

tumumiant

Concentrated Filter Passbands,
Part 1 22
In this, the first part of Mr. Schaner's three part article, he describes the characteristics peculiar to mechanical filters. He shows where they are used to best advantage. In parts 2 and 3 , he discusses the crystal filter and the LC filter.

Tiny Multiturn Potentiometer Uses Radical Construction (cover) 30
Unusual construction techniques provide this very small multiturn potentiometer with big pot performance.

Class B Complementary Symmetry Amplifier 32 Here is a discussion by RCA's C. Frank Wheatley of the application of the complementary-symmetry principle to the design of a Class B system. The author covers basic principles first, then shows how to achieve optimum performance of such a sys. tem.

Omni UHF and VHF Antennas 44
A. G. Hultum, Jr. discusses the unusual problem of eliminating signals in one direction from an omni-direstional antenna. His method applie; both to receiving and transmittin! antennas.

August 6, $1958 \quad$ Vol. 6
 Number

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letter head: Your name and engineering title, your company's main products, and description of your design duties The letter must be signed by you personally SITATES A RESTATEMENT OF THESE QUALIFICATIONS Subscription rate for non qualified subscribers- $\$ 15.00$ for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y

CONTENTS

Editorial	21	Drawing The Line in Computer Design
WESCON Show	20	WESCON Program
Meeting Report	56	Telemetering Industry Prepares for Frequency Band Shift
Engineering Review	5	Jupiter IRBM Re-entry
Washington Report	18	AMB Rises to the Challenge
Features	26	Application of Coaxial Bar Hybrids
	30	Tiny Multiturn Potentiometer
	32	Class B Complementary-Symmetry Audio Amplifiers, C. F. Wheatley
	38	Minimize Local Oscillator Drift, Part 2, W. Y. Pan, D. J. Carlson
	42	Relay performance improved by "Laying it on the line"
	43	Electromechanical Indicator for reliable readout
	44	Omni UHF and VHF Antennas, A. G. Holtum, Jr.
	48	High Input Impedance Transistor Amplifier, G. Franklin Montgomery
	50	Ferrites Can Be Replaced with Ytrrium-Iron Garnet
	52	Transistorized High Frequency Chopper Design, R. Roy
	160	Index of Articles January 8th through June 25th, 1958
Background for Designers	22	Concentrated Filter Passbands, Part 1, F. A. Schaner
Ideas for Design	172	Difference Voltmeter Uses Digital Techniques
Russian Translations	180	What the Russians Are Writing
German Abstracts	190	Loading the Transistor Oscillators
	191	Stabilized High Voltage Supplies
Abstracts	192	Electrostatically Focused TWT
	193	TWT Beam Focusing
	196	Thermo-Compression Bonding
Departments	20	Meetings 176 Report Briefs
	58	New Products 199 Careers Section
	170	Patents 200 Advertisers Index

ELECTRONIC DESIGN is published bi-weekly by Hayden Publishing Company, Inc., 830 Third Avenue, New York 22, N. Y., T. Richard Gascoigne, President; James S. Mulholland Jr Vice.President \& Treasurer; and David B, Landis, Secreatry. Printed of Hildreth Press, York, N. Y.i. Copyright 1958 Hoyden Publishing Company, Inc. 30,000 copies this issue.

Optimum performance

 in virtually all tape handling applicationsThe advanced dosign of the completoly transistorizod Pottor Model 906 Tape Handlor providos improved performance in virtually any rape handling application. Replaceable Capstan Panol permits use as Perforated Tape Reador with a remarkable new brake capable of stopping on the stop charactor at speods up to 1000 characters per second. Using a small vacuum loop buffor, Model 906 feotures:

- Complote front accossibility-single - Capable of continuous cycling at any panol construction
- Pinch rollers capable of 100 million
start-stop operations
- In-line threading, end of rape senso ing and tape break protection
Spoeds up to 150 ips
As many as 4 spoeds forward and reverse frequency from 0 to 200 cps withOut fultor
- Rowind or search at 400 ips
- 3 millisocond starts
- 1.5 millisocond stops
- Tape widths to $1-1 / 4^{\prime \prime}$
- Up to 47 channols
- All functions remotoly controllable

The 906 may be supplied with a transistorized Record-Playback Ampliner foaturing a separate module for each channol. Electronic switching from record to playback function is available as an optional feature.
Other Potter products include Transistorized Frequency Time Countors, Magnotic Tape Handlers, Perforated Tape Readers, High Speed Printers, Record-Playback Amplifiers and Record-Playback Heads.

POTTER INSTRUMENT COMPANY, Inc.
Sunnyside Boulevard, Plainview, New York
OVerbrook 1.3200
CIRCLE 2 ON READER-SERVICE CARD

NPN•PNP•NPN•PNP•NPN•PNP•NPN•PNP
4. Characteristics more constant over the entire $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ range
5. Low noise type available in both PNP and NPN
6. Made by the reliable fusion-alloy process

PNP SILICON TRANSISTORS Temperature Range $-65^{\circ} \mathrm{C}$ 1o $+160^{\circ} \mathrm{C}$	$\text { JеTEC. } 30$	Reverse Current at -20V				$\begin{gathered} \text { Base } \\ \text { Resistance } \\ \text { ohms } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Collector } \\ \text { Resisconce } \\ \text { kilohms } \end{gathered}\right.$	$\begin{gathered} \text { Noise } \\ \text { foivure. } \\ \text { fob (max.) } \end{gathered}$	$\begin{gathered} \text { collector } \\ \text { capacity } \end{gathered}$	Alpha Freq.Cut tofif KC
		$\begin{aligned} & \text { Collector } \\ & \mu \mathrm{A} \end{aligned}$	Emitter							
	2N327A	0.005	0.005	-40	15	1200	500	30	65	200
	2N328A	0.005	$0.005{ }^{\prime}$	-30	30	1400	500	30	65	300
	2N329A	0.005	0.005	-20	60	1500	500	30	65	400
	2N330A	0.005	0.005	-20	25	1300	500	15	65	250
NPN	$\begin{aligned} & \text { JETEC. } 30 \\ & \text { Type } \end{aligned}$	Reverse Current at 20 V		$\begin{aligned} & v_{c e} \begin{array}{c} \text { cax. } \\ \text { volls } \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{rc}} \mathrm{ave} \text { at at } \\ & \mathrm{IB}_{8}=0.5 \mathrm{~m} \mathrm{~m} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Base } \\ \text { Resistance } \\ \text { ohms } \end{array}$	CollectorResistance kilohms	$\begin{gathered} \text { Noise } \\ \text { Figure } \\ \text { do (max.) } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Collector } \\ \text { Copacity } \\ \mu \mu \mathrm{I} \end{gathered}\right.$	$\begin{gathered} \text { Alphaf Freq. } \\ \substack{\text { Uutoff } \\ \mathrm{KCC}} \end{gathered}$
		$\boldsymbol{C o l l e c t o r ~}_{\mu \mathrm{A}}$	$\underset{\mu A}{E m i t t e r}$							
1	2N619	0.005	0.005	40	15	2000	500	30	35	200
TRANSISTORS	2N620	0.005	0.005	35	30	2500	500	30	35	350
Temperature Range	2N621	0.005	0.005	30	60	2700	500	30	35	500
	2N622	0.005	0.005	30	25	2400	500	15	35	300

All ratings are for $25^{\circ} \mathrm{C}$ All types measured at $\mathrm{V}_{\mathrm{C}}=6 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$ For all types: Dissipation Coefficient in air, $0.35^{\circ} \mathrm{C} / \mathrm{mW}$; infinite sink, $0.20^{\circ} \mathrm{C} / \mathrm{mW}$.
(aAYTHEON) SEMICONDUCTOR DIVISION
$\underbrace{(\text { RAYHEN SEMICONDUCTOR DIVISION }}_{\text {Silicon and Germanium Diodes and Transistors • Silicon Rectifers }}$
Nowton, Mass..............5s Chapel St., Blgelow 4.7500 Now York:. 589 Fifth Ave., Plaza 9-3900 Chicagos 9501 Grand Ave., Franklin Park, NAtional 5.6130 Los Angoless 5236 Santa Monica Blvd., NOrmandy 5.4221 VISIT RAYTHEON BOOTHS 639-640, WESCON, Los Angeles

CIRCLE 3 ON READER-SERVICE CARD

Editor	Edward E. Grazda
Managing Edilor	J. A. Lippke
Associate Editors	L. D. Shergalis G. H. Rostky
Assistant Editors	T. E. Mount D. S. Viebig E. T. Blake M. M. Robinson B. Patrusky A. E. Takacs F. Muehleck
Contributing Editors	S. H. Hubelbank J. G. Adashko E. Brenner B. Bernstion
Editorial Assistants	M. S. Buckley D. M. Zuckerman
Ant Director	S. Sussman
Asst. Art Director	R. A. Schulze M. M. Zaum
Production Manager	T. V. Sedita
Asst. Prod. Manager	M. P. Hedrick
Production Assistant	C. D. Palmer
Business Manager	P. L. Canfield
Circulation Manager	N. M. Elston
Asst. Circ. Manager	A. C. Lovelt
Reader Service	J. Medina

CO-PUBLISHERS

T. Richard Gascoigne

James S. Mulholland, Jr

ADVERTISING REPRESENTATIVES

Advertising Sales Manager
Bryce Gray, Jr.
New York: Owen A. Kean
PLaza 1.5530 Blair McClenacha
Richard Parker
James P. Quinn Chailes C. Wadsworth

64 N. Mi SUperior 7-805.4 Fred T. Bruce

Los Angeles: 5720 Wilshire Blvd. Weble John V. Quillman London, W. 1: Michael B. Horne 24 Baker Strect

England
Southeastern: Louis Neff
2808 Middle River Dr.
Ft. Lauderdale, Fla.
1Ogan 6-5655
\qquad

ENGINEERING REVIEW

For more information on developments, described in "Engineering Review," write to the address given in the individual item.

Jupiter IRBM Re-entry

Photographs of the spectacular re-entry into the Earth's atmosphere of the Jupiter IRBM were recently released.
This missile firing marked the first successful recovery of a full-scale Jupiter nose cone.
These pictures were taken as part of "Operation Gaslight," the armed forces project for investigating the physics associated with the reentry of the Jupiter missile.
Photographs showed that, within seconds after
the first re-entry light was observed, the phenomena had blossomed into three distinct objects. The brightest object, which resembled a huge magnesium flare, was assumed to be the booster (rocket body). The light emitted by this object definitely pulsated. At one time, the object's trajectory was nearly in line with the planet Jupiter, and was estimated to be at least 1000 times brighter.
(Continued on following page)

Spectral Meteor Camera was one of the major instruments used in "Operation Gaslight." It is made up of a chster of six-F-8 Aerial Cameras equipped with spectral gratings and arranged so as to afford a panoramic view ol a large portion of the sky. This meteor camera is shown mounted on the 5 in . guns of the USS Stickell.

First photographs ever released of the re-entry of the ${ }^{1}$ Jupiter IRBM into the earth's atmosphere. At 19 seconds, the instrument package (out of picture) has completel; burned out, and the distance between the nose cone and rocket body increases rapidly.

Radiometer is one of the instruments used to measure the radiation from the Jupiter IRBM as it re-entered the atmosphere.

POPULAR SIZES IN STOCK

Volt Amperes	Diameter	Height	Nominal	\%	STANDARD RATINGS		
1.5	1"	1/10"	3/4 oz.	20	Standard Voltage Ratings Pri/Sec.	1.5-9.0 V.A. size Terminal End Mounting Secondary Centerfapped	16 \& 25 V.A. size Terminal End Mounting Secondary Centertapped
3.0	1"	\% 110	1 oz.	15	115/6.0	TW (VA) D 6.0 T.	TW (VA) $F 6.0$ T.
					115/6.3	TW (VA) D 6.3 T.	TW (VA) F6.3 T.
6.0	1"	13/14"	11/2 oz.	10	115/10	TW (VA) D 10 T.	TW (VA) F 10 T.
9.0	$1 \times$	1110"	208.	8	115/26	TW (VA) D 26 T.	TW (VA) F 26 T.
		11/16	202.	8	115/115	TW (VA) D 115 T.	TW (VA) F 115 T.
16.0	13/9"	11/9"	40 oz	7	115/200	TW (VA) D 200 T.	TW (VA) F 200 T.
					115/250	TW (VA) D 250 T.	TW (VA) F 250 r.
25.0	13/8	$13 / 2$	5 oz.	6	115/300	TW (VA) D 300 T.	TW (VA) F 300 T.

Other V.A. ratings, secondary voltages and constructions engineered to your specifications.

FEATURES \& SPECIFICATIONS

1. Designed to MIL-T-27A, Grades $1 \& 4$ a. Glass R $\left(105^{\circ} \mathrm{C}\right.$.)
b. Class $S\left(130^{\circ} \mathrm{C}.\right)$ available
2. Primary voltage: $115 \mathrm{~V} \pm 10 \%$
3. Frequency: $400 \mathrm{cps} \pm 5 \%$
4. Sec. voltage tolerance (@115V 1 N): $\pm 3 \%$
5. Hermetically sealed.
6. High efficiency.
7. High shock construction.
8. 55-2000 cps vibration.
9. Save up to 30% in size and weight over conventional designs.

HOW TO ORDER:

Order by catalog numbers as follows:

$$
\frac{\text { TW }}{\text { TW }} \frac{25}{(\text { V.A. })} \frac{D}{\binom{\text { Case }}{\text { Style }}} \quad \frac{6.3}{\binom{\text { Sec. }}{\text { Voltage }}} \quad \frac{T}{\binom{\text { Sec. }}{\text { C. T. }}}
$$

Centertaps: If no C. T. is desired, replace " T " with " X ".
Alternate mounting: If mounting studs opposite terminals surface are desired, refer to case style "E" 11.5 to 9.0 V.A. only 1 .

Electrostatic shields: Can be supplied but generally at small increase in size. Add " S " to end of catalog number.
Sena for our TINYMAX catalog for more complete details.

ENGINEERING REVIEW

The second brightest visual ob ject was assumed to be the instrument compartment. The trajectory of the instrument compartment during its burning stage was much shorter than the booster and nose cone. During the last few seconds of the visible flight, the booster and nose cone moved behind a larg cumulus cloud to the south of the USS Stickell. The radiation was so intense that the whole cloud was illuminated.

Barnes Engineering Co., Stamford, Conn. performed spectral and radiometric measurements on the re-entering bodies of the missile.

Colleges To Get Nuclear Reactor Simulators

Four Universities will be supplied with nuclear reactor simulators by Minneapolis-Honeywell Regulator Co. The schools-University of West Virginia, University of Minnesota, University of Oklahoma, and Wayne State University in De-troit-will use the simulators to train prospective nuclear engineers in all phases of reactor operation. Incorporating a working full-scale model of an automatic control system for power and research reactors, the simulator also features an electronic computer circuit which recreates reactor operational characteristics.

With the simulator, electrical signals can be generated similar to those obtained from sensing elements in a nuclear reactor. Interchangeable plug-in circuitry permits simulations of either U-235, $\mathrm{U}-233$, or plutonium fuel. The simulated signals are amplified, recorded, and automatically controlled with the same instruments used on real reactors. The control system has a control permit circuit that prevents switching to automatic control unless the power level is within 10 per cent of the control setting. Range of the simulator is 0 to 150 per cent of reactor design power.
< CIRCLE 4 ON READER-SERVICE CARD

Tilted UnderwearOrigin of Telemetering?

Demonstration of imaginative historical research into the origination of telemetering caught our attention at the National Telemetering Conference held recently. Gen. Earle F. Cook, US Army Signal Corps R \& D Chief, explained: "It winds back to a Carthaginian officer in 200 BC , who fell upon the science when his orderly laundered his fighting undergarments one night and hung them out to dry. Next morning at dawn, the officer peered from his tent and observed a blustery wind blowing them mightily on the line. Taking a look at the vectors at work, he promptly decided his course of action. 'To hell with it,' he said, 'I'm not going out to fight today.' And don't think it was in the least em-pirical-the force and angle of wind components lifted the before-mentioned underpants in a true sin-and-cos relation, with relative humidity disclosed by extrapolation-in-reverse from the time of laundering. Ergo: in early warfare man deduced the parameters of weather from a comfortable distance-increase of said comfortable distance being something the science has been after ever since."

Inchworm

Intallation at Torrington Needle Bearing plant confrols centerless grinding operations to consistent accuracy within a tolerance of 50 millionth of an inch. The motor, manufactured by Airborne Instruments Laboratory, Mineola, N.Y., is a linear actuator which replaces the lead-screw in mechanisms requiring microinch dimensional controls. "Inchworm" operations are push-button controlled.

new performance levels set by Hughes precision crystal filters

Hughes Products now offers high performance crystal filters previously available only for special military developmental contracts and Hughes-built systems. Utilizing unique design and advanced manufacturing techniques, these Hughes crystal filters provide a degree of performance previously unattainable.

With center frequencies of 30 kc to 30 mc and fractional bandwidthe of 0.01% to 6%, these crystal filters have seven distinct advantages:

1. High frequency filtering
2. High selectivity
3. Low passband ripple
4. Low insertion loss
5. Small size and weight
6. Excellent temperature stability
7. Excellent shock and vibration stability

SPECIFIC PERFORMANCE CHARACTERISTICS FOR TYPICAL FILTERS

For further information please write nughes pronucts, Crystal Filters, International Airport Station. Los Angeles 45, Calif.

Creating a new world with ELECTRONICS HUGHES PRODUCTS

More horsepower per pound-it's yours with $155^{\circ} \mathrm{C}$ Anatherm

First polyester high temperature enamel magnet wire available in complete range of sizes-round, square, rectangular.
Of course you don't fry eggs on them, but motors are being run hotter today. These higher operating temperatures can put you on a hot spot with your customers-if motors fail.
Solution: Anaconda Anatherm Magnet Wire. Anatherm is a new polyester film-coated wire-fully tested for use at "hottest spot* temperatures up to $155^{\circ} \mathrm{C}$. With this new higher level of thermal stability, Anaconda Anatherm is the first film-coated wire to meet the newly adopted $155^{\circ} \mathrm{C}$ (AIEE Class F) rating!
Greater thermal stability-plus excellent abrasion-resistance, chemical stability and dielectric strength-make Anatherm ideally suited for a variety of applications. It's especially practical where
maximum performance and reliability are required from smaller equipment operating at higher temperatures.

As a polyester magnet wire, Anatherm can be used equally successfully at any hottest-spot temperature from $105^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$.
Available in standard film-thickness of round wires, sizes 8 to 46, inclusive, and in a full range of sizes of square and rectangular wires. For more information, see the Man from Anaconda. See "Anaconda" in your phone book-in most principal citiesor write : Anaconda Wire \& Cable Co., 25 Broadway, N. Y.4, N. Y.

ask $T H E$ MAN FRoM ANACONDA

ABOUT ANATHERM MAGNET WIRE

For you. Anatherm can mean smaller electrical equipment... higher operating temperatures. See details on reverse side-

ANALAC $105^{\circ} \mathrm{C}$ LAIEE Class A solderable magnet wire

VITROTEX $130^{\circ} \mathrm{C}$ (AIEE Class BI , lass-insulated, high heat resistance

PLAIN ENAMEL $105^{\circ} \mathrm{C}$ (AIEE Class A)

NYFORM $105^{\circ} \mathrm{C}$ (AIEE Class A)
superior windability

EPOXY $130^{\circ} \mathrm{C}$ IAILE Class 81 y yneral compatibility

IMPORTANT FACTS FOR YOUR WORK...

... about Anatherm $155^{\circ} \mathrm{C}$

When proper advantage is taken of Anaconda Anatherm’s higher $155^{\circ} \mathrm{C}$ characteristics, electrical equipment can be improved in these ways:

RAISES LIMITING OPERATING TEMPERATURES. Anatherm raises limiting operating temperatures to $155^{\circ} \mathrm{C}$. This high heat resistance means extra protection . . . longer equipment life . . . wider range of applications.

REDUCES FRAME SIZE. Anatherm gives more horsepower from the same space or the same horsepower from a smaller motor. Costs are cut for you, and your customers benefit from smaller over-all components.
INCREASES HORSEPOWER RATINGS. Anatherm is the best of the polyesters. Its high heat resistance means higher permissible operating temperatures, greater horsepower rating.
UPGRADING. Anatherm helps upgrade standard equipment. Gives added heat insurance through thermal stability. Particularly suited for overloads.

COMPATIBILITY. With polyesters, importance must be placed upon a completely compatible system. Varnish manufacturers have recently developed polyester varnishes which allow a compatible polyester magnet wire system. A number of varnishes other than polyester are compatible with Anatherm, but consultation with varnish suppliers before use is recommended.

TECHNICAL PROPERTIES

MECHANICAL PROPERTIES

Anatherm has unusually high abrasion-resistance. This characteristic allows it to be wound on both conventional and automatic

ANACONDA WIRE \& CABLE COMPANY 25 BROADWAY, NEW YORK 4, NEW YORK

Please send me a copy of your Anatherm Magnet Wire Booklet.
\qquad
COMPANY.
ADDRESS.
citr................................ ZONE.......state......................
city............................... ZONE....... STATE......................

(AIEE Class F) Magnet Wire

winding equipment. Anatherm offers excellent flexibility and adherence properties. It meets NEMA snap test requirements and exhibits excellent adherence to the conductor.

ELECTRICAL PROPERTIES

Anatherm maintains its dielectric strength under prolonged heating at high temperatures. It consistently exceeds dielectric strength requirements for NEMA dielectric twist test.

CHEMICAL PROPERTIES

Anatherm will resist toluol, VM \& P Naphtha. Ethyl Alcohol and 5% Sulphuric Acid. Anatherm is a polyester and exhibits the best characteristics of this class of chemical compound. However, all polyesters must be used with certain precautions where moisture and/or enclosed systems are concerned. Similar precautions must be taken where chlorine-base supporting insulations, such as neoprene and polyvinyl chloride, are present. Polyesters should not be used in applications subject to exposure to concentrated alkalies.

THERMAL PROPERTIEB

Anatherm is offered as a $155^{\circ} \mathrm{C}$ (AIEE Class F) magnet wire based on AIEE \#57 and \#510 test methods. These tests, performed by Anaconda engineers, show Anatherm as being capable of a 30.000 -hour life at $157^{\circ} \mathrm{C}$ in an unvarnished state and the same life at $175^{\circ} \mathrm{C}$ when treated with a silicone or polyester type varnish. Thus Anatherm, when suitably varnished, has reserve stability even above the $155^{\circ} \mathrm{C}$ rating at which it is being offered. The thermoplastic flow temperature for Anatherm, based on MIL-W-583A, is very high $\left(250^{\circ} \mathrm{C}\right)$. Anatherm also shows outstanding retention of flexibility after aging. Wire can be heated 168 hours at $175^{\circ} \mathrm{C}$ and then wound on three times its own diameter without cracking. Its heat-shock characteristics are exceptionally good for a polyester wire: Anatherm will withstand a 1 x mandrel wrapat $155^{\circ} \mathrm{C}$ for one hour.

'ne Solaris is the first hearing aid to be placed on the narket that uses the sun's rays for power. Arrow indicates silicon cells on temple bar.

New Hearing Aid Operates On Solar Energy

A revolutionary new eyeglass hearing aid, the Solaris, that operates on power from ordinary sunlight is now available.

Using silicon cells of the same type used to power the radio transmitter in the Vanguard satellite, the Solaris automatically cuts into a battery supply when light is insufficient. The storage battery is made of nickel-cadmium and weighs only a fraction of an oz according to Zenith Radio Corp., Chicago, Ill.
Bright sunlight will recharge the battery. The instrument is equipped with four silicon cells which are mounted in tandem under a plastic covering on top of one of the eyeglass bars.

3999, 4000 . . . All There

More than 4000 bits of information can be stored on i five-in.-sq "memory frame" being produced by C 4 for a new high-speed electronic computer used by \in AEC. The frame is composed of thin strands of inlited copper wire and tiny ferrite cores, 83,000 of ch weigh only a pound. The cores are subjected to or peratures of 1100 to 1350 C . They are then strung fine insulated copper wires to form a frame-like : !mbly. The frames are being made at the RCA Mar als Development Lab, Needham Heights, Mass. CIRCLE 523 ON READER-SERVICE CARD
CTRONIC DESIGN • August 6, 1958

Burnell offers

THE MOST complete line of encapsulated toroids to meet your circuit needs

Burnell \& Co., pioneers in the development of toroids, filters and related networks now offer the most complete - the most reliable line of encapsulated toroids.
Burnell encapsulated toroids include the only encapsulated adjustoroids available anywhere - satisfy the toughest circuit demands in serviceability—light weight—miniaturization. Burnell encapsulated toroids are particularly useful in guided missile and similar miniaturization fields where space and mounting are highly critical factors. Send for free, new Catalogue No. 104 covering scores of applications with schematics and performance curves.

EASTERN DIVISION 10 PELHAM PARKWAY pelham n. Y. PELHAM 8.5000		PACIFIC DIVISION T20 MISSION STREET SOUTH PASADENA, CALIFORNIA RYAN 1-2841

CIRCLE 7 ON READER-SERVICE CARD

Electronic Engineers...

The Campus is located 11 miles northwest of St. Louis, where you can enjoy the comforts of suburban living with easy access to "big city" cultural, recreational, and shopping facilities.

The McDonnell "Engineering Campus" is now occupied by our engineering staff. These buildings, combining functional excellence with beauty, give our engineers a new kind of work environment for creative thinking and effective achievement.
Group Leaders and Senior Electronic Engineers needed to establish requirements for, and supervise the development of, major and sub electrical and electronic systems for missiles and airplanes. See us in person at WESCON or mail resume in confidence to:

Raymond F. Kaletta
Engineering Employment Supervisor
P. O. Box 516

St. Louis 3, Mo.

ENGINEERING REVIEW

Idlewild Airport as seen on the Airborne Instruments ASDE radar scope.

Idlewild Airport Installs
 Surface Detection Equipment

Airport Surface Detection Equipment (ASDE) has been made a part of the traffic control system at Idlewild Airport. Mounted atop the cab at the summit of the $187-\mathrm{ft}$ control tower, ASDE's antenna sweeps the 5000 -acre expanse to give air traffic control crews a complete picture of the changing conditions on the surface of the field. An experimental model was successfully tested there in the fall of 1952, and the present equipment incorporates many refinements suggested by that trial performance.

ASDE has a maximum range of four miles, though its $16-\mathrm{in}$. (diam) scope usually displays an area of only two miles about the control tower. With a resolution of more than 1000 lines per diam, the display tube can distinguish objects separated by as little as ten ft . Two men standing at arms length from each other, 1500 ft away from the tower, will also be clearly defined. To achieve the necessary bandwidth for such resolution, ASDE operates at frequencies in the $24,000 \mathrm{mc}$ range. These frequencies, though highly susceptible to absorption by weather conditions, are not seriously impaired at ASDE: short operating range.

The antenna reflector is 12 ft wide and obtains a radar beam 0.25 deg wide, reportedly the narrowest beamwidth used in any present radar system. The antenna scans the field at a rate of 60 rpm and is designed to operate in
winds up to 50 mph , and will be able to operate in 120 mph gales because of the enclosure of a radome made of dacron coated with polyethylene.

ASDE was designed and built by Airborne Instruments Lab, 160 Old Country Rd., Mineola, N.Y.

Radioactivity Used To Inspect Assemblies for Hidden Parts

Radioactivity is being used for the first time to inspect production line assemblies for the presence of hidden vital parts.
The U. S. Army Ordnance Corps has purchased the first model for checking artilleryshell fuse heads to make sure they contain a complete firing-pin assembly. Developed by Nuclear Corp. of America, 400 Park Ave., New York, the Atomonitor as it is called, searches for parts which are plated with $1 / 100$ th of a microcurie of radioactive silver. This material presents no health hazard even in great quantities. Its radioactive longevity, however, is such that Atomonitor inspection is possible up to a year after plating.

Assemblies to be inspected are transported on a conveyor at the rate of up to 3000 per hour. A scintillator in the device checks each unit for the presence of radioactivity. If it finds none, it automatically ejects the assembly into a bin below. Counters on the machine's control panel indicate how many units have been inspected and how many rejected. If desired, the machine also will keep track of the rejection rate and ring an alarm if it exceeds a predetermined maximum.

The unit built for the Ordnance Corps has an accuracy of $9,999,999$ out of 10 -million as far as detecting incomplete fuse heads is concerned. The probability of its mistakenly rejecting a good assembly is 1 in 100,000 .

Aromonitor inspects production-line assemblies for the presence of hidden vital parts.

New Oscillograph Package AS "IDIOT-PROOF" AS YOU'VE HOPED FOR

- Built-in amplifiers

- Permanently calibrated
- Instant paper loading
- "White glove" writing system
brush instruments
3405 PERKINS AVENUE CIETVITEE CLEVELAND 14, OHIO

```
immediately available fROM STOCK
``` \(\$ 1350\)

Factory branches, service and warehousing at Arlingand warehousing at Arling-
ton, Va., Boston, Cleveland, Los Angeles and Seattle; ongineering representative; in all key locations.

\section*{ENGINEERING REVIEW}

Transparent, colorless slide produces a full-color picture on the screen by means of a new projection technique. A special projector translates "color information," which has been recorded in tiny ripples on a clear gelatin film, into primary colors which are projected simultaneously onto the screen.

\section*{Transparent Screen Records \\ Color Information}

A colorless, transparent slide which produces a full-color photograph when projected on a screen may have eventual importance in color TV.

Color information is recorded in tiny ripples on a clear gelatin film, according to Dr. William Glenn, a physicist at the General Electric Research Lab., Schenectady, N.Y., who developed the system. The ripples in the film serve as a dif-fraction-grating system, and a special projector is used to "translate" the diffraction patternsoverlapping series of light waves-so that brilliant primary colors are projected on the screen at the same time. In a recent demonstration, Dr. Glenn used slides in the standard \(2 \times 2\) size, and because the diffraction ripples were only a thousandth of an inch apart, the projected picture had a resolution comparable to a good TV picture.

Color information may also be recorded on black-and-white film by placing a special mask in front of the film in an ordinary camera. The diffraction-grating system produces a "positive" color picture if the monochrome slide is either positive or negative. Dr. Glenn explained that the technique has not yet been developed for wide use in photographs.

An unusual aspect of the system is that it makes possible a full-color picture produced by two primary colors, one fixed and one variable, instead of the usual system of three fixed pri-

\section*{IT'S NEW AND NEWS from ARNOLD}

2再

\section*{NEW COMPACTNESS in Aluminum-cased Cores}

Now you can build your designs around the last word in improved tape cores of high-permeability materials. Arnold 6T Cores incorporate a new type of aluminum core box construction, with overall dimensions smaller than older types of aluminum cases, and comparable in size with ordinary plastic-cased cores. Resulf: along with the distortion-free strength of the aluminum case, that resists winding stresses, you now get the compactness and
miniaturization possibilities you've wanted.

\section*{HERMETICALLY SEALED, with Built-in Protection against Shock and Vibration}

Magnetic properties of Arnold 6T Cores have the most complete protection available on the market. The cores are surrounded by protection available on the market. The cores are surrounded by sealed: your best assurance of trouble-free performance, a strong sealed: your best assurance of trouble-free performance, a strong
consideration where the service involves long periods of standby. Inherent in the design, of course, is the further guarantee that you can vacuum-impregnate your coils.

\section*{1000-VOLT BREAKDOWN \\ GUARANTEED!}

The revolutionary new type of core box construction developed for Arnold 01 Tape Cores employs a strong, inert covering for which 1000 -volt breakdown is guaranteed. This covering possesses a hard gloss finish, and gives a suitable radius on all corners. The elimination of sharp corners insures against cutting through the insulation of the winding wire. The hard, non-cold-lowing finish protects against the wire cutting through the case covering, 2 double guarantee against shorted wiring.

Arnold's new type of hermetically-sealed aluminum core box construction fully meets the requirements of military specifications M1-1-5383 or Mil-1-7210, wherever applicable. This involves ambient temperatures to \(170^{\circ} \mathrm{C}\), and a \(25^{\circ} \mathrm{C}\) temperature rise.

\section*{MEETS MILITARY "SPECS" for Operating Temperatures and Temperature Rise}

Arnold 6T Tape Cores will be available in all standard sizes, and special sizes may be made to rrder . . . all guaranteed for size, hermetic seal, rielectric strength and temperature of operation.
vsw 7230
ELECTRONIC DESIGN • August 6, 1958

\section*{The Arnold Engineering Company}

\section*{Main Office \& Plant:Marengo, Illinois}

Repath Pasific Division Planti 641 East bist Stroer, Los Angoles, Calif. District Sales Offices:
Boston: 49 Waltham St., Lexington Los Angeles: 3450 Wilshire Bivd.
New York: 350 Fifth Ave. Washingfon, D.C.: 1001-1 5th St., N.W.
maries. For the clear and transparent "color slides," diffraction-grating ripples are printed on chromated gelatin. Black-and-white "color slides" utilize fine-grain photographic film. Dr. Glenn suggested that the Swiss Eidophor System for black-and-white TV projection, in which diffraction gratings are written onto an oil film by an electron beam, might be modified for simultaneous color projection using the new technique. Possible advantages of the new system in color television would include high brightness, perfect color register, and greater simplicity than colorTV systems now in use.

\section*{Commercial Solar Energy Converter Developed}

Practical conversion of sunlight into electrical power for communication and signal devices is now possible. Basic component of the new commercial solar system, developed by the Hoffman Electronics Corporation's Semiconductor Div., Evanston, Illinois, is a 12 by 20 in . aluminum panel containing 144 wafer-thin, circular silicon solar cells. This energy is either fed into storage batteries or used directly. The modular units may be connected together to produce multiples of 5 w either as a direct power supply, or for charging continuously over an indefinite time 6, 12 , or 24 volt storage batteries.

Solar converter, shown connected to a voltmeter, is reportedly the world's first practical solar energy unit designed to convert sunlight directly into commercially usable quantities of electric power.

\section*{DIFFERENTIALS}

double bearing

\section*{hollow shaft}

The Sterling Precision series of differentials, six times broader
more extensive ...t than competitive. efforts, consists of fully 50 special. efforts, consists of fully 50 specialpletely enclosed units.
All types, solld shaft, hollow shaft,

SOLID SHAFT

ENCLOSED UNIT
counterweight, and double-bearing, are available with or without end gears, using ball bearings or oilite bearings, in shaft diameters of \(1 / 16^{\prime \prime}\), \(.600^{\prime \prime \prime}, .880^{\prime \prime}, .990^{\prime \prime}\), and \(1.184^{\prime \prime}\)

\section*{gearheads and reducers}

T612 GEARHEAD (BUORD SIZE 8) Input Pinion (motor): \(13-\)-tooth, 120 -pitch
Maximum Ratio: acklash: \(\quad 30\) minutes (max.) \(\begin{array}{ll}\text { Output Torque: } & 25 \text { oz. } \text { in. (max.) }\end{array}\)

T6123 SINGLE END SPEED REDUCER Maximum Ratio: Starting Torque: Output Torque:

Am extasive arietr
An extensive variety of gear heads and reducers is available from stock in BuOrd sizes 18, 15, 11, and 8.

\section*{CLUTCHES AND CLUTCH BRAKES}

DUO END
Input and output shafts at opposite ends of housing. Shafts coupled when clutch is energized. Output torques, 8 to 80 oz. -in.; brake torque, 8 to 10 oz . in .

Single input, dual output. Energizing each coil couples input shaft to its respective output shaft. Output
torques up to 80 oz . in.

Brand new units in BuOrd sizes 11 and 18 are available from stock with standard flat or crown-tooth cou-

\section*{gear trains}

New concept in rotating components for universal application.

SERVO BREADBOARDS
Complete line consisting of over 3000 standard breadboard items in all BuOrd sizes for progressive modular construction.

SINGLE END
Concentric input and output shafts at one end of housing. Available with shafts coupled either with clutch energized or de-energized Output torques up to 80 oz. -in.; brake torque, 8 to 10 02. -in.

miniature
(Advanced engineering.) \(0.75^{\prime \prime} 0.0\). \(13 / 8\) " long, single end, engaged when energized. Output torque, 8
plings. Operating voltages from 1.5 to 300 Vdc. Individual brakes are available. too.

T617 GEARHEAD (BUORD SIZE 11) Input Pinion (motor): 13 -tooth, 120 -piteh \(\begin{array}{ll}\text { Maximum Ratio: } & 1267: 1 \\ \text { Backlash: } \\ 30 \text { minutes (max.) }\end{array}\) \(\begin{array}{ll}\text { Starting Torque:-1 } & \quad .01 \text { minutes (max.) } \\ \text { Output Torque: } & 80 \text { (max.) } \\ \text { O2 } & 02 . \text { in. (max.) }\end{array}\) 80 02. -in. (max.)

T6017 DUAL END SPEED REDUCER Macklash: Ratio: Backiash:
Starting Jorque: Output Torque
Diameter: \(1267: 1\)
30 minutes (
01 80 02. -in. (max.
80 oz. -in. (max.)

Ratios to 14,730:1. Reducers in sin gle and double-ended types.

SERVO PACKAGES
World's foremost designer of miniaturized, high-reliability servo packages.

PRECISION GEARS
Over 1000 types of finished gears in stock - bevel, miter, spur (matched stock - bevel, miter, spur (matched Sterling maintains \(100 \%\) inspection of all gears to comply with rigid AGMA specifications and to insure accurate tooth form, smooth running and long life.

SEE US AT BOOTH 1819.1820 WESCON SHOW

PRECISION CORP.
INSTRUMENT DIV.

\section*{ENGINEERING REVIEW}

\section*{Navigation Simulator Trains Students}

Dead reckoning, celestial, and pressure pattern navigation are being taught by a new navigation simulator. The 1A19 Celestial Navigation Trainer is designed for flights at all latitudes including polar, \(100,000 \mathrm{ft}\) altitude, 1500 -knot air speed, 300 -knot winds, and vertical speeds up to \(10,000 \mathrm{fpm}\). Larg, face operating instruments are mounted on the classroom wall in front of the student body. All students can therefore read continuously their barometric altitude, radio altitude, compass, free air temperature, air speed, and time. The system is so designed that the compass may represent correctly either a magnetic compass or a slaved gyro or free gyro compass. The air speed indication may be in terms of either indicated air speed or true air speed. One observation booth is provided in which the students may observe selected stars. The training device can present any heavenly body as seen from any point on earth from any type of aircraft at any time. Reflectone Corp., Stamford, Conn., developed the device in conjunction with U.S. Naval Training Devices Center, Port Washington, N.Y.

\section*{Microwave Equipment Airlifted}

Atop a \(9,800 \mathrm{ft}\) peak in northwestern New Mexico there sits a pipeline microwave system, the result of an unprecedented airlift by jet helicopter. Installed by General Electric's Communication Products Department of Syracuse, N.Y., the system will help control the surge of crude oil through pipe extending from Utah to California, a route of more than 850 miles. Especially designed for high altitudes, the Republic Aviation aircraft lifted nearly three tons of equipment. Decision to fly the material to the mountain peak was made by engi-
\& CIRCLE II ON READER-SERVICE CARD
neers when weather conditions made it virtually impossible to reach the top over rough, snowclogged roads which extended only part way up the rocky mountain.
The communications system includes 100 per cent rf and multiplex standby equipment. Vhf repeaters facilitate voice communication from the pipeline's office at Los Angeles to its facilities at Farmington, New Mexico, not far from the mountain location. Included in the communication plans are a dial-selective party-line telephone-type channel form and a private channel.

\section*{Auto Radar \\ Undergoing Tests}

Auto radar may soon warn the driver of traffic hazards. Tests are now being conducted under actual yoad conditions and a production version of the device is under development. A radar antenna about the size of a hollowed-out steak platter is mounted in the front radiator grill of the car. Signals are sent out which are converted into an automatically regulated "beepbeep" sound. The driver is thereby told whether he is closing the gap too rapidly between his car and the one in front, if he is approaching an object on a possible collision path, or if cross traffic threatens collision.

If a motorist is overtaking anwther car at moderate speed, or if the other car is still some distance away, the "beep-beep" warning is very light, the engineers said. But as the other car gets nearer, the rala warning signal becomes progrestively louder and more insistent.

Developed by Bendix Aviation Corp., Detroit, Mich., the new device limits the signals to objects within the car's safe stopping distance, ignores situations in which the car in front is within dangerous distance but is pulling away, perlits adjustment for open-country ir congested-traffic driving and re(uices background noises that would confuse the signal.

Andrew Corporation offers a wealth of engineering experience in the field of super power RF transmission devices. A broad line of standard equipment is offered and ANDREW facilities for the development and production of special equipment are without equal.

Available on a production basis is antenna equipment in all of the new, very large waveguide and transmission line sizes, including high power coaxial lines designed with specially shaped inner conductors and insula. tors to substantially increase voltage ratings.
Typical too, of this equipment are patch panels such as the \(9^{\prime \prime}\) line model
shown above, used for occasional re arrangement of antenna and transmitter connections.

For high speed circuit switching andrew has developed peak reli. ability, non-contacting waveguide switches such as the \(21^{\prime \prime}\) model above. Similar switches are also supplied with transitions for use with coaxial line.

Of definite advantage to you is the completeness of the andrew line which permits a systems approach with integrated equipment for best performance of the overall system.
Our newly expanded production facilities assure prompt deliveries.

We would welcome your inquiries for product information and engineering assistance on
Antennas - Feed Horns - Switches Patch Panels - Duplexers - Power Dividers • Filters - Coaxial Line • Waveguide - Transitions • Adaptors • Bends•Hangers • Dehydrators

\section*{VISIT OUR WESCON BOOTH}

NO. 1215

Available in Steel or Alloys Including Aluminum,
Brass, Copper, Mu Metal and Stainless Steel

\section*{ENGINEERING REVIEW}

Talos missile being fired from Talos Defense Unit during test at White Sands Missile Range, N. Mex. on Dec 13, 1957. The target was a drone flying far down range at medium altitude. A direct hit was scored.

\section*{Most Accurate Radar \\ In Talos Defense Unit}

Details of the Talos Defense Unit, the first fully automatic base for firing and guiding missiles to their target, were revealed recently by RCA.

The system uses what is reportedly the most accurate instrumentation radar-the AN FPS 16 -which can distinguish a 5 in. object at a distance of 1 nautical mile with an error margin of 1 in .

At present, the radar can track aircraft or missiles to approximately 290 statute miles. Extension of the range to beyond 500 miles will be possible by addition of a modification now being developed, RCA reports.

The AN/FPS 16 uses a monopulse tracking system and operates at \(\mathrm{C}-\mathrm{b}\) band. The operating console is designed so that a single operator can control every operation of the radar. A threecolor video display is used in the main fire control console to permit simultaneous engagement of several targets.

Standardization of the AN FPS 16 at the various test ranges has been effected.

The Talos Defense Unit is capable of automatically handling, loading and launching the missile. Elimination of the necessity of personnel in the missile launching area is thereby assured.

Disclosure of the Unit was attended by ceremonies in which RCA was awarded the Navy's Certificate of Merit for its development of this automatic base.

ELECTRONIC DESIGN • August 6, 1958

Inside view of GE's new no-filament high-temperature rube.

\section*{Miniature Vacuum Tubes Operate in 600 C Range}

Transistor-sized ceramic vacuum tubes have been developed by the General Electric Research Laboratory, Schenectady, N.Y. Not much larger than a shirt button, the new tube operates only at ambient temperatures in the 600 C range. It contains no filament. Cathode heating is supplied by high ambient temperatures outside the tube.

This is the latest in a series of developments that have been aimed towards two goals:
■ Reduce the bulk of present vacuum tubes and eliminate the glass envelope;
- Construct tubes to withstand the same high temperatures as GE's newly-developed high-temperature components.

Disadvantage of the tubes, of course, is their inability to work at temperatures below about 500 C . Their use will be limited to applications where high ambient temperatures are prevalent, such as high-temperature industrial processes and in missile electronics. The design is still in the laboratory stage and no tubes are commercially available at this time. The table lists some characteristics of two experimental models.

Characteristics of New Miniature Ceramic Tube
\begin{tabular}{lll}
& Tube A & \multicolumn{1}{l}{ Tube B } \\
Entire Tube & & \\
Temperature & 600 C & 600 C \\
Mutual Conductance & 250 micromhos 250 micromhos \\
Plate Current & 0.5 ma & 5 ma \\
Grid Voltage & 0 & 0 \\
Plate Voltage & 50 volts & 50 volts \\
& over & over \\
Grid Current & 0.1 microamp & 0.1 microamp \\
Amplification Factor & 15 & 100
\end{tabular}

SEE US AT WESCON! Booth Nos. 749-750

\section*{CLIFTON PRECISION can give you what you want}

\section*{in PRECISION COMPUTING RESOLVERS}

\section*{ACCURACY}

Without any compensation or balancing, \(60 \%\) of a recent production run of our precision computing resolvers showed functional errors of under \(.03 \%\). Ninety-five percent of the units showed under \(.06 \%\) error

Perpendicularity of axes is held to one minute of error in 90 degrees, or \(\pm 3^{\prime}\) on the full circle. Due to extreme symmetry of rotor and stator, nulls are excellent. Low phase shifts are an added feature.

\section*{VERSATILITY}

Many types of Cliffon Precision compufing resolvers are offered including:
- Sizes 8, 11 and 15
- Stainless steel housing and bearings (corrosion resistant) optional
- 450'F High Temperature Units
- The following compensation available in any or all units: Resistive
Feedback Winding
Thermistor
- Units suitable for use with transisfors
- Pin or screw terminals or lead wires
- BuOrd type shafts ovailable
- BuOrd MK 4 Mod O brush block configuration available

\section*{PRICE AND DELIVERY}

Rotary Components are our business. We have studied the efficient manufacture of synchros and resolvers for many years - with results that have enabled us to lower traditional prices substantially in the past. We ask you to review what you are paying for precision computing resolvers.

Early delivery has been further insured by our new facility at Colorado Springs, Colorado, which approximately doubles our capacity to produce high accuracy rotary components.
For many types of our resolvers we are already tooled and
can make surprisingly quick delivery.
When you need any rotary component-resolver, synchro
or motor, quantity or short run, think of CPPC.
Call or write Sales Department, HIlliop 9-1200
(Suburban Philadelphia) or our Representatives.

WASHINGTON \& REPORT

\section*{AMB Rises to the Challenge}

Contracts, impending legislation, and a new test center mark the progress made so far by the Air Modernization Board. Established during the last session of Congress, AMB has already awarded over \(\$ 10\) million in contracts and has others under negotiation. In addition, more than \(\$ 30\) million will be appropriated the new agency for more \(\mathrm{R} \& \mathrm{D}\) in air traffic control during fiscal year 1959.
General Precision Laboratory, Inc. appears to have the inside track on the development of control equipment. Last February, a \(\$ 4.3\) million contract was awarded to them for an enroute portion of an air traffic control data processing central. Early in June, a \(\$ 3.97\) million supplemental contract went to GPL for the transition and terminal portion of the data processing central. Moreover, GPL is expected to help RCA in the development of AGACS-an automatic ground-air-ground communication system. Initial contract cost is more than \(\$ 1\) million. The program, ultimately should run around \(\$ 5\) million.
Keystone to AMB's equipment development program is to be GPL's data processing and display equipment. The transition and terminal equipment contract calls for computers, controller consoles, flight-strip printers and display equipment "that will permit programmed landing sequences and take-offs of aircraft so that minimum landing delays and holding at terminals are experienced."

The AMB-GPL contract also calls for installation of the equipment for "interchange of SAGE data and to permit trials of Air Defense Command operations . . ." While initial tests will be limited to the New York area, AMB is setting up its own test center. Late in June, the Navy Air Station at Atlantic City became the National Aviation Facilities Experimental Center-the "Cape Canaveral" of civil aviation.
A housekeeping contract has been awarded to Ole Hansen \& Sons, Inc. of Pleasantville, N.J. It is estimated that the first year's operations will cost about \(\$ 1.5\) million.

All of this shows progress is being made-at least engineering talent is being bought to develop vitally needed equipment. Meanwhile, in response to more recent tragic air crashes, Con-

\section*{SILICONE-GLASS LAMINATES low loss factor, high moisture resistance}
 15, 16 radio transmitting set. Laminate is tubular, \(5.62^{\prime \prime}\) dia., wound with \(.064^{\prime \prime}\) silver wire. Primary reason for speciky glass: low loss factor at high frequencies.

TYPICAL PROPERTIES OF SILICONE GLASS-LAMINATES*

\footnotetext{
Flexural Strength, psi
at 260 C after \(10 \dot{0}\) hr at \(260{ }^{\circ}\)
24,000
\begin{tabular}{lr}
at 260 C after 100 hr at 260 C & 4,600 \\
\hline
\end{tabular}
Electrical Strength, volts/mil
initial
after 200 hr at \(2600^{\circ}\)
310
327
after 5000 hr at 260 C
Dielectric Constant at \(10^{\circ}\) cycles Condition A'

180
Condition D2
Condition A1 002
Condition \(\mathrm{D}_{2}\) As measured on samples 1,8 inch thick. I As received. 2 After 24 hr immersion in water at 23 C .
}

Laminates made with glass or asbestos cloth and Dow Corning silicone resins make excellent dielectric materials. These strong, lightweight laminates maintain their properties at continuous operating temperatures of \(250 \mathrm{C} \ldots\) for short periods will withstand greater heat. Silicone-glass laminates have good mechanical strength in addition to low loss factor, low water absorption, superior resistance to arcing, corona, corrosive atmospheres and contaminants. They can be laminated in very thin sections; have fine machinability. Supplied as tubes, sheets, punched or molded shapes by leading laminators. Write for free booklet.

Visit Dow Corning's Booth No. 104 at the 1958 E'ESCON Show Los Angeles Pan Pacific Auditorium-Aug. 19.22

\section*{Dow Corning Silicone Dielectrics}

Southwestern Industrial Electronic's \(\$\) - 16 Geophone.

\section*{SILICONE COMPOUNDS SEAL OUT MOISTURE}

Highly effective as dielectrics, Dow Corning compounds are easy to apply. They provide protection against arcs, grounds, shorts . improve surface resistivity. These silicone compounds retain their properties from - 75 to 200 C. Employed as filling, potting, or coating materials for various types of electronic gear, they seal out moisture, increase reliability, retain their initial grease-like consistency.

CIRCLE 541 ON READER-SERVICE CARD

Resistors by Tru-Ohm Division of Model Engineering
ond Manufacturing Co.

\section*{SLLICONE VARNISH MAKES IMPROVED RESISTOR CEMENT}

Heat-stable and exceptionally moistureresistant, Dow Corning varnishes make very good bonding cements. In addition, they can take fairly high loadings of inorganic fillers without loss of properties. An appropriately filled Dow Corning varnish is often far superior to conventional materials for sealing wire wound resistors and other electronic devices. Set-up time is good.

CIRCLE 542 ON READER-SERVICE CARD

\section*{WIRE COVERING OF SILASTIC INSULATES FROM -90 to 250 C}

Here is a resilient dielectric that keeps its properties from - 90 to \(\mathbf{2 5 0} \mathbf{C}\). Silastic \({ }^{\sqrt{3}}\), the Dow Corning silicone rubber, forms a durable, moisture resistant coating for wire, cable, and ot her electronic and electrical components. It resists arcing, corona, ozone, weathering, corrosive atmospheres, and many fuels and solvents. Meets MIL-W-8777 specifications. Available from leading wire manufacturers.

CIRCLE 543 ON READER-SERVICE CARD

Wiring panel for Convair B-58 Hustler
gress is quickly considering passage of a Federal Airway Act. Senator Warren G. Magnuson (D-Wash) dusted off a bill he had been saving-S-3880-and hearings by Senate Finance Committee were begun. It appears that the bill is virtually guaranteed passage during this session.

