We invite your inquiry. Address T. W. Wills, Engineering Personnel Administrator, Dept. 130-90)

CONVAIR/ASTRONAUTICS

sell keamny villa moad. exn diego. cabitomeia

ELEC RONIC DESIGN • July 22, 1959

semior engineers

AND PHYSICISTS

FOR SEMICONDUCTOR R\&D

Expansion of advanced research and development activity at the Semiconductor Division of Hughes Products (Hughes Aircraft Co.) has created several openings for sanior men capable of assuming the direction of important new programs. Openings include:

DEVICE DEVELOPMENT PHYSICISTto work on new device programs with responsibility for fabrication processes, device theory and analysis or device testing and evaluation. He must have an M.S. or Ph.D. in Physics and several years experience in the development of semiconductor devices.

EXPERIMENTAL DEVICE STUDY PHYSICIST - to do theoretical and/or experimental research on advanced exploratory solids for the devices on a long range study basis. He will work on his own project or in conjunction with other physicists on basic device study, leading to the first model of a new device. Position requires an M.S. or Ph.D. in Physics and several years experience in the experimental research on advanced semiconductor devices.
Recently completed ultramodern facilities of the Semiconductor Division are located in Newport Beach, California - just south of Los Angeles. Here you will find choice suburban tiving in the heart of Western electronics.

If you meet the requirements for the above positions, or if you are a senior engineer or physicist with experience in the field of semiconductors, we invite your inquiry. Please contact:

Mr. C. L. M. Blocher

 Scientific Staff Representative HUGHES SEMICONDUCTOR DIV. 500 Superior Avenue Newport Beach 3, California
HUGHES PRODUCTS

armiconducton division nuages ainctapt compant

CAREER NEWS, NOTES, NOTIONS

- How are salaries and increases in salaries determined? Explore whether merit or formula is the rule.
- What are the salaries of the company's highest and lowest-paid engineers who have been out of school, say, five years? If the bracket is narrow, a yardstick other than merit is being used, or the company is unustal in its ability to hire equally qualified and industrious persons.
- Will the company let me select several of its employes at random and talk to them alone before accepting the job? A good way to find out about a company is to sample the attitules of the men who work there.
- If I make a worthwhile invention for the company, how do I share in it?
- Are the profits of the company growing steadily? Ask to see copies of annual statements for the last few years.
"Assuming that you select a small company that is progressive and growing," CGS says, "there are a number of possible advantages in working for a small company. By the very nature of the operation of such a small business, management finds it necessary to put responsibility-on younger men without the luxury of many years of training such as is sometimes provided in larger corporations."

FREE-\$1,000

—worth of professional service,
because you are an electronics engineer
CADILLAC, for thirty years the nation's largest Executive and Professional Placement Service, represents every "Blue Book" Electronics firm in America, over 350 in all. Their BEST jobs, at salaries from $\$ 6,000$ to $\$ 75,000$, appear monthly in our Electronics Opportunities Bulletin. Because you are an Electronics Engineer, BOTH the Bulletin and our COMPLETELY CONFIDENTIAL Placement Service are available to you absolutely FREE OF CHARGE.

For your free Bulletin, each month listing America's BEST Electronics jobs, send your name and address to:

EUGENE B. SHEA
Eloctronics Division
Cadillac Associates, Inc.
29 East Madison Building-
Dept. E-2
Dept. E-2
Chicago 2, III.

ECM．．．

today＇s TROJAN HORSE

One of the many absorbing areas of investigation avail－ able to gifted engineers at Melpar is the Research and Development aspect of ECM systems．
The mature engineer＇s capacity to reach deeply into provocative lines of inquiry is particularly valued and encouraged at Melpar．Your own intellectual dimensions govern remuneration and assignments．

Opportunities are now available at Melpar in the following areas：

Reconnaissance Systems
Airborne Equipment
Ground Data Handling Equipment Ground Support Equipment
Simulation \＆Training Systems Communication \＆Navigation Systems

Detection \＆Identification Systems Antenna \＆Radiation Systems Chemistry Laboratory Applied Physics Laboratory Production Engineering Quality Control
interviews arranged in your locale

For Details
Wire Collect or Write to：
Professional Employment Supervisor

MELPAR 㝺inc

a subsidiart of westinghouse ain brake company
3307 Arlington Boulovard，Folls Church，Virginio 10 miles from Washington，D．C．

CIRCLE 913 ON CAREER INQUIRY FORM

PHILCO

has immediate opportunities for Electronic Engineers \& Scientists
IN Philadelphia, PA.
COMMUNICATIONS SVSTEMS
Systems Analysis, UHF \& VHF Development, Receivers \& Transmitters Transistorization, Microwave Development, Telemetering Pulse Circuit Techniques, If \& Video Circuitry, Miniaturization WEAPONS SVSTEMS \& RADAR
Advanced Systems, Systems Analysis, Guidance \& Navigation Radar Development. Data Transmission, Display Development Missile Fuzing. Aerodynamics, Applied Mechanics

ELECTRONIC DATA PROCESSINO

Product Planning, Systems Analysis, Memory Development Input and Output, Test \& Evaluation, Production Engineering Programming, Field Service Engineers, Instructors \& Writers Send Confidential Resume to Mr. J. R. Barr, Engineering Employment Manager

Sales Engineers

Openings In: BOSTON, SYRACUSE, ST. PAUL, LOS ANGELES, SAN DIEGO, PHOENIX

Exceptional opportunities in field sales are available to individuals with electrical or electronic engineering background.
Due to our rapid expansion program, we are opening field sales offices in Boston, San Diego and Phoenix. We also need men for our offices in Syracuse, Los Angeles and St. Paul. The positions will involve technical and purchasing contact with equipment manufacturers.
Our products are exclusively semiconductor components, including transistors, rectifiers and diodes. As one of the largest manufactransistors, rectifiers and diodes. As one of the largest manumacturers in this young and rapidly growing field, there are une tion, insurance, and retirement benefits are liberal.

> A letter or call to our Director of Technical Placement uill be held in strict confidence.

Tranjitron electronic corporation
Wakefield, Mass.
CRystal 9-4500

Engineers

 and scientists return to the midwest. . . where there's time and opportunity to enjoy yourself while climbing to the top in the field you like best.

The fish are biting in Minnesota. One of our fellows in the infra-red lab caught a $83 / 4$-pound walleye opening day-on the Lake of the Woods. He used a minnow and June bug spinner. His little boy pulled in 10 crappies. Some of our fellows take their families 릉 camping nearly every weekend-up . along the north shore of Lake Superior. Great country, this Minnesota. You 츤 Great country. his Min here-with your wife and children-and you can be.
The Research and Engineering Labo- 픙 ratories at the Mechanical Division of General Mills-in Minneapolis-need senior level staff members for creative 츤 design, research and development work in the following fields:

- Electronic Circuit

Advanced Digital Com ほ

Micro-weve Develop. ment

- Atmospheric Phyoica

Digital Computer Logie
Field Engineering

- Advanced Digital Com. puter Circuit Develop.
ment
- Advanced Pulse and Video Circuit Develop.
ment
- Advanced Inertial Advanced Inertial
Navigational System Development Applied Mochazice Optical and Infra-Red
Equipment Eagiacoring - Research Phyzics
puter Syotems Deaign
Positions available are for purely tech. nical and technical-supervisory workjob titles and salary provide equal opportunity for advancement in both. Our people enjoy their associates, liberal company benefits and non-routine projects, as evidenced by our extremely low turnover rate.
If you have from three to five years experience in any of the above fields wed like to tell you more about oppor. unities at General Mills. Send today or all the facts. We'll keep your inquiry in strict confidence.
MECHANICAL DIVISION Millls
G. P. Lambert, Manager Professional Employment Personnel Department
2003 E. Hennepin, Minneapolis 13, Minnesota
CIRCLE 916 ON CAREER INOUIRY FORM
ELE TRONIC DESIGN • July 22, 1959

NEWS DF ENGINEERING DPPORTUNITIES

DPEN DN MOST "TALKED ABDUT"
MISSILE OF THEM ALL POLAARIS
...and other diverse and complex weapons projects* at General Electric's Ordnance Department in the Berksbires

When the first operational Polaris missiles are installed in the "George Washington" -first atomic submarine specifically designed as floating platform for the Navy's undersealaunched IRBM s - it will be a day of great moment for the engineers and scientists at General Electric's Ordnance Department, who are now pouring their energies, imagination and technical skills into the development, design and production of Polaris

Fire Control and Inertial Guidance Systems.
A day of celebration - but also one that ushers in new and other challenging problems - for the push to develop the next generation of long-range underwater ballistic missiles and kindred advanced weapons and weapon systems will be on.
There are openings now for engineers ($\varepsilon \varepsilon s$ or $\mathcal{M} \varepsilon s$) with two to seven years' experience in these areas:

Systems development / systems design or evaluation

fire control engineering / inertial component design / computer development ELECTRONIC CIRCUIT DEVELOPMENT / STRUCTURAL DESIGN AND VIBRATIONS FIELD SERVICE \& EVALUATION / QUALITY ASSURANCE \& RELIABILITY ENGINEERING ELECTRO-MECHANICAL DESIGN / ADVANCED PRODUCTION ENGINEERING ELECTRICAL DISTRIBUTION SYSTEMS ENGINEERING / PLANT FACILITIES ENGINEERING product service instruction / product planning / sales engineering CONTRACT administration / technical writing
\mathcal{F} ield \mathcal{J} est Engineering (Florida, California and
several naval stations in continental U.S.)
Also technician openings for graduates with missile experience

Write in strict confidence to: Mr. R. O'Brien, Dept. 76.SMC:
Ordnance Department of the Defense Electronics Division

100 Plastics Avenue, Pittsfield, Mass.

[^3]CIRCLE 917 ON CAREER INOUIRY FORM

Custom tronsformers for printed circuits are now available from ADC in five standard case sizes with terminals and inserts on $0.1^{\prime \prime}$ grid multiples. Audio, power, and ultrasonic transformers and inductors with maximum electrical performance for each size are being custom designed for tran. istor and vacuum tube circuitry. Raised mountings prevent moisture from being trapped. Available in Mumetal cases They meet MIL-T-27-A Grade 5 Class R or S Life X, and can be designed to meet 500 and $2,000 \mathrm{cps}$ vibration.

Explaining many of the basic characteristics of computers, the book discusses Boolean algebra in practical terms, and contains a cross reference of logic diagrams and symbols used by various computer manufacturers and a dictionary of computer terminology.
Pages $35-42$ of the cross reference charts are reproduced here through permission of the publishers.

	Preferred	Burroughs	IBM	RCA	Remington Rand
	See Detailed Notes, Pages 26 to 34.	See Detalled Notes, Pages 44 to 48.	See Detalled Notes, Pages 49 to 58.	See Detailed Notes, Pages 58 to 66.	See Detailed Notes, Pages 66 to 71.
Adder					
Adder, Half					
Adder, Quarter (Exclusive OR) (AND-NOT)					

	Preferred	Burroughs	IBM	RCA	Remington Rand
Amplifier (Noinversion)					
Amplifier, With inverted output					
Amplifier, With multiple outputs					15
Cathode Follower					

CIRCLE 79 ON READER-SERVICE CARD

	Preterred	Burroughs	Івм	RCA	Pemington Ranc
A) Gate					
A: Gate, with irf) biting input					
AND Gate, With inverted output					
AND Thyratron					

	Preferred	Burroughs	IBM	RCA	Remington Rand
$\begin{aligned} & \text { Binary } \\ & \text { (Flip-Flop) } \\ & \text { (Toggle) } \end{aligned}$					
Counter, Binary				$\begin{array}{ll} \rightarrow \\ \rightarrow & \\ \rightarrow R & 0 \\ \rightarrow & \\ \hline \end{array}$	$\xrightarrow[\text { SET TO O }]{\text { SET TO } \longrightarrow}$
Counter, Binary Multistage					
Counter, Multiposition					

	Preferred	Burroughs	IBM	RCA	Remington Rand
Delay Line	$\rightarrow 3$ USEC \rightarrow	$\rightarrow \underset{\downarrow \downarrow \downarrow}{\left.\frac{D L}{\downarrow \downarrow}\right)}$		$\xrightarrow[5 \text { USEC DELAY }]{\square}$	
Delay, FlipFlop		$\begin{aligned} & \rightarrow O \text { OMV } \rightarrow \\ & \rightarrow O M V \end{aligned}$	See page 57.	See page 64.	
Delay, Logical		$\rightarrow \square$			
Invarter		1		\rightarrow	

ELEGTRONIC DESIGN • July 22, 1959
(Continued on following page)

Effective component protection is hard to supply under condi-
tions of violent acceleration, high ambient temperature, and vicious vibration. But in military electronic gear, transistors must get unfailing protection against these threats to reliable operation.
They get it, most fully, with atlee mounting clips.

atlee clips are provably better in three ways:

HOLDING POWER. Under severe shock and vibration, these clips actually mold themselves tighter to the transistors. There's no visible shifting or twisting, no lead-breaking resonance, and the dislodging force actually increases.
COOLING EFFICIENCY. With atlee clips, this approaches to within 10% of "infinity" - the ideal derating curve for a transistor with an infinite heat sink which keeps the case temperature from rising above the ambient level.
electrical insulation. When required, these clips can be coated with Dalcoat B - an exclusive high-dielectric enamel that has twice the dielectric strength of Teflon but conducts heat as well as mica.
There are still more reasons why engineers who seek perfection choose atlee transistor clips. They know that Atlas E-E is the pioneering company in the development of component holders of all types, with unequalled years of specialized experience, and a complete line of clips for all case sizes and mounting requirements. They have learned it costs no more to get the best . . . and that Atlas E-E makes these "little things" as though they were the biggest things in the circuit.
DESIGN FOR RELIABILITY WITH atlee - a complete line of superior heat-dissipating holders and shields, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

ATLAS E-E corporation

 CIRCLE 80 ON READER-SERVICE CALD
IMPORTANT NOTICE TO

PHYSICISTS AND ELECTRONIC ENGINEERS:

RADAR AND COMMUNICATIONS SYSTEMS ENGINEERS SERVO ENGIMEERS COMPUTER ENGINEERS ELECTRONIC PACKAGING ENGINEERS FIELD SERVICE ENGINEERS THERMO-CHEMISTS

DYMAMIC EXPAMSION M ELECTROMICS A AVIONICS

Even greater impetus is being added to Emerson's dynamic long-range expansion program. Last year was the most successful in our history. In 1959 we are setting still higher records. Emerson's growth means excellent opportunity for your professional growth!

CMPNASIS ON BTBTEMS APPROACM

We emphasize the systems approach which means Emerson engineers explore and contribute in many diversified areas. his climate of creative freedom has paid off in solid achievements. Our Electronics and Avionics Division is daily Our luencing the state of the art" in fire control systems. Our engineers are meeting needs for further refinements in the puting and automatically programmed data processing sysputing and automatically programmed data processing sysapplications are currently being applied to advanced airborne and ground based projects.

CUREEWY PEOIECTE AY EMESEON ILICTRIC

B-58 fire control system, mortar locators, radar components and assemblies, servomechanisms, missiles and rockets, ground support equipment, microwave antennas, plus a host of other electronic devices for the space age.

considen mmesi lmerson bentrirs

- Excellent salaries
- Outstanding advancement opportunities
- Graduate and undergraduate education program at two highly-rated universities
- Beautiful, convenient suburban location
- Moving expenses to St. Louis fully paid
- Plus other top-level benefits

FOR UMUSUAL OPPORTUMITES, CONYACT US AT ONCE\&
If you feel your talents can be better utilized in assuming greater responsibility with accompanying long-range and immediate opportunities - you owe it to your future to contact us at once! Please write in confidence, including business and educational background and approximate salary requirements, to Mr. A. L. Depke

YOUR FUTURE IS OUR BUSINESS!

Electronics and Avionics Division

Emerson Alectric 8100 W. Florissant St. Louis 36, Mo.

BOOKS

	Preferred	Burroughs	IBM	RCA	Remington F and
Magnetic Amplifier	See page 29 for details.				NON -COMPLEMENTMG
Magnetic Core, Binary	See page 29 for details.	See pages 46 and 47.			
Magnetic Drum					
Magnetic Head	READ WRITE ERASE			READ OR WRITE BUT NOT BOTH BOTH READ ANO WRITE ERASE HEAD	

	Preferred	Burroughs	18M	RCA	Remington Ranã
Matrix. Decoder					
Matrix, Encoder					
OR Circuit					
OR Circult, With inverted output					

	Preferred	Burroughs	IBM	RCA	Remington Rand
Oscillator		-		OSC	OSC
Pulse Transformer (Without inversion)					
Pulse Trans. former (With inversion)					$\stackrel{P T}{\bullet}$
Shift Register					$\left.\begin{array}{l} \frac{\begin{array}{c} \text { SHIIFT } \\ \text { REGIST } \end{array}}{O R} \\ -A>B-B \end{array}\right]$

DATICO "digital automatic tape intelligence check out" is made by the Nortronics Div. of Northrop Corporation for the U. S. Air Force and U. S. Army Rocket \& Guided Missile Agency. This money and ation. Note Camloc Chassis Latches.

Fee ack Control Systems
I.- ille, M. J. Pelegrin, P. Decaulne, We w-Hill Book Co., Inc., 3:30 W. 42 St.. ul York 36, N. Y., $7.93 \mathrm{pp}, \$ 16.50$.
II itten by three French engineer-scientr. . this book provides a synthesis of the most important servo problems by uniting in a single book the overall theory line ir and nomlinear) and the component of servo systems. It explains in a prouressive and coherent manner how a seron system can be systematically designe cl.
Although the subject matter is presented in a coherent sequence, it can be roughly divided into two categories: material constituting a consistent textbook in the basic theory of servomechanisms; and material constituting additional data and particular or more advanced methads. The chapters which fall into the first category are essentially concerned with freguency-response methods for linear systems and describing-function analysis for nonlinear systems. The remainder of the book deals with other problems and approaches.
In the part of the book devoted to theory an attempt is made to tie together the different methods available, to show the relations that exist between them and to discuss their respective advantages. In dealing with components an attempt is made to consider them systematically as cumponents of a whole system and to discuss their properties from the influence they have on the overall system performance.
Recent French and Soviet materials are used extensively in the detailed study of nonlinear servo problems. Two of the most important recent advances which appear in English for the first time in this work are: the rigorous method for determining the self-oscillations and forced oscillations of an on-off servo; and an original method which will enable the desizner to meet the specifications more closily than before when choosing a sern 1 -motor.
Other special topics, many of which are "Iso appearing in English for the first time in this work inclucle: structural stability; transient response of servo with any nonl hear system on the verge of instability; I reed oscillations of nonlinear servos; Liap nov's direct method; and describing funct on with statistical input.

A distinguished feature of this work is that the philosophy and technique of presentation are European rather than American. More than average attention is given to the pure and applied mathematics underlying modern automaticcontrol theory and to the physical limitations of their use. A large number of illustrative problems are included as well as a five-language glossary of automatic control terms with lucid notes explaining German and Russian concepts.

The critical bibliography at the end of the volume is arranged according to subject matter and lists many European references not known to the American public. Every book or article mentioned as a reference is followed by a few lines which summarize the general approach and the most important subjects covered.

Analytical Transients

T. C. Gordon Wagner, John Wiley d Sons, Inc., 440 Fourth Ave., New York 16, N. Y., $202 \mathrm{pp}, \$ 8.75$.

This book represents the means of acquiring the more advanced mathematical knowledge necessary for a greater understanding of network analysis, Fourier series, and the Laplace transformation. An elementary acquaintance with all these subjects is presumed.

Network analysis is presented in a general manner, then studied in detail. Much of the discussion in the book is devoted to the Laplace transformation in order to provide a substantial idea of the subject as a whole, and to convey the sense of balance needed to perceive the limitations and applications of this calculus. The treatment of Fourier series and integrals establishes a logical basis for the Laplace transformation; a thorough consideration is given to the convergence of the series, the sampling theorems, and Gibbs phenomenon.
An especially significant chapter concerns the behavior of linear systems of differential equations and the influence of discontinuous driving functions upon their solutions. In the section on stability, a general application of Sturm's and Routh's theorems is supplied. Prof. Wagner has included some applications of the Laplace transform to the solutions of the partial differential equations of transmission lines.

$$
\begin{aligned}
& \text { I T'S EASY to } \\
& \text { open } \begin{array}{l}
\text { colose } \text { carry } \\
\text { connect \& disconnect } \\
\text { plug-in chassis }
\end{array}
\end{aligned}
$$

Thirty-eight strong, simple, attractive Camloc multi-function Chassis Latches are used on the 24 equipment filled plug-in chassis that make up DATICO, the military's new universal automatic field service checkout system. Here is a perfect example of designed-in fastener serviceability, flexibility, ease of handling and economy in interconnected "black-box" systems. When the Camloc push-button handles are released and pulled down, the chassis is automatically disconnected and ejected. Then the latch becomes a carrying handle. When replacing the equipment the latch firmly pulls the chassis back in place, making perfect, automatic reconnection of multiple-pin units. It is quick, safe, reliable, vibration-proof. Camloc Chassis Latches consist of only two parts-a handle and a fork-mounted with standard screws. Several handle and fork designs are currently available, all interchangeable. Write for Camloc's new Bulletin 35L today.
"Specialists in Fasteners for Industry"
CAMLOC FASTENER CORP. - 61 SPRING VALLEY RD., PARAMUS, N. J.
 CIRCLE BI ON reader-service caro
ELE TRONIC DESIGN • July 22, 1959

RUSSIAN TRANSLATIONS

The V-Shaped Inclined Antenna

ALL HIGH-efficiency in-phase and rhombic antennas used for short wave transmission require high towers. These are rather difficult to construct. If simplicity and mobility of the antenna become decisive factors, it is necessary to use the less efficient Vee antenna, which needs only one high tower for mounting.
Such an antenna is shown in Fig. 1. For convenience, it will be designated in the form $V H(L / H) 2 \nu_{0}$ where L is the length of the antenna in meters, H the height of the tower in meters, and $2 \oplus_{0}$ is the angle between the projections of the wires on the horizontal plane (aperture angle).
Such an antenna radiates (and accordingly, receives) both a normally (horizontally) polarized field, and a parallel (vertical) polarized field. Assuming ideal ground conductivity, the equation for the horizontal directivity pattern of a Vee antenna with normal polarization is

$$
\begin{gathered}
E_{\mathrm{A}}(\Delta, \phi)=-\frac{30 I_{0}}{R} \cos \psi^{\prime} e^{-1 a R} \\
\times\left\{\sin \left(\phi-\phi_{0}\right)\right. \\
-\left[\frac{e^{-i \alpha I_{1} L}-1}{\delta_{1}}-\frac{e^{-i n t_{2} L}-1}{\delta_{2}} e^{-2 i a H \sin \Delta}\right] \\
\left.-\left[\frac{e^{-i a l_{3} L}-1}{\delta_{3}}-\frac{e^{-i c \delta_{\Delta} L}-1}{\delta_{4}} e^{-2 i a H \sin \Delta}\right]\right\} .
\end{gathered}
$$

where a is the wave number, I_{0} the amplitude of the current in the wire, the azimuth angle, measured from the bisectrix of the aperture angle, Δ the elevation angle, Ψ the angle between the horizontal plane and the plane of the wires, Ψ^{\prime} the angle between an antenna wire and the horizontal plane, and

$$
\begin{aligned}
& \delta_{1}=1-\cos \Delta \cos \psi \cos \left(\phi-\phi_{0}\right)-\sin \Delta \sin \psi, \\
& \delta_{2}=1-\cos \Delta \cos \psi \cos \left(\phi-\phi_{0}\right)+\sin \Delta \sin \psi,
\end{aligned}
$$

$\left.\delta_{z}=1-\cos \right\rfloor \cos \psi \cos \left(\phi+\phi_{0}\right)-\sin \Delta \sin \psi$,
$\delta_{1}=1-\cos \Delta \cos \psi \cos \left(\phi+\phi_{0}\right)+\sin \Delta \sin \psi$.
The directivity pattern in a vertical plane passing through the biscctrix of the angle between the antenna wires ($s=0$) can be found by simplifying eq (1) as follows

$$
E_{v}(\Delta, \phi)=-\frac{120 I_{0}}{R} \cos \psi^{\prime} \sin \phi_{0} e^{-i a R}
$$

$\times \sqrt{\frac{\sin ^{2} \frac{\alpha \delta_{1}}{2} L}{\delta_{1}{ }^{2}}-2 \frac{\sin \frac{\alpha \delta_{1}}{\tilde{Z}}}{\delta_{1}} \frac{\sin \frac{\alpha \delta_{2}}{\tilde{Z}} L}{\delta_{2}}}$

Fig. 1. The Vee antenna. W represents the wave impedance.

Fig. 2. The optimum aperture angle varies with wavelength.
$\cos (\alpha H \sin \Delta)+\frac{\sin ^{2} \frac{\alpha^{\gamma} \delta_{2}}{2} L}{\delta_{2}{ }^{2}}$.
The formula for the directivity pattern of the parallel (vertical) component of the field is
$E_{0}(\Delta, \phi)=-\frac{30 I_{0}}{R} e^{-i \alpha R}\left\{p_{1} \frac{e^{-i \alpha \delta_{1} L}-1}{\delta_{1}}\right.$

$$
\begin{aligned}
& -p_{3} \frac{e^{-i a \delta_{3} L}-1}{\delta_{3}}+R_{B} e^{-2 i a H \sin \lrcorner} \\
& \left.\left[p_{2} \frac{e^{-i \alpha \delta_{2} L} L-1}{\delta_{2}}-p_{4} \frac{e^{-i \alpha \delta_{4} L}-1}{\delta_{4}}\right]\right\},(4
\end{aligned}
$$

where

$$
p_{1}=\cos \Delta \sin \psi^{\prime}+\sin \Delta \cos \psi^{\prime} \cos \left(\phi-\phi_{0}\right),
$$

Eq (1) to (4) show that, at low elevation angles, the antenna will essentially radiate a horizontally polarized field. At large elevation angles, the intensity of radiation (or reception) will be of the same order of magnitude for both polarizations.
The gain of such an antenna relative to a half wave dipole in free space is given by the formula

$$
\epsilon=0.365 \cos ^{2} \psi^{\prime} \sin ^{2} \phi_{0} e^{-\beta L}
$$

$$
p_{2}=\cos \Delta \sin \psi^{\prime}-\sin \Delta \cos \psi^{\prime} \cos \left(\phi-\phi_{0}\right),
$$

$$
p_{3}=\cos \Delta \sin \psi^{\prime}+\sin \Delta \cos \psi^{\prime} \cos \left(\phi+\phi_{0}\right),
$$

$$
p_{4}=\cos \Delta \sin \psi^{\prime}-\sin \Delta \cos \psi^{\prime} \cos \left(\phi+\phi_{0}\right),(0)
$$

$$
\begin{gathered}
\times\left[\frac{\sin ^{2} \frac{\alpha \delta_{1}}{2} L}{\delta_{1}^{2}}-2 \frac{\sin \frac{\alpha \delta_{1}}{2} L \sin \frac{\alpha \delta_{2}}{2} L}{\delta_{1}} \frac{\delta_{3}}{\delta^{2}}\right. \\
\left.\cos (\alpha H \sin \Delta)+\frac{\sin ^{2} \frac{\alpha \delta_{2}}{2} L}{\delta_{2}^{2}}\right]_{د=د^{\prime}}
\end{gathered}
$$

the aximum field strength, and

$$
\begin{equation*}
\beta L=\frac{R_{\Sigma}}{2 W}, \tag{7}
\end{equation*}
$$

aco ints for the attenuation in the antemna curfen lirough radiation. ($R \Sigma$ is the radiation resistance of the wire and W the wave resistance of the untema beam). Neglecting the effect of the earth and the mutual coupling between the wires, wi. un write
$\mathrm{R}_{\mathrm{z}}=60\left(\ln 2 \alpha l-\operatorname{ci} 2 \alpha l+\frac{\sin 2 \alpha l}{2 \alpha l}-0.423\right)$. (8) and W can be assumed to be 400 ohms. The eefficiency of the antenna then becomes

$$
\begin{equation*}
\eta=1-e^{-2 \beta} L_{1} \tag{9}
\end{equation*}
$$

and the directivity coefficient becomes

$$
\begin{equation*}
D=\frac{1.64 \epsilon}{\eta}, \tag{10}
\end{equation*}
$$

An examination of eq (6) shows that a certain

Fig. 3. An array of several antennas can cover the enlire short wave range.

optimum angle exists for each wavelength. This is illustrated by Fig. 2. In view of the great range of variation in the angle (by almost a factor of four) no one antenna can cover the entire short wave range and retain a high gain.

It is therefore necessary to use several antennas. arranged as shown in Fig. 3. Fig. 4 shows the directivity pattern of a $V H(200 / 20) 20$ antemna in the range from 12 to 75 meters for the normal component of the field in the vertical plane ($\varphi=0$) and over a conical surface ($\Delta=10 \mathrm{deg}$).
Fig. 5 shows the data for the antenna VH ($200 / 20$) 40 (aperture angle doubled). Fig. 6 shows the gain obtained at the longer waves by using a VH ($200 / 20$) 60 antenna. The gains of these three antennas are shown in Fig. 7.
It is readily seen that the efficiency of an antenna increases with the height of the tower and with the length of the wire. In practice it is difficult to use towers higher than 20 meters and wires longer than 200 meters.
To cover the entire short-wave range from 12 to 100 meters it becomes necessary to use compound antennas of the type shown in Fig. 3. In this case the gain of the antenna approaches the optimum, shown dotted in Fig. 7. Theoretical and experimental investigations have shown that the individual wires of a compound antenna interfere little with each other.
Abstracted from "V-Shaped Inclined Antenna" by V. G. Yampolskiy, which appeared in Elektrostyaz (Electrical Communications), No. 4, April 1959.

m_{2}^{1-2} $-23 m$
\qquad

Fig. 5. Radiation patterns for an antenna like the one used for Fig. 4, except that the aperture angle is doubled. The antenna is a VH(200/20)40.

Fig 4. Radiation patterns for a VH(200/20)20 antenna ope ating at wavelengths from 12 to 75 meters.

Fig. 6. Radiation patterns for a $\mathrm{VH}(200 / 20) 60$ at the longer wavelengths.

Fig. 7. Gains of antennas with different aperfure angles.

For close capacity tolerance and capacitance stability Guderran Polystyrene Capacitors
are wound with NATVAR
 electric capacitors are proc-
essed in a special area essed in a special area proc-
perature and humidity peratrolled. Dust and other contami-
crint numts are filtered out, and as an extra precaution, operators wear nylon
naps. smocks, and rloves. Operators Gudeman capacitors ure made in a wide range of capaci-
tance values, voltages, and tance values, voltages, and
cuses. Nattvar Styroftes film is
used in all Gudeman poly. ityrene capacitors. like Styrofer hecause it winds easily. Quality control inspectors like it he-
cause the capacitors test out oo the cause" the capacitors lest out "on the
nose" with a minimum of rejects.

T

Lhe Gudeman Company, Chicago, one of the principal capacitor manufacturers, uses Natvar Styroflex film in their new series X-727 and X-728 capacitors. These polystyrene capacitors are used in such exacting applications as: critical timing circuits requiring capacitance stability, and low dielectric absorption; tuned crcuits; laboratory standards; analog and digital computing circuits; circuits requiring storage capacitors with long time cronstant; and radiation counters

Natvar Styroflex film is used as the dielectric because it has all of the outstanding properties of polystyrene plus toughness, uniformity, and complete flexibility due to bi-axial orientation during the manufacturing process.
Natvar Styroflex is available in standard thicknesses from $.00033^{\prime \prime}$ to . $006^{\prime \prime}$ in rolls from $k^{\prime \prime}$ to approximately $10^{\prime \prime}$ in width, or in special put ups to meet manufacturing requirements

Natvar Products

- tope

- Vaprishod conven and duct
- Vhorn and rape aithed apecial rayon
- Varnishod and taper-ape and kroft
- Vaheet and tope ailicene varmished

- Vinyl coentod and allicono natber
- Vinyl coetod ond allicomo netbe - Exicorving viayt rubing ont - Exiruded vinyl arbing ont lope

 $\stackrel{\text { *T.M. }}{\text { Corp. }}$
- Iscelands shoot and iapo. Wo will be very happy to supply
en negues.

F if yitit corporation

241 RANDOLPM AVEMUE - WOODBRIDBE, MEW ARESEE CIRCLE 83 ON READER-SERVICE CARD

Compact Captive Panel Screws:

Standard Design Lowers Installed Costs

No longer is it necessary to resort to a costly fastening device of special design to provide quick attachment and release of electronic components. Standard Southco Retractable Screw Fasteners (stand-off thumb screws), available from stock, are both fast to install and economical. The five sizes,

shown below, meet a very wide variety of requirements.

Check these advantages of simplified Southco Captive Panel Screws. Even when many screws are in one panel, misalignment is easily handled because the screw floats in a large hole in the stand-off, allowing ample play for "lining up." No special tools are

needed for installation, thus produc. tion is not subject to tool failure, nor limited by either the number of special tools available or the number of personnel trained in their use.

The Southco No. 58 Retractable Screw Fastener consists of three parts: thumb screw, stand-off, and retaining

MINIATURE TO LARGE SIZE HEADS IN FIVE TYPES				
$\text { DIAMEAD } 3 / 4^{\prime \prime}$	9/16"	9/18"	7/16"	7/16"
$\underset{\substack{\text { THREAD } \\ \text { Sl2E }}}{\text { 1/420 }}$	1/420	12.24	10-24	32

ring. The bright nickel-plated brass stand-off is inserted in either a drilled and countersunk hole (Method A), or a drilled hole (Method B), and flared. The polished, chrome-finished brass screw is passed through the hole in the stand-off and made captive by a retaining ring. Engaging in a tapped hole
 in the frame, the screw may be fully withdrawn without moving the panel, yet always is retained.

The unslotted screw is standard in $3 / 4^{\prime \prime}, 9 / 18^{\prime \prime}$, and $7 / 18^{\prime \prime}$ head diameters and three thread sizes. Slotted head screws are also available in all sizes. The stand-off is standard in sizes to fit panel thicknesses from a minimum of $1 / 18^{\prime \prime}$ to a maximum of $17 / 64^{\prime \prime}$. Screw and stand-off are also obtainable in stainless steel.

Shot Noise

in VHF Tubes

CONSIDERABLE differences between measured and theoretical shot noises are occasion. ally observed in vhf triodes. Experimental investigation reveals that the noise in such tubes consists of two components, one of which is frequency dependent and the other frequenc! independent. The frequency independent contribution to the noise is the component which corresponds to the space charge reduced shot noise current while the frequency dependent component is attributed to flicker noise.
The mean-squared space charge reduced short circuit shot noise current in a triode is given by

$$
I^{2}{ }_{a}=F^{2} \underline{2}_{e} I_{a} \Delta F
$$

where the space charge reduction factor F^{2} is independent of the bandwidth and is given b! Rack's formulal ${ }^{1}$

$$
\left.F^{2}{ }_{n}=6(1-\pi / 4)(K T S) / e \sigma I_{u}\right)
$$

For ideal space charge limited triodes, the mutual conductance S is proportional to the cube rest of the plate current.
The conclusions stated above were decluced from two sets of measurements, one at $4: 2 \mathrm{kc}$, the other at 94.4 mc , so that transit time effect were

Fig. 1. Measurement scheme
ELECTRONIC DESIGN • July 22,

Fig. 2. Amplifier input circuir for the 420 kc tesis
negligible. In the experiment, tube T (see Fig. 1) with grid at rf ground, is connected in parallel with a noise diode D, across the input of a linear amplifier-square law detector-voltmeter cascade. The amplifier noise is calibrated out and the equivalent diode noise current I_{d}, which corresponds to the noise of T, is measured. Since $I_{4}=F^{2}$, it is independent of amplifier bandwidth. The circuit details for the two frequencies are shown in Figs. 2 and 3.
From the experiments, it is concluded that for some tube types $I_{d}=I_{d 1}+I_{d 2}$ where $I_{d 1}$ is frequency independent and increases as the ($1 / 2.6$) power of the tube current while $I_{d 2}$ decreases with increasing frequency. Since $I_{d 2}$ is approximately proportional to the square of the tube current, it is attributed to the flicker effect.
Abstracted from an article by R. Thielert, Nachrichtentechnische Zeitschrift, Vol. 12, No. 4, April 19.59, pp 201-203.

Fig. 3. Amplifier input for the 94.4 Mc tests.

[^4]Ele

Memo from VALUE ANALYSIS:

Use "SCOTCH" Brand No. 6 Acetate Film Tape to insulate. At $3 / 4 \phi$ cost for tape, 25-year relay life makes annual tape insulation cost only $3 / 100$ d. No other costs hidden

With "Scotch" Brand Acetate Tapes you can depend on electrical grade quality consistently in roll after roll . . . no hidden costs through waste or breakage on the assembly line!

Wherever high electric strength, dependable moisture resistance, maximum resistance to corrosion, and attractive appearance are needed, there is a "Sсотсн" Brand Acetate Tape to do the job.

Nine different "Scotch" Brand Acetate Electrical Tapes give you a choice of cloth, film, and laminate backings; offer you the greatest range
of properties to cover virtually all Class A insulation requirements. Included are tapes with true thermosetting adhesives. These offer high initial adhesion and tack; maximum solvent resistance; and no softening at high temperatures after curing.

3M's nationwide sales and technical services backed by the tape industry's largest research facilities-are available to advise and assist you in utilizing "Scotch" Brand Electrical Tapes to improve your products or cut your production costs. Write on your letterhead for complete information.

SEND FOR free booklet describing properties and application characteristics of all "Scotch" Brand Acetate Electrical Tapes. Address: 3.M Co., 900 Bush Ave., St. Paul 6, Minn., Dept. EAC-79.

SCOTCH Electrical Tapes

Minnsorn Minno ano Manuncruning comant .. WHERE RESEARCH IS THE KEY TO TOMORROW COMPANV

Compact Captive Panel Screws:

Standard Design Lowers Installed Costs

No longer is it necessary to resort to a costly fastening device of special design to provide quick attachment and release of electronic components. Standard Southco Retractable Screw Fasteners (stand-off thumb screws), available from stock, are both fast to install and economical. The five sizes,

shown below, meet a very wide variety of requirements.
Check these advantages of simplified Southco Captive Panel Screws. Even when many screws are in one panel, misalignment is easily handled because the screw floats in a large hole in the stand-off, allowing ample play for "lining up." No special tools are

needed for installation, thus production is not subject to tool failure, nor limited by either the number of special tools available or the number of personnel trained in their use.

The Southco No. 58 Retractable Screw Fastener consists of three parts: thumb screw, stand-off, and retaining

ring. The brigft nickel-plated brass stand-off is inser.ed in either a drilled and countersunk hole (Method A), or a drilled hole (Method B), and flared. The polished, chrome-finished brass screw is passed through the hole in the stand-off and made captive by a retaining ring. Engaging in a tapped hole
 in the frame, the screw may be fully withdrawn without moving the panel, yet always is retained.

The unslotted screw is standard in $3 / 4^{\prime \prime}, 9 / 16^{\prime \prime}$, and $7 / 18^{\prime \prime}$ head diameters and three thread sizes. Slotted head screws are also available in all sizes. The stand-off is standard in sizes to fit panel thicknesses from a minimum of $1 / 10^{\prime \prime}$ to a maximum of $17 / 64^{\prime \prime}$. Screw and stand-off are also obtainable in stainless steel.

Free

Fastener

 Handbook
Send for your

complete Southco
Fastener Handbook, just printed. Write to Southco Di. vision, South Chester Corpo. ration, 235 Industrial Highway, Lester, Pa.

GERMAN ABSTRACTS
E. Brenner

Shot Noise

in

VHF Tubes

cONSIDERABLE differences between measured and theoretical shot noises are occasion ally observed in whiodes. Experimental in tr vestigation reveals that the noise in such tube consists of two components, one of which is frequency dependent and the other frequency independent. The freduency independent contribution to the noise is the component which corresponds to the space charge reduced shot noise current while the frequency dependent component is attributed to flicker noise.

The mean-squared space charge reduced short circuit shot noise current in a triode is given hy

$$
I \ddot{"}_{"}=F^{2} 2_{e} I_{n} \Delta F
$$

where the space charge reduction factor F^{-}is independent of the bandwidth and is given b? Rack's formula ${ }^{1}$

$$
\left.F^{2}{ }_{n}=6(1-\pi / 4)(K T S) / C \sigma I_{n}\right)
$$

For ideal space charge limited triodes, the mutual conductance S is proportional to the cube ront of the plate current.

The conclusions stated above were deluced from two sets of measurements, one at 420 kc the other at 94.4 mc , so that transit time effect were

Fig. 1. Measurement scheme
ELECTRONIC DESIGN • July 22, 59

Fig. 2. Amplifier input circuit for the 420 kc tesis
negligible. In the experiment, tube T (see Fig. 1) with grid at rf ground, is connected in parallel with a noise diode D, across the input of a linear amplifier-square law detector-voltmeter cascade. The amplifier noise is calibrated out and the equivalent diodle noise current I_{d}, which corresponds to the noise of T, is measured. Since $I_{4}=F^{*}$, it is independent of amplifier bandwidth. The circuit details for the two frequencies are shown in Figs. 2 and 3.
From the experiments, it is concluded that for some tube types $I_{d}=I_{d 1}+I_{d 2}$ where $I_{d 1}$ is frequency independent and increases as the ($1 / 2.6$) power of the tube current while $I_{d 2}$ decreases with increasing frequency. Since $I_{d_{2}}$ is approximately proportional to the square of the tube current, it is attributed to the flicker effect.
Abstracted from an article by R. Thielert, Nachrichtentechnische Zeitschrift, Vol. 12, No. 4, April 1.959, pp 201-20.3.

Fig. 3. Amplifier input for the 94.4 Mc tests.

[^5]
Memo from VALUE ANALYSIS:

Use "SCOTCH" Brand No. 6 Acetate
Film Tape to insulate. At $3 / 4 \phi$ cost for tape, 25-year relay life makes annual tape insulation cost only $3 / 100$ ¢. No other costs hidden

With "Scotch" Brand Acetate Tapes you can depend on electrical grade quality consistently in roll after roll . . . no hidden costs through waste or breakage on the assembly line!

Wherever high electric strength, dependable moisture resistance, maximum resistance to corrosion, and attractive appearance are needed, there is a "Scotch" Brand Acetate Tape to do the job.

Nine different "Scotch" Brand Acetate Elec. trical Tapes give you a choice of cloth, film, and laminate backings; offer you the greatest range
of properties to cover virtually all Class A insulation requirements. Included are tapes with true thermosetting adhesives. These offer high initial adhesion and tack; maximum solvent resistance; and no softening at high temperatures after curing.
3 M 's nationwide sales and technical servicesbacked by the tape industry's largest research facilities-are available to advise and assist you in utilizing "Scotch" Brand Electrical Tapes to improve your products or cut your production costs. Write on your letterhead for complete information.

SEND FOR free booklet describing properties and application characteristics of all "Scotch" Brand Acetate Electrical Tapes. Address: 3M Co., 900 Bush Ave., St. Paul 6, Minn., Drpt. EAC-79.

SCOTCH Electrical Tapes

Mimeisota Miming and Manufacturino compant
... WHERE RESEARCH IS THE KEY TO TOMORROW

CIRCLE 85 ON READER-SERVICE CARD
ElE CTRONIC DESIGN • July 22, 1959

SEMICONDUCTOR DEVICES

USED THROUGHOUT THE WORLD

Audio frequency transistors
Germanium alloy diodes
Germanium alloy transistors
Gold bonded diodes
High frequency，high power．
square loop ferrite drive transistors
H．T．voltage rectifiers
N－P－N transistors
Packaged transistor＂line－ups＂
Phototransistors
P－N－P transistors
Point contact diodes
Power rectifiers
Power transistors
Radio frequency transistors
Silicon alloy transistors
Subminiature diodes
Subminiature transistors
Switching and computing diodes
Switching and computing transistors
Very high frequency alloy diffused transistors
Zener diodes

MULLARD OVERSEAS LTD．

mullard house
TORRINOTON PLACE
LONDON
England
CIRCLE 86 ON READER－SERVICE CARO

Mullard＂is the trade mark of Mullard Limited．and is registered in most of the principal countries of the world

REPORT BRIEFS

Standards And Test Procedures For Printed Circuits

This report describes a program of researct and development which facilitated the prepara－ tion of military specifications for multiplescon－ tact printed circuit connectors．In addition，the initial phases of a similar program on printed circuit component－lead－terminations are described this program was subsequently cancelled．Com－ prehensive questionnaires concerning the field performance of printed circuit connectors and ter minations and laboratory techniques for testing them were distributed nationally to commercia firms．Results from these questionnaires were used in planning the laboratory phases of the program Samples of multiple－contact connectors suitable for incorporation in printed circuit assemblies were purchased from representative manufactur ers．These were evaluated in the laboratory and specification limits were derived from their per formance．In turn，these limits were incorporated into two tentative military specifications for
printed circuit connectors．Where existing meth ods of testing connectors were not adequate to fully evaluate printed circuit connectors－which are unique in some respects－new，more suitable test procedures were developed．The properties most important for printed circuit connectors used in military equipment were established．The specifications prepared contain a test procedure and a quality assurance limit for each such prop－ erty．Preparation Of Standards And Test Proced ures For Printed Circuits，C．A．Dorlge，S．E．Graf and W．W．Hansen，Stanford Research Institute Menlo Park，Calif．，Oct．1958， $119 \mathrm{pp}, \$ 2.50$ Order PB 13198．3S from OTS，Department of Commerce，Washington 2．5，D．C．

Broad Band Traveling Wave Tube

The basic design objectives and the related technical problems are outlined．Three tube de－ sign approaches，designated as types A, B ，and C ， were studied to determine the best compromise in design toward meeting the objectives．Type A design favors flat gain and broad band charucter－ istics more than low noise；type \mathbf{C} design empha－ sizes low noise characteristics；and type $B \quad$ a compromise between those two designs．The de－ sign features and the measured performance ar－ acteristics of all three tube types are given De． velopment Of Low Noise，Broad Band Trat in؟ Wave Tube，Leslie D．Kovach，Radio Corpon ion of America，Harrison，N．J．，June 19．54，Jan． 55 pp ，Microfilm $\$ 3.60$ ，Photocopy $\$ 9.30$ ．（ ler PB 136480 from Library of Congress，Washit on 2．5，D．C．

Electh nic Equipment Failures
Fur -two published reports of the Evaluation Brans were examined, and the failures reported there were statistically analyzed. The equipment wered a wide range of function, and indude radar sets, radio receivers and transmitters anay quipment, IFF coders, oscilloscopes, and (x), supplies. The relative frequency of occurrence if 28 common categories of failure was plottel as a bar graph. The largest category encount. red consisted of instances of inadequate electronic design which were easily detectable with a minimum of instrumentation, and should have been corrected prior to submission of the equipment for evaluation. A second large cateyory was poor design of operating controls, indicating a need for human engineering in the design of electronic equipment. Statistical Analysis (o) Electronic Equipment Failures and Evaluation, R. J. Steclman, Navy Electronics Laboratory, San Diegu, Calif., Feb. 21, 1955, 20 pp , Microfilm S2.40, Photocopy $\$ 3.30$. Order from PB 139043 from Library of Congress, Washington 25, D. C.

Field Emission Cathodes

Improved stability of operation of the field emission cathode is essential before this electron source can be effectively utilized in practical devices. Methods are described for greatly improving stability by avoiding changes in surface electric field and work function. Experimental testing of fixed voltage operation of a cold tungsten enitter has been extended beyond 3000 hr . In other cases, current drift rates less than 5 per cent per hr of operation have been observed over several hundred hours at currents of the order of $10^{-4} \mathrm{amp}$. Comparable improvement during repetitive, microsecond, pulsed operation at pulse currents up to 0.1 amp has been demonstrated. Techniques have included careful vacuum practice, envelope material nearly impervious to atmospheric gases, and thoroughly degassed refractory metal anodes shaped to minimize impingement of secondary electrons on tube envelapes. A second field of study has been the electrochemical behavior of refractory metals applied to the fabrication of field emitters. Formation and dissolution of oxide layers are believed to have : maijor influence on surface smoothness and enitter geometry. Useful results of this study are in antomatically controlled method of emitter shaping and a means of removing material uniformly from small parts such as miniaturized Cathoie structures. Rescarch On Field Emission Cuthules, E. E. Martin, H. W. Pitman, Linfield Research Inst., Mc.Minnuille, Ores., Sept. 19.76${ }^{1457,} 69 \mathrm{pp}$, , \$1.75. Order PB 1.51 .5 .52 from OTS, Washington, D. C.

Transistor Heat Dissipators

International Electronic Research Corporation

Burbank, Calif.-Transistors which generate heat must be applied so that the heat which they generate is dissipated to an ultimate heat sink. This heat must be dissipated at a rate fast enough so that the junction temperature is not exceeded. Since there are no exceptions to this requirement it is necessary to consider, in the initial equipment design stages, a method for dissipating the heat from the transistor
Dissipators which operate on the radiarion and convection cooling principle require an amount of area depending on the power being dissipated by the transistor.
There are also no exceptions to this requirement. However, the area neces sary to dissipate the heat being generated can take many forms other than a flat metal plate. Because of the small size of power transistors, it is desirable to have its dissipator as small and compact as possible.
After one and one-half years of research and development, IERC has developed dissipators for power transistors which are efficient and most compatible in size and shape to conform with packaging requirements.
The first series of dissipators which have been thermally evaluated, and now avail able, are designed to fit any power transistor in a T0.3 case. These dissipators are in the form of vertical fins and are avail able in various heights. A T0-3 germanium type transistor with a maximum junction temperature of $90^{\circ} \mathrm{C}$ can be operated at only $21 / 2$ watts when no means of dissipating its heat is provided. This same transistor can be operated at 10 watts when using a $3^{\prime \prime}$ dissipator mounted to a small $2^{\prime \prime} \times 2^{\prime \prime}$ aluminum plate.
IERC test report \# 114 is available upon request. This report contains 12 sets of curves relating junction temperature to wattage while the transistor is mounted to various size dissipators. Tests are under way on other types of transistors and other types of heat dissipators. Test reports on these will be available upon completion of tests.
do you knou'..
that proper heat dissipation of a ro.3 type transistor operating at 12 Natis would require a tict thise $4 L_{2} \times 10 \mathrm{ad}$

IERC TRANSISTOR

 HEAT DISSIPATORSof the type shown here full size are the thermal equivalent when mounted to a heat $\sin k 60 \%$ smaller Proven design and heat dissipatinge, effectiveness of the IERC comboments by conduction, radiation and convec tion assure you of time, cost. space and weight savings plus reliability Available in various heights write lor IERC Test Report $=114$

When Top Quality Capacifors Are Required Specify Pyramid Mylar' or Tantalum

Miniaturized to provide maximum space economy.
New Pyramid Tantalum slug capacitors have cylindrical cases and contain a non-corrosive electrolyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both seep and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance-made to meet MIL-C-3965 Specifications.

Commercially available immediately, these new Pyramid Tantalum capacitor units have an operating range between $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for most units without any de-rating at the higher temperature.

Pyramid new Mylar capacitors have extremely high insulation resistance, high dielectric strength and resistance to moisture penetration.

Commercially available immediately, Pyramid Mylar capacitors have an operating range between $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with voltage de-ratings above $+85^{\circ} \mathrm{C}$. Pyramid wrapped Mylar capacitors-Series Nos.: 101, 103, 106 and 107 have the following characteristics: Construction Styles:

Basic No o.		Type Winding
101		Shape
103		Inserted Tabs
Extended Foil	Flat	
106		Inserted Tabs
107		Extat
Exited Foil	Round	
Round		

Tolerance: The standard capacitance tolerance is -20%. Closer tolerances can be specified.
Eloctrical Charactaristics: Operating range for Mylar capacitors-from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and to $+125^{\circ} \mathrm{C}$ with voltage de-rating:
Dissipation Factor: The dissipation factor is less than 1% when measured at $25^{\circ} \mathrm{C}$ and 1000 CPS or referred to 1000 CPS.
Insulation Resistance:

Pyramid Mylar capacitors are subject to the following tests:
Test Vothar--Mylar capacitors shall withstand 200% of rated D.C. voltage for 1 minute at $25^{\circ} \mathrm{C}$.
Lite Test-Mylar capacitors shall withstand an accelerated life test of 250 hours with 1408 of the voltage rating for the test temperature. 1 failure out of 12 is permitted.
Humidity Tost-Mylar capacitors shall meet the humidity requirements of MIL-C-91A specifications.
Complete engineering data and prices for Pyramid Mylar and Tantalum Capacitors may be obtained from Pyramid Research and Development Department.
COU POCITONS-RECTIFIERE
COR ORIGINAL EQUIPMENT-
FOR
for replacement

REPORT BRIEFS

SHF-Band Traveling Wave Tube

This report describes the development of a 100 w, S-band traveling wave amplifier operating over the $20(0) \mathrm{mc}$ to $4(0) \mathrm{mc}$ frequency band. The tube utilizes a lightweight periodic permanent :nagnet for electron beam focusing and is therefore, suitable for airborne applications. The design of the helix, coaxial line-to-helix couplers, electron gun, attenuator, and periodic magnet is presented. The mechanical construction and processing of the tube is also described. Development of 1(\%) Watt SHF-Band Traveling Wave Tube, Weislaw W. Sickanowicz and George Novak. Radio Corporation of America, Harrison, N.J., Apr. 19.58, 79 pp , Microfilm \$4.50, Photocopy $\$ 12.30$. Order PB 1.37201 from Library of Congress, Washington 2.5, D. C.

High-Level Single-Sideband Generation

A transmitter has been constructed which incorporates the latest work on the high-level system and includes otmpletely automatic tuning. The principal aims in constructing this transmitter have been those of improving the performance of the system and simplifying its design and operation. Advanced Engineering Research Study Of Methods And Equipment For High-Level SingleSideband Gencration, J. F. Honey, D. K. Reynolds, and D. K. Weaver, Jr., Stanford Research Inst., Calif, June 19.50, July 19.51, 1.98 pp , Microfilm $\$ 8.70$, Photocopy $\$ 30.30$. Order PB 1.37200 from Library of Congress, Washington 2.5, D. C

Frequency Limitations of Distributed Amplifiers

The prescription of the series inductance together with a practical coefficient of coupling, limits the negative mutual inductance which can be reflected into the grid and plate leads. This paper shows that an optimum compromise in the interest of bandwidth exists between the ideas of a small series inductance and a substantial mutual inductance. An additional complication in the conventional circuit is that the minimum physical spacing between tubes determines a minimum practical series inductance for the lines. Some Useful Techniques For Overcoming The Frequervey Limitations Of Comeentional Distributed Amplifiers, P. H. Rogers, University of Michigan, Ann Arbor, Noe. 19.5 $6,27 \mathrm{pm}$, Microfilm \$2.70. Photocopy \$4.50. Order PB 136292 from Library of Congress, Washington 2.5, D. C

A New Allison Filter With Single Knob Control
The Allison Model BE6 Band Elimination Filter is a passive network filter with a direct reading dial, continuously tunable over full audio frequency range from 20 cps to $20,000 \mathrm{cps}$. It will transmit all frequencies from DC to more than 100 kcps, except for the reject band to which the filter is tuned.

SPECIFICATIONS

More than 40 db attenuation at one frequency Passive network-no power supply. No vacuum tubes.
Impedance (in and out), 600 ohms.
Reject band less than 1 octave wide.
Loss in pass bands, $1 / 3$
Single dial control.
Direct reading frequency dial.
Maximum input for minimum distortion, 5 V .
Size of portable units excluding knobs and handle, $17^{\prime \prime}$ long, $5^{3} / /^{"}$ deep, $8^{\prime \prime}$ high. Rack models are mounted on 7 " rack panel.

Write soday for com ete literature and price

Allison
Laboratories, Ir 6 . 14191 EAST SKYLINE DRIVE La PUENTE, CALIFORNIA CIRCLE 89 ON READER-SERVICE CA ELECTRONIC DESIGN • July 22,

Precision Built by Forbes and Wagner for Aeronautical Communications Equipment Inc.

Aerocom Transmitter Uses two $F \& W$ drives
as circled. When freas circled. When frequency is selected
motor is actuated and motor is actuated and first clutch engages driving crystal drum to proper crystal. Clutch
releases and brake holds setting.
Second clutch engages. driving tuning unit to proper tuning point Clutch is then deaci vated and brake
entire mechanism Motor coasts to a stop.

Aerocom Tuner Usses one F\&W drive.
Frequency selection Frequency selection
Slarts motor drive through clutch to
varioneler variometer and varia-
ble condenser. When point of resonance is
ponter reached, clutch disengages and brake holds selting.

Let us help YOU with YOUR Electronic Problems We design and produce both simple and complex iomponents and assemblies, Electronic. ElectroMechanical and Mechanical for Commercial and
Military applications in Radio Television TeleMiblary applications in Radio. Television. Tele-
communications, Computers, Radar, Guided Missiles and allied fields. Write for brochure.
Gmomit Opportuntis for Electical Ensth
 our services, we ofier steady employment.
himh base salary plus profit sharing huh base salary plus profit sharing, paid
yazation, group life and hospitalization
ination
 prayram. etc. Located on shore of Lake
Ente. Fishing, boating, swimming at your
 mintes from Bufole via thruway. Replies
he 4 in strict confidence.

Tapped Delay-Line Filters

A method of synthesizing a matched filter is developed through the use of the sampling theorem. This method makes use of tapped ideal delay lines together with lowpass filters and adding circuits to form both the matched filter and the matched signal generator. Theoretically this method permits the use of any finite bandwidth and finite time duration signal as the matched signal. The selection of matched signals is discussed in terms of the requirements on the matched signal itself. Experimental Study Of Tapped Delay-Line Filters, D. W. Lytle, Stanford Electronics Laboratories, Stanford University, Calif., July 30, 1956, 84 pp, Microfilm $\$ 4.80$, Photocopy $\$ 13.80$. Order PB 138269 from Library of Congress, Washington 25, D. C.

Feedback Amplifier Design

It is shown that by introduction of unilateral forward equivalent circuit representations the analysis of feedback amplifiers is greatly simplified. Typical shunt-, series-, and shunt-series-feedback circuits are investigated, with examples from vacuum tube narrow band amplifiers and transistor video amplifiers. Furthermore it is shown that by introduction of reciprocal forward equivalent circuit representations, a direct synthesis procedure of active networks is made possible. This procedure is not restricted by frequency dependence of the active element or network configuration. Feedlback Amplifier Design By Forward Equivalent Circuits, L. M. Vallese, Microwave Research Inst., Polytechnic Institute of Brooklyn, N.Y., Sept. 5, 19.57, 47 pp, Microfilm \$3.30, Photocopy $\$ 7.80$. Order from PB 136276 from Library of Congress, Washington 25, D. C.

Effects of Noise On Range Tracking Systems

A mathematical analysis has been made on a radar tracking system, with position memory, to determine the deterioration in the operation when noise is present in the system. Mathematical equations have been developed relating the probability of not losing the target in the presence of noise and the various parameters of the tracking unit. These equations were developed for two cases: (1) when the signal is completely faded and the target is stationary, (2) when the signal is completely faded and the target is moving with some constant velocity. Effects Of Noise On Range Tracking Systems, Jack Ruina, Microwave Research Inst., Polytechnic Inst. of Brooklyn, N. Y. June 13, 19.51, 26 pp, Microfilm $\$ 2.70$, Photocopy $\$ 4.80$. Order PB 1.3704.3 from Library of Congress, Washington 2.5, D. C.

RF BROADBAND PREAMPLIFIERS

NOO

HRB Model 530 Preamplifier with power supply in relay rack mounting enclosure.

A COMPLETE LINE OF LOW NOISE BROADBAND PREAMPLIFIERS COVERING THE FREQUENCY RANGE OF 1 TO 600 Mc

PREAMPLIFIER PERFORMANCE DATA
frequency noise model gain model gain model gain EAND Me FIGURE NO. db NO. db NO. db

$50-100$	2.4	510	30	-		-	-
$50-150$	3.5	515	22	S15NK	44	515NS	66
$50-300$	5.7	530	15	530NK	30	530NS	45
$125-250$	5.7	1225	22	1225NK	44	I225NS	66
$140-280$	5.7	1428	22	1428NK	44	1428NS	66
$150-300$	5.7	1530	22	1530NK	44	I530NS	66
$250-500$	6.8	2550	14	2550NK	28	2550NS	42
$300-600$	7.9	3060	11	SOSONK	22	SOSONS	33

Immediate Delivery \sim ~

A complete selection of power supplies and packag. ing configurations is available for airborne, an-tenna-mounted, bench, and relay rack mounting. Write for complete specifications to:

HRB - SINGER, INC.
science park, state college, pa.

ELEC TRONIC DESIGN • July 22, 1959

Get complete information data sheets today. See how Kintronic wide range performance fits your individual needs.

kintronic

division of Chicago Aerial Industries, Inc.

10134 PACIFIC AVENUE, FRANKLIN PARK, ILLINOIS 116

REPORT BRIEFS

Silicon Transistor

Objectives attained within the work scope of the contract have made possible the solving of many of the technical problems involved in the development of silicon semiconductor devices. This has confirmed the assumption that these devices can be produced eventually in production quantities at a consistently high quality level. A summary of work carried on in the areas of theory, research and development is presented. Silicon Transistor, S. Barnes, M. Becker and others, Hughes Aircraft Co., Culver City, Calif., Sept.Oct. 19.53, 172 pp , Microfim \$8.10, Photocopy \$21.30. Order PB 1.373.54 from Library of Congress, Washington 25, D. C.

Miniature Power Transformers

This report covers investigations of certain capabilities and limitations of miniature power transformers designed for 1000 hr minimum life at 200 C ambient temperature. This contract extension explores the extreme potentials of these transformers, the maximum life expectancy at 200 C ambient temperature, the maximum ambient temperature that could be employed without sacrifice of a $1000-\mathrm{hr}$ life, and the capability of operating at altitudes up to $70,000 \mathrm{ft}$ instead of $10,000 \mathrm{ft}$. Miniature Power Transformers Having Wide Temperature Range, L. W. Kirkwood, Bell Telephone Laboratories, Inc., New York, Sept. 1957, 153 pp, Microfilm $\$ 7.50$, Photocopy $\$ 24.30$. Order PB 136722 from Library of Congress, Washington 25, D.C.

X-Band Traveling-Wave Tubes

This is the final report under Contract AF 33 (600)-8375. It summarizes the program of research, study, and development of broadband traveling-wave amplifier tubes in the frequency range from 7500 to $11,300 \mathrm{mc}$. The basic objective of this contract has been the extension of the frequency range and the increase of the power output which may be obtained from tubes in this band. The report summarizes the various steps through which the development has progressed in arriving at final production type designs for four different $\overline{\mathrm{X}}$-band traveling-wave tubes. Dcvelopment of X-Band Traveling-Wave Tubes, J. N. Lenker, J. L. Peck, and F. Astorino, Federal Telecommunication Laboratories, Nutley, N.J., Jan. 1958, 156 pp, Microfilm \$7.50, Photocopy \$24.30. Order PB 136473 from Library of Congress, Washington 25, D.C.

Now. Moeller Power Isolator supplies ideal isolation for line operated devices. Common grounding is not necessary. U'se with oscilloscopes. voltmeters, amplifiers, signal generators, puwer supplies, recorders, or any line operated test equipment.
The Model 30 Power Isolator can supply up to 300 VA of isolated power at 115 VAC 60 cycle. ()utput impedance to ground <2 upf and >5 50,000 megohims in parallel.
Write for descriptive literaturent

Ouolity industrial instrumentation since 1ey MOELLE
INSTRUMENT CQ ELECTRONICS DIVISIO
132 S. \& 89 Ave. Richmond Hill 18 ,
CIRCLE 93 ON READER-SERVICE C ELECTRONIC DESIGN • July 22,

Voltage-Sensitive Elements

Research was conducted to determine the effects of hf and If vibration, mechanical shock, and constant-acceleration forces on the physical and electrical properties of fixed and variable resistors, thermistors, and voltage-sensitive elements. The effects of the applied forces were evaluated in terms of the changes occurring in the specimens mechanical and electrical properties. Forces of If vibration, mechanical shock, and constant acceleration caused no physical failures and produced only minor changes in the mechanical and electrical properties of all the specimens. Hf-vibration forces caused mechanical failures in four of the six specimen categories. The most detrimental frequency in the range from 55 to 2000 cps was that at which the specimen resonated with the maximum amplitude of motion; the condition usually occurred at the lowest resonant frequency. For the variable resistors, transient electrical-resistance changes were observed during mechanical resonance. Component Evaluation and Specification Engineering: Task XXV, High and Low and Voltage-Sensitive Elements, E. G. Lebre and P. G. Perry, Battelle Memorial Institute, Columbus, Ohio, Sept. 19.5.5, 82 pp , Microfilm $\$ 4.80$, Photocopy $\$ 13.80$. Order PB 136294 from Library of Congress, Washington 25, D.C.

Folded Loop Antenna

A study is being conducted to find a means for tuning the antenna by flexing or telescoping the loop in addition to varying the gap capacitance, in order to maintain a wide bandwidth as the center frequency is changed. Experimental Folded Loop Antenna, J. F. Cline, G. H. Rohinson, University of Michigan, Ann Arbor, Nov. 19.56, 26 pp, Microfilm $\$ 2.70$, Photocopy $\$ 4.80$. Order PB 13.53 .58 from Library of Congress, Washington 25, D. C.

Military Color Television

The need for a good practical military color television system is emphasized and discussed. The technical possibilities and limitations of collor television systems, in general, are discussed. The more important types of color systems are outlined, with emphasis on motion-detection limitation. A superior color television system for general military application is outlined, which is suitable for use with or without optical amplification. Military Color Television System Usable With Optical Application, R. D. H. Gebel, Aeronautical Research Laboratory, Wright Air Development Center, Wright-Patterson AFB, Ohio, Apr. 1958, 12 pp, \$0.50. Order PB 1.51 .586 from OTS, Washington 25, D.C.

TRANSISTORIZED

CHOPPERS

MICROMINIATURE LIGHTWEIGHT NONMECHANICAL
INERTIALESS
LOW POWER
Stable
RUGGED long life
LINEAR
LOW LEVEL
HIGH EFFICIENCY

ACTUAL SIZE			
Model: Type:	50 Germanium	60 Germanium	70 Silicon
Temperature Range:	$-55^{\circ} \mathrm{C}$, to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +130^{\circ} \mathrm{C} \end{aligned}$
Sq. Wave Drive Volt:	1 to 10v. P.p	1 to 15 v . P.p	5 to 20 v. P-p
DC Input Voltage:	to 12 v	to 15 v	to 20 v
Chopping Freq.:	DC to 100 kcps	DC to 100 kcps	DC to 200 kcps
Alpha Cutoff Freq.:	900 kilocycles	One megacycle	5 megacycles
Temperature Drift:	. 04% per ${ }^{\circ} \mathrm{C}$. 02% per ${ }^{\circ} \mathrm{C}$. 03% per ${ }^{\circ} \mathrm{C}$
Random Noise:	25 uv rms	louv rms	50 uv rms
Weight:	3 grams	1 gram	2 grams

The transistor chopper (or modulator) is a solidly encopsulad unit designod to allornately connect and disconnect a load from a signal source. It may also be used as a demodulator to convert on o.c. signal 10 d.c. It is copable of linearly switching or chop, ing voltages over a wide dynamic range which extonds down to a fraction of e milivolf and up to to volis. Unlike mechanical choppers which can only be designed limitations, this transistorized chopper is an inertialess device that can be driven from d.e. to hundreds of kilocycles.

The switching circuitry used operates the transistors in a manner which provides stability and freedom from drift over a wide temparafure range. Only carefully selected transisfors are utilized.
The noise figure of the tronsistor chopper is competifive with mechanical choppers for many uses. Furthermore, the noise leval will not increase with usage.
This unit is proctically immune to the effects of shock and vibration making if ideal for military, missile, and portable applications; or where power conservation, miniaturization and elimination or maintenance are a necessity. The Pransistor chopper has on inherently long life ond is not subiect to contact bounce, wear, pitting or burning. TYPICAL APPLICATIONS

Chopper (modulator). Demodulator.
Low, medium lovel switching. D.C. amplifier stabilization. High speed servomechanisms.
Replace less sensifive diode modulators.
Thermocouple instrumentation.
low, medium lovel D.C. instruments.

Low level commulators for relemetering.
Carrier for lower frequency signals.
Digital meters.
portable equipment.
Low power source equipment.
Minimum maintenance equipment.
Mulliplex switching equipment

SOLID STATE ELECTRONICS CO.
8158 ORION AVE., VAN NUYS, CALIF, - ST. 26059

REPORT BRIEFS

C-Band Klystron

A series of experimental C-band klystron oscillator tubes, resonator test apparatus, and an elec-tron-gun tester were designed, manufactured, and tested. Fourteen tube models were designed according to floating-drift-tube-klystron theory, and nine tubes were completed to the point of producing useful rf output power. The characteristics and electrical performance of all tubes manufactured during the development program are reported in detail, and cross-sectional drawings of the various models are included. A new and original principle of klystron operation was devised and employed in one experimental model known as the reflex floating-drift-tube klystron. The resonator test apparatus provided a means of investigating the resonant frequency of the floating-drift-tube resonator and a number of other important characteristics, including the figure of merit. The gun tester provided accurate information regarding the beams produced by convergentflow electron guns. Several of the tubes developed during the reported program fulfilled a portion of the objective performance specifications, and the work described by this report indicates that further development of the floating-drift-tube klystron will result in a tube that will fulfill all objective specifications with the exception of efficiency. Development of C-Band Klystron, W. H. Thon, Electronic Defense Lab., Inc., Mountain View, Calif., Sept. 1958, $90 \mathrm{pp}, \$ 2.25$. Order PB 1.51332 from OTS, Department of Commerce, Washington 25, D.C.

Sinuate Antenna

The purpose of the work described here was to conduct a theoretical and experimental investigation of the far zone radiation patterns of a planar, sinuate, filamentary antenna mounted parallel to and one quarter wavelength away from a ground plane. Free space wavelength is measured at a frequency of 9.0 kmc . Theoretical computations were made of the far zone radiation vector components of the two basic elements of the antenna, a one-half wavelength dipole and a semicircular bend of two wavelength circumference. The calculations were based on the assumptions of an unattenuated standing wave current distribution and a phase velocity along the filament equal to the velocity of light. Sinuate Antenna, H. K. Macomber, Electronics Research Lab., University of California, Berkeley, Sept. 1957. 37 pp , Microfilm \$3.00, Photocopy \$6.30. Order PB 136273 from Library of Congress, Washington 2.5, D.C.

ELIMINATE COSTLY COLOR CODING

KINGSLEY Wire-Marking Machin

Now you can permanently mark each wire or piect plastic tubing with its own individual circuit numbe: any desired spacing... at a speed of 11,000 stami per hour!
You need only one color of wire for as many cod necessary. Simplify your assembly methods and production with the same machine that has pro successful in the aircraft industry.

Write for complete information
KINGSLEY MACHINE CO., Hollywood 38, Ca
CIRCLE 106 ON READER-SERVICE CARD

AEROPOT

miniature trimming potentiometer

- utmost reliability in a stable, 5-watt unit

Aluminum case won't distort on uneven mounting surface won't change resistance by compressing. Self-locking adjusting screw holds settings under high vibration and shock .. idles at limits of wiper travel.
Excellent Resistance Stability - 30 ppm per degree C nominal from -65° to $+175^{\circ} \mathrm{C}$.
Moisture Resistant - Aeropot passes MIL-STD 202, Method 106. and many other Mil. Specs. Size: $1.25^{\prime \prime} \mathrm{L} \times .37^{\prime \prime}$ W \times $5^{\prime \prime} \mathrm{H}$. One-inch mounting centers. Resistance values from 50 to 150,000 ohms. Write for complete data on Model 725 .

AERO ELECTRONICS CORP. 1745 W. 134th Street, Gardena, Calif.

CIRCLE 109 ON READER-SERVICE CARD

UNIQUE DESIGN ROTARY SWITCH— 5-SECOND WAFER REPLACEMENT

Ho Unsoldering or Disassembling . . . No Wire Removing .
Simply Lift out Any Wafer \& Replace Instantly...
Highly Reliable-Presently Supplied forMilitary Applications

Reduces to seconds maintenance which otherwise could take a full day or more, saving valuable time. New design obsoletes old switches
Switches are available in sizes approx. $2^{\prime \prime} \times 2^{\prime \prime}, 3^{\prime \prime} \times 3^{\prime \prime}$ and $4^{*} \times 4^{\prime \prime}$ with lengths to accommodate up to 36 wafers. Virtually unlimited choice of switch circuit configurations. All connections are to a single bank of receptacles and are con veniently accessible from one side of the aluminum housing Contacts are silver, gold or rhodium plated on a copper base Wafers can be made to include printed circuitry and components in addition to their normal switching function. Switches may be manually, motor or solenoid operated for use in any rotary selector switch application. Manufactured uncier Tabet U. S. Patent No. 2,841.660. Other U. S. and foreign patents pending. Write for details today.

CHICAGO DYMAMIC INDUSTRIES, INC. PRECISION PRODUCTS DIVISION
172.: Diverses Blal.. I hirako I 1. Illimoi-

CIRCLE 108 ON READER-SERVICE CARD ELE ©TRONIC DESIGN • July 22, 1959

Phase Delcy in a Radome Wall

The purpose of the report is to describe the development of an instrument suitable for accurate measurements of relative changes in electrical thickness. The theory of operation as developed shows that the electrical thickness and effective dielectric constant are functions of the reflected phase and amplitude of a radome. The automation of the device and the prescribed calibration and measurement procedure permit use of the instrument as specified, while the technique developed and information gained provide the basis for the use of the refection measurements for quality control of production radomes. Instrumentation For The Determination of Phase Delay In A Radome Wall, B. Carpe, Dalco Victor Co., Belmont, Calif., Oct. 1958, 31 pp, \$1.00. Order PB 151549 from OTS, Department of Commerce, Washington 25, D.C.

Secondary Emission Pulse Circuit

A regenerative pulse circuit is described which uses a single EPF 60 thermionic secondary emission tube (made by Phillips in Holland) that can generate pulses with a 6 musec rise time and a continuously variable width from 25 musec to 12 $\mu \mathrm{sec}$. A circuit analysis wherein expressions are derived for pulse width and resolving time is followed by various practical circuit realizations which include a millimicrosecond pulse generator and a fast-pulse-height discriminator. The analysis showed that the ratio between the saturation current and the product of total capacitance times the grid-voltage interval between saturation and cutoff represent a figure of merit for how well a vacuum tube will perform in a switching circuit. The analysis suggested that the loop gain equals unity at the points from which jumps take place. Secondary Emission Pulse Circuit, Its Analysis and Application, J. A. Narud, Cruft Lab., Harvard U., Cambridge, Mass., Apr. 1957, 43 pp, Microfilm \$3.30, Photocopy \$7.80. Order PB 1.36042 from Library of Congress, Washington 25, D.C.

Impulse Noise Generator

The development of an impulse noise generator, capable of being used as a standard for noise figure measurements of system, more specifically radar receivers, is discussed. The complete system is outlined in block diagram form. The component parts are considered in detail and evaluated, and finally, results are presented and recommendations made. Impulse Noise Generator, Empire Devices, Inc., Bayside, N.Y, Apr. 19.54-June 19.56, Microfilm $\$ 3.00$, Photocopy $\$ 6.30$. Order PB 1.362 .32 from Library of Congress, Washington 25, D.C.

Prompt delivery of Corning resistors and capacitors

From local

ERIE DISTRIBUTOR STOCK

- No delays . . . ERIE Distributors in 52 cities
- Complete, fresh stocks ...over 1000 different styles and capacities
- Expert recommendations . . . all ERIE Distributors have electronic technicians
- Same price as factory . . quantity discounts through ERIE Distributors

You benefit by calling your ERIE Distributor for Corning Resistors and Capacitors ... if you want his name, write to

ERIE Electronics Distributor Division
ERIE RESISTOR CORPORATION Erie, Pennsylvania

New Low-Cost PLUG \& RECEPTACLE

MOLEX PRODUCTS COMPANY
9525 Southview Avenue, Brookfeld, Illinois
CIRCLE 117 ON READER-SERVICE CARD

565 Hillgrove Avenue, La Grange, Illinois CIRCLE 118 ON READER-SERVICE CARD

SERVICES FOR DESIGNERS

Custom Coated Products

A custom fabricator of pressure-sensitive adhesive coratings and coated products, New Rochelle Coating Corporation specializes in formulating special coratings, and designing and producing coated products, to meet customer job specifications.
With the installation of a pressure-sensitive coating machine capable of handling a web of material over 5 ft wide, the company is equipped to offer a full range of custom fabrication services to the trade.
In a single continuous operation, the company's new 80 -ft machine, applies an adhesive coating then dries, laminates, slits and winds the web Its 62 -in. web) width permits continuous production runs of extremely large pieces. Among the materials the machine can process in volume quantities are vinyl, acetate, oilcloth, oilsilk, Mylar, polyurethane foam and film, metal foil and paper.
For R \& D work and formulation of new coat ings and products, the company maintains complete lab facilities. For pilot or limited produc tion, the company has a smoll coating machine accommodating a $10-\mathrm{in}$. material web. For volume production needs, the large new machine is available.
New Rochelle Coating Corp., Dept. ED, 15 River St., New Rochelle, N.Y.

CIRCLE 119 ON READER-SERVICE CARD

Ultrasonic Machining

Ultrasonic grinding and machining of production quantities of hard and brittle materials such as glass, quartz and carbides, is being offered by Precision Glass Products Co. Since the method of machining is non-thermal, non-electrical, and non-chemical, there is no change in the chemical, metallurgical or physical properties of the material during or after machining. The method assures maximum uniformity in production quautities of a component containing a complex or intricate shape. Some of the operations performed include: drilling-blind, through or tapered and as small as 0.006 in . diam; multiple drilling of holes in one operation even with different diameters; precision, multiple slicing of material into wafers as little as 0.015 in . thick with little material waste; machining to tolerances of as little as 0.0005 in. or better and surface finishing to 10 micro in.
Bulletin UG.559 describing products machined by this method and type of savings resulting is available upon request.
Precision Glass Products Co., Dept. ED, 613840 Beechwood St.. Philadelphia 38, Pa.

CIRCLE 120 ON READER-SERVICE CARO

CHRONO-LOG DIGITAL CLOCK
 RELIABLE FIELD-PROVEN SMALL SIZE LOW COST

Time resolutions of minutes, tenths minutes or seconds.

Available with one parallel, binart coded-decimal electrical output or up three parallel, decimal electrical sutput.
lexible control features permit use Chrono-log Digital Clocks and Digita Calendars in all logging, computing and programming systems
CHRONO-LOG CORPORATION
Box 4587 Philadelphia 31, Penna.

INEW Universal IMPEDANCE BRIDGE

Replaces the Famous Type 650-A
COMPLETELY TRANSISTORIZED
GREATLY INCREASED RANGES

FEATURES

- New Orthonul* Balancing Mechanism eliminates sliding null
 R: 1 milliohm to 10 megohms C: $1 \mu \mu$ to $1,000 \mu{ }^{\prime}$ D: 0.001 to 50 h Q: 0.02 to 1,000 at 1 kc - ACCURACY: R, L and $C \pm$. D and $\frac{1}{Q} \pm 5 \%$
POWER SUPPLY batteries for d-c an lator a-c measurem $\mathrm{d}-\mathrm{c}$ and $\mathrm{a}-\mathrm{c}$.

Type 1650-A IMPEDANCE BRILJE: $\$ 440$

Write for the Unimenal Impedonce Bridge Bulletin
GENERAL RADIO COMPAN

Hose Avenue al Linden, Ridgefield. N. J. NEW YORK AREA 1000 N. Seward

 In CAMADA: 99 floral Pathway Posorio is
CIRCLE 122 ON READER-SERVICE CARD

HectronTrube News -from SYLVANIA

Designing for extra reliability-everywhere in Electronics

TELEVISION...

New bonded-shield picture fube squares away the TV screen, increases viewing area, reduces reflection, improves light output and picfure clarity

TV design engineers can now take adıantage of one of the first major improvements in television faceplate design since the rectangular screen
the Sylvania bonded-shield picture tube. It incorporates a built-on panel of safety glass that makes the traditional separate safety glass unnecessary and opens the way to exciting new possibilities in TV cabinet design. It allows substantial reductions in both cabinet dimensions and cost. And because it reduces reflection, in-
creased light output and clearer TV pictures result.

The squared away corners of the new bonded-shield picture tubes add approximately 20 square inches to the viewing area of a 21 -inch screen. The 23 -inch tube presents more of the picture as the camera sees it. The new bonded-shield picture tubes are available in $18^{\prime \prime}$ and $23^{\prime \prime}$ sizes (diagonal measurement) with conventional or Sylvania tripotential focus electron guns.

New Sylvania bonded-shield picture tube shows more picture than the conventional $21^{\prime \prime}$ tube

INDUSTRIAL \& MILITARY CATHODE-RAY TUBES...

New Sylvania high resolution CRT, type SC2782
Sylvania develops ulfrahigh definition CRT for phofo video recording in aerial reconnaissance and other applications where high resolution is necessary

All of the precision qualities of specialized fine spot CRT's are now available to design engineers in a new 5 -inch CRT with a definition range of 3,000 lines. Through rigid selection techniques, greater accuracy controls, new fine grain phosphors and optical quality faceplate. Sylvania CRT engineers have been able to achieve this extremely fine definition using standard CRT auxiliary components and design. The new tube has an operating voltage of 20 to 25 KV . It incorporates an anode lead that is potted on the side of the tube to prevent corona and permit high-altitude applications.

The tube has standard basing and a 6.3 V standard heater. It is available now for sampling through your Sylvania equipment representative or government office.

Sylvania is actively engineering CRT's with even greater resolutions -up to 6.000 lines-to meet the ever increasing needs of the armed forces and industry. We will welcome the opportunity to discuss your specific applications problems with you and to explore custom design possibilities to meet your needs. Contact your Sylvania representative or the factory directly today.

CRT, type 3ASPI

Oscilloscope designers can obtain all the advantages of present 3 -inch oscilloscope CRT's plus these added features with the new 3ASP1:

- Improved faceplafe -

Flat pressed type gives greater clarity -less distortion.

- Better Insulation-

Anode connection located on side to prevent possible arcing.

- Conventional besing-

Standard CRT stem and base is used.

Sylvania sets a new

New variables inspection procedure gives a quantitative picture of the reliability of each important characteristic in Gold Brand Tubes

Picture of Reliability-Actual graph of mixed variable-attribute inspection shows how individual tube lots meet a particular specification

A new measure of reliability is being extended to Sylvania Gold Brand Tubes. Developed by the Sylvania quality control department, it provides the design engineer with a true, measurable profile of the operating dependability of individual tube lots.

The new testing procedure-known as Mixed Variables-Attributes Inspection involves the recording of each characteristic reading, as opposed to ordinary go no-go testing by attributes. If the readings fall within the closely established acceptance limits, the tube passes the new
testing procedure, otherwise it is rejected.
The new procedure not only provides Sylvania tube-design engineers with invaluable data for product improvement but allows Sylvania to provide the design engineer with tubes that more exactly fit his application needs.

Sylvania develops new speciffeations for Gold Brand Industrial and Commercial Types to meet the specialized needs of jet airliners, commercial prop-driven aircraft, executive aircraft, mobile radio, marine radio and industrial control equipment

Jet Age Choice-Sylvania Gold Brand tubes-Over 27 Sylvania types are in use in Pan American Boeing 707 Jet Airliners

Sillania Gold Brand Industrial and Commercial tubes have hecome one of the fastest growing tube lines in the electronics industry. Today every major airline uses Sylvania Gold Brand tuhes. And in the new jet airliners, where the demand for top performance and reliability is more than ever a critical necessity, Sylvania Gold Brand types are becoming the leading choice. On Pan American's Roeing Jet 707 Airliners over 27 Sylvania types are in daily use.
Here are some of the tests that every Gold Brand tube must pass: Wultiple Life Tests ranging from 500 to 1000 hours. Impact Shock Tests of up to 500 G . Fatigue Tests of 96 hours at 2.5 G . Vibration Tests, Glass Strain Tests, Variable Control Tests and Special Interface Control Tests are underway. And Gold Brand tubes must meet stringent electrical test requirements. Shorts and continuity are controlled to a $0.4 \% \mathrm{AQL}$ and major electrical characteristics are controlled to a $0.65 \% \mathrm{AQL}$

GOLD BRAND Guided Missile TypesReliability in the Atomic Age

The electronic equipment in today's missiles, drones and aircraft must have the capability to withstand some degree of nuclear radiation if it is to meet realistic military operational requirements. Preliminary tests have already indicated Sylvania Gold Brand Guided Missile tubes have an immunity to radiation that solidtate devices tested do not exhibit.
The reliability of Sylvania's Gold Brand Guided Missile Line is outstanding because of the way it is manufactured and tested. The entire line undergoes Sylvania's exclusive White Noise Test which subjects each type to a vibrational spectrum covering the frequency hand of 100 to $5,000 \mathrm{cps}$. The rms G-level is $2-3 \mathrm{G}$'s per octave with peak G-level of 15 G 's. The tubes are also tested for rms and peak vibrational output and limits are established on each.