In the words of the President: "All functions now carried out by the Civil Aeronautics Administration . . . Airways Modernization Board safety divisions of the Civil Aeronautics Board
(and) parts of the Department of Defense
should be transferred to the new Agency." A congressionally-approved Administrator and Deputy shall be in full control of the Federal airways-in about every manner conceivable Further, provisions are to be made to have both civilians and military personnel on the staff

With all of this activity as background, General Precision Equipment Corp. came to Washington to demonstrate its new HIDAN-High Density Air Navigation method. It has two major components: an airborne, automatic navigator called RADAN; and a small computing device which "instantly indicates the position of the aircraft and, when programmed for a flight, continuously calculates the divergence of the actual position of the aircraft from its planned position. This divergence is shown instantaneously on an indicator in the cockpit." The RADAN portion-a Doppler instrument giving ground speed and drift angle-has been produced by GPL for the Air Force since 1948.
Adoption of a HIDAN-type system would seriously reduce the need for large numbers of the proposed VOTAC systems now being installed along the Federal skyways. It could also cut into the TACAN units.

\section*{BuAer Issues Circuit Standards}

A new military standard-MIL-STD-439 (AER)-calling for the use of preferred circuits, will soon be a standard requirement in Navy Bureau of Aeronautics contracts. Thirty of the preferred circuits for miniature tubes developed by the National Bureau of Standards make up the specification. All are single function circuits -multivibrators, i-f strips, block oscillators, video, pulse and audio amplifiers and similar circuits.
Navy engineers waited more than three years before incorporating the circuits into a specification. In that time, tests and experiments were conducted to check them out. In the process, two NBS circuits were eliminated. Officials estimate that a preferred circuits specification for subminiature tubes is about a year away. Recently the Navy started a program that will ultimately lead to preferred transistor circuits. NBS is coordinating the program and making final tests and selection of standardized circuits.

\section*{SIZE}

REDUCED AS MUCH AS

\section*{61\%}

New Sub-Miniature Size ST-A Capacitors SOLID TANTALUM

\section*{Wow you can save more space and at the same time get im-} groref performinte when you design these new sub miniature Faritidel S-T.A capacitors Into your products. You gell angitptasud alablility over an opsrating timperature range of \(-75^{\circ} \mathrm{C}\) ber + tatc. . . high resigtariee to vibrellion and shock whish eliminates possibilitise of any altitude or humidity problem.

\section*{AVAILABLE}

\section*{FROM STOCK}
rou get immediate delivery of the sizes listed at right.

For completo atpecifications and dotails wrilo for bullotin 6.172.
 Wescon thow
\begin{tabular}{|c|c|c|c|c|}
\hline & ceneo & comatin & 764 & wr \\
\hline & & \[
3.3
\] & \[
10
\] & \[
12
\] \\
\hline \(\pm\) & & \[
\begin{aligned}
& 13 \\
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 700 \\
& \hline 30
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 36 \\
& 36
\end{aligned}
\] \\
\hline & & \[
7
\] & \[
\begin{aligned}
& 70 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 10
\end{aligned}
\] \\
\hline \% & & \[
\begin{aligned}
& \overline{3}, 4 \\
& 2.4 \\
& 2.4
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 36 \\
& 42
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { STA-257 } \\
& \text { STA-262 }
\end{aligned}
\] & 17 & 10
15 & 1 \\
\hline 綅 & & ! & \[
\begin{aligned}
& 30 \\
& 30 \\
& 35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \pi \\
& 30 \\
& \hline 0
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { STA-357 } \\
& \text { STA- } 2162
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& \hline 45
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 18
\end{aligned}
\] & 18 \\
\hline 震 & \[
\begin{aligned}
& 57+.307 \\
& \text { sty } \\
& \text { sty }
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 27 \\
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \underline{20} \\
& \begin{array}{l}
20 \\
23
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 71 \\
& 36 \\
& 36
\end{aligned}
\] \\
\hline
\end{tabular}

BANSTEEL METAELURGICAL CORPORAUION North Chicoge Illinois, u.s.a.

RELIABLE TANTALUM CAPACITORS SINCE 1930

\section*{Aug. 19-22: WESCON}

Pan-Pacific Auditorium and Ambassador Hotel, Los Angeles, Calif. Sponsored by Seventh Region of the IRE and WCEMA. More than 200 technical papers will be presented in 42 sessions at the Ambassador Hotel. The concurrent exhibit of electronic equipment and services will occupy more than 900 booths in the Pan-Pacific Auditorium plus four special pavilions. Included in the technical program will be two "invited" and two "special" sessions. Topics of the invited sessions are "Parametric Amplifiers and Masers" and "Industry Looks at Fusion Power." An evening ses-
sion on "Biological Measurement in Space Travel" is scheduled with a second evening session topic yet to be announced. There will also be panel sessions on "Contract Implications of Military Electronics Reliability Requirements" and "Modern Management Problems in an Increasingly Complex Technology." A complete breakdown of technical sessions will be found below. For more information write Western Electronic Show and Convention, 1435 S. La Cienega Blvd., Los Angeles 35, Calif. For complete convention coverage, read Electronic Daily, published every day during the show.

\section*{WESCON Program}

All A.M. sessions begin at 9:30, P.M. sessions at 2:00, Eve. sessions at 8:00 P.M.
Abbreviafion Key: Ballroom (Ba), Boulevard Room (Bo), Embassy Room (E), Sunset Room (S), Venetian Room (V).

\section*{Session and Number \\ Time and Location}

\section*{Aeronautical Electronics}

Airborne Electronic

Devices (8)
Antenna Arrays (27)
Antennas and Propoga-
tion (35)
Antennas (40)
Audio (15)
Radio and TV (32)
Advanced TV
Techniques (37)

\section*{Circuif Theory}

Circuit Analysis and
Design (9)
Tues pm-Ba Circuit Design (14) Wed am-Ba Transistor Circuits (17) Wed pm-S

\section*{Communications}

Communication Systems
and Vehicular
Communication (42)
Fri pm-V

\section*{Components}
\(\begin{array}{ll}\text { Component Materials (26) } & \begin{array}{l}\text { Thurs am-Ba } \\ \text { Component Parts (31) }\end{array} \quad \begin{array}{l}\text { Thurs pm-Ba }\end{array}\end{array}\)

\section*{Computers}

Computer Applications (1) Tues am-E
Computer Devices (6) Analog Computers (23) Thurs am-E

\section*{Control Systems}

Automatic Control (18) Wed pm-Bo Industrial Electronics (36) Fri am-Ba

\section*{Human Engineering}

Human Factors in
Engineering (29)
Thurs pm-S
Information Theory
Information Theory (4) Tues am-Ba
Instrumentafion
Instrument Tools (13) Wed am-Bo Instrument Systems (19) Wed pm-Ba

Tues pm-Bo Thurs am-V

Fri am-Bo
Fri pm-Bo
Wed am-V
Thurs pm-V
Fri am-V
\(\qquad\)
pm
-

\section*{Session and Time and Number Location}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Microwaves} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Microwave Theory and Technique}} \\
\hline & \\
\hline Session I (5) & Tues am-V \\
\hline Session II (10) & Tues pm-V \\
\hline \begin{tabular}{l}
Parametric Amplifiers and Masers \\
(11)
\end{tabular} & Wed am-E \\
\hline Microwave & \\
\hline Propogation (20) & Wed pm-E \\
\hline Microwave and High & Wed pm-V \\
\hline Power Tubes (24) & Thurs am-S \\
\hline Microwave Ferrites (30) & Thurs pm-Bo \\
\hline \multicolumn{2}{|l|}{Medical Electronics} \\
\hline Biological Measurements & \\
\hline in Space Travel (21) & Wed Eve-E \\
\hline Medical Electronics (39) & Fri pm-S \\
\hline \multicolumn{2}{|l|}{Military Electronics} \\
\hline Military Electronics (25) & Thurs am-Bo \\
\hline
\end{tabular}

\section*{Nuclear Science}

Industry Looks at Fusion Power-Panel (16)

Wed pm-E
Production
Production
Techniques (34) Fri am-S

Reliability
Reliability Session I (2) Session II-Panel (7)
Solid State Session I (33) Session II (38)

Tues am-S Tues pm-S Fri am-E Fri pm-E

Special Devices
Special Electronic Devices (28)

Thurs pm-E
Telemefering
\begin{tabular}{ll}
Telemetry (3) & Tues am-Bo \\
\begin{tabular}{l}
Biological Measurement in \\
Space Travel (21)
\end{tabular} & Wed Eve-E
\end{tabular}

Writing and Speech
Engineering Writing and Speech (41)

Fri pm-Ba

\section*{EDITORIAL}

\section*{Drawing The Line In Computer Design}

In our editorial of June 25 we asked if we must always start from scratch every time we faced a design problem. Could not some aspect of digital circuit design be considered "standard?" After surveying the views of digital computer designers, we concluded that the majority of designers of military systems felt it was too premature to standardize on any specific designs but that some sort of flexible standardization was desirable. In this editorial we will look at some of the areas suggested as starting points.
- Standardize on modular units. The most reasonable view seems to be to emphasize the modularization concept but to put no restrictions on dimensions or construction techniques.
- Consider logical circuits. The odds are against agreement on picking the optimum ranges for some dozen characteristics of circuits and physical modules, but a tabulation has never been made. If a reasonable number of requirements fall within one or two groups, standardization is feasible and not difficult. Since each logical step is small, modularization should be applied to a function rather than a basic step.
- Standardize machine language for data processing machines. There is little or no likelihood of standardizing input and output devices. Such equipment which "communicates" with other devices will be almost impossible to pin down.

Experienced military designers feel that each circuit is a compromise between simplicity, low cost, and performance. These factors complicate attempts to determine appropriate standards.

Forceful arguments against standardization of even subassemblies is the large number of such "standardized" units offered by each manufacturer of commercial building blocks. Attempts to get a small number of building blocks does not appear to be successful. Although useful for breadboarding, they are not ideal for production runs.

Before arguments for or against standardization can be weighed objectively, a study of exactly what is involved is necessary. Until this is done, the retort to pleas for standardization will continue.

Time spent on determining standards and getting manufacturers to agree on them would be better spent improving the product.

If there are to be standards for military computers, the military will have to take the lead. This subject will be discussed in a future editorial.

Over 200 papers will be given this month at the West Coast's annual big electronics meeting. Running from Aug. 19th through 22nd, WESCON also boasts over 700 exhibitors this year. Might be a good place to discuss your standards problems.

\section*{For Highest Dependability \\ FANSTEEL RECTIFIERS}

HLICON RECTHERS
fype i A -itintad ar 200 ma .
whithow hour atitu
Free 2A-Roted at 200 ma
dit for avelation á. 290

SELENLUM INDUSTRIAL POWER BECTIFERS

POWER RECTIFIES
fo isotici

anyybyy chalornt
and Porte fuppiy
UNIrs

FANSTEEL METALLURGICAL CORPORATION
North Chicago, Illinois, U.S.A.

DEPENDABLE RECTIFIERSSINCE 1924

\section*{Concentrated Filter Passbands}

\section*{Part 1}

Mechanical Filters

For many years, engineers have tried to find better ways to form straightsided, flat-topped passbands without cumbersome, cascade transformers and tubes used in i-f amplifiers, and without RC and iron-core/capacitor combinations used in low frequency work.
Three distinct filter types have evolved. Each is effective for certain applications; none is effective for all. They all are passive, and provide all the required selectivity. To reduce noise, they are normally applied before any amplification.
The three types are: Mechanical; - Crystal; ■ Electrical or LC

Fig. 1. Selectivity of a typical six disk mechanical filter.

Frederick A. Schaner
The Daven Co. Livingston, N. J.

MECHANICAL filters can provide characteristics unobtainable with electrical circuits. While electrical elements have relatively high losses, mechanical elements can have Q's of 5000 and more. This permits treating mechanical filters as lossless elements.

Their frequency characteristics are permanent, so no adjustment can be made after final alignment.

All mechanical filters consist of input and output transducers, and a resonant mechanical section in between. Many structures have been used as mechanical resonators. Of these, three types are the most common.

\section*{Filter Types}
1. One type has a number of rectangular resonant plates, interconnected by fine wires. 2. Another type has a cylindrical rod, machined to form alternate necks and slugs. In this case, either the necks or the slugs can be used as resonators.
3. The third type is a cylindrical arrangement of disk resonators, interconnected by coupling wires.

Four methods of electromechanical transduction have been commonly used during the last ten years; electromagnetic, electrostatic, magnetostrictive, and piezoelectric.
- Electromagnetic and electrostatic transducers were used in early filters. Since they are lumped constant devices, their use has been restricted to the lower frequency range because parasitic resonances limit their high frequency performance.
- Magnetostrictive and piezoelectric transducers are basically distributed constant systems, so they can be used at radio frequencies when proper dimensions are chosen. Magnetostrictive transducers are most frequently used in mechanical filters today for their efficiency, economy and stability.

\section*{Frequency Characteristics}

The excellent frequency characteristics of a resonant mechanical section provide an almost rectangular selectivity curve. The input and output transducers serve only as electrical-tomechanical and mechanical-to-electrical coupling devices and do not affect the selectivity characteristics. These are determined only by the resonant elements.

An electrical signal at the input transducer is converted to a mechanical vibration by magnetostriction. This mechanical vibration travels through the resonant mechanical section to the output transducer where it is converted back to an electrical signal by magnetostriction.
A small permanent magnet in each transducer helps provide optimum electrical-mechanical coupling. It supplies magnetic bias to the transducer core. The impulses then add to or subtract from this magnetic bias, causing vibration of the filter elements corresponding to the input signal. The vibration, of course, is almost imperceptible.
For a restricted frequency range, magnetostrictively driven filters have several advantages over electrical equivalents. From 60 to 600 kc , the mechanical elements are extremely small, so a mechanical filter with better selectivity than the best conventional i-f systems can be pack-

Fig. 2. Time delay and attenuation of a typical six disk filter.

If FAST SWITCHING is your need and available germanium types won't meet temperature and reliability requirements./.

ELECTRONIC DESIGN • August 6, 1958
aged smaller than a single broadcast receiver i-f transformer.

It is almost impossible to distinguish the relative advantages and disadvantages of the three common types of resonant elements. All three perform equally well, the principal difference between them being that they are the result of separate investigations. For convenience, one can consider the resonant disk type only.

\section*{Performance Characteristics}

Table I shows the performance of a typical 6 disk mechanical filter. This filter has a center frequency of 455 kc and a 3.1 kc bandwidth between the 6 db points. The shape factor of this filter (ratio of bandwidth 60 db down from the highest peak to bandwidth 6 db down) is less than 2.1.

This low value of shape factor permits unusually high rejection of unwanted signals. The broad nose of the curve passes portions of the signal which would be attenuated in a standard rounded i-f selectivity curve.

To realize full benefit from a mechanical filter's selectivity characteristics, shielding is necessary
between the external input and output circuits. This shielding should be able to reduce the energy transfer between these circuits at least 100 db . If the input circuit couples energy to the output around the filter, the selectivity will deteriorate and the passband will be distorted.
As with almost any mechanical resonant circuit, elements of the filter have multiple resonances. These produce spurious transmission paths through the filter and produce minor passbands at frequencies on either side of the primary passband. Careful filter design reduces these sub-bands to a low level and removes them from the immediate area of the major passband.

However, where increased attenuation is needed at the spurious frequencies, additional selectivity can be added with tuned circuits before or after the mechanical filter. Two conventional i-f transformers usually suffice. Their passbands should have nearly constant attenuation in the band of the mechanical filter to obtain full benefits from the flat passband characteristics.

Mechanical filters with different bandwidths can be switched into a circuit. This can provide

NOTE DISAGREEMENT BETWEEN CALCULATED AND RECORDED ENVELOPES
BETWEEN THE TIME LIMITS \(+=0\) AND \(+=0.66\) MIL-SEC IS DUE TO FACT THAT NO RESPONSE (OUTPUT) IS ANTICIPATED BEFORE A CERTAIN TIME HAS ELAPSED (THE TIME BETWEEN THE
CAUSE ANO EFFECT) CAUSE ANO EFFECT)

Fig. 4. Step function response of a six disk filter with a pulse modulated carrier input.

Fig. 3. Impulse response. Solid line represents calculated value. Dashed line is measured value.

\section*{OPERATING CHARACTERISTICS OF TYPICAL MECHANICAL FILTER}
\begin{tabular}{|c|c|}
\hline OPERATING FREQUENCY 4 & \% \(455 \pm 25 \mathrm{KC}\) \\
\hline NOMINAL BANDWIDTH AT - 6 DB & 3.1 KC \\
\hline MAXIMUM BANDWIDTH
AT -60 DB & H 6.5 KC \\
\hline SHAPE FACTOR GODB TO 6DB LESS THAN & \[
2.1 / 1
\] \\
\hline MAXIMUM RESPONSE VARIATION & \[
3 \text { DB }
\] \\
\hline OVERLOAD SIGNAL INPUT
VOLTAGE & INPUT 2 VOLTS RMS \\
\hline \multicolumn{2}{|l|}{INSERTION (TRANSMISSION) LOSS IODB NOM.} \\
\hline \multicolumn{2}{|l|}{operating temperature RANGE \(\quad-40^{\circ} \mathrm{C}\) TO \(+85^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{ll}
INPUT \& OUTPUT & 14 K \\
IMPEDANCE & TIVE
\end{tabular} & 14 K OHMS RESISTIVE AT RESONANCE \\
\hline CASE SIZE \(\quad 3 / 4\) DIA \(X\) & 3/4DIA. \(\times 25 / 8\) LONG \\
\hline
\end{tabular}

\section*{TABLE 1}
variable selectivity. One receiver, for example, has plug in provision for \(800,1500,3100\), or 6000 cps filters. A front panel switch selects the desired filter. The 3100 cps filter is ideal for phone signals, including single side band.

\section*{Signal Requirements}

The maximum signal input for a particular filter is one which provides an output voltage 0.5 db below what it would be if the filter's input-output voltage relationship were perfectly linear. (In a specified range, the filter's output is essentially proportional to its input.) Momentary surges of several times the maximum signal input will not damage the filter.

The filter's transducer coils are usually designed to carry up to 20 madc. The effect of de in the coils is analogous to increasing the fixed grid bias on a tube. Assuming optimum performance with zero current, the maximum signal swing without distortion becomes more limited when the dc current is increased.

\section*{Operating Requirements}

The input and output transducer coils must be resonated. The value of resonating capacity should be specified for any filter. This value includes the total external capacity of tubes, stray and wiring. The specified value is nominal, and the filter itself should be resonated at its nominal center frequency.

Since the filter has a high impedance, source and load impedances should be about ten times the resonant input and output impedances.

\section*{Time Delay}

Fig. 2 shows the plot of time delay in a mechanical filter. It is obtained by passing a modulated signal through the filter and measuring the resultant modulated envelope phase shift through the filter. The delay is then computed from
\[
t_{d}=\frac{\theta}{360 f_{m}}
\]
where \(t_{d}\) is the time delay in seconds, \(\theta\) is the phase shift of the modulation envelope in degrees, and \(f_{m}\) is the modulating frequency in cps.

The time delay shows rapid variations near the edges of the passband as shown in Fig. 2. But the delay across the passband is of primary interest. A typical commercial filter has a phase shift variation of 5 deg over 75 per cent of the passband. This is equivalent to a time delay variation of about 0.2 milliseconds.

As an approximation, time delay varies inversely with bandwidth for a given center frequency, that is, \(t_{d} \propto 1 / B\), with \(f_{c}\), the center frequency, constant, and \(B\), the filter bandwidth.

\section*{Impulse and Step Response}

The response to both impulse and step functions is shown in Figs. 3 and 4. The filter whose response is shown has a 3.1 kc bandwidth and has six disks. As with all practical filters, mechanical filters have a finite rise time. It depends only on the bandwidth, and is given by \(t_{r}=\) \(0.90 / B, t_{r}\) is the rise time in msec and \(B\) is the filter bandwidth in kc.

A step function, applied to any mechanical filter, results in a theoretically constant overshoot. In the case of one manufacturer's filters, this overshoot is 9 per cent.

The anticipatory transient duration from time zero of the applied step function to a point half way up the rising slope of the filter output, depends on the filter bandwidth and the number of disks. The transient time is \(t_{t}=N / 2 B\) where \(N\) is the number of disks.
The impulse response shown includes the calculated and measured response. The transient lime from time zero of the applied impulse to the peak of the filter output pulse is the same as the calculated transient time for the step function response.

\section*{Environmental Effects}

Mechanical filters are as rugged as ordinary receiving tubes. They operate satisfactorily when subjected to continuous vibration with a total excursion of 0.060 in . over a vibration frequency range from 10 to 55 cps . They can take 15 g shock lasting 11 msec .
Their shift with temperature can be held to within 10 ppm per deg C. Since they are hermetically sealed, humidity has no effect.

Recently, a university research laboratory \(\dagger\) used Linde single crystal synthetic ruby (\(\mathrm{Al}_{2} \mathrm{O}_{3}\) with \(\mathrm{Cr}_{2} \mathrm{O}_{3}\) additive) in a three-level solid state Maser. The ruby crystal was placed in the Maser's tuned cavity and a magnetic field of \(\mathbf{4} 200\) gauss was applied. To bring electrons from a ground state into a permissible higher energy level, a pumping frequency of 24 kMc was used and the Maser amplified signals at 9.3 kMc .
LINDE supplies other crystals, including rutile, spinel, and sapphire. (\(\mathrm{Al}_{2} \mathrm{O}_{3}\)). Sapphire is used in infrared optical sys.
\(\dagger\) Maser Action in Ruby, by G. Makhov, C. Kikuchi, J. Lambe, and R. W. Terhune. "Physical Review," Vol. 109, No. 4, p. 1399, Feb. 15, 1958.
tems, windows for higher power microwave tubes, spacers and supports in vacuum tubes, radiation pipes. It has strength at elevated temperatures, melts at \(2040^{\circ} \mathrm{C}\)., is hard, inert, nonporous, and can be sealed to metals and glasses. Sapphire is available in the shape of domes, windowe to \(41 / 2\) inches in diameter, rods and special configurations.

For more information, write Crystal Products Department, Linde Company. Division of Union Carbide Corporation, 30 East 42nd Street, New York 17, N. Y.

Linde" and "L'niun Carbide" are registered trade.marks of Union Carbide Corporation

\section*{Application Of \\ Coaxial \\ Bar Hybirds}

Since Bogart Mfg. Co. announced their new coaxial bar hybrids (ELECTRONIC DESIGN, March 1, 1957, p. 38) many new applications have been disclosed. This article discusses a number of applications evolved by engineers in the field.

A hybrid is, basically, a four-terminal device which has the following properties:
- Opposite arms are isolated from each other.
- If power is fed into any of the arms, it will divide evenly between the two remaining unisolated arms.
- The division of power is independent of the phase of the impedances on the output arms if the degree of mismatch is identical.
- Power from one input arm arrives in phase at the two output terminals. The power fed from the second input arm arrives at the outputs with a 180 deg phase difference.
- The conventional coaxial hybrid (a) has the form of a ring with spacings of a quarter-wave-

(a)
length between three arms with a spacing of three-fourths wavelength between the second and fourth arms. Each arm is shunt connected to the main ring and the properties outlined above are achieved by the spacings between arms. In the series-shunt hybrid of the Bogart type (b) three of the arms are shunt connected, but the fourth arm is fastened in series to the main line. Arm 4 can be matched to \(Y_{0}\) if the admittance of a portion of the ring is altered. The essential hybrid properties are, therefore, practically independent of frequency since phase reversal from the fourth arm does not rely on sections of transmission line.

(b)

\section*{Miniature, Broadhand Balanced Mixer}

Apply the received signal to arm 1 and the local oscillator to arm 4. If crystal holders, (nominally matched to 50 ohms) are attached to arms 2 and 3, the device becomes a mixer. The received and local oscillator signals may be interchanged at arms 1 and 4. Most local oscillators, especially in the lower frequency bands, have coaxial outputs. Also, broadband coaxial crystal mixer arms have been designed by Bogart to work with these units, and are now available. For a receiving system, therefore, a coaxial hybrid is much smaller and more convenient than a comparable waveguide unit. (Table 1)

\section*{Power Divider}

Apply a signal (such as a transmitter) to arm 1. (Fig. 1) The power will then divide equally between arms 2 and 3 provided that these two arms are matched to 50 ohms, or otherwise have the same degree of mismatch. If, for example, the output arms both have VSWR values of 2/1, they would then receive equal power regardless of the phase of the mismatch, since one of the properties of the hybrid is that isolation exists between opposite arms.

This situation would have practical significance in the case of two identical antennas fed from the same transmitter with unequal lengths of cables between antennas and inputs. Arm 4 is terminated in a matched load. The input signal could also be applied to arm 4 with arm 1 terminated, although the construction of the hybrids is such that arm 4 cannot handle the same level of power as arm 1. The standard hybrid utilizes a smaller coaxial cable on arm 4. Arms 1, 2, and 3 employ a larger cable about \(3 / 8 \mathrm{in}\). diam.

\section*{Signal Addition in a Single Load}

If two signals of different frequencies are applied to arms 1 and 4, and the output loads on arms 2 and 3 are matched to 50 ohms, or, closely matched to each other, then the power will divide equally between them with good isolation (greater than 30 db) maintained between arms 1 and 4. If it is desired to feed two transmitters into a single antenna (Fig. 2), the antenna may be placed at either arm 2 or 3 with a dummy load (matched to the antenna) on the remaining arm. It should be noted that there will be a 3 db loss in output since half of the power is dissipated in the dummy load.

\section*{Variable Power Divider, Attenuator, or Phase Comparator}

If two outputs may be taken from a single generator and fed into arms 1 and 4 with zero phase shift between them, and if arms 2 and 3 are matched, the two signals will add in one of the arms and subtract in the other. If the two signals were equal to begin with, one of the output arms will, therefore, receive no power and the other arm will receive the total sum of the two powers If a variable, lossless, phase shifter is placed in one of the lines, as shown, then the proportion of power delivered to arms 2 and 3 may be varied so that any power ratio may be obtained. If two outputs cannot be obtained directly from the generator, two hybrids may be used in tandem, as shown in Fig. 3.

The hybrid may also be used as a phase comparator where the magnitudes of output signals at arms 2 and 3 can be related to the relative phase betwen two equal input signals and the phase relationship between the signals accurately measured.

\section*{General Monopulse Applicatiom}

The coaxial hybrid may be used in any application where an in-phase, out-of-phase relationship, is desired between two inputs. One such ap-

Fig. 1. Using a coaxial bar hybrid as a power divider.

\section*{Broadband ferrite isolators for countermeasures systems}

\section*{Lightweight units handle high power levels to 400 watts cw}

These Sperry isolators are the first nonreciprocal ferrite components designed in coaxial line. They are especially applicable in extremely broadband radars and test equipment as well as advanced countermeasures systemswherever isolation is required over an octave bandwidth.

Simple in construction and light in weight, these Sperry Microline* isolators have no large waveguide nor heavy magnets. They maintain far superior electrical characteristics over a much broader bandwidth than other isolators. Meeting both Mil.E.-5400A and Mil.E.-5272A specs,
they operate properly within an ambient temperature range from \(-55^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\).
-TM Reg. U.S. Pat. Of.
MICROWAVE ELECTRONICS
CLEARWATER, FLORIOA
Division of Sperry Rand Corporation
address all inauiries to Clearwater, Florida, or Sperry Gyroscope offices in New York, Cleveland, New Orleans, Los Gyroscope offices in New York
Angeles, San Francisco, Seattle.

\section*{PIV-up to 900v}

\section*{ONE AMP} AT ONE VOLT FORWARD!
u.s. semeor medium power...

with single DIFFUSED silicon junction

\section*{Application of Coaxial Bar Hybrids}
plication exists in a monopulse system where it is necessary to add and subtract two rf signals. A transmitter signal fed into arm 1 (Fig. 4) will divide equally, and in phase, to arms 2 and 3 . Received signals may be fed back into arms 2 and 3 of the hybrid. Arm 4 will then yield a difference signal, and arm 1 a sum signal.

\section*{Hybrid Duplexer}

Many of the applications mentioned have long been used in conventional waveguide hybrids commonly termed "Rat Races." Coaxial hybrids, however,
have the advantage, in many applications, of a much broader bandwidth. One such application is in a duplexer design for TR-ATR application. Referring to Fig. 5:
- A transmitter is sending power into arm 1 (hybrid 1) which splits up evenly at arms 2 and 3 and fires the TR tubes.
- All power is reflected back into the main line and out of phase because of the differential \(\lambda / 4 \mathrm{arm}\) in arm 3.
- The power then enters arm 4 and the antenna with little or no power re-

Fig. 4. Applying bar hybrids in a monopulse system.
flected back to arm 1.
- During receive time, echoes picked up by the antennas enter arm 4 and since the TR tubes are no longer firing, split up evenly at arms 2 and 3.
- These two signals are now fed through two lengths of line, different in length by \(\lambda / 4\) to equalize phase, to arms 2 and 3 of hybrid 2.
- All energy is summed in arm 1 with a termination placed on arm 4 to absorb any small residual signals.
- The output of arm 2 is now fed to arm 1 of hybrid 3 which is simply used as a balanced mixer.

\section*{Beacon Switching Device}

A signal generator applies to a lowlevel signal to arm 3 of the hybrid through a variable attenuator (Fig. 6). This signal splits evenly between arms 1 and 4 with half the power being dissipated in the dummy load terminating arm 4. The portion of the signal entering arm 1 triggers a beacon transmitter which sends a high-level signal back into the hybrid. The beacon signal splits evenly between arms 2 and 3. The attenuator at arm 3 absorbs the signal and arm 2 is attached to an antenna for transmission to the aircraft or missile.

Table 1. Typical Characteristics of S -Band Hybrids
\begin{tabular}{l|l|l|l}
\multicolumn{1}{c|}{ S-Band } & Bar Hybrid & Magic Tee & Short Slot Hybrid \\
\hline Approx. bandwidth (\%) & 50 & 12 & 12 \\
Max vswr & 2.00 & 2.00 & 1.12 \\
Max balance (db) & 0.2 & 0.25 & 0.25 \\
Max isolation (db) & 30 & 35 & 30 \\
Approx. wr (oz) & 12 & 48 & 33 \\
Dimensions (in.) & \(4 \times 31 / 2 \times 1\) & \(11 \times 10 \times 8\) & \(15 \times 8 \times 4\)
\end{tabular}

Fig. 5. Puplexer design for TR-ATR applications.

Fig. 6. Beacon switching device using a bar hybrid.

\section*{LOOKTO 三MC(1) D*}

\section*{ENGINEERING SKILL...}

\section*{FOR THE ANSWER TO YOUR ENCLOSURE PROBLEMS!}

The new concept in electronic and instrument packaging, the EMCOR MODULAR ENCLOSURE SYSTEM, is shown in the new CAA air traffic control tower installation, Natrona County Airport, Casper, Wyoming; and a municipal fire control center (Upper) controlling automatic fire recording devices, communications stations and coded alarm signals. EMCOR'S scientific engineering mastery in metal cabinetry makes possible the arrangement of groups of infricately wired instruments, indicators, dials and electronic scopes for easy visual and manual operation while reducing environmental fatigue and strain.

Regisfered Trodemark of Elgin Metalformers Corporation.

Your copy of Catalog 105 is available upon request.

EMCOR ELGIN METALFORMERS CORPORATION
630 CONGDON, DEPT. 1221 ELGIN, ILLINOIS

Visit Us in Booths 1537 and 1538 at the Wescon Show CIRCLE 24 ON READER-SERVICE CARD

\section*{NEW \\ PRECISION VARIABLE}

\section*{RESISTOR with no sliding wiper}

- Complete Hermetic Seal
- Infinite Resolution
- High Temperature Operation
- Long Life
- Low Torque
- Exceptionally High Accuracy
- Extremely Low Noise

Details will be
sent upon request.

A patented compression contact eliminates the wear or friction caused by usual wiper contacts. A precious metal capsule contact provides dependable long life operation. The deposited metal film resistance element is encased and hermetically sealed. The ultimate in craftsmanship is employed in the manufacture to produce a potentiometer unparalleled for performance. This new concept of design makes possible super reliability under the most severe environmental conditions such as those encountered in airborne, missile and satellite applications.

\section*{TECHNOLOGY INSTRUMENT CORP.}

\section*{555 Main St.}

Acton, Mass.
COlonial 3-7711
P. O. Box 3941

No. Hollywood, Calif.
POplar 5-8620

\section*{Tiny Multiturn Potentiometer}

\section*{uses radical construction}

HERE IS a miniature potentiometer that does the work of multiturn potentiometers twice its size. Measuring only 0.875 in . in diam and 0.406 in . long, it is ideal for applications where 0.1 per cent linearity has to be achieved in a minimum of space under rugged conditions. It is available in a wide variety of resistance values ranging from 1 K to 100 K .

\section*{Unusual Operation . . .}

The operation of the M10T09 potentiometer manufactured by Technology Instrument Corp., Acton, Mass., is essentially different from standard potentiometers. The sliding contact is shown in Fig. 1. The shaft, shaft insulator and key are bonded together with epoxy cement to form a rugged unit. The slider is keyed to the shaft to permit translational motion, yet prohibit rotational motion of the slider with respect to the shaft.

The thread on the OD of the slider is identical with the thread on a wire guide. This forces the wiper contact to follow the helical pattern of the resistance winding. See Fig. 2. The electrical path from winding contact to external terminal is completed through the key to the slip ring contact, from the slip ring contact to the slip ring and from the slip ring to the external terminal.

\section*{. . . and Unusual Construction}

Engineers at TIC decided upon a new technique to lay the windings into the base of the potentiometer. They felt that the usual method of buffing insulated wires with some abrasive compound to permit contact between the wiper and winding inevitably scratched the surface of the windings and disturbed the uniform spacing of the individual turns. This resulted in lower linearity and more noise.

Accordingly, bare wire is used as the

Fig. 1. Rotating subassembly showing sliding contact, shaft, shaft insulator, and key.

resistance element to completely eliminate the need for buffing. By spacing the bare wires slightly farther apart than for the case of insulated wire, shorting between turns is avoided.
The method of laying in the windings is both ingenious and simple:
- A 30 in . piece of insulated magnet wire is laid under tension along the groove portion of the plug shown in Fig. 3. This wire is actually the guide for the wiper assembly.
- The bare resistance wire is then wound around a copper rod. The copper rod is removed and the bare winding is now laid down under tension, in the grooves formed by the guide wire.
- A coating of epoxy cement is applied to the subassembly and then properly cured to hold the winding and wire guide securely in place. Teflon washers prevent the cement from adhering to another surface.
- Insulation between the winding and the base is provided by a piece of Mylar, 0.005 in. thick. With the winding plug in place in the base, additional epoxy cement is applied between the winding and the Mylar insulation. When cured, this cement locks the winding firmly in place in the base. The plug now screws out simply and easily without disturbing either the winding or the wire guide.

The result is that at no time through the entire process has the portion of the winding that is contacted by the wiper, been exposed to contamination by adhesives or other foreign matter. The cleaner wiper action due to this process results in a low noise resistance of 100 ohms max at 4 rpm . The resolution sacrificed by this technique is negligible. For a 1 K unit the resolution is 0.000255 (reciprocal of number of turns).

For more information, turn to the Reader-Service card and circle 26.

Fig. 2. (above) Cutaway view of the M1OTO9 potentiometer.

Fig. 3. (right) The winding plug on which the bare re sistance wire and the wire guide are wound.

\section*{LATEST BAILANIINE VOLTMEIER SETS NEW STANDARDS OF STABILITY, RELIABILTY, EXTENDED LIFE!}

\author{
- Long life \\ - Outstanding stability
}
- High input impedance
- Wide voltage range
- Large easy to read moter with overlap
- High accuracy af any point on the scale
- Light, compact, rugged

MODEL 300-D
PRICE: \$235.

SPECIFICATIONS
VOLTAGE RANGE: 1 millivolt to 1000 volts rms. in 6 decade ranges. (.01, .1, 1, 10 100 and 1,000 volts full scole).
FREQUENCY RANGE: 10 to \(250,000 \mathrm{cps}\).
ACCURACY: \(2 \%\) throughout voltage and frequency ranges and af all polnts on the motor seale.
INPUT IMPEDANCE: 2 megohms shunfed by 15 ע \(\mu\) f except 25 u \(\mathcal{f}\) on lowest range. DECIREL RANGE: -60 to +60 decibels roforred 101 volf.
STABILITY: less than \(1 / 2 \%\) change with power supply voltage variation from 105 to 125 volts.
SCALES: Logarithmic voltage seale reading from 1 to 10 with \(10 \%\) overlap at both endss auxiliary linear seale in decibels from 0 to 20.
AMPLIFIER CHARACTERISTICS: Maximum voltage gain of 60 D8, maximum output
10 volts, output impedance is 300 ohms. Frequency response flat within I DS from 10 to 250,000 cps.
POWER SUPPLY: \(115 / 230\) volis, \(50.420 \mathrm{cps}, 35\) walls approx.
Write for catalog for complete information.
BALLANTINE LABORATORIES,INC.
Boonton, New Jersey
CIRCLE 27 ON READER-SERVICE CARD

\section*{Design Considerations for ...}

\section*{Class B Complementry-Symmetry}

\section*{Audio Amplifiers}

\section*{C. F. Wheatley}

Rodio Corporation of America
Semiconductor and Materials Division
Somerville, New Jersey

TWO BASIC circuits that approach optimum performance, together with their mid-frequency equivalent circuits, are shown in Figs. 1 and 2.
In Fig. 1, the collector supply, \(E_{c c}\), is at ac and dc ground with respect to the input, and, therefore, full supply voltage is available for earlier stages. However, the over-all efficiency of the circuit shown in Fig. 2 is higher because the circuit is not driver limited and the full poweroutput capabilities of transistors \(Q_{1}\) and \(Q_{2}\) may be realized. In addition, the dissipation rating of transistor \(Q_{3}\) may be much lower in the circuit of Fig. 2 because a voltage rating of only a few volts is required for \(Q_{2}\), rather than the full supply voltage required in the circuit of Fig. 1. Much higher values of collector-to-base intrinsic capacitance and conductance may also be tolerated in the circuit of Fig. 2. Both circuits are equally satisfactory with regard to over-all power gain, distortion, and input impedance.

\section*{Circuit Parameters}

In the design of conventional Class B circuits, the supply voltage, power-output rating, and load impedance are usually all given for a fixed application. For a push-pull design in which the output transformer is omitted, however, only two of these three parameters may be given be-

\section*{ABOUT THE AUTHOR:}
C. Frank Wheatley entered the Unlversity of Maryland and recelved the B.S. degree in Electrical Engineering in 1951. The same yoar, he Joined the Tube Division of RCA in Harrison, N.J. as a design and development engineer working on transistors. He was a production engineer on transistors from 1953 to 1954, and has since been working as an application engineer in tho semiconductor and Materials Divislon.

Fig. 1. A practical complementary symmetry 10 w circuit (a) and its ac equivalent (b).
cause they are related by a simple equation. For Fig. 2:
\[
\begin{equation*}
P o=\frac{\left(V_{c c}-V_{1}-V_{2}\right)^{2}}{8 R_{L}} \tag{1}
\end{equation*}
\]

For Fig. 1:
\[
\begin{equation*}
P o=\frac{\left(V_{c e}-V_{1}-V_{3}-V_{4}-V_{5}\right)^{2}}{8 R_{L}} \tag{2}
\end{equation*}
\]
where \(P o\) is the power-output at the point of clipping; \(V_{c c}\) is the collector supply voltage; \(V_{1}\), \(V_{2}\), and \(V_{3}\) are the collector-to-emitter saturation voltages (often referred to as the "knee") of \(Q_{1}, Q_{2}\), and \(Q_{3}\), respectively; \(V_{4}\) is the base-toemitter saturation voltage of \(Q_{2} ; V_{5}\) is the dc voltage drop across \(R_{3}\); and \(R_{L}\) is the load im;edance.
If rated power output is defined at the 10 per cent distortion level rather than clipping level, equations (1) and (2) should be multiplied by a factor of 1.2. This factor is derived on the basis of other considerations not pertinent to this article.

When germanium-alloy transistors are used, \(V_{1}, V_{2}\), and \(V_{3}\) are essentially independent of collector current and have a value of about 0.3 v . For silicon-alloy transistors, their value is about 0.6 v .

If grown-junction transistors are used, the
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Circuit of Fig. 2 \\
Power output \(=175\) milliwatts
\end{tabular} & \begin{tabular}{l}
Circuit of Fig. 1 \\
Power output \(=10\) watts
\end{tabular} \\
\hline \(\mathrm{R}_{1}=4700 \mathrm{ohms}\) & \(\mathrm{R}_{1}=680\) ohms \\
\hline \(\mathrm{R}_{2}=3900\) ohms & \(\mathrm{R}_{2}=220\) ohms \\
\hline \(\mathrm{R}_{2}=330\) ohms & \(\mathrm{R}_{3}=24\) ohms \\
\hline \(\mathrm{R}_{1}=82\) ohms & \(\mathrm{R}_{1}=8.20 \mathrm{hms}\) \\
\hline \(R_{11}=1200\) ohms & \(\mathrm{R}_{\mathrm{b}}=390 \mathrm{ohms}\) \\
\hline \(\mathrm{R}_{8}=270\) ohms & \(\mathrm{R}_{6}=2200 \mathrm{ohms}\) \\
\hline \(\mathrm{R}_{\mathrm{L}}=\mathbf{5 0} 0 \mathrm{hms}\) & \(\mathrm{R}_{\mathrm{L}}=16 \mathrm{ohms}\) \\
\hline Peak \(\mathrm{I}_{0}=100\) milliamperes & Peak \(\mathrm{I}_{0}=1.1 \mathrm{amperes}\) \\
\hline \(P_{201}=P_{20 y}=60\) milliwatts
\[
\beta \text { min }=45
\] & \[
\begin{aligned}
& P_{1 a_{1}}=3 \text { watts } \\
& P_{1 a_{2}}=3.5 \text { watts }
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{co}}=9 \mathrm{volts}\) & \(\mathrm{P}_{108} \mathrm{Q}_{8}=0.81\) watt \\
\hline 7.2 volts at 2 milliamperes & \(\mathrm{V}_{00}=38\) volts \\
\hline supplied to earlier stages & \(\beta\) min \(=40\) \\
\hline
\end{tabular}
emitter and collector bulk resistances add from 0.1 to 1 v to \(V_{1}, V_{2}\), and \(V_{3}\), depending upon the transistors and their peak currents. The value of \(V_{4}\) varies from about 0.25 to 0.5 volt for ger-manium-alloy transistors. The effect of emitter bulk resistance adds about 0.05 to 0.5 volt if grown-junction transistors are used. \(V_{4}\) is about 0.4 volt higher for silicon transistors than for germanium transistors. Specific values of \(V_{1}, V_{2}\),

\section*{nomenclature}

\section*{\(P_{0}=\) output power at the clipping level}
\(V_{1}, V_{2}, V_{3}=\) collector-to-emitter saturation voltages of \(\mathbf{Q}_{1}, \mathbf{Q}_{\mathbf{2}}, \mathbf{Q}_{\mathbf{3}}\)
\(\mathbf{V}_{\mathbf{4}}=\) base-to-emitter saturation voltage of \(\mathbf{Q}_{\mathbf{2}}\)
\(\mathbf{V}_{5}=d c\) voltage drop acrose \(\mathbf{R}_{\mathbf{3}}\)
\(V_{\text {eff }}=\) an idealized supply voltage equal to the peak-topeak output voltage at the clipping level
Peak \(\mathbf{I}_{\mathbf{0}}=\) peak collector current of \(\mathbf{Q}_{1}\) or \(\mathbf{Q}_{2}\)
\(P_{1_{Q_{1}}}=\) maximum dissipation of \(\mathbf{Q}_{1}\) in the circuit of Fig. 1
\(P_{1 Q_{2}}=\) maximum dissipation of \(Q_{2}\) in the circuit of Fig. 1
\(P_{2 Q_{1}}=\) maximum dissipation of \(Q_{1}\) in the circuit of Fig. 2
\(\mathbf{P}_{\mathbf{Q}_{2}}=\) maximum dissipation of \(\mathbf{Q}_{2}\) in the circuit of Fig. 2
\(\mathbf{I}_{\mathrm{o}_{1}}, \mathbf{I}_{\mathrm{o}_{2}}=\) quiescent collector current of \(\mathbf{Q}_{1}, \mathbf{Q}_{2}\)
\(\mathbf{I}_{\text {oo }}^{3}\) = the collector-to-base leakage current of \(\mathbf{Q}_{3}\)
\(\beta_{1}, \beta_{2}, \beta_{3}=\) base-to-collector current amplification factor (beta) of \(\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}\)
Peak \(\mathbf{I}_{\mathrm{b}}=\) peak base current of \(\mathbf{Q}_{1}\) or \(\mathbf{Q}_{2}\)
\(\mathbf{I}_{\mathrm{e}_{\mathrm{a}}}=\) operating collector current of \(\mathbf{Q}_{3}\)
\(r_{\mathrm{bb}}{ }^{\prime}, r_{\mathrm{bb}^{\prime} 2}, \mathbf{r b b}^{\prime} \mathrm{s}=\) base-lead resistance of \(\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}\)
\(\mathbf{V}_{\text {bel }}, \mathbf{V}_{\text {bee }_{2},} \mathbf{V}_{\mathbf{l i r e}_{3}}=\) base-to-omitter voltage of \(\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{1}\) under quiescent conditions
\(I_{b_{3}}=\) operatir.g base current of \(Q_{s}\)
\(\mathbf{R}_{\mathrm{e}}=\) emitter bulk resistance (plus any unbypassed emitter resistance)
Peak \(\mathbf{V}_{\mathrm{b}_{2}}=\) peak base voltage required to drive \(\mathbf{Q}_{2}\) to peak \(l_{\text {c }}\)
\(I_{4}=d c\) current supplied to earlier stages
\(\mathrm{I}_{5}=\mathrm{dc}\) current through \(\mathbf{R}_{2}\)
\(\mathbf{V}_{6}=\mathrm{dc}\) voltage supplied to earlier stages
\(\tau_{1}, \tau_{2}, \tau_{12}\) - low frequency time constant caused by \(\mathrm{C}_{1}, \mathrm{C}_{2} \mathrm{C}_{1}\) and \(\mathrm{C}_{2}\)

(a)

(b)

Fig. 2. A practical complementary symmetry 175 mw circuit (a) and its ac equivalent (b).
\(V_{3}\), and \(V_{4}\) can be obtained from the characteristic curves of the particular transistors selected.
\(V_{5}\) is a self-bias voltage for transistor \(Q_{3}\). The larger the value of \(V_{5}\), the greater the thermal stability and interchangeability of \(Q_{3}\) (assumed that \(R_{2}\) is fixed). \(V_{5}\) should not usually be less than 0.1 v . A typical value is about 0.5 v . Large values of \(V_{5}\) (Fig. 2) do not adversely affect performance, and values approaching \(V_{c c / 2}\) may be used.

Load impedance, \(R_{L}\), (Fig. 3) is shown as a function of effective collector supply voltage, \(V_{e l f}\), for values of maximum undistorted sinusoidal power output ranging from 10 milliwatts to 100 watts (assumed that "linear" transistors are used). Actual supply voltage (\(V_{c c}\)) for Fig. 2 is given by:
\[
\begin{equation*}
V_{c e}=V_{e f f}+V_{1}+V_{2} \tag{3}
\end{equation*}
\]

For Fig. 1:
\[
\begin{equation*}
V_{c e}=V_{e f f}+V_{1}+V_{3}+V_{4}+V_{5} \tag{4}
\end{equation*}
\]

\section*{Transistor Parameters}

Due to avalanche multiplication effects, \({ }^{8,7}\) transistors \(Q_{1}\) and \(Q_{2}\) may have two collector-to-emitter voltage ratings-one rating under forward-bias conditions, and the other under reverse-bias conditions. For a resistive load under Class B operation, the forward-bias rating must equal or exceed \(V_{e l / / 2}\) while the reverse-bias

The " \(E\) " construction of AMPHENOL's miniature, multi-contact electrical connectors pass a tough, new altitude-moisture resistance test which accurately simulates performance conditions in new aircraft and missiles. Connectors are submerged in salt water and altitude-cycled to 80,000 ft ., to \(65,000 \mathrm{ft}\). and then returned to room ambient pressure. Cycle lasts one hour; test is comprised of ten cycles. At the end of the test amphenol minni E's have a minimum insulation resistance of 1000 megohms, approximately ten times greater than that acceptable under MIL-C-5015C after moisture.

MINNI E's have stainless steel bayonet slots and pins, providing greater durability and eliminating the wear encountered with "hardcoat" and similar surface treatments of softer base metals.

Amphenol's Authorized Industrial Distributors stock minnie and other standard components, provide immediate service.
AMPHENOL ELECTRONICS CORPORATION chicago 50, illinois
rating must equal or exceed \(V_{\text {effr }}\). For most applications however, reactive loading is occasionally present (near speaker resonance, turn-on transients, and turnoff transients). With a reactive load the voltage and current are out of phase, causing the transistor to be forewardbiased at voltages well in excess of \(V_{\text {ef//2. }}\). Where high excitation under reactive loading may be encountered, the forward-bias voltage rating must approach \(V_{\text {elf }}\) to prevent transistor destruction under transients.

The peak collector current (\(I_{c}\)) rating for \(Q_{1}\) and \(Q_{2}\) must be equal to or greater than:

Peak \(I_{c}=\frac{V_{e f f}}{2}\left(\frac{1}{R_{L}}+\frac{1}{R_{6}}\right)\)
It should be noted that \(R_{\mathrm{f}}\) is not the same for the circuits shown in Figs. 1 and 2. Normally, the value of \(R_{\mathrm{8}}\) in the circuit of Fig. 1 will not appreciably affect the peak collector current. In the circuit of Fig. 2, however, \(\boldsymbol{R}_{6}\) may contribute 15 to 20 per cent of the value of peak \(I_{c}\). The actual value of \(R_{8}\) will be determined later. For the purpose of defining \(Q_{1}\) and \(Q_{2}\) peak current ratings,
the following equations are sufficiently accurate. For Fig. 1:
\[
\begin{equation*}
\text { Peak } I_{c} \cong \frac{V_{e f f}}{2 R_{L}} \tag{6}
\end{equation*}
\]

For Fig. 2:
\[
\begin{equation*}
\text { Peak } I_{e} \cong \frac{1.15 V_{e f f}}{2 R_{L}} \tag{7}
\end{equation*}
\]

Maximum power dissipation of \(Q_{1}\) and \(Q_{2}\) under sine-wave excitation is, in many cases, almost the same as the average power dissipation when speech or music is programmed. Consequently, \(Q_{1}\) and \(Q_{2}\) must be able to withstand the full dissipation given by the following equations on a continuous basis. (A complete analysis of transistor dissipation under Class B operation will appear in a forthcoming issue of Electric Design.)