SYLYANIA GOLD BRAND Reliable Commercial and Industrial Types

Type GB.OA2WA GB.OB2WA
G8.5Y 3 WGTA GB. GAUGWB G8.6J4WA GB. 6 SJITWGT GB.6SL7WGT G8-6SN7 WGT GB-6X4WA GB.7AK7 GB-7F8W GB-2807W GB-407A GB-408A GB. 1216 GB. 1217
GB. 5654 GB-5654 GB. 5670
GB. 5725 GB. 5725
GB. 5726 G8.5727 GB. 5749 G8.5750 G8.5751 GB. $5814 A$
GB. 5930 GB.5930
GB.5931 G8.5931 GB-5932
GB. 5933 GE.5933 GB.5964 GB. 5965 G8.6005 G8.6101 G8.6135 G8.6145 G8.6186
G8. 6189 G8.6189 G8.6211 G8.6350 GB.6814 G8.6888 (Mi) G8.7044 G8.7137 G8. 7327

Descripilon
Cold cathode diode Cold cathode diode Double diode Sharp curoff pentode Hi mu Iriode
Sharp culoff Sharp culoff pentode Medium mu double Medium mu double triode Double diode
Dual control pentode High mu double triode Double beam pentode Medium mu double triode Sharp culoff pentode Medium mu double triode Dual control pentode Marp cuiof pentode Dual control pentode Double diode Tetrode thyratron Semi-remote cutoff pentode Dual control heptode High mu double Priode Medium mu double triode Low mu triode Beam pentode Beam pentode Medium mu double triade Madium mu double triode Medium mu double triode Beam Pentode Medium mu double triode Medium mu triode Dual control pentode Madium cur penrode High mu double triode Medium mu double triode Medium mu double triode Triode Dual control pentode Medium mu double Iriode Medium mu triode Medium mu double triode

Use Voltage regulator Voltage regulator Rectifier
Amplifier
Grounded grid amplifier
Amplifer
Amplifier
Amplifer
Rectifier
Rectifior
Compurer
Amplifor
Power amplifier
Amplifier
Ampliffer
Computer
Amplifier
Amplifer
Amplifier
Gated amplifier, converter
Detector
Relay, grid controlled rectifor
Amplifer
Gafed amplifer converfer
Amplifier
Amplifier
Rectifior
Power amplifier
Power amplifor
Computar
Computer
Compulor
Computor
Power amplifior
Oscillator-ampliffer
Oscillator-amplifer
Amplifier
Oscillator-amplifier
Amplifier
Computor
Computer
Computar
Computer
Computer arid amplifor
pulse Application
 Guided Missile Line

BUSINESS REPLY CARD
First Class Pormil No. 2833 Sec. 34.9 P.L\&R., Buffalo 9, N.Y.

SYLVANIA ELECTRIC PRODUCTS INC. 1100 Main St.
Buffalo 9, N.Y.

SYLVANIA TYPE 6111

New test results show the outstanding capability of premium Gold Brand subminiature tubes
SYIVANIA TYPE 6111
Observed Survival Curve For Inoperatives Thru 15,000 Hours Medion For Transeonductance Thru 15,000 Hours
GOLD BRAND Subminiatures-Reliability Plus

Life tests on Gold Brand premium subminiature fubes sef new records of reliability

Unprecedented testimonial to the reliability of Sylvania Gold Brand Subminiatures is indicated by the results of new life tests on the tubes. They exhibit a mean time between inoperative failure of 133,000 hours. Life tests conducted for 15,000 hours on twenty lots of tubes show an average decline in Gm of only 2.4% per 1,000 hours. Inoperatives in these life tests exhibited a failure rate of 0.66% per 1,000 hours during the first 3,000 hours of operation and 0.75% per 1,000 hours during the following 12,000 hours.

Sylvania Electric Products Inc. 1740 Broadway, New York 19, N. Y. In Canada: Sylvania Electric (Canada) Lid. P. O. Box 1190, Station " O," Montreal 9
 Gold Brand Industrial and
Please send additional information on the items checked below:New Bonded Shield Picture TubeCommercial TypesType SC2782Gold Brand Guided Missile Types
∞Type 3ASPI

Gold Brand Premium Subminiatures

Name

Address. \qquad
Company
Use this handy business reply card to request additional information on these important new Sylvania developments

BEKEY Custom 120-pole hyspersyn ${ }^{8}$ motor drives new Genisco precision centrifuge To attain desired accuracies, angular velocity of the Genisco A931 Centrifuge must be constant to 1 part in 50,000 . To get this constancy, Genisco uses a Bekey 120-pole, three phase, hysteresis motor with induction start and permanent magnet excitation for synchronous operation. Bekey specializes in highly efficient, custom rotating equipment. Motors and generators can be designed to operate on any frequency, voltage or speed; in any ambient; and can be built in any shape. No requirement too specialized or small. Custom Hyspersyn motors, 75% to 90% efficient, can be delivered in 60 days with シ ミMEY CUSTOM MOTORS Bekey Division 2233 Federal Avenu CIRCLE 123 ON READER-SERVICE CARD

NEN CURVE TRACER with Tube Adapter

Miniature P-W Boards Offered

Miniature printed wiring boards that have the characteristics of a reliable plated-through hole are being offered by the Photocircuits Corp.

Using a plating technique that allows sufficient copper in the holes without land pattern on either side, the minifying technique produces these characteristics:

- Minimum . 0015 fine-grained ductile copper.
- Reliable interface plating on both sides.
- Thermal and mechanical shock resistance (MIL-E-5272A).
- Good "wicking" action during dip soldering.

The major advantages of the process is that the barrels of holes are used for solder joints, and therefore, with no pads to take up space, lines can be moved closer together. This results in substantial increase in component density.

Photocircuits is now quoting pilot quantities and filling prototype requirements.

Photocircuits Corp., Dept. ED, 31 Sea Cliff Ave., Glen Cove, N.Y.
circle 125 on reader-service caro

Waveguide Bends, Twists and Transitons

Manufacturers of microwave components and assemblies may use Intaspace Corporation as a source for the production of waveguide bends, twists, and transitions. This new corporation is manned by specialists who will devote their energies exclusively to waveguide bending and forming. Modern techniques and facilities are available. All machines have been especially designed to produce waveguide bends and twists to meet the most exacting mechanical and electrical tests.
Intaspace Corp., Dept. ED, 135 Orange St., Bloomfield, N.J.
circle 126 on reader-service card

Systems Research

A new systems research activity has been announced by the Defense and Technical Products Div. of Rheem Mfg. Co. One principal approach to be used by the activity is applied research in the mathematical phase of complex problems. The new group is planning to eliminate this error of human perception through the use of digital computer techniques in association with special analog circuits. These approaches will be proved on a general purpose computer installation prior to building special equipments.
Defense and Technical Products Div., Rheem Mfg. Co., Dept. ED, La Jolla, Calif.
circie 127 ON reader-service caro

All design, development and production work has been completed for you in these RPM power modules. Buy them as catalog items, and got these advantages:
Wide choice of overlapping adjustable voltage and current ranges - 125 to 425 volts... 50 to 400 milliamps. Excellent regulation-0.05\% NL to FL, or 10% line change. Compactness - RPM units are custom designed and built with our own transformers for most efficient use of space. Super-rugsed construction includes one-piece, cast aluminum housings and JAN hardware. RPM modules can be mounted in any position.
Hizh reliahility - achieved by use of top quality components throughout, and rigid inspection during production.

Request ACDC Bulletin 400.

ELECTRONICS, INC.
2979 N. Ontario St., Burbank, Calif. Formerly NYT ELECTRONICS, INC.

about which pot cores are best for filter applications?

Leading makers of high quality filters for sharp cut-off and multiplexing applications specify professional quality . . . low loss pot cores made by Ferroxcube - the only U. S. producer supplying winding bobbins mounting hardware and adjusting devices to complement its product. Ferroxcube pot cores are adjusted, measured and grouped to provide effective permeabilities within $\pm 3 \%, \pm 2 \%$ or $\pm 1 \%$ of mean values. Available from $3 / 8^{\prime \prime}$ to $13 / 4^{\prime \prime}$ diameter. Complete technical and sample kit information supplied on request.

Say

ferroxcube
when you
need ferrite.

FERROXCUBE
 CORPORATION OF AMERICA

50 East Bridge Street, Saugerties, New York

NEW LITERATURE

Capacitors

130
Wet-electrolyte sintered-anode tantalum capacitors are described in bulletin 3710 A , eight pages. Included are the catalog numbering system, standard ratings, dimensional data, characteristic curves, and performance information. The "cup" type 131D and 132D units, covered in the bulletin, replace the older type 104D design. Sprague Electric Co., 347 Marshall St., North Adams, Mass.

Subminiafure Switches

Subminiature switches that meet military specifications for a wide variety of uses are described in catalog 159, 16 pages. Data is provided on high temperature switches and metal enclosed, en-vironment-free switches as well as popular types of phenolic-cased, push-button, toggle and integral-actuator subminiature switches. Write to The W. L. Maxson Corp., Unimax Switch Div., Dept. ED. Ives Rd., Wallingford, Conn.

Bulletin PT-29, four pages, lists the es sential characteristics and typical per formance data of the firm's unclassified microwave power tubes, both develop mental and commercially available. In. cluded are traveling-wave tubes, light house-planar types, klystrons and pack. aged voltage-tunable magnetrons. General Electric Co., Power Tube Dept. Schenectady 5, N.Y.

Toroidal Inductors

Bulletin TL-102, four pages, covers the firm's toroidal inductors. Included in the publication are 4 " Q " curve graphs for various cores, 3 graphs illustrating the effects of ac and dc on inductance, 3 graphs devoted to the self-resonant frequencies for a group of cores, a comprehensive chart on the preferred inductance values, data on temperature coefficients and other material. PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif.

Machlett ML-7351

A New High Sensitivity Vidicon

Machlett Laboratories offers the designer a new, small, high sensitivity television camera tube designed primarily for low light level viewing of subjects with limited motion in industrial CCTV and other applications where some signal integration is desirable. Its radiant sensitivity of $.08 \mu \mathrm{~A}$ dark current is $.25 \mu \mathrm{~A} / \mu \mathrm{W}$.
Using a photoconductive layer as its light sensitive element, the ML-7351 permits felevising scenes with about 0.1 foot-condies illumination on the faceplate of the tube, which may be contrasted to approximately 5 foot-candles scene illumination required when using an $\mathbf{6 / 2}$ lens. Ifs resolution capability is about 500 line.

Applications include observation of low contrast, slow moving phenomena, visualization of radar patterns and other instances where increased image retention and sensitivity are desired. Spectral response includes the region from about 5000-8400 angstrom with a peok of 6400. At this point the tube is about ten times as sensitive and its image persistence roughly twice that of the 6198

Pertinent tube characteristics include:

for full technikal data on thls er any ather Martian rabe type, wite
Machlent Laborafories, Ine., 1063 Mope Streep, Springdale, Connecticu CIRCLE 133 ON READER-SERVICE CARD

ELECTRONIC DESIGN • July 22, 1:59

Tran stor Heat Dissipator

T. report No. 414, 22 pages, covers the bject of cooling transistors for improt performance and reliability by usin ransistor heat dissipators. The ef-

Pulse Transformers
This four-page brochure describes and illustrates the firm's standard line of low power pulse transformers and electronic test instruments. Physical and electrical specifications are given on the transformers along with some technical application notes. Among the instruments are a cathode ray indicator, a variable pulser, a VFO, and a power amplifier. Technitrol Engineering Co., 1952 E. Allegheny Ave., Philadelphia 34, Pa.
is sented with descriptions of test techin ques, tabulated data, heat dissipator and ransistor assembly methods, curve plots and illustrations for engineering rem ine. Write on company letterhead (international Electronic Research Cor, Engineering Dept., Dept. ED, 145 W. Magnolia Blud., Burbank, Calif.

Diode Catalog

135
This four-page catalog, form 1895, covers silicon glass diodes. The catalog lists some high-reliability-general-purpose and switching diodes and includes curves. charts and other pertinent data. Silicon Transistor Corp., Carle Place, L.I., N.Y.

Selection of Cathodes

136
How to select the best cathode for an electron tube is covered in this reprinted article. Two types of cathodes are described: plain metal sleeve cathodes and disc cathodes. Four forms of sleeves and four forms of disc cathodes are illustrated and described. Superior Tube Co., 1521 Germantown Ave., Norristown, Pa.

Environmental Test Chambers

137
Catalog 59, 12 pages, covers the firm's environmental test chambers. Included are pictures, dimensional data, and general specifications. Walk-in as well as smaller units are described. American Research Corp., Farmington, Conn.

CW rating is approximately that of the mating transmission lines. Switches available in either motor-driven or manually operated models.

Write for
complete information on AMCI Coaxial Switches

THERE'S NO EXCUSE!

. . . for inaccurate resistance measurements: Millivac's Direct-Reading Ohmmeter has an accuracy of 1% !

All at once, the majority of direct-reading resistance meters seem oldfashioned. In one giant stride, Millivac has advanced Direct-Reading Ohmmeters many years by the creation of an instrument with an heretofore unheard of accuracy: 0.25% full scale . . . 1% part scale (absolute), over 11 measuring ranges, from 1 ohm to 1 megohm. Outstanding among the many new ideas introduced in Millivac's new Model MV-279A Direct-Reading Ohmmeter is the use of constant current as a power source for measurements . . . and a linear scale that enhances accuracy by several orders of magnitude. Write today for full details.

tomorrow

MILLIVAG is our yesterday

ELECTRONICS, INO. Box 997 Schenectady, New York CIRCLE 139 ON READER-SERVICE CARD

Electronic design - July 22, 1959

MODULAR ALUMINUM INSTRUMENT ENCLOSURES

The newest idea from AMCO is a system of aluminum frames! The big advantages are outstanding convenience and versatility!

new Literature

Industrial Glassware

Information on Vycor brand, 96 per cent silica glass which withstands high temperatures and thermal shock is given in this bulletin. The eight-page, illustrated brochure details physical properties on the glass, which may be used in delay line coilforms. Write for bulletin B-91 on company letterhead to Corning Glass Works, Technical Products Div., Dept. ED, Corning, N.Y.

Snap-Action Switches

Catalog ES-59, 52 pages, contains photos, dimension drawings, specifications and modification information on electrical switches and actuators, including sub-subminiature switches, hermetically sealed switches, die cast enclosed switches and custom designs for special applications. Basic design types, operating methods, and environment application data are provided. Electrosnap Corp., Switch Div., 4218 W. Lake St., Chicago 24, Ill.

NEW Transistorized Relay Combines Fine-Sensitivity with Heavy-Duty Construction

Cutler-Hammer has developed a heavyduty transistorized A-C relay which will respond to either an A-C or D-C signal between .0028 and .025 amperes. The heart of this compact relay is the plug-in type signal-amplifying module which contains all the electronic parts. This tough module is practically indestructible, and the plugin design simplifies maintenance . . . cuts downtime to a minimum. The Bultetin 13535 transistorized relay requires no warm up time and it is exceptionally quick in operation. 600 volt model offers a wide selection of contact arrangements
rated 15 amperes. 110 volt model rated 10 amperes. Prices unusually low. CutlerHammer also offers conductive liquid level probes, and photo-cell units for use with the transistorized relay.

Miniaturized Power Packs

142
Catalog No. 116, one page, describes high voltage miniaturized solid state power packs having current ratinys of $0-100 \mathrm{ma}$, voltage ranges $150-300 \mathrm{v} \mathrm{dc}$. Catalog No. 117, one page, describes short circuit proof miniaturized power packs providing outputs in the range $5-50 \mathrm{vdc}$, with current ratings up to 200 ma . Electronic Research Assoc., Inc., 67 Factory Place, Cedar Grove, N.J.

Instruments

143
Bulletin 301 provides performance and application data on the firm's broadband phase angle voltmeter which has been designed for direct reading of phase angles, nulls, total, in-phase and quadrature volts. Bulletin 401 describes a precision ac to dc phase sensitive converter which permits use of dc instrumentation for measurement of ac signals. North Atlantic Indus. tries, Instrumentation Div., 603 Main St,, Westbury, N.Y.

Write today for Bulletin 13535-N217 CUTLER-HAMMER Inc., Milwaukee 1, Wisconsin CUTLER-HAMMER CONTROL

CUTLER•HAMMER

CIRCLE 144 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22, 19.9

Missiles, Electrical Connectors 147
This 12 -page brochure contains photographs and engineering drawings of the firm's principal connector types. Featured are illustrations of America's spacecraft and missiles. Burndy Corp., Norwalk, Conn.

Inductive Potentiometers
148
Data sheet 801-LP4 gives dimensioned and schematic drawings, photos, and tables of electrical and mechanical specifications of the firm's size eight inductive potentiometer line. Daystrom, Inc., Daystrom Transicoil Div., Worcester, Montgomery County, Pa.

Analog-ło-Digital Recorder

Catalog 35-1541, eight pages, describes a shaft-input device that converts and records analog values in digital binarydecimal punched tape form and provides digital values in electrical form for telemetering. Fischer \& Porter Co., 151 Jacksonville Rd., Hatboro, Pa.

"Congratulations, Doctor, that was a remarkable operation..."

"Oh? And do you think everyone should be a microwave engineer?"

"Thank you ... but I'm not really a doctor ... I'm a microwave engineer."

MICROWAVE ASSOCIATES WINDOWS

they insure mechanical ruggedness, reliable, low-loss hermetic sealing, resistance to wide cycling of temperature and pressure. Typical applications:

COMMON CARRIER (4000 Mc) Mica pressure windows built on a standard flange. Ready to install in any system.
microwave relay link (6000 Mc) Mica pressure seals. All-weather protection for systems from Texas to the Arctic. Built on a standard flange. INVAR REFERENCE CAVIJIES - Glass-Kovar pressure windows especially designed using Flexframe* construction to resist breakage.
A complete line of windows, including designs for these specific areas is described in our new bulletin 59 W . Included are mechanical and electrical characteristics and improved testing procedures.
We will design and deliver microwave windows to your specifications. Please write or call:
*MA's new shock-resistant window-mount

MA-1474

MA-1452

MA-904

MICROWAVE ASSOCIATコS
BURLINGTON. MASSACHUSETTS BROWNING 2-3000 CIRCLE 152 ON READER-SERVICE CARD

NEW-GOOLS TRANSSTORS

 GETS 46 WATTSAT ROOM
TEMPERATURE

Clamps, Wire Strippers

Electrical and mechanical products, including plastic clamps or clips in nylon, ethyl cellulose and saran, hand-type wire strippers and wire connectors are described in this 32 -page catalog, No. 100. Holub Industries, Inc., Sycamore, Ill.

Now you can obtain high magnetic permeability alloys such as 4.79 Moly Permalloy, Alfenol, and HyMu " 80 " in cold rolled strip and foil in production quantities! The unique and newly expanded facilities of Precision Metals Division are geared to produce ultra-thin metal strip and foil in any quantity and in virtually any alloy.

Precision Metals strip and foil for development and production offer these special advantages:
uniform magnetic properties
thicknesses from .010" to $.0001^{\prime \prime}$ dimensional uniformity
For specific requirements, Precision Metals can also furnish custom alloys to your own specification in the form you need. Write today for fully illustrated facilities booklet, ED-7.
extremely close tolerances excellent surface characteristics

WATCH COMPANV/Precision Metals Division H
Lancaster, Pennsylvania
CIRCLE IS3 ON READER-SERVICE CARD

NEW LITERATURE

Shock Testing

Type 15575 shock test machine is described in bulletin 57-06B. Features, pictures, dimensional data and a general description of the unit are covered. Barry Controls Inc., P. O. Box 215, 700 Pleasant St., Watertown 2, Mass.

Tables and Formulas

Booklet B-36779, 120 pages, contains convenient tables, formulas, and graphical symbols summarizing electrical data, properties of materials, heat transfer, measurements and other subjects. Write to: Westinghouse Electric Corp., Dept. ED, Box 2099, Pittsburgh 30, Pa.

Potentiometers

155
This four-page brochure is designed to simplify the selection of Bourns potentiometers. Construction features, specifcations and- photographs of the Trimpot and Trimit are included. Schweber Electronics, 60 Herricks Rd., Mineola, L.I., N.Y.

Amplifiers

156
Catalog 95, 16 pages, provides data on if, rf, and twt amplifiers for radar and missile use. It contains information on electrical characteristics, mechanical construction, and general applications. Sev eral new transistorized units are described. including a hybrid strip combining tubes and transistors for minimum noise figure and power consumption. LEL, Inc., 380 Oak St., Copiague, N.Y.

Clamps

Engineering design manual TA210G in cludes descriptions on a line of standard clamps, line supports and brackets in a wide variety of shapes and sizes. Also covered are installation techniques for electronic harnessing applications. Information on standard extreme and high and low temperature insulating materials and data on chemical resistance are provided, along with over 400 illustrations. Write to: TA Mfg. Corp., Dept. ED, 4607 Alger St., Los Angeles 3.9, Calif.

New Augat Panel Mounting Brackets

offer unique

extruded-thread feature

Newest addition to the Augat line, these panel mounting brackets provide rigid support for verticallymounted component boards under shock and vibration The special feature of this bracket is five extruded holes to provide four full threads, meeting military specs.

Brackets mount either single or double boards and are available in different heights to mount various size panels. Fabricated from cold rolled steel, cadmium plated.

Writo foday for additional informarion and samples.
AUGAT BROS. Ime.
31 perry avenue - attleboro, mass.
CIRCLE 157 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22, 195
is data sheet describes glass yarns

Formulae for designing transformers for use in transistorized power supplies are given in bulletin E-285. It offers a guide to selecting the proper transistors, choosing operating frequencies, and determining the values of biasing resistors. CBS-Hytron, Parker St., Newburyport, Mass.

Silicone Products

160
Catalog CDS-129A, eight pages, provides data on silicone products and their uses. Among the electronic uses described are insulation and rubber products. Pictures and tabular technical information are included. General Electric Co., Sili- cone Products Dept., Waterford, N.Y.

Multiplier-Divider Data Sheet 161

This technical data sheet describes model $\mathrm{K} 5-\mathrm{M}$ multiplier-divider. Contained in the sheet are general specifications, and a description of the unit, application notes and pictorial information. George A. Philbrick Researches, Inc., 285 Columbus Ave., Boston 16, Mass.

Toggle Switch

 162This one-page data sheet No. 158, describes an ulta-small toggel switch for use on aircraft panels, transistorized devices and other areas where space and weight are at a premium. MinneapolisHoneywell Regulator Co., Micro Switch Div., Freeport, Ill.

Fastening Devices

This 12-page brochure illustrates the firm's line of precision brass nuts. Included are engineering specifications on machine screw nuts, hexagon nuts, cap and open cap nuts, volume control and potentiometer nuts. Cornell Manufacturing Co., Inc., 21B Saw Mill River Rd., Yonkers, N.Y.

AIRBORNE R8010 TEMP. CONTROL SYSTEM Schematic diagram of temperature control system developed by Airborne for use on Martin P6M2 Seamaster. System operates on 28 vd d. maintains fuel tem. perature at approximately $200^{\circ} \mathrm{F}$. by monpering ram air flow to air/engine.oil heat exchanger. Oil is used in turn to heat fuel.

Airborne electromechanical system regulates jet fuel temperature

An integral part of each main engine installation on the Martin P6M2 Seamaster is an Airborne R-8010 custom-engineered temperature control system. By regulating air flow through a heat exchanger, this system maintains supply line fuel at $180-220^{\circ} \mathrm{F}$.

As developed for the P6M2, the R-8010 system consists of a thermistor probe, a control amplifier and a rotary actuator. The probe (mounted in an MS10057-12 fit(ing) is in direct contact with the temperature-regulated fuel and presents to the control box a resistance which is proportional to fuel temperature. In response, the control box energizes the actuator to change the setting of a ram air intake valve, thus regulating volume of air flow through an air/fuel heat exchanger. This sensing and response continues until prescribed fuel temperature
is attained, at which point the system reaches a state of electrical balance.

A fail-safe feature is also provided. In the event of power failure, a magnetic clutch in the actuator is released, permitting the air valve to be pushed open by the force of the ram air.

This application* on the P6M2 illustrates only one of many possible adaptations of the Airborne R-8010 system for temperature control functions on aircraft, missiles and related equipmentcabin temperature control, engine temperature control, temperature regulation of fuel, oil, electronic cooling packages, etc. If you have requirements in these areas, we will be happy to make a proposal. Contact any of our offices.
-Deseribed in detail in aew Bulletin PS-AA, ovailable on request.

Engineered Equipment for Aircraft and Industry
AIRBORNE ACCESSORIES CORPORATION
HILLSIDE 5, NEW JERSEY - Oifices In Los Angoles and Dallas CIRCLE 165 ON READER-SERVICE CARD

now available

ut new low prices-same high quality

Thanks to advanced production techniques, these space-saving modern meters are now offered at prices that are competitive with old-fashioned meters.

side indicators

* MODEL 1135

MODEL 1120

Save space on crowded, complex panels without sacrificing readability or accuracy. Model 1145 provides accuracy and scale length of conventional $41 / 2^{\prime \prime}$ meters with $1 / 3$ the panel area and far less weight Model 1135 compares with conventional $31 / 2^{\prime \prime}$ meters. For horizontal or vertical mounting. Feature dust-proof cases with clear plastic covers. Center, top or bottom zero position and other variations so pointer movement will conform with "human engineering" principles. Side indicator panel meters are an original International Instruments development, and only International offers you a complete line with scale lengths of $2.7^{\prime \prime}, 2.1^{\prime \prime}$ and $1.2^{\prime \prime}!$ Supplied in a wide variety of standard and special ranges.

VISIT OUR BOOTH NO. 2813

 AT THE "WESCON" SHOW WRITE NOW FOR ENGINEERING DATA SHEETS\ldots on Side Indicators and also on our 11/2" Ruggedized M Meters, $1^{\prime \prime}$ and $11 / 2^{\prime \prime}$ Pancl Meters, VU, DB and Illuminated Meters, and Miniature Multitesters. Sub-miniature Rotary and Lever Suitches. P.O. Box 2954. New Haven 15, Connecticut. Cable: "INTERINST"
miniaturization headquarters

international instruments inc.

NEW LITERATURE

Vibration Pickup

 167Type $4-120$ vibration pickup is described and illustrated in Bulletin 1575. Included are specifications, applications and a nomograph of this calibrated standard. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

Terminals

Standoff and feedthrough terminals are described in this eight-page brochure. Drawings, dimensional data in tabular form, and installation information are included. Taurus Corp., 8 Coryell St., Lambertville, N.J.

Coaxial Terminations

169
Specifications on the firm's model 535 coaxial terminations are given in this twopage bulletin, No. 46. Two-color graphs show typical vswr vs frequency for each type of connector. Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md.

Capacitors

Bulletin 3701, eight pages, covers iubular sintered-anode tantalum electroistic capacitors. The catalog numbering system, standard ratings, a general description, and performance characteristics are included. Sprague Electric Co., 347 Marshall St., North Adams, Mass.

Silicone Rubber

Selector Chart CDS-145 is a specification guide on silicone rubber. It permits selection of the proper type of silicone rubber and contains data on applications, typical properties, primary classes and standard industry and military specifications. General Electric Co., Silicone Prod. ucts Dept., Waterford, N.Y.

Magnetic Lamination

Bulletin TB 104, two pages, describes transformer laminations, magnetic head laminations, servo motor rotors and stators and special shape laminations. Characteristics are provided. G-L Electronics, 2921 Admiral Wilson Blvd., Camden 5, N.J.

CIRCLE 173 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22, 19:3

Te: inal Blocks
ous types of terminal blocks are

Design limits, performance specifications and typical characteristics for germanium power transistors $2 \mathrm{~N} 538,2 \mathrm{~N} 538 \mathrm{~A}$, 2N539, 2N539A, 2N540, 2N540A, 2N1202, 2×1203 are given in these separate twopage brochures. Booklet 79-9200, sevenpages, "Fundamental Voltage Limitations of a Transistor" summarizes basic transistor voltage breakdown mechanisms and their relationship to the actual modes of breakdown observed in typical alloyed junction germanium power transistor applications. Minneapolis-Honeywell Regulator Co., 2747 Fourth Ave. S., Minneapolis 8, Minn.

Mofor Shieids

Data sheet 146 illustrates and describes use of Co-Netic Netic magnetic shields for shaded pole motors. Perfection Mica Co., Magnetic Shield Div., 1322 N. Elston Ave., Chicago 22, Ill.

Recorder/Reproducer

176
Type 5-781 continuous-loop recorder/ reproducer, designed for data analysis, is described in bulletin 1614, four pages. A general description of the unit, pictures and diagrams and electrical specifications are included. Consolidated Electrodynamics Corp., 300 North Sierra Madre Villa, Pasadena, Calif.

Encapsulation

177
The bulletin "Improved Casting Techniques for Void-Free Encapsulation in Epoxy Resin" describes the three principal methods of encapsulating coils, transformers and other electrical components. Automatic Process Control, 1170 Morris Ave., Union, N.J.

EIECTRONIC DESIGN • July 22, 1959

SIGMA RELAY FOR MILITARY EQUIPMENT NOW TWICE AS SENSITIVE; DESIGNERS GET TWO WEEKS OFF

Sensitive relays ${ }^{*}$ have very little company these days, as they continue to do the same job they always have, but on less and less take-home power. There was a time when you could say a relay was sensitive if it would operate around 50 milliwatts or so; now, it has to do the same work on about half as much coil power. Alas, the price of Progress she comes high...

With this philosophy firmly implanted, With the sensitivity question all straightour Chief Sensitivity Engineers took a ened out, these two Chiefs were given perfectly good "military" Sigma relay of their just reward and flown by privately fairly wide application success and at. tempted to make it more sensitive, without impairing any of its other characteristics. The fruits of their labors is a new adjustment which is twice as sensitive as the original relay, since the required operate power is only half as much as the old style which is also still available if you've got double the number of milliwatts to play with as anyone else currently building chartered aircraft to a secluded spot for the vacation they so richly deserved. Found among the papers they left behind were the following additional facts, which may be of interest to anyone who has to squeeze an SPDT or DPDT relay into 1.75 cubic inches and have it work on next to nothing, in airborne and similar environments.
*(unlike other people) military gear.

Series 22 bulletin on request, but you may have to wait a little while until everyone gets back to work annual plant shut. down takes place the first two weeks of July.

SIGMA INSTRUMENTS, INC. 91 Pearl Street, So. Braintree 85, Mass. CIRCLE 179 ON READER-SERVICE CARD

PRODUCTION PRODUCTS
Tap Welder
Has built-in oudible ohmmeter

The Flash-Flow potentiometer tap welder puts taps on one turn of windings made from wire 0.0003 to 0.008 in . in diameter. It handles most of the commonly used precious and nonprecious winding alloys. The unit has a built-in audible ohmmeter to indicate the correct turn to which a weld is to be made.
Ewald Instruments, Dept. ED, Box 124, Kent, Conn.

CIRCLE 180 ON READER-SERVICE CARD

Inserting Machine

The Sertomat automatic inserting machine has interchangeable tooling that permits a wide range of applications in the handling of terminals, connectors, pins, studs, and many types of fasteners. It inserts up to 3000 pieces an hour and can simultaneously feed and insert two-piece Tefon bushings and feedthrough terminals for electronic circuit boards.

Hill Machine Co., Dept. ED, 1301 Eddy Ave., Rockford, Ill.

CIRCLE 181 ON READER-SERVICE CARD

SILICONE NEWS from Dow Corning
Toward Greater Reliability

Silicone-Glass Laminate Proves More Dependable in Rough Environments
Schlumberger Well Surveying Corporation, makers and operators of geophysical well-logging instruments, found terminal boards of silicone-glass laminate more reliable in service and easier to fabricate. The instrument shown has a working range up to 191 C amid high humidity environments. In Schlumberger's evaluation tests. here's how a laminate based on Dow Corning silicone resins stacked up against other materials.
Silicone vs. phenolic: Silicone laminate had superior and more uniform dielectric properties at high environmental temperatures. Silicone laminate had lower moisture absorption: approximately 0.02% as compared with $2^{\prime} / \mathrm{l}$ for phenolic. Silicone laminate had much better dimensional stability than phenolic laminates.
Silicone vs. bonded mica sheeting: Once acain, silicone-glass was chosen for its satisfactory dielectric characteristics. Silicone laminate also proved easier and less expensive to fabricate and install than mica because of mica's fragility.
Other plus properties of silicone-glass laminates include stability at 250 C . low loss factor, good physical strength, ease of fabrication, light weight, resistance to arcing, ozone and corona. and permissibility of adjacent soldering.

What all these add up to is greater reliability. If you are faced with the problem of engineering an electronic unit that will remain failure-free in difficult environments, investigate silicone-glass laminates. Manufac. turers of quadradar sets, rotary switches, test chambers. and radio transmitters, to name but a few, have found these laminates meet or exceed their needs.

CIRCLE 600 ON READER-SERVICE CARD

Here are some sample data:
Properties of Silicone-Glass Laminates

first in
 sillicones

Silastic Protects Against Corona, Humidity
This klystron tube for airborne radar utilizes Silastic ${ }^{8}$, the Dow Corning silicone rubber, to maintain frequency stability. Silastic moldings cover the tube's connections and lead wires, keeping out moisture and preventing corona. An excellent insulator, Silastic is unaffected by temperature extremes and ozone. Silastic retains its properties . .. can be relied upon to protect electronic gear in widely diverse and adverse environments.
In addition to its usefulness as a dielectric material. Silastic is often employed for purely physical reasons. Available in sponged or solid form. it protects delicate parts against shock and vibration. Silastic stays resilient from -90 to $260 \mathrm{C} 1-130$ to 500 F , and resists the effects of extended storage, weathering, and corrosive atmospheres.
mopto coubtest vabian associates
CIRCLE 601 ON READER-SERVICE CARD

Grease-Like Silicones Boost Transistor Dependability... Dow Corning silicone compound is ideal for potting transistors. It seals out moisture and conducts heat away rapidly. In addition, it reduces rejection rates by preventing metal splatter from reaching the transistor wafers when caps are welded in place. These silicone compounds don't melt, don't thicken, and retain their excellent dielectric properties from -40 to 210 C . Industro Transistor Corporation, manufacturer of the units illustrated, finds the grease-like silicone materials help build a new degree of reliability into their product.
Actually, transistor potting is but one of the many jobs performed by Dow Corning silicone compounds. They seal out moisture at joints, on terminals, and in many other applications . . . preventing arcs, shorts, flashovers, corrosion, and contamination . . . assuring the performance of electronic units.

CIRCLE 602 ON READER-SERVICE CARD

Cooling Fluid with
 Reliable Flow Rate

Because of their thermal stability and relatively flat viscosity-temperature curves. Dow Corning silicone Auids make excellent heat exchange media. Silicone fluids maintain consistency over a range of $-\mathbf{6 5}$ to 250 C . They can be pumped at high speed without suffering breakdown due to shear, have good lubricity, and will not oxidize or act ${ }^{3}$ currosives. despite contact with metals at high temperatures. In sum, they allow heat exchange units to operate uniformly and almost indefinitely, as far as the coolant is concerned.
Recignizing these factors, the Hallicrafters Company utilizes Dow Corning silicone fluid as the cooling medium

in their new heat exchangers for electronic equipment. Specifically designed to cool airborne, shipboard, and ground support electronic equipment, the Hallicrafters units have ratings up to 7,000 watts dissipation, meet MIL specs.

CIRCLE 603 ON READER-SERVICE CARD

Your nearest Dow Corning office is your number one source for latest information and technical service on silicones.
\qquad

Printed Circuit Assembly Machine

Inserts 30 components a minute

The Panto-Sert printed circuit assembly machine inserts components all over a board in one pass. With a template and a pantograph type attachment, it can install 30 components a minute. Power requirements are $30 \mathrm{w}, 110 \mathrm{v}, 60 \mathrm{cps}$.

Design Tool Corp., Electro-Machinery Div., Dept. ED, 772 Bergen St., Brooklyn 38, N.Y.

CIRCLE 182 on reader-service caro

Flag Wrapper

Labels 650 parts on hour

Working as an attachment on the company's AWM-2 automatic marking machine, the Flag. matic automatically applies a pressure-sensitive flag around small wires, components, and products. It can bundle small parts together and will accept 28 gage wire and parts with up to $1 / 8 \mathrm{in}$. OD. The unit flags $6501 / 16 \mathrm{in}$. diameter parts in an hour.
W. H. Brady Co., Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis.
circle is3 on reader-service caro

Electron Beam Welder

Joins reactive and refractory metals

Equipped with a gun that is fully protected from gaseous discharges in the weld area, the model 2770 electron beam welder joins reactive and refractory metals in a high vacuum. The welding chamber contains a work table that can be rotated or moved laterally or longitudinally without breaking vacuum. Pump and gun ports are set into the tank, and three other ports allow for the addition of extension chambers. Beam current is 0 to 100 ma at 0 to 10 or 0 to 20 kv , depending on the rating of the gun.
NRC Equipment Corp., Dept. ED, 160 Charlemont St., Newton 61, Mass.
circle is4 on reader-service card

MINIMUM SIZE Maximum Dependability LOW COST

ACTUAL SIZE
The new T-154 relay
is now being manufactured by Allied Control at Plantsville, Conn.

General Features:

Operafe Sensitivity:
From 90 milliwatts for 1.3 ohm coil to 160 milliwatts for 15,000 ohm coil up to 2 Form C
From 200 milliwatts for 1.3 ohm coil to 400 milliwatts for 15,000
ohm coil up to 6 Form A
Coil Resistance: Up to 15,000 ohms
Coil Voltage: Up to 140 volts d-c
Consuct Refing:
Low Level to 1 ampere 29 volts d-c or 115 volts a.c resistive. 5 ampere contacts are available
Confact Arrangement: Up 106 Form A, B and 4 Form C
Operafe and Release time: 7 milliseconds max. at 1 watt
Shock: 10 g's
Vibrafion: 10 to 55 cps at $.062^{\prime \prime}$ double amplitude
Enclosure: Dust proof and hermetically sealed
For complete information write for Bulletin $\boldsymbol{T 1 5 4}$

PRODUCTION PRODUCTS

Potentiometer Marker

Imprints tops and sides
For potentiometers and large semiconductor power rectifiers, the model U-1009 machine marks tops and sides in a single operation, with each print in register with the terminals. It handles 30 pieces per min. The side and top markers may be used independently, and the side printer marks single or double unit potentiometers without adjustment.

Markem Machine Co., Dept. ED, Keene 53. N.H.

CIRCLE 186 ON READER-SERVICE CARD
Vacuum Metallizing Unit For production and research

Model 3144 bell-jar metallizing unit is designed for developmental work or limited volume deposition of one or more materials under vacuum. It can be used for production of semiconductors, precision resistors and capacitors, printed circuits, waveguides, computer elements and other components. The vacuum chamber is formed by a $30-1 / 2$ in. high bell jar and a 28 in. diameter precision ground baseplate. The bell jar may be an 18 in . diameter pyrex unit with perforated metal shields or a 24 in . diameter mild or stainless steel type with two eye level sight glasses. The baseplate,

TELL YOUR PERSONNEL MANAGER ABOUT ELECTRONIC DESIGN'S "CAREER'S SECTION"

If your company is trying to attract skilled electronic design, development or research engineers, tell your Personnel Manager about ELECTRONIC DESIGN. Here is a concentrated oudience of 27,000 engineers ready to read about the advantages offered by your plant.

Remember, more than 5,500 ELECTRONICDESIGN readers inquire every issue -many of them will be interested in your job opportunities.

You can efficiently reach them in ELECTRONIC DESIGN'S "Career's Sectior."

FOR FLIGHT LINE, PRE-LAUNCH, MAINTENANCE

NORTH ATLANTIC
PHASEANGLE VOLTMETER in one portable package, provides direct reading of in-phase volts, quadrature volts, phase angle, nulls -without accessory equipment. Compact, rugged and unaffected by harmonics-it simplifies support sys tems, reduces human error in test. adjustment, analysis of complex electronics.
Its accuracy and versatility-(1 mv to $300 \mathrm{v}, 0-360^{\circ}$) have been demonstrated in the Atlas, Polaris, Pershing and F-105 programs. It can be supplied for single frequency or broad band measurements. for dolly or console mounting, or as a module for complete checkout systems. For full specs, write for Bulletin 201.

A
NORTH ATLANTIC industries, inc
603 Main Stroet, Wostbury, M. Y. EDgewood 4-1122
C PCLE 188 ON READER-SERVICE CARD
ELE CTRONIC DESIGN • July 22, 1959 Conn.
which can be either stainless or nickel plated mild steel, has one central 6 in. diameter vacuum pumping port and seventeen 1 in . diameter holes for feedthroughs.
NRC Equipment Corp., Dept. ED, 160 Charlemont St., Newton, Mass.

CIRCIE 189 ON READER-SERVICE CAPD

Set Screw Feeder-Driver

Automatic

Handling up to 2000 units an hour, these portable, automatic, gun type machines receive and drive standard socket set screws 15 ft away. Three models handle screw diameters No. 4 to 8, No. 10 to $5 / 16 \mathrm{in}$., and $3 / 8$ to $1 / 2 \mathrm{in}$. Change-over from one size to another takes about 20 min .
The Bristol Co., Dept. ED, Waterbury 20,

CIRCLE 190 ON READER-SERVICE CARD
Glass Diode Case Machine
Dual purpose

The 3187 diode body case machine automatically produces a beaded lead wire and seals a glass body sleeve over it. The machine handles up to 1500 units an hour.
Kahle Engineering Co., Dept. ED, 3322 Hudson Ave., Union City, N.J.
circle 191 on reader-service caro

designed for MICROMINIATURE SOLDERING
 by American Beauty

The T-12-XF Transformer Type Electric Soldering Iron is a scientifically designed, finely engineered tool that is especially intended to do just the kind of soldering job you see being accomplished above.
Proven best-by-test on many similar applications . . . affordn extreme flexibility . . . assures a high degree of protection to delicate, expensive electronic components because its bypersil type transformer provides complete line-voltage isolation.
The cord with which the T-12-XF is equipped is ultra-flexible . . . impervious to oil, water and grit.

Tips-elements are Armco ingot iron brazed to stainless steel casinge
 tip diameters, all same casing diameters.
The featherweight, pencil type handle minimizes operator fatigue . . is always comfortably cool.
AMERICAN BEAUTY Electric Soldering Irons Are Made In ONE Quality Only ... The Best ... And Only The BEST Gives You The MOST!

You can't beat a soldered connection

-mate for mpage llu strated catalog comtaimmg pull iformatom on our屋
AMERICAN ELECTRICAL HEATER COMPANY Nmishlyy
DETROIT 7. MICHIGAN CIRCLE 192 ON READER-SERVICE CARD
 MOST

NEW PRODUCTS

Near Infrared Filters Operate at 100 C

Capable of operating from -40 to +100 C with little shift in the cut-off wavelength, these near infrared, interference type filters use evaporated films of silicon. They are essentially long pass filters and begin to transmit at wavelengths up to 1.2 microns. They are available in diameters up to 6 in.