In the circuit shown in Fig. 1, the maximum dissipation of \(Q_{1}\) is given by:
\[
\begin{align*}
P_{1_{Q_{1}}} \cong & \frac{\left(V_{e f f}+2 V_{1}\right)^{2}}{40}\left(\frac{1}{R_{L}}+\frac{1}{R_{6}}\right) \\
& +\frac{\left(V_{e f f}+2 V_{1}\right)}{2}\left(I_{o_{1}}\right) \tag{8}
\end{align*}
\]

Fig. 3. Load impedance versus effective collector supply voltage for various output power levels.
and the maximum dissipation of \(Q_{2}\) by:
\[
\begin{gather*}
P_{1 Q_{1}} \cong \frac{\left(V_{e f f}+2 V_{3}+2 V_{4}+2 V_{5}\right)^{2}}{40}\left(\frac{1}{R_{L}}+\frac{1}{R_{6}}\right) \\
+\frac{\left(V_{e f f}+2 V_{3}+2 V_{4}+2 V_{5}\right)}{2}\left(I_{o_{2}}\right) \tag{9}
\end{gather*}
\]

In Fig. 2, the maximum dissipation of \(Q_{1}\) is given by:
\[
\begin{aligned}
P_{Q_{2}} \cong \frac{\left(V_{e f f}+2 V_{1}\right)^{2}}{40} & \left(\frac{1}{R_{L}}+\frac{1}{R_{6}}\right) \\
& +\frac{\left(V_{\text {efs }}+2 V_{1}\right)}{2}\left(I_{o_{1}}\right)
\end{aligned}
\]
and the maximum dissipation of \(Q_{2}\) by:
\[
\begin{align*}
P_{2} Q_{2} \cong \frac{\left(V_{e f f}+2 V_{2}\right)^{2}}{40} & \left(\frac{1}{R_{L}}+\frac{1}{R_{6}}\right) \\
& +\frac{\left(V_{e f f}+2 V_{2}\right)}{2}\left(I_{o_{2}}\right) \tag{11}
\end{align*}
\]

Here, \(I_{n 1}\) and \(I_{o 2}\) are the quiescent collector currents (idling currents) of \(Q_{1}\) and \(Q_{2}\) respectively. These currents will vary appreciably with temperature unless special provisions are made, as will be discussed later.

Because \(R_{8}\) is normally much greater in the circuit of Fig. 1 than in the circuit of Fig. 2, the dissipation of \(Q_{1}\) is normally less in the circuit of Fig. 1, all other conditions being equal. A direct comparison cannot be made between the circuits for \(Q_{2}\) dissipation because of the effects of \(V_{2}\), \(V_{3}, V_{4}\), and \(V_{5}\).
The mid-frequency equivalent circuits in Figs. 1 and 2 show that \(Q_{1}\) is driven from a source having an impedance equal to \(R_{\overline{5}}\) and \(Q_{2}\) from a source having an impedance equal to (\(R_{4}+R_{5}\)) (both transistors are operated in the commonemitter configuration). This statement assumes that the output impedance of \(Q_{3}\) is practically infinite, which is a reasonable assumption. Normally, \(\boldsymbol{R}_{4}\) is quite small compared to \(\boldsymbol{R}_{5}\); thereine, the source impedance may be considered to equal \(R_{5}\) for both \(Q_{1}\) and \(Q_{2}\). Because \(R_{5}\) shunts some of the signal current from the bases of \(Q_{1}\) and \(Q_{2}\), it is desirable to make \(R_{5}\) large relative to the input impedance. \(Q_{1}\) and \(Q_{2}\) may then be considered to be driven from a current source. Consequently, it is desirable to match the base-to-collector current amplification factors, or "betas," of \(Q_{1}\) and \(Q_{2}\). The distortion introduced by beta-mismatch is even-order distortion which, except for intermodulation effects, can be accepted in rather large amounts. The per cent
second-harmonic distortion (\% 2nd) is given by \({ }^{8}\) :
\[
\begin{equation*}
\% \text { 2nd }=42 \frac{\beta_{1}-\beta_{2}}{\beta_{1}+\beta_{2}} \tag{12}
\end{equation*}
\]
where \(\beta_{1}\) is the beta of \(Q_{1}\) and \(\beta_{2}\) is the beta of \(Q_{2}\).

The driver transistor, \(Q_{3}\), must supply signal current to the bases of \(Q_{1}\) and \(Q_{2}\) and also to \(R_{5}\). The peak base current \(\left(I_{b}\right)\) of the output stage, \(Q_{1}\), is given by
\[
\begin{equation*}
\text { Peak } I_{b}=\operatorname{Peak} \frac{I_{4}}{\hat{\beta}_{1}} \tag{13}
\end{equation*}
\]

In order to determine the maximum drive needed, it is necessary to determine peak \(I_{b}\) for the minimum value of \(\beta_{1}\) anticipated. The value of \(\beta_{1}\) should be evaluated for a dc collector current at, or near the peak \(I_{0}\) given previously.

Because the driver distortion is a function of the ratio of the ac current to the dc current (among other things), it is desirable that the driver dc current be large compared to peak \(I_{b}\). However, the value of \(R_{5}\) will vary inversely with the driver dc current, and it is desirable to keep \(R_{5}\) as large as possible to maintain maximum over-all gain. For a satisfactory balance between distortion and sensitivity, the driver current (\(I_{c 3}\)) should be equal to:
\[
\begin{equation*}
I_{c 3}=1.5 \text { Peak } I_{b} \tag{14}
\end{equation*}
\]

\section*{Defermination Of Resistances}

When the value of \(I_{c s}\) is known (or assumed), the value of resistor \(R_{5}\) may be determined as follows:
\(R_{5}=\frac{1}{I_{c 3}}\left[\frac{V_{e f f}}{2}+V_{1}-V_{b e_{1}}-I_{4} R_{6}\right]-R_{6}\)
where \(V_{b e 1}\) is the base-to-emitter bias voltage required to establish the quiescent collector current \(I_{01}\) in transistor \(Q_{1}\), and \(I_{4}\) is the dc current necessary for earlier stages (Fig. 2). When alloyjunction transistors are used, \(V_{1}\) is about equal to \(V_{\text {be1 }}\). In addition, the product \(I_{4} R_{6}\) is usually small, and \(R_{5}\) is normally much larger than \(R_{6}\). On the basis of these approximations, therefore, equation (15) can be simplified as follows:
\[
\begin{equation*}
R_{5} \cong \frac{V_{e f f}}{2 I_{c_{3}}} \tag{16}
\end{equation*}
\]

The value of \(R_{4}\) is given by
\[
\begin{equation*}
R_{4}=\frac{\left(V_{b e_{1}}+V_{b e_{2}}\right)}{I_{c_{3}}} \tag{17}
\end{equation*}
\]
where \(V_{b e 2}\) is the emitter-to-base bias voltage required to establish the quiescent collector cur-
rent \(I_{o 2}\) in transistor \(Q_{2}\). The values of \(V_{b e 1}\) and \(\bar{V}_{b e 2}\) need not be identical to obtain the quiescent collector current required to reduce cross-over distortion (i.e., the transfer characteristics of \(Q_{1}\) and \(Q_{2}\) at low collector currents need not be matched). This method of biasing permits greater variation of \(V_{b e}\) for individual transistors than conventional Class \(B\) operation.

Because \(V_{b e}\) must be reduced by approximately two millivolts per \(C\) temperature rise to maintain a constant \(I_{c}\), the resistance \(R_{4}\) should be temperature sensitive. Best performance is obtained when \(R_{4}\) consists of two properly designed semiconductor diodes operated in the forward mode. Satisfactory results may also be achieved by the use of a thermistor-resistor network, and, in some cases, with merely a fixed resistor.

Cross-over distortion at high frequencies is not caused by quiescent current level, but may be traced to two contributing factors \({ }^{8}\) (if it is assumed that transformers are not used). If the distortion is essentially independent of amplitude, a beta-frequency-response mismatch is responsible. If the distortion is a perturbation in the crossover region, the minority carrier storage is responsible.
The value of resistors \(R_{1}, R_{2}, R_{3}\), and \(R_{8}\) must be determined separately for the circuits shown in Figs. 1 and 2. For the circuit of Fig. 1:
\[
\begin{equation*}
R_{3} \cong \frac{V_{\mathrm{b}}}{I_{c_{3}}} \tag{18}
\end{equation*}
\]
where it is assumed that \(I_{c 3} \cong I_{e 3}\).
For good thermal stability, \(\boldsymbol{R}_{2}\) should not be much greater than ten times \(R_{3}\) (and should be smaller, if practical). If \(\boldsymbol{R}_{\mathbf{2}}\) becomes too small, however, it shunts the input impedance of \(Q_{3}\). The input impedance of a transistor (\(R_{i n}\)) is given by
\[
\begin{equation*}
R_{i n}=r_{b b^{\prime}}+\frac{\beta}{I_{0}}\left(\frac{K T}{q}\right)+\beta R_{c} \tag{19}
\end{equation*}
\]
where \(r_{b o}\), is the equivalent base-lead resistance, \(K\) is Boltzmann's constant, \(T\) is the temperature in degrees Kelvin, \(q\) is the charge of an electron, and \(R_{0}\) is the emitter bulk resistance (plus unbypassed emitter resistance, if present).

Intrinsic collector-to-base conductance is neglected in this expression. The value of \(K T / q\) is 25.9 millivolts at 300 K . The value of \(R_{2}\) must be selected to provide a good balance of sensitivity and thermal stability. If good thermal stability is not obtained, the dc potential at the emitters of \(Q_{1}\) and \(Q_{2}\) will change rapidly with temperature, thereby causing unsymmetrical clipping and a considerable reduction in the output power. If difficulty is encountered in determin-
ing a suitable value for \(R_{2}\), it may be advantageous to choose a larger value of \(V_{5}\).
Resistors \(\boldsymbol{R}_{1}\) and \(\boldsymbol{R}_{8}\) establish bias on \(Q_{3}\) and provide dc feedback to maintain the emitter potential of \(Q_{1}\) and \(Q_{2}\) at the desired level.
The current flowing through \(\left(R_{1}+R_{6}\right)\) is the sum of the base current of \(Q_{3}\) and the current through \(R_{2}\). The base current of \(Q_{3}\) is given by:
\[
\begin{equation*}
I_{b_{3}} \cong \frac{I_{c_{3}}}{\beta_{3}}-I_{\infty 3} \tag{20}
\end{equation*}
\]
where \(I_{\text {co3 }}\) is the collector leakage current of \(Q_{3}\). The current through \(R_{2}\) is given by:
\[
\begin{equation*}
I_{R_{2}}=\frac{V_{5}+V_{b e_{3}}}{R_{2}} \tag{21}
\end{equation*}
\]
where \(V_{\text {be3 }}\) is the base-to-emitter voltage of \(Q_{3}\) when \(I_{c s}\) flows. The voltage across \(\left(R_{1}+R_{6}\right)\) is \(\left[\frac{V_{e f f}}{2}+V_{3}+V_{4}-V_{\text {be3 }}\right]\). The total resistance \(\left(R_{1}+R_{\beta}\right)\), therefore, is given by:
\[
\begin{equation*}
\left(R_{1}+R_{6}\right)=\frac{\left(0.5 V_{e f f}+V_{3}+V_{4}-V_{b e_{3}}\right)}{I_{b_{3}}+I_{R_{2}}} \tag{22}
\end{equation*}
\]

Ideally, \(R_{1}\) should be large compared to the input impedance of \(Q_{3}\), and \(R_{6}\) should be large compared to \(\boldsymbol{R}_{L}\), both consistent with equation (22). As \(R_{8}\) is increased in value, \(C_{4}\) is reduced in value because the pertinent decoupling time constant is essentially proportional to \(R_{6} C_{4}\).
The dissipation of transistor \(Q_{3}\) in the circuit of Fig. 1 is given by:
\[
\begin{equation*}
P_{1_{e_{3}}}=I_{c 3}\left(0.5 V_{e f f}+V_{3}+V_{4}-V_{b e_{2}}\right) \tag{23}
\end{equation*}
\]

In the circuit shown in Fig. 2, it is desirable to choose \(R_{8}\) first. The larger the value of \(R_{8}\), the less shunting effect it has upon \(R_{L}\), and the smaller \(C_{4}\) may be. As \(R_{6}\) is made larger, however, the voltage available for \(Q_{3}\) and earlier stages is reduced. A value of \(R_{6}\) between five and ten times \(R_{L}\) is usually satisfactory, although the actual value is determined by the specific application. It may, for example, be desirable to let \(R_{8}\) equal \(R_{\mathrm{L}}\) in the form of another speaker.
The voltage available to earlier stages drawing a total current of \(I_{4}\) (as previously defined) is given by:
\[
V_{8}=V_{e f f}+V_{1}+V_{2}-\left(I_{e 3}+I_{4}\right)
\]
\[
\left(R_{L}+R_{6}\right)-I_{5} R_{6}
\]
where \(I_{5}\) is the current through \(R_{2}\) (normally, \(I_{5}<0.2 I_{c 3}\)). This voltage, \(V_{b}\), must be considered, therefore, in determining \(R_{6}\). As shown below, \(V_{5}\) must also be considered.
The collector-to-emitter voltage supplied to \(Q_{3}\)

Fig. 4. Phase shift is responsible for diagonal clipping.
must be sufficient to avoid driver limiting. For most applications, this voltage is equal to:
\[
\begin{equation*}
\text { Peak } V_{b_{2}} \cong \text { Peak } I_{c_{1}}\left(R_{e 2}+\frac{r_{b^{\prime} 2}}{\beta_{2}}\right) \tag{25}
\end{equation*}
\]

Variations from one transistor to another should be considered when determining peak \(V_{b 2}\). Fortunately, when \(\beta_{2}\) is small, \(r_{b b \cdot 2}\) is usually small also. Therefore, the variation in peak \(\mathrm{V}_{\mathrm{b} 2}\) should be relatively small.

In order to drive \(Q_{2}\) to the clipping point:
\[
\begin{align*}
V_{5} \leqq 0.5 V_{e f s}+V_{2}- & V_{3}-\text { peak } V_{b_{2}}-V_{b e 2} \\
& -\left(I_{c_{3}}+I_{4}+I_{5}\right) R_{6} \tag{26}
\end{align*}
\]

The larger the value of \(V_{5}\), the lower the dissipation of \(Q_{3}\). The dissipation of \(Q_{3}\) is given by:
\[
\begin{align*}
P_{{ }_{2} Q_{3}}=I_{c_{3}}\left[0.5 V_{e f s}\right. & +V_{2}-V_{b e 2}-V_{5} \\
& \left.-\left(I_{c_{3}}+I_{4}+I_{5}\right) R_{6}\right] \tag{27}
\end{align*}
\]

Thermal stability and transistor interchangeability may also be improved more readily when a relatively large value of \(V_{5}\) is used. The value of \(R_{3}\) is given by:
\[
\begin{equation*}
R_{3} \cong \frac{V_{5}}{I_{c 3}} \tag{28}
\end{equation*}
\]
where it is assumed that \(I_{c 3} \cong I_{e 3}\).
The parallel combination of \(R_{1}\) and \(R_{2}\) (relative to \(R_{3}\)) determines the thermal stability and interchangeability. For good thermal stability, the parallel combination of \(R_{1}\) and \(R_{2}\) should not be much greater than ten times \(R_{3}\) (and should be smaller, if practical). However, because the input impedance of \(Q_{3}\) is shunted by \(R_{1}\) in parallel with \(R_{2}, R_{1}\) and \(R_{2}\) should be chosen large compared to the input impedance equation (19).

If the parallel combination of \(R_{1}\) and \(R_{2}\) is defined as \(R_{x}\), the value of \(R_{2}\) is given by:
\[
R_{2}=\frac{R_{x}}{1-\frac{\left(V_{5}+V_{b e_{3}}+I_{b_{3}} R_{x}\right)}{\left[0.5 V_{e f f}+V_{2}-\left(I_{c_{3}}+I_{4}+I_{5}\right) R_{6}\right]}}
\]
and the value of \(R_{1}\) is given by:
\[
\begin{equation*}
R_{1}=\frac{R_{2} R_{x}}{R_{2}-R_{x}} \tag{30}
\end{equation*}
\]

An assumption was previously made regarding the approximate value of \(I_{5}\), the dc current through \(\boldsymbol{R}_{2}\). The value of \(I_{5}\) may now be determined as follows:
\[
\begin{equation*}
I_{5}=\frac{V_{5}+V_{b e_{3}}}{R_{2}} \tag{31}
\end{equation*}
\]

If the value of \(I_{5}\) determined from equation (31) causes an appreciable change in the assumed total of \(\left(I_{c 3}+I_{4}+I_{5}\right)\), a re-evaluation will be in order.

\section*{Capacitance Values}

Although it may be desirable to choose \(C_{1}, C_{2}\), \(C_{3}\), and \(C_{4}\) empirically, some effects of the capacitors must be considered. In addition, an empirical derivation of the capacitors should allow for the rather wide tolerances normally encountered with electrolytic capacitors.

If all capacitors except \(C_{1}\) are assumed to equal infinity, and if \(R_{1}\) and \(R_{2}\) are assumed large as compared to \(R_{i n}\), the low-frequency time constant is given by:
\[
\begin{equation*}
\tau_{1} \cong C_{1}\left(R_{0}+R_{i n}\right) \tag{32}
\end{equation*}
\]
where \(R_{g}\) is the resistance of the generator driving the amplifier, and \(R_{i n}\) is given by equation (19). Although a large value of \(R_{g}\) permits a small value of \(C_{1}\) for a given low-frequency response, the terminal voltage at the generator is subject to the low-frequency time constant, \(R_{\text {in }} C_{1}\). Consequently, an appreciably greater dynamic range may be required for the generator in order to employ the capacitor predicted by equation (32).

If all capacitors except \(C_{2}\) are assumed to equal infinity, and if \(R_{1}\) and \(R_{2}\) are assumed large compared to \(R_{i n}\), the low-frequency time constant is given by:
\[
\begin{equation*}
\tau_{2} \cong \frac{C_{2}}{\left[\frac{1}{R_{3}}+\frac{\beta_{3}}{R_{g}+R_{\text {in }}}\right]} \tag{33}
\end{equation*}
\]

Normally:
\[
\begin{equation*}
R_{3} \gg \frac{R_{o}+R_{i n}}{\beta_{3}} \tag{34}
\end{equation*}
\]

Therefore, equation (33) may be rewritten:
\[
\begin{equation*}
\tau_{2} \cong \frac{C_{2}}{\beta_{3}}\left(R_{0}+R_{i n}\right) \tag{35}
\end{equation*}
\]

As in the case of \(C_{1}\), a large value of \(R_{0}\) may permit a small value of \(C_{2}\), but create a problem of low-frequency dynamic range. The voltage on
\(Q_{3}\) must be sufficient to accommodate \(C_{2}\).
In most applications, \(R_{1}\) and \(R_{2}\) are large compared to \(R_{i n}\), and inequality (34) is realized. In such cases, the low-frequency time constant can be expressed simply:
\[
\begin{equation*}
\tau_{12} \cong \frac{C_{1} C_{2}\left(R_{0}+R_{\text {in }}\right)}{\left(\beta_{3} C_{1}+C_{2}\right)} \tag{36}
\end{equation*}
\]

If \(C_{1}=C_{2} / \beta_{3}=\mathrm{C}\)
equation (36) can be simplified:
\[
\begin{equation*}
\tau_{12} \cong \frac{C\left(R_{o}+R_{i n}\right)}{2} \tag{37}
\end{equation*}
\]

When the reactance of \(C_{3}\) becomes significant compared to \(R_{L}\), the load on the output stage becomes complex. Because an elliptical load line is then produced, diagonal clipping of the output results at high power levels. This type of distortion is shown in Fig. 4. The dynamic range of \(Q_{3}\) is also reduced. The \(C_{3} R_{\mathrm{L}}\) time constant should be large compared to the lowest frequency at which full power output is desired.
\(C_{4}\) affects the frequency response and the dy namic range of the amplifier in a complex manner. Although \(C_{4}\) may be calculated, an empirical solution is recommended. \(C_{4}\) will normally be larger for the circuit of Fig. 2 than for the circuit of Fig. 1.

\section*{Typical Values}

Typical component values (Table I) are given for two circuits designed by this method. The 175-milliwatt circuit employs the circuit of Fig. 2, while the 10 -watt circuit employs the circuit of Fig. 1. These examples do not show any preference of circuit as a function of power level, but merely present two of the infinite possibilities. Capacitor values are not given because they depend upon the particular application.

\section*{References}
1. George C. Sziklai, "Symmetrical Properties of Transislors and Their Applications," Proc. IRE, Vol. 41, pg 717, I Ine, 1953.
O. Stanley and T. M. Scott, "Design Considerations in Chss B Complementary Symmetry Circuits," Transistors i RCA Laboratories, 1956, pg 497.
3. L. 1. Hunter, "Handbook of Semiconductor Electronics," McGraw-Hill, 1956, pg 11-38.
4. R. F. Shea, "Transistor Audio Amplifiers," Wiley, 2nd Printing, 1955, pg 183.
B. D. D. Jones and R. A. Hilbourne, "Transistor AF Amplifiers," Philosophical Library, Inc., 1957, pg 123.
6. H. Schenkel and H. Statz, "Junction Transistors with Alpha Greater Than Unity," Proc. IRE, Vol. 44, pg 360, March, 1956.
7. R. A. Schmeltzer, RCA Semiconductor Division, private communication.
8. D. D. Jones and R. A. Hilbourne, "Transistor AF Amplifiers," Philosophical Library, Inc., 1957, pg 49.

\section*{AMP.}

3 CIRCUITS

\section*{the MEW LOOK in AMP-Iok}

Now . . connect 3, 6, 9 or 12 circuits simultaneously with the AMP. Ioks multiple connector and a simple push of the fingers.
All units are self-anchoring and require no supplementary mounting parts in through panel multiple connector applications.
AMP-lok can be used as a safe, free-hanging multiple connector also.

AMP-lok obsoletes all it replaces because of the following design features:
- contacts are identical . . . sell cleaning . . . recessed for safety
- finger grip engagement and disengagement
- polarized to eliminate circuit error
- wide panel thickness accommodation -one simple mounting hole required
- color coding available

\section*{AMP INCORPORATED \\ GENERALOFFICES: HARRISBURG, PENNSYLVANIA}

\title{
Minimize Local Oscillator Driff*
}

Part 2

\author{
W. Y. Pan and D. J. Carlson \\ R.C.A. Victor Television Division Cherry Hill, N.J.
}

Part 1 of this article introduced an analysis of local oscillator drift.

In this, the concluding part, the analysis is applied to practice in a "step-by-step" stabilization of a typical uhf and vhf local oscillator.

HERE is a procedure to stabilize a local oscillator commonly used in commercial vhf television receivers. The same approach should hold for local oscillators in receivers operating up to and including the uhf band.

\section*{The Original Oscillator}

Circuitry. The original, uncompensated vhf television oscillator circuit is shown in Fig. 1. Its frequency varies from 101 mc at channel 2 to 257 mc at channel 13. The inductances \(L_{2}\) and \(L_{3}\), at channel 13 , are short-circuited. Under these conditions the inductance \(L_{1}\) and the circuit capacitances constitute the frequency-determining elements. At channel 7 however, only \(L_{3}\) is short-circuited. Consequently, \(L_{2}\) tunes from channels 7 to 13 inclusive, whereas \(L_{3}\) tunes from channels 2 to 6 inclusive. All capacitances external to the oscillator tube are not temperaturesensitive.
Frequency Characteristics. When installed in a commercial vhf color tv revceiver, the frequency characteristics of the original local oscillator at channel 6 are illustrated by the \(\Delta f\) (overall) curve in Fig. 2 which exhibits two distinct changes in slope. Accordingly, there are at least two major components of frequency deviations.
1. The fast-acting component is
\[
\Delta f_{1}=\alpha_{1}\left(1-\epsilon^{-\beta_{1} t}\right)
\]
where \(\alpha=\) maximum oscillator frequency deviation, and \(\beta=\) the rate of change of oscillator frequency. The fast-acting component is caused by the changes of tube capacitances during the early minutes of operation. To evaluate this component, all associated circuit elements of the original oscillator are replaced by a single inductance \(L_{o}\) made of Milvar wire, having an extremely low coefficient of thermal expansion. \(L_{o}\) and the tube capacitances then constitute the frequency determining elements. The corresponding frequency deviations are
\[
\begin{equation*}
\Delta f_{1}=-0.00475 f\left(1-\epsilon^{-0.55 t}\right) \tag{1}
\end{equation*}
\]

It is evident that the frequency deviation, \(\Delta f_{1}\) is directly proportional to the oscillator frequency. At channel 6, the oscillator frequency is 126 mc ; so \(\alpha_{1}=-0.610 \mathrm{mc}\) and \(\beta_{1}=0.55\) which is independent of the oscillator frequency.
2. The slow-acting component is
\[
\Delta f_{2}=\alpha_{2}\left(1-\epsilon^{-\beta_{2} t}\right)
\]

The difference between the instantaneous overall frequency deviation \(\Delta f\) and the fast-acting component \(\Delta f_{1}\) gives the slow-acting component \(\Delta f_{2}\). At channel 6 ,
\[
\begin{equation*}
\Delta f_{2}=-0.500\left(1-\epsilon^{-0.04 t}\right) \tag{2}
\end{equation*}
\]

Requirements for Frequency Stabilization. To obtain good frequency stabilization of the original local oscillator, the following requirements must be met.
- At least two compensating elements, \(A\) and \(B\), are needed - A to compensate for the fast-acting component \(\Delta f_{1}\), and \(B\) to compensate for the

Fig. 1. Local oscillator circuit of vhf tv receivers. The dotted components are for stabilization.

Fig. 2. The original frequency characteristics of the vhf local oscillator, with the fast-acting \(\left(\Delta f_{1}\right)\) and slow-acting \(\left(\Delta f_{2}\right)\) deviation components.

\footnotetext{
* By courtesy of Product Engineering. Radio Corporation of America
}
slow-acting component \(\Delta f_{2}\). The expressions for \(A\) and \(B\) are, respectively
\[
\begin{aligned}
& \Delta f_{1}^{\prime}=\alpha_{1}^{\prime}\left(1-\epsilon^{-\beta^{\prime} 1}{ }^{\mathbb{t}}\right) \text { and } \\
& \Delta f_{2}^{\prime}=\alpha_{2}^{\prime}\left(1-\epsilon^{-\beta^{\prime}{ }_{2}^{t}}\right)
\end{aligned}
\]
- These two compensating elements must be so situated in the oscillator circuit that \(\beta^{\prime}{ }_{1}\) of \(A\) approaches the value of \(\beta_{1}\) of \(\Delta f_{1}\), and \(\beta^{\prime}{ }_{2}\) of \(B\) approaches the value of \(\beta_{2}\) of \(\Delta f_{2}\).
- The compensating elements must exhibit negative temperature sensitivities, in this case, to raise the oscillator frequency with temperature rise.
- The magnitudes of \(\alpha_{1}^{\prime}\) of \(A\) and \(\alpha_{2}^{\prime}\) of \(B\) must approach those of \(\alpha_{1}\) of \(\Delta f_{1}\) and \(\alpha_{2}\) of \(\Delta f_{2}\).
Stabilization Procedures. The stabilized oscillator circuit is again shown in Fig. 1, with the modifications indicated by the dotted components.
1. The capacitance \(C_{1}\) (replaced with 10 N 330 and a lead of \(5 / 8 \mathrm{in}\).) compensates for \(\Delta f_{1}\), the fast-acting component of the oscillator-frequency deviation. For perfect compensation
\[
\begin{gather*}
\Delta f_{1}^{\prime}=\Delta f_{1} \\
\Delta f_{1}^{\prime}=-\alpha_{1}\left(1-\epsilon^{-\beta_{1} t}\right) \tag{3}
\end{gather*}
\]

To make \(\beta^{\prime}{ }_{1}=\beta_{1}\), the capacitance \(C_{1}\) must be as close as possible to the source of the heat flow. It is therefore placed at the grid pin of the oscillator tube. The resultant \(\beta^{\prime}{ }_{1}\) value is 0.29 as compared to \(\beta_{1}\) of 0.55 for the fast-acting component. The discrepancy between \(\beta^{\prime}{ }_{1}\) and \(\beta_{1}\) unavoidably introduces a compensation error, \(\xi\) where
\[
\begin{equation*}
\xi=\Delta f_{1}+\Delta f^{\prime}{ }_{1} \tag{4}
\end{equation*}
\]
(Continued on following page)

Fig. 3. The compensation error with \(\epsilon=\alpha_{1}\left(1-\epsilon^{-.29 t}\right)+\alpha_{1}\left(1-\epsilon^{-.55 t}\right)\)

\section*{BOOST PRODUCT EFFICIENCY and SALES APPEAL...}

Sturdy little Stackpole Slide Switches provide almost any desired switching arrangement at rock-bottom cost. Features include \(1 / 2,1\) and 3 ampere 125 volt ratings in U.L. Inspected types; 1 to 3 pole types with up to 4 positions; momentary or maintained contact designs; lug, printed wiring or wire-wrap terminals; and many special types such as plunger-operated spring return, 4-gang SP-DT, and many more.

WRITE FOR SLIDE SWITCH BULLETIN RC-11D to:
Electronic Components Division, STACKPOLE CARBON CO.. St. Marys, Pa.

\footnotetext{
Coldite \(70+\) fixed composition resistors - Snap and Slide Switches. Ceramagn ferromagnetic cores - Variable composifion resistors Caramagnet* ceramic magnets - Fixed composition capacitors. Iron cores - Brushes for all rotating electrical equipment - Electrical contacts - Hundreds of reloted carbon, grophite and metal powder products.
}

CIRCLE 30 ON READER-SERVICE CARD

Fig. 4. Frequency characteristics of a stabilized vhf iv local oscillator.

The compensation error expressed in eq. (4) is evaluated in Fig. 3 with values for \(\alpha_{1}^{\prime}\) to be -0.4 , \(-0.6,-0.8\) and -1.0 of the \(\alpha_{1}\) value. The error is minimum when \(\alpha_{1}{ }_{1}=-0.6 \alpha_{1}\). At channel 6 . \(\alpha_{1}=-0.610 \mathrm{mc}\) according to eq. (1). The corresponding compensating error, after two minutes of operation is \(-0.04 \alpha_{1}\) or -0.025 mc , and \(\alpha^{\prime}{ }_{1}=\) \(-0.6 \alpha_{1}\) or 0.360 mc . A compensating capacitance of 10 N 330 produces these results approximatel.

The added inductance, consisting of a \(5 / 8 \mathrm{in}\). lead of \(C_{1}\) makes \(\alpha_{1}^{\prime}\) proportional to the oscillator frequency, as \(\alpha_{1}\) does, at all channels.
2. The capacitance \(C_{2}\) (replaced with 10 N 330) compensates for the slow-acting component for channels 7 to 13 . At these upper vhf channels, the inductance \(L_{3}\) and capacitance \(C_{4}\) are shortcircuited. Again for perfect compensation,
\[
\begin{gather*}
\Delta f_{2}^{\prime}=\Delta f_{2} \\
\text { or } \quad \Delta f_{2}^{\prime}=-\alpha_{2}\left(1-\epsilon^{-\beta_{2}!}\right) \tag{5}
\end{gather*}
\]
\(C_{2}\) is situated among the associated circuit elements of the local oscillator where the rate of temperature rise is relatively low. Hence the value of \(\beta_{2}^{\prime}\) is approximately equal to \(\beta_{2}\). The capacitance and temperature sensitivity of \(C_{2}\) are determined in a manner alagous to that for \(C_{1}\) and the corresponding \(\alpha_{2}^{\prime}=\alpha_{2}\) at all upper vhf television channels.
3. The added capacitance \(C_{4}(47 \mathrm{~N} 750)\), together with \(C_{2}\) are effective in frequency stabilization at the lower vhf channels. Owing to the difference in \(L / C\) ratios at the lower oscillator frequencies, \(C_{2}\) is not sufficient to compensate for the frequency deviation. The addition of \(C_{4}\) makes \(\alpha_{2}^{\prime}\) (at lower channels) \(=\alpha_{2}\). The \(\beta_{2}^{\prime}\) value of \(C_{4}\) is about equal to the \(\beta^{\prime}, 2\) value of \(C_{2}\) because the locations of these two elements are equally distant from the heat source.
Residual Frequency Deviations. A typical production vhf television receiver incorporating
these compensating elements behaves as shown in Fig. 4 at channels 2, 6, 7, and 13. The maximum residual frequency deviation is less than \(\pm 50 \mathrm{kc}\) after a period of two minutes, and all channels become almost completely stabilized within 30 minutes. This residual frequency deviation during the early minutes of operation is principally caused by the discrepancy between the \(\beta_{1}^{\prime}\) value of the compensating element and the \(\beta_{1}\) value of the fast-acting component.

To further minimize local oscillator drift, oscillator tubes other than the miniature type must be used or the compensating element \(C_{1}\) must be built inside the oscillator tube to produce a \(\beta^{\prime}{ }_{1}\) value about the same as \(\beta_{1}\). Due to constructional differences, the \(\beta_{1}\) of the RCA pencil triode tube, for instance, is 0.32 which is so close to the \(\beta^{\prime}{ }_{1}\) value of 0.29 that any local oscillator using a pencil triode tube can be compensated more exactly than shown by Fig. 4.

\section*{Considerations For UHF Local Oscillators}

The same approach used to stabilize a vhf television local oscillator applies equally well to uhf local oscillators. Appropriate compensating elements can again be secured by analyzing the original frequency characteristics of the oscillator with the aid of the analytical representation expressed in
\[
Q=\alpha\left(1-\varepsilon^{-\beta t}\right)
\]
where \(Q\) is the instantaneous cathode-to-grid radiation; \(\alpha\) is the total radiated power; and \(\beta\) is a

Fig. 5. A typical uhf tv local oscillator (a), with the associated null points along the transmission line (b).
time constant, determining the rate of heat flow from cathode to grid.
Dimensional Resonances. The stabilization procedures at uhf, however, are further complicated by the fact that some of the associated circuit elements of the local oscillator may have electrical lengths comparable to a quarter wavelength of the local oscillator frequency. To illustrate this complication, a typical uhf commercial tv local oscillator is shown in Fig. 5a. It covers a continuous frequency range from 517 mc at channel 14 to 931 mc at channel 83 by means of a variable ganged capacitor. This is coupled to the 6AF4A oscillator tube by a transmission line having a characteristic impedance of approximately 150 ohms.
At the socket pins of the 6AF4A, the oscillator voltage between the grid and plate falls to a minimum value at approximately 1000 mc . Any temperature sensitive element placed across these two points would affect the oscillator frequencies either above or below that frequency. At 1000 mc the effect is theoretically zero. Since the oscillator line is \(1-9 / 16 \mathrm{in}\). long, the voltage minimum or null point at the other end of the line corresponds to 500 mc .
If the distance at the junction between the oscillator line and the stator assembly of the ganged capacitor is assumed to be zero, then the null points along the line are illustrated in Fig. 5b. For instance, the 725 mc null point occurs at \(7 / 8 \mathrm{in}\).

Fig. 6. Three point compensation curves for the uhf local oscillator.

Relative Effectiveness of Compensating Elements. By placing an appropriate temperaturesensitive capacitor at any point \(x\) along the oscillator line, the relative effectiveness of frequency compensation \(\left(P_{s}\right)\) at an oscillator frequency (\(f\)) is determined by
\[
P_{x}=1-|\sin \theta|
\]
where \(\theta=1 / 2 \pi f / f_{x}\)
and \(f_{x}=\) null frequency corresponding to point \(x\).
Three-Point Compensation. One compensating element, when properly placed in the uhf oscillator circuit, is sufficient only in receivers designed for a single-frequency or very narrow frequency range operation. To cover an extended band of frequencies, three compensating elements are required for good stabilization. Let compensating capacitances \(C_{1}, C_{2}\), and \(C_{3}\) be connected at points along the oscillator line corresponding to null frequencies of 1000,500 , and 725 mc respectively. The relative compensations of \(C_{1}\left(f_{s 1}=1000 \mathrm{mc}\right)\) and \(C_{2}\left(f_{x 2}=500 \mathrm{mc}\right)\) on the oscillator frequency are given by the \(K_{1} P_{1}\) and \(K_{2} P_{2}\) curves respectively in Fig. 6. The \(K_{1} P_{1}+K_{2} P_{2}\) curve shows the combined effect of \(C_{1}\) and \(C_{2}\).
It must be stressed that the temperature sensitivities and capacitances of these compensating elements depend on the \(\alpha\) values needed at these frequencies. The constants \(K_{1}, K_{2}\), and \(K_{3}\) take into account the differences in temperature sensitivities and capacitances of these three compensating elements. Furthermore, since the oscillator line is a good heat conductor, the \(\beta\) values at these three locations do not differ too much.
The contribution of \(C_{3}\left(f_{x 3}=725 \mathrm{mc}\right.\) having a positive temperature sensitivity) is represented by the dashed curve \(K_{3} P_{3}\) which leads to an overall compensation marked \(K_{1} P_{1}+K_{2} P_{2}+K_{3} P_{3}\). Several commercial uhf television receivers have been stabilized with three-point compensation. The residual frequency deviations are less than \(\sim 100 \mathrm{kc}\) at any uhf television channels.

\section*{Automatic Recorders Can Help}

With the aid of the automatic recording equipment the analytical expression for frequency deviations greatly simplifies local oscillator stabilization.

\section*{References}

Frequency Characteristics of Local Oscillators, W. Y. Pan. RCA Review, Vol. XVI, No. 3, Sept. 1955.
Practical Aspects of Local Oscillator Stabilization, W. Y. Pan and D. J. Carlson, RCA Review, Vol. XVII, No. 4, Dec. 1956.
Vacuum Tube Oscillator, W. A. Edson. John Wiley \& Sons, Inc., New York 1953.

\section*{The FIRST and ONLY standard line of tunable Microwave Filters}

\author{
Charactoristics \\ Model No. \\ Type of Resonalor \\ Tuning Range \\ 3 db Bandwidith \\ Max 30 db Bandwidth \\ Max Insertion Loss \\ Price \\ Model No. \\ Type of Resonant Cavity \\ Tuning Range \\ 3 db Bandwidth \\ Max Insertion loss \\ Price \\ Characteristics \\ Model No. \\ Type of Resonator \\ Type of Resonctor \\ Tuning Range \\ Max 30 db Bandwidth \\ Max Insertion Loss \\ Moxice \\ Charactoristics \\ Model No. \\ Type of Resonant Cavity Tuning Range \\ Max 30 db Bandwidth \\ Max Insertion Loss \\ Max insertion Loss \\ Characteristics Model No. \\ Type of Resonant Cavity Tuning Range \\ 3 db Bandwidth \\ Mox 30 db Bondwid \\ Price \\ Model No. \\ Type of Resonant Cavity \\ Tuning Range \\ 3 db Bandwidth \\ Max 30 db Eandwidih \\ Max Insertion Loss \\ Price
}

All of the above filhors have Max VSWR of 1.5, and oither a single shaft or counter dial for Tuning Control. Dopending upen mode of operation, units are supplied with either Type \(\mathbf{N}\) Connectors or Wavaguide hanges. DEIIVEIY IN 90 DAYS

\section*{Frequency Standards. inc. \\ A DIVISION OF}

NATIONAL ELECTRIC PRODUCTS CORP.
P. O. BOX 504, ASBURY PARK, N. J. Telephone: PRospect 4.0500 TWX A PK 588

CIRCLE 31 ON READER-SERVICE CARD

\section*{Built to aircraft and missile specifications}

The Axımax 2 vane axıal fan is designed for tightly packed "black boxes" aboard aircraft or missiles where maximum cooling is mandatory with a minımum of space and weight loss due to the fan. Air delivery of 60 cfm free air is attaıned from a fan only \(2^{\prime \prime}\) in diameter by \(1.5^{\prime \prime}\) in axial length. Weight is 4.5 ounces Variation in driving motors include constant speed 20.000 rpm .10 .000 rpm as well as variable speed Altivar versions. The latter vary their speed inversely with density thereby approaching constant cooling with a minimum of power drain and noise Power requirements vary from 400 cps for the standard unit to 1600 cps for special designs. 1 or 3 phase, sinusoidal or square wave. The Aximax 2 meets MIL-E.5400B and other individual missile specifications. Write today for complete technical information to -

\section*{ROTROS}
mfg. co., inc.
WOODSTOCK. NEW YORK
In Canada The Hoover Co, Ltd. Hamilton, Ont.

\section*{Relay performance improved by}

\section*{'Laying it on the line'}

BY MOUNTING the relay right in the cable runs, marked improvement in relay shock and vibration characteristics has been accomplished.
Electronic Specialty Co., 5121 San Fernando Road, Los Angeles 39, Calif., has come up with the radical design. The leads are brought out of both ends of the relay case and connected to the cable runs as shown. The leads then act as supports.
When in-line mounted, the relay becomes an integral part of the line itself. Resonant frequency of the system is decreased and the damping factor is substantially increased. The result is that shocks of short duration are reduced by a factor of 90 per cent.

Laboratory qualification tests indicate the Electronic Specialty relay will withstand shocks of 100 g . The relay also shows no sign of contact chatter at 50 g to 2000 cps .
Ambient temperatures, dielectric breakdown, characteristics and weight requirements have also been optimized by this in-line arrangement. The manufacturer reports operation in ambients of 150 C . Dielectric breakdown occurs as high as 1500 vrms due to self-sealing connectors and wider spacing of contacts. Weight of the relay is 3.5 oz and it measures 1.12 in . in diam and 2.88 in . long.

Quick disconnect features are incorporated into the relay termination facilitating rapid mounting.

The new line of relays includes spdt, dpdt, 3 pdt and 4 pdt configurations which are rated at 2,5 or 10 amp inclusive.

All major environmental requirements of present specifications MIL-R-6106C, MIL-R-5757C and MIL-R-25018 are reportedly exceeded by the line of relays.

For more information, turn to the Reader Service card and circle 15.

In-line mounted relay cuts
weight and vibration.

\section*{Electromechanical}

\section*{Indicator}

\section*{for reliable readout}

THE MAGNELINE indicator presents a different approach to the readout problem. The device has the simplicity and reliability of electromechanical design, yet is rapid enough to be useful where purely electrical indication has been used.

Construction consists of one moving part, an Alnico \(V\) magnet, on which large, easily readable numbers are displayed. This magnet, weighing about \(1 / 3\) oz, is suspended on precision bearings. A relay circuit enables coils to be energized at different points, depending on the input code. The resulting field aligns
the magnet.
The system permits a display of numbers at a rate of about two per sec. Only 0.028 amp are drawn during the time of the signal pulse. Since no energy is required to hold a display, the overall power used is small.

Manufactured by Patwin Co., Waterbury, Conn., the Magneline indicator has a total weight of 3.3 oz , and can be compactly stacked for multiple digit display. Digits measure \(5 / 8 \times 3 / 8 \mathrm{in}\)., can be read up to 25 ft away and at angles of 60 deg .

For more information, turn to the Reader Service card and circle 33.

Input code allows the coil of the indicator to be energized at one point and grounded at the opposite point.

TACH-PAK
Permits tachometry with an accuracy at 0.1\%

PREAC
A single stage magnetic computer amplifier having exceptionally high gain

\section*{AIRPAX continues to lead the way!}

Airpax Engineers have developed the above items as well as many others which represent the latest advances in components designed for use in commercial and military fields.

How to eliminate unwanted signals in

\section*{Omni UHF and VHF Antennas}

Unwanted signals in vertically polarized omnidirectional uhf and vhf antennas can be eliminated. A null in the desired direction can be created by synthesizing an array with "off the shelf" antennas. Techniques employed to adjust the parameters of such an array are discussed in this article. E direction from an omnidirectional antenna is LIMINATION of a uhf or vhf signal in one possible by forming an array using the omnidirectional radiator and one unidirectional radiator properly phased and graded. It is possible to synthesize a pattern which is essentially omnidirectional except for an incremental null in one direction. If the radiation pattern of the unidirectional antenna is known, we can, with certain simplifying assumptions, compute the synthesized pattern.
Consider, for example, a corner reflector with a gain of 6 db over that of a unipole and ground plane. If these antennas are positioned as shown in Fig. 1, the expression for the resulting free space field strength for any direction in azimuth is:
\[
\begin{equation*}
E \cong \frac{k}{r}\left[1+A|f(\phi)| \epsilon^{j(\rho-\delta \beta)}\right] \tag{1}
\end{equation*}
\]

This assumes there is no interaction or mutual effect between the antennas and is an approxi-

\author{
A. G. Holtum, Jr. \\ Chief Engineer \\ Andrew Corp. \\ Claremont, Calif.
}

Originally an Easterner, Al Holtum, Jr. moved West in two steps. After World War II, he worked in the Signal Corps Engineering Labs at Fort Monmouth, N.J. He specialized in antennas.

In 1954 he became chief of the Radio Communications Division at the Signal Corps Electronic Proving Ground, Ft. Huachuca Ariz. There, he was concerned with testing and evaluating communication systems and concepts.

Recently Al left the sunny Arizona desert and moved over the mountains to often sunny Claremont, Calif. Here he is chiel engineer of Andrew California Corp., an affiliate of Andrew Corp. They design and manu facture antennas and antenna systems.

mation of the free space pattern in the horizontal plane.
If the parameters are adjusted so that there is a null in the \(\phi=0\) position, \(A\) will have the value -1 , and \(f(\phi)_{\text {max }}=|f(0)|=1\). Note that the antennas are mounted in a plane perpendicular to the direction of the desired null. This aspect effects maximum phase change per unit angle resulting in a smaller increment between minimum and maximum field strength.
Then, if \(A=-1,|f(0)|=1\), and \(f(\phi)\) is defined for all values of \(\phi\), we have all the information necessary to compute the pattern. Assuming that the corner reflector is mounted such that its phase does not vary appreciably with \(\phi\), i.e. \(\rho \cong 0\) we have from (1)
\[
\begin{equation*}
E \sim 1-\left|f(\phi)_{-}\right| \epsilon^{-j \beta_{\theta} \operatorname{tin} \phi} \tag{2}
\end{equation*}
\]
which gives the relative value of \(E\) (field strength) at a constant distance \(r,(r \gg \lambda)\) from the antenna. Fig. 2 (a) is a plot of the pattern for \(s=\lambda\); Fig. 2(b) shows the relative pattern for \(s=5 \lambda\).

\section*{Feed Systems}

To properly grade and phase the antennas forming the array, it is necessary to employ some sort of attenuator or power dividing network and a phase shifter (Fig. 4). The attenuator is needed to adjust the magnitude of the field strength produced by the corner reflectors to equal that of the omnidirectional antenna; the
phase shifter is required to adjust the phase of the corner reflector to 180 deg with respect to the omnidirectional antenna.

\section*{Best Spacing}

Spacing of the antennas determines the width of the incremental null in the composite pattern. As spacing approaches zero, the width of the null approaches the order of the beam width of the corner reflector. As spacing increases, the width of the null becomes smaller, and additional nulls are introduced (Fig. 2).
Assuming that secondary nulls which are formed will not perturb the pattern beyond given limitations, an optimum value for spacing can be found.

Assume that the pattern perturbation is to be limited so that secondary nulls will not reduce the field strength by more than 3 db below that of the omnidirectional antenna alone. From equation (2):
\[
\begin{equation*}
E_{\min } \sim 1-\left|f(\phi)_{1}\right| \tag{3}
\end{equation*}
\]

And from a graph of the normalized function, the value of \(\phi\), for which \(\mid f(\phi)=0.3\), (making \(E\) \(\cong 0.3\)). Using Equation (2) secondary nulls can be determined from
\(\beta s \sin \phi=2 \pi n\), where \(n=1,2,3 \ldots\)
and the first secondary null will occur for

Fig. 1. Variables used to calculate field strength at any azimuth angle \(\varphi\). Null is in the \(X\) direction.

Fig. 2. Field strength pattern using a unipole and corner antenna at a spacing of one wavelength (a) and 5 wavelengths (b).

about signal generators?

No need to be foiled in efforts to establish a reliable pole beacon for missile checkout equipment, rapierwitted friend Sherman claims. Our new Model 82 Signal Generator Series, with one power supply and five plug-in r-f oscillators, can parry any problem of instrumentation inflexibility with one thrust (or five), depending upon the scope of your frequency requirements.

We've been told by users that they like its extreme flexibility ... resulting in but a bit of the van space previously required for attuning telemetry and guidance channels, tracking and acquisition radar and voice links.

The basic power chassis comprises both high and low power supplies, a variable amplitude (1 kc) sine wave oscillator and a square wave shaper. Individual, interchangeable, r-f assemblies contain the remainder of the generator components and provide coverage of \(20.80 \mathrm{mc}, 300-500 \mathrm{mc}, 800-1100 \mathrm{mc}, 1100-1600 \mathrm{mc}\), and \(2700-3000 \mathrm{mc}\) frequency ranges. Two types of modulator units offer the option of high or low power operation in the 500.1000 mc range.

Your request for further information will result in worthwhile, seriously inclined literature.

Fig. 4. Functional circuit used to grade and phase anternas forming the array.

46

Fig. 5. Block diagram of both antennas and their phasing network.

Fig. 7. Attenuation of the capacitive L-network vs frequency.

Fig. 6. Null or field strength vs frequency based on a perfect null at a center frequency of 160 mc .
\(s=\frac{\lambda}{\sin \phi_{1}}\) where \(\phi_{1}\), is the angle chosen. Suppose:
\[
|f(\phi)|=0.3 \text { at } \phi_{1}=80^{\circ}
\]

Then:
\[
s=\frac{\lambda}{0.98} \cong \lambda
\]

\section*{Perturbation Due to Reflections}

Our simplified expression, Equation (2), is for the relative field strength in free space. In practice, when the array is mounted, reflections from objects and the ground plane will perturb this pattern somewhat. The perturbation will be

ELECTRONIC DESIGN • August 6, 1958
most significant at the null itself, but this can be "tuned" out by readjusting the feed line parameters slightly and "minimizing" the unwanted signal.

\section*{Practical Installation}

Using standard antenna components (Fig. 3), an array was erected try this method. An Lnetwork of two variable capacitors in combination with a differential in transmission line length (Fig. 5) can be adjusted to give the appropriate attenuation and phasing to the signal impinging (on the array

In analyzing this circuit the approximate bandwidth was computed assuming matched conditions for both antennas. Plot of the null or field strength in the direction of the null versus frequency (Fig. 6) is based on a perfect null at a center frequency of 160 mc . Fig. 7 shows the voltage ratio or attenuation and phase shift of the capacitive network versus frequency.

In this circuit, the differential in transmission line lengths is added in such a way so that incremental changes in frequency will cause compensating changes in phase in the line differential, \(l_{x}\), with respect to the L-network of capacities. This technique broadens the effective bandwidth.

Using the technique described, it may be possible to synthesize to good approximation many special radiation patterns using a combination of standard antennas. To predict the possibilities more accurately, accurate phase, amplitude, and gain measurements must be made of standard antenna types.

\section*{Acknowledgemen}

The author is indebted to Dr. Victor J. Andrew who conceived the basic idea.

\section*{Nomenclature}
\(A=\) proportionality constant
\(\beta=\)
\[
2 \pi
\]
\(\delta=S \sin \varphi\)
\(f(\varphi)=\) radiation function of directional an tenna
\(k=\) constant, dependent upon radiated power
\(A=\) wavelength in free space
\(r=\) distance from antenna
\(\varrho=\) phase angle, associated with
\(f(\varphi)=/ f(\varphi) / \varepsilon^{3}\)
\(s=\) spacing between antennas
\(p=\) azimuth angle

\section*{Makes News in Sealing Relays}

Some very vital "guts" in this miniature relay are resistance welded to the internal electrodes of the glass-to-metal hermetic header. If the electrodes should twist in the glass when the external ends are bent or crimped . . . or when the relay is undergoing adjustment before sealing the unit has "had it."

ONE MANUFACTURER of this type of relay using an ordinary "compression only" header had a specification like this.
"Portion of pins in glass must be flattened to prevent turning and breaking seal."

THEN THEY TESTED the Fusite Terminal with V-24 glass that actually interfuses with the pin and they added the following modification:
-"unless a true bond exists between metal and glass sufficiently strong to make flattening unnecessary."