Metavac, Inc., Dept. ED, 45-68 162nd St., Flushing 58, N.Y.
CIRCLE 194 ON READER-SERVICE CARD

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

Shaft Encoder Pulses Computer Directly

This shaft to digital converter pulses data processing equipment directly without an intermediate relay matrix. Designated model AP-124, the unit has a heavy current output that eliminates the need for relays. The unit has two outputs: 500 ma for card punch and similar equipment; 0.5 to 1 ma for neon lamps or other displays. Maximum slewing speed is 1500 rpm ; each revolution provides 10 counts.
United Precisioneers, Inc., Dept. ED, 23916 Craftsman Rd., Calabasas, Calif.

CIRCLE I 193 ON READER-SERVICE CARD

Delay Line Provides 10 Increments of $0.05 \mathrm{\mu sec}$ Type CT-18 lumped constant delay line has 10 separate taps of 0.05 usec each. Impedance of the unit is 550 ohms and it ha a maximum rise time of $0.1 \mu \mathrm{sec}$. Attenuation is 1 db max, and to n . perature range is from -25 to +85 C . It measures $2.5 \times 1 \times 1.5 \mathrm{n}$. Technitrol Engineering Co., Dept. ED, 1952 E. Allegheny At e., Philadelphia, Pa.
circle 195 on reader-service card

Voltage Standard has 0.000001 \% Regulation
A dc reference voltage with a regulation of 0.000001% for any change in input voltage from 90 to 150 v is provided by this unit, called Voltaloc. Its temperature coefficient is 5 to 20 ppm per C from -65 to +125 C. Having military uses, the unit is available with any output voltage up to 5 v for 60 or 400 cps inputs of any wave shape. Jackson Electronic \& Mfg Co., Dept. ED, 695 Johnston St., Akron 6, Ohio.
circle 196 on reader-service card

Switch Cuts Installation Costs
Series 20 printed circuit switch cuts installation costs because: switch wiring errors are eliminated; all leads are connected during dip soldering; and no hardware is required to securely hold the switch to the board. It is available with combinations from one-pole 12 positions, through six-pole ${ }^{2}$ positions. Its ratings are 2 amp at 15 v dc , and 150 ma at 110 v ac (make and break, resistive load)
Ceitralab, A Division of Globe-Union Inc., Dept ED, 900 E. Keefe Ave., Milwaukee 1, Wis. CIRCIE 197 ON READER-SERVICE CARD

| | 36.72 | 0.1 |
| :--- | :--- | :--- | SUPPLIES

 offers more than 120 standard voltage regulated power supplies covering a wide range of transistor, tube and magnetic types.

For complete specifications, write for Brochure B-591

MODEL	$\begin{array}{\|c\|} \text { OC } \\ \text { OUTPUT } \\ \text { VOLTS } \end{array}$	$\begin{aligned} & \text { OC } \\ & \text { OUTPUT } \\ & \text { AMPS. } \end{aligned}$
SC-32-0.5	0.32	0.0 .5
SC-32-1	0.32	0.1
SC-32-1.5	0.32	0.1.5
2SC-32-1.5	0.32	0-1.5
dual output	0.32	0-1.5
SC-32-2.5	0.32	0.2.5
SC-32-5	0.32	0.5
SC-32-10	0.32	0.10
SC-32-15	0.32	0.15
SC.60-2	0.60	0.2
SC-60-5	0.60	0.5
2SC-100-0.2	0.100	$0-0.2$
dual output	0.100	$0 \cdot 0.2$
SC-150-1	0.150	0.1
SC-300-1	0.300	0.1

0.02% हпivenion
conact paccase mes

MODEL	OUTPUT VOLTS	OUTPUT OMPS.
PSC- 5-2	$0-7.5$	2
PSC-10-2	$7.5-12.5$	2
PSC-15-2	$12.5-17.5$	2
PSC-20-2	$17.5-22.5$	2
PSC-28-1	$22.5-32.5$	1
PSC-38-1	$32.5-42.5$	1

131-38 SAMFORD AVENUE • FLUSHIMG 55. M.Y. • INDEPENDENCE 1-7000 CIRCLE 198 ON READER-SERVICE CARD

 Cepcoinc.

ELEC RONIC DESIGN • July 22, 1959

sтив $\boldsymbol{R}^{\boldsymbol{R}}$

Check the PLUS features of the NEW Amphenol "R"!

Stub R is the newest member of amphenol's family of fully approved MIL-C-5015D environmentally resistant connectors. The " R " construction is a recent addition to this Specification and is described as "environment re-sistant-light weight". Like amphenol's superior Stub E, the Stub R offers plus features above and beyond the minimums established by the Specification. Together, these connectors provide users with a complete selection of the shortest, lightest, finest environmentally resistant AN/MS connectors available to MIL-C-5015D. AMPHENOL Stub R connectors offer the following plus features:

Slippery Grommet Material A special neoprene material that allows easy slippage over
\qquad A cost-saving advantage that speeds up assembly.

Unitized Rear Grommet Grommet, clamp nut, clamp shell and retainer ring form a single subassembly, making assembly and disassembly easier and quicker than with any other " E " or " R " connector.

Uniformly Tinned Solder Pockets Uniform and complete distribution of solder tinning on the inside of the solder pockets, assuring the user of producing the best electrical and mechanical connection.Mefal-fo-Mefal Boftoming The unitized rear grommet provides metal-to-metal bottoming to the front shell when the grommet is fully engaged, assuring pre-determined, controlled sealing and minimizing the possibility of compression "set".

Ease of Soldering Solder pockets are exposed for easy wiring and soldering, providing fast, low cost and high quality assembly.
 " O " Ring The Stub R incorporates an " O " ring tional sealing protection.

7 Shorter Length, Lighter Weight Both Stub E (7) and Stub R are the shortest and lightest types available, allowing for more compact equipment that saves money where weight $=$ money, as in aircraft.

8 Closed Entry Socket Contacts Resistant to test prod damage, female contacts are machined of a copper alloy and provided with a closed entry.

9 Posifioned Contact Pockets All solder pockets and face in the same direction, accelerating wiring and substantially reducing assembly costs

CONNECTOR DIVISION 1830 S. 54th Ave., Chicago 50, Illinois Amphenol-Borg Electronics Corporation

NEW PRODUCTS

High Potential and Insulation Tester

Nondestructive

This high potential and insulation tester checks products at high volt. age without damaging them. The unit weighs 22 lb , measures 7×19 x 7 in., and requires no additional safety cabinets. Standard ranges are 0 to 3500 v dc and 0 to 2500 v ac, 60 cps .

Arizona Instrument Corp., Dept. ED, 2342 E. Broadway, Phoenix, Ariz.

CIRCLE 199 ON READER-SERVICE CARD

Power Meter

Temperature compensated

The model B831A temperature compensated power meter uses the company's series 218 thermistor head to provide virtually drift free operation. It has $\pm 5 \%$ accuracy and six direct reading ranges from 10 $\mu \mathrm{w}$ to 3 mw , full scale.
FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N. Y.
CIRCLE 200 ON READER-SERVICE CARD

Automatic Circuit Analyzer

Measures three-terminal complex impedance
The SPACE Mark II autornatic circuit analyzer measures twic or three-terminal complex imped.nce, insulation resistance, and ciode forward voltage drop and revorse resistance. It handles a minimu: of two tests per sec.
Brooks Research, Inc., Dept. 'D.
P.O. Box 3867, Rochester 10, N. .
circle 201 on reader-service ca o
< CIRCLE 202 ON READER-SERVICE CAI

Terminals
Teflon insulated

Securely seated in Teflon, double turret type 1945, 1946, and 1947 solder terminals are suited for high humidity conditions. They are about $3 / 8 \mathrm{in}$. in diameter and have externally threaded, rivet type, or internally threaded mounting studs. Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.
CIRCLE 203 ON READER-SERVICE CARD

DC Power Supply

Delivers $\mathbf{2 0 0} \mathbf{~ m a}$ ot $\mathbf{2 5} \mathbf{~ k v}$
For nuclear research and experimental or industrial use, the model PS 25-200-1 dc power supply delivers 200 ma at 25 kv . It is designed to operate on a 208 v , three-phase, 60 cps line voltage delivered by a three-phase variable transformer. Multiplier resistors are provided so that the output voltage can be measured by a 100μ a full scale meter. The unit is $21 \times 17-1 / 2 \times 18 \mathrm{in}$.
Del Electronics Corp., Dept. ED, 591 Homestead Ave., Mt. Vernon, N.Y.

CIRCIE 204 ON READER-SERVICE CARD

Digital Logic Circuits

Plug-in

This plug-in digital logic circuit series includes AND gates, OR gates, inverters, and emitter followers. All units are available with either single or dual circuits and come in npn, pnp, or complementary symmetry types. The single units are 1-9/16 in. high; the dual units are 2-1 16 in . high. Both are Tpin devices $7 / 8 \mathrm{in}$. in diameter. The circuits can also be provided in 0.5 c 11 in., 1 oz cartridge form.

The Walkirt Co., Dept. ED, 141 W. Huzel St., Inglewood 3, Calif. CIRC E 205 ON READER-SERVICE CARD CIRCLE 206 ON READER-SERVICE CARD \geqslant

2 TYPES • 4 MOUNTINGS • 4 VOLTAGES

32
 STANDARD P\&B CRYSTAL CASE RELAYS

Prototype or small-production-run quantities of P\&B's micro-miniature relays are now available from your local electronic parts distributor. Choose from 2 types, 4 mountings, 4 coil voltages -32 models in all.

P\&B's dual coil, permanent magnet, crystal case relays remain operative under 100 g shock, 30 g to 2000 cps vibration. Modern White Room production facilities assure
highest possible reliability.
The SC conforms to standard dimensions and circuitry, and can replace ordinary relays of the same size.
The SL, a latching relay, utilizes the dual-coil, permanent magnet principle to provide a highly efficient, tenacious latch, assuring high contact pressure.
Order today from your local electronics parts distribufor.

SC and SL SPECIFICATIONS:
Shock: 100 g for 11 millise.
Vibration: 30 g from 55 to 2000 cps $.195^{\prime \prime}$ mox. excursiom from 10 to 55 cps
Ambiont Tomperaturo Rangos
$-65^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.
Contact Arrangement: dpdr
Contact Loend: 2 omps of 30 vde 1 amp at 115 vac, 60 eyde
Sonsitivily:
$\mathrm{St}-230$ milliwaths of $25^{\circ} \mathrm{C}$. with 630 ohm coil
SC-260 milliwatts at $25^{\circ} \mathrm{C}$. with 550 ohm coil

BISHOP QUICK SERVICE TEAM SOLVES STICKLER IN ATLAS PROGRAM

Telemetering bulb part (illustrated) -originally of 304 seamless tubing-cracked during fabrication. Bishop specialists were called in-304L seamless, $1 / 2$ hard was recommended and supplied (against a tough deadline). Results: The 304 L part met all requirements, including critical resistance to vibration fatigue within a temperature range of -80° to $-380^{\circ} \mathrm{F}$ in inert helium, and gave completely satisfactory performance in the Atlas program. More information on 304 L -or any Bishop tubular products? Use the coupon. CIRCLE 797 ON READER-SERVICE CARD

bimetallics now available in MANY DIFFERENT FORMS, METALS

Bimetallics-the new family of composite metal products-is solving problem after problem these days Bishop capabilities in producing bimetallics are almost endless. Both base and precious metals are available in wire, sheet, and tubing form Typical example of popular bimetallic for glass sealing applications: nickeliron alloys over copper wire in sizes from .004 to .125 in . diameter advantages: low electrical resistivity advantages: ow electrical resist Look into the possibilities of improving your products . . . use the coupon. CIRCLE 798 ON READER-SERVICE CARD

17-7 PH* TUBING BEING DRAWN TO HYPODERMIC SIZE

Small diameter 17-7 PH tubing, welded and seamless, is available from Bishop now on standard order in sizes down to .375 in . OD X .035 in . wall-on special order to .020 in . OD X .006 in. wall. Accompanying illustration shows a piezoelectric transducer used for measuring pressures up to 100,000 psi in ballistics and hypersonic research work. Use of welded 17-7 PH spacer in transducer permitted finish machining of the part before heat treating. Want more data on Bishop's 17.7 PH products or other super alloys? Use the coupon.
*Trademark of Armco Steel Corporation

FOR HELPFUL DATA USE THIS HANDY COUPON

- Minclio.

Date Shoot PA-1

- 1.7 PW aloy.

Dete Shoot TA-2A

- mit alo. Data Sheet TA-2
- Itmine Probects Bullotin Mo. 12
\square Putens Metak Putect Cataiog No. 3

Tubular Products Division 55 KING STREET, MALVERN, PENNA.

NIagara 4-3100

THIS IS THE BISHOP LINE: Products of all the Platinum Metals... Small diameter Stainless Steel, nickel and special alloy tubing

NEW PRODUCTS

Airborne Tape Recorder

 Seven track

Airborne magnetic tape recorder model AR-200 is a complete seven track system with two units that occupy a total of 1.6 cu ft and weigh 90.5 lb . It operates up to $100,000 \mathrm{ft}$ at temperatures from -54 to +95 C and withstands shocks to 15 g The recorder provides for all standard recording techniques and has an accessory remote control unit. It handles up to 14 analog tracks, 32 digital tracks, or a combination of 7 analog and 16 digital tracks on a single magnetic tape 1 in . wide

Ampex Corp., Instrumentation Div., Dept. ED, 934 Charter St., Redwood City, Calif.

CIRCLE 208 ON READER-SERVICE CARD

Frequency Meter

Needs no phones or calibration curves
Model 700 standard frequency meter is capable of measuring and continuously monitoring without use of head phones, transfer oscillator, or calibration curves. Its basic frequency range is 25 to 50 mc ; when used with model 710 range selector it will measure frequencies up to 1000 mc . This direct-reading meter measures to within $\pm 20 \mathrm{cps}$, when referenced to a prime standard

Measurements, A McGraw-Edison Div., Dept, ED, Intervale Rd., Boonton, N. J.

CIRCLE 209 ON READER-SERVICE CARD

Switch-Stop
 Is infinitely adjustable

Model LS302 infinitely adjustable limit stopswitch has a single exterior range adjustment screw which permits rapid adjustment to any angular rotation from 0 to 25 turns. It is act ated at either end of shaft travel prior to contact with non-locking stops. It has a 0.937 in . diam at 1 its length is 2 in .; shaft diameter is 0.125 in .

Precision Mechanisms Corp., Dept. ED 5π New Bridge Ave., East Meadow, N.Y. circle 210 on reader-service caro

AC Motor

Has explosion proof construction

A three-phase, $400 \mathrm{cps}, 200 \mathrm{v}$ ac motor, the model D-2260 is rated 0.38 hp at 1500 rpm , con- duty. For use in aircraft, missile, and in lustrial equipment, the unit is designed to IIL-M1-9969B and MIL-E-5272A and is supplied with a mounting pad that meets AND-20000. It is explosionproof, operates to $65,000 \mathrm{ft}$, and has an integral cooling fan. Dimensions are $7.625 \times$ $5.19 \times 3.875 \mathrm{in}$. ; weight is 6.2 lb .
Hoover Electric Co., Dept. ED, Hanger Two, Port Columbus Airport, Columbus 19, Ohio.

CIRCLE 211 ON READER-SERVICE CARD

Frequency and Deviation Meter $\pm 0.0001 \%$ accurate

Portable model T-1020.A all-band frequency and deviation meter measures and generates variable signals from 20 to 1000 mc with calibrated $=0.0001 \%$ accuracy. For deviation measurements, it has a dual range meter with 7.5 and 15 kc deviation scales. The 40 lb unit measures $15 \times 12-1 / 2$ $x 13 \mathrm{in}$. and requires 75 w at 115 v ac.
Motorola Inc., Communications and Industrial Electronics Div., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill.
circie 212 on reader-service card

Computer Register Elements

Operating temperature range is -35 to +55 C

Model CTR-400 magnetic shift register element's output signal has a $50: 1$ One/Zero ratio and a peak voltage drop on the shift line of 0.4 * for a One. It uses a 12 v supply and requires a maxinum of 16 ma average current at 400 kc repetition rate with all One's. Model CTD-400 shaper-driver element is designed to shift up to 12 register stage at 400 kc . Standard units have an operating temperature range of -35 to +55 C, and function with any rise time on the shift pulse for a pulse width of $1 / 4$ to $1 \mu \mathrm{sec}$.
Di-An Controls, Inc., Dept. ED, 40 Leon St., Bostor 15, Mass.
circle 213 on reader-service card

HIGH temperature CAPACITORS BY BENDIX

DESIGN FEATURES

Temperature Range . . $-55^{\circ} 10+315^{\circ} \mathrm{C}$. Capacitance 0.05 to 4.0 uf at 600 VDC. Voltage Range . . . 600 V to 3000 V per section. No Voltage Derating, Low Capacitance and Power Factor Variation, Environmental Resistant, Hermetically Sealed, Rugged Construction, Nonstrategic Materials, Minimum Size and Weight, High Altitude Operation.

The E-315 capacitor offers proven stability of operation over the temperature range of -55° to $+315^{\circ}$ Centigrade* with no voltage derating and low capacitance variation. Of rugged hermetically sealed construction and nonstrategic materials, this capacitor is built for high altitude and severe environmental capacitor
operation.
This nonpolarized capacitor is available in a variety of sizes in a capacity range of from 0.05 to 4.0 microfarads at 600 VDC . It is also available in higher voltage ratings. Performance data and operating characteristics are given in Technical Bulletin SL-61 which is supplied upon request.
-Confirmed by qualification test of 1000 hours at 100% rated voltage over ambient temperature range of -55° to $+315^{\circ} \mathrm{C}$
 Canadian Affliate: Aviation Electric Ltd., 200 Laurentien Blvd., Montreal 9, Quebec.
Export Sales and Service: Bendix International Division, 205 East 42nd St., New York 17, Export Sales and Service: Bendix International Division, 205 East 42nd St., New York 17, N.

Scintilla Division

Sidney, New York

CIRCLE 215 ON READER-SERVICE CARD

CIRCLE 216 ON READER-SERVICE CARD

NEW PRODUCTS

DECADE SCALER.-Low cost model N-2. uset three in-line decades and a four digit electome hant cal register. Time resolution is $1 \mathrm{\mu sec}$; preset cour is $10,100,1000$, and discriminator range is -50 to +100 v .
Hamner Eelectronics Co., Inc., Dept. ED, Prince ton, N.J

Circle 217 ON reader-service card
AC VOLTAGE REGULATOR.-This solid state $500 \mathrm{va}, 3$-phase unit is designed to operate in sub sonic and supersonic conditions. Input is 100 to la v ac; output, 115 v ac $\pm 1 \%$; frequency range, 380 t 420 cps. Dimensions are $3-1 / 2 \times 4 \times 6 \mathrm{in}$. and weig is about 6 lb .
Ratigan Electronics Inc., Dept. ED, 425 il Cypress St., Glendale 4, Calif.

CIRCLE 218 ON READER-SERVICE CARD
TRANSISTORIZED AUDIO TONE EQUIPMENT -Type KA equipment provides multiple telegraphi type channels for operating on leased or privat wire lines, radio circuits, or coaxial cable. On one pair of wires or any single voice frequency channe the equipment will give up to 18 channels for tel metering, control, data transmission, and other func tions. Six flip-out panels and a power panel fit int one frame 19 in . wide.

Westinghouse Electric Corp., Dept. ED, P.O. Box 2099, Pittsburgh 30, Pa.

CIRCLE 219 ON READER-SERVICE CARD
INDICATING TEMPERATURE CONTROL.-Type E36N is a low cost, sensitive, remote bulb unit that controls and indicates gas, liquid, and hotplate temperatures over a variety of ranges between - 100 and +600 F . Suited for centrifuges and ovens, provides easy reference between setting and contro ling temperatures by using one dial with tis pointers.

United Electric Controls Co., Dept. EI, i School St., Watertown i2, Mass.

CIRCLE 220 ON READER-SERVICE CARD

NYLON CABLE CLAMPS.-Fully adjustable. LokStraps incorporate a miniature quick-release tab which holds the clamp band securely around the wires. The ties accommodate wire harnesses from $1 / 8 \mathrm{in}$. in diameter and can be used from -65 to +350 F .
Panduit Corp., Dept. ED, 14461 Waverly Ave Midlothian, Ill.

CIRCLE 221 ON READER-SERVICE CARD
ULTRASONIC CLEANING EQUIPME T. Model GW-8 consists of a $30 \times 12 \times 12 \mathrm{in}$. cle nin tank and a separately housed generator 25×25 : 3 in. In continuous operation it will not overhea lon boiling, low flash, flammable or toxic solvent: an can be used with solvents at temperatures to 40 F Blackstone Corp., Dept. ED, Jamestown

CIRCLE 222 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22,

C stal Socket Assembly Miniature

A miniature HC-18/U crystal with 0.04 in . diameter pins can be quickly inserted in, or extracted fron), this socket assembly without removal or adjustment of latches and screws. Severe vibration will not shake the crystal loose once it is installed. The assembly is available with antirotate tabs.
Augat Bros., Inc., Dept. ED, 33 Perry Ave., Attleboro, Mass.
circle 223 on reader-service caro

Lighted Pushbutton Devices

Modular

Series 2 modular lighted indicator and pushbutton switch devices can be combined to perform almost any switching and indicating function in control equipment. A variety of tepes and colors afford more than 34,000 possible combinations.
Micro Switch, Div. of Minneapo-lis-Honeywell Regulator Co., Dept. ED, Freeport, Ill.
CIRCLE 224 ON READER-SERVICE CARD

Turns Counting Dial

Graduated in hundredths of a turn
Made of lightweight plastic, the VerniDial H5850 turns counting dial fits the shafts of potentiometers, capacitors, valves, and other equipment where micrometer setting is required. The inner dial is graduated in hundredths of a turn and the outer dial keeps count of up to 20 turns. The unit is available in a varicty of colors.
Hiwell Instrument Co., Dept. ED, 3101 Trinity St., Fort Worth 7, Tex. CIRCE 225 ON READER-SERVICE CARD CIVCLE 226 ON READER-SERVICE CARO \geqslant

An important message to manufacturers of

semi-conductors electronic tubes thermistors ferrites

J. T. BAKER ELECTRONIC CHEMICALS

Acetic Acid, Glacial	Cobalt Carbonate	Nickelous Nitrate
Acetone	Coball Oxide	Nickelous Sulfate
Aluminum Nitrate	Cobalt Nitrate	Nitric Acid
Aluminum Sulfare	Ether, Anhydrous	Petroleum Ether
Ammonium Carbonate	Hydrochloric Acid	Potassium Dichromate
Ammonium Chloride	Hydrofluoric Acid	Potassium Hydroxide
Ammonium Hydroxide	Hydrogen Peroxide,	iso-Propyl Alcohol
Ammonium Phosphate	30\% and 3\% Solution	Radio Mixfure No. 3
Antimony Trioxide	Lithium Carbonate	Silicic Acid
Barium Acelate	Lithium Chloride	Sodium Carbonate
Barium Carbonate	Lithium Nitrate	Sodium Chloride
Barium Fluoride	Lithium Sulfate	Sodium Hydroxide
Barium Nitrate	Magnesium Carbonale	Sodium Phosphate Dibasic
Benzene	Magnesium Chloride	Strontium Corbonare
Boric Acid	Magnesium Oxide	Strontium Nitrate
Cadmium Chloride	Manganese Dioxide	Sulfuric Acid
Cadmium Nitrate	Manganese Nitrate	Toluene
Cadmium Sulfate	Manganese Sesquioxide	Trichloroethylene
Calcium Carbonate	Manganous Carbonate	Triple Carbonate
Calcium Chloride	Methanol	Xylene
Calcium Fluoride	Nickel Carbonale	Zinc Chloride
Calcium Nitrate	Nickel Oxide, Black	Zinc Nitrate
Calcium Phosphate	Nickel Oxide, Green	Zinc Oxide
Carbon Tetrachlorid	Nickelous Chloride	

You can reduce your production costs with 'Baker Analyzed' Reagents because (1) they are manufactured to exceedingly high standards of purity at no price premium to you, (2) they are consistently pure, consistently uniform, lot after lot, (3) Baker reagent purity regularly offers you the quality-plus demanded by the specialized processes and products of your industry, (4) the regular 'Baker Analyzed' Label defines a degree of purity so high that special "electronic grade" labeling is unnecessary.
As the electronics industry is able to define its needs more precisely, Baker will continue to provide material meeting the required specifications.
Listed at the left are some of the J. T. Baker high purity chemicals of particular importance to electronic manufacturers.
J.T.Baker
\% 1 ..c*

J. T. Baker Chemical Co.

Phillipsburg. New Jersey

major advance in miniaturization: SUPRAMICA 555 commutator plates

on a 3 inch precision-molded plate .. up to 540 rectangular contacts!

Since 1948 . . . when Mycalex Electronics Corporation pioneered the first precisionmolded MYCALEX ${ }^{\oplus} 410$ glass-bonded mica, 180 -contact commutator plate MYCALEX switches have introduced a degree of accuracy and dependability never before approached in mechanical switching.

And now, Mycalex offers a new ceramoplastic commutator plate design destined to set even higher standards for long-life, low-noise-level multiplexing.
Typical of these new plates is the CP 427. Its specifications call for precision-molded SUPRAMICA 555 ceramoplastic which delivers total dimensional stability as well as superb thermal endurance ($700^{\circ} \mathrm{F}$.). The individual contacts of this plate have an exclusive rectangular form and embody tolerances within the $.0005^{\circ}$ range. They are permanently fixed in place.

An exclusive brush-holder design permits lower pressures on the wipers . . . gives lower contact resistance with a noise level of less than 10 microvolts. Brush bounce is eliminated and life greatly extended. MYCALEX switches using this type of design have been tested satisfactorily for over 1000 hours at 600 RPM without maintenance.

Information on complete MYCALEX switches or matched brush assemblies and plates is available.

General Offices and Plant: 121-E Clifton Blvd., Clifton, N.J. Executive Offices: 30 Rockefeller Plaza. New York 20. N.Y

EXCLUSIVE LICENBEE OF MYCALEX CORPORATION OF AMERICA CIRCLE 227 ON READER-SERVICE CARD

NEW PRODUCTS

HIGH VOLTAGE RECTIFIER.-For use in piwer supplies for of heaters, radio broadcasting tran mitters, or sonar transmitters, the WL-575A mercury vapor tube is rated at 15 kv inverse voltage anc 1.5 amp.
Westinghouse Electric Corp., Electronic Tube Div., Dept. ED, P.O. Box 284, Elmira, N.Y. CIRCLE 228 ON READER-SERVICE CARD

VIDEO CRYSTAL DETECTOR MOUNTS.-Tan. gential sensitivities to -63 dbm may be obtained with these mounts. They are available in the spec trum from 50 to $12,000 \mathrm{mc}$ and can be built narrow or broad band with or without dc return. Detectors and rf filters can be supplied as matched units.

American Electronic Labs, Inc., Dept. ED, 121 N Seventh St., Philadelphia 6, Pa.

CIRCLE 229 ON READER-SERVICE CARD

TRANSISTORIZED TACHOMETERS.-The Elec tro-Tach models 7101, 7102 and 7103 measure speed without physical loading. They have a Weston in dicating dc milliammeter calibrated in rpm with ma 250 deg scale movement. Accuracy of rpm indication is within 1% of full scale deflection. Respec. tively, the units measure 0 to 2000,5000 , and $10,000 \mathrm{rpm}$
Electro Products Labs, Dept. ED, 4501 N. Ravens wood Ave., Chicago 40, Ill.

CIRCLE 230 ON READER-SERVICE CARD

POTTING COMPOUND.-Formula P-20 has an average linear coefficient of thermal expansion of $14 \times 10^{-6} \mathrm{in}$. per in. per deg F. First developed for gyroscopic applications, it permits the encapsulation of metallic components with a rigid, dimensionally stable material that is resistant to thermal shock. It has a 1 hr pot life at 200 F and does not shrink on curing.
Bacon Industries, Inc., Dept. ED, 192 Pleasant St., Watertown 72, Mass.

CIRCLE 231 ON READER-SERVICE CARD

TRANSISTORIZED DC POWER SUPPLY.-Model 851 H develops any voltage from 12 to 1200 v dc at 100 w output power from 28 v dc input. Oulput regulation is $\pm 1.5 \%$ for 5 v dc input changes and $\pm 2 \%$ half load to full load.
Arnold Magnetics Corp., Dept. ED, 4613 W. Jefferson Blvd., Los Angeles 16, Calif.

CIRCLE 232 ON READER-SERVICE CARD

SYNTHETIC SAPPHIRE WINDOWS.-For infrared, ultraviolet, and microwave applications, t s se windows can now be produced in diameters to 5 in. and in large, contoured shapes.

Linde Co., Div. of Union Carbide Corp., D pt. ED, 30 E. 42nd St., New York 17, N.Y
circle 233 on reader-service card

। vise Loading Test Sets

Altitude-Temperature Test Chamber

Simulates up to $100,000 \mathrm{ft}$

Designed to simulate actual conditions encountered at altitudes to $100,000 \mathrm{ft}$, this altitude-temperature test chamber provides true vertical air flow. It has a range of -100 F to +350 F and a free test space of $4 \times 4 \times 7-1 / 2 \mathrm{ft}$. A small reach-in door makes it possible to check test pieces without opening the large doo.
A nerican Research Corp., Dept.
ED. Farmington, Conn.
CII cle 236 ON reader-service card CIRCLE 237 ON READER-SERVICE CARD
These foil wound wafer coils can be assembled in multiples so that air, oil, water, or gas cooling methods can be used. Tube appendages can pass directly through the windings. The units are suited for use with twt's, klystron electromagnets, maser devices, and beamed deflection magnets.
Sylvania Electric Products Inc., Sylvania Lighting Products, Dept. ED, Salem, Mass.
CIRCLE 235 ON READER-SERVICE CARD

New in looks, new in efficiency, and forerunner of a great new line of MB vibration exciters...that's the new Model C125.
Once again leading the way, MB has achieved a radical step-up in magnetic circuit efficiency. This new shaker, barely larger than its predecessor, develops 10,000 pounds force output...a 43% gain! Conversely, it calls for less amplifier power than any other electrodynamic shaker of comparable force.
Leading companies in missiles, aircraft and electronics look first to MB for progress in complete vibration test systems. It has been that way for almost 15 years. Our
"encyclopedia" of vibration experience is yours to draw on... as is the largest, national, field service staff of specialists. Send for full data.

Pioneer and leader in the field of vibration ELECTRONICS
A DIVISION OF TEXTRON ELECTRONICS, INC., 1058 Stote Street, New Haven 11, Conn.

New breakthrough in vibration exciter

NEW PRODUCTS

Silicon Rectifier

250 amp

Rated at 250 amp dc and 50 to $400 \mathrm{piv}, \mathrm{Y}$ series silicon rectifiers have a thermal drop of less than 10 deg C , junction to base, and a junction temperature rise of about 60 C . Either positive or negative base polarity is available. The units are designed for welding, electroplating, or any application that requires 1000 or more dc amperes.
Sarkes Tarzian, Inc., Rectifier Div., Dept. ED, 415 N. College Ave., Bloomington, Ind. CIRCLE 238 on reader-service card

Pressure Transducers

Have $\pm \mathbf{2 \%}$ overall accuracy

Designed to measure gage or absolute pressures from 100 to $10,000 \mathrm{psi}$, model TPH-175 transducers provide linear or nonlinear outputs. Their overall accuracy, including linearity, friction, and hysteresis, is $\pm 2 \%$. Resolution may be as low as 0.25%. The units can withstand 10 g . 55 to 500 cps vibration with less than 1% error and $25 \mathrm{~g}, 2000 \mathrm{cps}$ without permanent calibration shift. They also withstand 25 g shock and acceleration. A differential version, the TPH-176, measures pressures in the 100 to 5000 psi range with case pressures to 5000 psi.
Fairchild Controls Corp., Components Div., Dept. ED, 225 Park Ave., Hicksville, N.Y. circle 239 on reader-service caro

3M
Chemicals
THE RAW MATERIALS OF PROGRESS

c

Non-flammable, non-explosive 3 M inert liquids now allow high voltage transformers to be vapor-cooled with complete safety. And that means they can be located right next to the load.

The result: big savings in installation and maintenance costs. Power loss is reduced! And fluorochemically cooled V / g transformers can be installed in residential areas, crowded downtown areas . . . even indoors . . . without firewalls, drainage pits, sprinkler systems or other fire prevention equipment.

That's why Westinghouse Electric Corporation has chosen

3M Brand Fluorochemical Inert Liquid FC-is for its V/g transformers.
Their report - greater safety, reduced installation costs. More quiet operation (with fluorochemicals, transiormers are self-cooled at 100% load), no maintenance required are seli-cooled at 100% load, no m
for the coolant or the core and coils!
Fluorochemicals are outstanding for practical use as evaporative coolants and insulators. They're als nonexplosive, non-corrosive, non-toxic, non-flammable and they're odorless. Investigate the remarkable prope les of 3 M fluorochemical inert liquids in terms of you own product design and performance problems.

CHEMICAL DIVISION

Minnesota Mining and Manufacturing company

... WHERE RESEARCH IS THE KEY TO TOMORROW

DUAL ELECTRONIC TACHOMETER.-Model 6602A contains two complete indicators with overspeed sensing and protective circuits in a single package. It measures 0 to $60,000 \mathrm{rpm}$ with $\pm 3 \%$ full scale accuracy and operates from a 28 v ac source. It is 3.23 in . in diameter and 6.5 in . long, weighs under 2 lb , and withstands -55 to +50 C . Varo Mfg. Co., Inc., Dept. ED, 2201 Walnut St., Garland, Tex. CIRCLE 241 ON READER-SERVICE CARD

ADHESIVE COLOR DOTS.-Precut $1 / 4 \mathrm{in}$. diameter Quik-Dots replace paint markings or tagging in inspection and quality control work. Quickly applied, they can show the nature of part defects. They are useful for identification.
W. H. Brady Co., Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis.

CIRCLE 242 ON READER-SERVICE CARD

3m FLUOROCHEMICAL FC-75 has a pour point of $-150^{\circ} \mathrm{F}$., giving it a useful liquid range of $-150^{\circ} \mathrm{F}$. to $212^{\circ} \mathrm{F}$. at atmospheric pressure. In addiat atmospheric pressure. In addi-
tion, it offers these other useful tion, it ofers: High dielectric strength properties: High dielectric strength
in both liquid and vapor state (37 in both liquid and vapor state (37
KV @ $0.1^{\prime \prime}$ gap for liquid). . . selfKV @ $0.1^{\prime \prime}$ gap for liquid) ... self-
healing in high voltage electrical healing in high voltage electrical equipment after repeated arcing .. excellent wetting power on all
types of surfaces . . . compatible types of surfaces ...compatible in the construction of high temperature equipment . . . thermally stable to temperatures in excess of $750^{\circ} \mathrm{F}$. and, even under extreme use conditions does not form sludge or corrosive products. Heat capaor corrosive products. Heat capa-
cities in both liquid and vapor state are approximately equal.

TS COSTS!

See what 3M Chemicals can do for you! For free literature, write on your company eetterhead, specilying product inCerest, to 3 M Chemical Divi-
sion, Dept. KAP79, St. Paul 6, Minnesota.
${ }^{\text {ITM }}$ ChE:AICAL DIVIIIOM, MANUFACTURERS OF: Acids Resins - Elastomers • Plastics - Oils, Vaxes and Greases • Dispersion Coatinss • Functional Fluorochemicals - Sirfactants and Inert Liquids

NEW . . FROM E THE PANEL METER WITH THE BUILT-IN

NATURAL READING ANGLE

Here is the newest, freshest meter styling idea in years: The A.P.I. Model 561 . . the slim, trim panel meter with the longer, larger dial you read like a book. Subtly recessed and correctly sloped at the natural reading angle, this meter gives you 30% more dial area in 15% less panel space. Back-of-panel mounting neatly conceals the meter movement; only the clean, crisp façade of the dial is exposed, a clear picture window.
Installation is easier done than said. The $5^{\prime \prime} \times 27 / 8^{\prime \prime}$ case frame is self-trimming, requires a simple panel cutout-no holes to drill, no stud alignment troubles. A window in the meter case provides for dial illumination; you can save a bit of work (and panel space) by using the dial light as a pilot.
For the man who needs a smaller meter, there's the Model 361, an identical but diminutive companion to the Model 561. It measures just $31 / 2^{\prime \prime} \times 2^{\prime \prime}$. Both models are molded of satin-finish Bakelite, and both can be had in ranges of 0-5 microamperes to 0-50 amperes or $0-5$ millivolts to $0-500$ volts.

MORE INFORMATION? SEND FOR DATA SHEET 10-A
ap
ASSEMBLY PRODUCTS, INC.
Chosterland 17, Ohlo CIRCLE 247 ON READER-SERVICE CARD

Are you a victim of SPECIPHOBIA?*

* That martyred, hands-tied feeling you get when your specification is loaded.

Did your contract specify that you use unproved devices instead of tubes? For a reason? Or just because something "new" was available? (Which meant derating your whole circuit just to get the performance you know tubes will give!) Well, mister designer, you are a victim of speciphobia!

Don't feel bad. Lots of circuit designers are in the same quandary. But why not do something about it? Summon your manly courage, and go ask this specifier whether he wants novelty (at an awful price), or:
...known performance, known reliability, safe design, good logistics, systems flexibility, and economy (all of which you can prove). In short ...a design that doesn't apologize!

Then, when he innocently asks ". . . Why of course. How can you get this?", just tell him to get out of orbit and specify tubes. As a matter of fact, General Electric 5-Star Receiving Tubes. And tell him that you'll apply them with all your up-to-date know how on how to care for an electronic circuit.
If he's still skeptical, just ask him to come see us. We've got some data we'd be glad to show, and match with anything he's got. And while we're at it, don't forget to have us show him the tubes we're working on for the circuits you'll be designing next. Want small size? Well, you ain't seen nothin' yet! Receiving Tube Dept.,Owensboro, Ky.

Progress Is Our Most Important Product GENERAL (86) ELECTRIC

NEW PRODUCTS

Mechanical Convection Ovens

Have 8 cu ft capacity
Batch type Stabil-Therm mechan. ical convection ovens provide 8 cuft of heated volume for electronic com. ponent processing, plastic heat treat. ing, and other processes. The lon cost, bench type units have ranges of 100 to 300 and 100 to 500 F . Thet are available for 115 v , single-phase 60 cps ; 230 v , single or three-phase 60 cps ; or 440 v , three-phase, 60 cps operation. Inside dimensions art $24 \times 25 \times 24$ in.; outside dimensions $37 \times 32 \times 44$ in.
Blue M Electric Co., Dept. ED 138th and Chatham Sts., Blue Is. land, III.
CIRCLE 248 ON READER-SERVICE CARD

High Voltage Power Supply

$3-3 / 4 \times 3-3 / 16 \times 5$ in.
Variable from 0 to 5 kv at 5 ma this power supply is hermetically sealed in an oil filled CP 70 containet $3-3 / 4 \times 3-3 / 16 \times 5 \mathrm{in}$. Connections are made to screw type solder seal terminals. Suited for use in 0 . cilloscopes, it has 1% maximum rip. ple and 7.5 ma maximum output current.

Film Capacitors, Inc., Dept. ED. 3400 Park Ave., New York, N.Y.
CIRCLE 249 ON READER-SERVICE CARO

DC Power Supply Variable

Variable de power supply model 6.30 B is a precision laboraton unit that provides 300 ma at any viltage between 0 and 600 v with 0.1 l line and load regulation and 1 mv n ple. A variable bias of 0 to 250 v and a $6.3 \mathrm{v}, 6 \mathrm{amp}$ filament supply arr alse available.
Lawn Electronics Co.. Inc.. I ept ED, Woodward Rd., Englisht wn. N.J.

Circle 250 on reader-service ca D - circle 25I on reader-service caro

A niature Two-Position

 Toggle SwitchC. rates from -65 to +200 F
if d 7 amp , resistive at sea level
and $\overline{5} .000 \mathrm{ft}$. the model $2 T M 1-T$

Submarines can hide within range of helicopter-berne sonar by "riding the thermocline"-a water temperature change that casts shadows in sonar-search patterns. Precise temperature-vs.-depth records allow the operator to spot thermoclines and change his search pattern to look into the shadows. Existing gear "worked", but it took too long and could not define the shadow zones very accurately. TI engineers created an automatic recorder, the hacthythermograph, more accurate than a laboratory thermometer, that gives results instantly where they were needed - in the helicopter. Small as a portable typewriter, it easily fits with the sonar into the space available. RESULT: Same sonar-fewer missed submarines. tro rosition. dpdt toggle switch is 12 n . square at the base and weichs 4.5 g . It operates from -65 to - 200 F and is suitable for aircrail panels, portable communication Gear, and printed circuit and trallsistorized devices. The unit has interral terminals, gold plated stationary contacts, and low circuit resistance. A threaded bushing with a keyway slot affords single hole mounting.
Micro Switch Div. of Minneap-olis-Honeywell Regulator Co., Dept. ED. Freeport, Ill.
circle 252 on reader-service card

Spectrum Analyzer

3 to 30 mc range
For measuring emissions from 3 to 30 mc , the model S .510 spectrum analyzer has a dual persistence screen that affords trace repetition rates from 0.1 to 30 sec . It can measure signal components in a 60 db range with bandwidths up to 30 kc . Available with the unit is the type S. 520 frequency changer which extends its range below 3 mc .
Furzehill Labs Ltd., Dept. ED, tij Fifth Ave., New York 36, N.Y. CIRCLE 253 ON READER-SERVICE CARD

Audio Phase Shift Network Has $\pm 1.5 \mathrm{deg}$ accuracy

The model 350, type 2Q4 phase shift network splits any 300 to 3000 cps audio signal into two equal amPlitude components that are 90 deg out of phase with each other. It has $=1.5$ deg accuracy and may be used in receiving and transmitting circuits in ssb suppressed carrier radio-telephony equipment. The unit plugs into a standard octal socket and require no adjustments.
Barker \& Williamson, Inc., Dept. ED. Il ristol, Pa.
CIRC E 254 ON READER-SERVICE CARD
(RCLE 918 ON CAREER FORM PAGE 95 -

design, manufacturing and quality engineers-3-10 years experience high-gain careers for problem-solvers

YOUR SPECIAL TOUCH with unsolved problems buys you a solid future in any of Texas Instruments major military programs - Antisubmarine Warfare, Heavy Surface Radar, Missile Systems, or Electronic Surveillance. For example, you can try your hand at solving the Navy's clearly stated ASW requirement: Build something that will detect and classify a fast-moving submerged submarine at depths of 1500 feet, more than 50 miles from your aircraft. Your experience in one of the following technologies may find immediate application in one of our four major programs:
radar - sonar - infrared - magnetic anomaly detection - passive detectors - servos navigational systems • special-purpose computers • timers • programmers • microwave

- telemetering - data link - optics • video mappers • visual displays • intercom

We require a steady influx of exceptionally-qualified men in these technologies. To learn more about us and how we can fit into your career plan, write for a copy of "We can tell you this much about Apparatus division" to:

current career openinge

EE's \& PHYSICISTS:

radar (ground and airborne), antenna \& microwave components, missile guidance, servo-mechanisms, telemetry, digital circuits, infrared design, systems studies, \& flight test.

ME's:

antenna, mechanisms, miniaturization, thermodynamics, refrigeration, insulation, packaging, \& structures design.

INOUSTRIAL ENGIMEERS:

cost estimating, quality control, \& quality assurance studies.

WANUFACTURING ENGIMEERS: tooling design \& manufacturing planning \& supervision. (Degrees in EE or ME.)

write for your copy

NEW PRODUCTS

EIR Meter

Portable
Low cost, portable model 45". EIR meter covers 0 to 1200 v ac in sis ranges, 0 to 1200 v de in six ranges and 0 to 100 meg in four ranges. It has center scale ranges of 5,500 5000 , and 500,000 ohms; current ranges of $50 \mu \mathrm{a}, 1 \mathrm{ma}, 10 \mathrm{ma}, 100$ $\mathrm{ma}, 1000 \mathrm{ma}$, and 10 amp ; and five db ranges from -18 to +57 . The unit has 20 K per v dc and 1 K per v ac sensitivity, a 5 in . meter, and single function-range control. Test leads are included.
Hickok Electrical Instrument C_{0} Dept. ED, 10525 Dupont Ave Cleveland 8, Ohio.
CIRCLE 255 ON READER-SERVICE CARO

Count and Time Scaler

Has $1 \mu \mathrm{sec}$ resolving time
A combination decimal count scaler and electronic time scaler, the model 49-33 provides preset time to 1000 sec or preset count to 10 million. Resolving time is 1 usec The unit has positive or negative input and includes a full range dis criminator, a precision fixed mercur! pulse generator, and a four digit register.

Kadiation Instrument Develop ment Lab, Inc., Dept. ED, 543 S. Halsted St., Chicago 21, Ill.

CIRCLE 256 ON READER-SERVICE CARD

Power Transistors

Have 100 v BV ${ }_{\text {cbo }}$
Power transistor types 2×1166 and 2 N1167 are rated 25 anp I_{c} and 100 v $\mathrm{BV}_{\text {cbo. }}$ The 2 N 1166 has a standard TO-3 pockage with 0.052 in. pins, while the 2 N 1167 is equipped with solder ten inals welded to the pins. Both are ger manium pnp alloy junction types with collector common to case. The! provide a minimum current gain of 15 at 25 amp .
Motorola Inc., Semicond cter Products Div., Dept. ED, 500.E McDowell Rd., Phoenix, Ariz.
Circle 257 ON READER-SERVICE Cf:D
\& CIRCLE 258 ON READER-SERVICE CARO

oltage Dividers

Both ac and de
No. 1001 and 1002 voltage livid are combined ac and dc atio andards that provide six me in both units. In the 1001, the ic ratio transformer section operates from 51 cps to 10 kc with 0.35 cps , 351 v Inaximum input voltage. In the 100?, the ac RatioTran section operthes from 30 cps to 1 kc with a 2.5 (v) $\mathrm{s}, 35()$ y maximum input. The ac sections of the 1001 and 1002 are wailable by themselves as models 1003 and 1004, respectively
Gertsch Products, Inc., Dept. ED, 3:11 S. La Cienega Blvd., Los Anzeles 16 , Calif

CIICLE 259 ON READER-SERVICE CARD

Receiving Tubes

 MiniatureThese miniature receiving tubes re designed for TV, tuner, and auto radio use. Type 6AF3 single diode is or horizontal frequency damper terrice in TV receivers; type 6DT8 and l2DT8 duo triodes can be used is combined rf amplifiers and oscil-ator-mixers in fm tuners; type 6ES5 tiode triode is for use as a TV rf mplifier; and type 12DY8 tetrode, tharp cutoff triode is for auto radios. Sylvania Electric Products Inc., Electronic Tube Div., Dept. ED, Seneca Falls, N.Y.
CIRCLE 260 ON READER-SERVICE CARD

Shock Indicators

Show shipping damage
Designed to show when shock to in instrument has passed permisible limits, V-Dot indicators are wailable from 5 to 75 g in standard models. They have complete sphercal sensitivity, and are also availble with one or two plane sensiirity. Resettable and reusable, the onits are accurate to within 5% of the oreset value and last about 5 years. Inert a Switch, Inc., Dept. ED, il W 43rd St., New York 36, N.Y. Circlif 261 on reader-service card

IRCLE 262 ON READER-SERVICE CARD $>$

Lambda Power Supplies specified for newest radar installation

Meet MIL-E 4158 environmental test requirements

Sperry Gyroscope Co., operating under the technical guidance of the Rome (N.Y.) Air Development Center, is producing the new SAGE radar equipment (AN/FPS-35). The power supplies employed to power transmitters and receivers must be able to pass stringent tests.
Sperry's choice: Lambda's COM-PAK; already widely used as a component in many rocket and missile programs.
"Off-theshelf" Lambda power supplies -modified only with special panels, MIL meters and tubes-will be part of the 85 -foot tower at Thomasville, Alabama, one of four identical installations.

All Lambda stock industrial power supplies are made to MIL quality and guaranteed for five years. They are pictured and described in a new 32 -page catalog. Write for your copy.

STITC〇...any way you want it !

Is there any good reason why you shouldn't obtain all forms of silicon you want from a single source?

Up to now the answer to that question was simple: No one firm offered a complete silicon supply facility.

But that is no longer true because from Allegheny you can now obtain silicon in every form. Here are the facts: 1. BULK - The bulk polycrystalline silicon you get from Allegheny comes in four grades, three semiconductor, one solar. Each requires a minimum of doping, exhibits a high degree of uniformity and shows a significantly low boron level. 2. CAST BILLETS - Cut to charge size for Czochralski furnaces and in standard sizes up to $2^{\prime \prime}$ in diameter.
3. CAST RODS. - For float zoning, you get uniformly dense cast rods in standard sizes up to $1^{\prime \prime}$, with lengths entirely dependent on your requirements.
4. MASTER DOPING ALLOYS - These are made from extremely pure silicon, using 99.999% or better elemental dope. They are alloyed in different ranges, and in homo geneous lots of sufficient size to allow for long term stand ardization in your production doping procedures.

producers of semiconducting materials for the electronics industry

5. SINGLE CRYSTALS - Custom processing of single crystals is a basic service from Allegheny. We will dope to your specifications and grow in Czochralski or float zone furnaces, again depending on application.
6. SLICES - You can get slices to meet any surface requirement since Allegheny has both the know-how and facilities for slicing, lapping, and finishing. And 100% testing is your assurance that the slices completely meet your specifications. 7. SEEDS \& SPECIAL FORMS - You tell us your mounting and other physical requirements and we will provide the shapes and oriented optically to $1 / 2^{\circ}$ (or better) to the (111), (110), or 100) plane.

Analyze your current silicon supply arrangements. Consider that only Allegheny provides every form of silicon you need. Doesn't it look like now is a good time for you to get all the facts from the people at Allegheny? Write, wire, or phone.

ALLEGHENY

ELECTRONIC CHEMICALS CO.

207 HOOKER-FULTON BLDG., BRADFORD. PA. 252 NORTH LEMON STREET. ANAHEIM. CAL.

VoltageCurrent Potentiometer
 Primary standard

Voltage-current potentiometer model PVC-504 is composed of a primary standard, absolute voltage reference with 0.0002% absolute accuracy and stability; a primary standard, six-decade voltage divider with 100 K overall resistance and 0.0001 ? divider accuracy; and a stable, constant current generator that provides up to 40 ma in four ranges, each continuously adjustable in 1 million direct reading increments from zero to maximum. As a potentiometer, it provides 0.0015% accuract on its 1 and 4 v ranges and 0.003% accuracy on its $1,4,10$, and 40 ma ranges. As a current or voltage generator, it is 0.003% accurate. The unit fits standard 19 in. relay rack.
Julie Research Labs, Inc., Dept. ED, 5.56 W 168th St., New York 32, N.Y.

CIRCLE 264 ON READER-SERVICE CARD

Thyratron Driver

Has $75 \mu \mathrm{sec}$ pulse duration

Thyratron driver model TO-10 is designed for triggering thyratrons or other circuits which cannot be directly operated from the company's T-Pac model LE-10. Output amplitude is 14 v positive, output pulse duration, $50 \mu \mathrm{sec} \min$ and $i 5$ isec nominal; output impedance, 3.9 K .

Computer Control Co., Inc., Dept. EL Broad St., Wellesley 57, Mass. circle 265 on reader-service card

ELECTRONIC DESIGN • July 22, 159

These rugged, subminiature 6.3 v tubes appear on the MIL-STD-200D preferred list. The 3002 WA is a 400 mc , sharp cutoff pentode with low interelectrode capacitances and high input resistance at ultra high frequencies; the 5718 is a .500 mc , medium-mu triode for use as a uhf oscillator; the 5719 is an af, high-mu triode; the 5896 is a 400 mc , double diode for the uhf band; and the 6111 is a uhf medium-mu twin triode. All units withstand severe shock and vibration.
Tung-Sol Electric Inc., Dept. ED, 95 Eighth Ave., Newark 4, N.J.

CIRCLE 266 ON READER-SERVICE CARD

AC Null Detector

Covers 20 cps to 200 kc

Designed for bridges, the model 51-A ac null detector is a sensitive tuned detector that covers the 20 cps to 200 kc range. Its input impedance is 1 meg shunted by $100 \mu \mu$ f, and its sensitivity is such that a $10 \mu \mathrm{v}$ input will produce a deflection of $1 / 4 \mathrm{in}$. on the 2 in . cathode ray indicator or 0.1 ma in an external meter. Discrimination against the second harmonic of the tuned frequency is 40 db over most of the range. The unit may be calibratel for use as a tuned peak-to-peak voltmeter or as a wave analyzer.
Bo onton Electronics Corp., Dept. ED, 738 Spee /well Ave., Morris Plains, N.J. CIRCLE 267 ON READER-SERVICE CARD

Now you can stop worrying about meter weight and size limitations in missiles, aircraft, computers, communication and other electronic equipment. DeJUR precision panel instruments give you big-meter sensitivity and accuracy in rugged, sealed units in extremely small sizes. For example, check these features on the new Series SC-030-ACCURACY: $\pm 5 \%$ of full scale. RANGES: 100-800 UA, DC; 1-800 MA, DC; 1-800 V, DC; 50 MV basic movements for DC Ammeters with external multipliers. Calibration: Magnetic or
non-magnetic. Internal Zero Adjuster. (Note: This meter is available with optional face plate and hex nut for front mounting... see illustrations.)
And like all DeJUR panel instruments, the microminiature series uses gasket sealed scale window and terminals, miniaturized external pivot D'Arsonval movement and high flux density Alnico magnet. Look into DeJUR's meter line today by writing for complete specs on standard and special units for commercial and military applications.

Manufacturers of precision electrical indicating instruments for over 20 years.

MODEL 100. $1^{\prime \prime}$ round Mets
 morement. Wide range of re.
satances and scales arallable

MODEL 131. $11 / 2^{\prime \prime}$ pugsed.
 theo and temberature extremet
Me0to M1L-M-10304 : Dect Meolt M1LS-M- 10304 specs.
Bquaro case.

ELECTRONIC COMPOMENTS
electronic sales division
ELECTRONIC Bales Division Lo-OM NORTHERN ELVD. LONO ISLANO CITYI, M. Y

ELAPSED TIME INDICA. TORS. $14 /{ }^{\prime \prime}$

 Hour stept te 99999. Bilf.
otarting. $110-125 \mathrm{VAC}$. 80 creles.
 MULTIMETER. $3 j^{2}$ AN
 and sen alled. Four llmultado.

Microwave Component News from SYLVANIA

CVEST/Sylvania Micro-Min Diodes

Sylvania opens the way to advanced
miniaturization concepts
in microwave and
radar design with new smaller Silicon Microwave Diodes

Major step in the trend to ever smaller radar and microwave equipment to meet today's military and commercial demands is represented by Sylvania's new line of subminiature Micro-Min diodes. The new diodes meet the electrical performance of their larger counterparts and are equivalent in ruggedness and reliability. They combine in one unit Sylvania's unmatched experience in diode packaging and proven technical excellence in microwave diode design.

The subminiature metal-to-glass package opens the way to new possibilities in strip-line and slab-line transmission designs. Included among the new types are Detector Diodes ranging in frequencies from 100 mc to $9,000 \mathrm{mc}$ and Mixer Diodes in frequencies from $3,000 \mathrm{mc}$ to $9,000 \mathrm{mc}$. Contact your Sylvania representative for full information on the new subminiature microwave diodes-or write Sylvania directly.

NEW SYLVANIA MICRO-MIN DIODES

```
IN830 (D 4050) -UHF Detector | IN832 (D 4065)-X Band Mixer
```

in831 (D 4064) -S Band Mixer IN833 (D 4063) - X Band Video Detector
*SYLVANIA
general telephone \& electronics
Sylvania Electric Products Inc. Semiconductor Division
100 Sylvan Road, Woburn, Mass. circie 465 on reader-service caro

NEW PRODUCTS

AVC AUDIO COMPRESSORS.-These units may be connected in the microphone line of any high impedance audio equipment, holding the input to equipment within 6 db regardless of input to the microphone. They may also be connected in the speaker line of receivers to prevent blasting. Model AFC-1, $3 \times 3 \times 5$ in., requires an external power source for $\mathrm{B}+$ and filaments and contains a built-in 90 to 3500 cps audio filter. Model AFC-2, $5 \times 5 \times 7$ in., has a built-in power supply and a switchable audio filter.
P\&H Electronics Inc., Dept. ED, $42 \ddagger$ Columbia, Lafayette, Ind.

CIRCLE 269 ON READER-SERVICE CARD

VHF AMPLIFIER.-Type VAC-1 provides 40 db minimum gain on any TV channel in the 54 to 88 mc range. At channel 6, noise figure is 3 db . The unit weighs 12 lb and has $10,000 \mathrm{hr}$ tubes.
Adler Electronics, Inc., Dept. ED, 1 LeFevre Lane, New Rochelle, N.Y.

CIRCLE 270 ON READER-SERVICE CARD

VARIABLE TRANSFORMERS.-Series 10B transformers have a brush designed for long life and an improved terminal design for soldered connections or push-on connectors. Series 126-226 units have constant current load ratings up to 12.5 amp and constant impedance ratings up to 18 amp .
Superior Electric Co., Dept. ED, Bristol, Conn. CIRCLE 271 ON READER-SERVICE CARD

PANCAKE SYNCHRO.-For inertial platforms, this precision size 20 synchro is $3 / 8 \mathrm{in}$. wide. It has 6 ft spread accuracy and is designed for use with 26 v , 400 cps or $115 \mathrm{v}, 2000 \mathrm{cps}$. It is insensitive to clamping pressures on either rotor or stator.
Clifton Precision Products Co., Inc., Dept. ED, 9014 W. Chester Pike, Upper Darby, Pa.

CIRCLE 272 ON READER-SERVICE CARD
MINIATURE TRANSISTOR TRANSFORMERS.These seven units are available hermetically sealed, in a MIL-AF case, in a round hermetic case, or in epoxy molded construction. They occupy less than 1 cu in . and weigh about 1 oz .
Microtran Co., Inc., Dept. ED, 145 E. Mineola Ave., Valley Stream, N.Y.

CIRCLE 273 ON READER-SERVICE CARD

KNOCKOUT PUNCH.-Model 734-D quickly cuts double-D holes for electrical receptacles. Operated with an ordinary wrench, it makes a finished receptacle $1-1 / 8 \mathrm{in}$. in diameter across the parallel sides $1-3 / 8 \mathrm{in}$. in diameter across the rounded ends. Holes are made in a few minutes without filing or other hand finishing operations.

Greenlee Tool Co., Dept. ED, Rockford, Ill. CIRCLE 274 ON READER-SERVICE CARD

- SAVE TIME
- REDUCE installation COSTS
- SIMPLIFY ASSEMBLY

Just push Straplocks into place and you're ready to lay cables or wires immediately-without time-consum. ing bundling or lacing. Straplocks require only a mounting hole for fast, easy manual installation, eliminate "blindspot" problems, quickly adjust to various sizes and align perfectly. They provide an ideal vibra-tion-proof clamp for fastening cables or wires to cabinets, panels or sheet metal surfaces.

Typical Straplock application. Aute lighting cablo io anchored quickly and economically. Straplocks

Molded from tough Nylon, Straplocks resist oils, greases, common solvents and severe temperatures from -65° to $+300^{\circ} \mathrm{F}$. Absence of any metal in their construction and mounting requirements assures complete insulation. They are especially suited for aircraft, missile, automotive and heavy appliance applications.

Request literature giving complete information and technical data.

INTRODUCTORY OFFER

SPECIAL STRAPLOCK KIT
Prove to yourself how Straplucks save time, reduce installation cots. Special introductory kit containing 200 W-1 Straplock Cable Clarps and handy installation tool c its only $\$ 4.50$. Order today !

-Patented

9326 Brren Sinoes, Sehiller Pert, Illins IChicogo Sububl

CIRCLE 275 ON READER-SERVICE CAR

MORE
OF EVERYTHING YOU WANT IN A TRANSISTOR CHECKER

MODEL 960

- Direct Icbo Readings in terms of rue collector current.
- Five Icbo Ranges cover all types of transistors - low, medium and high
17 . . . $n \cdot p \cdot n$ and $p \cdot n \cdot p$ types.
- 17 D.C. Collector Voltages:
5 volts DC to 100 volts $D C$ in 17 steps.
- Direct-Reading Gain Ranges:
- Direct-Reading Gain Ran
- Leakage: Reliable check of emitter o collector leakage current provides basis for accurate gain tests.
- Crystal Diode Tests: Separate tests or both forward and reverse currents.
- Transistor Test Settings listed on high speed roller chart.
- Patchcord Selector System and universal adapter provide for future
-Wide-Angle $51 / /^{\prime \prime} 100$
- Wide-Angle, ${ }^{51 / 2^{\prime \prime} \text {. }} 100$ microampere
- Free Transistor

Free Transistor Test Data Sub scription Service for one full year.

MODEL 960: Complete with portabie carrying case and comprehensive technical manual Net Price: $\mathbf{8 9 . 0 0}$

- Available and on display at leading electronic parts distributors. Write for complete PRECISION catalog.
PRECISION Test Equipment carries
a full year warranty! a full year warranty! CIPCLE 276 ON READER-SERVICE CARD CIPCLE 276 ON READER-SERVICE CARD
ELECTRONIC DESIGN ELECTRONIC DESIGN • July 22, 1959

Resistors

Aluminum finned

Series CH power resistors are encapsulated in a finned anodized aluminum case and require no lugs or mounting brackets. CH25 units are rated 25 w at 25 C ambient and have resistances from 0.1 ohm to 16 K . CH50 models are rated at 50 w with resistances from 0.3 ohm to 175 K . Both series derate to 0% at 275 C ambient. Standard tolerances are 1% and others from 0.05 to 3% are available. Temperature coefficient is 20 ppm per deg C.
Pacific Resistor \& Cable Co., Dept. ED, 2186 Colorado Ave., Santa Monica, Calif.

CIRCLE 277 ON reader-service card

DC Potentiometric Voltmeter

Has $\pm 0.025 \%+3 \mu \mathrm{r}$ accuracy

This potentiometric voltmeter has a to 10 v dc range of either polarity and an accuracy of $\pm 0.025 \%+3 \mu \mathrm{v}$. It has a readout facility of six decade switch dials with $\pm 10 \mu \mathrm{v}$ resolution. Using the panel galvanometer, the resolution can be extended to the submicrovolt region. The reference supply stability is 0.005% for line voltages varying from 107 to 127 v ac. Especially suited for transducer calibration, the unit may also be used as a null or quasi-deflection potentiometer, and its galvanometer may be disconnected and used separately. Designed to be carried or mounted in a rack, the instrument is $19 \times 8-3 / 4$ $x 11$ in.

Siegler Corp., Hallamore Div., Dept. ED, Anaheim, Calif.
circle 278 on reader-service card

NEW EECO

7 rausistorized
 for extremely
 reliable operation

 in the 0 to 250 kcs range
one-Third actual size

APPLICATIONS

New EECO N-Series Transistorized Decades are miniaturized plug-in units designed for reliable pulse counting and frequency division in the frequency range of 0 to 250,000 pulses per second.

FEATURES

- Small, compact size
- Simple power supply requirements (for example, Models N-101 and N-102 require only -12 volts).
- Low power consumption.
- Compatible with EECO T-Series circuits.
- Auxiliary 9 -step staircase output available.
- Plug into standard 9-pin miniature socket. (Some models require special 13 -pin socket, furnished with each such unit.)
- Pin connections arranged for in-line wiring of power and grounds.
- Extreme reliability, due to saturation techniques and consistent derating of component tolerances.

WIDE BELECTION
EECO N-Series plug-in Decades are available in the following standard models:

MODEL DESCRIPTIOM

N-101 No readout.
N- 102 Incandescent readout.
N-104 Incandescent readout (remote), Pypleally a projec. tion readout module.
N- 105 Nixie readout. (Can be cabled to remote Nixie.)
N-106 Mixie readout with preset control switch. (Can be N- 107 incabled to remote Nixie.) readout with inputs for external preHet control.
M-108 Incandescent readout (remote) with inputs for axternal preset control.

TYPICAL
SPECIFICATIONS The N-102 Transistorized Decad which includes visual readout numerals 0 through 9 display
vertically and illuminated incandescent lamps, is identic electrically with Model N-10 Abbreviated specifications are follows:

InPut

Minimum Trigeer Input: (0.11 ucs): 7 volts pos. pulse or st
at 0.5 usec. rise time. (100 k to 250 kcs): 7 volts pos. pul of step at $0.2 \mu \mathrm{sec}$. rise tim Max. Operating Frequency: 250 hcs.
Input Impedanco: $470 \mu \mu \mathrm{fd}$. C pacitance, max.
OC Reset input is provid (normaliy supplied oy EE
OUTPUT (Mo Load)
Amplitude a volts, peak to pes Output Levels: ($N / 10$) and ($N / 10$ $\overline{D C}$, nom. Staircase: -11 wol $D C$ to -3 volts $D C$ in 9 ster Rise Time: ($\mathrm{N} / 10$) 0.5 user ($\mathrm{N} / 10)^{\prime}: 0.5 \mu \mathrm{sec}$.
boad: Typical, one N-Serl Decade or one T-Series fili lop. (Load information ava ble on request.)
operatimg temperature RANGE: $-45^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
SIZE: $1.5 / 32^{\circ}$ wide $\times 2.3 / 3$: deep $\times 3.7 / 8^{\circ}$ seated heis (including handie). Dimensio denda found on external pres and Nixie models.)

Additional information on N -Series Transistorized

 Decades and other EECO products available on request.

ENGINEERED ELECTRONICS COMPANY
Combridiary of Electronic Engineoring Componvy of Californis)
506 East first Street - Santa Ana, California

Need pushbution switches? Here is a sampling of a very wide choice

These assemblies are typical of many different series of micro switch pushbutton switches. Each series offers many variations of electrical and operating characteristics.
Operational characteristics include: momentary action, lock-down, alternate action, two-position alternate action, and magnetically held. Direct control of up to fourteen double-throw circuits is offered. Short and long button strokes can be provided. Sealed switches are available when protection is required from oil, water, sand, or salt spray. Special shock and vibrationresistant features are built into switches for
rugged duty service. Switches with illuminated pushbutton display are available. These include switch devices with interchangeable modular indicator and pushbutton units.

Experienced engineering assistance to help you select the pushbutton switch best suited to your requirements is as near as your micro switch branch. There is no obligation.

MICRO SWITCH ... FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywell Controls Limited, Toronto 17, Ontario

NEW PRODUCTS

RF Detectors

Have low vswr

Designed to rectify rf test signals in laborators and production-line testing and tuning, these crystal diode detectors have a low vswr and cover the 1 to 2000 mc range. The series includes half wave, two-polarity half wave, voltage doubler. and balanced circuits with termination impedances ranging from 50 to 300 ohms. Two detectors in the line are the XD-3 and XD-8. The first is a half wave rectifier covering 1 to 1000 mc with a vswr of 1.1 to 1 below 500 mc and 1.2 to 1 above. The second is a voltage doubler circuit with a 1 to 250 mc range and a 1.1 to 1 vswr.

Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.

CIRCLE 281 ON READER-SERVICE CARD

Video Detector Mount

Filter and crystal

This filter and crystal video detector mount, mechanically and electrically a single unit, has a pass band of 2.6 to 3.25 kmc and an insertion loss of under 1.4 db within this band. It has a tangential sensitivity of -57 dbm measured with a 2 mc video bandwidth using an MA40SB crystal. Irput is matched to a 50 ohm line and Microdot miniature coaxial connectors are used at both input and output. The entire combination weighs about 3 oz .

American Electronic Labs, Inc., Dept. ED, 16 N. Seventh St., Philadelphia 6, Pa.
circle 282 on reader-service card
ELECTRONIC DESIGN • July 22, 1959

Radar Pulse Modulator
Has 500 kw peak power

For testing antenna systems or other radar devices. this laboratory pulse modulator has up to 500 kw peak power and up to 4000 pps repetition rates. It can be furnished with a pulse amplifier and senerator or arranged to operate from external pulse sources. Provisions are made for the incorporation of various pulse forming networks from 0.5 to $2 \mu \mathrm{sec}$. Designed to operate into a 50 olim output impedance, the unit has a 50 ohm pulse cable.
Dormitzer Electric \& Mfg Co., Inc., Dept. ED, 5 Hadley St., Cambridge 40, Mass.

CIRCLE 283 ON READER-SERVICE CARD
Transfer Function Bridge
Measures impedance and admittance

Over a 60 to 1 frequency range from 25 to 1500 mc , the type $1607-\mathrm{A}$ bridge measures all complex transfer functions of electron tubes, amplifiers, attenuators, filters and transistors in common base or common emitter connection. It directly measures input and output impedances and admittances of two, three, and four terminal devices and networks. Ranges are: voltage and current ratios, 0 to 30 ; transimpedance, 0 to 1500 ohms; transadmittance, 0 to 600 millimhos; impedance, 0 to 1 K ; admittance, 0 to 400 millimhos. The unit bas terminals for introducing dc bias from externul sources. Maximum bias current is 100 ma ; maximum bias voltage, 400.
General Radio Co., Dept. ED, West Concord, Mass

CIRCLE 284 ON READER-SERVICE CARD

Low cost, versatile DIGITAL SYSTEMS

 for automatic testing of transistors \prod resistors $/ 7$ diodes $-\infty$and capacitors

Small E-I automatic digital systems provide many advantages. First, they cost less. This is primarily the result of large-quantity manufacture of modules which make up the E-I system. Cost is almost a linear function of performance capabilities desired in the system.
Second, they are exceptionally versatile. The E-I system can be expanded simply by adding appropriate modules. Typical systems presently in use measure resistance, capacitance, DC and AC voltages, DC/DC ratios, AC/DC ratios, AC/AC ratios and combinations of these. Measurements to four or five digits can be vis-
ually displayed and printed out at rates un to five readings per second. Operation can be semi- or totally automatic with go/no go comparison of values and programmed readout at periodic intervals. Scanners can be provided for scanning thousands of single and multi-wire input channels. In brief, the E-I system has an extensive scope of operating capability.
Third, E-I systems provide unmatched reliability. Where practicable, circuits are totally transistorized. The use of etched, plug-in circuit boards, and modular internal construction make maintenance checks and in-plant repairs easy.

Typical E.l system for evaluatiag eomponents includes 100 channel input signal scanner. Can digiincludes 100 channel input signal scanner. Can digitize DC voltage, resistance, $A C$ voltage and DC/DC voltage ratio analogs. Digital equivalents are recorded on strip printer for "quick look" data and on punch paper tape for additional data reduction by digital computer.

Lower cost, maximum versatility and greater reliability-if you want these advantages in your component test system, contact your nearest E-I representative. He can give you complete information or answer any specific questions you may have.

Electro Instruments, Inc.

PYRISTOR ${ }^{\circledR} \ldots$...protects your equipment circuitry ... precisely

NEW miniature, hermetically sealed, singleshot, current-sensitive switch for positive overload protection and for current operated triggering devices.

Reliability in critical environments from $-100^{\circ} \mathrm{F}$. to $+1000^{\circ} \mathrm{F}$. continuous. .closing time 1 millisecond to 5 seconds.

Write for new
Brochure containing complete specifications:
advanced concepts of
precision specialty
switches for maximum protection

NEW PRODUCTS

LIGHTED PANELS.-Custom constructed Lampanels have colors, lettering, lights, sockets, resistors, and circuits inside the panel thickness. Gas type bulbs last 3000 to 6000 hr , emit light which is transmitted laterally through an acrylic layer in the plastic board. Light is reflected through front surface in even orange or red color. Lampanels conform with MIL-P7788 A , operate on $110 \mathrm{vac}, 60 \mathrm{cps}$ or on de with less intensity
Miller Dial \& Name Plate Co., Dept ED, 4400 N. Temple City Blvd., El Monte, Calif.
CIRCLE 287 ON READER-SERVICE CARD

AC PANEL VTVM.-Model 332 has 2-1/2 in. meter, 0 to 100 mv rms basic range, 20 cps to $20 \mathrm{kc} \pm 2 \%$ frequency response, $\pm 3 \%$ full scale accuracy. Input impedance is 1 meg paralleled by 10 uuf. Barrel is 2 in . in diameter and under 4-3/4 in. long. Provided with any voltage range to 300 v rms .
Metronix, Inc., Dept. ED, Chesterland, Ohio.
CIRCLE 288 ON READER-SERVICE CARD

LOW LEVEL DC AMPLIFIEP, Typical of this line is model MA-1.5 which has power gain of over 1 mil lion and delivers full output of into 1 K with 1 mv input signal. Input impedance, 50 ohms min ; response time, 0.5 sec ; power require. ments, 28 v dc $\pm 5 \%$; linearity, $=20$ of full scale. Unit is hermetically sealed, occupies under 16 cu. in., features common mode rejection.
Micromag Instrument Corp., Dept. ED, 115 Halleck St., Roxbury, Mass CIRCLE 289 ON READER-SERVICE CARD

TEMPERATURE TEST CHAMBER
-This chamber has a -100 to +1000 F range and features liquid CO_{2} refrigeration. It can dissipate 5000 Btu per hr at -100 F and cools from ambient to this temperature in under 3 min . An optional multipane window gives a full view of the 18 cu in . interior.

Associated Testing Labs, Inc., Mfg Div., Dept. ED, Clinton Rd., Caldwell, N.J.

CIRCLE 290 ON READER-SERVICE CARD

MANUFACTURERS of MESA TRANSISTORS NEED PRECISION in EVAPORATION MASKS

BMC is the MAJOR PRODUCER
for the PRECISE answer to your need

* Buckbee Mears Compony also menufor. usual oeccurocy-itoms used in elocerms of unusuol accurocy-itams used in electronic fubers, tolovision masks. porhope o componont for your product could be mode better and more quote from your spocifications.

For complete information call or write.
BUCKBEE.MEARS CO.
Toni Bullaing • St. Paul 1. Minn. CA 7-6371

CIRCLE 291 ON READER-SERVICE CARD

RAI R DISPLAY TUBES.-Model
$10 \mathrm{~K} \quad \mathrm{~B}$ is 10 in ., long persistence unit of r ad glass construction with metal
bac: I screen, gray glass faceplate,
mas tic focus and deflection. Model
10 W it has aluminized screen, no-ion-hap gun, electrostatic focus, magneti deflection. Model 12ABP7A is 12 round unit with metal backed scre ב. gray filter glass faceplate, mactictic deflection, and low voltage electrostatic focus gun with high definition.
Westinghouse Electric Corp., Electronic Tube Div., Dept. ED, P.O. Box 294, Elmira, N.Y. CIRCLE 292 ON READER-SERVICE CARD

M'LTICONTACT METER READOUT UNIT.-Model DT-12 digitizer is for applications where dc current readout is required at 1 to 10 quantitative predetermined values. It can also be used for conversion of current transients into operative or multiple alarm points. The unit has ten independent output channels, 0 to 1 ma dc input, and $\pm 0.02 \mathrm{ma}$ accuracy. Atomation, Inc., Dept. ED, 59.59 S. Houver St., Los Angeles 44, Calif. CIRCLE 293 ON READER-SERVICE CARD

FOCUSING LIGHT SOURCE.Model LS-2 extends working range of company's photoelectric scanning systems. Focus adjustment provides sharply defined light spot at any distance from 1 ft to 5 in ., allowing precise. control by rapidly moving objects. Source is contained in cast aluminum housing $1-1 / 4 \times 1-1 / 4 \times$ 2-1/16 in. with focusing system extending $1-13 / 16$ to $2-18 \mathrm{in}$. beyond, depending on focus.

Farmer Electric Products Co., Inc., Dept. ED, 2300 Washington St., Newton Lower Falls, Mass.
CIRCLE 294 ON READER-SERVICE CARD

TRACING PAPER.-V-600 Vindure is impervious to buckling, resists ghosting when used with hard pencils, retains writing quality after many pencil or ink erasures, can be dipped in water, does not yellow with age. Available in rolls 30,36 , and 42 in . wide; in cut sheets plain or printed with title block and border line; and with cross section ruling of $4 \times 4,5 \times$ $5,8 \times 8$, and 10×10 to inch. George Vincent, Inc., Dept. ED, 95 Industrial Ave., E., Clifton, N.J. CIRCLE 295 ON READER-SERVICE CARD

> WELDMATIC PRECISION WELDING IMPROVES COMPONENT RELIABILITY FOR EMERSON

Joining lead wires to magnetic amplifiers was a problem at Emerson Research Laboratories. However, using a Weldmatic Model 1012 welder, they found they could join materials like \#40 nickel iron resistance wire and \#24 tinned copper both quickly and easily. Resulting joints proved reliable-able to withstand severe vibration, acceleration and high temperature. With Weldmatic welders you can simplify miniaturization, speed production. Write for technical data on the Weldmatic line.
WF DMAIR DIVISION OF UNITEK CORPORATION 260 North Halstead Avenue - Pasadena, California sales engineering representatives in principal cities CIRCLE 296 ON READER-SERVICE CARD

NEW IDEAS IN PACKAGED POWER

for lab, production test, test maintenance, or as a component or subsystem in your own products

Series 1000.
Easy-to-use compact Beta Series 1000 high voltage supplies come in 13 different models, providing volt ages up to 60 kv dc and currents as high as 500 ma Adjustable output voltage (0 to max. rating with coarse and fine controls); extremely low ripple; easy rapid polarity reversal and full metering are a few outstanding features.

Inputs: 117 vac .60 cps . single phase

HV DC TO 250KV WITH MAXIMUM CONVENIENCE, SAFETY

Series 2000 - control section (loft).
Series 2000 - high-voltage section (right).
Simple to operate, conservatively rated to insure long, optimum performance with maximum safety, Beta Series 2000 supplies come in thirteen different models, with maximum voltages ranging from 1 to 250kv dc. Output voltage continuously adjustable from 0 to maximum. Two-unit design allows optional remote operation of high voltage circuits. For maximum voltages less than 30 kv , the high.voltage unit is air-insulated; for higher voltages, oil-insulated (shipped dry). Every precaution is taken to insure personnel and equipment safety.

Sorensen markets the widest line of controlled power equipment available today, including: Regulated $a \cdot c$ and $d \cdot c$ supplies, unregulated power supplies, frequency changers, inverters, and converters, SAMES electrostatic generators for regulated voltages up to 600 kv dc , voltage reference sources, high-voltage d-c overpotential testers and high-potential test equipment.

An exceptionally wide selection of standard models is available and experienced Sorensen engineers are always glad to discuss your special needs.

SORENSEN \& COMPANY, INC.

Richarde Avenue, South Norwalk, Connecticut
WIDEST LINE OF CONTROLLED-POWER EQUIPMENT FOR RESEARCH AND INDUSTRY

IN EUROPE, contact Sorensen-Ardag, Zurich, Switzerland. IN WESTERN CANADA, ARVA IN EASTERN CANADA, Bayly Engineoring. Lid. IN MEXICO, Electro Labs. S. A., Mexico City. CIRCLE 297 ON READER-SERVICE CARD

PRECISION GYROS
A Proven Kearfott Capability. The increasing use of Kearfot gyros and gyro platforms in toxlay's missile programs, underscores the company's leadership in gyro design and production. Such missile projects as the Atlas, Bomarc, Polaris, Snark, Sultrox and Talos rely on Kearfot gyros or gyro platorms, as do the majority of manned aircralt now in service.

FLOATED RATE INTEGRATING

 GYROS. High accuracy miniature guos ypeciftally designed for missileTYPICAL CHARACTERISTICS
use. The performance characteristics of these gyos are superior to any comparably sized units available today. Hermetically sealed within a thermal jacket and luggedly designed for adaptability to production methods. These gyros operate efficiently at unhimited altitudes. More precise per formance chatacteristics can be pro

Along Input Axis
maximum untrimmed
Azimuth Position: (short term) Vertical Position: $0.03^{\circ} / \mathrm{hr}$
Arift Rate Due to
maximum
matel
ibratory Acceleration:

YPICAL CHARACTERISTICS

Repeatability to Established Vertical: To within a cone
of half angle equal to 15 minutes of arc $(\pm \AA$ minutes Free Drift Rate in 5 minutes Time: 2.5° maximum at room temperature. 3.75
Erection Rate: $2.5^{\circ} /$ Min. Erection Rate: $2.5^{\circ} /$ Min.
Initial Erection: The gyro will erect to within $\pm 1^{\circ}$ of
established vertical in 60 secl established vertical in 60 seconds time after application Vibration and Shock:The gyro will meet above char acleristics after vibration of 0.060^{-2} total excursion
cycling between 10 CPS and 55 CPS for 45 hours. Shock lest in accordance with MIL-E-5272A Procedure 2 Operating Life: 1000 hours minimur

TYPICAL CHARACTERISTICS

Free Drift Rate: Within 0.5° in one minute time
Shock: The gyro operates satisfactorily without damage afte Hermetically Sealed: These instruments are hermetically sealed and are not affected by sand, dust, sunshine, rain humidity or fungus conditions. Operating Temperature Range: Gyros operate in ambien
temperatures below $-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. A maximum 3 minutes of operation at $400^{\circ}{ }^{\circ} \mathrm{F}$ will not damage these Weight: 5.5 lbs. approximately. eiber pitch, roll or vaw. Shock and with quick-starting motors for appli cations in high performance missiles and aircraft

SPRING RESTRAINED RATE

 GYROS. Almost universally appli. cable in missile and aircraft design demanding precisc angular rate mea surements in ensironments of extreme shock and vibration. Fluid filling provides added immunity to shock and vibration, reduces bearing friction in AC types and potentioneter wiper AC types and potentiometer wiper adrances permit 90 second warm-up osercone lluid viscosity variations resulting from ambient temperature change These guros are single-degree-of-frecdom, viscous damped. spring restrained, with gimbals supported by precision bearings. Compensatory damping mechatlisms climinate neet for accescory heaters.Engineers: Kearfott offers challenging opportunities in advanced component and system development

Roll Stabilized
Directional Gyro

NEW PRODUCTS

Rack-Mounted Power Supplies

Have continuously variable 0 to 32 vdc output
W series rack-mounted laboratory powe supplies give 0.5% regulation from no-load to full-load; Z series give 0.01% regulation. Both series operate with ac inputs from 105 to 125 , 60 to 400 cps , have continuously variable outputs from 0 to 32 vdc , and are available with 2, , 10 or 15 amp maximum output.

Consolidated Avionics Corp., Dept. ED, 800 Shames Dr., Westbury, N.Y.

CIRCLE 299 ON READER-SERVICE CARD

Motor Tachometer Generator

Temperature compensated

Type $6280-05$ is a size 15 , temperature com pensated motor tachometer generator incorporat ing a 4-pole, 115 v , fixed phase motor with a 36 v control phase, center tapped winding suitable for transistorized operation. Stall torque is $1.5 \mathrm{oz}-\mathrm{in}$. no load speed, 9500 rpm ; output voltage gradient, 2.2 v per 1000 rpm ; linearity, 0.05% to 4200 rpm Maximum variation in output voltage is $\pm 0.2 \%$ from -10 to +95 C . The unit is 3.315 in . long, meets MIL-E-5272, and weighs 12.5 oz .
John Oster Mfg. Co., Avionic Div., Dept. ED, 1 Main St., Racine, Wis.

CIRCLE 300 ON READER-SERVICE CARD

Overload Circuit Breakers

Provides $1 / 8$ to 1 cycle fault current removal

Superfast vacuum switch circuit breaker pro vides positive interruption at first current zero in ac circuits to limit are time to less than 8 msec This, combined with mechanical operating times of less than 2 msec , results in $1 / 8$ to 1 cycle fanlt current removal. It is available with interruptin capabilities up to 115 kv and 4000 amp an continuous current rating up to 600 amp rms.

Jennings Radio Mfg. Corp., Dept. ED, P. Box 1278 , San Jose, Calif.
circle 301 on reader-service card
ELECTRONIC DESIGN • July 22, 195

Electronic Timer
Presets for $1 / 2$ to $10,000 \mathrm{sec}$

E:lectronic timer model $\mathrm{N}-801$ is a glow-tube trpe unit that can be preset for $1 / 2$ to $10,000 \mathrm{sec}$ in steps of $1 / 2,1,2,5,10,20,50,100,200,500$, 10 N, , and $10,000 \mathrm{sec}$. It also has provisions for ellapsed time measurements to 1000 or 10,000 sec. The unit has remote control electronic gating and a timing accuracy of 0.1% per day. Suited for X -ray counting, the unit may be used with the company's model $\mathrm{N}-270$ printer scaler or separately.

Hamner Electronics Co., Inc., Dept. ED, Princeton, N.J.

CIRCLE 302 ON READER-SERVICE CARD

Hall Effect Device

Has -65 to +125 C temperature range

The type HR-31 Halltron device has high gauss sensitivity and a temperature range of -65 to +125 C . Temperature sensitivity of the Hall effect is 0.1% per deg C or less. The unit has a control current of 500 ma maximum and 300 ma nominal, a Hall circuit power of 50 mw maximum, and a typical Hall output voltage of 0.35 at 500 ma . Featuring low noise and high resolution with no hysteresis, it is suited for flux measuring equipment, analog multipliers, power meters, and a variety of other equipment.
Ohio Semiconductors, Inc., Dept. ED, 1035 W. Third Ave., Columbus 8, Ohio.