\section*{RESULTS OF TEST WITH FUSITE TERMINALS:}
1. No flattening of pin
2. No movement of pin
3. No failure of seal
4. Only Fusite Terminals with controlled compression plus fusion can pass this test without the mechanical "crutch" of a flattened pin. With true fusion the glass bites the metal and the metal bites back. Only fusion can produce a true dependable hermetic seal.

\section*{SAMPLES ARE YOURS FOR THE ASKING: WRIIE DEPT. C-I}

\section*{THIS TEST WAS THE DECIDING FACTOR:}

"Hold pin .060" from the end of header and twist \(180^{\circ}\) clockuise, \(180^{\circ}\) comuter clockwise to original position. Any movement of opposite end of pin constitutes a failure."

\section*{THE}

CORPORATION 6000 FERNVIEW AVE., CINCINNATI 13, OHIO

\section*{ENGINEERINGNEWS}

\section*{SOLVE SPACE AND WIRING PROBLEMS with Swifch/Light Combinations}

You probably use these Hetherington Switch/Light combinations every time you travel via leading air lines. Here they are used as hostess call lights. As you may have suspected however, this is have suspected, however, this is just the beginning of their useful-ness-both in aircraft as well as in commercial instrumentation and control uses. Their unique combi-
nation of single- or double-pole nation of single- or double-pole
switching action together with an switching action together with an
illuminating push button offers definite advantages in terms of greatly reduced panel space and the elimination of switch-to-light wiring. Usually the entire assembly takes no more space than a conventional switch alone.

Of particular importance for many applications, Hetherington Switch/Light combinations make it easier for operators to keep closer tabs on crowded panels without confusing control functions. By connecting the light to an externally controlled circuit the illuminally controlled circuit the illuminated button virtually cries, "Push
\(M e, "\) to attract the operator's attenMe," to attract the operator's atten-
tion at the right time. In other tion at the right time. In other
models, lamp circuits are controlled by the main switch contacts or by a second set of auxiliary contacts.

Typical contact ratings are 15 amps at 30 volts ac-dc. Illuminated buttons can be made in virtually any color, shape or size.

CIRCLE 547 ON READER-SERVICE CARD

\section*{HERE'S EXTRA SAFETY FOR WARNING LIGHT APPLICATIONS}

JUST "PRESS TO TEST"

Ever wonder whether a warning light Ever wonder whether a warning light for a critical circuit was merely OFF

If so, you'll appreciate the "Press-to-Test" feature of this tiny Hetherington Type L3200 light.

The lamp and its circuit can be "checked-out" simply by pressing on the spring-mounted plastic lens cap. This makes contact through a separate third terminal circuit. When cap is released, the lamp functions through the regular circuit.

The long plastic lens of the L3200 gives wide, 180 -degree visibility with either standard or edge-lit panels. Uses AN3140 lamps. For more details, write for Bulletin L-2b.
CIRCLE 548 ON READER-SERVICE CARD

\section*{BETTER SWITCHES FOR}

\section*{BETTER APPLIANCES}

A good electrical product deserves a good switch-and for types in the 5 to 50 ampere range that means Hether ington. Sturdy, good-looking switches -both push button, toggle, rotary, and other types-for unique operating or mounting requirements have long been a Hetherington specialty. Chances are, Hetherington switch engineers can recommend something out-of-the-ordinary that will enhance the appearance and saleability of your electrical products while assuring long. happy switch performance.

\section*{NEW PUSH BUTTON SWITCHES FOR AVIATION'S TOUGHEST JOBS . . . Designed fo MIL-S-6743 Specs}

Designed to MIL-S-6743 drawing MS25089, these rugged, fully mois-ture-proofed snap action switches take a full 50 G shock and wide-amplitude vibrations up to 55 cps without contact transfer.
The basic switch can be fitted with any of eight different anodized aluminum mounting adapters, such as those illustrated, to meet virtually
any mounting or design requirement. Two-circuit, three-terminal, SPDT, and other contact arrangements are available with ratings up to 10 amps, 28 volts dc. Ask for details on Hetherington Series W100.

Similar switches for non-MIL and industrial applications are available in over 1800 different types as Hetherington Series "JR."

HETHERINGTON INC. DELMAR DRIVE, FOLCROFT, PA. - 139 Illinois St, El Segundo, Calif.

\section*{High Input}

\section*{Transistor}
G. Franklin Montgomery Nation

NPUT impedance in transistor circuits from I 50 to 100 meg can be obtained by using cascaded emitter-follower stages. A cascade of two common-collector stages is shown in Fig. 1. It has an input resistance of approximately \(\beta_{1} \beta_{2} R\), where \(b_{1}\) and \(b_{2}\) are the current amplifications of the first and second transistors, and \(R\) is the load resistance at the emitter of the second transistor. In parallel with this input resistance is the collector resistance of the first transistor and the effective resistance of its biasing network. If \(\beta_{1} \beta_{2} R\) is large, the parallel resistances establish an upper limit on the total input resistance.
Stampfl and Hanel \({ }^{1}\) have shown how feedback may be applied from the second emitter to the first collector to reduce the shunting effect of the collector resistance. The same technique can be used to reduce the effect of the bias network as well. Additional coupling components are needed to supply the feedback.
If the power supply is permitted to float, the feedback can be obtained with only two additiunal components. Fig. 2 is a typical arrangement. CK722 transistors demonstrate the performance obtainable with inexpensive units. With the output open-circuited, the voltage amplification in the audio-frequency range is nearly unity, and the input resistance is about one meg. With an output load of 1000 ohm, the

Fig. 1. A cascade of two common-collector stages.

\section*{Impedance}

\author{
Amplifier
}

Bureau of Standards Washington 25, D. C.
voltage amplification is 0.8 , and the input resistance is about \(150,000 \mathrm{ohm}\). With high-gain transistors having low leakage current, the bias resistances can be increased, and input resistances of 50 to 100 meg can be obtained.
An experimental amplifier is in use with the foilowing parameters:
- Transistors: type 2N105
- Bias resistors: 4.7 meg collector to base; 2.2 meg base to battery. Collector and emitter resistors in second stage: 15 K each.
- Power gain into 12 K load: 34 db
- Input impedance: with 12 K load resistance, 33 meg ; with infinite load resistance, greater than 50 meg .
- Battery voltage: 22 v .

In applications where noise figure is important, it is sometimes erroneously supposed that this type of amplifier requires a large source of impedance. For a low noise figure, the source impedance should be that which is optimum for the same amplifier operated without feedback, usually about 1000 ohm.

\section*{References}
1. Transistor Amplifier with Extremely High Input Impedance, R. A. Stampl and R. A. Hanel, Proceedings of the National Electronics Conference, Vo. XI, pp 1-7, Oct. 1955.
2. A High Input Impedance Transistor Circuit, Philip J. Anzalone, Electronic Design, pp 38-41, June 1, 1957.

Fig. 2. A typical feedback arrangement where an input impedance of 1 meg is obtained with the output opencircuited.

ELECTRONIC DESIGN • August 6, 1953

\section*{now, most flexible line of PNP Germanium Power Transistors \\ }

MORE THAN 100 TYPES

Minimum large-signal current gain: 40 -watt group at 1.0 A ,
30 -watt group at \(0.75 \mathrm{~A}, ~\)
20 -watt sroup at 0.50 A
\(\dagger\) Minimum breakdown voltage, collector to base with emitter open.

Reliable products through
Advanced-Engineering

semiconductors

CBS-HYTRON, Semiconductor Operations, Lowell, Mass A Division of Columbia Broadcasting System, Inc.
Sales Offices: Newark, N. J.; Melrose Park, Ill.; Los Angeles, Calif.

Frive packases: diamond, demale industial with solder lugs or
Aying leads, and male industrial with solder lugs or flying loads.

Whatever your needs in PNP germanium power transistors, CBS-Hytron can supply them: In a choice of three sizes of collector dissipations . . 20,30 or 40 watts. In a choice of five packages . . . diamond, female industrial with solder lugs or flying leads, and male industrial with solder lugs or flying leads. And in 36 choices of collector-to-base voltages and large-signal current gains.
See tables for types available. Write today for Bulletin E-288 giving complete data on EIA, military and special types in the widest range of current gains, collector voltages and currents available. Let the unsurpassed flexibility and width of this CBS-Hytron line help solve your individual power transistor problems.

CIRCLE 37 ON READER-SERVICE CARD

Ferrites
Can be Replaced With

\section*{Yttrium-Iron}

\section*{Garnet}

YTTRIUM-IRON garnet, YIG, a rare earth expected to replace ferrites in
For over three and a half decades, CLAROSTAT has done just one job but that job thoroughly - turning out controls and resistors for electronic and electrical requirements. Millions upon millions of such CLAROSTAT components in daily use attest to the engineering and production skills of CLAROSTAT.

And now, with ever-growing and ever-more-critical demands for precision potentiometers, CLAROSTAT again is the specialist. A separate, super-specialized production entity - the Precision Control Division - now operates in the Dover plant. CLAROSTAT remains Division - now operates in the Dover plant. CLAROSTAT remains
the world's leading winder of fine wire, with an output greater than all other winders combined. The resulting precision potentiometers are worthy products of "The House of Resistors."*

Therefore, specify CLAROSTAT. It always pays to deal with the specialist.

Consult HEADQUARTERS... VISIT US AT WESCON
Whatever your precision potentiometer requirements - standard or special simple or intricate, single- or multi-section units, potted or encapsulated, large or small quantities - come to CLAROSTAT. Literature on request.

-Reg. U.S. Pat. 0 If.

PRECISION POTENTIOMETER HEADOUARTERS

For over three and a hali deedes, Clapostat has done just SHOW, BOOTH 1254

\section*{Controls and Resistors}
 In Canade: CANADIAN MARCONI CO., ITD., TORONTO i7, ONT.

Off-the-shelf samples of ytrium-iron garnet, a rare earth expected to replace ferrites in microwave applications.
theoretical X-ray density. No special machining problems are encountered, though YIG is harder than ferrites.

Available in either rectangular or cylindrical shape, the standard bar size is 1 in . \(x 1 \mathrm{in}\). \(x 3\) to 6 in . long.

Among the typical applications cited for this ferrimagnetic material which take advantage of its non-reciprocal properties are: switches, isolators, circulators, paramagnetic amplifiers, radar, ferrite-tuned resonance cavities, modulators and ferri-directional couplers. Though costing more than ferrites, YIG promises to reap many more benefits.
For more information, turn to the Rader Service card and circle 39.
\begin{tabular}{r|l}
\multicolumn{2}{c}{ Data on YIG } \\
\hline Density & \(5.05 \pm 0.05\) \\
Hardness & 8.5 \\
\(4 \pi \mathrm{M}_{\mathrm{s}}\) & 1750 gauss/cc \\
Typical resonance & 9 kmc 55 oersteds \\
line width & \(3 \mathrm{kmc} \quad 30\) oersteds \\
Dielectric loss tan & 0.003 \\
(20 mc) & \\
Curie temperature & 300 C \\
g factor & \(2.00(10 \mathrm{kmc})\)
\end{tabular}

\section*{NEW SANDWICH TAPES!}

"Sсотсн" Brand Sandwich Instrumentation Tapes eliminate ruboff and head buildup-reduce head wear-last longer

Here's the solution to the problem of excessive wear and ruboff -"SCOTCH" BRAND Sandwich Instrumentation Tapes. These tapes have a thin layer of plastic over the magnetic coating. This layer protects the iron oxide to produce a smooth, low-frictional head-to-tape operation that eliminates ruboff, head buildup and connected problems.

The addition of this protective layer (50 micro-inch thickness) naturally modifies the magnetic properties of the tapes somewhat. This amounts to a slight (but not critical) reduction in the high frequency or short wave length response. The medium and long wave length responses are completely unaffected. In all applications where extremely high are completely unaffected. In all applications where extremely high frequency response is not required,
offer the ultimate in performance, combined with new freedom from offer the ultimate in pe
maintenance problems.

Three Sandwich Tapes are now available:
"188-For applications requiring standard output level. 1.5 mil polyester base, 0.35 mil \({ }_{185}\) magneitc coating. 50 micro-inch protective layer.
\#186-For instrumentation and computer applications higher than standard output. 1.5 mil polyester base, 0.50 mil magnetic coating, 50 micro-inch protective layer. -Standard output level with \(50 \%\) more recording time. 1.0 mil polyester base,
0.35 mil magnetic coating, 50 micro-inch protective layer.
WRITE TODAY for Illustrated brochure on Sandwich Tapes. Special reels, end-of-reel sensing items and other accessories required for dioital computer operations are also avail-

Magnetic Tapes

\section*{Minnesota Mining and Manufacturimg company} .. WHERE RESEARCH IS THE KEY TO TOMORROW M COMPANV
"SCOTCH" and the plaidd design are registered trademarks of 3M Co., St. Paul B, Minn. Export: ge Park Avo., Now York 16. Canada: London, Ontarlo.

\section*{THE}

\section*{first}

COMPLETE
SOLID STATE (NON-MECHANICAL) PDM/FM MULTICODER
FLYING IN A MAJOR MILITARY PROGRAM
R. F. Tronsmittor

General Devices, Inc. announces the production availability of its Model 1213A-1 solid-state pulse duration modulation multicoder, available in any standard IRIG sampling configuration, consisting of electronic commutator, PAM to PDM convertor, FM transmitter and power supply. The electronic commutator and PAM/PDM converter are available as a separate package. The electronic commutator is also available for commutation in PAM/FM systems. The FM transmitter will produce from 5 to 8 watts RF output without a separate RF amplifier.
Intimate knowledge of systems circuitry at GDI makes possible the maximum performance in custom designs at minimum cost.
As an engineering service, our free 16 page booklet dealing with the choice and application of sampling devices, entitled: "Electronic and Electramechanical Sampling Devices for Instrumentation" is available upon request using company letterhead.

\section*{ADDITIONAL}

\section*{EQUIPMENT}

\section*{BPECIFICATIONS}

\section*{Temperature:}
\[
-30 \text { to }+85^{\circ} \mathrm{C}
\]

Vibration:
20-2000 cps
of 15G
RF Output:
Up to \(71 / 2\) watts without RF amplifier
Power Source:
28 Vdc or
115 V rms
400 cps
Custom Engineered Systems and equipment to meet your particular requirements available.

\section*{GENERAL DEVICES, INC.}
P. O. BOX 253, PRINCETON, NEW JERSEY

PHONE DAVIS 9.2323 - TWX Monmouth Junction N. J 271X
OfFICES IN DAILAS, LOS ANGELES. NEW YORK STATE
and new england

\section*{Transistorized}

\section*{High Frequency}

\section*{Chopper Design}

\author{
Rob Roy \\ Control Instrument Co., Inc. \\ Brooklyn, N. Y.
}

Here is a high frequency chopping technique which balances out unsymmetrical transistor switch impedances and undesirable carrier leakage.

Rob Roy has been particularly active in character recognition work. His latest work is on a machine which will read typewritten characters, even on a mutilated page, and convert them to teletype code.

BY SEPARATELY chopping positive and negative halves of modulating signals, transistorized choppers can operate well beyond the usual 60 or 400 cps . Here is how to design one to chop at 275 kc with minimum carrier leakage.

\section*{The Grounded Emitter Chopper}

The transistor, with its low saturation impedance, and high cutoff impedance, is ideal for a chopper. The grounded emitter configuration requires least carrier drive for effective switching. Fortunately, this matches the requirement for low carrier leakage with zero signal.
To analyze the operation of a transistorized chopper, the large signal equivalent circuit of a grounded emitter pnp transistor is shown in Fig. 1. The pertinent loop equations are
\[
\begin{equation*}
V_{b}=\left(r_{e}+r_{b}\right) I_{o}+r_{e} I_{c} \tag{1}
\end{equation*}
\]
\(V_{c e}=\left(r_{e}-\alpha_{e} r_{c}\right) I_{b}+\left[r_{e}+\left(1-\alpha_{e}\right) r_{c}\right] I_{c} \quad\) (2)
Fig. 2 shows the linearized characteristics which correspond to eq (2).

The limits of chopper operation are defined by the switching of either the emitter or collector diode. The emitter diode switches (corresponding to transistor cutoff) when
or
\[
\begin{gather*}
I_{e}=-\left(I_{b}+I_{c}\right)=0 \tag{3}\\
I_{b}=-I_{c}
\end{gather*}
\]

Then eq (2) reduces to
\[
\begin{align*}
& V_{c \theta}=r_{c} I_{c} \tag{4}\\
& =-\alpha_{e} I_{c} \text { or }
\end{align*}
\]

Fig. 1. Large signal equivalent circuit of grounded emitter php transistor. Here \(\alpha_{e}=\alpha+\left(r_{b} / r_{c}\right)(1-\alpha)\), with \(\alpha\) defined as \(-\left(\delta I_{c} / \delta I_{e}\right)\) with collector voltage constant.

Fig. 2 shows this as line \(O C\).
The collector diode switches when
\[
\begin{equation*}
I_{b}=\left(\frac{1-\alpha_{e}}{\alpha_{e}}\right) I_{c} \tag{5}
\end{equation*}
\]

For this condition eq (2) reduces to
\[
\begin{equation*}
V_{c e}=r_{e} I_{c} / \alpha_{e} \tag{6}
\end{equation*}
\]
which is plotted as line \(O B\) in Fig. 2.
These two lines, \(O B\) and \(O C\), define saturation and cutoff respectively. The active region for the transistor lies between them.

If a loadline is drawn on these characteristics, its intersection with \(O B\) and \(O C\) define transistor chopper operation. If a load \(R\) is assumed in series with a source (\(-V_{c c}+V_{s}\)), with \(V_{c o}\) the collector supply voltage, and \(V_{s}\) the modulating signal, then
\[
\begin{equation*}
V_{c e}^{-}={ }^{-}-I_{c} R_{L}-V_{c c}+V_{s} \tag{7}
\end{equation*}
\]

One sees from eq (6) that at point \(A\) of Fig. 2
\[
\begin{align*}
& I_{c}=\frac{\left(-V_{c c}+V_{s}\right) \alpha_{e}}{\alpha_{e} R_{L}+r_{e}} \tag{8}\\
& I_{b}>\frac{\left(1-\alpha_{e}\right)\left(-V_{c e}+V_{s}\right)}{\alpha_{e} R_{L}+r_{e}}
\end{align*}
\]

Fig. 2. Line \(A D\) is the load line in the switching region of the linearized collector-emitter characteristics.

- X-Y plotting with identical, calibrated, high-gain amplifiers.
- Time function plotting on calibrated linear time base.
- Continuous use of XorY'amplifier controls without disturbing calibration. Recalibration from front panel.
- Diddle-free sync. Automatic or driven sweep selection on front panel.
- Exclusive: externally or internally triggered beam brightening during X-Y plots.
- High brightness provides excellent photographic writing rate.
- Sweep speeds available from \(.25 \mathrm{sec} / \mathrm{cm}\) to \(5 \mathrm{usec} / \mathrm{cm}\).
- Centimeter calibration.
- Choice of electronic power regulation or Sola voltage-regulating transformer.
- Hand-crafted wiring and high-reliability components for dependability and performance.

\title{
What would you expect to pay for this DUMOMIT scope? tum Page
}

Visit Du Mont af the WESCON SHOW-Booths 1433 and 1434. CIRCLE 42 ON READER-SERVICE CARD

\section*{nuMOMT}

\section*{OSCILLOSCOPE}

IDENTICAL \(X\) - AND Y-AMPLIFIERS: Sensitivity, \(10 \mathrm{mv} / \mathrm{cm}\). Sinewave response, extends flat from dc to 3 db down at 100 kc ; useful to 500 kc .

TYPE 401-A
(PRICES F.O.B. CUFTON, N. J., U.S.A.)

See preceding page for features..

SWEEPS: 17 calibrated sweeps available from 250 millisecond/cm to \(5 \mathrm{usec} / \mathrm{cm}\). Additional sweep time available. \(250 \mathrm{msec} / \mathrm{cm}\) for each microfarad of external capacitance. Sweep expansion, up to 30 cm - any 10 cm segment can be positioned on screen.
RELATIVE PHASE SHIFT BETWEEN AMPLIFIERS: With \(X\) - and \(Y\)-controls at maximum, phase shift will not exceed \(3^{\circ}\) below 100 kc ; at discreet higher frequencies, phase difference can be adjusted to less. Will not exceed \(1^{\circ}\) below 5 kc with any control setting.
SYNCHRONIZATION: Selection of driven or automatic sweep on front panel. Selection of internal, external or line, both positive and negative polarity, on front panel. Beam brightening gate may be triggered by sync signals during X.Y plotting and for controlled photographic exposure.
CATHODE-RAY TUBE: 5ADP - operated at 3000 volts.
POWER SUPPLY: Three regulated power supplies available for following sources: \(115 \mathrm{~V} .60 \mathrm{cps}, 110\) watts; 115 V or \(230 \mathrm{~V}, 50 \mathrm{cps}, 110\) watts: \(115 \mathrm{~V}, 5010400 \mathrm{cps}\), 140 watts. Regulated \(\mathrm{r}-\mathrm{f}\) high voltage for CRT.
MECHANICAL: \(401-A\) (Bench model), \(151 / 2^{\prime \prime} \times 83 / 4^{\prime \prime} \times 21^{\prime \prime}\). Front or rear tilting foot. 401-AR (Rack mounted), standard \(19^{\prime \prime}\) rack-mounting. 83/4" high. 183/4" depth behind panel. width behind panel \(145 / 8^{\prime \prime}\), maximum protrusion (handles) in front of panel is \(11 / 2^{\prime \prime}\). Weight of either unit approximately 45 lbs .

\section*{for complete details, write...}

INSTRUMENT DIVIIION, ALLEN B. DU MONT LABORATORIES, INC.. CLIFTON, N. J., U. S. A.

Equations (7) and (8) define the choppirt saturation state, while eq (3) holds for cutoff The slopes of lines \(O B\) and \(O C\) define the switch impedances.

Fig. 3. Three basic chopper configurations.
A. The diodes separate the incoming audio into positi" and negative halves and the complementary transiston chop the individual halves of the signal.
B. A tandem transistor combination. Each transisto alternates chopping with its dual.
C. Here the positive and negative signals are chopped individually, and summed in the output.

\section*{Three Chopper Configurations}

Fig. 1 shows that for a positive collector to emitter voltage, the collector diode switches, leaving the base without switching control. But for bilateral operation, one must separate the incoming signal into its positive and negative halves, and separately modulate each polarity. Fig. 3 shows three possible chopper configurations.
- Method \(A\) uses separation diodes to separate the incoming audio signal into its positive and negative parts. Complementary transistors then chop the signal. The npn transistor chops the positive half, while the pnp chops the negative half.
- Method \(B\) uses a unique tandem combiration of pnp's and npn's. Each transistor alternates the chopping operation with its dual. The npn shorts the negative audio signals and chops the positive audio signals. The pnp works exactly in reverse, shorting the positive signals and chopping the negative.
- Method \(C\) chops the positive and negative signals individually, then sums the two outputs. Since the "off" impedance of an npn transistor differs from the "off" impedance of a pnp, the method requires balancing the output signal. This is shown in Fig. 4.

\section*{Carrier Leakage}

Due to resistive and capacitive leakage between collector and base, there is a small carrier level at the output when there is a zero input signal. This carrier signal, if it is as large as the weakest modulating signal, can seriously distort it. For a system which depends on correlation trchniques, the signal waveshape must be prerved.
Method A causes a small distortion at the low
signal end, due to the finite voltage differential required for diode switching.

Method B, though novel, has little provision for eliminating carrier leakage.

Thus, method \(C\) is the only remaining choice. Fig. 4 shows that the carrier leakage on each collector is approximately 180 deg out of phase. By summing and balancing, one can practically eliminate any carrier at the output. A small capacitor of about 5 to \(15 \mu \mu \mathrm{f}\), across one base resistor, is used to phase shift one carrier slightly. This can improve the zero signal carrier suppression even further.
The rather unusual use of transistors on the collectors of each half of the chopper provide an extremely low impedance clamp for very small reverse polarity modulating signals. Crystal diodes require too large a voltage differential for effective clamping. The transistor configuration clamps to within tenths of a volt.

\section*{Circuif Performance}

The chopper in Fig. 4 is designed for a 275 kc carrier frequency, but the carrier can be changed from 100 kc to 350 kc with no more than a two per cent change in leakage. At lower frequencies, even down to 400 cps , this chopper is more than adequate.

The chopper takes modulating signals from \(1 / 2\) to 20 v , a 40 to 1 range. The maximum carrier leakage is 40 db below the output of the weakest modulating signal, and the deviation from an ideal linearity curve is no more than two per cent. With a 400 cps carrier, the deviation doesn't exceed one per cent, with input signals from 1 mv to 20 v .

\section*{Acknowledgment}

The author is indebted to Carl Mengani for his many valuable suggestions.

ELECTRONIC ENTERPRISES, INC., has years of experience in the design and manufacture of electronic tubes for all commercial, industrial and military uses. Available tube types: 576A, 371 B, 3B28, \(811 \mathrm{~A}, 812 \mathrm{~A}, 394 \mathrm{~A}, 873,836\), EE300, and others. CATALOGUE ON REQUEST.

Qualified approved source. ELECTRONIC ENTERPRISES INC CIRCLIE 44 on reader-SERVICE CARD

\section*{MEETING REPORT}

\section*{Telemetering Industry Prepares}

\section*{For Frequency Band Shift}

\author{
Ben Patrusky \\ Assistant Editor
}

RECOMMENDATIONS made recently to the Dept. of Defense in a classified report may hurl telemtering equipment manufacturers into hectic R \& D activity. The report, prepared by Aeronutronics Systems, Inc., Glendale, Calif., as part of an over-all probe into military telemetering needs, will be released shortly. According to informed sources attending the National Telemetering Conference, it suggests that all telemetering activity on the 215 to 260 mc band cease by 1970, with phase-out from 215 to 225 mc by Jan. \(\mathrm{I}^{\prime}, 1960\).
The new frequency band recommended for telemetering is in the 1300 mc band. Certain telemetering applications requiring long-range and
very narrow bandwidths will be permitted on the old band on a non-interference basis.
No enforcement agency is involved in this evaluation. The report is supposedly a primer for industry. Publication of the report probably will be considered tantamount to establishing a government equipment purchasing policy.

Manufacturers attending the Telemetering Conference indicated what they felt the implications of these recommendations were to them: - Accelerate development of microminiature components and equipment.
- Necessitate design of new transmitters and receivers, since there is at present no such equipment available within this new range.
- Increase use and development of pcm telemetry.
Several manufacturers did indicate that programs are at present underway to develop equipment to meet these new recommendations. Particular emphasis, they report, is being placed on antenna design.
Design for the new frequency was not the only recent \(\mathrm{R} \& \mathrm{D}\) stimulant administered to the industry. Gen. Earl F. Cook, Army Signal Corps R \& D Chief, gave conferees a look at the longrange military tactical telemetering needs. This is what the military wants, he said:
- A "telesensory soldier" reporting strategic data from the battlefield.
- Ground-based automatic weather stations to give sypnotic weather data.
- Constant-level balloons which move across wide areas at predetermined heights to record weather information horizontally.
- Drone aircraft with sufficient power to telemeter data back from behind enemy lines while remaining secure from enemy counter-measures.
- New concept of conveying mass data and pictures across space.
These needs, the General contended, are "musts" in the event of modern warfare. He explained that battles will be fought "in layers" by foot soldiers, aircraft, missiles, and space vehicles. Ground forces will be spread thin and instead of massed front lines, "you will see a porous battlefield, perhaps fifty miles in depth." Information from the sparsely inhabited battlefieldeverything from radioactive fallout to cloud cover data-will have to be telemetered back, he said. He pictured the telesensory soldier as a

Block diagram (left) of complete ground station telemetering system incorporating features yet to be achieved.

Block diagram (right) of Mr. Gardenhire's proposed airborne telemetering system.

"grounded satellite talking only when queried with a built in IFF so he :on't talk to strangers . . . something we could use for soldiers on \(6-\mathrm{hr}\) pass in Paris or Algiers."

Also needed will be advanced telemetering equipment for remote automatic weather stations. Wide-ranging balloons at the same time could "shoot" the weather horizontally and replace such devices as vertical sounding balloons carrying radiosondes. The General added that "signals from present telemetering gear simply are not strong enough to cover the wide sweeps our equipment would make into enemy territory."

Getting telemetered data back from drone aircraft without alerting the enemy is another problem to be solved. "We need relative immunity to countermeasures," said Cook, "some shield against enemy deception, jamming or modulation of our sensor elements. Otherwise we have a bandit by the bank teller's cage."

Delegates were also urged "to get ready to send an electronic picture back from the moon
a photograph of environment and operations." The General estimated that power requirements for sending an \(8 \times 10\) glossy photograph or TV picture back would be about \(208,000 \mathrm{w}\).

Meanwhile, the telemetering industry attempted to crystallize their own equipment problems. At a panel discussion, I. Gardenhire of Radiation Labs, Inc., Orlando, Fla., outlined, en toto, the needs of telemetering facilities in both the ground and airborne installations.
As far as data collection is concerned, he cited the following:
- High-gain small antenna.
- Airborne receivers.
- Beyond the horizon reception.
- Wide-band phase lock.
- Video recorder demodulator.
- In-flight data reduction.

As for information acquisition:
- Microminiaturization.
- Integrated construction.
- Planned redundancy of information.
- Solid-state design.
- Iligh-power efficiency.
- Stibilized directional antenna.

Acciuisition at very low elevation is another major requirement. With regard to the airborne vehicle itself, Mr. Gardenhire cited needs such as: - Equipment to transmit back to the vehicle to tell it what to do.
- Channel selection control.
- Data rate control.

Real time data reduction is necessary in the round installation.

Accompanying block diagrams describe the complete receiving and transmitting systems as spelled out by Mr. Gardenhire.
\[
x+2=-2 x-1
\]

\section*{WHAT SYSTEM DESIGN PROBLEMS CAN VERNISTAT* HELP YOU SOLVE?}

With a fundamentally new concept in relating shaft rotation to voltage, the Vernistat a-c potentiometer brings to electronic designers a wholly new combination of features not previously available in a standard potentiometer. As a result, new design improvements and economies are made possible in servo systems, analog computers, many other similar applications-perhaps including yours, too - with these advantages:
Reduces system complexity and cost. With this one compact device, you can eliminate isolation amplifiers, shielded cables, summing re-
sistors with resultant signal loss, and separate transformers with accurate center taps. Quadrature rejectors, as well as other phasecompensation schemes, are generally unnecessary.
Increases system reliability and accuracy. With fewer system elements, system reliability goes up. High linearity, an inherent Vernistat feature, is maintained over its entire life. Low phase shift, another plus, helps attain accuracy.
Permits greater design freedom. The Vernistat is easily modified to provide similar basic features in
nonlinear functions with excellent conformity. Unlike helical-type units, it can be continuously rotated because of its planetary principle. A wide selection of models is available which meet military specifications.

Besides precision a-c potentiometers, Vernistat products include function generators (adjustable nonlinear potentiometers) and variable ratio transformers. Design principles, applications, technical data, prices, and specifications are all included in a new 16 -page brochure. Write now for your copy.

\section*{vernistat}

\section*{* Vernistat a new design concept that unites in one} compact device the best of both the precision potentiometer and the autotransformer. CORPORATION

\section*{WESCON NEW PRODUCTS}

Preview of the 1958 WESCON at Los Angeles. Booth numbers of products being announced at the show are at the bottom of each item.

\section*{FRAME GRID TUBES}

Available in production quantities, two tubes, the 6DJ8 and the 6ES8, are being built with frame grid construction. Both are double triodes with high transconductance figures of \(12,500 \mu\) mhos. The 6DJ8 is a sharp cut-off general purpose type; the 6ES8 has remote cut-off and is designed primarily for use as a cascode amplifier in TV tuners up to 220 mc . Noise figure in a tuner is 6.5 db or less at 200 mc . Both tubes have extremely close grid-to-cathode spacing made possible by the frame grid, resulting in a high gain bandwidth product. With minor equipment modification, the tubes can be used in place of such types as the 6 BQ 7 A , \(6 \mathrm{BZ7}\), or 6BS8.

Amperex Electronic Corp., Dept. ED, 230 Duffy Ave., Hicksville, N. Y.

Wescon Booth 1731-32
CIRCLE 46 ON READER-SERVICE CARD

\section*{SILICON RECTIFIERS}

Plastic molded, the PA series silicon rectifiers measure \(1 / 8 \mathrm{in}\). in diam and are rated at 300 ma dc output current. Peak inverse voltages range from 50 to 1000 v . The units are relatively low priced for high volume use.
General Instrument Corp., Automatic Mfg. Div., Dept. ED, 65 Gouverneur St., Newark 4, N.J. Wescon Booth 1803-04

CIRCLE 47 ON READER-SERVICE CARD

\section*{GAS ANALYSIS CELLS}

Thermistors in a bridge network, located almost directly in the gas flow path, provide accurate, sensitive and fast thermal conductivity analysis. The M 182 and M 214 gas analysis cells are designed primarily for chromatographic equipment. Cell blocks are constructed of stainless steel.
Victory Engineering Corp., Dept. ED, P.O. Box 573, Union, N. J.
Wescon Booth 1734
CIRCLE 48 ON READER-SERVICE CARD

\section*{TRANSISTORS}

Power gain of \(\mathbf{1 0 ~ d b}\) at \(\mathbf{2 0 0} \mathbf{~ m c}\) can be obtained from this line of high frequency transistors. Oscillation is evident at levels above 500 mc .

Motorola Inc., Semiconductor Products Div., !ept. ED, 5005 E. McDowell Rd., Phoenix, iriz.
'escon Booth 628-29
CIRCLE 49 ON READER-SERVICE CARD

\section*{ONLY KIN TEL} DIGITAL VOLTMETERS GIVE YOU ALL THESE ADVANTAGES...
1. Sinole-plane readout: kin tel digital voltmeters employ a simple projection system to present numbers on a readable single plane...no superimposed outlines of "off" digits...reduced possibility of error. Standard lamps give 7000 to 8000 hours of life, compared with 100 to 200 hours for ordinary readouts.
2. COMPLETE LINE OF ACCESBORIES-8PECIAL BYBTEMs: Versatile "digital building blocks" permit measurement of AC, ohms, ratios of AC and DC, automatic scanning of multiple inputs. Preamplifiers increase digital voltmeter sensitivity to 1 microvolt DC, 10 microvolts AC. Buffers permit driving typewriters, tape punches and printers. kin tel's Special Products Department can design and manufacture digital instruments to meet your special requirements . . . complete digital systems for data logging, missile checkout and automatic production line testing.
3. ADVANCED CIRCUIT DESION: Transistors employed where they contribute to performance and reliability...relay drive coils energized with DC as in telephone type service to provide long, trouble-free operation...automatic, continuous standard cell calibration. No elec tronic circuitry in readout allows easy remote mounting. Sensitivity control permits stable reading of noisy signals.
4. MANUFACTURINO EXPERIENCE: KIN TEL has manufactured over 10,000 "standard cell accuracy" DC instruments on a true production line basis. Only by this method, by years of repeated manufacturing experience, by an over-all awareness of the accuracies and tolerances involved, is it possible to guarantee consistent accuracy and reliability...to assure real value for every dollar you invest.
6. NATIONWIDE APPLICATION ENOINEERING FACILITIES: KIN TEL has engineering representatives in every major city. An experienced staff of over 200 field engineers is always immediately available to help solve your application problems, provide technical data, or prepare a detailed proposal. Factory level service is available in all areas.

6. DESIDERATE SPECIFICATIONS (MODEL 401 JC DIGITAL VOLTMETER):

Display...Four (4) digit with automatic polarity indication and decimal placement. Total display area \(2^{\prime \prime}\) high x \(71 / 2^{\prime \prime}\) long, internally illuminated. Individual digits \(11 / 8^{\prime \prime}\) high.
Automatic Ranges ... 0.0001 to 999.9 volts covered in four ranges. Sensitivity control covered in four ranges. Sensitivity control
provides least digit sensitivities of \(.1,1\), and provides
10 mv 10 mv

Counting Rate ... 30 counts per second, providing average balance (reading) time of 1 second, maximum balance time of 3 seconds. Reference Voltage...Chopper-stabilized supply, referenced to an unsaturated mercury. cadmium standard cell.
Input Impedance... 10 megohms, all ranges Output ... Visual display, plus print control. Automatic print impulse when the meter
assumes balance. No accessories required to drive parallel input printers.
Input ... 115 volt, 60 cycle, single phase, approximately 75VA.
Dimensions... Control unit, \(51 / 4^{\prime \prime}\) high \(\times 19^{\prime \prime}\) wide x \(16^{\prime \prime}\) deep. Readout display, \(3^{1 / 2 \prime \prime}\) high \(\times 19^{\prime \prime}\) wide x \(9^{\prime \prime}\) deep.
Weight...Approximately 40 lb . Price... \(\$ 2,100\)

Write today for descriptive literature
or demonstration. 5725 Kearney Villa Road WESCON SHOW—Booths 1413, 1414, 1458, 1459 San Diego 11, California

\section*{kIN TER}

A Division of Cohu Electronics Inc.
Integrated design involves five new dimensions in the electronic cabling businessdimensions which have been created by Pacific Automation Products, Inc.
The manufacture of cables in bulk quantity is essentially a routine production operation. But new dimensions are added when the cable manufacturer also:
1. designs each cable component. 2. fabricates the complete component, including breakouts, connectors, plugs, and accessories. 3. installs cables, as well as the components, controls, instrumentation, consoles and accessories which comprise the electronic system. 4. checks out and validates the entire system.
5. documents the system by complete drawings in approved form.
Precision manufacture of cables-plus all 5 of the new dimensions in cabling-describe the integrated cabling service being provided by Pacific Automation Products, Inc.
When you specify "cable by pacific automation"-whether it is one cable or a system - you are availing yourself of the integrated capabilities of the one company that offers all five of the new dimensions in cabling. Write, phone, or wire today.
engineers: the exciting services which PAP provide can make an exciting career for you. Send your resumé today.
"SEE US AT WESCON IN BOoth NUMBER 928 "

\section*{Pacific Automation Products, inc.}
1000 air way, glendale 1, California Phone: Chapman 5.8661 or Cletus 6-2411 137 Walnut Hill Village, Dallas 20 Texas • FLeetwood 7.5751 626 Jefferson Street, Redwood City, Calif. - EMerson 9-2991 420 Lexington Avenue, New York, N. Y. - LExington 2.5193 4355 North Aclantic, Cocoa Beach, Florida • Cocoa Beach 2059

Announcing the formation of SPACE ELECTRONICS CORPORATION, an affiliate of Pacific Automation Products, Inc. to engage in development of Space and Base Electronic equipment - Dr. J. C. Fletcher, President - F. W. Lehan, Vice-President - 1200 Air Way, Glendale 1, Calif.

\section*{NEW PRODUCTS at WESCON}

\section*{Accelerometer}

Full scale output to 60 v
A differential transformer accelerometer, model 7-34 has full scale output up to 60 v in ranges from \(\pm 1 \mathrm{~g}\) to \(\pm 50 \mathrm{~g}\). Temp compensated damping is within 0.1 per cent of critical, without the use of heaters Output at full deflection is up to 0.5 per \(v\) excitation, and at zero acceleration the deflection is less than 0.5 per cent of full scale.

Edcliff Instruments, Dept. ED P.O. Box 307, Monrovia, Calif. Wescon Booth 943
circle 52 on reader-service card

\section*{Switches and Relays \\ With spark suppression}

Rotary stepping switches and relays equipped with semiconductor spark suppressors, will be shown. Silicon carbide varistors replace capacitor-resistor combinations used for spark suppression on all 24,48 or 110 v dc types 44 and 45 rotary stepping switches and series OCS relays. Besides weight and space reduction advantages, the varistors do a better job of arc suppression, and reduce radio interference appreciably.

Automatic Electric Co Dept. ED, Northlake, Ill.
Wescon Booth 1518-19
CIRCLE 53 ON READER-SERVICE CARD

\section*{Ceramics}

\section*{Wafers and seals}

These AlSiMag ceramic wafers measure \(0.310 \times 0.310 \times 0.010\) in They are intended to supplement the thin ceramics produced for printed circuitry, internal insulators and spacers for vacuum tubes Also being shown are 7 -pin tube stems with metal-ceramic high temp seals.

American Lava Corp., Dept. ED Cherokee Blvd. \& Mfrs. Rd., Chattanooga 5, Tenn.
Wescon Booth 606-07
CIRCLE 54 ON reader-service card
< CIRCLE 51 ON READER-SERVICE CARD

\section*{Multiplier Phototubes}

\author{
For low level light sources
}

The 6655-A Multiplier Phototube is a head-on 10 -stage multiplier phototube intended for use in scintillation counters. Spectral response covers the range from about 3000 to 6500 angstroms.
The 7200 Multiplier Phototube is a 9-stage type with S -19 response. Range is 1800 to 6000 angstroms.

Also being introduced is the 7212 Beam Power Tube for use under severe shock and vibration. The tube has a max plate dissipation of 25 w under ICAS conditions in modulator service and in cw service. In the latter service, it can be operated with full input to 60 mc and with reduced input to 175 mc .

Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.
Wescon Booth 1635-36
CIRCLE 470 ON READER-SERVICE CARD

\section*{Ultrasonic Power Supply 1500 w continuous output}

The D-1320 ultrasonic motorgenerator power supply is rated for 1500 w continuous output at 15,000 to \(25,000 \mathrm{cps}\). Instant operation, no sliding contacts, long bearing life, and class H insulation are features.

D \& R Ltd., Dept. ED, 402 E. Gutierrez St., Santa Barbara, Calif. Wescon Booth 635

CIRCLE 56 ON READER-SERVICE CARD

\section*{Insulating Boards}

Pre-punched in different patterns
An addition to a line of prepunched insulating board, the G pattern has 0.062 in . diam holes on a 0.1 in . grid with alternate holes missing. This pattern is designed for mounting transistor circuits stice the holes match the JETEC transistor lead spacing.
Vector Electronic Co., Dept. ED,
- 100 Flower St., Glendale 1, Calif.
liescon Booth 1244
CIRCLE 57 ON READER-SERVICE CARD
CIRCLE 58 ON READER-SERVICE CARD \(>\)

\footnotetext{
PRODUCTS DESIGNED AND MANUFACTURED BY EIMAC

\section*{Negative Grid Tubes}

Reflex and Amplifier Klystrons
Vacuum Tube Accessories
Ceramic Receiving Tubes
Vacuum Switches
Vacuum Pumps
Traveling Wave Tubes
Includes the most extensive line of ceramic electron tubes
}

As heater causes the expansion member to stretch, lever pivots on its hinge, compressing the bow spring at a high rate in the direction of contact closure. Matching expansion member compensates for external changes in remperature between -65 and \(+100^{\circ} \mathrm{C}\).

Designed to meet military requirements, Edison's line of miniature time delay relays are available for a wide range of electronic applications.
The 250 Series Time Delay Relays combine in one unit superior design, top workmanship and performance at lowest cost. Check these advantages
- Designed to withstand vibration frequencies to 500 CPS.
- Exceptionally high rate of contact closure.
- Permanent calibration and hermetic seal.
- Extremely rigid mechanical structure using high-strength, high-expansion alloys.

For bulletin \#3046 showing timing ranges and operating performance write to:
Thomas A. Edison Industries
INSTRUMENT DIVISION
WESCON SHOW BOOTH 1129
55 lakeside avenue, west orance, N. J. CIRCLE 59 ON reader-service card

\section*{NEW PRODUCTS at WESCON}

\author{
Magnet Wires \\ Two new types
}

Two types of magnet wire, S-Y Bondeze and Nyleze, will be displayed. The first type is a tough, self bonding solderable wire which winds a self-supporting, bobbinless coil without special adhesives. Nyleze is an all purpose wire used on high speed automatic winding equipment, or where varnish and compound treating conditions are extreme. Dimensions and price are same as Formvar.
Phelps Dodge Copper Prod. Corp., Inca Mfg. Div., Dept. ED, Fort Wayne, Ind.
Wescon Booth 213-14
circle 60 on reader-service card

\section*{Rotary Switch}

12 positions, up to 5 sections
Type MA-12 miniature rotary switch provides 30 deg indexing, 12 contact-positions, up to 5 sec tions, with current-carrying capacity of 3 amp . Interrupting rating is \(1 / 2 \mathrm{amp} 115 \mathrm{v}\) ac. Designed to meet MIL-S-3786. The switch can be furnished with up to six poles per section; rotation may be unlimited, or limited from 2 to 12 positions. It measures \(3 / 4\) in \(s q\); with 5 sections, the back-of-panel depth is 2-3/4 in.

R-F Electronics, Inc., Div. of Electro Switch Corp., Dept. ED King Ave., Weymouth 88, Mass. Wescon Booth 741

CIRCIE 61 ON READER-SERVICE CARD

\section*{Energy Storage Capacitor}

Low inductance of \(0.01 \mu \mathrm{~h}\)
The energy storage and discharge capacitor line now includes a new design of high voltage, low inductance types for thermonuclear equipment and similar fast discharge and energy storage applications. Self-inductance of less than
-
-

\(0.01 \mu \mathrm{~h}\) is the lowest now available and provides optimum efficiency of operation. Voltage ratings are available from 10 to 50 kv with capacitance values from 1 to \(25 \mu\). The capacitors have a standard case weighing less than 75 lb .

General Electric Co., Dept. ED,
1 River Rd., Schenectady 5, N.Y.
We'scon Booth 529-30
CIRCLE 62 ON READER-SERVICE CARD

\section*{Transistors}

Diffused base silicon types
NPN diffused base silicon transistors, manufactured by a combined alloy and gaseous diffused process for good mechanical stability and electrical characteristics.
Units possess an alpha cutoff frequency of 50 mc , voltage breakdown of 60 v , low frequency current gain of 50 and power gain of approximately 18 db at 12.5 mc . Also featured are low saturation resistance which makes them ideal for large as well as small signal applications at temp to 165 C .
Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton 58, Mass. Wescon Booth 639-40

CIRCLE 63 ON READER-SERVICE CARD

\section*{Impedance Bridges \\ 40 cps to 250 mc range}

Impedance bridges, precision oscillators, microwave equipment and resonant cavity wave meters will be exhibited by this newlyestablished subsidiary of Wayne Kerr Co., Ltd., of England.
The impedance bridges run from 40 cps to 250 mc and feature vhf bridges used for admittance measurements for cables, transmission lines, feeders, antennas and with special application in transistor parameter measurements.
Wayne Kerr Corp., Dept. ED,
2920 N. Fourth St., Philadelphia 3, Pa.
Wescon Booth 840
CIRCLE 64 ON READER-SERVICE CARD

Two Type 7191's receive special "D.C. hold-off" vibration test. All Tung-Sol/Chatham miniature hydrogen thyratrons -7190, 7191, 7192-must "hold off" while subject to 15G
vibration, swept from 50 to \(2,000 \mathrm{cps}\) in 4 minutes. Tubes also are shocked at \(48^{\circ}\) hammer angle in Navy high-impact flyweight shock machine, equal to \(720 \mathrm{G} / 1\) millisecond shock.

\title{
Tung-Sol/Chatham miniature hydrogen thyratrons supply test-proved ruggedness for missile use!
}

Extensive in-factory tests assure designers Tung-Sol/Chatham miniature hydrogen thyratrons -7190, 7191, 7192 - can withstand the severe shock and vibration met in missile flight. Performance of these tubes in several operational missiles gives in-use proof of their ruggedness.

In radar modulators and tracking beacons, these compact tough tubes supply 10 KW , replace bulkier types. Broad range of pulse repetition rates widens design choice . . . zero bias simplifies circuitry and

triggering requirements. Tubes hold off high voltage, pass high peak current with low tube voltage drop. Three types available: 7190 - pin base, 7191 -top anode connector, 7192 - flexible leads.

Tung-Sol, only producer of miniature hydrogen thyratrons for missiles, can supply you immediately. For complete data on these types ... on specialpurpose tubes of all types, phone or write. Tung-Sol Electric.Inc., Newark 4, New Jersey. Commercial Engineering Offices: Bloomfield and Livingston, New Jersey; Culver City, California; Melrose Park, Illinois.

WHY COMPROMISE RELIABILITY?
switch to... A RNOUX ELECTRONIC COMMUTATORS

GREATLY INCREASED RELIABILITY \& LIFE...LESS POWER REQUIRED

COMPLETELY QUALIFIED TO MIL E-5272A Qualification test data available

Model: PAM30x10S-10
Weight: 2.5 pounds
Size: 2.50 in. \(\times 3.87\) in \(\times 4.75 \mathrm{in}\).

Now in production... New rectangular case "DASH 10" series" Available in 30, 45, 90 Channels PDM and PAM

THESE ADVANTAGES make Arnoux electronic commutators a must: long life, reliability, low noise level, and low power requirements.

The ETC commutator has a guaranteed servicefree life of 5000 hours. Without vacuum tubesbuilt of all solid-state elements - the ETC has no moving parts. There are no switching transients. The frequency variation does not exceed \(\pm 5\) percent throughout the operating temperature and voltage ranges.

There is no radio interference; the ETC meets MIL-I-6181C specification. Signal noise (less than 0.05 percent) and crosstalk (less than 0.01 per-
cent) values are guaranteed; by actual test, these values are so low they cannot be measured.
- Power requirement is only 2 watts (150 vde at 12 ma) for the 30 -channel unit.
The small, lightweight ETC can be used as a direct replacement for mechanical commutators in \(0-3 \mathrm{v}\) and \(0-5 \mathrm{v}\) airborne telemeter applications. It meets all IRIG requirements, exceeds MIL-E-5272A specification, and is available in all PAM and PDM sampling rates. A signal limiting feature, with the ETC, makes limiters unnecessary elsewhere in the telemetry system.

Write for Arnoux Bulletin 700

Sales Offices: Los Angeles, Seatlle, Dallas, Bryn Mawr (Pa.), Arnpriar, Ontario (Canada)

ARNOUX corporation
Designers and Manufaciurers of Precision Instrumentation
11924 WEST WASHINGTON BLVD. - LOS ANGELES 66. CALIFORNIA

\section*{NEW PRODUCTS at WESCON}

\section*{Bridge Rectifiers}

Miniature selenium types

An expanded line of selenium bridge rectifiers includes two new types for use in magnetic amplifier, light industrial and radio-tv applica tions. Type 61-4037 is a single phase bridge rec tifier rated to provide 100 ma output into a re sistive load, with a max input voltage of 260 rms. Designed for use directly from a 117 v a system, type D-3575M is a single-phase full wave bridge rated to deliver an output of 9 w continuous duty.

International Rectifier Corp., Dept. ED, 152
E. Grand Ave., El Segundo, Calif.

Wescon Booth 1447-48
CIRCLE 67 ON READER-SERVICE CARD

Space Room
For uhf-vhf testing

A prefabricated free space room for all types of uhf-vhf microwave antenna or radome testing The room consists of wooden frames supplied predrilled and with bolts for assembly, including a flush door with necessary hardware. Th absorbing material is supplied in section

ELECTRONIC DESIGN • August 6, 1958
bonded to aluminum foil. Absorbing material can be supplied for frequencies from 50 to \(50,000 \mathrm{mc}\).
McMillan Lab, Inc., Dept. ED, Brownville Ave., Ipswich, Mass.
Wescon Booth 903-04 CIRCLE 68 ON READER-SERVICE CARD

Test Equipment
Eight models introduced

Eight electronic measuring instruments will be introduced at the show. The equipment includes a signal generator, two voltmeters, a clip-on milliammeter, two electronic counters, a digital delay generator and a dual trace oscilloscope.

Model 524D electronic counter provides for measurements from 0 cps to 10 mc automatically and directly in one self-contained unit, without calculation or interpolation. Crystal oscillator stability is 5 parts in \(10^{8}\) per week. The 524 C electronic counter (shown), is similar to the 524D, except that it is equipped with a nixie readout.

Model 122A oscilloscope is a low frequency scope giving a dual trace presentation by use of an alternate sweep or chopped sweep arrangement. It has a max sensitivity of \(10 \mathrm{mv} / \mathrm{cm}\). Bandwidth is 200 kc .

Model 606A signal generator covers a range 50 kc to 65 mc . Output is 3 v full range, and may be continuously attenuated to \(0.1 \mu \mathrm{v}\).
Model 405A digital voltmeter indicates voltages to three places, shows sign and automatically places decimal point.
The 428A clip-on milliammeter measures dc currents as low as 3 ma full scale without the need to break leads.
Model 218A digital delay generator produces two exact time intervals or pulse delays independently adjustable from 1 to \(10,000 \mu \mathrm{sec}\) in 1 tsec steps. Continuous interpolation between steps is calibrated in tenths of microseconds.
Hewlett-Packard Co., Dept. ED, 275 Page Mill R1., Palo Alto, Calif.
" escon Booth 1450-51
CIRCLE 69 ON READER-SERVICE CARD

\section*{ONLY ONE POTENTIOMETER THIS SMALL GIVES YOU THESE 5 FEATURES}

\section*{Mount 16 units per square inch-cross-section only \(0.190^{\prime \prime} \times 5 / 16^{\prime \prime}\)}
1. High temperature operation-to \(175^{\circ} \mathrm{C}\).
2. Humidity-proof-new plastic molding technique makes possible a smaller, fully-sealed potentiometer exceeding specifications of MIL-STD-202A, 10 days. 3. Power rating: one watt at \(70^{\circ} \mathrm{C}\).
4. Standard mounting holes on one-inch centers. 3. Easier, more accurate settings- 25 turn screw driver adjustment gives you 33 times the adjustability of single-turn potentiometers, easy repeatability. Settings are stable and self-locking.

\section*{IT'S THE NEW BOURNS TRIMPOT \({ }^{8}\) MODEL 224}

Available immediately from factory or distributors' stock with insulated stranded leads, solder lugs or printed circuit pins. Resistances: 10052 to 50 K . Exceeds military shock and vibration specs. For data on the new Model 224 TRIMPOT write to:
BOURINS Laboratories,Inc.
P.O. Box 2112F, Riverside, California
exclusive manufacturer of trimpoto and trimita - pioneers in potentiometer transducers for position, pressure and acceleration

\section*{BE SURE YOU GET STABILIZED TUBES WHEN YOU PAY FOR HIGH RELIABLLITY!}

Only General Electric stabilizes all high-reliability tubes by factory burn-in. What does this 5 -Star process mean to you, a manufacturer of electronic equipment with critical sockets?
It's extra protection against production-line shutdowns in your plant, because stabilizing helps weed out any early-life tube inoperatives. Likewise, it's a special safeguard that your radar, communication, or other equipment will prove dependable from the start, when placed in service.
Stabilizing also promotes more uniform tube performance . . . your designers can count on 5 -Star Tubes meeting rated requirements at all times. This helps assure that your equipment will continue to perform reliably-building a solid reputation that
will lead to repeat orders for new equipment.
When you specify high-reliability tubes, be sure you get the superior quality that only General Electric stabilized 5 -Star tubes offer! Any G-E Receiving Tube Department office listed below will be glad to supply further information. Phone today!

\author{
EASTERN REGION \\ CENTRAL REGION 200 Main Ave., Clifton, N.J. 3800 N. Milwaukee Ave. \\ Phones: (N Y. .) WI. 7.4065, 6,7.8 \\ WESTERN REGION \\ 1840 W. Olympic Blvd. \\ Los Angeles 64, Cal. \\ BRadshaw 2.8566 \\ Progress is Our Most Important Product \\ GENERAL (8) ELECTRIC
}

\section*{NEW PRODUCTS t WESCON}

\section*{Cable Jacket}

For temperatures to 3000 F
An addition to the Zippertubiny line, Thermazip will withstand 2000 F continuously and 3000 F for brief periods.

Manufactured of an aluminized reflective asbestos fiber, Thermazip cable jacket is closed by a plastic or metal zipper track stitched to the fiber with high temp Teflon thread.

The Zippertubing Co., Dept. ED, 752 S. San Pedro St., Los Angeles 14, Calif.
Wescon Booth 320
circle 72 on reader-service card

\section*{Terminals \\ Printed circuit types}

Two printed circuit terminals have been added to the existing line. Types 2228 and 2420 are pre-cision-machined in brass and finished with copper flash and a 0.003 in . tin-lead solder plating. Also announced are printed circuit coil forms, types \(2525,2530,2540\), 2550, available with four terminals and made completely of class H materials.

Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cam bridge 38, Mass.
Wescon Booth 1139
circle 73 on reader-service card

\section*{Laminated Plastics}

Paper-base
Type EP-22 is an industrial laminated plastic possessing excellent electrical characteristics over a wide range of humidities and temperatures. The material is an Alpha paper filler impregnated with epoxy resin. It is available in sheets and strips from \(1 / 32\) to \(1 / 4 \mathrm{in}\). thick, and in sheet sizes \(36 \times 36 \mathrm{in}\). and \(36 \times 72\) in.

Synthane Corp., Dept. ED, 12 River Rd., Oaks, Pa.
Wescon Booth 302
CIRCLE 74 ON READER-SERVICE CARD < CIRCLE 71 ON READER-SERVICE CARD

\section*{Epoxy Resin Systems}

Easily used
PRH 308, a single component thixotropic system, is a filled system composed of Resin 21. Because the curing agent is incorporated into the resin, neither mixing nor weighing are required.
i'RH 400, a flexible epoxy protective coating, is a solvent based epoxy system which is recommended as a protective coating for printed circuits and other electrical and electronic components.

Permacel-LePage's Inc., Dept. ED, New Brunswick, N.J.
Wescon Booth 126
CIRCLE 75 ON READER-SERVICE CARD

\section*{Potentiometers}

Three liquid-filled types
Three liquid-filled potentiometers include the 10 -turn, 1-1/16 in. model 4203; 10-turn, 2 in. model 4613 and the 3 -turn, 2 in . model 4713. These pots offer a life span of at least 10 -million shaft revolutions, increased dielectric strength, greater heat dissipation, extremely low noise throughout life, and operation under water.
Beckman Instruments, Inc., Helipot Div., Dept. ED, Newport Beach, Calif.
Wescon Booth 1351-52
CIRCLE 76 ON READER-SERVICE CARD

\section*{Analog-Digital Converter}

Converts ten low-level inputs
The Panec system sequentially converts up to 10 low level inputs to digital form at a rate of up to 20 conversions per sec. The output of any one or all ten channels in sequence can be recorded on an analog strip chart recorder, or presented visually in numerical form on an in-line digital readout, or recorded on a digital printer, tape pluch or card punch. Resolution of the system is \(10 \mu \mathrm{v}\).

Cohu Electronics, Inc., Cohu Fisearch Div., Dept. ED, 14743 IIl St., Van Nuys, Calif.
escon Booth 1458-59
CIRCLE 77 ON READER-SERVICE CARD
CIRCLE 78 ON READER-SERVICE CARD \(\geqslant\)

\section*{BETA}

130 at 1 amp Res less than .05 ohms

\section*{f/ GERMAHIUM POWER TRAHSISTORS}

You get high current gain and power output with linear transconductance and extremely low distortion when you specify TI PNP germanium power transistôrs. Assurance of performance as specified results from checking \(I_{c o}\) at half as well as full rated voltage, and by checking beta again at low voltage (\(\mathrm{V}_{\mathrm{CE}}=1.5 \mathrm{~V}\)) and at two current ratings (1 amp and 5 amps). Ideally suited for your audio amplifier, cutrent switching, and power conversion applications. TI 2N456. 2N457. and 2N458 germanium power transistors dissipate 50 watts with \(-40,-60\), and \(-80 \mathrm{~V}_{\text {CBO }}\) ratings . . \(\mathrm{BV}_{\text {CBO }}\) ratings average 20 volts higher for each transistor.
Check the specifications below lor the unit most appropriate to your particular requirements.

\begin{tabular}{|c|c|c|c|c|c|}
\hline ma & mum ratings at \(25^{\circ} \mathrm{C}\) * & 2Na56 & 2N457 & 2N458 & unis \\
\hline \multirow[t]{3}{*}{\(V_{\text {CBO }}\) VCEX} & Collector to Base (\(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{~mA}\)) & -40 & -60 & -80 & V \\
\hline & Collector to Emitter & & & & \\
\hline & \(\left(\mathrm{V}_{\mathrm{BE}}=+0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{~mA}\right)\) & -40 & -60 & -80 & V \\
\hline \multirow[t]{2}{*}{Vebo} & Emitter to Base (\(I_{E}=-2.0 \mathrm{~mA}\)) & -20 & -20 & -20 & \(v\) \\
\hline & Total Dissipationt & 50 & 50 & 50 & W \\
\hline \multirow[t]{2}{*}{If
I
c} & Collector Current & 5 & 5 & 5 & A \\
\hline & Base Current & 3 & 3 & 3 & A \\
\hline \[
\begin{aligned}
& I_{B} \\
& T_{i}
\end{aligned}
\] & Junction Temperature & 95 & 95 & 95 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{6}{|l|}{typical characteristics at \(25^{\circ} \mathrm{C}\) *} \\
\hline BV сво & Collector to Base Breakdown Voltage \(\left(I_{C}=-10 \mathrm{~mA} . I_{E}=0\right.\)) & -60V & -80 & -100 & V \\
\hline \(h_{\text {fe }}\) & Forward Current Transfer Ratio \(\left(I_{\mathrm{C}}=-1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-1.5 \mathrm{~V}\right.\)) & 130
30 & \[
\begin{array}{r}
130 \\
30
\end{array}
\] & \[
\begin{array}{r}
130 \\
30
\end{array}
\] & - \\
\hline \multirow[t]{3}{*}{\(R_{\text {cs }}\)} & Common-Emitter Saturation Resistance & & & & \\
\hline & \begin{tabular}{l}
\[
\left(I_{C}=-5.0 \mathrm{~A} \cdot I_{B}=-1.0 \mathrm{~A}\right)
\] \\
Thermal Resistance from Collector
\end{tabular} & 0.048 & 0.048 & 0.048 & Ohm \\
\hline & Junction to Mounting Base & 1.1 & 1.1 & 1.1 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}
Temperature is measured on mounting base.
\(\dagger\) For operation at higher temperatures refer to the Deraling Curve

AVAILABLE NOW IN PRODUCTION QUANTITIES
NEW 310.000 sq. If SEMICONDUCTOR COMPONENTS DIIISION HOME

TEXAS INSTRUMENTS
I NCORPORATED EMICONDUCTOR-COMPONENTS DIVISION SEMICONDUCTOR-COMPONENTS DIVISION
POST OFFICE BOX 312 。DALLAS, TEXAS

\section*{NEW PRODUCTS at WESCON}

Resistance Bridge Indicator

Model A resistance bridge indicator is a self. balancing, accurate, and compact instrument for measuring outputs of resistance bridge transducers in the range of 50 to 1000 ohms. Outputs from either full or half bridges with 1,2, or 4 active arms are read from a digital display with out necessity for external accessory equipment or manual null-balance operation.
Calibrated to read directly in micro-inches per in. strain with strain gage inputs.
Datran Electronics, Div. of Mid-Continent Dept. ED, 1836 Rosecrans Ave., Manhattan Beach, Calif.
Wescon Booth 1615-16
CIRCLE 97 ON READER-SERVICE CARD

Recording System
Very high sensitivity

Type R Dynograph all-transistor direct-writing recording assembly, features a high sensitivity of one microvolt per division for dc or ac signals, a frequency response from dc to 160 cps flat within 10 per cent and available with one, or more, of the following recording systems: ink curvilinear, electric curvilinear, heat rectilinear or electric rectilinear recording. The assembly can be supplied with a wide variety of input couplers to enable transducers to be coupled directly. No external excitation, bridge balance or calibration controls are required external to the assembly.

Offner Electronics Inc., Dept. ED, 5320 N. Kedzie Ave., Chicago 25, Ill.
Wescon Booth 632-33
CIRCLE 98 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{Power Transistor}

Dissipates 12 w

The 2 N 553 is a germanium power transistor with a thermal resistance between junction and mounting base of \(1 \mathrm{C} /\) watt typical, \(2 \mathrm{C} /\) watt max. It is capable of dissipating 12 w at a mounting base temperature of 70 C .

Delco Radio Div., General Motors Corp., Dept. ED, Kokomo, Ind.
Wescon Booth 826
CIRCLE 121 ON READER-SERVICE CARD

A precision gearhead primarily for size 10 servo motors, but also available with size 11 mounting dimensions. Output shaft is displaced off center. Ratios from 6.1 to \(274: 1\) are available. Clifton Precision Products Co., Inc., Dept. ED, Marple at Broadway, Clifton Heights, Pa.
Wescon Booth 749-50
CIRCLE 122 ON READER-SERVICE CARD

\section*{DC Amplifiers}

Chopper stabilized or non-stabilized

Model 3120 system contains five model 3101 dual amplifiers, providing ten chopper-stabilized do amplifiers. The system is also available with model 3102 dual non-stabilized amplifiers.
Donner Scientific Co., Dept. ED, Concord, l lif.
F'escon Booth 1211-12
CIRCLE 123 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958
(\()\) M|TE industry's most complete line of WIRE-WOUND RESISTORS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ohmite has exactly the resistor you need \\
Ohmite offers the most complete line of high quality resistors on the market . . . fixed, adjustable, tapped, noninductive, and precision resistors
\end{tabular} & & & & \\
\hline in many sizes and types of terminals . . . in a wide range of wattages and resistances. All-welded construction. Ohmite application engineers will be pleased to help you in selecting the resistors for your job. & \begin{tabular}{l}
FIXED \\
Resistance wire is wound on a ceramic tube and protected by a vitreous-enamel coating. Many kinds of erminals available. May be single winding, tion. Watts, 3 to 1000 ; ohms, 0.1 to \(1,700,000\).
\end{tabular} & \begin{tabular}{l}
DIVIDOHM \\
adjustable \\
Vitreous-enameled resistors with the wire exposed in a strip along one side adjustable lugs. Most Ohmite resistors can be ordered adjustable. Watts, 10 to 1000: ohms, 1 to 100 K .
\end{tabular} & \begin{tabular}{l}
axial lead \\
Small vitreous-enameled resistors with wire leads axially welded to caps
on ends of the units. Also TUBEOHM ceramic jacketed style. Watts, vitreous 3 to 10; Tubeohm, 5 to \(25: 0 h m s ; ~\)
vitreous 1 to 50 K : Tubeohm 1 to 25 K .
\end{tabular} & \begin{tabular}{l}
THIN \\
Resistance wire is wound on a core of flattened oval cross section and protected. Several sizes. Fixed, adjustable or tapped. 0.1 to 100 K .
\end{tabular} \\
\hline & & & & \\
\hline \begin{tabular}{l}
NONINDUCTIVE \\
Tubular vitreous-enameled resistors with special winding. Dummy semblies of several resistors. Watts, 5 to
\(1000 ;\) ohms, 1 to 5000.
\end{tabular} & \begin{tabular}{l}
high current \\
CORRIBS have exposed corrugated ribbon wound and enameled on a tubular core. POWR-RIBS ha ve bare
coil of edgewise wound ribbon or round wire.
\end{tabular} & \begin{tabular}{l}
PRECISION WIRE-WOUND \\
Pie-wound resistors, encapsulated, impreg. nated or hermetically
sealed in
glass. Also sealed in
standard
gessistors. wound to close tolerance. Watts, \(1 / 8\) to 2 ; ohms, 0.1 to 5 megohms.
\end{tabular} & \begin{tabular}{l}
PRECISION METAL FILM \\
Consists of a unique bonded to a glass plate. \\
The assembly is sealed in a high-temperacure \\

\end{tabular} & \begin{tabular}{l}
SPECIAL VARIETIES \\
Ohmite can provide to roids, flat strips, plaques, special-sized tubes, or minals, etc. Watt ratings and resistances are
available as required.
\end{tabular} \\
\hline
\end{tabular}

RHEOSTATS RESISTORS RELAYS TAP SWITCHES TANTALUM CAPACITORS R.F.CHOKES VARIABLE TRANSFORMERS

\section*{OHMITE MANUFACTURING COMPANY 3643 Howard Street, Skokie, Illinois}

CIRCLE 124 ON READER-SERVICE CARD

\section*{accuracy...reliability}

\section*{SIZE 8}

\section*{SYNCHROS FOR EVERY APPLICATION}

Kearfott offers the widest range of synchros in the industry. Ruggedly constructed of corrosion-resistant materials, they give unequalled performance under every environmental condition. For best characteristics and reliability, specify Kearfott for all your synchro requirements. Here are a few typical models:

Size 8: \(750^{\prime \prime} \times 1.240^{\prime \prime}\). 1.75 oz. -54 C to +125 C .
Available as transmitter, control transformer, resolver, and differential. Max. error from EZ: 10, 7 and 5 minutes.
Size 11 Standard: \(1.062^{\prime x} \times 1.766^{\prime \prime} .4 \mathrm{oz} .-54 \mathrm{C}\) to +125 C .
Available as transmitter, control transformer, repeater, resolver and differential for 26 v and 115 v applications. Max. error from EZ: 10,7 and 5 minutes standard, 3 minutes in 4 -wire configurations.
Size 11 MIL Type: Dimensions and applications same as above. Meets Bu. Ord. configurations: max. error from EZ: 7 minutes.

Size 15 Precision Resolver (R587):
With compensating network and transistorized booster amplifier, provides 1:1 transformation ratio, \(0^{\circ}\) phase shift. Max. error from EZ: 5 minutes.
Size 25 Ultra-Precise: \(2.478^{\circ} \times 3.187^{\circ} .45 \mathrm{oz}\).
Available as transmitter, differential, and control transformer. Max. error from EZ: 20 seconds arc.

Engineers: Kearfoll offers challenging opportunities
in advanced component and system developments.

\section*{vearfott}

KEARFOTT COMPANY, INC., Little Falls, N. J.
A EUEEIDIARY OF GENERAL PRECIBION EQUIPMENT CORPORATION
SALES AND ENGINEERING OFFICEE: 1378 MAIN AVE., CLIFTON, N.J.
MIDWEST OFFICE: 23 W . CALENDAR AVE., LA GRANOE. ILL. SOUTH CENTRAL OPFICE: G2II DENTON DRIVE, DALLAE. TEXAS WEST COAST OFFICE: 283 N . VINEDO AVENUE, PASADENA, CALIF.

CIRCLE 86 ON READER-SERVICE CARD

\section*{NEW PRODUCTS at WESCON}

Force-Balance Unit
Used in air data computers

This force-balance transducer operates on the principle that two coplanar forces acting at right angles to each other determine a resultant force which acts at some angle whose tangent is their ratio. The unit implements this principle by mechanically balancing two pressures or forces through a linkage system, to provide a shaft rotation functional to their ratio. This shaft rotation is used to drive such output devices as potentiometers, synchros, or coded discs. After each step of input, the sensing elements of the system return to their null position.
The accuracy and range of the instrument make it suitable for such uses as air speed computation, altimeters, and mach indication.
G. M. Giannini \& Co., Inc., Dept. ED, Pasadena, Calif.
Wescon Booth 1665-66
CIRCLE 87 ON READER-SERVICE CARD

\section*{Recording Systems}

Modular amplifiers and discriminators

Amplifiers and discriminators are the features of these precision magnetic tape recording systems. All units are modular. One to seven of any assortment of models plug into a common, rack-mounted power supply. One recording amplifier gives either direct or PWM modulation at turn of a switch.

Minneapolis-Honeywell Regulator Co., Davies Labs Div., Dept. ED, 10721 Hanna St., Beltsville, Md.
Wescon Booth 501-02, 505, 543-44
CIRCLE 88 ON READER-SERVICE CARD

\section*{MINIATURE THERMAL RELAYS with \(99.99 \%\) Plus} Reliability SERVICE-FITTED SERVICE-TESTED SERVICE-APPROVED

Our complete environmental testing laboratory samples and certifies daily production.

New normally closed relays now avail. ABLE. They both meet or exceed requirements for guided missiles and complex electronic gear.

They are hermetically sealed by bonding metal headers to high thermal, shock resistant glass housings.
They open or close a circuit positively in 0.1 second or other delay times.
They can also be safely used as a "squib" or timing mechanism.

\section*{Tyoleal Characteristices}
\begin{tabular}{ll}
Temperature: & \(-100^{\circ} \mathrm{F}\). to \(+450^{\circ} \mathrm{F}\), \\
Vibration: & \(20-3000 \mathrm{CPS}\) at 40 G 's \\
Shock: & 250 G 's
\end{tabular}

Brochure containing complete characteristics and specifications available upon request.

\section*{NETWORKS ELECTRONIC CORPORATION}

14806 OXNARD ST., VAN NUYS, CALIF.
Original designs for highest reliability in olass housed miniature Relays and Resistors for all purpuses

\section*{NEW wire-
wound
RESISTORS* Crafted with Precision for Reliability}

For critical military and industrial applications.
Hermetically sealed by bonding glasskovar headers to high thermal, shock resistant glass housings. \(100 \%\) humidresistant \(g\)
ity-proof.
ity-proof.
Networks' new, truly accurate, preNETWORKS' new, truly accurate, pre-
cision Resistors are available in \(1 / 4,1 / 2\), 1 and 2 watt ratings at \(105^{\circ} \mathrm{C} \pm 0.1\) to \(1 \%\). Units for \(125^{\circ} \mathrm{C}\) available on special order. Lug types or flexible leads. Test results prove substantial improvement over MIL specs. They combine remarkable stability, under load and on the shelf, with exceptionally low temperature coefficient.

Reliability Conservative Ratings Stable Characteristics

Engineering Bulletin with Engineering Bulletin with
complete specifications complete specifications
available upon request.

\section*{NETWORKS ELECTRONIC CORPORATION}

14808 OXMARD ST., VAN NUYS, CALIFRRNIA

\section*{CIRCLE Booth 91 1710-Wescon}

CIRCIE 91 ON READER-SERVICE CARD
LECTRONIC DESIGN - August 6, 1958

\section*{Reliability}

\section*{IS THE COMMON DENOMINATOR OF ALL} NETWORKS MAGNETIC COMPONENTS

\section*{CURRENT TRANSDUCTORS}

For plating and other high current applications

Function as DC curren ransformers for metering large DC currents without conventional shunts and to isolate DC bus from meter ing circuit. Units rated for bus currents from 100 to 2000 amps with 2500 to from \(+1 / 2\) to \(2 \%\) depending on current rating.

FREQUENCY SENSITIVE RELAYS For guided missile applications

DPDT contacts actuated when frequency of supply varies \(\pm 1 \%\) from 400 cps ; will tolerate line voltage variation of \(\pm 20 \%\). Other center frequency values available. Temperature range - \(20 \%\). 8 . stand vibration up to 20 g from 20 to 2000 cps . Shock of 400 g for 1 millisecond in all planes.

\section*{सिटि}

OVER AND UNDER CURRENT SWITCHES
For computer
applications

Combination magnetic amplifier and transistor switching device with extreme sensitivity and reliability. 3 to 5 milliohm insertion resistance. Switch is NC (conducting) and opens with incremental current change of 40 ma or more from preset values. Current ranges 100 ma to 10 amps available. Temperature range \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)

\section*{5}

\section*{NEC}

\section*{SENSITIVE ELECTRONIC SWITCHES}

For general applications

Both current and voltage sensitive versions available. Sensitivities of control circuit as low as 750 microwatts. Control resistance from 3 milliohms to 2500 ohms. No moving parts. Switch circuit handles up to 40 V DC at 2 amps . Temperature range \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). Meet or exceed all applicable military specifications.
- Patents Pending -

COMPLETE SPECIFICATIONS AVAILABLE UPON REQUEST Concepts of proven reliability - yesterday . . today . . .tomorrow. Standard or custom designs for airborne and ground applications. Engineers, Designers and Manufacturers of All-Magnetic Components.

\section*{NETWORKS ELECTRONIC CORPORATION}

14806 OXNARD STRREET • VAN NUYS, CALIFORNIA• STate 5-8805

\section*{GLOBE A.C. MOTORS / GEAR REDUCERS / PACKAGES}

In precision miniature motors, gear reducers, and small-package devices using clutches, brakes, and other components, Globe Industries has the hardware to meet your requirement. From a single source you can get fast 2 to 4 week prototype delivery of standard units. Modular design, interchangeable precision parts, and an efficient special order department are specific, unique reasons why you get what you need before your design grows cold.
Three basic A.C. motors are shown above. With their integral gear reducers they reliably span the torque range to more than 2000 in . OZ. Custom modifications are a specialty.
Globe motor packages were chosen for the Army's Jupiter C. and as you read this, at least one such package is circling the earth. Ask the largest precision miniature motor manufacturer first. Request the Globe A.C. Motor Catalog now. GLOBE INDUSTRIES, INC., 1784 Stanley Avenue, Dayton 4, Ohio. BAldwin 2-3741.

CIRCLE 83 ON READER-SERVICE CARD

NEW PRODUCTS at wescon

\section*{Powdered Epoxy Resin}

500 v per mil dielectric strength

For applications using an aerated bed, spray coating equipment or preformed resin slugs, XR-5005 epoxy resin is a rigid, ovencuring resin with a dielectric strength of over 500 v per mil. No molds are needed in application; and no mixing is required.
Units to be coated are heated from 300 to 400 \(F\), and dipped into the suspended powder, which is bubbled by compressed air. The heat of the unit melts the resin surrounding it, causing a layer of resin to cling to it.
Minnesota Mining and Mfg. Co., Dept. ED, 900 Bush Ave., St. Paul 6, Minn.
Wescon Booth 606-07
CIRCLE 84 ON READER-SERVICE CARD
Power Supply
\(28 \mathrm{v} \mathrm{dc}, 0\) to 5 amp

This transistorized regulated power supply provides 28 v dc, 0 to 5 amp , and operates from a \(115-\mathrm{v}\), single-phase, 60 -cps power source. Regulation is 0.1 per cent from no load to full load with 10 per cent change in input. Ripple is 0.1 per cent peak-to-peak. Voltage drift per leg centigrade rise is approximately 0.01 per cent.

General Electric Co., Dept. ED, Schenectady 5, N.Y.
Wescon Booth 515-16
CIRCLE 85 ON READER-SERVICE CARD

\section*{Transistors}

\section*{Bilateral and drift types}

Germanium alloyed junction transistors, for medium and high speed switching applications. and a diffused base drift transistor will he exhibited. The germanium alloyed types include two pnp types 2 N 592 and 2 N 593 , and three npn types 2N594, 2N595 and 2N596. Collector to base voltage range is 20 to 40 v , and alpha cutoff frequency range is 1.5 to 5 mc .

General Transistor Corp., Dept. ED. 91-27 138th Place, Jamaica 35, N.Y.

Wescon Booth 1756-57
CIRCLE 79 ON reader-service card

\section*{Laminated Plastic}

Phenolic glass base grade
GH-871, a phenolic glass base grade designed for short time, very high temperature applications, retains more than 95 per cent of its strength after half hour exposure at 500 F . It will withstand higher temperatures for shorter time periods. Another material, phenolite grade G-11, is a glass base epoxy.

National Vulcanized Fibre Co., Dept. ED, Box 311, Wilmington, Del.
Wescon Booth 304-05
CIRCLE 80 ON READER-SERVICE CARD

\section*{Water Loads}

SL, S and X bands
Three waveguide water loads provide a convenient and accurate means of measuring microwave power when used with the model 190A calorimeter and model 189A thermopile. The loads can also be used independently as high power, low vswr terminations at the applicable waveguide frequencies Sierra Electronic Corp., Sub. of ailco Corp., Dept. ED, 3885 uhannon Dr., Menlo Park, Calif. escon Booth 1355-56
CIRCLE 81 ON READER-SERVICE CARD

DESIGNED TO MEET MIL-E-1 MILTARY TYPE

\section*{Auromatie silicon rectifiers}

\section*{JAN \\ TYPES}

1N253
1N254
1N255
1N256

\section*{NEW PRODUCTS}

Millivolt Source
For calibration of instruments

This portable millivolt source has two ranges: 0 to 10 mv and 0 to 100 mv . It remains within 0.25 per cent accurate over a reasonable period of time.

Westronics, Inc., Dept. ED, 3605 McCart St., Ft. Worth, Tex.
circle 100 ON reader-Service card

\section*{Cathode Ray Tubes}

Provide resolution of over 800 lines

Five flying spot scanners for black and white or color applications are added to a line of cathode ray tubes. Types 5AKP24, 5AUP24, 5BNP16, 5WP15, and 5ZP16 all have precision aligned guns which provide resolutions of over 800 lines at maximum anode ratings.

Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton 58, Mass.

CIRCLE 101 ON READER-SERVICE CARD

\section*{Electric Printer}

Accepts parallel or serial input
Electric printer that accepts parallel or serial input and prints from 6 to 9 columns of digits in one or two copies. Output rate from < CIRCLE 99 ON READER-SERVICE CARD

Eeneral Transistor has developece a new concept for procision bobbinless rasistors incorporating these exclueum features . . . the bobbiniess construction ollminates wise stross and strain. a a special viscous modium is used providing oxtromo shock and vibration resistance perature coofficlent of resistance of the finishod resisistor peraturo coefficient of resistance of the finishod resistor is the same as the wire and is not affoctod by the con-
tainer. This insures repaatability and minimum hystoresis tainer. This insures repeatability and minimum hystoresis
of resistance charactoristics with temperature cycling. of resistanco charactoristics with temperature cycling.
Those positive limetically sealed units are designed for printed en huir boards aty subminiature assemblies
for airtborná and missile applications.
The quality of materials and production superiority of these resiztors is the same that has made General Transittor the Fastest Growing Name in Transistors.
Write todey for complate technical information.
SIE us ar wiscon-
BOOTH NOS. 1736 and 1737.
 Censiruction - Terminations: - Weltred

1 I) in and isoth place
FOR IMMEDIATE DELIVERY FROM STOCK, CONTACT YOUR NEAREET AUTHORIZED GENIERAL TRANBISTOR DIBTRIBUTO
FOR EXPORTI GENERAL TRANSIBTOR INTERNATIONAL CORP., 91.27 IBITM PLACE, JAMAICA 35, MIMM YORK
parallel input is 3 lines per sec; from serial input, 4 digits per sec. Unit accepts over 100 ft of paper 3 in . wide.

Taller \& Cooper, Inc., Business Automation Equipment Div., Dept. ED, 75 Front St., Brooklyn 1, N.Y. CIRCLE 102 ON READER-SERVICE CARD

\section*{Resistor}

For printed circuit use

A low operating temperature, 5 w resistor, the type PC-5 is recommended for a printed circuit board mounting in circuits requiring a wirewound resistor with an actual wattage dissipation of 5 w or less, and for any circuit requiring a wirewound resistor capable of 7 w continuous operation.
International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.
circle 103 on reader-service card

Quadrature Rejection Unit Rejection ratios to 1000

This quadrature rejection unit hal rejection ratios of 1000 for \(0-9 \mathrm{v}\) input and 800 for \(9-15 \mathrm{v}\) input. Input impedance is 20 k ; input voltase \(115 \mathrm{v}, 400 \mathrm{cps}\). Weight is \(1-1 / 4\)

Thompson Prod. Inc., Dept. ED, 96 Clarkwood Rd., Cleveland 3, tho.
CIRCLE 104 ON READER-SERVICE CARD

\section*{New Medium Frequency Transistor Family!}
- High Dissipation: 250 mw at \(25^{\circ} \mathrm{C}\)
- High Current: Max. Ic \(=\mathbf{- 4 0 0} \mathbf{m a}\)
- High Temperature: \(100^{\circ} \mathrm{C}\) Max.
- High Voltage: Max. \(\mathrm{V}_{\mathrm{cB}}=-30 \mathrm{~V}\)
- High Frequencies: Min. \(f_{\alpha b}\) to \(12 \mathbf{m c}\)

Announcing a new Philco family of PNP germanium alloy junction transistors (In TO-9 [JETEC 30-type] housing). These transistors feature a unique, patented, cold-welded copper housing and internal construction that result in lower junction temperatures at normal operating power levels. Design of the 2N597, 2N598 and 2N599 insures improved life and reliability at temperatures as high as \(100^{\circ} \mathrm{C}\). Available in production quantities.

The high beta of these transistors at high currents makes them particularly applicable to medium speed flip-flops, logic gates, drum writers and core-driver circuits. The 30 v collector rating provides the high level logic swings required in many data processing equipments. At 200 ma of collector current typical rise time for the illustrated circuit is \(0.05 \mu \mathrm{sec}\).
Make Philco your prime source for all transisfor information and prices. Writo Dept. ED-858

See us at WESCON, Booths 710 and 711.

PHILCO. CORPORATION
LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

\section*{NEW PRODUCTS at WESCON}

Model SV－6 VHF sweep generator features high reliability etched circuits and quick access cabinet styling．Available with many variations of functions，such as front panel sweep width and centering controls，single or multiple attenu－ ator positions，sine wave or sawtooth horizontal sweep output voltage，etc．An r－f output voltage of 1 v rms across 75 ohms is provided，with crys－ tal controlled audio and video on the 12 vhf channels and i－f．

Telonic Industries，Inc．，Dept．ED， 73 N．2nd Ave．，Beech Grove，Ind．
Wescon Booth 1643
CIRCLE 106 ON READER－SERVICE CARD

\section*{Servomotors}

High performance size 8 units

A line of size 8 servos include two motors，two inertia－damps，two velocity－damps and a motor－ generator；available in \(26-\mathrm{v}\) models and（except for the motor generator）in \(115-\mathrm{v}\) models as well． A typical unit，the \(8 \mathrm{mg} 420 / 410\) is a \(26-\mathrm{v}, 400-\) cps ，servomotor rate generator．Torque at stall is 0.25 oz in．；power input， 2.3 w ；rotor inertia， \(0.16 \mathrm{gm}-\mathrm{cm}^{2}\) ；acceleration at stall， \(110,000 \mathrm{rad} /\) \(\mathrm{sec}^{2}\) ．

Helipot Corporation，Div．of Beckman Instru－ ments，Inc．，Dept．ED，Newport Beach，Calif． Wescon Booth 1351－52

CIRCLE 107 ON READER－SERVICE CARD

エエ円円エINE FOR

\section*{THE エ円AP エNTO OUTER SPACE}

Our only link with outer space is the advanced Communi－ cations System．Our progress in space technology has become dependent on solving the vast network of new problems which the Space Age has imposed on the ficld of Communications．
To meet these problems the Hughes Communications Systems Laboratories is drawing upon its continuing efforts in the field of Global Airborne Communications．Such newly devised Hughes hardware，at left，for example， illustrates the use of high－reliability wire wrapping to re－ place soldered connections and the use of inexpensive miniaturized＂cordwood＂circuit modules to make possible high component density．
New methods，such as Hughes－pioneered digital tech－ niques，are being formulated to achieve the long－range goal of developing communications systems capable of deflecting their signals from metcors，artificial satellites， and even the moon．Still other methods are being devel－

Electromagnotic positioning of cutting edges is directed by this etched metal bar，a significant innovation which aided in the Hughes metal bar，a significant innovation which aided in the Hughes
Products development of the first alle－lectronically controlled ma－ chine tool line．
Data processors under development at Hughes Fullerton will monitor the action of hundreds of aircraft and store the changing tactical situation in electronic memories for high－speed assignment
of defense weapons． of defense weapons．
the West＇s leader in advanced electronics

oped for systems which will transmit intelligence through media impervious to radio frequencies by modulating fre－ quencies far up the electromagnetic spectrum．
Advanced thinking，diversification，and expansion are also taking place in other areas of the Research \＆Develop－ ment Laboratories，of which Communications is a part ．． in Hughes Products，the commercial activity of Hughes ．in Hughes Fullerton，where three－dimensional radar systems are under development ．．．in Hughes El Segundo， the manufacturing facility for complex electronics systems ．and in Hughes Tucson，where guided missiles are manufactured．
Never before have the opportunities at Hughes been more promising！

New commercial and military contracts have created an immediate need for engineers in the following areas：
\begin{tabular}{ll}
Nuclear Electronics & Field Engineering \\
Microwaves & Vacuum Tubes \\
Communications & Crystal Filters \\
Reliability & Systems Analysis \\
Circuit Design & Computer Engineering
\end{tabular}

Circuit Design
Computer Engineering
Write in confidence to Mr．Phil N．Scheid
Hughes General Offices，Bldg．6－U，Culver City，Califormia．

HUGHES AIRCRAFT COMPANY
Culver City，El Segundo，
Fullerton and Los Angeles，California
Tucson，Arizona

Wescon show．Visit our booths 1401，1402，1812，and 1813 or the Hughes recruiting suites at the Chapman Park Hotel．
CIRCLE 551 ON READER－SERVICE CARD

\section*{Wire Markers}

Provide permanent marking

Called Mini－Markers，this wire marker gives positive and permanent identification to wires， coated wires，and components under 5／32 in．OD．

Westline Products，Div．of Western Litho－ graph Co．，Dept．ED， 600 E．2nd St．，Los An－ geles，Calif．
Wescon Booth 231
CIRCLE 108 ON READER－SERVICE CARD

The VTW－17 is a resistance type welder ca－ pable of welding molybdenum and tungsten rod up to 0.08 in ．diam．

Vacuum Tube Products Co．，Inc．，Dept．ED， P．O．Box 810，Oceanside，Calif．
Wescon Booth 1303－04
CIRCLE 109 ON READER－SERVICE CARD

The PA5E proportional amplifier is a sensitive magnetic amplifier capable of proportional con－ trol of up to 90 w output power with input power of a few millimicrowatts．This amplifier was de－ signed specifically to provide a reliable minia－ turized temperature control system for devices such as hermetic integrating gyroscopes．

Magnetic Controls Co．，Dept．ED， 6405 Cam－ bridge St．，Minneapolis 16，Minn．
Wescon Booth 1108
CIRCLE 110 ON READER－SERVICE CARD

\section*{Visual and Electronic}

\section*{error-free} decade counters

\section*{FEATURES}
nOTE THESE OUTSTANDING
- NIXIE READOUT IN-LINE FIGURES VISIBLE 30-40 FT.
- reliability of BEAM SWITCHING TUBE
- OPERATION WITH FULL TOLERANCE VARIATION OF ALL COMPONENTS
- SMALLEST PANEL HEIGHT (3 3/16")
- minimum heater wattage
- PLUG-IN DESIGN
- PROVISION FOR MECHANICAL OR ELECTRONIC ZERO-SET
- UNITS CASCADED DIRECTLY
\begin{tabular}{|c|c|c|c|c|}
\hline MODEL & DC-101 & DC-102 & DC-103 & *DC-105 \\
\hline Input & \begin{tabular}{l}
Negative \(2.5 \mu \mathrm{~s} 125 \mathrm{~V}\) \\
\(1 / 2\) Sine Wave \\
Or Output of DC-101
\end{tabular} & \begin{tabular}{l}
Negative 50 Volts \\
Less than \(1 \mu \mathrm{sec}\) \\
rise time \\
Duration at least \\
\(2 \mu \mathrm{sec}\)
\end{tabular} & Negative 110 Volts Less than \(0.5 \mu\) sec rise time & Negative 110 Volts Less than \(0.5 \mu \mathrm{sec}\) rise time \\
\hline Output & Drive DC-101 & Drive DC-101 & Drive DC-102 & Drive DC-105 and 10 Individual Outputs \\
\hline Resolution of Paired Pulses & Less than \(10 \mu \mathrm{sec}\) & Less than \(10 \mu \mathrm{sec}\) & Less than \(1 \mu \mathrm{sec}\) & Less than \(1 \mu \mathrm{sec}\) \\
\hline Reset to Zero & Manual on Switch Closure or Electronic with Suitable Pulse & Manual on Switch Closure or Electronic with Suitable Pulse & Manual on Switch Closure or Electronic with Suitable Pulse & Manual on Switch Closure or Electronic with Suitable Pulse \\
\hline Construction & Plug-In-Winchester Type MRE9P For Insertion in Type MRE9S & Plug-In-Winchester Type MRE9P For Insertion in Type MRE9S & Plug-In Winchester Type MRE9P For Insertion in Type MRE9S & \begin{tabular}{l}
Plug-In Printed \\
Circuit Board For Insertion in U.S. Components CR93-D10
\end{tabular} \\
\hline Maximum Counting Rate & 10 KC & 100 KC & 1 Mc & 1 Mc \\
\hline Count Indication & \begin{tabular}{l}
Nixie "in-line" \\
Numerical Readout Type 6844A
\end{tabular} & Nixie "in-line" Numerical Readout Type 6844A & \begin{tabular}{l}
Nixie "in-line" \\
Numerical Readout Type 6844A
\end{tabular} & Nixie "in-line" Numerical Readout Type 6844A \\
\hline Power Requirements & \[
\begin{aligned}
& 300 \mathrm{~V}-18 \mathrm{ma} \mathrm{DC} \\
& 6.3 \mathrm{~V}-0.3 \mathrm{~A} \mathrm{AC}
\end{aligned}
\] & \[
\begin{aligned}
& 300 \mathrm{~V}-28 \mathrm{ma} \mathrm{DC} \\
& 6.3 \mathrm{~V}-0.6 \mathrm{AAC}
\end{aligned}
\] & \[
\begin{aligned}
& 300 \mathrm{~V}-30 \mathrm{ma} \mathrm{DC} \\
& 6.3 \mathrm{~V}=0.9 \mathrm{AAC}
\end{aligned}
\] & \[
\begin{aligned}
& 300 \mathrm{~V}=30 \mathrm{ma} \mathrm{DC} \\
& 6.3 \mathrm{~V}=0.9 \mathrm{AAC}
\end{aligned}
\] \\
\hline Tube Complement & Type BD300 Beam Switching Tube Counter - 6844A Indicator & Type BD300 Beam Switching Tube Counter - 6844A Indicator Type 6201 Flip-Flop & \begin{tabular}{l}
Type BD300 Beam \\
Switching Tube 6844A Indicator 5670 Flip-Flop 5963 Buffer
\end{tabular} & Type BD300 Beam Switching Tube 6844A Indicator 5670 Flip.Flop 5963 Buffer \\
\hline
\end{tabular}

Write for new brochure S1-4 that includes the Burroughs "Beamplexser" high speed 10 position electronic switch.

NEW PRODUCTS
Rotary Switch
Locks in position

When the key which operates the type JR switch is taken out, the switch locks in position and affords tamper-proof protection of complex electrical circuits. The switch provides control of up to three sections and eight positions.

Electro Switch Corp., Dept. ED, 167 King Ave., Weymouth 88, Mass.

CIRCLE 112 ON READER-SERVICE CARD

\section*{Flying Spot Scanner}

\section*{Has bi-potential lens}

Type 5ZP16 flying spot scanner features bi-potential focusing which minimizes spherical aberrations and results in a fine spot capable of high resolution. The \(40-\mathrm{deg}\) magnetic deflection crt has anode rat ings of 30 kv .

Sylvania Electric Products Inc., Dept. ED, Seneca Falls, N.Y.

CIRCLE 113 ON READER-SERVICE CARD

\section*{Servo Elements}

\section*{Miniature}

Two light miniature servo elements: Model 08M10A1 26 v 400 cps size 08 servomotor has a no load speed of 6.500 rpm . The 11M16A1 115 or 26 v 400 cps size 11 Linvar has an output propor tional to rotor angle rising to 42.5 v.

Muirhead Instruments Inc., Dept. ED, 677 Fifth Ave., New York 23, N.Y.

CIRCLE 114 ON reader-service card
\& CIRCLE 111 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}
at WESCON
Traveling Wave Oscilloscope
Can detect frequencies to \(\mathbf{2 0 0 0} \mathbf{~ m c}\)

Type 2236A traveling wave oscilloscope is deigned to display transient and repetitive phenomena in the millimicrosecond region. Frequencies as high as 2000 mc and voltage levels of 40 to 50 nv can be detected.
This type of oscilloscope utilizes a traveling wave type of deflection system. Helix pitch is adjusted to make the signal propagation speed down the tube match the beam velocity, thus achieving a high frequency response.
Edgerton, Germeshausen \& Grier, Inc., Dept. ED, 160 Brokline Ave., Boston, Mass.
Wescon Booth 1627
CIRCLE 115 ON READER-SERVICE CARD

An insulating spacer molding has been deigned into this 15 -contact printed circuit conpector to prevent the possibility of bending, wisting or shorting the contacts during assembly. The spacer is an integral part of the connecfor and assures uniform spacing of contacts. Comectors are supplied with the standard Bellisws Action contacts.
DeJur-Amsco Corp., Electronic Sales Div., Dejt. ED, 45-01 Northern Blvd., Long Island City 1, N.Y.
Wercon Booth 1521
CIRCLE 116 ON READER-SERVICE CARD
ELE TRONIC DESIGN • August 6, 1958

\section*{Because its 145 to 1 delay-to-rise-time ratio was considered impossible}

\section*{THIS IS THE DELAY LINE THAT COULONT BE MADE}

\title{
 \\ ...BUT ESC MADE IT!
}

Compare the new ESC Delay Line Model 51.43 with these competitive units:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { DELAY }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RISE } \\
& \text { TIME }
\end{aligned}
\] & VOLUME,
INCHES & \[
\begin{aligned}
& \text { ZOMS } \\
& \text { OHM }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MAX. NO. } \\
& \text { PULSES }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PULSES PER } \\
& \text { CU. IN. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { YOTAL } \\
& \text { INSERTION } \\
& \text { LOSS }
\end{aligned}
\] & LOSS PER PULSE & \[
\begin{aligned}
& \text { MERIT- } \\
& \text { FACTOR }
\end{aligned}
\] & MIN. PULSE LENGTH \\
\hline - - Commercial Air Core Delay Line & \(4.6 \mu \mathrm{~s}\). & 0.1 us. & 92.7 & 430 & 23 & . 248 & 7 db & . 304 db & 0.816 & . \(2 \mathrm{\mu s}\). \\
\hline - Commercial Ferrite Core Delay Line & \(12 \mu \mathrm{~s}\). & \(0.26 \mu \mathrm{~s}\). & 41.2 & 500 & 23.1 & . 56 & 2 db & . 0866 db & 6.45 & . \(52 \mu \mathrm{~s}\). \\
\hline - \({ }^{-0}\) Commercial Ferrite Core Delay Line & \(200 \mu\) s. & 4.4 us. & 74.4 & 500 & 22.8 & . 306 & 2 db & . 0876 db & 3.5 & 8.8 us. \\
\hline \({ }^{*}\) Commercial 1350 Ohm Distributed Line & \(12 \mu \mathrm{~s}\). & \(0.44 \mu \mathrm{~s}\). & 77.7 & 1350 & 13.6 & . 175 & 12.4 db & . 911 db & 0.192 & . 88 us. \\
\hline -RGG 65 U & \(8 \mu \mathrm{~s}\). & \(0.31 \mu \mathrm{~s}\). & 820 & 950 & 12.9 & . 0157 & 11.5 db & . 892 db & 0.0176 & . \(62 \mu \mathrm{~s}\). \\
\hline ESC Delay Line Model 51-43 & \(20.3 \mu \mathrm{~s}\). & . 14 us. & 115 & 470 & 72 & . 625 & 2 db & . 0278 db & 22.5 & . 28 us. \\
\hline
\end{tabular}

exceptional employment opportunities for engineers experienced in pulse techniques see you at the wescon show-sooth \#927

534 Bergen Boulevard, Palisades Park, New Jersey circle 117 ON READER-SERVICE CARD

Components Division Announces

\section*{FEDERAL GOLD CROWN DIFFUSED JUNCTION} silicon power rectifiers

\section*{F E A T U R E S}
- advanced diffusion techniques
- Standard and proposed jetec case styles
- highest efficiency
- MEETS MILITARY SPECIFICATIONS
- maximum rellabillty and stability

IT T's new concept in semiconductor device design has resulted in unique features which afford design engineers a superior silicon rectifier with highest electrical efficiency and maximum operating reliability.
These newly developed devices are available in styles shown and include these features . . . dual positive shown and include these features ... dual positive
hermetic sealing ... standard case designs permit hermetic sealing . . standard case designs permit
mechanical interchangeability...designed for optimum mechanical interchangeability ... designed for optimum
heat transfer...controlled environmental assembly heat transfer controlled environmental assembly
conditions . . and improved engineering techniques.
The quality of materials and production superiority of these silicon rectifiers is the same that has made Federal the leader in selenium rectifiers.
Write today for technical and engineering data.

Components Division
international telephone and telegraph corporation P. O. BOX 412, CLIFTON. N. J.

SEE US AT BOOTH 1403 AND 1404 WESCON ShOW
en

\section*{NEW PRODUCTS} at WESCON

Microwave Reflector
Omnidirectional

This three dimensional microwave radar re flector device when illuminated from any azimuth or any angle in space, returns the total energ. as reflected power. Based upon the Eaton Lens, the unit is effective up to X -band frequencies.

Also displayed is a do-it-yourself microwave absorber material, available as a light weight pack-in-place lossy dielectric. When formed into the proper shape and cured, it becomes a very effective microwave absorber for any pre-selected frequency.

Emerson \& Cuming, Inc., Dept. ED, 869 Washington St., Canton, Mass.
Wescon Booth 326
cIRcle 119 ON READER-SERVICE CARD

A new version of an inertial damped servo motor will be shown. The permanent magnet and cup are both free to rotate and no damping develops when the magnet and cup are traveling at the same speed. When there is a relative change between the cup and the permanent magnet, torque is developed in the cup and this provides the damping. The corner frequenc normally specifies the inertial damping and the product of this frequency in radians per sec and the motor time constant equals unity.

Daystrom, Inc., Transicoil Div., Dept. ED Montgomery County, Worcester, Pa.
Wescon Booth 729
CIRCLE 120 ON READER-SERVICE CARD
ElECTRONIC DESIGN • August 6, 1958

\section*{NEW PRODUCTS}

\section*{Storage Batteries}

Nickel Cadmium

\section*{01.}

Dynametrics Corp., Dept. ED, Nurthwest Industrial Park, Burlingtor, Mass.