CIRCLE 303 ON READER-SERVICE CARD

Modular Plotter

Has one, two, or four active bridge arms
Model 22.2 modular plotter is a multi-channel instrument for scanning and plotting strain vs. load data. It has one, two, or four active bridge arms, 24 channel modules and is available with 4 or 24 factor controls and 4 or 24 range selectors. This model has individual graphs and three zero positions for each channel, automatic zero and gase factor adjustments, individual range selection, and gage factors for each channel.
Gilmore Industries, Inc., Dept. ED, 13015 Woodland Ave.. Cleveland 20, Ohio. circie 304 on reader-service card
ELECTRONIC DESIGN • July 22, 1959

vital

electronic equipment is "soft mounted" on F-105

Critical electronic units on the Air Force's Mach 2 F-105 Thunderchief fighter-bomber are "soft mounted" on Lord vibration control systems. Operational reliability is thus assured for a toss bomb computer, sight amplifier and two integrated electronics chassis.
Use of resilient suspension systems-custom de-signed-provides positive protection against the extreme disturbances of the advanced jet environment. By working with LORD, F-105 contractors obtained the lightest, most economical suspensions in the shortest time.
If you have a problem in the protection of sensitive equipment, Lord offers you a broad background of vibration/shock/noise control experience in air, space. marine and ground environments. Your inquiry will be welcomed. Contact your nearest Lord Field Office or the Home Office, Erie, Pa.

Vibration/shock/noise control-Two integrated electronics chassis on Republic F-105 jet fighter are mounted on special Lord high-performance isolators. Severe environment includes vibration, superimposed sustained accelerations to 9 G and 30 G shock loads throughout temperature range from -65° to $+200^{\circ} \mathrm{F}$.
In final design shown, four isolators weighing less than 1.5 pounds each support chassis weighing between 266 and 400 pounds. Use of Lord BTR (Broad Temperature Range) elastomer assures excellent damping plus constant performance over wide temperature range. Transmissibility curve shows how efficient vibration isolation keeps equipment well inside fragility envelope.

FREQUENCY IN C.P.S.

FIELD ENGINEERING OFFICES ATLANTA, GEORGIA CEdar 7-9247 KANSAS CITV, MO. - WEStPort 1.013 BOSTON, MASS. HAncock 69135 CHICAGO, ILL. . MIChigan 2.6010
DALLAS, TEXAS . RIverside 1.3392 DAYTON, OHIO - BAIdwin 4.0351 DETROIT. MICH. Dlamond 1.4340 LOS ANGELES. CAL. HOIl wood 4.759 NEW YORK, N. Y. . CIrcle 7.3326 PHILLDELPHIA, PA. . PEnnypacker 5 . 3559 WINTER PARK, FLA. . MIdway 7.5501 Wineering Corporation Limited" LORD MANUFACTURING COMPANY - ERIE, PA.

UNIQUE ELECTRICAL PRODUCT

DESIGN IDEAS OFTEN BEGIN

WITH THESE VERSATILE

STACKPOLE SWITCHES!
Get This GUIDE TO MODERN SWITCHING $>$
 World's lorgest slide switch line-over 12 low cost standord types-dozens of economical adopto. Hons NEW colored knobs Special conventional ond minatuturized switches designed ond produced for lorge quantity users Electronic Components Oivision, STACKPOLE CARBON COMPANY Si Marys Pa

NEW PRODUCTS

Miniature adjustable ther-MOSTATS.-Models M-1 and M-2 for communication, aircraft, missile, and other electronic use. Temperature range, preset at 50 C , is 40 to 90 C ; electrical rating, $0.75 \mathrm{amp}, 28 \mathrm{v}$ ac, noninductive. M-1 is 1 in . long with temperature differential of 0.5 C at thermostat; M-2 is $3 / 4 \mathrm{in}$. long with 1 C temperature differential. Both units weigh 3 g , have $1 / 4 \mathrm{in}$. diameter.
Ramco Products, Dept. ED, P.O. Box 1381, Erie, Pa.
CIRCLE 307 ON READER-SERVICE CARD

NYLON CABLE TIES.-For strapping, clamping, or fastening wire bundles to supporting structure, TyRaps withstand -65 to +350 F, replace 14 AN type clamb sizes for $1 / 16$ to $1-3 / 4$ in. diameter bundles. Available in tool installed and selfclinching styles, variety of colors.
Thomas \& Betts Co., Dept. ED, 36 Butler St.,"Elizabeth, N.J.
CIRCLE 308 ON READER-SERVICE CARD
miniature transient peak RELAY.-Solid state type MLA-800 absorbs or grounds transient peaks and surges without imposing power load on system or unbalancing output impedance. Leakage values: at 250 : infinitesimal; $500 \mathrm{v}, 2.1 \mu \mathrm{a} ; 800$ $4.1 \mu \mathrm{a} ; 1200 \mathrm{v}, 6.6 \mu \mathrm{a}$. Unit has $5 / 8 \mathrm{in}$. diameter, is $3 / 4 \mathrm{in}$. long, closes at about 1460 v , opens again at 1400 v

Clark Electronic Labs, Research Products Div., Dept. ED, Box 165, Palm Springs, Calif.
CIRCIE 309 ON READER-SERVICE CARD

THERMOCOUPLE CONNECTOR. -Two-post model F-2 operates to 1000 F , is removable and reusable. Unit mounts on thermocouple shaft end with brass compression fitting, needs no welding, provides direct contact between thermocouple and thermocouple lead wires. Four-post model also available.
Aero Research Instrument Co. Dept. ED, 315 N. Aberdeen St., Chicago 7, Ill.
CIRCLE 310 ON READER-SERVICE CARD

CIRCLE 311 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22, 1955

LINEAR AMPLIFIER.-Model P develops full electrical output in under 0.1 sec , is fully compatible with inputs from thermocouples, radiation pyrometers, thermal converters, and dc strain gages. Unit develops effective outputs from input signals down to 0.2 mv , provides measurement accuracy of $\pm 0.25 \%$ of input range for 5 mv and up. Available in multiple fixed and adjustable ranges, with or without adjustable zero suppression, for rack or wall mounting. Uses include dc preamplification, temperature measurement and control, telemetering, stress measurement, and automation.
Hagan Chemicals \& Controls, Inc., Controls Div., Dept. ED, P.O. Box 1346, Pittsburgh 30, Pa.
CIRCLE 312 ON READER-SERVICE CARD

CAPACITORS.-Computer grade Alumalytics in 3 in . diameter, 5-5/8 in. high case with microfarad values 23 to 275% above previous models at all voltage ratings. Capacitance of 3 v unit is $150,000 \mu$ f.
General Electric Co., Dept. ED,
Schenectady 5, N.Y.
CIRCLE 313 ON READER-SERVICE CARD

DIGITAL MULTIMETER.-Model M-24 volt-ohm-ratiometer now provides $100 \mu \mathrm{v}$ and 0.1 ohm sensitivity. Unit automatically measures and displays ± 0.9999 to $\pm 999.9 \mathrm{vdc} ; 0.9999$ to 999.9 K ; dc voltage ratios to 0.9999 . Range multiplier accuracy for dc voltages, 0.01% of reading; resist ance measurement accuracy, 0.05% of full scale plus one digit; linearity for dc range and voltage ratio measurements, 0.01% of full scale. Range and polarity changes are automatic.

Non-Linear Systems, Inc., Dept. ED, Del Mar, Calif.
CIRCLE 314 ON READER-SERVICE CARD

BOLOMETER PREAMPLIFIER.Model BA-1C measures rf power ratios to 30 db between 20 mc and 90 kmc at maximum rf level of $200 \mu \mathrm{w}$ without switching of attenuators or change of amplifier gain. Unit has fine coarse gain controls, can be used with barretters or video crystals. Regulated self-contained barretter bias circuit replaces battery supply.
Weinschel Engineering, Dept. ED, 10503 Metropolitan Ave., Kensington, Md.

CIRCLE 315 ON READER-SERVICE CARD
deep drawn aluminum boxes and covers

11,600 Standard Sizes and Shapes WITH NO TOOLING COST!

Choose from more than 11,600 sizes, shapes and heighta of square, round, rectangular boxes and covers pay no tooling charge! All can be trimmed and modified to your specincation... brackets and fasteners can be
for welding and painting tool Send print or contect sour Ero Representaive parts using the excluaive Zero-Method tooling.

ZERO
manufacturing co.
1121 Chestnut Street, Burbank, Califoral Telephone VIctoria 9-5521 - TWX 9862
representatives in 26 key cities covering the U.S.
factories in Burbank, Califormia cad Palmer, Massachusets

WRITE FOR NEW ZERO STOCK box catalog

SYNTRON SELENIUM RECTIFIERS

provide greater d-c output per dollar for given a-c input

SYNTRON'S unique vapor deposit process and rigid quality control yield more efficient Selenium Rectifier cells. Cells noted for their low forward voltage, long life, uniformity, high temperature and voltage ratings-Cell voltage ratings from 15 to 52 volts RMS are available. Offering the widest range of cell sizes in the industry-from .280 inch diameter to 12×16 inch —permitting single stack assemblies from a few watts to many kilowatts. SYNTRON Selenium Rectifiers offer-versatility, dependability, long life, performance stability for all your d-e power applications.

Write for complete information and specification cotalog-FREE

SYNTRON COMPANY

283 Lexingion Avenue
Homer City. Penne.
CIRCLE 317 ON READER-SERVICE CARD

Late news, important announcements, meeting changes, new products . . . these are only a few of the features that make Electronic Daily in demand at WESCON.
Use Electronic Daily to plan your day at the show; select the booths you want to be sure to visit. If your company has a last-minute news item, get in touch with the Daily's editors. It's the main communication medium at the show. Look for your free copy each morning before breakfast in major hotels. Copies are also available at Hayden Booth 2311 at the Cow Palace.

NEW PRODUCTS

PHOTOELECTRIC RELAY.-Low cost unit for limit switch type applications. Draws full operating power of 57.5 v directly from transformer which supplies power to light source. Performs 200 operations per min at minimum illumination level of 25 ft -c; mounts in any position. Output relay lasts for 1 million operations with i amp, 11.5 v ac resistive load and mechanical life is 100 million operations. General Electric Co., Specialty Control Dept., Dept. ED, Waynesboro, Va.
CIRCLE 319 ON READER-SERVICE CARD

DUAL BLOWERS.-For electronic cooling. Models 2NB300 and 2NB408 produce 160 and 320 cfm, respectively, have shaded pole, fan cooled motors with Class A insulation good to 105 C. Shafts are stainless steel; ball bearings are permanently sealed and lubricated per MIL-C-3278; motors meet CC-M-636A.
McLean Engineering Labs, Dept. ED, P. O. Box 228, Princeton, N.J. circle 320 on reader-service card

BISTABLE MAGNETIC AMPL-FIER.-For use as sensitive static lay in regulating and indicating s! s. tems. Units combine magnetic with transistor bistable amplifier, have four control inputs and 0 or 5 w outplit at 24 v dc. Sensitivity; $0.05 \mu \mathrm{w}$; average response time, 20 msec ; input impedance range, 1 ohm to 1 mes: shock and vibration resistance, per MIL-E-5272; dimensions, $3 \times 5 \times 7$ in.
Westinghouse Electric Corp., Dept. ED, 256 Collins Ave., Pittsburgh 6 Pa .

CIRCLE 321 on reader-SERVICE CARD

P-C DRAFTING TAPES AND SHAPES.-Pressure sensitive strips and close tolerance shapes for printed circuit layouts in B-2.25 transparent red or B-150 black tape. More than 150 shapes include terminal circles, fillets, elbows, universal circles, teardrops, and tees.
W. H. Brady Co., Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis. CIRCLE 322 on reader-service card

1 NIVERSAL IMPEDANCE i RIDGE.-Portable model 250-DA th accuracy of 0.1% for resistance, 2\% for capacitance, and 0.3% for inuctance. Equipped with the comny's Dekadial which provides over .000 dial divisions for each of seven nges. One dial division represents $1 \mu u f, 0.1$ milliohm, and $0.1 \mu \mathrm{~h}$ on west ranges. Values to $1200 \mu \mathrm{f}, 12$ mieg, and 1200 h can be measured on lighest ranges. Supplied ready to oprate with ac and dc generators and iletectors.
Electro-Measurements, Inc., Dept. ED, 7524 S.W. Macadam Ave., Portl.ind 1 , Ore.

CIRCLE 324 ON READER-SERVICE CARD

LAMINATED PLASTIC.-Type FF${ }^{(i)}$ glass melamine laminated plastic has good fire and arc resistance, retains 70% of dielectric strength after two weeks in water at 50 C . Insulation resistance is $20,000 \mathrm{meg}$ after 96 hr exposure to 90% relative humidity.
Formica Corp.. Dept. ED, 4532 Spring Grove Ave., Cincinnati 32, Ohio.

CIRCIE 325 ON READER-SERVICE CARD

SILICON POWER TRANSISTORS.Type 2N1067, 2N1068, 2N1069, 2 N 1070 , and 2 N 1092 npn diffused junction mesa transistors for use in multivibrator, converter, inverter, and relay and solenoid actuating circuits. Also for use in oscillators, class A and B push-pull amplifiers, and dc amplifiers. Cases are JEDEC TO-3, TO-5, or TO-8. Units have good beta stability over full -65 to +175 C operating range. Peak collector-to-emitter voltages, 50 and 60 v ; peak collector currents, 0.5 to 4 amp ; dissipation, 1 to 25 w .

Radio Corporation of America, Semiconductor and Materials Div., Dept. ED, Somerville, N.J.
CIRCLE 326 on reader-Service card

INSULATING MATERIAL.-GlassTefon Duroid 5870 for use as high temperature circuit base stock, missile antenna dielectric, and microwave strip insulation. Available in rods, tubes, sheets, and copper clad sheets.
Rogers Corp., Dept. ED, Rogers, Conn.

Circle 327 on reader-service card

NEW, LOW FREQUENCY RELIABILITY IN GLASS-ENCLOSED CRYSTAL

Precision components of the new RHG-DP crystals are enclosed and hermetically sealed in glass holders to assure maximum internal cleanliness and most reliable evacuation. The result is a series of sturdy, miniature, low frequency units having excellent long-term stability and higher Q .

TYPICAL VALUES FOR 2 KC UNIT*	
Frequency range	1 ro 15 ke
Holder	T5 $1 / 2$ gloss bulb
	- Noval Bose
Temperature range	-55 to $+100^{\circ} \mathrm{C}$
Frequency tolerance	$\pm .015 \%$
Effective resistance	75,000 ohms max
Aging 8 hours $-100^{\circ} \mathrm{C}$	$\pm .001 \%$ max.

*Reeves-Hoffman manufactures a broad line of crystals in the range from 1 to 1000 kc .

CIRCLE 328 ON READER-SERVICE CARD
Electronic Design • July 22, 1959

MODEL AVS 320 Fixed voltage regulator. Four fixed voltages between 1 volt and 300 volts at all frequencies 35 cycles to 20 KC. Will make any power amplifier. A precision voltage supply.

PRECISION A.c. VOLTAGE IMSTRUMENTATION

MODEL AVA 500 Power Amplifier 500 Watts 2\% Distortion
Output 115-230 volis
300 cycles to 2 KC

MODEL AO . 1 Audio Oscillator 20 cycles to 20 KC 1 volt RMS Output with short ferm stability of 0.05% frequency stability $\pm 1 \%$ Distortion 0.1%
The ideal oscillator for A.C.voltage measurements

Complete defails and specifications on HOLT Precision AC Voltage Instrumentation are yours upon request . . Write Today.
VOLTRON now offers -a portable wattmeter for refined, low-power measurements of gyros, synchros and servomotors

- Rugged Taut Band Suspension
- Full-Scale Range: 0-1.2 Watt
- Low Power Factor
- Voltage drop across current coil as low as 0.2% of input voltage, per. mitting accurate measurements with out the need for correction factor.

SPECIFICATIONS:

construction Meter consists of d'Arsonval type D.C. milliammeter and one A.C. power to D.C. current transducer for each phase.
Taut band suspension eliminates the static friction and the delicacy of conventional jewels and pivots. Solid state circuit components are used in the transducer.
infut voltage $26 / 115 \pm 10 \%$
Wattage range 26 volt input - $1.2 / 3 / 12 / 30$
115 volt input - 1.2/3/12/30/120
frequency range Flat from 50 to 2000 cycles
accuract 1.0% of full scale watts
PHASE 1, 2, or 3 phase. The 3 -phase meter is suitable for 3 -phase, 3 -wire, or 3-phase 4-wire measurements.
POWER FACTOR 0.1 to 1.0 Lag or Lead.
WAVE FORM Calibrated for use with both sine and square wave. For distorted FACTOR waveforms, the error will be less than 2\% for 5\% harmonic distortion.
VOLTAGE CIRCUIT: 0\%
ERROR DUE
TO POWER
CONSUMED IN: $\left\{\begin{array}{cc}\text { CURRENT CIRCUIT: Max. Error } & \\ \text { (\% watts indicated) } & \text { P.F. } \\ 0.2 & 1.0 \\ 2.0 & 0.1 \\ \text { linear between these values }\end{array}\right.$
overload Voltage circuit: 100% continuous overload without damage CURRENT CIRCUIT: 25% at 0.1 PF continuous without damage SIZE $81 / 2^{\prime \prime} \times 12^{\prime \prime} \times 4^{\prime \prime}$
Weight 15 Ibs.

ORDERING	Modal No. PHASE PRICE	$\begin{aligned} & \text { PW-1 } \\ & \frac{1}{\$ 385.00} \end{aligned}$	$\begin{aligned} & \substack{1 / 2 \\ 1 / 2 \\ \$ 185.00} \end{aligned}$	$\begin{aligned} & \text { PW.3 } \\ & 1 / 2 / 3 \\ & \$ 585.00 \end{aligned}$

delivery: From stock subject to prior sale. terms: Net 30. Fob: South Pasadena, Calif.

NEW PRODUCTS

MINIATURIZED CONTROLS.Panel mounted units with ac or dc meter relays, self-contained power supplies. Round units have $2-1 / 2 \mathrm{in}$. meter relay, 2 in . barrel diameter, 2 to 5 in . length. Rectangular units have nonindicating meter relay, measure about $2 \times 2-1 / 4 \times 2-3 / 4 \mathrm{in}$. With simple limit circuits, any sensitivity from 0 to 5 ua or 0 to 5 mv may be specified. For automatic circuits, sensitivity begins at $200 \mu \mathrm{a}$.
Assembly Products, Inc., Dept. ED, Chesterland, Ohio.
CIRCLE 331 ON READER-SERVICE CARD

SILICON RECTIFIERS.-Style 30 units have $11 / 16 \mathrm{in}$. hex stud base, 1-7/16 in. maximum height, weight $1 / 2 \mathrm{oz}$. Rated 10 amp average at 150 C ambient and available from 50 to 400 piv in 50 v steps. Outer case is nickel plated to withstand severe service.
Syntron Co., Dept. ED, Lexington Ave., Homer City, Pa.
CIRCLE 332 ON READER-SERVICE CARD

ENVIRONAENTAL TEST CHAM-BER.-Walk-in model WD-420 has -100 to +500 F range, can be furnished with humidity control range of 20 to 98% from 35 F dew point to +185 F . Options include programming recording controllers with calibrated accuracy of 0.25% of scale, rain simulation equipment for 1 or 4 in . per hr. Full front end opening door is power operated for recessing into pit below floor level. Unit is also equipped with personnel door, front and wide viewing windows.
Conrad, Inc., Dept. ED, Conrad Sq., Holland, Mich.
CIRCLE 333 ON READER-SERVICE CARD

FERRITE ISOLATORS.-Radar system and laboratory units for 6.575 to 6875 mc use. Isolation loss, 40 db ; insertion loss, 1 db ; vswr, 1.2. Unit is 5 in . long, weighs 2 lb , operates to 160 F .

Motorola Inc., Military Electronics Div., Dept. ED, 8201 E. McDonell Rd., Phoenix, Ariz.
CIRCLE 334 ON READER-SERVICE CARD

Transistors Need Cooling Too!

- Mclean Fans and Blowers* Save Sensitive Components

Semi-conductors like tubes, require uniform termperatures for top efficiency. Excessive heat causes thermal runaway . . . destroys physical properties and calibration. A Mclean fan or blower will extend component life and prevents system failure or inaccuracies. Mclean's full line of packaged cooling units are smart, compact, easy-to-install and have a multitude of mounting possibilities. Many models in various panel heights and CFM's available. Mil. Spec. equipment for packaged cooling also available.

MCLE ENGINEERING

World leader in Packaged Cooling
orld Leader in Packaged Cooling Princeton, New Jersey - WAlnut 44440 TWX Princelon, New Jersey 636

FREE TEchnical data

- 24 Page Catalos
- 12 Page Article
forced convection cooling
- Specification Sheet on

DIGI LL CLOCK.-Model DC-112 las t phone type relays and stepping itches, provides digital output in to1 of contact closures representing h irs, minutes, and seconds. Output $c \quad$ be decimal, binary, or binary corded decimal. With suitable external p gramming circuitry, unit will opera card punches, electric typewrites or printers, other readout devices. Clock operates from unregulated, $115 \mathrm{v}, 60 \mathrm{cps}$ power supply, has in-line readout, individual time set pushhiuttons, and zero reset button. Vourted on standard $7 \times 19 \mathrm{in}$. relay panel.
panel.
Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.
CIRCLE 336 ON READER-SERVICE CARD

MECHANICAL TIMER.-Model No. TMC-50 fits into 1 cu. in. space; weighs under 4 oz.; withstands -65 to -250 F temperature, $300 \mathrm{~g}, 20 \mathrm{msec}$ shock, $25 \mathrm{~g}, 2000 \mathrm{cps}$ vibration. Available over 1 to 20 sec time range with $=5 \%$ accuracy.
Timech Corp., Dept. ED, 13866 Saticoy St., Van Nuys, Calif.
CIRCIE 337 ON READER-SERVICE CARD

PCLSE GENERATOR.-Precision Tullamore model PPG-1 for calibration of single and multichannel pulse height analyzers. Unit has two pulse outputs, with low level pulse obtained from built-in attenuator which reduces high level pulse by factors of $1,10,100$, or 1000 . Amplitude control is in 10 v steps to $90 \mathrm{v}, 1 \mathrm{v}$ steps to 9 v ; 10 -turn continuous control covers 0 to 1 v range. Rise time is continuously variable from $50 \mathrm{~m} \mu \mathrm{sec}$ to 1 usec; decay time constants are 1,2 , 10 , and $100 \mu \mathrm{sec}$. Unit is $5-1 / 4 \mathrm{in}$. high, weighs 18 lb , fits 19 in . rack.

Victoreen Instrument Co., Dept. ED, 5806 Hough Ave., Cleveland 3, Ohio.

CIRCLE 338 on reader-service card

METAL FILM RESISTORS.-Model 9850 1-w and 9849 2-w Vamistors have 25 and 50 ppm temperature coefficients; $1,15,0.25$, and 0.1% tolerances. One unit with 20 meg can dissipate up to 16 w .

Weston Instruments, Div. of Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N.J.

CIRCLE 339 ON READER-SERVICE CARD

SINGLE SIDE BAND FREQUENCY STANDARD

In flight for the U.S. Military
In production at James Knights
TIME PROVEN MODEL JKTO-PIA

Frequency Range: 1 to 5 mc
Stability: $1 \times 10-7 /$ Doy
Output: I volt into 5,000 ohms
Power: Operates from 24 to 28 D.C.
Oven: Long life; booster and control thermostats hermetically sealed.
Dimensions: $1.8^{\prime \prime} \times 2 \times 31 / 4^{\prime \prime}$. Wr. 10 oz. max.

LONG TERM STABILITY OF JKTO-PIA
 Environmental: Hermetically sealed;
meets applicable aircraft equipment specmeets applicable aircraft equipment specifications with ma
tion of 4×10.7.

White for iterature, atatlas gour apeciac re-
Quirementa. aulrementa.

THE JAMES KNIGHTS COMPANY Sandwich, Illinois

Optimizes electronic component and system design!
Operating from any convenient wall outlet, the LGP-30 helps you increase your productivity by taking the tedium out of mathematical analyses. It facilitates the optimum design of electronic tubes and circuitry, servo systems, radar and antennae ... is an important Research and Development tool in magnetic field applications, microwave and semi-conductor studies.
The lowest-priced complete computer your company can buy, the LGP- 30 gives you memory (4096 words) and capacity comparable to computers many times its size and cost - yet it is by far the easiest to program in basic machine language. What's more, you operate the LGP-30 yourself. Solutions are printed out in any desired alpha-numeric format - require no deciphering. Auxiliary high-speed input-output equipment is available for system expansion.
No expensive installation or air-conditioning. Sales and service available coast-to-coast. Customer training is free. An extensive library of programs and subroutines is a vailable-as well as membership in an active users organization.

For further information and specifications, write Royal McBee Corporation, Data Processing Division, Port Chester, N. Y. In Canada: The McBee Company, Lid., 179 Bartley Drive, Toronto 16.

ROXAL MC $B E E \cdot$ data processing division

All-new transistor power source engineered for modern, compact circuits

EVEREADY

ENERGIZER NO. 2713

One of a family of new "Eveready" Energizers with exclusive cathodic envelope construction

Designed especially for Transistor Service . . . Now equipment designers are offered greater flexibility in a power source than ever before. The new "Eveready" Energizer No. 2713 with unique cathodic envelope construction will service all requirements of the newest, most advanced battery-operated pocket radios. . . and many other transistorized devices.

Longer service . . . lower cost per hour. One Energizer No. 2713 battery gives twice the length of service

FREE I For Complete Engineering Data, write
of four penlite batteries. More energy per unit volume than any other carbon-zinc battery! Polarized terminals prevent incorrect installation by users. No need for clips or cell-holders. Quick easy installation the first time.
Guaranteed Leakproof. Like the entire line of "Eveready" Cathodic Envelope Energizers, this custom-designed battery is leakproof with a guarantee against corrosion damage. Ideal for all battery-operated transistorized devices.

Manager, Batfery Engineering Department.

NEW PRODUCTS

Tubeless DC Power Supplies

Heavy duty

Tubeless, heavy duty E-line dc power supplies are available in 32 combinations which can be selected from eight basic units. Output ranges are between 0 to 32 and 0 to 160 v , and between 0 to 4 and 0 to 20 amp . All units operate from 115 v ; 60 cps , single phase power. They may have ± 2 or $\pm 5 \%$ load regulation and $\pm 0.5 \%$ or no input regulation.
NJE Corp., Dept. ED, 345 Carnegie Ave, Kenilworth, N.J.

$$
\text { CIRCLE } 343 \text { ON READER-SERVICE CARD }
$$

Motor Drive Amplifier

Provides precise 60 cps power
Series MDA motor drive amplifiers provide extreme frequency regulation of power source and are used to produce precise 60 cps power for tape recorder motors. Motor drive amplifiers are available for operation from either 24 to 28 v dc or 105 to 125 v ac, 48 to 62 cps . Output is 100 w with frequency regulation $\pm 0.02 \%$. Unit weighs 35 lb and measures $7-1 / 2 \times 15-1 / 2 \times 8-5 / 8 \mathrm{in}$.

Precision Instrument Co., Dept. ED, San Carlos, Calif.

Clrcle 344 on reader-service card

Zener Diodes

Zener voltage is less than 10 V

These diodes have nominal Zener voltages of $6.8,7.5,8.2$ and 9.1 v with $1,1.5,10$ and 50 w power ratings. They are available with tolerances of $\pm 20 \%, \pm 10 \%$ and $\pm 5 \%$. Applications for th se low voltage units include power regulation of vacuum tube filaments, protection of transisturs against voltage surges, and precise voltage regilation of transistorized equipment.

Motorola Inc., Semiconductor Products Di*, Dept. ED, 500.5 E. McDowell Rd., Phoen Ariz.

CIRCLE 345 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22, 19: ?

Flash tube FX-6A has a peak light output of 3500 horizontal candlepower at a flash duration of $3 \mu \mathrm{sec}$. Under maximum power input the tube has half-light output expectancy of 20 million flashes. It is $7 / 8 \mathrm{in}$. in length and diam, and has a standlard 9 pin socket. Its operating range is 400 to 1200 v and is triggered by a low-current, highvoltage pulse of between 4 to 7 kv .
Edgerton, Germeshausen \& Grier, Inc., Dept. ED, 160 Brookline Ave., Boston, Mass. CIRCLE 346 on reader-service card

DPDT Relay

Takes 20 g to 2000 cps vibration
The ESS series hermetically sealed relay can take vibrations of 20 g to 2000 cps with a sensitivity of 80 mw in a dpdt unit. The contacts are rated at 2 amp resistive and coil resistances as high as 36 K are available. The relay enclosure is $1 \times 1 \times 1-1 / 2$ in.
Hi-G, Inc., Dept. ED, Bradley Field, Windsor Locks, Conn.

CIRCLE 347 ON READER-SERVICE CARD

Counting Rate Meters

Accept signals from radiation detectors

The CRM series count rate meters are available in various combinations having linear, logarithmic and different indications of counting rate. Model CRM-2, linear with meter has 10 ranges, counting rate up to $3 \times 10^{8} \mathrm{cpm}$. Type CRM-3 provides logarithmic coverage of counting rates over a six-decade range from 10 to 10^{7} cpin. Type CRM-4 is a dual unit simultaneously pruviding linear and \log indications on two meters. Models 2CRM-2 and 2CRM-3 are dual count rate meters and incorporate two linear or two log circuits. Models 2CRM-2D and 2CRM-3D are \log dual-differential count rate meters.
ictoreen Instrument Co., Dept. ED, 5806 He igh Ave., Cleveland 3, Ohio.

CIRCLE 348 ON READER-SERVICE CARD

every aspect of Ward Leonard bullotin "HR" relays is designed for maximum reliability. . . these are components you can buy, install and then forgot
Ward Leonard "HR" relays are engi- mature is free-floating and self-alignneered for industrial and electronic ing to minimize noise level. DC solenoids applications requiring: ultra-long life, high speed, high reliability, compactness and versatility.
Consider the powerful solenoids, just one of the features shown above. Every HR relay, AC or DC, is equipped with a powerful solenoid to assure fast, consistent, long-life operation so essential in the circuitry of any high reliability relay. The "E-I" laminated magnet ar-
ing to minimize noise level. DC solenoids Nylon armature guides minimize operational friction. All AC and DC power plants are readily interchangeable.
2 to 8 pole "HR" relays are but one of five w/L lines of industrial power relays ... all designed with emphasis on reliability. Write for bulletin 4470. Ward Leonard Electric Co., 77 South Street, Mount Vernon, N. Y. ol CIRCLE 349 ON READER-SERVICE CARD

NEW PRODUCTS

WALK-IN TEST CHAMBERS.-Series TC-110 modular environmental chambers are light, weatherproof, need no special foundations. Doors, windows, other openings can be cut anywhere; roofs support 30 lb per sq ft snow load; complete structures withstand 120 mph winds. Heating available by steam or electric elements; cooling by liquid CO_{2}, block dry ice, or mechanical refrigeration. Suitable for high and low temperature, humidity, salt spray, other environments.
Wyle Mfg. Corp., Dept. ED, El Segundo, Calif.
CIRCLE 351 ON READER-SERVICE CARD
RECORDING HEAD.-All metal, universal unit records 20 audio or digital information channels on 1 in . tape; incorporates precision lapped gap and full shielding between channels.
General Transistor Western Corp., Dept. ED, 6110 Venice Blvd., Los Angeles 34, Calif.

CIRCLE 352 ON READER-SERVICE CARD

DUMMY ANTENNAS.-Series RBN, RBK, and RD for tuning, checking, and measuring transmitter power output. Cover 0 to 30, 30 to 200, 0 to 600 mc and transmitter outputs from 50 w to 20 kw . Type RBN units ensure character of an exponential line over full operating frequency range; RBK units are designed according to long lossy line principle; RD types consist of ladder networks.
Rohde \& Schwarz Sales Co., Inc. Dept. ED, P.O. Box 275 , Passaic, N.J. circle 353 on reader-service card

PHOTOVOLTAIC TRANSDUCER.Miniature, precision Celab Fotoducer reads directly on millivoltmeters, microammeters, or ohmmeters without amplification; maintains accuracy and repeatability over wide temperature range and in vibration environments. Available as load cell, accelerometer, or potentiometer. Width, 1-1/4 in.; height, 1-1/2 in.; weight, 55 g . Most models use 1.5 or 3 v supply.
Clark Electronic Labs, Research Products Div., Dept. ED, Box 165, Palm Springs, Calif.
CIRCLE 354 ON READER-SERVICE CARD

for every lacing need.
BEN-HAR LACING TAPES

BEN-HAR "TEFLON® GLASS"-fibers are Toflon cooted before braiding for unique non-slip action. Knots inert. Flame-proof. Non-absorbent. Color fast. Practically indestructible.

BEN-HAR DACRON - excellent di-
mensional stability and heat rasist. ance. Available ploin, waxed, or synthetic rubber treated.
BEN-HAR NYLON-meots Gov. Specs.
MIL-T-713A. Flat broided nylon available in same finishes as above.

BENTLEY, HARRIS
WRITE FOR SAMPLES AND PRICES

Benfley, Harris Manufacfuring Co., 700 Barclay St., Conshohocken 3, Pa. circle 355 on reader-service card

RCA now presents an entirely new concept in electron tubes ... a concept that promises to be one of the most exciting advancements in electron-tube design.

NUVISTOR

... the new look in electron tubes that drastically reduces size, weight, mass, and power drain!
... the new design in electron tubes that promises dramatic improvements in quality, performance, and reliability!

NUVISTOR... a new era in electron tubes!

The NUVISTOR concept
 promises tube structures that are truly rugged.

Each tube electrode is brazed to its supporting member, an open-ended conical structure. The platform for the structure is a strong ceramic base-wafer. Electrodes are extraordinarily small, lightweight cylinders. Neither mica nor glass is used. Spot welding is eliminated. This combination of strong structural assembly, brazed joints, all ceramic-metal construction, small size, extra low mass, and high-temperature processing has resulted in a tube design in a small envelope that holds promise of fine performance under thermal or mechanical shock and continuous vibration. For example. NUVISTOR triodes have been subjected to more than 1000 blows each of 850 g 's for 0.75 millisecond. After such tests, no shorts were indicated...either permanent or temporary.

NUVISTOR is given its start
 in a brazing furnace.

Ceramics and strong metals such as steel, molybdenum, and
tungsten-processed at high temperatures in brazing and vacuum exhaust furnaces-form the basic structure of the tuhe. Such high-temperature processing eliminates many of the gases and impurities that cannot be eliminated when tubes of conventional design are processed at temperatures limited by glass and mica. This new processing technique sig. nificantly reduces the residual gases that might contaminate the tube as the elements heat and age. And, because the tubes have been outgassed at high temperatures. they offer promise of operating at ambient temperatures considerably higher than conventional tuhes can withstand. NUVISTOR tubes have been subjected to temperatures of $660^{\circ} \mathrm{F} \ldots$ and continued to function. At normal operating temperatures, therefore, reliable operation over long periods of time can be anticipated.

NUVISTOR can withstand
the test of freezing cold.
In several tests. NUVISTOR tubes continued to function when immersed in liquid nitrogen at a temperature of -320 F .

what NUVISTOR will mean to defense electronics

NUVISTOR seems destined to have significant impact upon equipment designed for military applications. NUVISTOR promises an extremely high level of performance and relinbility never before anticipated from electron tubes produced in large quantities. Under unusual conditions of environment, the reliability of NUVISTOR promises to make radical improvements in "mean-time-to-failure hours". NUVISTOR tubes offer miniaturization capabilities that can significantly increase payload capacities of military vehicles. The electrical characteristics of NUVISTOR tubes make them suitable for many different services... hold out the prospect of designing al large number of circuits "around" just a few tube types. These NUVISTOR features can reduce requirements for replacement equipment and service personnel, can increase mobility of the equipped "arm".

what NUVISTOR will mean to industrial electronics and entertainment products

The high-performance capability of NUVISTOR and its inherent ability to function under difficult environmental conditions seem certain to stimulate new equipment designs for industry. Automation, electronic computers and business machines, closed-circuit television-in fact. the entire range of industrial electronics applications will be given a new platform from which to climb higher. In electronic equipment for home entertainment, more compact, more reliable, more attractive products are in store. New levels of performance can be expected in lightweight AM and FM radios, phonographs, hi-fi, and TV sets.

NUVISTOR small-signal TRIODE

> Ready now... on a limited sampling basis...for new equipment designs. First Nuvistor type to be sampled.

High-frequency amplifier performance...

The NUVISTOR triode has shown its mettle as a radio-frequency amplifier in experimental TV-tuner tests. Compared to miniature types 6BQ7-A and 6BN4-A in cascode and neutralized-triode VHF amplifiers, Nuvistor has provided improved gain and at least 1 dh less noise measured at television channel 13. In addition. Nuvistor has indicated greatly reduced $\mathbf{B}+$ power drain-about $1 / 3$ the voltage and $1 / 2$ the current used for the miniature types. Experimental cascode-type tuners using Nuvistors have demonstrated substantially higher performance than commercial tuners. even those using the latest commercial types of receiving tubes... and they required less heater power and only about one watt of B+ power input, as compared to about 7 watts for commercial cascode-type tuners.

Oscillator performance...

The Nuvistor is a remarkably stable and efficient tube for local oscillator service. Oscillations are obtainable at more than 1000 meg . cycles with the Nuvistor triode in conventional molded-type sock is. Oscillator efficiency is essentially independent of frequency up to about 450 megacycles, and typical circuits start oscillating with 7 volts or less at the plate of the tube. The low power input needed for the oscillator, as well as amplifier and mixer circuits, helps reduce temperature rise and consequent frequency drift of tuned circuits. The tube itself is particularly stable. Note the accompanying graph which shows the warm-up drift of a 200 -megacycle oscillator compared to type 6EA8, a notably good VHF tuner tube by present standards. Each type produces the same output voltage in a conventional circuit from which other causes of drift were removed-yet Nuvistor triode has less than $1 / 4$ the warm-up frequency drift of 6EA8.

TYPICAL DATA

ELECTRICAL:
Heater, for Unipotential Cathode Voltage ($A C$ or $D C$)
6.3 volts

Current
CHARACTERISTICS, CLASS A, AMPLIFIER:
Plate Voltage
Grid Resistor
Grid Resistor
Grid Voltage
Amplification Factor
Plate Resistance (approx.)
Transconductance
Plate Current
Grid Voltage (approx.) for plate current of 10 ua
maximum ratings, design-maximum values:

PLATE VOLTAGE
GRID VOLTAGE
peak positive grid voltage
PLATE DISSIPATION
PEAK HEATER-CATHODE VOLTAGE
Heater negative with respect to cathode
Heater positive with respect to cathode

NUVISTOR

small-signal TETRODE
Ready soon for limited sampling... an amplifier tube for new equipment designs in entertainment, industrial, and military applications.

what NUVISTOR will mean to you

Remember way back when all tubes were "radio tubes", and they earned the name "bottle". They were big, fragile, and relatively inefficient. Miniaturization was a vague dream. Rugged tubes were nonexistent. Portability really meant transportability. Design possibilities were limited. But, new developments in tube designs brought smaller envelopes, sturdier structures, the octal socket, the 7 -pin and 9 -pin miniatures...new technicues and new processes... electrical uniformity, reliability and efficiency! So, NUVISTOR takes its place in the progressive advancement of the electronics industry with new criteria for electron-tube efficiency and reliability. And you, the design engineer, will partici-

NUVISTOR

BEAM POWER TUBE Now being developed... plate dissipation objective in the order of 30 watts; intended for beam-power applications in the entertainment, industrial and military fields.

RADIO CORPORATION OF AMERICA
Electron Tube Division
Marrison, N. d.
pate importantly as NUVISTOR ELECTRON TUBES open a new world of unlimited possibilities in equipment design.

For more details on NUVISTORS and for information on how you may obtain developmental samples of NUVISTOR smallsignal TRIODE, call your RCA Field Representative at the Field Office nearest you.

Entertainment sales

Nowork 2, N. J., 744 Brood Streel, HUmbold 5.3900 - Delroir 2, Mich., 714 Now Conter Bldg..TRinity 5-5600 Defroit 2, Mich, 714 Now Conter Bldg., TRinity 5-5600
Chicogo 54, III,. Suito 1154 , Merchandise Mart Plazo, Chicogo 54, 111 ., Su
WHitoholl 4.2900
Los Angeles 22, Calif., b355 E. Washington Blvd., RAymond 3.8361
industrial sales
Nowark 2, N. J., 744 Brood Street, HUmbold 5.3900 Nowark 2, N. J., 744 Brood Street, HUmboldr 5-3900 Delroit 2, Mich., 714 Now Center Bldg., TRinity S5-5600 Chicaga 54 III., Suito 1154 , Merchandise Mart Plazo. Los Angeles 22, C RAymond 3.8361

GOVERNMENT SALES
Nework 2. N. J., 744 Brood Stroet, HUmbold 5-3900 Dayton 2, Ohio, 224 N. Wilkinson St., BAldwin 6-2366 Washington 6, D. C., 1625 ".K" St., N.W., District 7.1260

PLASTIC PROTECTED MARK. INGS.-May be used for both exterior or interior applications. Duralar, a polyester film layer laminated over the markings, makes these signs completely permanent.
Duralith Corp., Dept. ED, 1025
Race St., Philadelphia 7, Pa.
CIRCLE 356 ON READER-SERVICE CARD

UHF TRANSMITTER.-Model 281 kw uhf transmitter, 225 to 400 mc , is self-contained and needs a primary power source of 380 to 1200 cps for operation. It can handle 1750 channels, weighs less than 200 lb and is 15×30 $\times 27 \mathrm{in}$.

Electronic Communications, Inc., Dept. ED. St. Petersburg, Fla.
CIRCLE 357 ON READER-SERVICE CARD

BONDING SOLUTION.-Fluorobond solution is used to make fluorocarbons bondable. Materials such as Teflon or Kel-F can be treated in a maximum of

ELE TTRONIC DESIGN • July 22, 1959

15 sec by either dipping, brushing or spraying.
Joclin Manufacturing Co., Dept. ED, Lufbery Ave., Wallingford, Conn. circle 358 on reader-service card

FIBERGLASS TUBING.-Polytube is class B polyester varnished fiberglass tubing with high flexibility. It is resistant to acids, alkalis, and moisture, and is unaffected by hot or cold transformer oils.
L. Frank Markel \& Sons, Dept. ED, Norristown, Pa.
CIRCLE 359 ON READER-SERVICE CARD

SNAP CLAMP.-Snaps into closed position instantly, and can be adjusted to apply up to 800 lb of clamping force. The clamp accommodates any size work piece, and is used for welding operations and holding electronic chassis assembly.
Wilton Tool Mfg. Co., Inc., Dept. ED, Schiller Park, III.
CIRCLE 360 ON reader-sERVICE CARD

ONLY $\$ 3.25$
handy guide to TRANSISTOR COOLER
selection!