CIRCLE 95 ON READER-SERVICE CARD
CIRCLE 92 ON READER-SERVICE CARD \(\geqslant\)

Types KHJ and KHY GENERAL PIATURES:
Contact Data:
Confact Arrangement—DPDT
Contact Rating -
Low-lovel up to 2 amps at 29 volis d-c, 1 amp at 115 volts a-c 400 cps non-inductive or 0.5 amp inductive.
Life \(-100,000\) minimum af \(125^{\circ} \mathrm{C}\)
Also available 3 amps at 29 volts \(\mathrm{d}-\mathrm{c}\), 2 amps of 115 volts a-c 400 cps mon-inductive or 1 amp inductive. Life- 100,000 at 3 amps or 500,000 minimum at 2 amps of \(125^{\circ} \mathrm{C}\)

\section*{nitial Contact}

Resistance -0.05 ohms maximum
Confact Drop-1 milivoli maximum af low level rating, initial and during low lovel miss test

\section*{Operato Dafa:}
D.C Coil Resistance-up to 10,000 ohms

Nominal Power- 1.2 watts
Pull-in Power -240 milliwatts (standard)
100 milliwatts (special)
Operate Time -5 milliseconds max.
Release Time -3 miliseconds max.
Dielectric Strength:
1000 volits rms at sea level 500 volts rms at 70,000 feot 350 volis rms at 80,000 foer Insulation Resisfance:
10,000 megohms minimum of \(125^{\circ} \mathrm{C}\)

\section*{ENYIRONMENTAL FEATURES}

\section*{Vibration:}

5 to 10 cps at 0.5 inch double amplifude 10 to 55 cps at 0.25 inch double amplitude 55 to 2000 cps of 20 g
Shock: \(100 \mathrm{~g}^{\prime}\) s operational - 200 g 's mechanical Ambient Templafure: \(-65^{\circ} \mathrm{C}\) io \(+125^{\circ} \mathrm{C}\)

\section*{MREMANICAL FATMRES}

Weight: 0.5 ounces
Tcrmincls:
Hooked Solder - Plug-in • Printed Circuit
Mountings:
2 or 4 hole brackets af base or center of gravily
tor 2 stud on fop or side of housing
MILTARY BPLCIFGATONS
MIL-R-25018 - MIL-R-5757C

Allied's type KHJ -and KHY subminiature relays were developed to meet the present "Automation" need for relays with incremental grid spaced terminals and with improved performance. These relays have a higher contact rating and are designed to meet the increased vibration and shock requirements of the latest MIL specs. They are available with mounting brackets that are interchangeable with Allied present type KH subminiature relay.

\section*{Small...sensitive...high-speed} POLAR RELAY for billions of maintenance-free operations

\(\mathrm{H}^{\mathrm{H}}\)ERE'S A 2-position Polar Relay that can be depended upon for switching a single circuit at high speeds through billions of operations-without readjustment.
Substantially smaller than other polar relays, the Automatic Electric Series PTW is designed for telegraph and teleprinter circuits-teletypewriter switch-ing-teletypewriter repeater circuits-plus other industrial and military applications. Type 203 is completely interchangeable with Western Electric 255A relays.

\section*{Check these unique advantages}

Because of its simple design and compact construction, the PTW costs substantially less than other relays you may have been using. It delivers lightning response (travel time as little as 0.7 of a millisecond!). And its design assures adjustments that stay put practically forever.
Series PTW Polar Relays are available with various type terminals to fit both new and existing applica-tions-including surface mounting of Type 202 in replacement of Western Union Type 17 relay.

For full information, call or write Automatic Electric Sales Corporation, Northlake, Illinois. In Canada: Automatic Electric Sales (Canada) Ltd., Toronto. Offices in principal cities.

Automatic Electric Polar Relay is used in selector cabinet of Teleregister Corp. stock-quotation system. Teleregister design engineer, Jim Hartelius, shows how snap-on cover can be removed for visual inspection. He reports " . . . complete reliability . . . almost infinite life . . . virtually never gets out of adjustment."

\section*{AUTOMATIC ELECTRIC ©}

\author{
Northlake, Illinois - Subsidiary of GENERAL TELEPHONE
}

\section*{NEW PRODUCTS at wESCON}

Cable Tester
Tests branching circuits

Complex, branching circuits are simultane ously high potted, tested for continuity, an measured for leakage resistance between each circuit and all others by this cable tester. Cali brated front panel controls allow independen settings of all test parameters. Checking at a rate of 5 wires per second in automatic operation the tester stops when a faulty circuit is found
California Technical Ind., Div. of Textron Inc. Dept. ED, 1444 Old County Road, Belmont Calif.
Wescon Booth 1213-14
CIRCLE 126 ON READER-SERVICE CARD

Power Supply
0.05 per cent regulation

A fully transistorized power supply, model 62 121 has a regulation of 0.05 per cent for a lint change of 105 to 125 v . Circuitry provides a high degree of freedom from spikes and transients Output range is \(0.5-36 \mathrm{v}\) dc at 15 amp , with full current available down to 0.5 v .

Dressen-Barnes Corp., Dept. ED, 250 Vinedo Ave., Pasadena, Calif.
Wescon Booth 1435
CIRCLE 127 ON READER-SERVICE CARD

\section*{Relay}

Mercury-wetted contacts

Type HGS relay is similar to type HG and type HGP relays in that it comprises a sealed
ressurized switch capsule, with mercurysetted contacts. It retains the long life and reliability features of those relays, with the added Idvantages of higher speed (up to 200 operations per sec) and more sensitive operation.
C. P. Clare \& Co., Dept. ED, 6047 Hollywood Blıd., Los Angeles 28, Calif.
Wiscon Booth 1603
CIRCLE 128 ON READER-SERVICE CARD
Rectifiers
High voltage packaged units

Rated to provide voltages as high as 100,000 \(r\), these units have ratings from 1 ma to 1 amp . The rectifiers are assembled with either silicon or selenium types, packaged in hermetically sealed housings, and operable in temperatures to 150 C.
International Rectifier Corp., Dept. ED, 1521
. Grand Ave., El Segundo, Calif.
Wescon Booth 1447-48
CIRCLE 129 ON READER-SERVICE CARD
Pulse Amplifier
Supplies up to 5 amp

Designed for a wide range of magnetic, crysal, and capacitance element testing, model 325A pulse amplifier is a wide band unit with output ersatility. The instrument is compatible with the 5000 and 5100 series pulse code generating quipment, for tape core, memory, and matrix esting applications.
The instrument provides \(\pm 50 \mathrm{ma}\) to \(\pm 5 \mathrm{amp}\) round ground.
Electro-Pulse, Inc., Dept. ED, 11861 Teale St., Culver City, Calif.
Ve icon Booth 1645-46
CIRCLE 130 ON READER-SERVICE CARD
ELE:TRONIC DESIGN • August 6, 1958

\section*{radar relay switch noise problem}
The filters pictured were specifically developed to suppress
radiated and conducted noise pulses generated from a
coaxial relay switch. In this particular case Astron found
it necessary to filter each contact of the switching network
individually. The result was a single compact unit housing
26 different filters. A twelveterminal line fitrer was also
required to absorb residual noise. Both filters were
hermetically sealed and compliance with all applicable
military and environmental requirements was achieved.
These particular filters are one example of many custom
built by Astron . We bring them to your altention
not to demonstrate an unusual filter problem, but rather
to demonstrate a very usual result of Astron's
engineering skill.

E. NEWARK. N. J. PECKYILLE, PENNSYLVANIA A WHOLLR-OWNED

in canada
CHARLES W
toronto. ontamio

The filters pictured were specifically developed to suppress adiated and conducted noise pulses generated from a it necessary to filter each contact of the switching network individually. The result was a single compact unit housing
 required to absorb residual noise. Both filters were ilitary and saled and compliance wirh all applicable

These particular filters are one example of many custom not to demonstrate an unusual filter problem, but rather derineering skill

Regardless of the complexity of your filter applications Astron will design and produce RF noise suppression Alters to your exact requirements.

\section*{MODEL NL5805}

The growth of the guided missiles field has provoked increased engineering activity directed towards the miniaturization of microwave components. Special techniques and materials have been developed to conform with severe space limitations and extreme temperatures. The Bogart series of bar hybrids has found wide use in military and commercial applications as balanced mixers (co axial crystal mounts are available as accessory equipment), power splifters, phase comparafors, variable power dividers, fixed and variable affennators, phase shiffers for monopulse work, duplexers to permit design of complete coaxial R-F
heads composed entirely of hybrids, and beacon switching devices.
A brochure entitled "Applications Employing Coaxial Bar Hybrids", in which the Bogart hybrids are presently used to perform the previously described functions, is available upon request. Special applications of Bogart Bar Hybrids can be designed to meet your specific requirements. Our applications engineers will be pleased to discuss your particular problems with you.
For characteristics of coaxial crystal mounts, refer to Bogart Series 1032.

\section*{NEW PRODUCTS at wescon}

\section*{Tantalum Capacitors}

2 to \(240 \mu \mathrm{f}\)

These solid electrolyte tantalum capacity have stable capacity, dissipation factor and le age current over a -80 to +85 C range. Thr case sizes cover ratirgs of \(2 \mu \mathrm{f}\) at 35 worki volts to \(240 \mu \mathrm{f}\) at 4 working volts.
International Telephone \& Telegraph Cor Components Div., Dept. ED, P.O. Box 412, Ci ton, N.J.
Wescon Booth 1404
CIRCIE 133 ON READER-SERVICE CARD

\section*{Recording Heads}

Two track, four channels

Model TR48A Isodex can record and play ba four channels on a standard \(1 / 4-\mathrm{in}\). tape. I unit has two tracks with gaps in-line. The trad are positioned to permit interlaced operation.

Shure Brothers Inc., Dept. ED, 222 Hart Ave., Evanston, Ill.
Wescon Booth 1306
CIRCLE 134 ON READER-SERVICE CARD

\section*{Carrier Amplifier}

Two channel carrier operates on a carrier lif
ELECTRONIC DESIGN • August 6, 199
quency of 5000 cps , with a range of 0 to 1000 cps. Also displayed are two new models of the \(\$ 66\) direct-recording Visicorder oscillograph. Similiar in appearance to the 906 , model 906 A is available in two versions, the 906A-1 and 906A-2. Minneapolis-Honeywell Regulator Co., Heiland Div., Dept. ED, 5200 E. Evans Ave., Denver 22, Colo.
Wescon Booth 544
CIRCLE 135 ON READER-SERVICE CARD

\section*{Synchros}

Size 8 series

A line of size 8 synchros includes control ransformers, transmitters, repeaters, resolvers nd differentials. The units will feature corrosion esistant construction throughout, conforming to MIL-E-5272 specifications. Standard units will e displayed with \(11.8 \mathrm{v}, 26 \mathrm{v}\) or 90 v excitation, perating over a -54 to +125 C range.
Daystrom, Inc., Transicoil Div., Dept. ED, Iontgomery County, Worcester, Pa.
Vescon Booth 729
CIRCLE 136 ON READER-SERVICE CARD

\section*{Impulse Latching Relay}

With manual reset

Type SllODPB relay is available with two louble throw contacts, if required. The unit oprates on a 15 msec pulse and is available for 60 - 410 cps operation internally rectified. Relay ons tumes no power after first pulse.
Elcetro-Mechanical Spec. Co., Inc., Dept. ED, 1016. N. Highland Ave., Los Angeles 38, Calif. Ves on Booth 638

CIRCLE 137 ON READER-SERVICE CARD

\section*{FORMS OF EPOXY}

\section*{will solve any component encapsulation problem!}

Shells, sheeting, powder, pellets, liquid-EPOXY PRODUCTS can provide the right form of epoxy to solve your component encapsulation problem. Using these 5 basic forms (the widest line available today) we custom-build an epoxy unit that is just the right size, shape and quality for your component. Once the right encapsulating unit is developed, it can be produced in quantity immediately and placed on your production line. In short, no matter what type of component you are encapsulating, no matter what your facilities are now, there is an epoxy form and method just for you-from EPOXY PRODUCTSI Write today for complete technical data and literature.

\section*{Test epoxy encapsulation in your own lab!}

A special kit containing generous samples of all 5 forms of epoxy resin, plus instructions, is available. Use it to test epoxy encapsulation on your own products-right in your own lab! Only \(\$ 9.98\) from your distributor.

\section*{PRODUCTS, INC.}

\author{
A Division of Joseph Waldman \& Sons 137 Coit Street, Irvington 11, New Jersey
}

\section*{much smaller mounting dimension}

\section*{A LINE WHICH}

REPLACES
CONVENTIONAL RECTIFIERS
TWICE AS
LARGE . . . IN MILITARY \&
INDUSTRIAL APPLICATIONS

Engineers design scopes can now be broadened with the newly developed Federal Selenium 60 volt cell rectifier - miniaturized in size, light in weight, more efficient for circuitry, reliable for high temperafures and at a realistic cost.

This major selenium advance, achieved through ITT research, affords reliable operation to \(150^{\circ} \mathrm{C}\) ambient with derating and at current ratings from 150 ma to 1 amp - cell sizes from \(1^{\prime \prime}, 1 \frac{114^{\prime \prime}, 1 \frac{112 \prime \prime}{\prime \prime} \text {. }}{\text { a }}\) \(1 \% /^{\prime \prime}, 134^{\prime \prime}\), and \(2^{\prime \prime}\) are available in all circuit configurations. Other features include long life, low temperature rise, proved mechanical construction, conservative ratings and controlled quality.

The "Federal Selenium 60" is designed to replace rectifiers up to twice as large in military \& industrial applications. Miniaturization, with improved electrical characteristics, is due to ITT's exclusive depositing process.

WRITE TODAY FOR TECHNICAL AND ENGINEERING DATA ITT COMPONENTS DIVISION

> SEE US AT BOOTH
> 1403 AND 1404 WESCON SHOW

\section*{Components Division}

\section*{NEW PRODUCTS at WESCON}

High Resolution Potentiometer
Over one foot wide

A 15 -in. wide single-turn potentiometer, thi unit was originally designed for precision testing of aircraft actuators. Model MST-150 is available with linearities to 0.015 per cent and resolution compatible with linearity. Housing is a heal treated aluminum casting. The unit dissipates \(w\) at 60 C .
Analogue Controls, Inc., Dept. ED, 39 Roselle St., Mineola, N.Y
Wescon Booth 812
CIRCLE 140 ON READER-SERVICE CARD

Digital Voltmeter
ac-dc model

Model 402 ac-dc digital voltmeter has a new single-plane, projection type readout; 0.01 per cent dc and 0.1 per cent ac accuracy; dc meas urement range from \(100 \mu \mathrm{v}\) to 999.9 v in fou automatic ranges; ac measurement range from 1 mv to 999.9 v in four manual ranges; automatic ac over-range indication; ac frequency response 30 to \(10,000 \mathrm{cps}\), and 10 meg input impedance on all ranges.
Cohu Electronics, Inc., Kin Tel Div., Dept ED, 5725 Kearny Villa Road, San Diego 12 Calif.
Wescon Booth 1413-14
CIRCLE 141 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

Type HR solenoid relays are rated at 10 amp , 600 v ac max, and have unitized poles, interchangeable wiping-action contacts, complete parts accessibility, and identical mounting dimensions for all ac and dc styles.
Ward Leonard Electric Co., Dept. ED, 83 South St., Mount Vernon, N.Y. Wescon Booth 1327

CIRCLE 142 ON READER-SERVICE CARD

\section*{Power Supplies}

First of transistorized series

The first two models in this series of transistorized power supplies, LT 2095 and LT 2095M, have ranges of 0 to 32 v dc. 0 to 2 amp . All models are designed to operate at max rating of 50 C ambient temperature without internal hlowers or other moving parts.
Lambda Electronics Corp., Dept. ED, 11-11 131st St., College Point, L.I., N.Y.
Wescon Booth 842-43
CIRCLE 143 ON READER-SERVICE CARD

Hydrogen Thyratron
30 megawatts peak power

Model 1802 hydrogen thyratron produces 30 negavatts peak power in a small, air-cooled eramic envelope. Salient ratings are: peak voltge, 30 kv ; peak current, 1000 amp ; life, 1000
Edserton, Germeshausen \& Grier, Inc., Dept. ED, 60 Brookline Ave., Boston, Mass.
Vescon Booth 1627
CIRCLE 144 ON READER-SERVICE CARD
Lectronic design - August 6, 1958

DESIGN ACHIEVEMENTS WITH SUPRAMICA* CERAMOPLASTICS

\section*{HIGH TEMPERATURE ceramoplastic INSULATION}

\section*{SUPRAMICA ceramoplastics provide broader design scope for product engineers}

Increased thermal endurance . . . total, permanent dimensional stability . . . better electrical properties . . . lower density and improved machineability of SUPRAMICA ceramoplastics bridge the design gap between organic plastics and conventional ceramics. The world's most nearly perfect insulation, SUPRAMICA ceramoplastics allow product engineers to meet the requirements of today's thermal problems.
There is no possibility of shrinkage, growth or age polymerization since the materials are completely inorganic, made with SYNTHAMICA* synthetic mica. Metal inserts molded in SUPRAMICA ceramoplastics cannot loosen during thermal cycling because coefficients of expansion are
closely matched. Other desirable properties are high dielectric strength, radiation and are resistance, low electrical loss, resistance 10 moisture, oil and organic solvenis. In thousands of military and critical industrial applications, SUPRAMICA ceramoplastics are contributing to better, safer, more reliable operation of electrical and electronic equipment.
Write for complete technical information.
SUPRAMICA * 560 - for temperatures up \(10500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right)\) SUPRAMICA * 555 - for temperatures up to \(350^{\circ} \mathrm{C}\left(660^{\circ} \mathrm{F}\right.\)) SUPRAMICA* 500 - sheet and rod material for machining
*SUPRAMICA is a registered trademark of Mycalex Corporation of America. 560 and 555 and 500 are trademarks of Myşalex Corporation of America.
SYNTHAMICA is a trademark of Synthetic Mica Corporation, subsidiary of Mycalex Corporation of America.

5

WORLD'S LARGEST MANUFACTURER OF GLASS-BONDED MICA AND Wescon Show Booth \# 1440
CIRCLE 145 ON READER-SERVICE CARD

\section*{SEE SPERRY}

SPERRY made microwave radar possible by developing the klystron 20 years ago. Since then, Sperry klystrons have become the design choice in every radar field from missile guidance to the most accurate radar test equipment. For example:

\section*{Low-voltage reflex klystron for testing X-band radars}

Here is the ideal signal source for radar test equipment the SRX-92 reflex oscillator klystron. Offering complete coverage of the frequency range from 8.5 to 10.5 mc , this Sperry tube also serves as local oscillator in microwave receivers and spectrum analyzers, or as a low-voltage bench oscillator.
Spanning \(21 \%\) of the center frequency, the SRX-92 also features low hysteresis, high thermal stability, and singlescrew tuning-in a low-cost package that weighs only \(41 / 2\) ounces. The SRX-92 meets Navy requirements. Write or phone the nearest Sperry district office for more details and shipping schedules.

DIVISION OF SPERRY RAND CORPORATION

Visit our booths 641-642 at the WESCON Show, August 19-22 CIRCLE 146 ON READER-SERVICE CARD

\section*{NEW PRODUCTS at WESCON}

Strain Gage Amplifiers
Signal level suitable for telemetry

Strain gage signal amplification to voltage levels suitable for direct use in telemetry are provided by models CA3 and CA5 carrier amplifiers. They operate from a 28 v dc supply and provide an output of \(0-5 \mathrm{v}\) dc exactly propor tional to the quantity being measured.

Statham Instruments, Inc., Dept. ED, 12401 West Olympic Boulevard, Los Angeles 64, Calit Wescon Booth 621

CIRCLE 147 ON READER-SERVICE CARD

\section*{Potentiometers}

Rated up to 250 C

Series 314 miniature potentiometers operate temperatures from -55 to +250 C , and with stand shock to 20 g in three axes, and vibration of 20 g to 2000 cps . They measure \(1 / 2 \mathrm{in}\). in diam and \(3 / 8 \mathrm{in}\). in length.

Daystrom, Inc., Pacific Div., Dept. ED, 303 Nebraska Ave., Santa Monica, Calif. Wescon Booth 704

CIRCLE 148 ON READER-SERVICE CARD

\section*{Mercury Pulse Generator \\ Can be used to test amplifiers}

Output pulse height: variable from \(100 \mu \nu \mathrm{t}\) 100 v ; shape: exponential rise to exponential de cay; rise time: better than \(0.05 \mu \mathrm{sec}\) variable on a range of 1000 to 1 . Decay time constant: 1, 10 , or \(100 \mu \mathrm{sec}\).
Radiation Instrument Development Lab, Int
Dept. ED, 5737 S. Halsted St., Chicago 21, Ill. CIRCLE 149 ON READER-SERVICE CARD

ELECTRONIC DESIGN • August 6, 195

\section*{Digital Voltmeter}

AC voltages read to 5 digits

A 5 -digit voltmeter system for the reading of ac voltages. A dc pre-amplifier increases the input impedance and sensitivity of the meter unit to \(10 \mu \mathrm{v}\) per digit. Accuracy of the system is greater than 0.01 per cent. Polarity and voltage ranges are automatic.
Cubic Corp., Dept. ED, 5575 Kearny Villa Rd., San Diego 11, Calif.
Wescon Booth 1554-55
CIRCLE 150 ON READER-SERVICE CARD
Resolver-Servo
For missile guidance systems

This miniaturized computer and integrator consists of a dual anti-backlash gear train, a slip clutch, a size 11 temperature compensated resolver, a size 8 motor generator and precision potentiometer, all in a pressure-sealed container measuring \(2 \times 2 \times 3 \mathrm{in}\).
Thomas A. Edison Industries, Instrument Div., Dept. ED, 61 Lakeside Ave., W. Orange, N.J. Wescon Booth 1748

CIRCLE 151 ON READER-SERVICE CARD

\section*{Subcarrier Oscillator}

Inductance controlled
Inductance controlled subcarrier oscillator Model 0300 can be tuned to any of the 18 RDB telemetering bands in the 400 cps to 70 kc range. Output frequency is varied from its tuned center point by any inductance type transducer with two output leads. The plug-in assembly is compatible with the Bendix TJS-2 adapter.
Datran Electronics, Dept. ED, 1836 Rosecrans Ave, Manhattan Beach, Calif.

CIRCLE 152 ON reader-service card
ELECTRONIC DESIGN • August 6, 1958

\section*{Producf of nearly 200 years of uninferrupfed experience}

The Masters of the drawing board on every continent say that Castell \#9000 is the world's finest wood-encased pencil.

Why?
Because this green polished perfect drawing tool is saturated with "Black Gold" graphite, the purest black mineral known to man, that assays at more than \(99 \%\) pure carbon.
Because its low index of friction makes each Castell stroke outstandingly smooth, a pleasure to work with.
Because our exclusive microlet-milling process reduces granules to optimum shape and size, producing an opaque adhesion that gives you cleaner, sharper blueprints.
A.W.FABER-CASTELL Newark, N. J

CASTELL LOCKTITE 9800 with TEL-A-GRADE indiector, for those who prefer a featherwoight holder.
Imperted CASTELL 9030 LEAD - with the Imporied casien "rlack Gold" graphite wath the CASTELL \#9000 world-famous.

We could talk about Castell's Color-Coding that makes for instant identification - its exceptional lead strength and durability, its finegrained cedar wood impregnated with rare waxes, its perfectly-graded scale of 20 degrees, 8 B to 10 H .
But the really significant answer is - almost 200 years of uninterrupted manufacturing ex-perience-since 1761. Perhaps the next 200 years will produce a markedly superior pencil, but if it does you can be sure it will continue to carry the A.W.Faber-Castell imprint.
You owe it to your career to use Castell. Call your Dealer.

Recent Raytheon achievements in Microwave

THE MICROWAVE CIRCULATOR. Typical of recent Raytheon developments in advanced microwave equipment and components is the microwave ferrite circulator recently developed by Raytheon's Special Microwave Device Group. HOW IT WORKS: in the diagram above, transmitted signals enter arm (1) vertically polarized. They are then rotated \(45^{\circ}\) from the vertical in a ferrite Faraday rotator with a longitudinal field applied by a small cylindrical permanent magnet. They flow out of the circulator at the antenna arm (2) which is set at the same \(45^{\circ}\) angle. Received signals fed into the antenna arm are rotated an additional \(45^{\circ}\) by the ferrite Faraday rotator and can only leave through the receiver arm (3).

\section*{To the man who is looking for FRONTIER PROJECTS IN ELECTRONICS:}

As an engineer or scientist who wants to accomplish more in 1958, you naturally want to be where new things are happening.
Whatever your specialized background and interests, chances are you'll find a current Raytheon project that offers exceptional opportunity for you to put your scientific skill and creative imagination to work.
Raytheon's constant expansion during 1958 covers advanced activities in:
COMMUNICATIONS (Commercial and Military) scatter, microwave relay, multiplex, mobile transistorized equipment.
COUNTERMEASURES-radar countermeasures equipment, advanced study projects.

RADAR (Pulse and CW Systems)-search, fire control, bombing, navigation and guidance, airtraffic control, weather and marine, military and commercial.
MARINE EQUIPMENT-submarine, ship and airborne sonar, depth sounders, direction finders, radars.
GUIDED MISSILES - prime contracts:
Navy Sparrow III (air-to-air)
Army Hawk (ground-to-air)
MICROWAVE TUBES - "Amplitrons," magnetrons, klystrons, traveling wave tubes, storage tubes, backward wave devices.
SEMICONDUCTORS-devices, materials and techniques; silicon and germanium.

For interview and prompt helpful counsel, please write to E. H. Herlin, Professional Personnel Section P.O. Box 237, Brighton Station, Boston 35, Mass.

Excellence in Electronics

RAYTHEON MANUFACTURING COMPANY

\section*{NEW PRODUCTS at wescon}

This panel wattmeter has accuracies of \(\pm 2\) per cent at room temperature and \(\pm 5\) per cent over a temperature range of -55 to +71 C . Available in a wide range of meter sizes. Ranges available extend from 25 w or vars to 1 kw or kilovar with common input frequencies.

Luscombe Engineering Co., Dept. ED, 1129 S. Fair Oaks Ave., Pasadena, Calif.

Wescon Booth 427
CIRCLE 156 ON READER-SERVICE CARD

\section*{Power Supply}

For multiplier phototubes

A multiplier phototube power sup, , model 30208 has an output of 800 to 200 uc at \(0-25\) ma. Output current enables the unit to operate at least 5 phototubes simultaneously, with adequate bleeder current.
Voltage is continuously adjustable. Unit provides a precise regulation of 0.015 per cent for both line and load, no load to full load.
Dressen-Barnes Corp., Dept. ED, 250 N. Vinedo Ave., Pasadena, Calif.
Wescon Booth 1435
CIRCLE 155 ON READER-SERVICE CARD

\section*{Voltage Regulator \\ Provides 12 kva output}

Model 605 automatic voltage regulator can ab. sorb high overload surges while delivering uns
distorted 0.25 per cent true rms voltage regulation. The unit is designed for 115 v operation, and is capable of stabilizing line voltage variations over a \(\pm 10\) or \(\pm 20\) per cent range. When operating within a \(\pm 10\) per cent correction range, it provides a 12 kva output.
Tel-Instrument Electronics Corp., Dept. ED, 728 Garden St., Carlstadt, N.J.

CIRCLE 157 ON READER-SERVICE CARD

Type 401-A oscilloscope has panel controls for X and Y amplifier, sweep calibration settings, or switching from automatic to driven sweeps. The sweep circuits, designed for positive sync lockout, permit diddle free waveform stability. Sweeps of 2.5 sec full scale are offered.
Allen B. Du Mont Labs, Inc., Dept. ED, 760 Bloomfield Ave., Clifton, N.J.
Wescon Booth 1433-34
CIRCLE 158 ON READER-SERVICE CARD

\section*{Booster Amplifier}

For receiver systems

This booster amplifier consists of two fully trimsistorized amplifiers contained in a relaytype housing measuring 1-1/2 in. diam by 2-1/2 in high.

The amplifier has an input impedance in excess of five megohms; and feedback gain of 60 db min .

Reeves Instrument Corp., Dept. ED, Roosewilt Field, Garden City, N.Y.
If:scon Booth 1301-02
CIRCLE 159 on reader-service card
ELECTRONIC DESIGN • August 6, 1958

Union Indicators help Hazeltine radar-display unit

See You At The Wescon Show August 19-22 BOOTH \#503-504 Pan Pacific Auditorium Los Angeles, California

\section*{identify aircraft}

Just a glance at the little black box on the right side of this radar-display unit tells the operator whether an approaching aircraft is friend or foe. The IFF response is processed by radar equipment and is displayed in the Hazeltine unit by Alpha-Numerical Indicators manufactured by Union Switch \& Signal. The radar-display unit is manufactured by Hazeltine Electronics Division of Hazeltine Corporation, Little Neck, New York. Hazeltine chose Union Switch \& Signal's AlphaNumerical Indicators because of their compact design and supreme reliability, and for the features listed below.

Two Types - Union Switch \& Signal makes two types of Data Display Indicators: Digital types, displaying 10, 12, or 16 characters on a wheel, and Alpha-Numerical types, displaying up to 64 characters on a Mylar belt. Character assignments can be furnished as required.
Translation-Both Digital and Alpha-Numerical Indicators operate directly on binary codes on a null-seeking basis, eliminating the need for external equipment for translation from binary to decimal code as required for other display devices.

Visual Read-Out-The design of the Indicator packages is such that when indicators are mounted in rows, the digital read-out is presented with excellent continuity and visibility.

Infinite Retentivity-Since the method of operation is of the null-seeking type, the Indicators require power only during the response time, and once positioned, retain the data both visually and electrically until such time as a new code is transmitted.
Electrical Read-Out-The design of the decoding and control portion of the Indicators inherently provides electrical readout of data in the same form as the input. The data can be read out of the Indicators on a continuous basis or as often as desired without erasing the stored information.
Call or send the coupon for complete information about indicators and other electronic equipment manufactured by Union Switch \& Signal.

\section*{COMPLETEFACTS}

Union Switch \& Signal, Advertising Dept.
Pittsburgh 18, Pennsylvania
Please send information on the following:
\(\square\) New 4PDT relay which meets every requirement of MIL-R-25018. \(\square\) Catalog of other minlature dc and ac relays.
D Digital and Alpha-Numerical Indicators for data display.

"Pioneers in Push-Button Science"
UNION SWITCH \& SIGNAL
division of westinghouse air brake compant pitisurah io, pennstivania

\section*{NEW PRODUCTS thescon}

Polarized DC VTVM
\(250 \mu v\) full scale sensitivity

The MV-27D polarized dc microoltmeter has \(250 \mu \mathrm{v}\) full scale senitivity. Its highest range is 0 to kv. On its three lowest ranges, \(50 \mu \mathrm{v}, 1 \mathrm{mv}\), and 2.5 mv , the unit ses mid-zero scales. All other anges are left-zero.
Millivac Instruments, Dept. ED O. Box 997, Schenectady, N.Y

CIRCLE 162 ON reader-service card

\section*{Capacitors}

High voltage
High voltage series of Varicap oltage-variable capacitors includes ypes with high \(Q\) factor and 20 to \(00 \mu \mu \mathrm{f}\) capacitance for modulaion and afc use; also types for tunag applications in values from 7 hrough \(56 \mu \mu\).
Pacific Semiconductors, Inc.,)ept. ED, 10451 W. Jefferson 3lvd., Culver City, Calif.
CIRCLE 163 ON READER-SERVICE CARD

\section*{AF Subcarrier Equipment}

Transistorized
This transistorized af subcarrier quipment (the KY-612 tone keyer nd TD-635 tone demodulator) ransmits binary data over commuications circuits. Designed around requencies starting at 1500 cps , paced every 3000 cps .
Rixon Electronics, Inc., Dept. :D, 2414 Reedie Dr., Silver Spring, 1 d.

CIRCLE 164 ON READER-SERVICE CARD

When the Honeywell Model 906 Visicorder was introduced as the first practical high-frequency direct-writing oscillograph in history, it met with instant success.

Now the new Honeywell Model 1012 Visicorder extends the range and usefulness of the exclusive Visicorder principle. It is a highly sensitive 36 channel instrument with frequencies from DC to 3000 cps . Its exclusive features are many ... it is the most convenient, foolproof, reliable, broad-
capacity oscillograph on the market today.
And the 906 Visicorder is now available in two new models: the 906A-1 with 14 channels, and the 906A- 2 with 8 channels. An accurate timeline system and a simultaneous grid-line recording system are optional in both 906A Models. Both oscillographs are producing superior, clear, reproducible, accurate, high sensitivity, high frequency direct recordings in many varied applications every day.

\section*{record of leadership}

\section*{NEW PRODUCTS at WEsCON}

\section*{Potentiometers}
0.3 per cent linearity

Series 570 potentiometers are 1 -in. diam 1 turn instruments with \(\pm 0.3\) per cent lineari and up to 265,000 ohm ratings.
As many as 45 extra terminals can be adde in addition to the 3 standard terminals. Al being shown is series 230 , with both linear as non-linear functions in a compact single-tu size.

Carrier Corp., Spectrol Electronics Div., Der ED, 1704 S. Del Mar Ave., San Gabriel, Cal Wescon Booth 1724-25
cIRCLE 166 ON READER-SERVICE CARD

Direct monitoring and control of electrics power is provided by this locking contact wat meter. With the locking feature, high and/c low limits of wattage may be preset, with cor trol action being initiated when a limit \(\mathbf{i}\) reached. The instrument was designed by add ing a core magnet movement, as used in VH meter-relays, to the movement of a standar dynamometer type wattmeter.

Assembly Products, Inc., Dept. ED, 75 Wilsos Mills Rd., Chesterland, Ohio Wescon Booth 438-39

CIRCLE 167 ON READER-SERVICE CARD

CAN PUT HI-TEMPERATURE STRUCTURES INTO YOUR PRODUCTION

When Temco engineered and developed the aft-fuselage and vertical stabilizer section of Convair's B-58 Hustler . . . the wing section and fuselage panels of Temco's own TT-1 jet trainer . the wings of the air-launched "Teal" missile . . the aircraft industry acknowledged Temco as a leader in development and production of honeycomb sandwich and hi-temperature structures. Missile applications currently programmed are substantial recognition of Temco's stature.

At Temco metal and plastic sandwich structures have been employed in all types of airframe applications, with notable development in the field of stronger, higher heat-resistant metal bondings . . . in improved plastic materials and methods of reinforced plastic honeycomb fabrications.

Other outstanding advances now under development at Temco are a new low-cost process for brazing stainless steel honeycomb structures, employing a revolutionary new concept.. and experimental progress in the new field of "cermets."

Since pioneering the "total package" concept of subcontracting . . . design, tooling and production. . . Temco's engineering staff and facilities have increased significantly, a growth as rapid and as sound as that of the industry they serve. Today these design support capabilities have been extended to encompass complete systems management. Whether your need is for a component, a subassembly, or a subsystem, an inspection of Temeo capabilities will prove profitable.
CIRCLE 168 ON READER-SERVICE CARD

\section*{NEW PRODUCTS at wEscon}

A full yoke type armature hinge with over size bearing surfaces provides long life in 2 class 66 telephone relays.

Available with standard contact combinations to 10 pdt , and with bifurcated contacts for reliable switching of low voltage.

Magnecraft Electric Co., Dept. ED, .3352 W. Grand Ave., Chicago 51, Ill.
Wescon Booth 2222
CIRCLE 169 ON reader-service card
Components
Miniaturized line

A line of miniature components include i-f transformers, dials, knobs, dial locks, shaft locks, flexible couplings (in 7 types), ceramic terminal strips, binding posts, gear drives, insulated potentiometer mountings, and other components.

James Millen Mfg. Co. Inc., Dept. ED, 150 Exchange St., Malden, Mass.
Wescon Booth 1324
circle 170 on reader-service caro

\section*{Temperature Systems}

\section*{Transistorized}

Transistorized temperature measurement subsystems for use with fast-response, 100 -ohm-resistance temperature transducers to produce a full 5 v output for a span of 75 F . TME-1SD is single-channel; TME-2SD, a dual-channel unit.

Arnoux Corp., Dept. ED, Box 34628, Los Angeles, Calif.

CIRCLE 171 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{FLIGHT DATA and CONTROL ENGINEERS}

Cross new frontiers in system electronics at The Garrett Corpo. ration.
High-level assignments in the design and development of system elec. tronics are available for engineers in the following specialties:
I. ELECTRONIC AND FLIGHT DATA SYSTEMS AND CONTROLS A wide choice of opportunities exists for creative R \& D engineers having specialized experience with control devices such as: transducers, flight data computers, Mach sensors, servo-mechanisms, circuit and analog computer designs utilizing transistors, magamps and vacuum tubes.
2. SERVO-MECHANISMSAND ELECTRO-MAGNETICS Requires engineers with experience or academic training in the advanced design, development and application of magamp inductors and transformers.
3. FLIGHT INSTRUMENTS AND TRANSDUCERS
1) DESIGN ANALYSIS Requires engineers capable of performance analysis throughout preliminary design with ability to prepare and coordinate related proposals.
2) DEVELOPMENT Requires engineers skilled with the analysis and synthesis of dynamic systems including design of miniature mechanisms in which low friction freedom from vibration effects and compensation of thermo expansion are important.
C. PROPOSAL AND QUALTEST ENGINEER For specification review, proposal and qualtest analysis and report writing assignments. Three years electronic, electrical or mechanical experience required.

Forward resume to Mr. G. D. Bradley TMM GARRETT

9851 S. Sepulveda Blyd.
Los Angeles 45, Caxif.
DIVISIONS:
Airesearch Manufacturing-Los Angeles Airesearch Manufacturing-Phoen AlResearch Industrial Rex - Aero E Air Cruisers
Airsupply AlResearch Aviation Service

\footnotetext{
CIRCLE 557 ON READER-SERVICE CARD
}

\section*{Reduce welght and cost \(25 \%\) below conventional deslon}

A reduction in actuator cost and weight up to 25 per cent, with similar mainte nance savings, has been achieved through the advance design of AiResearch electro mechanical Limit Switchless Actuators for aircraft and missiles.
Elimination of limit switches in powe actuators is a result of AiResearch deve opment of superior high temperature motors and resilient non-jamming positive stops.
Limit switches are eliminated by two methods: 1) use of continuous stall high temperature motors, 2) use
of high temperature motors with thermal protectors which permit maximum on time in the duty cycle.

Additional advantages of AiResearch Limit Switchless Actuators: they are smaller, less complex and the possibility of limit switch failure is eliminated.

Development of Limit Switchless Actuators reflects AiResearch experience in producing more than a million rotary and linear units. Current production includes several hundred actuator types, many with high temperature applications.

Your inquiries are invited.

A Seat Actuator, CONVAIR B-58 - Seat Actuator, LOCKHEED F. 104 C Rotor Blade Trim Actuator
D Elevator Actuctor, TEMCO XKDT-1 Targes
- 2-Motor Trim Actuator, REPUBLIC F. 105

F General Purpose Linear Actuator
- Dual Purpose Feel Trim Actuator. AVRO CF. 105
H Rudder Trim, AVRO CF. 105 - Duct Shutter Actuator. LOCKHEED
enginering representatives: alrsupary and aero engineering. offices im major cities
CORPORATHON
AiResearch Manufacturing Divisions

\section*{Los Angeles 45, California • Phoenix, Arizona}

Systems, Packages and Components for: Aircraft, missile, electronic, nuclear and industrial applications CIRCLE 160 ON READER-SERVICE CARD

NEW PRODUCTS at wescon

A line of up-graded environmentally resistant connectors will be displayed. Named Real E, the connectors are designed to operate continuously at 400 F with limited operation at 500 F while maintaining moisture-resistant performance. Although smaller and lighter than AN/MS types, the connectors utilize AN/MS insert configurations and mate with other E types.
Amphenol Electronics Corp., Dept. ED, Chicago 50, Ill .
Wescon Booth 1150-51
CIRCLE 172 ON READER-SERVICE CARD

Model MTRO60-5 is a transistor-magnetic amplifier regulated 0 to 60 v at 5 amp dc power supply. Line regulation is 5 mv static regulation, less than 10 mv dynamic regulation. Load regulation is less than 25 mv static regulation for changes from no load to full load, and dynamic load regulation is approximately 250 mv for no load to full load changes.
Perkin Engineering Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.
Wescon Booth 1161-62
CIRCLE 173 ON READER-SERVICE CARD

\section*{Ferrite Circulator}

Covers 8.5 to 9.6 kmc frequency band
Model X442A 4-terminal ferrite circulator covers the 8.5 to 9.6 kmc frequency band. Isola-

\section*{New Mixer Diodes can extend Radar Range by \(18 \%\)}

Premium IN78B, IN26A and IN53B improve new and existing radar with unmatched ease and economy

Three new microwave diodes covering applications from \(13,000 \mathrm{mc}\) to 35,000 mc are now available from Sylvania. The new mixers, types \(1 \mathrm{~N} 78 \mathrm{~B}, 1 \mathrm{~N} 26 \mathrm{~A}\) and 1N53B, have improved overall noise figures, more uniform RF impedance, and two of the types have greater resistance to burnout. They can extend radar coverage by as much as 18 percent*, provide more uniform performance from system to system, and increase operational reliability. An equivalent upgrading of

How radar range increases with Sylvania's new premium crystal diodes
equipment by any other means would demand a twofold increase in power.
The new crystals are exact retrofits of preceding types and are comparable in
price. Each type is available in matched pairs to Sylvania's specification, which has recently been accepted as the industry standard by JETEC 14.7.

Type IN788-Used in applications from \(13,000 \mathrm{mc}\) to \(16,500 \mathrm{mc}\), the diode has an overall noise figure of 8.8 db , an improvement of 3 db over the 1 N 78 and 1 db over the \(1 N 78 \mathrm{~A}\). It is being used extensively in doppler navigation equipment and in firecontrol radar.

Type IN26A - Designed for use as a mixe in superheterodyne radar receivers in the \(24,000 \mathrm{mc}\) region, the type is primarily used in airport traffic control equipment and in air-to-air missiles. Its 11.3 overall noise figure is a 1.8 db improvement over the 1 N 26 Its burnout resistance rating has been increased threefold to 0.3 erg.

VSWR measurement of a random selection of 1N78B's indicates the positive control over RF impedance of new Sylvania crystal mixers. The circle shows a VSWR of 1.6

New Edition-Complete up-to-date technical information on Sylvania's full line of Microwave Crystal Diodes is contained in a new revised edition of the 8-page booklet "Ratings and Characteristics of Microwave Crystal Diodes." Write Sylvania direct or call your Sylvania representative for a free copy of the new booklet.

Type IN53B - This miniature coaxial type point contact silicon diode is designed for use as a mixer in the \(35,000 \mathrm{mc}\) region. Its major application is in Terrain Avoidance and Mapping Radar The burnout resistance lating of the 1 N53B is double that of the N553 ond its NS3B is double that of the NS3 and reduced from 13.14 to 10.3. It is tested for band width of 12 percent to assure good performance in any application in its fre quency range. The new diode can also be used as a harmonic generator for very shor wave-lengths.

Electrical Characteristics \& Ratings-

Conversion Loss (db) max. Output Noise Ratio max. IF Impedance (Ohms) RF Impedance (VSWR) max. Burnout (erg) Frequency (kmc)
 IN78B 6.5 1.3 365-565 1.6 0.3
 IN26
7.5
2.0
\(300-60\) IN26A \(300-600\)
1.6
1.6
0.3

24

IN53:
2.0
\(400-800\)
1.6
32.8-37.0
0.3

\title{
SYLVANİA
}

Sylvania Electric Products Inc.
1740 Broadway, New York 19, N.Y.
In Canada: Sylvania Electric (Canada) Lıd. Shell Tower Bldg., Montreal

LIGHTING • TELEVISION • RADIO • ELECTRONICS • PHOTOGRAPHY • ATOMIC ENERGY • CHEMISTRY-METALLURGY CIRCLE 178 ON READER-SERVICE CARD

\section*{NEW PRODUCTS \\ at WESCON}

These polyester film dielectric capacitors are fixed and enclosed in non-metallic cases for use in blocking, filter and by-pass applications where low failure rates and long life are important Lectrofilm-B capacitors are compactly wound with high purity aluminum foil and closely controlled capacitor-grade Mylar film.

General Electric Co., Dept. ED, 1 River Rd. Schenectady 5, N.Y.
Wescon Booth 529-30
CIRCLE 179 ON READER-SERVICE CARD

\section*{Chassis Latch}

For heavy equipment
\[
0.1
\]

Aluminum alloy electronic chassis latch and adjustable fork, identified as 27 L . Designed for heavy duty purposes, the latch is larger and lighter in weight than earlier designs and per. mits easier handling of heavy equipment.

Camloc Fastener Corporation, Dept. ED, 2 Spring Valley Road, Paramus, N.J.
Wescon Booth 101-02
CIRCLE 180 ON READER-SERVICE CARD

\section*{Audio Oscillator}

Covers 18 cps to 1.1 mc range
The 510B-P audio oscillator is assembled on an oversize panel which serves as both mounting

ELECTRONIC DESIGN • August 6, 1958
plate and escutcheon. Total panel area is \(7 \times 4-3 / 4\) 1. Unit covers 18 cps to 1.1 mc range, delivers (1) v output. Frequency accuracy is 2 per cent; asponse is \(\pm 0.5 \mathrm{db}\).
Waveforms, Inc., Dcpt. ED, 331 Sixth Ave., Vew York 14, N.Y.

CIRCLE 181 ON READER-SERVICE CARD
Relays
Current and voltage sensitive types

Series R700 and R780 are, respectively, current and voltage sensitive relays with high resistance to shock, 2 amp resistive contact ratings, and with a temperature range from -65 to +125 C . Relays are available in four different terminal header styles; straight pin for printed circuit applications, two sizes of solder loops and 3 leads. Switching is either spdt or dpdt.
Iron Fireman Manufacturing Co., Electronics Div., Dept. ED, 2838 S.E. Ninth Ave., Portland 2. Ore.

Wescon Booth 1261-62
CIRCLE 182 ON READER-SERVICE CARD

A wire marker will be demonstrated in conjunction with the high speed model CS-6 machine which measures, cuts and strips wire, cord and cable at speeds up to 3000 pieces per hour. The wire marker has been designed to mark the wire continuously at set intervals. Marking is done by means of the hot stamping method whi h meets military specifications.
Aitos Eng. Co., Dept ED, 2757 S. 28th St., Mil aukee 46, Wisc.
Wescon Booth 324
CIRCLE 184 ON READER-SERVICE CARD

\section*{ELECTRONIC COOLING}

Requirement: Stay within customer's envelope. Dissipate 569 watts thru \(13 \times 10 \mathrm{in}\). cold plate and not exceed a plate temperature of \(173^{\circ} \mathrm{F}\) with cold plate air-in temperature plate surface between power units.

Answer: UAP cold plate configuration designed to provide adequate heat transfer from localized high, medium and low heat concentration areas with air-in temperature at \(150^{\circ} \mathrm{F}\). All requirements met with room to spare.
The hypothetical conditions as stated above are typical of the problems that have come to us since the advent of electronically controlled supersonic missions.

UAP eminence in the heat exchanger field has been firmly established over the years by delivery of systems and components of proved optimum performance and reliability. Our experience covers the engineering and production of devices for application as cold plates, gas-air heat exchangers, air-liquid heat exchangers, and associated controls; mechanical refrigeration systems and expendable refrigeration systems. These can function in the anticipated environmental conditions and utilize one or more of the following heat sinks; ambient air, expanded bleed air, expanded ram air, ram air, expendable refrigerant, or available liquid.

Make your requirements our responsibility. Call.
California.......................... 1101 Chestnut St., Burbank, Colif., VI 9.4236 NEW YORK............................. 50 E. 42nd St., Now York 17, N.Y., MU 7-1283
 ANADA.....................United Aircrait Producis, Montroal, Conoda, Elwood 1131

a famous family of aireraft essentials since 1829
UNITED AIRCRAFT PRODUCTS, INC.
1116 BOLANDER AVENUE, DAYTON, OHIO
CIRCLE 185 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Automatic Gain Control}

Plug-in

Mounted on a \(3-1 / 2 \times 6 \mathrm{in}\). plug in printed circuit chassis, the model DLA-30 automatic gain control unit maintains constant servo loop gain for reference voltage variations from 2 to 100 v . It functions as a variable plate load when used with the DLA-10 servo preamplifier.

Electro Precision Corp., Dept. ED, Arkdelphia, Ark.

CIRCLE 186 ON READER-SERVICE CARD

\section*{Plotter}

Traces transistor characteristics

The model 341 power transistor characteristic plotter is for use with both point-contact and junction transistors. It furnishes collector currents up to 6 amp in continuous service and produces the \(r_{22}, r_{12}\), and \(h_{12}\) families of curves on the face of an auxiliary oscilloscope.

Dunn Engineering Associates, Inc., Dept. ED, 225 O'Brien Highway, Cambridge 41, Mass.

CIRCLE 187 ON READER-SERVICE CARD

\section*{Pilot Light}

Has built-in resistor
Using the high-brightness neon glow lamp NE-51H, these pilot lights require power of less than

\section*{Advanced missile and space projects}

\section*{require Engineers}

\author{
and Scientists to work on
}

\section*{THE FRONTIERS OF SPACE}

Lockheed Missile Systems Division, recently honored at the first National Missile Industry Conference as "the organization that contributed most in the past year to the development of the art of missiles and astronautics," holds such important, long-term projects as the Navy Polaris IRBM, Earth Satellite, Kingfisher (Q-5) target missile for the Army and the X-7 ramjet test vehicle for the Air Force.

To carry out such complex projects, the frontiers of technology in all areas must be expanded. High-level engineers and scientists are• needed now for responsible positions in our Research and Development laboratories and in our project organizations.

If you are experienced in physics; mathematics; chemistry or one of the engineering sciences, your inquiry is invited. Please write Research and Development Staff, Sunnyvale 29. California. (For the convenience of those living in the East and Midwest, offices are maintained at Suite 745, 405 Lexington Ave., New York 17. and at Suite 300. 840 N. Michigan Avenue, Chicago 11.)

\section*{Lockheed/MISSILE SYSTEMS IDIVISION}

\footnotetext{
sunnrvale - palo alto - van nuys - santa cruz - cooke air force base, calif. - cape canaveral, florida - alamogordo. new mexico
}

\section*{TECHNOLOGY}

\section*{FLIGHT IN THREE MEDIUMS}

Several things set the Polaris apart from other outer space weapons in the ballistic missile category, for the Polaris program involves a wholly new concept of weaponry.
1. It will be dispatched from beneath the surface of the sea.
2. It will be radically smaller than currently developed land-launched missiles, yet its payload will be as effective and its range the same as other IRBMs.
3. It will be the first operational outer space missile to employ solid fuel as a propellant.
4. It will travel through three mediums in a single flight - water, air and outer space.
5. Its launching base-a submarine-is not fixed but a mobile vehicle.

\section*{OUTER SPACE PROGRAM}

Very little can be said about the Earth Satellite program at this time except that its success will necessitate advancing the state of the art in all sciences.

The Earth Satellite Project is perhaps the most sophisticated outer space program to reach the "hardware" stage in the U.S. today.

\section*{ENEMY SIMULATOR}

The Lockheed Kingfisher Q-5 is the nation's fastest target missile, developed for the Air Force to test the accuracy of our newest supersonic weapons.
It is a ramjet target vehicle with Mach 2-plus capabilities. The Q-5 not only has speed to match the defensive missiles, but can also simulate a vast array of supersonic enemy missiles and airplanes attacking from great height. It is instrumented to score near misses and even theoretical hits without itself being destroyed.

It is recoverable from flight by parachute to be flown again, permitting weapon system evaluation to be conducted at greatly reduced cost.

1 w on 205 v circuit. They may also be used on dc circuits over 160 v . The required resistor is built in.

Dialight Corp., Dept. ED, 60 Stewart Ave., Brooklyn 37, N.Y.

CIRCLE 190 ON READER-SERVICE CARD

Two lighted pushbutton switches are available with 2,3 , or 4 spdt contact structures and 5 amp 125 or \(250 \mathrm{v} \mathrm{ac} \mathrm{ratings} .\mathrm{The} \mathrm{53PB8-T2} \mathrm{is}\) a magnetically-held switch which employs a small de holding coil. The \(54 \mathrm{~PB} 67-\mathrm{T} 2\) is a two position alternate-action switch.

Micro Switch, Div. of Minne-apolis-Honeywell Regulator Co., Dept. ED, Freeport, Ill.
circie 188 on reader-service card

Tunable Noise Generator
500 kc to 55 mc tunable frequency range

For measurements of the effects of high level noise, this tunable noise generator offers a tunable frequency range of 500 kc to 55 mc . Also useful in noise figure measurement, the unit features attenuation up to 80 db .