* Forced air-flow models
* NEW notural convection models
Modine now offers transistor coolers in two types, seven models . . . all available from stock. These pre-engineered, compact, brazed aluminum units are predrilled for the five standard transistor configurations. Choice of Iwo fin. figurations. Choice of Iwo fin-
ishes: MIL.C.5541 CHROM. ishes: MIL-C-5541 CHROM.
ATE or MIL-A 8625 BLACK ATE or MIL-A- 8625 BLACK
ANODIZED. New Bulletin ANODIZED. New Bulletin
ID-159 has comprehensive se. lection data. For your copy write direct

CIRCLE 361 ON READER-SERVICE CARD

β in ranges of 0 to 30/100/300 $\left.\begin{array}{l}h_{12} \\ h_{10}\end{array}\right\} 0.5$ to 20 K at 1 KC $I_{\text {co }} 0$ to 50 microamperes $\mathrm{I}_{\mathrm{e}} 0$ to $3 / 10 / 30$ milliamperes

Quickly and accurately the new Metronix Model 545-B Transistor Test Set measures all the essential parameters of transistor performance and gives direct presentation of the test data.
This versatile instrument can be operated either on its own 5.2 -volt collector voltage supply or on any externaliy plied potential up to so volts DC. can accommodate a wide test frequency
range of from 200 cps to $50 \mathrm{kc} . .$. has range of from 200 cps to So kc... has play of AC collector waveforms. And it's fully protected against meter overload.
Price $\$ 225.00$, \&.o.b. factory.
Coll or wrice for Spocilicetion Shoet No. 345-3
. . keps your back comes for handy merbana
These strong, $12 \%, 121 / 4 \times 5^{\prime \prime}$ binders offer an arey meens of filing your bock copies of Eloctronic Design. Eech Emder holds 13 normal size issues, and pormits subatiotion of magezimes if desired. Cost to Electronic Dasign sulmeribers in enly $\$ 325$.

CIRCLE 466 ON READER-SERVICE CARD

1402
1.802

Metronix inc

A SUBSIDIARY OF
ASBEMELY PRODUCT8, INC.
Chestertand 17, OMIO

Assem cheoterand 17, Onlo

CIRCLE 362 ON READER-SERVICE CARD

-

TOROTEL MAGNETIC AMPLIFIER

The 02-type magnetic amplifier is a lightweight D.C. amplifier operating from a $115 \mathrm{~V}, 400-\mathrm{cps}$ source. The linear, gain stability and null characteristics of the amplifier make it very adaptable to use in Analog Computer and instrumen tation.

TOROTEL, INC. 5512 east lioth street kansas city, mo

CIRCLE 363 ON READER-SERVICE CARD

Now!

MINIATURE
AGASTAT ${ }^{\text {• }}$
time/delay/relay
MEASURES ONLY $4^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$

The Miniature Agastat time delay relay is a space-saving answer to aircraft, missile and computer problems. You get all these valuable features in one small package

- Eosily adjusted timing ranges as short as 030 soconds.
- Ropoal accuracy of $\pm 5 \%$.
- Time dolay on energizing or de-anergizing.
- For DC or AC operation.
- Hermoticolly saolod or dust-proof housings.

Write today for the full details on the new miniature Agastat. Dept. A36-724.
AGA
ELASTIC STOP NUT CORPORATION OF AMERICA
1027 Nowark Avenue, Elizoboth, N. J.
Gasoccumulator Co., (Conada) Ltd., 12 Gower Street, Toronto 16, Ontorio CIRCLE 364 ON READER-SERVICE CARD

NEW PRODUCTS

MINIATURE FEEDTHROUGH INSULATOR.Compression mounted type CF-408-K8: has a Teflon body and a lengthwise hole for rapid wire insertion and soldering. The insulator is self-fastening and requires no additional hardware
Fluorocarbon Products Inc., Dept. ED, Camden 1, N.J.

CIRCLE 365 ON READER-SERVICE CARD

MECHANICAL LIMIT STOP.-Infinitely adjustable, this unit comes in two sizes with 10.5 and 42 maximum turns. Starting torque is 0.1 oz-in. maximum and moment of inertia is $0.005 \mathrm{oz}-\mathrm{in}^{2}$. Torque capacity is 60 oz-in. Energy storage at the limits to reduce shock in gear trains is 0.5 oz-in. Housing diameter is 0.937 in . and shaft diameter is 0.1873 in . Lengths are $1-1 / 4$ and $2-1 / 4$. without the shaft.
Gap Instrument Corp., Dept. ED, 116 E. Merrick Rd., Freeport, N.Y.

CIRCLE 366 ON READER-SERVICE CARD

SELF-ADHESIVE LABELS.-In many different colors mounted on sheets, Polka Dot labels have diameters from $7 / 16$ to 2 in . They are useful for color coding anđ as temporary flags for wires, harnesses, or cables.
Pee Cee Tape \& Label Co., Dept. ED, 521 N . LaBrea, Los Angeles 36, Calif.

CIRCLE 367 ON READER-SERVICE CARD
CIRCUIT BREAKER-Series 2300 heavy duty circuit breaker weighs 2-1/2 oz, has push-pull button action, and protects circuits up to $5000 \mathrm{amp}, 120 \mathrm{v}$, 60 cps . It is shock resistant and precision calibrated. Wood Electric Co., Dept. ED, 244 Broad St., Lynn, Mass.

CIRCLE 368 ON READER-SERVICE CARD

INSULATION ANALYZER.-The D-K analyzer has been adapted as a gage for nonmetallic thickness measurements. Readings may be taken instantly from one side of an insulating sheet by a dial adjustment. The portable unit is $12-1 / 2 \times 9-1 / 2 \times 10-1 / 2 \mathrm{in}$. and weights about 15 lb .
Delsen Corp., Dept. ED, 719 W. Broadway, Glendale 4, Calif.

CIRCLE 369 ON READER-SERVICE CARD
PANCAKE RESOLVES.-For direct gimbal mounting, these resolvers have accuracies of $\pm 4 \mathrm{ft}$, perpendicularities of $\pm 3 \mathrm{ft}$, and nulls of 1 mv per v of output or less. They were developed for use in cascaded, amplifierless resolver systems and are trimmed for 10 K input impedance, 0 deg phase shift, and a constant transformation ratio, with temperature, at 900 cps .

Clifton Precision Products Co., Inc., Dept. ED, 9014 W. Chester Pike, Upper Darby, Pa. CIRCLE 370 ON READER-SERVICE CARD

If your printed circuit is vital to the fight of a guided missile it must not fail. It may even undergo a 100% inspection at every stage of manufacture
Bureau quality control is more than a method of inspection. It is also a check on the causes of rejects to weed them out. Our production techniques eliminate even "acceptable" flaws because we are striving to produce perfect boards. This is why Bureau circuits, whether tested 100% or on a scienty sample basis, are consistentlo betreliable circuits into your product. investigate the Industrial Division of the Bureau of Engraving, Inc

BUREAU OF ENGRAVING, I \&. Industrid Division

Terminal Blocks
Stud type

Atailable in various sizes accommodating from one to 26 stud posts, these molded barrier terminal llocks have milliampere to 90 amp current handling ratings. Commercial units are made from Bakelite; military types are made from CFG. MFE: MAI-60, MME, and MDG plastics to meet MIL-M-14.
Kulka Electric Corp., Dept. ED, 633-643 S. Fulton Ave., Mt. Vernon, N.Y.
circle 372 on reader-service card

Chart Recorder

Provides full month's record
Four-inch strip chart recorder and recorder controller, Mark III, has a modified inking system that provides a full month's record without refill. It provides a 14 hr visible chart record, flip switch for reversing controller action from air to open to air to close, and built-in damping of pneumatic input signals.
Fischer \& Porter Co., Dept. ED, 143 Jacksonville Rd., Hatboro, Pa.

CIRCLE 373 ON reader-service card

Miniature Fan
 Weighs 4 oz

Designed to cool tightly packaged airborne black boxes, the 4 oz Aximax 1 fan has a 1.5 in . dian and 1.5 in . long. At $22,500 \mathrm{rpm}$ it provides 23 cmm free delivery or 19 cfm at 1 in . static pressurc. Available motor designs include 115 or 200 vac , single or three-phase for pressurized or nonpressurized applications.
Fotron Mfg. Co., Dept. ED, Woodstock, N.Y. CIRCLE 374 ON READER-SERVICE CARD

60 Choices-NPN AND PNP

Sylvania Entertainment Transistors

star performers for every rolefor any consumer product application-portable radio, toys, organs, intercoms, shortwave radio, auto radio, Hi-Fi-there's a Sylvania entertainment type to fill the bill
Sylvania's broad entertainment transistor line is one of the most complete in the industry. It offers the creative design engineer a full range of types from one source to meet his most selective needs. Twenty new types have been added, bringing the total number to over 60 top-quality types including PNP, NPN, PNP (Drift), Medium Power and Low Power
transistors. The entire line incorporates hermetic seal construction for maximum protection against humidity and other environmental conditions that can affect performance.
These Sylvania quality transistors are available now in production quantities to meet your new product manufacturing schedules-and at prices competitive with any comparable types in the industry.
Call your Sylvania representative now for a full rundown on the Sylvania entertainment line-or contact the factory directly at the address below.
-SYLVANIA
Subsidiary of GENERAL TELEPHONE \& ELECTRONICS

Sylvania Electric Products Inc. Semiconductor Division 100 Sylvan Rd., Woburn, Mass.

POPULAR SYIVANIA ENTERTAINMENT TRANSISTORS

PNP				YLVA	NIA ENT	1	AENT	515	RS	(Drift) PNP	
				NPN				Type Doscription			
Trpe	Description	Type	Description	Typo	Description	Type	Description			Type	Doscription
2N34	GP Audio	2N412	HF, If Conv	2N35	GP Audio	2N216	HF IF Amp	2N1102	GP Audio	2N247	MF RF
2N109	GP Audio	2N591	Med Power,	2N94	RF Amp	2N228	GP Audio	Syl 1279	Ent	2N370	MF RF
2N217	GP Audio		Audio	2N193	HF Ose	2N229	GP Audio	Syl 1310	HF Conv	2N371	HF RF
2N405	GP Audio	Syl 1430	Ent	2N194	HF Conv	2N233	HF RF Amp	Syl 1311	hF Conv	2N372	MF RF
2N406	GP Audio	Syl 1536	Ent	2N194A	HF Conv	2N233A	HF RF Amp	Syl 1312	MF Conv	2N373	MF IF
2N407	GP Audio	Syl 1537	Ent	2N211	hF Ose	2N515	HF RF-IF Amp	Syl 1313	RF Amp	2N374	MF Conv
2N408	GP Audio	Syl 1509	Ent	2N212	HF Conv	2N516	HF RF.IF Amp	Syl 1329	Ent	2N54	HF RF
2N409	HF, If Amp	Syl 1604	Ent	2N213	GP Audio	2N517	HF RF.IF Amp	Syl 1524	Ent	Syl 1475	Ent
2N410	HF, if Amp	Syl 1608	Ent	2N213A	GP Audio	2N1058	MF Mixer	Syl 1538	Ent	Syl 1309	Ent
2 Nall	HE, If Conv	Syl 1621	Ent	2N214	Marchod Poir	2N1039	GP Audio	Syl 1539	Ent		
				2N214	GP Audio	2N1101	GP Audio	Syl 154	Ent		
				(singlo)	Op Audio	2Niol		Syl 1593	Ent		

Today - Sperry produces electronic tubes for every purpose - ranging in power from 20 milliwatts to over 5 megawatts.

NOW AVAILABLE

New X-Band TWT Amplifiers from Sperry... for missile guidance, air navigation systems, and other CW applications...combining

Broadband response... high power...high gain... rugged long life construction

These two new Sperry Traveling Wave Tubes offer a unique combination of features which make them first choice for many applications in missile guidance, navigation and communications - whether airborne, ground or shipboard based. Both offer the fourfold advantages of high power, high gain, broadband response, and extra-rugged design for high altitude and severe environment performance. Minimum peak output power is 100 watts, with 150 watts averaged over the frequency ranges of the two tubes. The characteristics of the STX-105 curves shown below are duplicated in the corresponding frequency range of the STX-104. For complete data on the advantages of these new Sperry tubes for your current projects, write Sperry today.
$31 x-104$
STX-10.

(1) Loaded waveguide structure and tough metal envelope of STX-104 and 105 provide high vibration and shock resistance, as substantiated by this and many other environmental tests conducted in Sperry labs. Quality components and integral input-output connections contribute to high performance reliability and long life. (2) Output Power vs. Frequency (3) Small and large Signal Gain vs. Frequency.

NEW PRODUCTS

Made with a self-locking nylon body, Pushla wire wrap terminals align and lock when til are pushed into place with an arbor press, a press, or a hand tool. Available in standoff feedthrough types, they are suited for aircra missile, and automation equipment where sho and vibration are extreme. They are also able for printed circuitry. The units maintai uniform holding power under exposure to common solvents, and -65 to +300 deg to peratures.

Whitso, Inc., Dept. ED, 93330 Byron Schiller Park, Ill.

CIRCIE 377 ON READER-SERVICE CARD

Shock Tester

Performs test cycle every minute
Hyge-6500 production-line shock tester repe either of a choice of two widely specified sho pulses in rapid succession, performing a comple test cycle every minute. Waveform may changed by means of external adjustment. tests specimens ranging in weight from a fracti of 1 oz to 150 lb , and is $13 \times 13 \times 30 \mathrm{in}$.

Consolidated Electrodynamics Corp., Roch ter Div., Dept. ED, Rochester 3, N.Y.

CIRCLE 378 ON READER-SERVICE CARD
Signal Conditioning System
Airborne

For airborne telemetry and tape appli ation the SCAMP miniature signal conditioning
accet ; millivolt inputs and produces 0 to 5 v to di e voltage controlled oscillators or record ampl ers. It features transistorized dc, ac, or carric amplifiers and operates on unregulated 28 v de power. The six-channel modular case accept any combination of solid state amplifiers, each with separate controls, which can be operated independently. The ac amplifier output is biasell at +2.5 v above ground, with the output signal swinging from 0 to +5 v .
Nelf Instrument Corp., Dept. ED, 2211 E. Footiill Blvd., Pasadena, Calif.
circle 379 on reader-service card

EIR Meter

Available in kit-form or completely wired
Model WV-38A volt-ohm-miliammeter is offered in kit-form and as a factory-wired and calibrated instrument. Each kit contains step-bry-step instructions, laminated circuit board construction and oversized drawings. This instrument contains a new 1 v scale and a 0.25 v scale for transistor circuit measurements. Input resistance is 20 K per \mathbf{v} for dc, and 5 K per \mathbf{v} for ac measurements. It has 8 ranges for 0 to 5000 idc. 6 ranges for 0 to $5000 \mathrm{v} \mathrm{ac}, 6$ ranges for $50 \mu \mathrm{a}$ to 10 amp full scale, and 3 ranges for 0 to 20 megohms.
Radio Corporation of America, Dept. ED, 30 Rockefeller Plaza, New York 20, N.Y.
circle 380 on reader-service card
Capacitor Standard Kit
Contains 32 plug-in units

Kit model SS 32 contains 32 miniaturized, pluy-in capacitor standards with values from 0.0001 to $0.05 \mu \mathrm{f}$. It can be supplied with a four position adapter which provides, with the approp riate capacitors, capacitance values accurate to four significant figures with $\pm 0.1 \%$ tolerance. Arco Electronics Inc., Dept. ED, 64 White St., New York 13, N.Y.
circle 381 on reader-service card

The beauty of this Capacitor is more than skin deep!

NEW PRODUCTS

Crystal Detector Mount
Weighs less than $1.20 z$

Aluminum broadband coaxial crystal video detector mount weighs less than 1.2 oz . It is made with a choice of type N or TNC male input connectors and either TNC or miniature female video connectors. This mount covers the band from 1 to 11 kmc with tangential sensitivities better than -50 dbm over the entire band.
American Electronic Labs., Inc., Dept. ED, 116 N. Seventh St., Philadelphia 6, Pa.

CIRCLE 383 on reader-service card

Power Transformers

Are used with silicon rectifiers
These three power transformers, for use with silicon rectifiers, provide output voltages of 40 v , center tap, 20 v , center tap, and 10 v . Current rating of type F-90X is 100 ma , type F-91X is 300 ma, type F-92A is 1 amp . They are used to supply the dc voltages for transistors through a full wave bridge or bridge rectifier from 115 v 60 cycle source.
Triad Transformer Corp., Dept. ED, 4055 Redwood Ave., Venice, Calif.

CIRCLE 384 ON READER-SERVICE CARD

Encoder Assembly

Resolves shaft positions to 1 port in 100,000
Model CG-703 geared encoder assembly uses two shaft position encoders and a gear box. The encoder used on the input shaft provides 1000 positions of the least significant digit per 360 deg rotation. This assembly can resolve shaft positiems to 1 part in $1(0),(000)$. It is 3 in . in diam. 3 in . long. exculsive of shaft, and weighs 19 oz .
Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

CIRCL 385 ON READER-SERVICE CARD

AVAILABLE IN EVERY NEEDED SIZE

 from radar read-out-extend cepabilities through ultra-fast Du Mont electrostafically deflected and focused radar tubes for aceorate, complete surveil lance of fast-moving onbital, guided or manned objects. These new Dw Wont radar tubes offer jump. sweep capabilities larger screen sizes to meet all modern radar ind-out requirements, including hiresolution, ornection uniformity and reduced deflection delotusing.Welivestigate Du Mont electrostatic radar tubeswrite for complete technical details...

puMonro

precision electronics is our business

ELECTRONIC TUBES/INDUSTRIAL TV/MILITARY ELECTRONICS/MOBILE COMMUNICATIONS/SCIENTIFIC INSTRUMENTS/AUTOMOTIVE TEST E JIPILI

ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J., U. § A. INTERNATIONAL DIVISION • 515 MADISON AVENUE, NEW YORK 22, N. Y. - CABLES: ALBEEDU. NEW YO circle 386 on reader-service card

```
10", 12". 16" (Shown above)
            Diameters
```

Also designed to your physical and electrical requirements.

SEE IT AT WESCON-
Booths 421 \& 423.

ELECTRONIC DESIGN • July 22, 1 c 39

ouMonr ${ }^{\circ}$

SATISFYING YOUR LABORATORY NEEDS The Du Mont 400 Series of instruments encompasses
olectronic equipment to satisty needs of a complete. high-quality electronic laboratory. For precision studies of all typess. in any range, investigate Du Mont
instruments first instruments first.
precision electronics is our business
ELECTRONIC TUBES ANDUSTRIAL TV MILITARY ELECTRONICS MOBILE COMMUNICATIONS SCIENTIFIC INSTRUMENTS AUTOMOTIVE TEST EQUIPMENT

CRT GUN SUPPORT RODS.-Made of Formula M10 glass, these rods are free of air entrapments and provide tight tolerances in finished gun structure. Available in all standard shapes and in all lengths.
Mansol Ceramics Co., Dept. ED, 140 Little St. Belleville, N.J.

$$
\text { CIRCLE } 388 \text { ON READER-SERVICE CAR }
$$

MULTISPEED CHART DRIVES.-These chart drives can be field mounted on any of the company's standard Dynamaster strip chart recorders. They allow instant dialing of any of six different chart speeds without the need of stopping the chart. Two standard models with overall ratios to 16 to 1 and 32 to 1 are available for every different chart drive gear train used in the standard Dynamaster recorder.
Insco Co., Div. of Barry Controls Inc., Dept. ED,
Groton, Mass.
CIRCLE 389 ON READER-SERVICE CARD

GANGED STANDOFF TERMINALS.-Model 409 TT miniature blocks are one-piece, ready-to-install units with standoff turrets. They take up to 21 turret terminals with barriers between. Fastening holes can be supplied to clear 2-56 fillister head mounting screws, tapped for $4-36$ screws, or provided with a brass bushing threaded 0.80. A choice of plastic materials and metal platings is available.
Kulka Electric Corp., Dept. ED, 633-643 S. Fulton Ave., Mt. Vernon, N.Y.

CIRCLE 390 ON READER-SERVICE CARD

ORDER WIRE AND ALARM ASSEMBLIES.Series 53A/44A assemblies provide conveniently packaged service channels with a variety of control and alarm circuit combinations for remote operation and maintenance. Previously custom engineered, this equipment is now offered in standard assemblies providing up to 35 tone channels for either wire-line or radio transmission.
Lenkurt Electric Co., Dept. ED, San Carlos, Calif. circle 391 on reader-service card

SEMIAUTOMATIC TURNTABLE DEGAUSSER. -Model A-937 has a predetermined 20 sec timed cycle. The pushbutton controlled, motor driven turntable insures fast, complete bulk erasure and eliminates noise patterns generated by irregular rotational motion. The unit accommodates all sizes of instrumentation tapes and magnetic films.

Magnasync Mfg. Co., Ltd., Dept. ED, 5546 Satsuma Ave., North Hollywood, Calif.

CIRCLE 392 ON READER-SERVICE CARD

AC AND DC POWER SUPPLY.-The Varicell adjustable supply provides either an ac or dc voltage from ac power lines.
Superior Electric Co., Dept. ED, Bristol, Conn. CIRCLE 393 ON READER-SERVICE CARD

CIRCLE 394 ON READER-SERVICE CARD Electronic Design - July 22, 1959

Custom designed with your product in mind and keyed to basic electronic requirements.
ALLOYING AND FABRICATING • PRECIOUS METALS RARE METALS - SPECIALIZED BASE METAL ALLOYS
Doped gold dises provide ohmic contact for silicon diodes, gold and platinum ribbon for diode whiskers, high purity aluminum wire segments and foil, and a wide variety of precious metal, rare metal and base metal alloy items.

CIRCLE 395 ON READER-SERVICE CARD

NEW PRODUCTS

HIGH TEMPERATURE TAPE.-Temp-R-Tape GV, for the construction and repair of electrical equipment, has a thermal curing, pressure sensitive silicone polymer adhesive which, once cured, will withstand operating temperatures to 500 F . The tape meets MIL-1-19166 and is 0.007 ± 0.001 in. thick with adhesive. Available in 36 yd rolls 1/2, 3/4, 1, 1-1/2, and 2 in . wide.

Connecticut Hard Rubber Co., Dept. ED, 407 East St., New Haven 9, Conn.

Circle 396 on reader-service card
COMPUTER MAGNETIC TAPE UNITS.-Transistorized models 729 II and 729 IV are capable of reading and writing at either their former density of 200 characters per in. or at 555 characters per in. Input and output speeds with the latter density are 41,667 and 62,500 characters per sec, respectively, as compared with 15,000 and 22,500 with the former.

International Business Machines Corp., Data Processing Div., Dept. ED, 112 E. Post Rd., White Plains, N.Y.

CIRCLE 397 ON READER-SERVICE CARD

HIGH ALTITUDE TEST CHAMBER.-Model FHV-27-5-5 Chemosphere chamber is designed for testing in the Centigrade range between 100,000 and $260,000 \mathrm{ft}$. Standard temperature range is +300 to -100 F . The unit combines altitude with temperature and vibration, permitting the vibration machine to be coupled through a bellows arrangement so that test items can be bolted directly to the vibration table.

Conrad, Inc., Dept. ED, Conrad Square, Holland, Mich.

CIRCLE 398 ON READER-SERVICE CARD

DC POWER SUPPLY.-Transistorized, transient free model M-1360 uses magnetic amplifier and transistor regulation, eliminating overshoots. Line regulation is less than $\pm 0.05 \mathrm{v}$ for step change of 10 v in the ac input of $115 \mathrm{v}, 60 \mathrm{cps}$, while load regulation is less than $\pm 0.2 \mathrm{v}$ no load to full load. The unit provides 6 to 15 v at 0 to 5 amp and meets MIL-P6457A, MIL-G-008512, and MIL-E-4970 specifications.
Perkin Engineering Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.
circle 399 on reader-service card
PANEL INDICATOR LIGHTS.-Series L5900, L5910, and L5200 placard twin-lamp indicator lights have $1-3 / 8 \times 9 / 16 \mathrm{in}$. plastic lenses which can be engraved with words or phrases to denote circuit function. The lenses, easily removed for lamp replacement, are captive to the cases so that they cannot be replaced on the wrong case. Forty units will fit in a $9 \times 5 \mathrm{in}$. space.
Hetherington Inc., Dept. ED, Folcroft, Pa. circle 400 On reader-Service card

how to see high impedance ac signals

The Keithley Model 102B Amplifier combines a 400 -megohm input with high gain and low noise. It sharply reduces circuit loading errors when measuring outputs from accelerometers and other piezo-electric devices. It also has many uses in studies on hearing aids, phonograph pick-ups, and microphones.
Features of the Model 102B are: decade gains from 0.1 to 1000 , selectable bandwidths of 2 cps to 150 kc and 2 cps to 1.7 mc , and a 5 -volt, 50 -ohm output for scopes and recorders. Other features include:

- imput impedance of 400 megohms, shunted by $3 \mu \mu$ f.
- low nolse level, below $10 \mu \mathrm{~V}$ from 10 CDS to 150 kc at maximum gain.
- Ealm aceuracy of 1% at midband for all gain settings.
- rise time of $0.3 \mu \mathrm{sec}$ at highest gain.
- two accessory low capacitance probes available.
- Price - $\$ 325.00$

Write today for Catalog B, containing detz led information on the Model 102B.

KEITHLEY
 INSTRUMENTS. INC.

12415 Euclid Ave., Cleveland 6, Ohio
CIRCLE 401 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 22, 19.9

S ECIAL REPORT

OJ STEP-SERVO MOTORS:

Induction Motors of California Offers Step-Servo Motor Line

A full line of step-servo motors, sizes 5 . 8. 11,15 and 23 , designed for digital-toanalog conversion in 45° increments up 10120 pulses per second, are manurac-
lured by Induction Motors of California. wred by Induction Motors of California. The motors are available with impedance
of 15000 HMS and voltage range of ${ }_{20}$ of 150300 OHMS and voltage range of ${ }^{2}$ 20 ${ }^{2}$ range of $-550^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and meet
environmental requirements of MIL-Eenvironmental requirements on MiL-E--
S272B and MIL-E-5400. Stainless steel construction is used, and no mechanical detents are employed.

OEMERAL SPECIFICATIONS FOR STEP-SERVO MOTORS

Information on cost, delivery, or additional technical information, as well as information on synchro components and solenoids, is available when requested on your company letterhead.

Transistor Transformers

Available in MIL-AG cases, in round YY hermetic cases with glass bead headers, or in molded construction, these transistor transformers weigh about 2 oz . They are slightly over 1 cu in.

Microtran Co., Inc., Dept. ED, 145 E. Mineola Ave., Valley Stream, N.Y.

CIRCLE 403 ON READER-SERVICE CARD

Temperature Chamber
Plugs into any 115 v source

High and low temperature chamber model FT1-100X350 is a low cost unit that plugs into any 115 v power source. It has a working space of 1 cu ft , outside dimensions of $35 \times 24 \times 45 \mathrm{in}$., and an accuracy of $\pm 3 \mathrm{~F}$ over its full - 100 to +350 F range.
Missimers Inc., Dept. ED, 3737 San Fernando Rd., Glendale 4, Calif.

CIRCLE 404 ON READER-SERVICE CARD

Miniature Plastic Switches

Have operating force as low as 2.5 g
Series 5200 snap-acting switches have electrical terminals molded in place for maximum rigidity. Ten models, with actuating button in center position, cover an operating force range of 3 to 20 oz; the remaining nine switches, with actuating button in off-center position, cover an operating force range of 2.5 to 60 g .
Haydon Switch Co., Dept. ED, Waterbury 20, Conn.

CIRCLE 405 ON READER-SERVICE CARD
LEFT: STUL 9/8E—19/10
CEMTER: AXIML LEAO TOP MAT
RIEW7: sTUO IMSULATED
COLUMBUS ELECTRONICS C// PPORATION DOUBLE DIFFUSED SILICO RECTIFIERS COLUMBUS ELECTRONICS JORPORATION DOUBLE DIFFUSED SILI JN RECTIFIERS COLUMBUS ELECTRON/S CORPORATION DOUBLE DIOUSED S SCON RECTIFIERS COLUME FLELETT ECS CORPQRATION DOUI E FUSE. ICON D P/ETIFIERS COLUNP LLEC \sim EDRATION DOUF/ DIFFUS $/$ D SILIC $\mathcal{=}$ IIFIERS COLUSBUS EL/ JTRONICC/ RPORATION DOUBLE DIFF/SED SILI/F RECTIFIERS

Now . . . an extonsive line of
high performance, hormetically sealed. silicon powor rectifioss UP TO 35 AMPS.

JEDEC types exceeding MII specification.

TADANAC BRAND

NEW PRODUCTS

LINEAR DETECTOR.-Model 404, for u*w wit distortion meters, incorporates a vacuum tube rectifier for rf detection and a bridging transformer. meets FCC requirements and operates on a 20 to v rf carrier. Frequency range is 400 kc to 30 m When operated as a bridging transformer, injut in pedance of the detector is 6 K and insertion loss 1 db . Frequency response is flat from 20 cps to

Barker \& Williamson, Inc., Dept. ED, Bristol, P CIRCLE 410 on reader-service card

COLORED POTTING COMPOUNDS.-Type P 407 silicone rubber compounds are available in whit and a variety of colors to permit positive identific tion of encapsulated and potted materials. The m terial is supplied in premetered kits which contain oz of color mixed compound and a catalyst. Quic setting and shrink resistant, it cures to a rubber afte 2.5 min at room temperature.

Plastic Associates, Dept. ED, 185 Mountain Rd Laguna Beach, Calif.

CIRCLE 411 on reader-SERVICE CARD
HIGH TEMPERATURE SNAP ACTION SWITCH -Miniature spdt type USM4 is designed for con tinued use at temperatures to 400 F . Ratings are $2.5 \mathrm{amp}, 30 \mathrm{vdc}$, inductive; $5 \mathrm{amp}, 30 \mathrm{vdc}$, resis tive; and $5 \mathrm{amp}, 125$ or 250 v ac . The unit is 25 $\times 1 / 4 \times 1 / 2 \mathrm{in}$. and may be gang mounted four to the inch for multiple circuit control.
The W. L. Maxson Corp., Unimax Switch Div Dept. ED, Ives Rd., Wallingford, Conn.

CIRCLE 412 ON READER-SERVICE CARD

AUDIO-POWER AMPLIFIERS.-Designed to be used as variable frequency power sources and as power supplier for vibration testing systems, ultra sonics, sonar development, and audio-sonic testing these units have a useful frequency range of 5 to 5000 cps and a power input of 440 v , three phase 60 cps . Each of the 5, 10, 30, 70, and 200 kw ampl fiers is housed in a single steel cubicle.

Westinghouse Electric Corp., Industrial Elec tronics Dept., Dept. ED, P.O. 416, Baltimore 3. Md. CIRCLE 413 ON READER-SERVICE CARD

COMMERCIAL PROGRAMMERS.-Series 41900 programmers can be used for automation controls industrial programming, and other predetermined electrical switching applications. The units have /rom one to eight spdt snap action switches and a vide range of cycling times from 30 sec to 24 hi pet cycle. Timing program is set up during manufa ture to provide programming functions required for ach application.
The A. W. Haydon Co., Dept. ED, Water int Conn.

CIRCLE 414 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 22, 159

Mc jnetic Tape Transports

For computers

Available in nine output ratings from 60 to 7500 va, these sinusoidal transformers automatically regulate to within $\pm 1 \%$ for $\pm 15 \%$ line voltage variations. They provide an output with less than 3\% total rms harmonic content and have an average response time of 1.5 cy . The staticmagnetic units are protected against shorts on the load circuit and require no maintenance or manual adjustments. They are available in tep-up and step-down ratios allowing substitution for conventional, nonregulating transformers.
Sola Electric Co., Dept. ED, 463.3 V. 16th St., Chicago 50, Ill.
circle 417 ON reader-service card
CIRCLE 418 ON READER-SERVICE CARD

Relay

1 in . long, $1 / 4 \mathrm{in}$. in diameter
Less than 1 in long and $1 / 4 \mathrm{in}$. in diameter, the Unimite spdt relay has a 1 msec operating time and a 3 msec release time. Rated lamp at 28 v dc, it requires 240 mw and can be cycled at 10,000 operations per min.

General Electric Co., Specialty Control Dept., Dept. ED, Waynesboro, Va.
CIRCLE 416 ON READER-SERVICE CARD

Sinusoidal Transformers
 Have $\pm 1 \%$ regulation

वा

 CANADIAN SUDCIDIARY - C. C. Meredith \& Company, vithble resistors and misciated switches, industrial recultiers (scierium, silicon, fube, rogulated-mechanical and statio trol, mon-regulatedy emaency/normal motor generator suts,diesol driven generators, 400 cycle motor generators, control diesel driven generators, 200 cycle motor generators, control variable resistors, precisican wire fixed resistors, tustorge of switches and other special somponents for radio, Eolevision, commercial and milizary enctronic equipment.
ele switchboard, and photo-electric street lighting controls.

WEST COAST SUBSIDIARY - Chicago Telephone of California, inc., 105 Pasadena Avenue, Teuth Pasadena, California - Manufacturers of variahle resistors and associated switches, custom moldines, transformers, foot switches, ignition coils and soloncid coils.

YESTERDAY

Since 1896, CTS has had a reputation for product excellence . . . becoming the world's larges variable resistor manufacturer. Most radio \& TV sets throughout the world have dependable CTS cortrols.

TODAY

 Now...in 5 plants, with over 1600 highly skilled CTS research and devtiothent with its estab technical personnel. . . in 436.000 sq. f. plant many other products ... manufactured to these same high reliability standards.
NEW NATION-WIDE SALES ORGANIZATION
 It's easy to get the CTS product you desire. There's a CTS plant, office or representative near you.

PACIFIC AREA

LOS ANGELES BRANCH

OFFICE

Chicago Telephone of
California. Inc
105 Pasadena Avenue So. Pasadena, California LOS ANGELES OFFICE International Resistance Co $1136 \mathrm{~N} . \operatorname{La}$ Brea Blvd.
Hollywood, California SAN FRANCISCO, Logan \& Stone Company
1485 Bayshore Boulevard PORTLAND 9, OREGON Richard Lego Company Richard Lego Company

new jersey branch office

 Chicano Teleph hone Supply Corp. 5 Haddon Avenue JerseyHaddonfield, New
MORTH CAROLIMA BRANCH $\xrightarrow{\text { MORFICE }}$
${ }_{\mathrm{CTS}}^{\mathrm{O}}$ of A sheville, Inc. CTS Ot A Aheville
Mills Gap Road Mills Gap Road Skyland, No. Carolina MEW YORK CITY OFFICE MEW YORK Cerira OfFIC.
 New York Clyt 6 , New York

EASTERN AREA

PHILADELPHIA OFFICE

 International Rosistanco CO. 401 North Broad Strcot Philadelphia 8, Pennsylvania SYRACUSE OFFICE International Resistance Co. 112 Montgomery Street Syracuse, New York
LEXINGTON 73.

 MABSACHUSETTS Richard Purinton, Inc. 11 Muzzey Street
elkhart * indiana

PITTSEURGH 3 , PEMNSYLVANIA.

 Tanner \& Covert 300 Mt. Lebanon Blva.CLEVELAND 7, OHIO Baehr, Groenleai \& Assoc. 14700 Detroit Avenue
north miami ciach ic, FLORIDA Blonziona Company,

MOUNTAIN AREA

DENVER 9, COLORADO Electronic Components Sales, Inc 045 So. Broadway

SCOTTSDALE, ARIZONA

Carl Hower
369 N. Craftsman's Court
MIDWESTERN AREL
CHICAGO OFFICE
Internamonal Resistance Co. 5243 W. Diversey Avenue Chicago 39, lllinois

MINNEAPOLIS 16.

MINNESOTA
Robert W. Marshall
6108 Excelsior Boulevard

INDIANAPOLIS 2.INDIANS

Macnabb, Schioudsr \& Loomis 820 East Gun Street, P.O. Box

KANBAS CITY, MIBSOURI E. B. Schwerin

4210 Main Street
DALLA8 35, TEXA8
John A. Green Company
7118 Envoy Court

LOWER COST MAGNETIC SHIELDING

Co-Netic \& Netic Foils Permit Max. Miniaturization, mproved Performance ... Extremely VersatileReadily Cut to Any Shape, Wrap Like Tape

Iow Co-Netic \& Netic foils lower our magnetic shielding costs: 1$)$ ou use less shielding material beause (a) foils are only $.004^{\circ}$ thick nd (b) foils cut easily to exact shape it simple shielding of odd shapes nit simple shielding of odd shapes
nd hard-to-get-at components, savind hard-to-get-at components, savroling costs and inflexibility of rigid retals. These advantages make posble much smaller and less costly istems, as components may be ssitioned in close proximity without terference from damaging magnec fields.

These foils are non-shock sensitive, non-retentive, require , periodic annealing. They effectively shield electrostatic and ailable from stock in any desired length in various widths.
Co-Netic \& Netic foils are successfully solving many types magnetic shielding problems in numerous critical satellite, rasile, magnetic tape and other military, airbone, electronic daboratory applications. These foils can help you solve
WAGIETIC SHIELD DIVISIDN P
orton micaco. 1322 No. Fiston A emme Chisago 2:2. Illinois

NEW PRODUCTS

TEMPERATURE CONTROLLER.-Designed for single point control, model 535 uses transistor circuitry and thermistor sensors to cover a range of 0 to 600 F . The thermistor sensing elements may be mounted hundreds of feet from the controller itself and connections may be uncompensated standard electric wiring. The unit has 2 deg F setting accuracy within a 0 to 125 deg ambient range. Contact capacity is $5 \mathrm{amp}, 155 \mathrm{v} \mathrm{ac}$, spdt

Fenwal Inc., Dept. ED, Pleasant St., Ashland, Mass.
circle 421 on reader-service card

SIZE 18 SERVO MOTORS.-Built to BuOrd speci fications for continuous operation at 250 C . Weight, 14 oz ; power input, 12.5 w ; no load speed, 3000 rpm ; stall torque, 2.5 in.-oz per min.
American Electronics, Inc., Dept. ED, 1025 W Seventh St., Los Angeles 17, Calif.

CIRCLE 422 ON READER-SERVICE CARD

MAGNESIUM CONTAINERS.-Deep-drawn boxes and covers made to military specifications. Over 40 stock sizes.
Zero Mfg. Co., Dept. ED, 1121 Chestnut St., Burbank, Calif.

CIRCLE 423 ON READER-SERVICE CARD

BENCH MOUNTED TORQUE TOOLS.-Indicate correct torque during assembly of electrical and instrumentation units. Models available to measure in.-g, in.-lb, and in.-oz fractions.
Apco Mossberg Co., Dept. ED, 1004 Lamb St., Attleboro, Mass.

CIRCIE 424 ON READER-SERVICE CARD

INSULATED WIRE AND CABLE.-Teflon FEP fluorocarbon insulation permits use of this wire and cable from -90 to +200 C. Tinned copper can be used for conductors, and extended lengths can be supplied.
Tensolite Insulated Wire Co., Inc., Dept. ED. W. Main St., Tarrytown, N.Y.

CIRCLE 425 ON READER-SERVICE CARD

HIGH VACUUM HEAT-TREATING FURNACE.Laboratory model 300 has 1 in . diameter, 3 in . high hot zone for 2500 C operation.

Richard D. Brew and Co., Inc., Vacuum Furnace Div., Dept. ED, 90 Airport Rd., Concord, N.H.
circle 426 on reader-service card

SHAFT CUTTER.-Shaft-Kut Tool is accurate to 1/64 in., cuts control and switch shafts in a few seconds.

Centralab, Div. of Globe-Union Inc., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis.
circle 427 on reader-service card

CIRCLE 428 ON READER-SERVICE CARD

You may not need eyes

 to line things up any more

Wherever the human eye is used for precise alignment work, there's a good chance we can lay lead sulfide down on glass in the precise pattern that will let you do the job electricalls Making such Kodak Ektron Detectors in precise configurations and complex arrays, and duplicating them in quantity. is a specialty of ours.
Spectral response of these photoresistors extends over a broad range. They are particularly sensitive in the infrared. This lets you use cool-running light sources where heat migh affect accuracy of measurement. Signal-to-noise ratio is high. units are rugged, unaffected by vibration.
You find out more by writing to Special Products Sales and asking for the new pamphlet, "Kodak Ektron Detectors."

EASTMAN KODAK COMPANY

Rochester 4, N. Y.
Kodak

CIRCLE 429 ON READER SERVICE CARD
ELECTRONIC DESIGN • July 22, 1959

Wirewound Potentiometer

Rated 1.5 w at 25 C

A single turn, wirewound precision potentiometer, model 12 is rated 1.5 w at 25 C and derates to (1) w at 130 C . It rotates 360 deg and can be provided with stops for any angle. Resistance values are from 0.45 to 555 ohms per deg; linearity is to 0.05%; and resolution is from 0.13 to 67 ohms per turn. The unit is moisture resistant and withstands severe vibration.
Handley Corp., Dept. ED, 14758 Keswick, Van Nuys, Calif.

CIRCLE 430 ON READER-SERVICE CARD

Digital Transducer

Uses mechanical amplifier
Series 400 digital transducers measure process variables and provide digital encoding for flow, liquid level, pressure or temperature. They use a mechanical force amplifier to position the shaft of a precision encoder. Available in vacuum and pressure ranges to $10,000 \mathrm{psi}$, and temperature ranges to 600 F , they are housed in all-weather meter cases.
American Meter Co., Mechanical Components Dept., Dept. ED, P.O. Box 309, Garland, Texas.

CIRCLE 43I ON READER-SERVICE CARD

Right Angle Coax Receptacle

Used for printed wiring boards
Type 3008 right-angle coax receptacle for printed-wiring boards is made of hex stock with four milled studs of rectangular cross sections. The receptacle is attached to the wiring board by dip soldering The main insulator follows the contact around the 90 deg bend, providing a uniform dielectric thickness on all sides of the contact.
Salectro Corp., Dept., ED, 610 Fayette Ave., Manaroneck, N.Y.
circle 432 on reader-service card

IDEAS FOR DESIGN—entry blank

To the Ideas-For-Design Editor of ELECTRONIC DESIGN 830 3rd Ave., New York 22, N.Y. - PLaza 1-5530

Here is my design idea for possible publications in your Ideas For Design department. I can expect $\$ 10$ for this idea if accepted for publication.
(Idens suitable include: 1. new circuits or circuit modifications, 2. new design techniques, 3. designs for new production methods, 4. clever use of new materials or new components in design, 5 . design or drafting aids, 6. new methods of packaging, 7. design short cuts, or 8. cost saving tips)

STATEMENT OF THE PROBLEM-

MY SOLUTION. AND WHY - (Please be explicit. Include sketches or photos that
ste
US AT
Booth
1017
WESCON
Show
CUT ASSEMBLY TIME
$2-56,4-40,6-32,8-32,10-32$ and $1 / 4-20$ in stock. Actual production samples will give you the whole story. Write on your letterhead.