General Electronic Labs., Inc., Dept. ED, 195 Massachusetts Ave., Cambridge, Mass.

CIRCLE 189 ON READER-SERVICE CARD

\section*{Another Application for FERRAMICs \({ }^{\circ}\)}

\section*{Ferramic \({ }^{\text {Cores }}\) Colp IBM Sage Computer Perform Amazing Feats of Memory}

General Ceramics Magnetic Memory Cores play an important role in the reliable functioning of the Sage Computer. G-C engineers developed rectangular hysteresis loop ferrites and worked closely with Lincoln Laboratories at MIT and IBM to perfect toroids with the required magnetic properties for this vital defense system.

These dependable components provide increased speed and accuracy for computers and automatic controls. General Ceramics cores and completely assembled memory planes are available for automation systems. For complete information write today to General Ceramics Corporation, Keasbey, New Jersey-Dept. ED.

\section*{GENERAL GERAMICS}

Industrial Ceramics for Industrial Pregress... Siace 1906

\section*{NEW PRODUCTS at wescon}

\section*{Potentiometer}

Features low noise

Model HD-11 1-turn potentiometer features striped back coils, tapwelded terminals and Paliney No. 7 contacts throughout. During assembly the entire unit is ultra-sonically cleaned. Design has been pointed towards low noise. Standard linearity is \(\pm 0.5\) per cent and the unit will dissipate 1 w at 40 C .

Hub-Pot, Inc., Dept. ED, 1242 E. Transit St., Pomona, Calif.
Wescon Booth 1513
CIRCLE 192 ON READER-SERVICE CARD

\section*{Angular Position Transducer}

Sensitivity of 0.5 min arc

Model 2200 is comprised of a rotary differential transformer and integral demodulator circuit. This instrument provides infinite resolution throughout its entire range and has a sensitivity of 0.5 min of rotation at null. The differential transformer is internally connected to the demodulator to provide a dc output which is isolated from both input and ground.

Bourns Labs, Inc., Dept. ED, P.O. Box 2112, Riverside, Calif
Wescon Booth 1104
CIRCLE 193 ON READER-SERVICE CARD

\section*{Magnetic Amplifier}
7.5 v dc bi-directional output

In 0 series magnetic amplifiers, input is bi-di-
ELECTRONIC DESIGN • August 6, 1958
(ional, dc, for both control windings. Output hi-directional 7.5 v dc. Gain for each control widing is 2.5 v for a \(100 \mu \mathrm{a}\) input. Gain stabi ty is \(\pm \mathbf{1 0}\) per cent.

Torotel, Inc., Dept. ED, 5512 E. 110th St., Killsas City 34, Mo.

CIRCLE 194 ON READER-SERVICE CARD

Model CKeLl ferrite circulator is made of aluminum, weighs 6.2 oz and measures \(2-3 / 16\) in. long. Typical performance characteristics over a freq range of 13 to 14 kmc and a temp range of 55 to 130 C are: min transmit-receive isolation, 20 db ; max insertion loss, 0.5 db ; max vsiwr in any port, 1.2. Model CKeL1 is designed for 5 w average power; a medium power unit is also available.
Raytheon Mfg. Co., Special Microwave Device Group, Dept. ED, Seyon St., Waltham 54, Mass. Wescon Booth 610-11

CIRCLE 195 ON READER-SERVICE CARD

\section*{Gearhead Motor}

Withstands 7500 g of shock

Miniaturized gear head motor, model P5B827P75, for missile application. The motor is designed to withstand 7500 g of shock. It operates on 25.5 to 31.5 v dc, developing 1000 oz in. of orque at -65 C . The gear box is a six-stage, planctary design with a reduction ratio of 13 , \(340: 1\), giving the output shaft a rotation speed of 1.3 rpm . The motor meets all M1L-E-5272 pecilication.
Wistern Gear Corp., Electro Prod. Div., Dept. ED, 1ox 182, Lynwood, Calif.
Vese in Booth 1722-23
CIRCLE 196 ON READER-SERVICE CARD
ELECIRONIC DESIGN • August 6, 1958

"MYLAR" offers a unique combination of properties valuable for electrical design

high tensile strength. "Mylar" is the strongest plastic film. Instron tester
shows an average strength of 20,000 Ibs. psi.

HIGH DIELECTRIC STRENGTH. Average of 4,000 volts per mil.... average
power factor of 0.003 at 60 cycles.

\section*{Is there a thinner pressure-sensitive tape that's better-performing. . . and at a lower cost?}

Yes, there is such a tape, and it's made with Du Pont "Mylar"* polyester film. For most applications, tough, durable pressure-sensitive tape of "Mylar" actually cost less, per linear foot or yard, than tapes made of other materials. That's because "Mylar"' permits tape manufacturers to use thinner gauges without any loss in performance.

And what about performance? Here are some of the outstanding properties of "Mylar" found in pressure-sensitivetape: THIN, YET STRONG
\(\therefore\) average tensile strength of 20,000 psi. DURABLE
under both high and low temperature use.

better things for better living through chemistry

\section*{DU PONT \\ MYLAR \\ POLYESTER FILM}

\section*{FLEXIBLE}
gives snug wrap over irregular surfaces. HIGH DIELECTRIC STRENGTH
. average 4.000 volts per mil. DIMENSIONALLY STABLE
. can be used in areas of high humidity. MOISTURE-RESISTANT
. . resists mildew, most chemicals.
RESISTS EDGE FRAYING
. has great tear and impact strength. RESISTS HEAT AND COLD can be used in class B insulation systems NO PLASTICIZER
can't dry out or embrittle with age.
You name the job . . . electrical insulating, color coding, masking for electro-
plating, harness-wrapping coils . . . and you're sure to find pressure-sensitive tape of "Mylar" can improve perform ance while lowering costs. What's more, this thinner tape can help decrease weight and size of finished products without any loss in performance!
Pressure-sensitive tape of "Mylar" can now be obtained in a wide variety of gauges, widths, colors, and with different adhesives. Ask your supplier to help you adhesives. Ask your supplier to help you evaluate all the factors involved in cost "and performance of tape made with "Mylar". Or, send today for a list of properties and applications.
"mYLAR" is Du Pont's registered trademark for its brand of polyester film.
E. I. du Pont de Nemours \& Co. (Inc.)

Film Dopl., Room ED-8, Nomours Building, Wilmington 98, Delaware.
\(\square\) Please send me information
on the advantages and uses of pressure-sensitive tape made with "Mylar" (MB-6).
\(\square\) Please send me information on properties, applications and types of "Mylar" available types of
(MB-11).

Application
Name
Firm
Address
City \(\qquad\) Stato

CIRCLE 197 ON READER-SERVICE CARD

NEW PRODUCTS
at WESCON
VU Meter
Immune to stray fields

Model 1332 VU meter uses Cormag mechanisms and can be mounted on magnetic or nonmagnetic panels without need for special adjustment. The units are immune to the effect of stray fields, and are not affected by close proximity mounting. The accuracy of these instruments is \(\pm 3\) per cent of full scale.

Daystrom, Inc., Weston Instruments Div., Dept. ED, Newark, N.J.
Wescon Booth 706-07
CIRCLE 199 ON READER-SERVICE CARD

\section*{Telemetering} Antenna
Helical drive

Type G-1007 antenna is a beam mode helical type for use in telemetering. Radiating element is attached to aluminum shaft with fibreglas insulator. Frequency range is 215 to 235 mc . Impedance is 50 ohm. Vswr is under 1.5 to 1 . Gain is 10.5 db over isotropic source. Beamwidth is 58 deg.
Technical Appliance Corp., Special Products Div., Dept. ED, 1 Taco St., Sherburne, N.Y. CIRCLE 200 ON READER-SERVICE CARD

\section*{Beacons}

For missile and drone recovery
For missile and drone recovery, these beacons are used in the recovery of missile nose cones
shick beacons in various sizes and shapes, embacing both cw and pulsed techniques. Can be furnished with internal batteries or an internally minuted transistorized power supply.

Simmonds Aerocessories, Inc., Dept. ED, 105 White Plains Rd., Tarrytown, N.Y.
circle 201 on reader-service card

Frequency Multiplier
Features ease of tuning.

By flipping a switch on model 504C exciter unit of this multi-band frequency multiplier, the operator can transmit on the \(80,40,20,15,11\) or 10 meter bsnds. Operation requires 6 to 10 v driving power from an external crystal oscillator or vfo between frequency range of 3350 to 4000 kc , and a power supply providing filament and dc plate power. The output of model 504 C is a nominal 25 w.
Barker \& Williamson, Inc., Dept. ED, Canal St. \& Beaver Dam Rd., Bristol, Pa. CIRCLE 202 ON READER-SERVICE CARD

With model 2503, RDB channels and pushbutton selected and the visually displayed count is normalized to read deviation from midband directlv in per cent of the midband period. The unit has five decimal places and uses an internal crystal-controlled, \(100-\mathrm{kc}\) time base or external time base. It also measures frequency and ratio eith directly or normalized.
G F. Climo, Dynac, Inc., Dept. ED, 395 Page Mill !d., Palo Alto, Calif.

CIRCLE 203 ON READER-SERVICE CARD
ELECTiRONIC DESIGN • August 6, 1958
RES VIBRATION
RESISTANCE MOISTURE-
PROOF applications
for GENERAL
QUICK DISCY and
in more rugged
applications

MS, MS-A, MS-B. MS-C . . Conforming to Sperification MILC. 5015 C . 15 insert diameters and 260 contact layouts. 6 shell styles, MS310) to MS3108 with all arcessories. Also (MS। F.

MS-E SERIES ...environment resisting. Meets Sperification MIL.C.5015C. Resilient inserts. Integral cable clamp. New grounding lugs. Interfacial sealing, improved grommet and new grommet follower.

K, RK SERIES... Special acme thread. The All-Purpose Series. Conduit and cable clamp entry types. 1 to 82 contacts in 213 different contact layouts. 10-. 15-, 30-, 40-, 60. 80-. 115-, and 200 -amp. silver-plated contacts. High quality phenolic, melamine, and formica insulators. Cadmium-plated aluminum alloy shells.

DP, DPB, DPD, DPD2, DPD2R, DPJ, AND DPS SERIES ... Rack/panel/ chassis. With and without shells; coaxial and high voltage contacts. Permit quick disconnect, interchange, replacement, testing and inspection of assemblies and sub-assemblies.

P, XLR, XL, XK, O, UA, BRS SERIES... many shell styles and insert layouts. Straight and angle \(90^{\circ}\) plugs. Latch-lock types. Wall-mounting, panel, lock nut mounting, and adapter receptacles, single- and two-gang. 10 - to \(30-\mathrm{amp}\). contacts, coaxials. UA Series features 3 gold-plated contacts.

D, MC. DPA, DPX, AND K MINIATURES...miniatures and sub-miniatures designed for amplifiers, miniature indicators, computer circuits, telemetering equipment, small pre-amps, and general instrumentation where space is limited and cur rent requirements are generally not over 5 amperes. Variety of shell styles junction shell, and insert arrangements. 3 to 50 contacts, plus coaxials.

GS (MS TYPE), KH, RKH, DAH, BFH, TBFH, DBH, KH30... with steel shells and contacts to withstand high pressures from within or without. Insulation is a glass material, fused under high temperature to shell and contacts, thus forming a hermetic seal.

MS-K, MS-"FW." AND CANNON K-"FW" STEEL SHELL CONNECTORS.. Open flame protection offered in the greatest variety of this type of connector. Wall- or box-mounting receptacles. Straight or angle \(90^{\circ}\) plugs. Crimp-type contarts. Inserts of glass-filled materials.

Cannon Electric Company, 3208 Humboldt St., Los Angeles 31, California. Factories in Los Angeles, Salem, Mass., Toronto, Can., London, Eng., Melbourne, Austl. Manufacturing licensees Paris, Tokyo. Representatives and distributors in all principal cities.
please refer to Dept. 143

Since 1915
CIRCLE 204 ON READER-SERVICE CARD

\section*{ANNOUNCING...}
the newest addition to the Delco family of PNP germanium transistors! It's ideally suited for highspeed switching circuits and should find wide use in regulated power supplies, square wave oscillators, servo amplifiers, and core-driver circuits of high-speed computers. It's the 2N553!

\section*{NEW HIGH-FREQUENCY POWER TRANSISTOR BY DELCO}

No other transistor offers so desirable a combination of characteristics for applications requiring reliability and consistency of parameters.

\section*{NEW PRODUCTS}

\author{
Gear Train
}

Permits quick breadboarding

The mounting centers of this hanger assembly are spaced for use with most existing breadboard plates. It permits the assembly of a complete gear train as an integral unit, which means large reductions can be independently set up prior to mounting on the breadboard plate.

Sterling Precision Corp., Instrument Div., 17 Matinecock Ave., Port Washington, N.Y.

CIRCLE 206 ON READER-SERVICE CARD

\section*{Explosive Actuator}

Dimple-motor type

Screw-in type dimple motor Model 1072 comes in a wide range of 100 per cent fire and no-fire actuating currents. The end of the unit is closed with a copper diaphragm which extends \(1 / 16\) in. upon actuation.

Holex, incorporated, Dept. ED, Hollister. Calif.

CIRCLE 207 ON READER-SERVICE CARD

\section*{Lever Actuated Switch}

Waterproof

This waterproof switch has been designed for
ELECTRONIC DESIGN • August 6, 1958
short cycle operations. It can be made with either m.rmally open or normally closed contacts. Electrical rating is 15 amp resistive at 115 v ac.
Control Products, Inc., Dept. ED, 306 Sussex St., Harrison, N.J.

CIRCLE 208 ON READER-SERVICE CARD

\section*{Recording Head}

Has precision lopped heads

Model 303 (3 channel) twin record and playback magnetic head system has precision lapped heads with a 0.002 in . gap for the recording half and a 0.0005 in . gap for the playback half. Mu metal construction utilizing 0.0006 in. lamination provides a balanced magnetic performance for each channel with noise levels from 50 to 60 db . Each of the heads has an impedance characteristic of between 12 to 14 mh at 1 kc .

Lipps Engineering, Dept. ED, 1511 Colorado Ave., Santa Monica, Calif.

CIRCLE 209 ON READER-SERVICE CARD

\section*{Jack}

Temperature range from - 100 to 500 F

This test jack utilizing Tefon insulation is designed for use at temperatures ranging from - 100 to 500 F . It is available with either spade or lurret type solder terminals. The jack features beryllium copper spring-pin contact which is inverted to provide extra smooth insertion and firm seating of a standard 0.080 test prod.
fiaytheon Manufacturing Co., Commercial Elpuipment Div., Dept. ED, 100 River St., Walth...m, Mass.

CIRCLE 210 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

FOTOCERAM circuit board blanks are made photographically. All holes and shapes are produced by simple exposure to light, heal, and an etching operation.

\section*{This is a FOTOCERAM printed circuit}
.... an unusual new type of printed circuit board

Reliable through-plate holes - The good adhesion of the circuit runs applies also to the through-plate holes because both are produced with one plating operation.
Excellent resolderability - We have removed and resoldered components over twenty times on a Fotoceram board without damage to circuit runs or through-plate holes. And this is without using adhesives to bond the copper to the board.
Dimensional stability - Rigid structure of Fotoceram prevents unusual design
considerations-eliminates problem of warp and twist.
Good adhesion - It takes 12-25 pounds to peel a one-inch copper strip from a Fotoceram board.
Exceptional pull strength • 1400 pounds per square inch.
No water absorption - Fotoceram's nonporous-zero water absorption.

\section*{Non-flammable}

No blisters - Fotoceram never blisters. We put it through repeated 15 -second
cycles of copper metallizing at \(500^{\circ} \mathrm{F}\). and could not find a single blister or sign of peeling or failure.
Other properties:
Dissipation factor
1 mc @ \(20^{\circ} \mathrm{C}\). 0.006 @ \(200^{\circ} \mathrm{C} . \quad 0.014\)
Dielectric constant
1 mc @ \(20^{\circ} \mathrm{C}\). 5.6
(e) \(200^{\circ} \mathrm{C} . \quad 6.3\)

Loss factor \(1 \mathrm{mc} @ 20^{\circ} \mathrm{C}\). 0.034
@ \(200^{\circ} \mathrm{C}\). 0.088
For more information, write for our
Data Sheet on Fotoceram.

Coreing means reveache ic Glav

\section*{4r CORNING GLASS WORKS, Bradford, Pa. \\ Electronic Components Sales Department}

CIRCLE 211 ON READER-SERVICE CARD

This hand-poured casting was not ovacuatod to remove bubbles.

\section*{See for yourself the clarity of new Dow Epoxy!}

This unretouched photo demonstrates how casy it is to see through several inches of Dow Epoxy Resin 332-and thus how easy it is to visually inspect parts which are encapsulated in D. E. R. 332.
But a perfect inspection "window" is not the only advantage you get when you use D. E. R. 332 for encapsulation. Compared to ordinary epoxies, the high purity of D. E.R. 332 makes possible more uniformity, lower viscosity, longer pot life and greater heat resistance. Of special interest also pot life and greater heat resistance. Of special interest also
for electrical applications, D. E. R. 332 and D. E. R. 331 are very low in total and hydrolyzable chlorides.
1). E. R. 331 is a standard unmodified resin designed for customary applications and I). E. R. 334 is a modificd lowviscosity resin especially suited for laminating.
All three of these Dow Liquid Epoxy Resins are available for prompt delivery to you in drums, truck or tank car lots. For complete information on Dow liquid and solid epoxies and epoxy novolaks, call your nearest Dow sales office. Or write the dow chemical company, Midland, Michigan, Coatings Sales Dept. 2262P-1.

YOUCAN DEPENDON

\section*{NEW PRODUCTS}

Acceleration Switch
Actuated by 15 g

Model S 200-0-15G acceleration switch, for use in the ASP systems, is actuated by 15 g acceleration over a delay period of 250 msec . Shock safety limit on the sensitive axis (\(\pm 10 \mathrm{deg}\)) is more than 1000 g .
Cooper Development Corp., Dept. ED, 2626 S. Peck Rd., Monrovia, Calif.

CIRCLE 213 ON READER-SERVICE CARD

Accelerometer
Accurate at 50 g

Model 605 features an air-damped spring-mass system which virtually eliminates transverse acceleration error. Acceleration sensitivity perpendicular to the sensitive axis is less than resolution at 50 g . A damping ratio of 0.65 critical is standard and ratios of 0.1 to 1.0 normally can be provided.

Bourns Laboratories, Inc., Dept. ED, P.O. Box 2112, Riverside, Calif.

CIRCLE 214 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{Wirewound Control \\ For ambient temperatures to 250 C \\ }

This small, wirewound control meets MIL-E5272 specs. Hermetically sealed, it is designed for ambient temperatures to 250 C. At 200 C ambient, it is rated at 2.5 w .
P. R. Mallory \& Co., Inc., Dept. ED, Indianapolis 6, Ind.

CIRCLE 215 ON READER-SERVICE CARD

Construction of L-shaped laminations reduces the volume of Slim-Tran transformers. Units have up to 500 va ratings. In open or in potted, encapsulated, and hermetically sealed types.
Era Electric Corp., Dept. ED, 67 E. Centre St., Nutley, N.J.

CIRCLE 216 ON READER-SERVICE CARD
Connector
Taper-contact

Miniature environmental taper-contact connectors meet or exceed MIL-C-5015 specs. In \(3,7.12,19,27,37\), and 61 contact arrangements. All plugs in series available with company pushpull locking mechanism.
Tie Deutsch Co., Dept. ED, 7000 Avalon Blvil, Los Angeles 3, Calif. CIRCLE 217 ON READER-SERVICE CARD

\section*{6 cps to \(100,000 \mathrm{cps}\) at}
1,000 WATTS CONTINUOUS DUTY
...with the new GeniscoSavage high-output amplifiers!

Seven models-rugged enough for production line testing; versatile enough for almost all laboratory needs.

Here's the new line of quality, highoutput amplifiers you've been waiting for! All seven models feature high power output, low distortion, exceptionally high reliability and stability, and excellent output voltage waveform.

The Model KLF, shown at left, is particularly useful as an exciter for vibration testing equipment and as a variable frequency power supply for a multitude of production and laboratory needs. It will operate continuously with an output of 1,000 watts from 6 to \(2,000 \mathrm{cps}\).

Components of all Genisco-Savage Amplifiers are mounted on \(19^{\prime \prime}\) vertical panels to facilitate easy inspection and maintenance. Quick-release grill covers make all tubes readily accessible from the front. Numerous built-in safety features protect the equipment from operator errors.
Two New Shake Tables Available The new Model V1000 Genisco-Savage Shaker features a very light moving coil assembly, high thrust-to-weight ratio, automatic impedance matching, and an excellent output waveform. A continuous alternating thrust of \(\pm 600 \mathrm{lbs}\). is produced at 1.000 watts control power. Thrust can be increased to \(\pm 750 \mathrm{lbs}\). peak by use of a blower (Model V1000B). Both models have been stress-tested to withstand continuous operation at accelerations of 100 G 's.

The Genisco-Savage Model ViOOO Shaker

Genieco, Incorporated
2233 Federal Avenue Los Angeles 64, California

\section*{}

\section*{TEN-TO-ONETHE Copper Clad Laminate YOU WANT IS HERE!}

From these ten basic Phenolite \({ }^{\circledR}\) Grades, you can select the base material, resin, properties and price to fit your present printed circuit need.
If your problem is finding a suitable cold-punch material, try samples of XXXP-470-1. It's designed for use in automated production equipment. If you are looking for higher heat resistance, check Grades G-10 and G-11.
Out of National's research laboratories come new advances every day. See your National Representative about new products and applications. He can keep you posted on the full line of Phenolite Laminated Plastic, Vulcanized Fibre and National Nylon for electronic applications across-the-board. In the meantime, write for our new "Phenolite Copper Clad Data" folder. Address Dept. E-8.

\section*{TYATIOTVEI vulcanized ribre co.} WIIMINGTON 99, DEIAWARE In Conada WATIOMAL fiORE COMPAMY of camaba, LTE., Teronto 3 , datarle

> S!: NATIONAL AT WESCON . . . LOS ANGELES AUGUST 19-22 . . BOOTH NO. 304-305

TYPICAL TEST VALUES ON COPPER CLAD PHENOLITE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{GRADE} & \multicolumn{5}{|c|}{properties of ease material} & \multicolumn{4}{|c|}{COPPER CLAD PROPERTIES} & \multirow[t]{2}{*}{} \\
\hline & Olelectrit & Discipatien & Mdisture Abserplian & Flexural Streagli & \[
\begin{aligned}
& \text { Maximum } \\
& \text { Operoving } \\
& \text { Temperature }
\end{aligned}
\] & \multicolumn{2}{|c|}{Copper Boad Strenglt} & Hol Solder
Resistance & \[
\begin{aligned}
& \text { Surface } \\
& \text { Rexistace }
\end{aligned}
\] & \\
\hline & \multirow[t]{2}{*}{106 Cycles} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{1/46. \$\% 24 Hrs} & \multirow[t]{2}{*}{Ps} & \multirow[t]{2}{*}{Degree F} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Pannds to Pull } \\
& 1^{n} \text { Strin }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Sees or ilistar } \\
& \text { I' Squara } \\
& >\text { Grenter Than }
\end{aligned}
\]} & \multirow[t]{2}{*}{Megolims, Etshed Retma Coint Patterr, S5 \(\mathrm{Hrs} / 35^{\circ} \mathrm{C} / 35 \% \mathrm{RH}\)} & \multirow[t]{2}{*}{\(1 / 46^{6}\) Thk. 102 Copper ISINO} \\
\hline & & & & & & 102 & 202 & & & \\
\hline P-214-8-1 & 5.3 & . 040 & 2.20 & 18,000 & 250 & 8 & 11 & >10@ \(475^{\circ} \mathrm{F}\) & 100,000 & . 81 \\
\hline XXP-209-G-1 & 4.6 & . 037 & 1.30 & 17,000 & 250 & 8 & 11 & \(>10\) @ 475 \({ }^{\circ} \mathrm{F}\) & 200,000 & . 92 \\
\hline \[
\begin{aligned}
& \text { XXP-239-1 } \\
& \text { PHENOCLAD }
\end{aligned}
\] & 4.2 & . 035 & 0.67 & 15,500 & 250 & 8 & 11 & >10@3475 \({ }^{\circ} \mathrm{F}\) & 200,000 & . 92 \\
\hline XXXP-219-C-1 & 4.5 & . 030 & 0.70 & 15,500 & 250 & 8 & 11 & \(>10\) @ \(475^{\circ} \mathrm{F}\) & 500,000-1,000,000 & 1.00 \\
\hline XXXP-455-1 & 4.0 & . 026 & 0.55 & 23,500 & 250 & 8 & 11 & \(>10\) @ \(475^{\circ} \mathrm{F}\) & 1,000,000-1,500,000 & 1.00 \\
\hline XXXP-470-1 & 3.7 & . 027 & 0.48 & 14,000 & 250 & 8 & 11 & \(>10\) @ 475 \({ }^{\circ} \mathrm{F}\) & 300,000-500,000 & 1.00 \\
\hline N-1-852-1 & 3.3 & . 030 & 0.20 & 16,000 & 165 & 8 & 11 & \(>10\) @ 450 \({ }^{\circ} \mathrm{F}\) & 2,000,000 & 2.69 \\
\hline G-5-813-1 & 6.8 & . 018 & 1.00 & 55,000 & 300 & 8 & 11 & - & - & 2.98 \\
\hline G-10-865-1 & 5.2 & . 012 & 0.13 & 60,000 & 250 & 10 & 15 & \(>30 @ 500^{\circ} \mathrm{F}\) & 1,500,000-2,000,000 & 3.49 \\
\hline G-11-861-1 & 4.9 & . 015 & 0.17 & 60,000 & 300 & 10 & 15 & \(>30\) @ 500% & 2,000,000 & 3.55 \\
\hline
\end{tabular}

CIRCLE 219 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

Linear Counting-Rate Meter
Has seven counting ranges

Model DM4 linear-counting rate meter features seven counting ranges, three time constants and a 60 -cycle calibrating circuit. A range selection switch on the front panel permits the choice of full scale ranges from 200 through 200,000 counts per min.
BJ Electronics, Borg-Warner Corp., Dept. ED, 3300 Newport Blvd., Santa Ana, Calif. CIRCLE 220 ON READER-SERVICE CARD

\section*{Cooling System}

Achieves cell temperatures to -70 C

Model RS-25, type 100 cooling system for the detecting cell of infrared search systems. Unit achieves cell temperatures down to -70 C and operates up to 85 F and to 5000 ft altitude.
Eastern Industries, Inc., Dept. ED, 100 Skiff St., Hamden, Conn.

CIRCLE 221 ON READER-SERVICE CARD

\section*{Inertia Switches}

Reset type

These reset type miniature inertia switches have a single moving part. They can be used as
one-shot closing devices without the use of a relay, or as memories to show a specific acceleration or shock level has been exceeded. The 24 tandard models provide acceleration levels from b. 15 to 20 g .

Inertia Switch, Div. of Safe Lighting, Inc., Dept. ED, 527 Lexington Ave., New York, N.Y CIRCLE 222 ON READER-SERVICE CARD

\section*{Resistance Calibrator}

Measures resistance up to 100 meg

This resistance calibrator permits resistance alibrations up to 100 meg with an accuracy of 0.01 per cent. It enables the transfer of the ccuracy of low range standards to the higher ranges with an additional error of transfer of less than \(\pm 0.0001\) per cent per 2 decades up to 10 meg and \(\pm 0.01\) per cent to 100 meg .
International Resistance Co., Hycor Div., Dept. ED, 12970 Bradley Ave., Sylmar, Calif. CIRCLE 223 ON READER-SERVICE CARD

\section*{Interval Timer}

Features low contact bounce

This 5 channel interval timer has a contact bounce of less than \(300 \mu \mathrm{sec}\) on make, and less than \(50 \mu \mathrm{sec}\) on break. Contacts are designed for load current of at least 0.5 amp . Because of the vnclironous drive motors, the tolerance of the imins pulses is held to \(\pm 0.2\) per cent or \(\pm 10\) nsec whichever is greater. These tolerances are telatise to a 60 cycle or 400 cycle time base ccuricy.
Western Design \& Manufacturing Corp., Div. f.S. Inclustries, Inc., Dept. ED, Santa Barbara Iirput, Goleta, Calif.

CIRCLE 224 ON READER-SERVICE CARD

\section*{Here are High Performance Components at Budget Prices}

Every project engineer can now afford to have his own magnetic storage drum ... a truly versatile memory system . . to expedite many jobs. Costing less than the price of a good oscilloscope, a Monrobot modular storage unit offers high performance characteristics with near custom-designed flexibility. Drum speed and head layout may be selected by the systems engineer to meet his individual requirements; belt drive models and open head mounting allow field alteration to accommodate major system changes which require different speeds or delay times. Thus, engineers can "prove out" logic without risk of obsoleting the drum before the system is complete.

Both drums and heads have shown high mechanical stability under rough field condifions and over a wide range of temperatures. The drums, offering information storage at a high density, are rigid and stable with a minimum of run-out. The read/record heads feature builf-in fine calibration adjustments and can be adjusted over a delay of forty pulses while the drum is rotating. For complete specifications, write: Monroe, Dept. E, Orange, N. J.

Monroe Calculating Machine Company, Inc., Orange, New Jersey

doinc, accountinc
data processing machines

Ofices for sales and service throughout the world

\title{
a high sensitivity low cost spectrum analyzer from 10 mc to 44,000 mc with one tuning head
}

\author{
employing the latest proven developments in the Micro-wave field
}

A new and welcome addition to Panoramic's long line of widely accepted and completely dependable Spectrum Analyzers, the SPA-4 covers frequencies from 10 mc to 44,000 in one low-cost compoct unit that provides better sensitivity than found in typical multi-tuning head spectrum analyzers.
Backed by Panoramic's forward thinking, long and specialized experience in the development of spectrum analyzers, the SPA-4 embodies the human entrum analyzers, the SPA-4 embodies the human en-
gineering and stable, direct reading displays that facilitate rapid and reliable analyses of measurement problems.
The SPA-4's many unique features, tremendous flexibility and simple operation make it unsurpassed for analysis of FM, AM lators, noise spectro, detection of parasitics, studies of tion of parasitics, studies of systems and other signal sources.
Wrife, wire, phone NOW for dofalled specification bullofin.

\section*{PANORAMIC'S advanced new \\ MODEL SPA-4}
- Better sensitivity than with typical multi-tuning head spectrum analyzers
- Resolution confinuously variable from 1 ke to 80 ke for analysis of wide and narrow pulsed RF signals
- 70 MC wide sweep width continuously adjustable down to 0 me
- Careful shielding to avoid interference
- Calibrated power, voltage and log amplitude scales
- Constructed to MIL specifications

\section*{NEW PRODUCTS}

Displacement Transducers
Designed for linear motion measurement

Models 101, 102, and 103 displacement trans ducers provide output voltage proportional to plunger displacement. Extreme sensitivity and stepless resolution provide accurate measure ment of motions as small as 0.000001 in . or ove ranges as large as 0.4 in .

Daytronic Corp., Dept. ED, 216 S. Main St Dayton 2, Ohio.

CIRCLE 227 ON READER-SERVICE CARD

DC Amplifier Has low drift char acteristics

Characteristics of REL-120 dc amplifier are low heat generation due to an average requirel input power of only 10 w ; and self-containe power supply, which works directly from eithe 60 or 400 cps .
Rheem Manufacturing Co., Electronics Di Dept. ED, 7777 Industry Ave., Rivera, Calif. CIRCle 228 on reader-service card

\section*{Silicon Diode}

\section*{50 to 75 kmc frequency range}

Broadband high sensitivity microwave silice diode Type MA-428 has high tangential sens tivity over the entire 50 to 75 kmc freçuenc range. It is estimated that system noise figure

ELECTRONIC DESIGN • August 6, 195
beween 1.5 and 18 db can be achieved, using a m.itched pair of these diodes as mixers in a rat rave power divider balanced mixer assembly, in conjunction with a low noise i-f strip.
\licrowave Associates, Inc., Dept. ED, Burlington, Mass.

CIRCLE 229 ON READER-SERVICE CARD

\section*{Diode Handler} Sorts 3000 diodes per hour

Model HP361 is a transistorized instrument supplying voltage from \(0-36 \mathrm{vdc}\) at currents from \({ }^{0}\) to 1.5 amp at any voltage setting. Recovery time is less than \(50 \mu \mathrm{sec}\) for a maximum line or load transient. Peak transient for a load step from zero to maximum load is less than \(50 \mu \mathrm{sec}\). Regulation is less than 20 mv output voltage variation ior line changes from \(105-125 \mathrm{v}\) ac.
Deltron, Inc., Dept. ED, 2905 N. Leithgow St., Mriladelphia 33, Pa.

CIRCLE 231 ON READER-SERVICE CARD

DESIGNED TO FLY

Especially designed to meet the rigid size and weight requirements of airborne instrumentation, Statham's new strain gage carrier amplifiers are transistorized throughout. Operating from normally available 28 -volt DC excitation, these units supply excitation to any strain gage transducer of desired range, amplifying and demodulating the transducer's low-level signals to provide an output of from

Model CA3 Strain Gage Amplifier

0 to 5 volts DC. When you require unprece.
dented accuracy and reliability in the
amplification of signals from your strain gage instrumentation,
```

specify a Statham

```
strain gage
amplifier.

Model CA5 Strain Gage Amplifier

EXCITATION: 28 volts DC, \(\pm 5 \%\)
OUTPUT: 0.5 volts DC
FREQUENCY RESPONSE: Flat from 0 up to 2000 cps
NON-LINEARITY AND HYSTERESIS: \(\pm 1 / 2 \%\)
OPERATING TEMPERATURE: \(-65^{\circ}\) to \(+165^{\circ} \mathrm{F}\)
OUTPUT IMPEDANCE: 10K ohms (100K recommended load)
WEIGHT: 14.5 ounces, approximately

See us at Booth 621
WESCON Show
August 19-22

For complete technical datn, write to:

INSTRUMENTS, INC
12401 W. Olympic Blvd., Los Angeles 64, California CIRCLE 232 ON READER-SERVICE CARD

\section*{THE FIRST MEW CONCEPT IN DIGITAL DISPLAY SYSTEMS}

ONLY CUBIC DIGITAL DISPLAY SYSTEMS GIVE YOU:

\section*{LOW COST OF \\ OPERATION}

Proven reliability and practical maintenance features reduce costly down-time to a minimum.

VERSATILITY

RELIABILITY

EASE OF
MAINTENANCE

All systems units standard size: each unit plugs into its own chassis; modifications for special equipment readily available; interchangeable units ideal for rack mounting.

Accuracy to \(.01 \%\); resistor stability assured; complete transistorization eliminates warm-up time.

Stepping switches mounted on horizontal bars - swing up and out for easy access. Slide-out features allow quick replacement if system requirements change.

Compare Cubic Digital Systems . . . compare them for price, reliability and versatility. A fast prove-it-yourself demonstration will show you why Cubic Digital Systems will be your best instrument aid.

For complete information and/or demonstration call

BR 7-6780 5575 KEARNY VILLA RD. SAN DIEGO 11, CALIFORNIA

See our Complete Display of Digital Systems at the Wescon Show, Booths 1554-1555. CIRCLE 233 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Vibration Tester}

Has 6 ranges of displacement

Model LM-1A vibration tester provides ranges of full-scale displacement from \(0-.001\) to \(0-100\) in., double amplitude. Full scale velocity ranges from \(0-.01\) to \(0-1000 \mathrm{in}\). per sec. Full scale acceleration ranges from \(0-.1\) to \(0-1000 \mathrm{~g}\). The frequency range is from 5 to 5000 cps . The meter operates from a velocity pickup.

Ling Electronics, Inc., Dept. ED, 9937 Jeffer. son Blvd., Los Angeles, Calif.

CIRCLE 234 ON READER-SERVICE CARD

\section*{RF Connector} Simplified breakaway connections

This miniature rf connector may be assemble or disassembled with the fingers and withstand a pull-out strain in excess of 20 lb . Captivatee contacts insure proper engagement with matin parts. The clamping parts, insulators, and con tacts are readily assembled on the cable befor insertion.
Sealectro Corp., Dept. ED, 610 Fayette Ave Mamaroneck, N.Y.

CIRCLE 235 ON READER-SERVICE CARD
Hook-Up Wire
Eight layers of wrapped Teflon

SPIRAL WRAP
(\(1 / 3\) LAP - no overlap)
FLEXOLON WIRE (approximately \(\overline{8}\) layersi

The method by which Teflon tape is appliey to Flexolon hook-up wire makes possible, besidr its known flexibility, an average productio

ELECTRONIC DESIGN • August 6, 195
len th of 750 feet. This is due to the eight layers of tape, which lessen the chance of a single flow in the tape affecting insulation characteristics. Compared to the \(100-\mathrm{ft}\) average lengths of extrucled Teflon wire, the longer lengths both reduce scrap and minimize set-up time of automatic machinery.
Flexolon wire is available in awg sizes 32 through 20. Nominal wall thickness is 0.010 in . Dielectric strength exceeds 600 v and 1000 v ratings for type E and type EE wires. All types are available in 14 solid colors or 819 stripe combinations.
Tensolite Insulated Wire Company, Inc., Dept. ED, Tarrytown, N. Y.

CIRCLE 236 ON READER-SERVICE CARD

\section*{Ohmmeter}

Safe for transistor circuitry

Model 321 ohmmeter is a direct-reading instrument usable safely in all transistor circuitry. It features an absolute minimum of loading (under 30 mv to 300 ohm); wide range of 10 milliohm to 10 megohm in 8 ranges, and 2 per cent accuracy.
Electronic Applications, Dept. ED, 194 Richmond Hill Ave., Stamford, Conn.

CIRCLE 237 ON READER-SERVICE CARD

\section*{Digital Readout}

Displays 4 digits plus symbol

\section*{YARDNEY SILVERCEL \({ }^{\circledR}\) BATTERIES}

\section*{ARE 66\% LIGHTER, 35\% SMALLER THAN ANY PREVIOUS HELICOPTER POWER SOURCE...}

In a drive to increase the valuable "payload" capacity of its 47J Helicopter, the Bell Helicopter Corp. replaced the conventional lead-acid battery with a miniaturized YARDNEY SILVERCEL \({ }^{\circledR}\) Battery. Result: a reliable power source \(2 / 3\) lighter, \(1 / 3\) smaller and with \(1 / 3\) more power output. They also gained freedom of design and extra cranking endurance. With pace-setter Bell proving the point, it's small wonder that today, SILVERCEL \({ }^{\circledR}\) Batteries are being designed into every modern helicopter.

Up to 5 times smaller, 6 times lighter, and with a greater power surge than ordinary batteries of equal capacity. the SILVERCEL \({ }^{k}\) Battery offers many new opportunities for imaginative applications. There are standard SILVERCEL \({ }^{18}\) Batteries for such applications as remotecontrol work, communications equipment, portable power supplies, telemetering and instrumentation, as well as custom-built batteries for particular require ments. Write today for complete technical data

WESCON BOOTH \#1739

\section*{YARDNEY ELECTRIC CORP.}
"Pioneers in Compact Power" *
40-50 LEONARD STREET, NEW YORK 13. NEW YORK

Patents granted and pending.
Copyright 1958 Yardney Electric Corp. *Tralle Mark CIRCLE 239 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Coil}

For printed circuit wiring

The unit consists of an rf coil with adjustable tuning, and either one or two windings enclosed in a plastic container with leads emerging from the bottom, suitable for mounting in printed circuit boards. An advantage of this coil construction is its low temperature coefficient for inductive drift, usually running in the order of plus 50 parts per million per degree centigrade.

Essex Electronics, Dept. ED, 550 Springfield Ave., Berkeley Heights, N.J.

CIRCLE 241 ON READER-SERVICE CARD
Decode Unit
Binary to decimal

The Bina-Dec Decoder is for use in circuits requiring a binary-to-decimal conversion. Using a relay tree to perform the translation, the unit will handle four bit codes, two-out of five, and the excess 3 code. Module type construction permits assembly of as many decades as required.
Industrial Electronic Engineers, Dept. ED, 3973 Lankershim Blvd., North Hollywood, Calif. CIRCLE 242 ON READER-SERVICE CARD

\section*{Sweeping Oscillator}

15 to 470 mc range
Vari-Sweep Model 400 has a frequency range cw or sweeping operation, of 15 to 470 mc con 0 tinuously variable in 10 switched, overlapping
bands. Sweep width is 60 per cent of center frequency to \(50 \mathrm{mc}, 30 \mathrm{mc}\) maximum from 50 to \(400 \mathrm{mc}, 20 \mathrm{mc}\) maximum above 400 mc . Rf output is 1 v rms to \(220 \mathrm{mc}, 0.5 \mathrm{v} \mathrm{rms}\) to 470 mc .
Kay Electric Co., Dept. ED, Maple Ave., Pine Brook, N.J.

CIRCIE 243 ON READER-SERVICE CARD
Power Supplies
\(\pm 0.5\) per cent regulation

Available in a wide range of output voltages, a series of transistorized voltage regulated power supplies have channels regulated to \(\pm 0.5\) per cent. The regulatory circuits are referenced to temperature compensated Zener diodes, and vernier adjustments of output voltages are provided. One unit, the Model 7PVR14, operates from a \(115 \mathrm{v}, 60 \mathrm{cps}\) ac power source and provides three channel outputs: \(\pm 2 \mathrm{v}\) dc at 2.5 amp , \(\pm 3 \mathrm{v}\) dc at 2.5 amp , and \(\pm 20 \mathrm{v}\) dc at 2.5 amp .
Western Gear Corp., Dept. ED, P.O. Box 182, Lynwood, Calif.

CIRCLE 244 ON READER-SERVICE CARD

\section*{Trimmer}

I w derated at 225 C

Type RTW is a wire-wound trimmer with 25 turn lead-screw adjustment. Resistance range is 50 to 100 K . Power rating is 1 w at 75 C derated to zero at 225 C . Dual stainless steel contacts on wiuding and slip ring and precious metal takeoff and end tabs are included. Other trimmers, type TPC, having similar characteristics are available for printed circuit use.
Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.

CIRCLE 245 ON READER-SERVICE CARD

Ele:TRONIC DESIGN • August 6, 1958

\section*{maintain and control reliability}

\section*{with new}

\section*{PRE-PROGRAMMED INSTRUMENTATION}

\section*{NEW ROBOTESTER - IMMEDIATE AID TO IMPROVE MAINTAINABILITY OF} EQUIPMENT RELIABILITY

A bold imaginative concept has evolved from Lavoie Labs in the form of a Programmed Instrumentation Approach with Failure Prediction. Designed for the active control of maintainability and reliability of electronic equipment in aircraft, missile and weapon systems. The universal-tape programmed performance checking Robotester is versatile and flexible and is the basis of this forward-thinking Lavoie program.
The Robotester itself expands checkout capabilities and slashes \(80 \%\) of final test time. Operational testing and production line check out is accomplished through continuous, high-speed sampling and comparison . . split-second recognition, isolation and identification of rmal functions.
Nominal circuit values and specified tolerances are tape-punched in minutes to accommodate voltages (AC and DC) from 0.5 to 500 volts Holerances of volts; resistances from 1 ohm to 9.99 megohms; and tolerances of \(1 \%, 5 \%, 10 \%\) and \(20 \%\) of nominal. A total in excess points at rates up to 100 tests per minute.

Write today for complete technical information and specifications on the New Robotester.

Write on company letterhead for "Lavoie
Programmed Instrumentation" . . please specify application.
SEE US At the wescon, BOOTh 1503

CIRCLE 246 ON READER-SERVICE CARD

REAT BRITAIN: Simmonde Aeroceseories Lid., Trelorest, Wales, urestiea (Seine), GERMANY: Mecano-Bunay GmbH. Heidelberg.

\section*{NEW PRODUCTS}

Coaxial Hybrids
Features in-line design

These coaxial hybrids feature an in-line design with output arms parallel and adjacent. Two models have been developed, one for the 3500 to 4200 mc band in \(7 / 8\) coax, and a second for the 5000 to 6000 mc band in type N coax. Isolation is in excess of 25 db over most of the band. Output balance is within \(\pm 0.25 \mathrm{db}\).
Sage Laboratories, Inc., Dept. ED, 159 Linden St., Wellesley 81, Mass.

CIRCLE 248 ON READER-SERVICE CARD
Power Supply
Provides \(10-14.5 \mathrm{v}\) dc

The TPS-1 power supply delivers 10 to 14.5 v dc at up to 15 amp , regulated within 0.2 per cent over the full input voltage and output current ranges. Ripple is 2 mv (rms) maximum at full load, and recovery time is better than 1 msec. Internal impedance is less than 3 milliohms.

Southwestern Industrial Electronics, Dept ED, 2831 S. Post Oak Rd, Houston, Texas CIRCLE 249 ON READER-SERVICE CARD

DC Voltmeter-Amplifier
\[
10 \mu v \text { to } 1000 v
\]

Differential dc voltmeter-amplifier Model 98-A facilitates testing and measuring dc voltages which are off ground or superimposed on larger dc voltages. Direct reading in the \(10 \mu \mathrm{v}\) to 1000 v
range, it has a maximum gain of 70 db . Output is \(\pm 0.5 \mathrm{ma}\) into a 1500 ohm load.
Boonton Electronics Corp., Dept. ED, 738 Speedwell Ave., Morris Plains, N.J. CIRCLE 250 ON READER-SERVICE CARD

\section*{Infrared Cell Test Equipment}

Measures photodetector impedance

This line of infrared photodetector measurement equipment includes: chopper continuously variable between 20 and 8500 cps ; electronic instrumentation to measure photodetectors ranging in impedance from 5 ohm to 100 meg ; black body sources; and special photodetector test enclosures fitted for various methods of low temperature cooling.
Santa Barbara Research Center, Santa Barbara Airport, Dept. ED, P.O. Goleta, Calif.

CIRCLE 531 ON READER-SERVICE CARD
Filament Voltage Regulator
Extends tube life

Type EMT25136U automatic voltage regulator provides a gradual power run-up and constant regulated voltage for complex tubes. The unit is for use on nominal 120 or \(240 \mathrm{v}, 50 / 60 \mathrm{cps}\) single phase lines. Input voltage range is \(108-132 \mathrm{v}\) on 120 v service and \(216-256 \mathrm{v}\) on 240 v service. Output voltage is adjustable from 9-24 v with sensitivity within a 1 v band at any setting. Maximum rate (i) output load is 25 amp . Maximum voltage Fun-1p time is 45 sec .
Superior Electric Co., Dept. ED, Bristol, Conn. CIRCLE 251 ON READER-SERVICE CARD

\section*{SPRAGUE COMPONENTS:}

MAGNETIC COMPONENTS • TRANSISTORS • RESISTORS • CAPACITORS • INTERFERENCE FILTERS • PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE • PRINTED CIRCUITS CIRCLE 252 ON READER-SERVICE CARD

There is only one WESCON, and there is only one Electronic Daily—published each day during the convention.

The Daily will be bigger and better than ever before . more news, special reports, features, up-to-the-minute announcements, new products, and interpretation of important trends and developments at the show. The Daily is reported "live," right on the spot with each day's news gathered the moment it happens.

Copies will be at a premium . . . be sure to look for yours each morning in Convention hotels, at the entrance to exhibit pavilions, or at the Hayden booth.

\section*{Electronic Daily}
-The Only Magazine Published in Conjunction with WESCON

\section*{a HAYDEN publication}

\section*{NEW PRODUCTS}

Synchronous Motor
60 and 400 cps reversible

This size 11 instrument type synchronous re. versible motor can be used for either 60 or 400 cps operation. Pullout torque at 60 cps and 1800 rpm is \(0.15 \mathrm{oz}-\mathrm{in}\). At 400 cps and \(12,000 \mathrm{rpm}\), it is \(0.085 \mathrm{oz}-\mathrm{in}\). This is achieved by using a \(1 \mu \mathrm{fd}\) capacitor for 60 cps operation or a \(0.1 \mu \mathrm{fd}\) capacitor for 400 cps . Input voltage is 115 for both 60 and 400 cps .
John Oster Manufacturing Co., Avionic Div, Dept. ED, 1 Main St., Racine, Wis.

CIRCLE 253 ON reader-Service card

Digital Voltmeter
Measures ac or dc

Model DVA-510 modular digital voltmeter for measuring ac or dc voltages consists of a transistorized power module, dc switch module and ac converter module. The unit has a range of 0.0001 to 999.99 v and displays a five digit reading, with automatic ranging, and polarity. It is accurate to \(\pm 0.01\) per cent, \(\pm\) one digit, with 0.01 per cent stability.

Electro Instruments, Inc., Dept. ED, 3540 Aero Ct., San Diego 11, Calif.

CIRCLE 254 on reader-service card

\section*{Capacitors}

For use in filter networks
For use in filter networks, these low cost capacitors feature stability and close tolerance. In
polystyrene, Mylar, or silicon-paper dielectric, mits achieve a tolerance of 1 per cent and a temjrature coefficient of 100 ppm .
Film Capacitors, Inc., Dept. ED, 3400 Park Ive., New York 56, N.Y.

CIRCLE 255 ON READER-SERVICE CARD
Precision Timer
Resolution of 1 msec

Model 2400 is a miniature four-decade digital timer having a time resolution of 1 msec and a maximum indicated time interval of 9.999 sec . Glow transfer tubes are used as decade counters and indicators. Pulses derived from a 1000 cps tuning fork are fed to a gated amplifier, which is controlled by miniature start and stop thyratrons.
Erie Resistor Corp., Dept. ED, 644 W. 12th St., Erie, Pa.

CIRCLE 256 ON READER-SERVICE CARD

\section*{Vibration Pickup}

Magnetically damped

Using the basic design of the company's velocity type pickup, the magnetically damped type \(128-1\) is suitable for use in measuring vibratory motions with up to \(\pm 5 \mathrm{~g}\) unidirectional steady acceleration superimposed, with little cha: ge in sensitivity over a -65 to +250 C temperature range. Because of its damping and high nat ral frequency, it is useful both in measuring highor frequency vibratory accelerations and also in reasuring low frequency jerk.
M/B Manufacturing Co. Div., Textron, Inc., Delt. ED, P.O. Box 1825, New Haven, Conn. CIRCLE 257 ON reader-service card
ELEC:RONIC DESIGN - August 6, 1958

Now...modular components for automatic weapons testing systems come

\section*{off the shelf from AMF!}

It's called MATE - Modular Automatic Testing Equipment-for go no-go readout, the first significant step in eliminating obsolescence in automatic testing systems.
After extensive surveys, AMF found all automatic systems, regardless of type or complexity, can be reduced to the same, basic, packageable components.
Wide range available. AMF has already designed and produced 19 of these modules-each one a self-sufficient package with a distinct responsibility. Available to you on an "off-the-shelf" basis now are programming and control modules, signal translator modules, comparator-evaluator modules and display devices.

Universally adaptable. These modules can be put together to implement any automatic testing program. Or any of them can be integrated with existing equipment of other manufacture.

Obsolesconce eliminated. After serving their purpose for the system under test, MATE modules can be reintegrated into other systems requiring the same functions. The result: complete flexibility in the most complex systems; low-cost components available on a short delivery basis, pre-designed to accomplish many different tasks; modules that retain their usefulness and validity after the weapons system is modified. The resulting economies to prime contractors and the military are enormous.

GOVERNMENT PRODUCTS

Government Products Group
AMERICAN MACHINE \& FOUNDRY COMPANY
1101 North Royal Stroot, Alexandria, Va.
CIRCLE 258 ON READER-SERVICE CARD

Your Inquiries invited-Write Associated Mis. siles Products Co. (a division of AMF), 2709 North Garey Avenue. Pomona, Calif.; or to ton, D.C. or Dayton. Ohio; or Los Angeles, Calif.