WECKESSER COMPANY
 5703-05 Northwest Hwy. • Chicago 46, III

CIRCLE 433 ON READER-SERVICE CARD

SPECTROL PRECISION POTENTIOMETERS

Meet the SPECTROL

 METAL MULTI-TURN

New type construction provides $150^{\circ} \mathrm{C}$. OPERATION

The Spectrol Mortel 590 ten-turn precision intentiom eter fe.llures all metal construction of machinet alumi umt with the helical coil placed directly against the case excellent dimensional stahilitr, is non-hygroscopic and will operate in a relative humidity of 95%. The f* diam eter 590 is available in ranges from 25 to 120.000 ohms with a standard linearity inlerance of $\pm 0.3 \%$. Tolerances $\pm 0.025 \%$ oll special order
For complete technical information call whur local Spectrol representative or write directly to the factory Please addicss Dept. 197-A

Electronics CORPORATION anmerisn ohecronic compsotes CIRCLE 434 ON READER-SERVICE CARD

NEW PRODUCTS

Transistorized Analog Computer $15 \times 17 \times 24 \mathrm{in}$.

The low cost PACE TR-10 analog computer is fully transistorized, measures $15 \times 17 \times 24 \mathrm{in}$. and weighs 80 lb without accessories. The unit can perform 9.5% of the mathematical operations encountered in design calculations.

Electronic Associates, Inc., Dept. ED, Long Branch, N.J.

CIRCLE 435 ON READER-SERVICE CARD
Gas Density Switch
Weighs 2 oz

Type SN-88 sub-miniature gas density switch signals when the density of surrounding inert gases approaches a critical value. This value remains constant as pressure changes with temperature. It actuates along any temperaturepressure line from 0.028 to 0.041 psia per deg lankine. The accuracy of the actuation point is $\pm 0.8 \mathrm{psi}$ over the temperature range of -85 F to +200 F . It weighs 2 oz , is $2-1 / 32 \mathrm{in}$. long and 1-5/32 in. in diam, and meets MIL-E-5272.

Newark Controls Co., Dept. ED, 15 Ward St., Bloomfield, N.J.

CIRCLE 436 ON READER-SERVICE CARD

Amplifier Module

For non-return-to-zero data handling
Model 139.A-NRZ contains ten low-level amplifiers for obtaining 20 v pulses from the low level
outputs of magnetic tape, memory cores, and small photo cells. Signals as low as 10 mv ito 5.6 K input impedance and as slow as 100 in duration will produce negative pulses of 20 and $15 \mu \mathrm{sec}$. Module is $2-1 / 4 \times 10-3 / 4 \times 7 \mathrm{in}$.

Navigation Computer Corp., Dept. ED, $16 ? 1$ Snveler Ave., Philadelphia 45, Pa.

CIRCLE 437 ON READER-SERVICE CARD
Hinged Control Panel
Permits easy wiring

Relays are mounted on the top surface of these modular control panels, while the control wires are contained in built-in compartments beneath. Each module swings out so that the wires can be snapped into place behind flexible vinyl retaining fingers. The units are built for both horizontal and vertical wiring.
Wyr-Way, Inc., Dept. ED, 250 Mt . Hope Ave. Rochester 3, N.Y.

CIRCLE 438 ON READER-SERVICE CARD

Solid State Relay

Withstands 1000 g shock

For aircraft, missile, and other de power switching applications, the model SSR-6-. 250 is a 6 v, 0.25 amp , spst solid state relay that can withst ind 1000 g shock. It has a $2 \mu \mathrm{sec}$ pickup time and a $5 \mu \mathrm{sec}$ drop-out time and may be used as a curs nt limiting device to protect power sources fym overloads

Curtiss-Wright Corp., Inter Mountain Ins u^{-} ments Div.. P.O. Box 8.324, Albuquerque, N. I s. CIRCLE 439 on reader-Service card

New Illetrom Miniature Speed Changers Reaciy-to-go

- Complete
- Compact
- Adaptable

Save design, production, and assembly costs ...USE METRON SPEED CHANGERS AS COMPONENTS IN YOUR PRODUCT

- Over 400 different standard
ralios! 10:9 to 531.441:1
- Smalll $1.062^{\prime \prime}$ diamefer. Overall lengths: Class $A, 2-11 / 16$ Class B, 3.1/2": Class C,
4.5/16"
- Iransmit power either way to 100:1 ratios
- All aluminum housing
- Servo or foot mounted
- Concentric ball-bearing input and outpul shafis
- Hardened steel spur gears
- Permanent lubrication
- Prompt delivery on production or experimental models

ONE WEEK DELIVERY
Write for Bulletin 97

NSTRUMENT COMPANY 460 Lincoln St., Denver 3, Colo. (n yonn . chicago . deteor .

CLUTCH ASSEMBLY AND ACTUATOR.-Model CK-1 for intermittent unidirectional control of airborne rotating components over wide environmental extremes. Actuate time, 3 msec at 60 rpm ; release time, 2 msec at 60 rpm ; total weight, 4 oz .
Abrams Instrument Corp., Dept. ED, 606 E. Shiawassee St., Lansing 1, Mich.

CIRCLE 442 ON READER-SERVICE CARD

DESOLDERING TIPLETS.-The Triangle tiplet melts solder from leads which are in a triangular pattern; the $1 / 8 \mathrm{in}$. diameter Offset Slotted tiplet straightens leads and tube tabs, melts and removes excess solder on wire connections; and the Cube tiplet melts solder and removes center pins of tube sockets and harness leads.
Ungar Electric Tools, Inc., Dept. ED, 4101 Redwood Ave., Los Angeles 66, Calif.

CIRCLE 443 ON READER-SERVICE CARD

CONTROL AND POWER CABLE SUPPORTS.Aluminum or steel series 2SB supports have 9-11 gage expanded mesh bottom made to any width. Mesh permits easy handling and inspection, reduces electrical losses.
Chalfant Products Co., Inc., Dept. ED, 11525 Madison Ave., Cleveland 2, Ohio. CIRCLE 444 ON READER-SERVICE CARD

EXPANDED SCALE FREQUENCY METER.Rugged military field unit with 397 to 403 cps range, 0.1% accuracy. Occupies about 10 cu . in.

American Machine \& Foundry Co., Alexandria Div., Dept. ED, 1025 N. Royal St., Alexandria, Va. circle a4s on reader-service card

PRESSURE CONTROL.-Type AP-153 is 4-1/8 x $3-1 / 8 \times 2-7 / 8 \mathrm{in}$., weighs $1-3 / 4 \mathrm{lb}$. Range, adjustable from 1 to 20 psig; contact rating, $4 \mathrm{amp}, 115 \mathrm{v}$ or 2 amp, 230 v . For applications involving air or gases.

The Mercoid Corp., Dept. ED, 4201 Belmont Ave., Chicago 41, Ill.

CIRCLE 446 ON READER-SERVICE CARD

UHF HORN.-High power dual frequency primary feed for radio telescope antennas. Operates at 400 and 650 mc ; has 75 ohm input impedance. Can be oriented at 0,45 , and 90 deg.

The Gabriel Co., Gabriel Electronics Div., Dept. ED, 135 Crescent Rd., Needham Heights, Mass. CIRCLE 447 ON READER-SERVICE CARD

PRESSURIZATION PACKAGES.-Complete dry-air systems incorporating compressor, accumulator, dryer, manifolding, and instrumentation. For military use.

Trinity Equipment Corp., Dept. ED, Cortland, N.Y.

CIRCLE A4B ON READER-SERVICE CARD

TRANSISTOR CIRCUITRY Engine ing "know how" AND PRODUCTION

- How to get the optimum performance and reliability from an electronic component is often directly related to research and engineering "know-how" of transistor circuitry.
The Acme Electric research and engineering staff have a wealth of experience to develop assemblies in this specialized field of manufacturing. A letter outlining your problem will have our prompt attention.

ACME ELECTRIC CORPORATION

- 07 WATER 8 T.

CUEA, N. Y.'
West Coast: 12222 Yuken Avanue - Mawthorne, Callf.

USE ELECTRONIC COUNTERS AS DIGITAI VOLTMETERS with SYSTRON'S NEW MODEL 1230 VOLTAGE IO TIME CONVERTER

FEATURES:

PROVIDES:

All-Electronic System

- 10 Millisecond Conversion
-. 05% Accuracy

The development of Systron's new Model 1230 now makes it possible to convert any existing period or time counter into a precision high speed digital voltmeter. Connects directly to Systron Models 1010, 1040, 1043 and 1031 to provide an IN-LINE readout ($\pm 10,000$) of DC voltages.
Systron manufactures IN-LINE Counters for laboratory, military and industrial applications, as well as complete Data Processing and Control Systems tailored to meet individual specifications.

Write today for complete specifications of Model 1230

CIRCIE 450 ON READER-SERVICE CARD

These operational configurations comprise a representative selection of Tamar "hardware" designed and tested to meet all military and industrial specifications.

TAMAR ELECTRONICS, INC. 2339 COTNER AVENUE - LOS ANGELES M, CALIFORNLA circle 45I on reader-service casio

Here Is The Answer To Every COIL FORM REQUIREMENT

High dielectric kraft, fish paper, cellulose acetate, DuPont Nylon, Resinite and combination tubes for any electrical/electronic application.

Ask about our spocial mendril and fabricating services Request Arbor List and Bulletin today. Send specifications for free samples.

PRECISION PAPER TUBE CO.

 $205 S$ WEST CMARLESTON STREET - CMICAGO 47, ILL Plont No. 2: I flower Streep, Hartford, Conn. CIRCLE A52 ON READER-SERVICE CARD

Diode Kudos

Dear Sir:
Congratulations on your special report on diodes in the June 10 issue. It is truly a confusing problem, but we thought you might be interested in one approach we use to find our way through the maze.

As we do considerable design work for commercial applications as well as military, price is an important factor with us. We have found price often to be the best starting point in diode selection, starting with the cheapest diodes and working our way up, evaluating each as to whether or not they will meet the technical requirements. This is the reverse of the usual procedure, where unfortunately engineers are told not to worry about such mundane matters and leave that to the purchasing department.
To avoid the time and expense of getting quotations from those manufacturers too coy to publish their prices, we simply use an Allied Radio catalog as our reference, and ask for quotations only when we have narrowed down the selection.
We wonder if the dollar sign isn't being overlooked as a good yardstick?
R. W. Johnson, Chief Engineer The R. W. Johnson Co. Anaheim, Calif.

Dear Sir:
I certainly agree with the comments you have made in your letter of June 11th, relating to the problem of nonstandardization of diode types. The staff report on diodes in the June 10th issue of Electronic Design has certainly emphasized the complexity of the problem.

The EIA Standards Laboratory and the JEDEC activity are both turning their attention to the matter of standardizing test characteristics and tightening requirements for registering diode types. I hope that this activity will result in the elimination of many of the diodes currently on the market. Because of the nature of the support that EIA enjoys, it may be difficult for EIA to exercise direct veto power in this activity. It may be necessary for the Government to take the initiative of standardizing a very small number of diodes and rectifiers.

The need for standardization is obvious, and we
ha seen it done in many other component fields.
Yi are to be commended for this initiative. I
to these efforts prove to be fruitful.
Charles Weyl, President International Resistance Co. Philadelphia. Pa.

Missing Credit

L) ar Sir:

We have read with great interest the article, "How to Get Ahead, The Do's and Don "t" in your June 10th issue of Electronic Design. We have frund a close resemblance in ideas, format and in fact sentence structure between Mr. Kaufman's puper and "The Unwritten Laws of Engineering," witten by W. J. King and copyrighted by the American Society of Mechanical Engineers in 1944.

We feel there should be an explanation. Please give credit where credit is due.
R. E. Schulz F. W. Vortmeier St. Louis, Mo.
A credit line was missing from Mr. E. N. Kaufman's article, "How To Get Ahead, The Do's and Don't" (ED, p 76, June 10), which indicated that the material was adopted from Mr. W. J. King's, "The Unwritten Laws of Engineering," This inadvertent omission is indeed unfortunate since one of Mr. King's points was that credit should always be given to the originator of ideas.

IR Detector Developed by NRL

Dear Sir:
We appreciate your efforts in bringing your readers the latest available information on products. They must certainly consider it a valuable service.
In your coverage of the new infrared detector (ED May 13, p. 229), now available from PerkinElmer, it was unfortunate that mention of the Naval Research Laboratories was excluded.
The Naval Research Laboratory invented the detector, and did the primary development of it before we get involved in the manufacturing side of the device. The new detector represents a significant advance in infrared instrumentation, and as such NRL very much deserves the credit for it. Further, the illustrations which accompanied the release were provided us by NRL
I hope it will be possible for you to call attention to this credit in a subsequent issue of Elecimonic Design.

Charles C. Dayton Public Relations Manager The Perkin-Elmer Corp. Norwalk, Conn

DEUTSCH DM SERIES MINATURE

For complete technical information, contact your Deutsch Representative or write us for data file C-71

- quick disconnect
- environmental
- unique ball-lock coupling
- moisture sealed
- vibration dampened
- continuous dielectric separation without voids
- positive lock without safety wiring
- operation to $250^{\circ} \mathrm{F}$.

See us at WESCON, Booth 611-613
The Deutsch Company
7000 Avalon Boulevard - Los Angeles 3, California

PRECISION TRIMMERPOTENTIOMETERS byTIC
are standard in twelve different styles and each in a wide range of resistance values. The extensive use of trimmers in such applications as airborne, shipborne and ground based military electronic equipment for navigation, flight control, fuel control, radio transmission and reception, telemetcring, computers, fire contiol and many others demands reliability and stable operation under severe environmental conditions. IIC: quality-control procedures and environmental testing assure the user of the ultimate in dependable trimmer potentiometers.

TWELVE IMPORTANT CHOICES - six low type and

six rotary type multiturn and single turn with wirewound or metallic film resistance elements, high temperatureresistant construction, varied mounting methods, and

sizes ranging from micro-miniature to the size of a quarter in diameter, permit the design engineer optimum freedom to select the unit best suited to his application. Special designs may be readily accommodated by TIC engineers.

TECHNOLOGY INSTRUMENT CORPORATION

Technology Instrument Corp. ol Caliif.
North Hollywood Calif
North Hollywood, Caliif.
Acton Laboralories. Inc., Acton, Mass.
Tucson Instrument Corp., Tucson, Ariz. Servotrol. Inc., Chicasp. ill.
Altomac Corp., Conion, Mass.

555 MAIN STREET
ACTON, MASS.

LETTERS

Did We Do That?

Gentlemen, gentlemen!
I appreciate your consideration for my suggestion, as exhibited by your willingness to sign a ten dollar check and to publish the idea in your Ideas for Design Department. I rather suspect, however, that those of my acquaintance who happen across this item in your February eighteenth issue will not come away with an elevated opinion of my coherence.

As you have printed my words, they have been rearranged so as to intermix the note of hope
can be simplified."), the cry of doom re the other circuit ". . . the output will be a stepnot a pulse") and the description of the operation of the circuit I suggested. The confusion is heightened further by your reference to my circuit (Fig. 3) in the midst of the section explaining why the other circuit (Fig. 1) will not work.
M. L. Aitel

Radio Corporation of America Defense Electronic Products Moorestown, N. J.

Idea for Design is Good, But Not New

Dear Sir:
Mr. A. M. Goldschmidt, in his Idea for Design, "Pentode Cathode Follower for Low-C Probe," in the May 13, 1959 issue, is not new.

We have been making a low input capacity cathode follower (called the Bridger), using this philosophy, for about ten years. It has been widely used for audio circuit and component research, and in test equipment for certain types of analogue computers. We have attained a voltage ratio of 0.996 , which allows an input capacity of $1 \mu \mu \mathrm{f}$ (all strays). Frequency range is 2 cps to 1 mc .

In one respect we have added an improvement: the same philosophy may be used to reduce the effective capacity of an input cable. Thus we are able to enjoy a cable input capacitance of little over $1 \mu \mu \mathrm{f}$ at the tip of a three foot cable; adding the follower capacitance to the cable's produces an overall total of little more than $2 \mu \mu \mathrm{f}$.
C. J. LeBel

Audio Instrument Co., Inc.
New York City, N.Y.

Communication Centers Proposed

Dear Sir:
Keeping up with the latest technological and scientific advances is a difficult feat for most engineers and technicians today. The latest progress in the industry is reported by numerous trade

Temperature Control Within $\pm 0.3 \mathrm{C}$

Using the meniscus as his guide, an operator at Shockley Semi-Conductor Laboratories pulls a silicon crystal for use in the development of a fourlayer diode while L\&N's Speedomax G C.A.T. control system holds temperature of the melt within ± 0.3 degree!

Precise and completely dependable, this control system continuously regulates the output of an induction gen erator through a magnetic amplifier and saturable core reactor . . . and, if desired, can be used with an external program unit.
This system is helping not only Shockley Laboratories but also many other investigators, suppliers and producers of electronic equipment to grow crystals of consistently high quality.
Process Data Sheet 660(1) will bring you more information on $\mathrm{L} \& \mathrm{~N}^{\prime}$'s temperature control for crystal growing. But no matter what your instrument needs-when quality counts, it'll pay you to see your L\&N field engineer. Write your nearest L\&N office or 4908 Stenton Ave., Phila. 44, Pa.

Expanding the Frontiers of Space Technology in

ELECTROMECHANICAL DESIGN

- Lockheed Missiles and Space Division has complete capability in more than 40 areas of science and technology. As systems manager for such projects as the Navy POLARIS FBM; DISCOVERER Satellite; Army KINGFISHER; Air Force Q-5, X-7 and $\mathrm{X}-17$, the Division is heavily engaged in all phases of design and packaging.

ENGINEERS AND SCIENTISTS
If you are experienced in electro-mechanical design or packaging with specific knowledge of electronic packaging; wiring design; harness assembly; ignition and separation systems design or auxiliary power systems design, we invite your inquiry.

Write: Research and Development Staff, Dept. G2-21,962 W.El Camino Real, Sunnyvale, California. U.S. citizenship required.

Lockheod

MIBSILES AND SPACE DIVISION

Sirtems Manazer for the DISCOVERER SATELLITE Army KINGFISHER: Air force Q-5 and X-7 sunnrvale, palo alto. van murs. santa chuz, santa maria. califo
CApE Canaveral. flomida alamogondo. new mexico e Mawail

Please write direct to advertiser mentioning ELECTRONIC DESIGN
journals, but important changes are not conveyed immediately to those most directly concerned. Lack of immediate communication of technical news is in evidence partly because engineers have little time to read all that is required and tend to read only those journals pertaining specifically to their field of specialization. More importantly, management has failed to realize the importance of a good communications program. The solution suggested is the establishment of "Specialized Information Centers" which would offer a newsletter digest of the latest technological and scientific advances to engineers and technicians on a weekly, bi-weekly or monthly basis. Newsletter services are in existence but most of them are directed to management, not specifically to the engineer.
While the federal government has a translation and publications programs pertaining to technical literature, the engineer must rely on the daily supply of trade journals for the most current technical data as against assistance in conducting research work. To meet the need of rapid communication, management can adopt several plans. One idea is the establishment of technical libraries with the job of publishing newsletters. Another method would be to allow one day per week for engineers to read magazines, but this seems highly impractical. An alternative method would be to assign an engineer within a different group each week with the full time task of reviewing current journals and abstracting items of general interest, compiling the items into a newsletter and distributing it to members of the group. This method may be inexpensive and particularly suitable to highly specialized groups.
However, the author believes that "Specialized Information Centers" offer maximum advantages, as experienced by a West Coast industry some time ago. A monthly publication was issued to approximately 1800 engineers and technicians. One engineer-editor worked full-time and utilized a clerk-typist assistant part-time. The editor screened more than 40 trade journals per month, abstracting the latest and most pertinent facts, and supervised publication and distribution. In the interim, he maintained close departmental coordination which enabled him to be on the lookout for any special items that an engineer or technician might find useful in answering a research problem. The program was very well received by the engineers receiving the company publications. Richard Paulson, Consultant La Jolla, Calif.

> 350 ANSWLPS To RFI: Shield.ting Problems-

Tecknit Standard RFF" Strips

*Radio Frequency Interference

Solve over 80% of your RFI gasketing problems with this new Tecknit folder that lists 330 Standard RFI Strips of different sizes, shapes and materials. And-you'll save time, trouble and money by choosing the right standard strip from this wide selection to fit the application - not by changing your design to fit the strip.
If your requirements cannot be met by standard strips, call on Tecknit's exclusive Technical Design Service for engineering help with special problems. The services of RFI specialists are available

Use the coupon to get a tabulated blueprint solving most of your

Technical Wire Products, Inc. 45 trown Avonvo, Springolold, N. I. 1 .

\square Please send me the complete Data File fo Designs, including NEW tabulated folder. \square I have Data File, just send folder.

in electronic equipments

No need to spend valuable time and money in procuring filters and designing filter boxes to cool your electronic equipment. Now...from Rotron, a high performance combination of a Saucer Fan and matched filter box that delivers 240 CFM at free delivery. Filter box utilizes a media P96A high velocity, high efficiency viscous impingement filter incorporating RF shielding. Metallic and permanent, filter is completely washable. Frame and filter are one piece assemblies for quick removal and cleaning.
The Saucer Fan's pressure performance is tailored to filter requirements with suitable pressure building capacity to overcome impedance of. filter and back pressure associated with packaged equipment. The Saucer Fan measures only $1.11 / 16^{\prime \prime}$ in depth and is designed for operation at 115 VAC, 50.60 CPS, 1ϕ, and will meet all applicable military specifications.

Whte for detalled iatermation on soucer Fon/Fither Box to...

 ROTRON mfg. co., inc.
 In Canada: The Hoover Co., Lid., Homitton, Ont.

LETTERS

How Toxic Are Teflon Fumes?

Dear Sir:

In the April 15, 1959 issue of Electronic DeSIGN there is an article "Blow Out Old Solder" that could cause injury should the method be used.

The article describes the removal of solder from solder terminals by heating the terminal, placing one end of a short length of Teflon tubing at the terminal and blowing through the other end.

This method is excellent as long as the Teflon is not elevated in temperature. When Teflon is heated above 400 deg F , toxic fumes are produced and the volume of fumes produced increases with increasing temperature.

Soft solder has a melting range of 200 to 600 F while intermediate solder has a melting range of 600 to 1100 deg \mathbf{F}. Therefore, it is highly possible that toxic fumes could be produced.
W. G. Funke

Sperry Microwave Electronics Co. Clearwater, Fla.

Dear Sir:
You may not have noticed giving dangerous advice in your Idea for Design "Blow Out Old Solder." The author recommends ". . . After heating terminals with a soldering iron, place one end of a length of Teflon tubing at the terminal and blow through the other."
Perhaps you should warn your readers of this procedure. Cleaning terminals by blowing the molten solder away is a good old practice. But beware of using Teflon tubing for this purpose.
In the present application, it is not at all necessary to introduce this hazard.

Klaus H. Jaensch
Stromberg-Carlson Co. Rochester, N.Y.

- We thought it was quite safe to "Blow Out Old Solder." But just to make certain, we asked the people at DuPont. They know quite a bit about Teflon. Here is their reply.

Dear Sir:

Thank you very much for the opportunity of commenting on "Blow Out Old Solder" in Ideas For Design. The idea certainly is a cute trick for accomplishing what I, for one, have found to be an exasperating and messy job.

Regarding the safety aspect, it does not appear that there is any real hazard here at all. Since this is a practical problem, we have to be practical in assessing the situation and consider all relevant factors. Some of these are the temperature and amount of heated "Teflon" and the length of exposure to fumes.

Flush fit on both sides of alu. minum sheet to provide permanent tapped holes.
Available in Five sizes for use in metal thickness from 1/16"up - in thread sizes from 2. 56 up. No special tooling required. Drilled or Punched round hole $=.002$ only requirement.
MATERIAL: Stainless steel 303 as per MIL S-853A.
FINISH: Passivated as per MIL P-12011.
Four additional types also available, including one type which provides a permanent thread in thin aluminum that meets MIL SPECS P-11268, E-5400 and E-16400. A com. plete line of CAPTIVE STUDS is also available.
Write, wire or phone for complete specifications.
NATIONAL COMPANY, INC.
National
SINCE $1914>$ Malden 48, M23
CIRCLE 458 ON READER-SERVICE CARD

FLOATING ZONE UNIT FOR METAL REFINING AND CRYSTAL GROWING A new floating zone fixture for the production of ultra-high purity metals and semi-conductor materials. Purifica tion or crystal growing is achioved by ravarsing a norrow molten zone along the longm of the process bar while it is being ops Designed primarily form inert gas. Dosigned prim HCP fors pro vides great flexibility for laborotory vides.
studies.

Model HCP

Let's consider a typical practical case and suppose that we have a length of 22 gauge spaghetti tubing, preferably about three feet long (if you do not want your nose in the wiring every time you use it). Suppose, when you blow out solder, a length of one inch of the tubing is heated to 700 F and remains at this temperature for 30 seconds on each application.
Among the Teflons, Teflon 6 resin, at 700 F , has the relatively high weight loss of 0.032 per cent per hour. A foot of this tubing weighs about 0.75 gram so our hot one inch length weighs about 0.06 gram and the quantity of vapor released per application is 0.06 (gram) x 0.032 ($\% /$ hour) $\times 30$ $(\mathrm{sec}) / 3600(\mathrm{sec} / \mathrm{hr})=1.6 \times 10^{-7} \mathrm{gram} /$ application.
Now, let us assume that these vapors are dissipated into one cubic foot of air or about 0.028 cubic meter. The concentration of decomposition products in the air is then 1.6×10^{-7} (gram)/0.028 (cu meter $=0.006$ milligram $/$ cubic meter .

This concentration is decidedly insignificant in the light of a considerable amount of experimental evidence which shows that in short time exposures (15 to 60 minutes) to Teflon heated to temperatures of 350 C and higher, test animals are not affected until the concentration of decomposition products exceeds about 700 milligrams/cubic meter.

This is more than 100,000 times the concentration we calculated for blowing out the solder. Calculations are, I feel, made on extremely conservative assumptions, especially the assumption of the 700 F temperature of one inch of spaghetti. I think, however, these serve to demonstrate that this is not a hazardous practice.

A word about the use of Teflon generally: the DuPont Company furnishes literature on safe handling of Teflon TFE-fluorocarbon resins primarily for the guidance of processors who daily handle large quantities of Teflon at temperatures of 650 to 735 F . These operations require proper ventilation precautions as with handling other plastics, elastomers, paints, etc.
Safe handling of Teflon in fabrication has been effectively demonstrated by the fact that in the twenty-year history of the product there has never been an injury attributed to the products evolved from heated Teflon.
In normal end-use applications rarely are special safety precautions required. This is because the quantity and temperature of the resin, in combination, are rarely toxicologically significant. In special end uses where it is necessary to use TFE resins continuously above their 500 F upper service temperature some ventilation may be advisable.

G. R. Snelling
 Polychemicals Dept.

E. I. DuPont de Nemours \& Co. Wilmington, Del.

SEE US AT WESCON BOOTH \#2811

lifelong association with quality

Lavoie test instruments are known and relied upon right around the world. Superlative design, consistent reliability and the industry's prime order of accuracy are the ingredients which continue to stamp all quality instruments bearing the Lavoie name.
Here are four representative units, each of which invites your trial and the beginning ... or continuation invites your tria and the beginnito . or or the Lavoie standard of quality.

LA 302 ROBOTESTER Provides the immediate profits of the eutomated approach to volume
testing as well as for unique ino testing as well as for unique in-
dividualized test programs. Highspeed sampling, gono-go indication with
isolation.

LA-70A FREQUENCY METER Frequency measurements from 20
mc to 3000 mc with $.0001 \%$ acme to 3000 mc with. 0001% ac-
curacy.
 light in weight for ease in port-
ligity. Ideally qualified to accomability. Ideally qualified to accom-:
modate stringent FCC communicamodate stringent FC.

Technical literature describing these units in detall is avallable on request. Detalled technical data may also be supglied on a selection fled line of quality test equipment for laboratory and plant.

GAIN AT HIGHER FREQUENCIES

with Westinghouse distributed amplifiers

The new Westinghouse Match Box Tubes provide distributed amplifiers with response to 550 MC .

Match Box tubes surpass conventional tubes in high frequency performance and resistance to vibration. Tubes lie flat . . . no height problem . . . eliminates sockets, fits printed circuits.
Westinghouse Distributed Amplifiers can be designed with various frequency pass bands. They're especially suited for electronic coun-
ter-measure circuits and for high-speed, highfrequency oscilloscopes. We'd welcome the opportunity to design and build your Distributed Amplifiers.

Characteristics wx36e3

Heater 6.3 Volts Plate current Transconductance Plate Voltage
0.2 amperes 8 milliamperes 5100 micromhos 180 volts Write for complete information.

you can be sure...ir ris Westinghouse

 CIRCLE 461 ON READER-SERVICE CARDDeutc. Company, The 185
Dow (...ming Corp. 130, 131
DuMow. Allen B.,
Dud. rule Div 174
175
Duiloni. Allen
Instrimient Div,
Du Pount. E. I. de Nemours \& Con., 86
ESC. (urporation 139
Eastwiull Kodak Company-Graphic Arts 180
Eitel-NicCullough, Inc. (Eimac 148
Electric Hotpack Co., Inc. 140
Electro Instruments155
$+\quad 27$
Electro-Measurements, Inc 23
Electronic Tube Div., Sperry Gyroscope Co.
Div. of Sperry Rand Corp172
Emerson Electric Mfg. Co. 108
Enginetred Electronics Company 153
Envellhard Industries, Inc 24.25
Epoxy Products Inc. 57
88
Epscc. In
Epscc. In 119
Fairchild Semiconductor Corn 68
Federal Electric Corp. 94
Ferranti Electric Inc. 44
Feroxcube Corp. of America 122
Forbes \& Wagner, In over II
G-V Controls, Inc,1
90Gamewell Company$\begin{array}{r}90 \\ \hline\end{array}$
General Ceramics Cor39
Cenel Eletric Co 92General Electric Co., Light Military
General Electric Co., Light Milit
Adlanced Electronic Center
General Electric Co., MetallurgicProducts Dept.97
56Ceneral Electric Co., Ordnance Dept
Gencral Electric Co., Panel Instruments29
General Electric Co., Receiving Tubes Dept. 146
General Instrument Corp.
Gencral Magnetics, Inc. 47
160
Gencral Mills, Inc. v. 96
Gencral Motors Corp., AC Spark Plug Div.
Gencral Radio Co. 17. 120
General Transistor Corp. Genisco, Inc 178
Gorin Electric Co. 180
Grant Pulley \& Hardware Corn. 180
Grastill, Inc. 120
Grio Reproducer Corp. 118
HR" Singer, Inc. 115
Hev lett-Packard Company 85
He es Aircraft Co 61, 100
IIILB is Condenser Co 162
Ind 'ion Motors Corp.
Ind 'ion Motors Corp. ${ }^{91}$
Ind vion Motors of California 30

Some Ideas
 for your file of practical information on drafting and reproduction from

One of the ways to judge a skilled craftsman is by the tools he uses. They're invariably the best he can find - chosen to lighten his work, sharpen his skills. And if the craftsman is a draftsman. they are more often than not. products of $K \& E$.

It may be that some of these products have escaped your attention (after all, we offer something over 8000 items). That's why we suggest you pay a visit to your K\&E dealer whenever you can. It's a liberal education on what's new - as well as what's tried and true - in drafting equipment.

You'll find many products like these which can be highly useful in your work

K\&E "Quick Set" Bow Compass

The most remarkable feature of this compass is the speed and ease with which you can change settings-from diameters of 12 inches to $1 / 16$ inch. With one hand, you can increase or decrease radii instantly and exactly. To go from small to larger radius just press a spring release, and the legs wil
leg pencil compass, and the N 1070 com bination with interchangeable pen and pencil inserts. Both come with a box containing leads and spare needles. And with the N1070, a pen handle is provided for the pen insert which permits its use as a ruling pen. The compass can also be used as a divider by substituting one of the spare needle points for the lead in the pencil insert.

Marathon ${ }^{8}$ Ruling Pens

K\&E Marathon Long Line and Wide Line Ruling Pens (1092) hold an extra large

ink supply - draw lines up to eight times longer than ordinary ruling pens. And because they are pre-set. line widths are always uniform. easy to match with com plete accuracy. Ink flow is regular and even. lines are always sharp and clean edged.
An important feature of $\mathrm{K} \& E$ Marathon Ruling Pens is that they will not leak. They can be laid on the work surface without risk of ink flowing out. That means you can fill several pens of different widths use them as freely as you'd use pencils. They're easy to clean, too.

K\&E Marathon Long Line Ruling Pens are available individually in line widths of .006, .009, .013, . 020 inch - or in sets of three pens in line widths of $.009, .013, .020$ inch in a Leatherite case. Marathon Wide Line Ruling Pens come in line widths of .030 and .060 inch.

Leroy ${ }^{\text {® }}$ Hoight and
 slant Control Scriber

A versatile new Leroy scriber is now available which greatly expands the variety of lettering possible from a standard Leroy template.

Now, with the new Height and Slant Control Scriber (3237-12), you can form characters from vertical to slanting at any angle up to 45 forward. You can vary height from vary height from
60% to 150% of the size of letters the size of letters
on the template on the template
used. The widith of letters remains the same.

Combinations of height and slant can be set quickly and easily. You just loosen the knob. move the scriber arm to the desired combination of height and slant, and tighten. That's all there is to it.

Stop in to see your nearest K\&E dealer and ask to see these three products-small, perhaps, but mighty handy in the drafting room. Or drop us a line by mailing the coupon below ...
expand automatically. Stop approximately where you want. and make precise adjustments with a micrometer screw. To go from large to small, simply squeeze the legs of the compass together, then adjust precisely.
The K\&E Quick Set combines the rigidity and precise adjustment of a standard bow compass. the simplicity and speed of a friction type compass, plus the finger tip control of K\&E's unique design. You have to try the Quick Set to appreciate it fully. Two types are available. The N1071 fixed

KEUFFEL ESBERCO., Dapt. ZD-7, Hobokon, N. J.

I'd like more information on:
\square K\&E Quick Set Compass
\square Marathon Ruling Pens
\square Leroy Height and Slant Control Scriber
\square Please send me the name and address of my nearest K\&E Dealer,

Name \& Title
Company \& Address

IRCLE 462 ON READER-SERVICE CARD

Ele -TRONIC DESIGN • July 22, 1959

The Landing of the Puritans

On the banks of Gitchic Coomie, Lake the white men call Atlantic Heap big redskins going frantic, Radar got no Bomac tubes!*

See the Pilgrims land on rock there! See them cross the sky blue water! Redskins know they hadn't oughter, But radar got no Bomac tubes!

Beat the drum, call heap big powow Call the braves from heap big teepee, Get um chief to put on toupee Radar got no Bomac tubes!

Fixum Cavity, Bald Eagle! Get um faulty Klystron going! Heap big white men come a-rowin And radar got no Bomac tubes!

Storm Cloud, get those fingers flying! Mend with rawhide, patch with sticks Too late now to get um "fix" Radar gor no Bomac tubes!

Redskin radar rests in ashes,

White men use um wood for fire, now. Price of real estate is higher now. Radar had no Bomac tubes!

On the banks of Gitchic Coomie Different people now are living, Every year they give Thanksgiving Radar had no Bomac tubes!

No. 15 of a series... BOMAC LOOKS AT RADAR THROUGH THE AGES

*
Today, Bomac malies the finest microwave tubes and components since the Pilgrims landed

Leaders in the desiga, development and manufacture of TR, ATR, Pre-TR tubes; shutters; reforence cavities; crystal protectors; silicon diodes; magnetrons; klystrons; duplexers; pressurizing windows; noise source tubes; high frequency triode oscillators; surge protectors.

- поmac 1959

Oincos in majur allies-Chicago - Kansas City - Los Angeles - Dallas - Dayton - Washiagton Seattle - San Francisco - Camela: R-O-R Associates Limited, 1470 Don Mills Road, Don Mills Ontario - Eqpert: Maurice I. Parisier, $741-745$ Washington St., N. Y. C. 14, N. Y

Advertiser

International Business Machines Corp. International Electronic Research Corp International Instruments, Inc.

Joy Mfg. Co.

Kahle Engineering Co.
Kay Electric Co.
Kearfott Co., Inc., Little Falls Div. Keithley Instrument Co. Kepco Laboratories
Keuffer \& Esser
Keystone Products
Kingsley Machine Co.
Knights, James Co., The
Krohn-Hite Corp.
Lambda Electronics Corp.
Lavoie Laboratories
Leach Corp.
Leeds \& Northrup Co
Lepel High Frequency Lahoratories, Inc
Lockheed Aircraft Corp., Missile
Systems Div.
Lord Mfz. Co.
M B Mfg. Co.
McLean Engineering Laboratories
Machlett Laboratories
Marion Instrument Div., Mimeapolin Honeywell
Melpar Inc.
Methode Mfg. Co.
Metron Instrument Co.
Metronix, Inc., a Subsidiary of Assembly Products. Inc.
Micro Switch, Div. of Minneapolis-
Honeywell
Microwave Assocs., Inc.
hilliva Div. 1 Co Elecrind

. minneapolis-Honeywell Co., Transistor Div. 6
Minnerota Mining \& Mfg. Co.
Uinnesota Mining \& Mfg. Co., Chemical
Products Div.
Modine Mfg. Co.
Moeller Instrument C 0 .
Molex Products Co.
Mullard Ltd.
Mycalex Corp. of America
NJE Corp.
National Carbon Co

1. Con 166
, 43
Nainal Co.
New Enyland Instrument Co.
North Atlantic Industries, Inc.

Ohnoite Mfr. Co.
Perfection Mica Co.
Philco Corp., Government \& Industrial Div. 102 Philco Corp., Lansdale Tube Div. 7, 48, 58 Potter \& Brumfield Potter Instrument Co.
< CIRCIE 463 ON READER-SERVICE CARD
 UTC NEW
EXPANDED

SERIES
 4

Huder Corp, of America, Semiconductor
Radio: (orrp. of America, Designers Enter-
Hatthom Mfy. Co., Semiconductor Div
Rew wo-lluffiman Div., Dynamics Corp.
Kluwn Mfe. Co.
Rutrui Mr. Co.
Real UcBee Corp.

Schwellerr Electronics
Sigma، lustruments
Wid stite Electronics C
Suremwin \& Co., Inc.
Spectrol Electromics Curl
irn semiconductor Dic, of Sperry
Rand Corp

- Crimin
siltamia Electric Products, Inc.. 152-171
Semiconductor
Sylvania Electric Products, Equipment ${ }_{\text {Div. }}$
mitrum io. Inc
istron Corp.

TIKK Electronics Co . Lte
Tamar Electronics, Inc.
Technulow Intrument Corp.
rexin Intruments. Inc. 10. 20, 21, 172 Thermecal. Inc
Timerman Products, Inc
awiden ther
Tinus-Sol Electric. Inc

Unitel Aireraft Products, Ine.
(nitel Transformer Corn.
Tutcok Corp.

Irater Electronics Co.
Vitra min, Inc.

Wian Leomard Electric Co.
"Heal wor Co.
thouse Electric Corp., Electronic
thouse Electric Corp., Industrial
Ine.

Co.

RCA-2N1300 and 2N1301

Low-cost $\mathrm{A} \equiv \equiv \Delta$ COMPUTER TRANSISTORS

Now in quantity production... and available!

RCA-2N1300 and 2N1301 Germanium Mesa Transistors offer hese 10 major benefits to designers of switching circuits. And hey're ready for you now!
rugged Mesa structure-permits extremely small base width to insure top performance at high frequencies
fast switching times with low values of base input current-made possible by high frequency response and low total stored charge high current gain-permits high fan-out ratios (number of paralleled
similar circuits per driver-stage output)
high breakdown voltage and punch-through voltage ratings-the result of
the diffusion process
high power dissipation- 150 milliwatts at $25^{\circ} \mathrm{C}$-aids in the design of high power diss
reliable circuits
reliable circuits
rugged overall design-units have unusual capabilities to withstand severe drop tests and electrical overloads
electrical uniformity-a result of the diffused-junction process used by RCA in the manufacture of Mesa Transistors
especially well suited for use at pulse repetition rates up to 20 Mc exceptionally well suited to applications in saturation-type switching circuits
nformation on RCA-2N1300 and 2N1301 Low-Cost Mesa 'ransistors is available from your RCA Field Representative. or technical data, write RCA Commercial Engineering, ection G-18-NN2.

$\begin{aligned} & \text { RCA } \\ & \text { TYPE } \end{aligned}$	Maximum Ratings ${ }^{\text { }}$ Absolute-Maximum Values						Characteristics: Common-Emitter Cricuil, Bass Inpul Ambiem Tampeature of $25^{\circ} \mathrm{C}$		
	Collector to-8ase Volts	Valls	Collacter Millamperis	Irmasistor Dissipatien - mw			Minimun DC Current Gain		$\begin{gathered} \text { Guin } \\ \text { Bendwadth } \\ \text { Produce } \\ \text { Mc } \end{gathered}$
				${ }^{1} 25^{\circ} \mathrm{C}$	at $55^{\circ} \mathrm{C}$	at 110 C	$\begin{aligned} & \text { al covlector } \\ & \mathrm{ms}=-10 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { at collacter } \\ m s=-40 \end{array}$	
2N1300	-13	-1	-100	150	75	35	30	-	40
2N1301	-13	-4	-100	150	75	35	30	40	60

Osc, lloscope wave fogm snows typical delay.rise. Storage. and rall times achieved wht $10-\mathrm{ma}$ in-
verter circuit utilizing the RCA-2NIBOI MESA transistor.

SEMICONDUCTOR AND MATERIALS DIVISION
SOMERVILLE, N. J.

RCA FIELD OFFICES:

- Newark 2, N. J., 744 Broad Street HUmboldt 5-3900 Chicago 54, Ill., Suite 115 Merchandise Mart Plaza WHitehall 4-2900
Los Angeles 22 Calis
6355 E . Washington Blvd.
RAymond 3.8361
- Detroit 2, Mich., 714 New Center Bldg. TRinity 5.5600
Needham Heights 94, Mass., 64 "A" St HIllcrest 4.7200
GOVERNMENT SALES
- Newark 2, N. J., 744 Broad Street HUmboldt 5-3900
Dayton 2, Ohio, 224 N. Wilkinson St. BAldwin 6-2366
Washington 6, D.C., 1625 "K" St., N.W. DIstrict 7-1260
ALSO AVAILABLE THROUGH YOUR LOCAL RCA SEMICONDUCTOR DISTRIBUTOR.

[^0]: Beckman
 Berkeley Division
 2200 Wright Avenue，Richmond 3，California a division of Beckman Instruments，Inc．

[^1]: CARBOLOY CEMENTED CARBIDES - MAN-MADE DIAMONDS - MAGNETIC MATERIALS - THERMISTORS - THYRITE - VACUUM.MEITED ALIOYS

[^2]: CIRCLE 48 ON READER-SERVICE CARD

[^3]: Additional Projects Under Investigation at the Ordnance Department. Urgent, vital and engrossing as the Department's share in the Fleet Ballistic Missile Program is, it is just one of the diverse activities here that today offer engineers a progression of challenging assignments on: Attas Guidance Equip mont - Tales Handling and Lounching Equipmont - Advanced Terpedo Developmont - Tartar Fire Controi

[^4]: 1 Bell Syst. Tech., Journal 17, 19:38, p 5.92

[^5]: Bell Syst. Tech., Journal 17, 1938, p 5.92.