HIGF EFFICIENCY- 30\% • WIDE BANDWIDTH - \(\mathbf{1 2} \%\) HIGH GAIN-30 db • HIGK PEAK POWER-Over 1 Mw

For operation on 115 v , model 8 SM 460 servo motor has a low rotor inertia of \(0.2 \mathrm{gm}-\mathrm{cm}^{2}\) and comparatively high stall torque of 0.33 oz -in The result is an acceleration at stall of 115,000 \(\mathrm{rad} / \mathrm{sec}^{2}\). Power input per phase is 2.9 w . Cap able of continuous duty at 200 C total unit oper ating temperature.

Helipot Corp. Div., Beckman Instruments Inc., Dept. ED, Newport Beach, Calif.

CIRCLE 261 ON READER-SERVICE CARD

\section*{Linear Potentiometer}
\(\pm 1\) per cent independent linearity
Miniature Model 141 Linipot linear potentiometer gives a precise indication of travel position and operates with a high level ac or dc out
put, needing no amplification. The wirewound unit has an independent linearity of \(\pm 1\) per cent and standard resistance values of \(500,1000,2000\), 5000 , and \(\mathbf{1 0 , 0 0 0}\) ohms.
Bourns Labs., Inc., Dept. ED, Riverside, Calif. CIRCLE 262 ON READER-SERVICE CARD

\section*{Silicon Solar Cells}

Withstand environmental extremes

Type SS solar cells are of the silicon p-n type with average conversion efficiencies of 8 per cent, based on a solar constant of 1400 w per square meter of collecting area under standard testing conditions. They will withstandup to 100 g shock for 0.003 seconds in any direction, and constant 25 g acceleration in any direction. Temperature range is -190 to +500 C .
Hoffman Electronics Corp., Semiconductor Div., Dept. ED, 930 Pitner Ave., Evanston, Ill. CIRCLE 263 ON READER-SERVICE CARD

\section*{Power Supply}

Provides 80 w output

The REL-203 transistorized power supply has an r f filter included in the 28 v input to prevent interterence being conducted to radio equipment. The typical rf voltage level is down 50 db at 14 kc . An 80 w output with no heat sink is provided over a -75 to +158 F range. Input voltage is 24 to 30 v dc. Three models provide outputs of 150,250 and 300 v respectively.
Rheem Manufacturing Co., Electronics Div., Dept. ED, 7777 Industry Ave., Rivera, Calif. CIRCLE 264 ON READER-SERVICE CARD

\section*{.the record tells you more}

\section*{from a \\ SANBORN SYSTEM}

DESIGNED SPECIFICALLY FOR YOUR TYPE OF WORK

MODEL 276 CHART VIEWER
Permits convenient, variable speed editing and study of Sanborn charts and other types up to \(16^{\prime \prime}\) wide. 2000 th. Iong.
Single control for diraction. Single control for direction, paper speeds \(\left(15^{\prime \prime}\right.\) to \(100^{\prime} / \mathrm{min}\)),
Transparent cursor slides left or right, adjusts for accurat alignment with coordinates.
self-containeo unit preamplifiers
TO DRIVE 'SCOPES.
OPTICAL OSCILLOGRAPHS,
tape recorders, etc.

Portable " 350 " series include Carrier, OC Coupling Servo Monito (demodulator). True Ditferential Mount in portable " "450" cases or in four-unit modules in \(19^{\prime \prime}\) frame, Use individual power supplies. One "450" case and power supply

For complete data, call your local Sanbern Engineering Representative or write the Industrial Division in Waltham.

\section*{SANBORN COMPANY}

Industrial Division
175 Wyman Street, Waltham 54, Masse

Visit Sanboin Booths 1454-1455 af WESCON Show CIRCLE 265 ON READER-SERVICE CARD

\section*{Just published－bobbin core} guaranteed performance limits！

We have just published new data which will light the way to ease，sureness and accuracy for the designer who works with tape wound bobbin cores．
First－and this is a＂first＂－we have published guaranteed maximum and minimum performance limits for all of our bobbin cores．Computer－type designers who would like open－ circuit characteristics，guaranteed core flux and guaranteed squareness will find them all here．
Second－and this too is a＂first＂－we have published the first fundamental data on characteristics of bobbin cores for cir－ cuit designers．Need core total flux characteristics as related to core material？Want switching time vs drive levels？How about typical spreads of core characteristics？It＇s all yours．
Third－and this too is a＂first＂－we automatically give you test data for prototype orders．With your prototype cores come open－circuit outputs，total flux，and squareness data． You get a basic understanding of the core＇s characteristics under specific test conditions．More important，when you re－order production quantities，you will be able to duplicate the core around which you designed your circuit．

\section*{NEW PRODUCTS}

\author{
Neon Lamp \\ Built－in resistor
}

Measuring \(1 / 4 \mathrm{in}\) ．in diameter by less than in ．in length，the NE2R neon lamp eliminates the need for an external resistor by having one of its own built in ．The glass tip of the lamp envelope is hot formed to symmetrical appear ance，and electrodes are longer than in previous types，thus increasing the area of gas excitation and resulting light．

Circon Component Corp．，Dept．ED，Sant Barbara Municipal Airport，Goleta，Calif． CIRCLE 267 ON READER－SERVICE CARD

\section*{Electrometer}

High stability

Having a current range from \(10^{-12}\) to \(10^{-3}\) am full scale，model E－100 features stability of per cent per week on \(10^{-11}\) and higher ranges． Accuracy is 3 per cent on \(10^{-3}\) to \(10^{-11}\) am ranges and 5 per cent on \(10^{-12} \mathrm{amp}\) range．\(A\) mv recorder output is provided．Available eithe rack or cabinet mounted．

Gyra Electronics Corp．，Dept．ED， 518 Spring Ave．，La Grange Park，Ill． CIRCLE 268 ON READER－SERVICE CARD

\section*{Printed Circuit Connectors}

Have wear resistant contacts
The contacts of these printed card receptacle are curved and plated，when necessary，to resia wear．The fatigue problem is solved by use

Last－but still a＂first＂－to show that we manufacture as well as publish，we have designed the first bobbin core protective cap which will permit normal potting procedures for all sizes of steel and ceramic bobbins．Our＂Poly Caps＂have virtually no effect on dimensions－and will not soften or de－ form under manufacturing or operational temperatures． We＇d like to show you samples．
At what stage do you want to start？Whether it＇s design data， prototype data and cores，or production quantities of our ＂Performance－Guaranteed＂bobbin cores－you can get what you need by writing Magnetics，Inc．，Department＇ED－48， Butler，Pennsylvania．

MAGMETICS inc．
heat-treated beryllium-copper to achieve controlled terminal hardness and strength in crucial areas. For range of board thicknesses from 0.052 to 0.103 in .
U. S. Components, Inc., Dept. ED, 454 E. 14sth St., New York 55, N.Y.

CIRCLE 269 ON READER-SERVICE CARD

\section*{Pressure Transducers}

Withstand 25 g vibration up to \(20,000 \mathrm{cps}\)

The oil-filled series 46155 Bourdon tube pressure transducers withstand vibration of 25 g up to \(20,000 \mathrm{cps}\), providing stability of output signal under extreme environmental conditions. They are designed for noncorrosive gas or liquid pressure measurement within the ranges of 0 to 100 psi to 0 to 6000 psi differential or gage.
G. M. Giannini \& Co., Inc., Dept. ED, 918 E. Green St., Pasadena E, Calif.

CIRCLE 270 ON READER-SERVICE CARD

Microwave Tube Power Supply
For voltage tuned oscillators

The model 602 sweeping oscillator power supply provides all power for operating voltage funed microwave oscillator tubes covering frequencies from 1 to 26 kmc . The unit provides exponentially increasing helix voltage varying from 100 to 2500 v at 0 to 60 ma . Sweep rates are djustable from 10 to 0.01 cps.
Alfred Electronics, Dept. ED, 897 Commercial st, Pulo Alto, Calif.

CIRCLE 271 ON READER-SERVICE CARD
LECTRONIC DESIGN • August 6, 1958

\title{
New printed circuit connector with protective taper tab enclosure increases reliability
}

\section*{Continental Connectors}

A unique molding on Continental Connector's new Series PCA15-78 printed circuit connector provides uniform spacing and insulation, and eliminates bending, twisting or shorting of contacts during assembly. For additional ease of assembly, contact terminations accommodate AMP "78" taper tab receptacles for solderless wiring. Connectors are supplied with patented and exclusive "Bellows Action" contacts in bifurcated construction. Coil spring action of "Bellows" design results in \(100 \%\) contact area without loss of retention even with undersized or oversized tolerance boards.

For complete technical information and other printed circuit literature write Electronic Sales Division, DeJUR-Amsco Corporation, 45-01 Northern Boulevard, Long Island City 1, N. Y. (Exclusive Sales Agent)

VISIT US AT WESCON SHOW BOOTH 1521

Enlarged cross-section illustrates taper tab wiring and shows special molded body as an integral part of the connector. The body cavities insulate and assure uniform spacing of contacts.

electronic components CIRCLE 272 ON READER-SERVICE CARD

HALLAMORE PHASE-LOCK DISCRIMINATORS

HALLAMORE ELECTRONICS COMPANY
a dirision of the SIEGLER CORPORATION

Engineers . . . for ideal working condifions with a dynamic, creative organization address resume to Chief Engineer.

ELECTRONIC DESIGN • August 6, 1958

\section*{NEW PRODUCTS}

\section*{Potentiometers}

High resolution

In diameters from \(7 / 8\) to 3 in ., these gol anodyzed single turn potentiometers feature one piece external clamp rings. They have low tem perature coefficient wires, high resolution, low noise level (100 ohm max.), good linearity, 1000 v rms 60 cps dielectric strength, and a -55 to +125 C ambient temperature range

General Scientific Corp., Dept. ED, 1509 Firs St., San Fernando, Calif.

CIRCLE 274 ON READER-SERVICE CARD

\section*{Strip Chart Recorder}

2-5/16 in. scale length

This compact strip chart recorder has a large storage capacity. It has a scale length of 2-5/16 in. and a rated accuracy of 2 per cent of full scale
Rust Industrial Co., Dept. ED, 130 Silver St.
Manchester, N.H.
CIRCLE 275 ON READER-SERVICE CARD

\section*{Variable Voltage Source} For high-speed testing

The A-C Varivolter is an automatic and man ual ac variable voltage power source consistin?
of a motor-driven reversible Variac and an adjus able double-contact meter relay with interlocked motor-drive control relays. It can be operated from any power line ranging in voltage from 90 to 130 v , and the output voltage sweep can be made continuously and maximally adjustable from 0 to 135 v or limited to any narrower range.
Amplifier Corp. of America, Dept. ED, 398 Broadway, New York 13, N.Y.

CIRCLE 276 ON READER-SERVICE CARD
Control Systems Electro-mechanical

Available for applications requiring \(1 / 4\) to 100 hp , these electro-mechanical control systems have improved dynamic response and high accuracy. Building block type components permit a variety of control arrangements, and output may be either uni- or bi-directional.
Seneca Falls Machine Co., Electronics Div., Dept. ED, Seneca Falls, N.Y.

CIRCLE 277 ON READER-SERVICE CARD
Regulated Power Supplies
Low output impedance

These regulated transistorized power supplies have low output impedance and good stability. The supplies are available with and without voltmeti rs and as either single or dual supplies. Two degices of regulation are available. Input is 105 to 15 v at 60 cps ; output is 6 to 30 v de at 0.5 amp.
V.'or Instruments, Inc., Dept. ED, 13214 Cre: haw Blvd., Gardena, Calif.

CIRCLE 278 ON READER-SERVICE CARD

\section*{GOOD-ALL}

\section*{Mefal Enclosed Capacitors are first choice of more and more engineers}

Today, "CP" styles per the MIL-C-25A are the "WORKHORSE" capacitors of military electronics. Soon, new specifications such as MIL-C-0025 (USAF) and MIL-C-25B will exert their influence . . . but regardless of the specification number, more and more engineers specify GOOD-ALL for their preferred sources. There are sound reasons why high quality is consistently maintained.

\section*{HERE'S WHY ENGINEERS ARE CHOOSING GOOD-ALL}
- Well engineered designs
- Skilled assembly personnel
- Modern production facilities
- Rigid Quality Control

Good-All Specializes in these tubular types per MIL-C-25A

All popular values are available in stock for immediate delivery.

Good-All tubulars per MIL-C25A now available at leading industrial distributors.

have you checked this Remote Actuator for jobs under Shock and Vibration?

MODEL SE SHOWN ACTUAL SIZE

\section*{NEW PRODUCTS}

Counter
Frequency range of 10 cps to 10 mc

This electronic counter provides eight-place Nixie read out over a frequency range of 10 cps to 10 mc . It utilizes magnetic beam switching tubes as decade dividers and scalers.

Lavoie Labs., Inc., Dept. ED, Matawan-Freehold Rd., Morganville, N.J.

CIRCLE 281 ON READER-SERVICE CARD

\section*{Latch Relay}

4 w maximum power

This latch relay has dc ratings of 6 through 110 v , ac ratings of 6 through \(230 \mathrm{v}, 4 \mathrm{w}\) maximum power, and 16,000 ohms maximum resistance. Contact ratings are 5 and 10 amp at 115 v ac noninductive or 26.5 v dc. Arrangements are up to 6 pdt .
Line Electric Co., Dept. ED, 271 S. 6th St., Newark 3, N.J.

CIRCLE 282 ON READER-SERVICE CARD

\section*{Subminiature Tubes}

Fast warm-up
In 10 seconds after initial application of rated voltages to the cold tubes, the plate current will have reached 90 per cent of its final value. Type CK7079 is a twin triode (prototype is CK6111) with an amplification factor of 20 and mutual conductance of \(5000 \mu \mathrm{mho}\) at plate voltage of 100 and plate current of 8.5 ma for each section.

\section*{NEW! STRIP CHART RECORDER}

A null-balance potentiometer recorder with full scale span at 10 millivolts up to 100.

Design facilitates easy application with any type transducer. These features also available in SR-I00 2C dual channel instrument. High-low limits and time event marking available on both models.

\section*{SAI JUSE SHIEVTIIIE RIMPRYY}

ELECTRONIC DESIGN ENGINEERS AND MANUFACTURERS SO5 SUNOL STREET SAN JOSE. CALIFORNIA CIRCLE 525 ON READER-SERVICE CARD

\section*{One arioge TO MEASURE \\ IMPEDANCE}
from a short to an open

Measure Real or Imaginary, Positive or Negative
Grounded, Direct, or Balanced Impedances
and Admittances.
* Frequency Range 20 Cycles to 20 Kilocycles
* Gives Answers Directly in Ohms or Micromhos
* Ranges: R: \(\pm 1000\) Ohms; X: \(\pm 1000\) Ohms;

G: \(\pm 1000 \mu\) mhos; B: \(\pm 1000 \mu\) mhos
* Convenient Switching and Controls for Fast Operation

Type 1603-A Z-Y Bridge: \(\mathbf{\$ 3 7 0}\)
Write for Complete Information GENERAL RADIO Company

\section*{275 Massachusehs Avenue, Cambridge 39, Massachusens, U. £. A.} Broad Avenue al Linden. Ridgetield, N. I NEW YORK AREA IO00 N Seward St. LOS ANGELES 30 8055 13th St. Silver Spring. Md. WASHINGTON D. C. 1150 York Road. Abington, Pa. Philadetrenia 1182 los Allos Ave. Los Allos. Calit SAN rrancisco 6605 w North Ave. Oak Park. III Chicaco

In CANADA: Vi floral Palikway. Torowro is
CIRCLE 526 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{Need a PROVEN tube that} indicates and counts? ideatrair

The only cold-cathode glow trans. fer counting tube WITH OVER 10 YEARS OF SERVICE RELIABILITY AND PERFORMANCE. Simple circuitry. Electronic speed and accuracy up to 20,000 counts \(/ \mathrm{sec}\). For counting, sorting, programming, unit flow, packaging and many other applications. Continuous visual reference to total count. For detailed information, request Technical Data Sheet IC4001.
- Trademark

Baird-Atomic, Inc.
33 UNIVERSITY RD., CAMBRIDGE 38 , MASS.

CIRCLE 527 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 6, 1958

Type CK7083 is a pentode (prototype is CK5702WA) with mutual conductance of 5000 at plate voltage of 120 and plate current of 7.5 ma.
Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton 58, Mass.

CIRCLE 283 ON READER-SERVICE CARD

\section*{AC-DC Power Supplies}

5 to 28 and 100 to 300 v de

A line of transistorized ac-dc power supplies is available for supplying transistor, plate and filament voltages, either with or without regulation. The units operate from 105 to \(125 \mathrm{v} 60 / \mathrm{cps}\) or 400 cps single phase, or 400 cps three phase. Outputs range from 5 to 28 v dc in power ratings up to 5 amp , and from 100 to 300 v dc in ratings to 400 ma .

Universal Transistor Prod. Corp., Dept. ED, 17 Brooklyn Ave., Westbury, N.Y.

CIRCLE 284 ON READER-SERVICE CARD
Instrument Motor
Battery operated

This subfractional watt instrument motor, the model TR, occupies about 3 cu in. Stationary field coils furnish the rotative flux and are commutated by transistors. The 6 v model draws 6 ma at rated voltage and operates on power inputs as low as 20 mw . Output torques are of 10 the order of oz in. at 1 rpm .

Brailsford \& Co., Inc., Dept. ED, 670 Milton Rd., Rye, N.Y.

CIRCLE 285 ON reader-service card

\section*{NEW \(150^{\circ} \mathrm{C}\)}
high-temperature, low-power SWITCH SECTIONS

TESTED IN ACTUAL OPERATION FOR OVER 800 HOURS AT A CONTINUOUS AMBIENT TEMPERATURE OF \(150^{\circ} \mathrm{C}\)

Here'百 a new development in low-power, rotary switch wafers that gives high reliability at \(150^{\circ} \mathrm{C}\). They show a safety factor of 5 to 1 over the life requirements of MIL-S-3786. This unusual performance is due to a special alloy we have developed for the contact clips. Under all test conditions applied to date, these clips have demonstrated a remarkable ability to maintain spring tension at elevated temperatures. As a result, electrical contact remains uniformly excellent for the life of the switch. Currently, most Oak sections in ceramic or Mycalex insulation can be supplied with this high-temperature clip, offering you a selection of sizes and circuitry to handle most applications.
Contact the Oak Representative in Your Area for Defails or Send Us a Description of Your Application

1260 Clybourn Ave., Dept. D. Chicage 10, Illinois Phone: MOhawk 4-2222 CIRCLE 286 ON READER-SERVICE CARD

\section*{...see you at WESCON}

If you are going to attend this year's WESCON, one stop will put you in contact with 28,000 fellow electronic design, development, and research engineers. Be sure to come to Hayden Booth No. A-445, Electronic Design's WESCON headquarters. Our editors \({ }^{\text {tr }}\) will be on hand to discuss your design ideas, answer your questions, and urge you to publish material of interest to our readers.

Electronic Desigh is the magazine that communicates most directly to the working design engineer. The progress you report will be put to use at once by an eager, discriminating, and appreciative audience-equal in number to the entire attendance at last year's WESCON.

WE WILL LOOK FORWARD TO SEEING YOU AT THE SHOW.

\section*{NEW PRODUCTS}

This snap in junction terminal bushing has a quick-connect means for access through housings without pig-tail wire leads or screw terminals. Solder, crimp, and double disconnect brass terminals are available. The wire is fastened to the permanent end of the terminal, which is snapfastened into the nylon bushing.

Heyman Mfg. Co., Dept. ED, Kenilworth, N.J.
CIRCLE 287 ON READER-SERVICE CARD
Coaxial Line Stretchers
For 250 to 5000 mc region

Designed to be used in the 250 to 5000 mc region, this line of constant impedance line stretchers employs type \(\mathbf{N}\) connectors. The line stretchers are part of a group of coaxial tuners including double slug tuners, double stub tuners, and trombone stretchers.

Microlab, Dept. ED, 71 Okner Pkwy., Livingston, N.J.

CIRCLE 288 ON READER-SERVICE CARD

\section*{Switching Transistors}

\section*{Cutoff frequencies from 5 to 20 mc}

Types 2N658, 2N659, 2N660, and 2N661 range in average cutoff frequencies from 5 to 20 mc and their HFE at base current of 10 ma averages as high as 75. These are pnp germanium types in the JETEC-30 package.

Raytheon Mfg. Co., Dept. ED, 55 Chapel St, Newton 58, Mass.

CIRCLE 289 ON READER-SERVICE CARD
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

for small parts and assemalies Simplifies, improves and speeds up component production. Provides local heat to otherwise inaccessible spots. Safe and
simple. Max. power input 775 watts, 100 watts standby: 115 volts, 60 cycles. \(153 /{ }^{\prime \prime} \times 211 /{ }^{\prime \prime} \times\) \(15^{\prime \prime} .150 \mathrm{lbs}\). Bulletin on request.
Marion Electrical Instrument Co. Manchester, N. H., U.S.A.
Copyright (1) 1958, Mariun
marion meters

Visif Marion Booths
Wescon Show
CIRCLE 290 ON READER-SERVICE CARD

\section*{Over 3-MILLION Screw Machine Parts}
for one customer (Name on request.)

\section*{. . reject level of}

\section*{LESS THAN .0025\%!}

Our record of low rejects means real savings for you. Near-new Brown \& Sharpe Automatic Screw Machines, manned by skilled set-up men (not operators), assure you high quality work! We're equipped to do the complete j.)...design and make our own cams...small assembly - ra...every detail. Delivery per your schedule.

\section*{Mail blueprinf for bid or phone.}

\section*{INLAND AUTOMATIC, INC.,}

Subsidiary INLAND MFG. CO.
08 Jackson St., Omaha 2, Nebr., Phone: HArney 1108

This four diode package has its own means for mounting and offers protection against environmental extremes. Various inverse voltage and forward current ratings are achieved by the selected diodes. Diodes are replaceable without removing the unit from its mounting place or unsoldering the leads. Qualified per MIL-E-5272A, the units have solder type terminals.

Master Specialties Co., Dept. ED, 956 E 108th St., Los Angeles 59, Calif.

CIRCLE 292 ON READER-SERVICE CARD

\section*{Isolation Amplifier}
\(\pm 0.5 \mathrm{db}, 30 \mathrm{cps}\) to 100 kc

For use with an oscilloscope or voltmeter in measuring floating ac voltages, the model 202 isolation amplifier has a frequency response of \(\pm 0.5 \mathrm{db}, 30 \mathrm{cps}\) to 100 kc , and 3 db down at 5 cps and 1 mc , approximate. Phase shift at 60 cps is under 5 deg. Isolation of input to output effective capacity is less than \(4 \mu \mu \mathrm{f}\).
Quan-Tech Labs., Dept. ED, Morristown, N.J. CIRCLE 293 ON READER-SERVICE CARD

\section*{VHF Preamplifier} 45 db gain from 50 mc to 300 mc
Broadband vhf preamplifier for crystal-video detectors has a gain of about 45 db from 50 mc to 300 mc . Average noise figure is about 7 db . Power input of 70 w is required. Packaged weight is under 4 lb without power supply

Haller, Raymond, and Brown, Inc., Dept. ED, State College, Pa.

CIRCLE 294 ON READER-SERVICE CARD

Non-pressurized at 50,000 feet . . . yet retains

\section*{\(100 \%\) RELIABILITY!}

Extreme altitude is only one of many demanding requirements in which DALOHM RSE precision wire wound resistors offer dependable reliability.
The precision resistor element is inserted in a special shock absorbent material and completely sealed in a tough meta tube. It's ready to meet demanding conditions of mechan ical shock, moisture and humidity, thermal cycling and power loading.

Here are the RSE standard specifications that help you meet demanding electronic requirements.
- Oparcting temperature range: - \(05^{\circ} \mathrm{C}\). \(10275^{\circ}\)
- Procisision ioleronco ronge: \(0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%, 1 \%\) and \(3 \%\).
- Roted at 2, 3, 5, 7 and 10 waths.
- Resistonce ronge trom. 5 ohm to 175 K ohms, dopending on sizo.
- Tomperaturo coofficiont: 0.00002 / Degroe C
- Seven sizes: \(11 / 16 \times .22010161 / 64 \times .395\)
- Complate protection from vibration, moisture and salt spray. Write for Eullotin R-25

SEVEN SIZES;
TYPICAL RSE-5 DERATING CURVE

JUST ASK US
DALOHM line includee a complete selection of miniature precision power resis tors
(wire wound and deposited carbon), precision wire wound miniaiture trim merp poten.
tiomerer and collee fitting knobe. Write for free catalog.
If none of DALOHM standard line meets your need, our engineering depart ment is realm of development, engineering, design and production. Just outine your specific gituation.

DALE PRODUCTS INC. 1328 28th Av. Columbus, Mebr., U.S.A.

\section*{FLEXIBLE PRINTED} WIRING
Sanders Flexprint (1) Printed Circuit Cables and Harnesses sharply reduce the weight, space and cost of electronic and electrical as semblies . . . eliminate wiring error. Conductors are permanently bonded in thin sheets of flexible plastic: vinyls, polyethylenes, polyesters, silicones, Kel-F or Teflon. All lengths and current carrying capacities. Meets military reliability requirements.

MICROWAVE TRANSMISSION LINE Sanders Tri-Plate \({ }^{\text {B }}\) Strip Transmission Line offers broad band operation within the frequency range 100 to \(12,400 \mathrm{mc}\) with substantial savings in size, weight, and cost over conventional coaxial and waveguide assemblies. Components in use include variable attenuators, balanced mixers, hybrid rings, directional couplers, low pass and beacon front ends.

ELECTRO-HYDRAULIC SERVO VALVES Two-stage internal force-feedback principal converts low input power to high output flow. Valves feature lution, low threshold, and high internal stiffness of control over the operating range of \(-65^{\circ} \mathrm{F}\) to \(225^{\circ} \mathrm{F}\). Large-area internal filters in pilot stage assure reliability. Standard flow ranges up to 0-200 gpm (at 1000 psi pressure drop); supply pressures to 3000 psi .

CONSTANT DAMPING RATE GYRO Sanders Subminiature Rate Gyroscope, Type RGB, has a nominal damping ratio of 0.5
\(-30^{\circ} \mathrm{C}\) and \(+100^{\circ} \mathrm{C}\). Simplified damping mechanism compensates for temperature changes without linkages. Features include: lifelong linkages. Features include: tifelong tion, high sensitivity, small size \(\left(15 / 16^{\prime \prime \prime} \mathrm{D} \times 21 / 2^{\prime \prime} \mathrm{L}\right)\), lightweight. Input rates up to \(\pm 1000 \mathrm{deg} / \mathrm{sec}\).

Call or Write:

KEY COMPONENTS PRODUCED BY SANDERS ASSOCIATES offer advantages of unfailing dependability . . . savings in space and weight . . . superior performance for your guidance, control, and detection systems. They are available in production quantities and may be readily adapted to meet special requirements. Sanders also offers complete creative engineering, design, development, and production services with highly specialized experience, skills, and manufacturing facilities in electronics, hydraulics, and electromechanics. Sanders can produce individual components or complex packaged systems capable of meeting extreme environmental and performance requirements.

RADAR ANTENNAS AND SYSTEMS
Sanders Tri-Scannerb Conical Scan Antenna provides three-times the information rate of conventional fire control antennas. In use on a major missile system, it is lightweight and statically and dynamically balanced, and offers unusual manufactures photoetched slot and spiral antennas for flush-mounted arrays, beacons, and communication systems.

\section*{NEW PRODUCTS}

\section*{Teflon Terminals}

Permit strong connections

The type FT-SM-93 ML miniature feed through Teflon terminal provides a mechanical as well as soldering bond, and is especially for use with finer wires. For security, the connecting wire first passes through a hole and then wraps around the lug. Each end lug is flatted on both sides for tighter wrapping of the wire.

Sealectro Corp., Dept. ED, 610 Fayette Ave. Mamaroneck, N.Y.

CIRCLE 297 ON READER-SERVICE CARD

\section*{Decode Unit}

Binary-to-decimal

Decimal coded binary codes that may be trans lated with the Bina-Dec decoder include four-bil codes, two-out of five, and the excess 3 code Module type construction permits assembly of as many decades as required.
Industrial Electronic Engineers, Dept. ED 3973 Lankershim Blvd., North Hollywood, Calif CIRCLE 298 ON READER-SERVICE CARD

\section*{Pulse Height Analyzer}

Linearity of 0.5 per cent
Model PHA-100/20 pulse height analyzer con sists of a 100 -channel analog-to-digital converte and 20 channels of glow transfer tube storage capacity. The unit has all components needed for a scintillation spectrometer except phototube
and crystal. Linearity is 0.5 per cent; deadtime is \(00 \mu \mathrm{sec}\).

Tullamore Electronics Lab, Dept. ED, 6055
S. Ishland Ave., Chicago 36, Ill.

CIRCLE 299 ON READER-SERVICE CARD

\section*{Spectrum Analyzer \\ Covers frequencies from 0 to 15 mc}

Displaying spectrum segments up to 3 mc wide, centered anywhere between 0 and 13.5 mc , the SPA-3 spectrum analyzer covers an overall frequency range from 200 cps to 15 mc . The unit provides continuously variable resolution from 200 cps to 30 kc and a variable scan rate from 1 to 60 cps . It has three amplitude scales, 100 db calibrated attenuators, \(20 \mu \mathrm{v}\) full scale sensitivity, and response flatness of \(\pm 1 \mathrm{db}\). Nominal input impedance is 72 ohms.
Panoramic Radio Products, Inc., Dept. ED, shl S. Fulton Ave., Mt. Vernon, N.Y.

CIRCLE 300 ON READER-SERVICE CARD

\section*{Broadband VHF Preamplifier}

45 db gain from 50 mc to \(\mathbf{3 0 0 ~ m c}\)

This broadband vhf preamplifier for crystalvideo detectors has a gain of about 45 db from 50 mc to 300 mc . Average noise figure is about 7 db . The measured tangential sensitivity of a typical whf crystal-video detector is about - 50 dbm for a vileo bandwidth of 1 mc . The average tangent \(1, l\) sensitivity of this same detector using the the reamplifier is about -88 dbm . Packaged weiflit, excluding power supply, is less than 4 lb . Pow: input of 70 w is required.
Haller, Raymond, and Brown, Inc., Dept. ED. Circh ville Rd., State College, Pa.

CIRCLE 301 ON READER-SERVICE CARD FLECTRONIC DESIGN • August 6, 1958

\section*{H MICRO SWITC I Precision Swithes}

\section*{We've Miniaturized the Subminiaturel}

WEIGHT: 1 gram . . 28 switches to the ounce . . . over 430 to the pound. SIZE: . \(500^{\prime \prime}\) long, . \(200^{\prime \prime \prime}\) wide, \(.350^{\prime \prime}\) high. CUBIC CONTENT: . 035 cubic inches. ELECTRICAL RATING: \(5 \mathrm{amps}-250 \mathrm{vac}, 30 \mathrm{vdc}\). SPDT.

After a long period of laboratory development, micro switch announces this new, highly miniaturized precision snapaction switch and a complementary line of actuators.
We call it the "Sub-subminiature!"
This new "SX" basic switch represents an entirely new set of answers to the space-weight problems in dependable precision switching. It combines new small size with more than ample capacity for wide usefulness, meeting the pressing demand for miniaturization combined with reliability.
In its exacting development, many prob-

The two-word name micro switce is not a generic term. It is the
name of a division of Honeywell.
lems of design, testing and quality control presented themselves. However, 23 years of experience proved of immense value. As a result, a new standard has thus been set by which all precision switches must be measured.
This broad experience can prove of equal value to you. Send for more information about this new switch. Request Data Sheet No. 148.
\(\qquad\)
MICRO SWITCH...FREEPORT, ILL. A division of Honeywell
In Canada: Honeywell Controls, Ltd., Toronto 17, Ontario

Honeywell
MICRO SWITCH PRECISION SWITCHES

\section*{Whether you need SILICON RECTIFIERS}

\section*{rated at \(500 \mathrm{mi} / \mathrm{s}\)}
... or 10 amps

... or 200 amps

... or tube

\section*{replacements}

\section*{Farzian}

Silicon Rectifiers cover the complete range. Write for complete information or send an outline of your requirements.

We'll see you at the Wescon-Booth 1326
SARKES TARZIAN, INC. RECTIFIER DIVISION

DEPT. C-4, 415 N. COLLEGE AVENUE, BLOOMINGTON, INDIANA In Canada: 700 Weston Road, Toronto 9, Teleophone Rogers 2.7535 Export: Ad Auriema, Inc, New York City CIRCLE 303 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

The model 201 transistor tester gives a direct reading measurement of small beta of npn and pnp low power junction transistors in three ranges: 0 to 50,0 to 250 , and 0 to 500 .

Hoover Electric Co., Dept. ED, 2100 S. Stoner Ave., Los Angeles 25, Calif.

CIRCLE 304 ON READER-SERVICE CARD

\section*{Multi-Tap Delay Line}

\section*{2.5 kv dc rating}

Featuring a 2.5 kv dc rating, the model F384 lumped constant, multi-tap delay line has a 66 \(\mu\) sec total delay with taps every \(2.0 \mu \mathrm{sec}\). Rise time is about 10 per cent of the delay selected at any one of the 33 tap points, and impedance is 9100 ohms. Other models have impedances ranging from 50 to 10,000 ohms.
Control Electronics Co., Inc., Dept. ED, 1925 New York Ave., Huntington Station, N.Y.
```

CIRCLE 528 ON READER-SERVICE CARD

```

\section*{Power Supplies Unusual form}

Two power supplies of space-saving design. A multiple output dc to dc supply, semicircular, fits into half of a 6 in . diam, 2-3/8 in. high cylinder. The other half of the cylinder holds the 25.5 to 30.5 v dc source. The unit withstands up to 100 g and operates from -55 to +70 C . It produces 150 v dc at \(60 \mathrm{ma} \pm 1\) per cent, and 180 v dc at \(85 \mathrm{ma} \pm 1\) per cent regulated line and load.
A second supply is \(1-1 / 8 \mathrm{in}\). in diameter and

\section*{Using Thermistors \\ Edited by FENWAL ELECTRONICS \\ THERMISTOR PROBE ASSEMBLIES}

Fenwal Electronics' new thermistor probe assemblies enormously simplify an engineer's design and development problems. Developed and built by Fenwal to your specifications, each assembly is a ready-to-use, easy-tohandle unit incorporating all the qualities that make Fenwal Electronies' thermistors outstanding - sensitivity, stability, reliability, fast response, light weight, and small size.

Three exomples of complete thermistor probe nassemblies Fenwal Electronics has designed and built to customers' specifications.
Fenwal Electronics develops and builds complete assemblies to various configurations and temperature ranges for specific applications. Probes can be completely interchangeable, and have identical resistance-temperature characteristics.
Engineers: Fenwal Electronics now has a thermistor kit No. G200, which includes 12 different individually packaged thermistors, each with complete data, for development work. \(\$ 19.90^{\circ}\) f.o.b. Framingham.

Write Fenwal Electronics, Inc., 38 Mellen Street, Framingham, Mass. for Bulletin EM-13, describing nine of the many thermistor probe assemblies Fenwal Electronics can build for you. Or write for the Fenwal Electronics catalog (EMC-2).

Design - Engineering - Production of Precision Thermistors
CIRCLE 529 ON READER-SERYICE CARD
tal es up less than 4 cu in. It produces \(12,000 \mathrm{v}\) d c at \(1 \times 10^{-7} \mathrm{amp}\) from a single 1.5 v dc C size b. ttery.

Universal Transistor Products Corp., Dept.
E), 17 Brooklyn Ave., Westbury, N.Y.
circle 305 on reader-service card

\section*{Cooling Assemblies}

Compact

Shown is one of a line of small packaged cooling assemblies. Capable of 600 w absorption, the unit operates on 115 v ac, single phase, 400 cps current. Liquid temperature range for this model is -40 to +250 F ; liquid system pressure is 200 psi maximum; fluid flow rate is 1 gpm at 90 F ; and rated delivery is 70 cfm at 2 in . wg static pressure. Other units are available in a variety of sizes and arrangements.
Borg-Warner Corp., Pesco Products Div., Dept. ED, Bedford, Ohio.
circle 306 on reader-service card

\section*{Oscillographic Recording System} In one cabinet

This 6 -channel direct-writing oscillographic recurding system, the model \(156-5466\), comes in a virtical cabinet \(78 \times 22 \times 25 \mathrm{in}\). The 150 series sys m provides 1 per cent overall linearity, curren feedback driver amplifiers and regulated pow er supplies for each channel, and 9 chart spe ds from 0.25 to \(100 \mathrm{~mm} / \mathrm{sec}\).
S uborn Co., Dept. ED, 175 Wyman St., Waltha 54 , Mass.

CIRCLE 307 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

The new Bendix* "SP" connector uses an alumilite finish offering superior resistance to abrasion and corrosion. Flange size and location designed to permit back panel mounting with No. 6 screws. Other outstanding features of the new connector are similar to those of the wellnector are similar
- Safoty wiring complatoly oliminated
- Mechanically assisted coupling and uncoupling through cam action
- Closed entry, proboproof socket contacts
- Visual and audible inspoction of couplingperfect for "blind" locations
- Throo-point bayonof lock; porfect axial alignmont of mating parts at all times
- Constant spring tonsion behind matod insort faces
- Five-key polarization-positive protection against mismating or cross-plugging
- Resilient insorts, performance-proven in millions of Bondix connectors
- Heavy gold plating over silver on all confacts
- Both pin and sockot contacts machined from high-grade copper alloy
- Machined bar stock or impact-oxtruded shell components
- Alumilite finished to resist abrasion and cor rosion-no thread wear-easily withstands 500 hours of salf spray
With the introduction of "SP" Pygmy Electrical Connectors, Bendix again demonstrates its well-known policy of anticipating the needs of industry.
Export Sales ond Sorvicor Bondix Intornational Division, 205 East 42nd St., Now York 17, N. Y. Canadian Affiliato: Aviation Electric, Ltd..
200 Laurention Blvd., Montreal 9 , Quebec

\section*{Scintilla Division}

SIDNEY, N. Y.

CIRCLE 532 ON READER-SERVICE CARD

\section*{RESISTANCE PRODUCTS COMPANY}

914 SOUTH 13 TH STREET,
HARRISBURG, PENNA
smecializing im TME MANUFACTUE of guality kesisions in ant amount

\section*{RELIABLEAND RUGGED shock and vibration resistant}

CONTACTS
1, 2, 3 or 4 pole. Form A. B or C
CONTACT CURRENT
Dry circuit to 10 A resistive or 6A
inductive
CONTACT VOLTAGE
Up to 1000 V , dependins
on eurront
COIL VOLTAGE
3 to \(250 \vee\) DC
COIL RESISTANCE
Up to 12,000 ohm
SENSITIVITY (MAX)
350 mm
TEMPERATURE RANGE
\(-65^{\circ} \mathrm{C} 0^{\circ}+125^{\circ} \mathrm{C}\). Sid. Sperial
to \(+150^{\circ} \mathrm{C}\) or \(+200^{\circ} \mathrm{C}\). Spen
SHOCK-OPERATING 100 G
NON-OPERATING 1000 G
VIBRATION
5 - 2000 cps © 20 G WILL EXCEED
REQUIREMENTS OF:
MIL-R-5757C — MIL-R-25018 MIL.R.6106 - MIL-R.195 23

CONTACTS
1. 2, 3 or 4 pole, Form A, B or C CONTACT CURRENT
Dry circuif to 10A resistive or 6A
inductive
CONTACT VOLTAGE
Up to 1000 V , depending on current
COIL VOLTAGE
6 to \(350 \mathrm{~V}, 60 \mathrm{cps}\) or 400 cps
COIL RESISTANCE
Up to 25,000 ohm
SENSITIVITY (MAX)
350 mw
TEMPERATURE RANGE
\(-65^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}\), std.
\(10+150^{\circ} \mathrm{C}\) soocial
SHOCK OPERATINO
NON-OPERATING 100 G
NON-OPEATING 1000 G
VIBRATION
S-2000 cps © 20 G
WILI EXCEED
REQUIREMENTS OF:
MIL-R-6106 - MIL.R. 19523
MIL-R-5757C - MILR-R.25018
for informafion
on COMPLETE line, wrife:

CIRCLE 530 ON READER-SERVICE CARD

Linearity \(\pm 3 \%\) and
Power Rating 2w (a) \(85^{\circ} \mathrm{C}\) derated to 0 at \(150^{\circ}\) standard \(200^{\circ} \mathrm{C}\) intermittent operation available

RVG-8T Specifications \(1 / 2^{\prime \prime}\) Trimmer Pot
Rating (watts)
2
Torque (oz.-in.) Max. special high torque
available
Weight (ounces) \(\quad 1 / 3\)
\begin{tabular}{rl}
Resistance Range \\
2052 & to 50 K \\
\hline
\end{tabular}
2052 to \(50 \mathrm{~K}^{\circ}\)
Electrical Function Angle \(320^{\circ}\)
Voltage, Max. (insulation)
Linearity, Standard (\%)
- 100K available

Notes: Shaft lock nut is supplied.

\section*{High Performance and Low Cost}

Improve performance of your electrical and electronic circuitry with this new and electronic circuitry with this
Excellent performance characteristics for
Excellent performance characteristics for
s type and size. Windings are on cards or its type and size. Windings are on cards or mandrels, usually with wire temperature phosphor bronze, nickel plated; terminals are gold plated; stop pins and shaft are of stainless steel; precious metal contacts are
used throughout. Insulation is designed to withstand 1000 volts DC.
Available now! RVG-8T is stocked in standard resistance ranges. 100 ohms to 50 K ohms -- up to 100 K ohms available. Can be ohms -- up to supplied with precision potentiometer tolerances, servo-mount, or for \(200^{\circ} \mathrm{C}\) intermittent operation. Write for prices and catalog sheet today.

THE CAMENELL COMPANY
Nowton Upper Falls 64, Mass.

\section*{NEW PRODUCTS}

Gyro Test Turntable
For testing low-drift gyros

The T-806 precision tyro test turntable was designed for testing low-drift gyros in either open or closed loop. Accurate tilting permits polar axis drift tests as well as vertical, inverse vertical and horizontal axis drift tests, all without changing the position of the gyro on the turntable.

Sterling Precision Corp., Dept. ED, 17 Matinecock Ave., Port Washington, N.Y.

CIRCLE 310 ON READER-SERVICE CARD

Transistor Testers
Test forward and back currents

Two instruments, model FT I forward current tester and model BT 1 back current tester, have been designed for quantity testing by unskilled operators. Model FT 1, shown, has an output voltage of \(0-3 \mathrm{v}\) dc. Line regulation and load regulation are each better than 10 mv . Ripple and noise less than 2 mv peak to peak.

Trans Electronics Inc., Dept. ED, 7349 Canoga Ave., Canoga Park, Calif.

CIRCLE 311 ON READER-SERVICE CARD

To help engineers engaged in prototype work, Mesa will supply prototype blanks at cost. The blanks are produced in a wide variety of shapes and sizes...in all types of Diall diallyl phthalate, and are guaranteed free of voids, cracks, and porosities.

We offer this service to engineers who wish to have parts machined first, before going to the expense of building dies.

Send us your requirements.

\section*{MESA PLASTICS COMPANY 11751 Mississippl Ave., Los Angoles 25, Callf. CIRCLE 312 ON READER-SERVICE CARD}

\author{
DKALL
}

\section*{Sine-Cosine Potentiometer}

\section*{Nonlinear type}

Type WPSC 1-1/8 nonlinear sine-cosine precision potentiometer provides two 360 -deg sinusoidal voltage outputs. The output signals are displaced 90 deg in phase and represent the sine and cosine of the shaft rotation angle.

Waters Mfg., Inc. Dept. ED, Wayland, Mass.

CIRCLE 313 ON READER-SERVICE CARD

\section*{Modular Test Equipment}

\section*{Wide variety of applications}

Modules for easy assembly into automatic synchro testers, inertial guidance system testers, universal radar test sets, universal resolver and synchro test consoles, resistance limit bridge consoles, and other test devices.

Kearfott Co., Inc., Dept. ED, 1378 Main Ave., Clifton, N.J.

CIRCLE 314 ON READER-SERVICE CARD

\section*{Power Line Carrier}

\section*{Completely transistorized}

This frequency shift power line carrier equipment, all transistorized, can be operated from a 48 v battery source or conventional ac power. Transmitter power input requirements are 22 w at 117 v , or 11 w at 48 v dc.

Motorola Inc., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill. CIRCLE 315 ON READER-SERVICE CARD

\section*{Low-Pass RF Filter \\ Weighs under 5 oz}

Compact low-pass rf filter designed for low insertion loss in the communication band of 225 to 400 mc with attenuation in the 950 to 1200 mc band of 80 db . Weighs under 5 oz .

Bird Electronic Corp., Dept. ED, 1800 E. 38th St., Cleveland 14, Ohio.

CIRCLE 316 ON READER-SERVICE CARD

new

transistorized power supply
the reliability
you've been waiting for!
This latest Dressen-Barnes power supply is fully transistorized, functioning without vacuum tubes or magnetic amplifiers. Its circuitry* provides superb regulation, and a high degree of freedom from spikes and transients. Unit is short-circuit proof, and the output is double fused to protect the transistors against damage.
TOP COOLING EFFICIENCY - the forced-air cooling system intake is located on the panel, where it draws an air supply more than adequate to cool the transistors.
NO DERATING for continuous operation - the output range is 0.5.36 VDC at 15 amps, with full current available down to 0.5 volts. Extremely low ripple ... all components conservatively rated for long, trouble-free operation. Sold under a one-year guarantee and competitively priced, this power supply offers outstanding value. Write for Bulletin on Model 62-121.
opatent upolied for

DRESSEN-BARNES CORP. - 250 North Vinedo Avenue, Pasadena, Calif. CIRCLE 317 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{Need High Purity fused quartz components?}

\section*{General Electric offers most} complete line ... plus prompt delivery!

HERE'S GOOD NEWS for anyone in the semi-conductor field making silicon and germanium and using ordinary crucibles or thin wall tubing for zone refining. General Electric offers the industry's most complete line of semiconductor components of extremely High Purity fused quartz. This enables you to fill all your quartz requirements from a single source-simplifying ordering, stocking and bookkeeping.
STOCK ITEMS AVAILABLE. General Electric now has plant facilities devoted exclusively to the making of fused quartz products-and offers a wide
range of stock items for immediateyes, immediate-delivery.
FREE ENGINEERING ASSISTANCE General Electric invites your requests for engineering assistance and it's free, without any obligation on your part. By using the know-how and experience of G-E engineers you not only are assured of immediate and expert help, but you also release your own staff for other assignments. Write today, to: General Electric Co., Lamp Glass Department ED-88, Willoughby Quartz Plant, Wilioughby, Ohio.

Progress Is Our Most Important Product

\section*{put your finger on}

Yes-bigger profits from smaller parts are very possible when you engineer in Stampings-especially Advance Stampings. As Specialists in Small Stampings, Advance has been helping metal working industries of various kinds attain higher production at lower cost for over 35 years.

Here are typical Advance Stampings which have been fabricated in different materials to meet tolerance specifications, delivery and price.

Sond us your blue prinfs of samplos for quotations.
Advence engincers are available to consulf on ways to improve your compelitive position.
Write for Small Stamping Specialists Brochure
AdVance stamping co.
12025 Dixie Ave., Detroit 39, Michigan

\section*{NEW PRODUCTS}

Color Tolerance Computer
Has range from 0 to 20 NBS units

Designed for use with the IDL color-eye colorimeter, the model No. 100 delta E electronic color tolerance computer has a range from 0 to 20 NBS units. Accuracy is \(\pm 0.1\) NBS unit or 3 per cent.

Instrument Development Labs., Inc., Dept. ED, 67 Mechanic St., Attleboro, Mass.

CIRCLE 321 on reader-Service card

Accuracy of \(1 / 4\) per cent absolute (not full scale) is obtained with the MV-57A dc vtvm. Measuring range is \(100 \mu \mathrm{v}\) to 1 kv , and input impedance is 6 meg on low ranges, and 60 meg from \(1 \mathrm{v} u p\).

Millivac Instruments, Dept. ED, P.O. Box 997, Schenectady, N.Y.
\[
\text { CIRCLE } 322 \text { ON READER-SERVICE CARD }
\]

\section*{Digital Data Logger}

Takes up to \(\mathbf{3 0}\) go-no-go signals
The DIGIDAC/Logger takes up to 30 go-nogo (on-off) signals and converts them to a onechannel digital pulse output. It can be used with tactical telemetry systems, subcarrier oscillators, checkout systems, DIGIDAC/Converter, and DIGIDAC/Comparator.

Aeronca Mfg. Corp., Dept. ED, Middletown, Ohio.

CIRCLE 323 ON READER-SERVICE CARD

Electro designs and manufactures hundreds of special application transducers to meet any shape or size
requirement. These reluctance-type transducers produce a tremendous voltage output when excited by the proximity of moving metal objects. "Specials" can be made using a wide variety of materials, connectors and tinishes. Provisions of ML-Q-5923 can be met when specified.

Let us solve your "special" problem!
Electro products Laboratorizs

CIRCLE 324 ON READER-SERVICE CARD

\section*{maximum}
electrical capacity minimum
size and weight

in these light duty switches from

\section*{LINEMASTER}

\section*{America's footswitch leader}

A trio from more thon 75 different
models, Linemaster designed to footswitch
fit every conceivable need. Write for prices and completo catalog or

促

\section*{LINEMASTER SWITCH CORP.}

130 Putnom Rood. ©. Woodstock, Connecticut CIRCLE 325 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{Filament} Transformer
For Eimac 4CX1000A

Designated as Stancor P-6463, this unit provides center-tapped secondaries of \(6,6.5\), or 7 v , at 13 amp . Primary is \(117 \mathrm{v}, 60 \mathrm{cps}\). The P-6463 is designed to withstand 2000 v rms and measures \(2-13 / 16 \times 3-3 / 8 \times 3-3 / 8 \mathrm{in}\).
Chicago Standard Transformer Corp., Dept ED, 3501 Addison St., Chicago 18, Ill.

CIRCLE 326 ON reader-service card

AC Power Supply Available in 19 models

The Series 7000 high-voltage ac power supplies are available in 19 models, operating on 220 or \(440 \mathrm{v}, 60 \mathrm{cps}\), single-phase inputs, with output voltages ranging from 0 to 25 to 0 to 150 kv , at 5 to 100 kva .
Beta Electric, Div. of Sorensen \& Co., Inc., Dept. ED, Richards Ave., South Norwalk, Conn. CIRCLE 327 ON READER-SERVICE CARD

\section*{Electroformed Components}

At reduced cost

Electroform process techniques specifically designed for the manufacturer of precise, complex electronic components have reduced costs by eliminating machining operations. Shown are electroformed microwave components.
General Electronic Labs., Inc., Dept. ED, 195 Mass, chusetts Ave., Cambridge, Mass. CIRCLE 328 ON READER-SERVICE CARD

\title{
You name the environment ...TENNEY will simulate it!
}

Altitude, heat, cold, explosion, vacuum ... whatever environment you need, there is an extensivelytested Tenney prototype already built that is very near your specifications. By adjusting the prototype to fit your particular requirements, we can make delivery in a surprisingly short time. In operation, your Tenney chamber will reach ideal environmental conditions quickly, maintain them efficiently throughout the test run, and pro-
vide accurate data for quick, simple evaluation.
Tenney, pioneer in the science of environmental testing, is today the world's largest, most experienced creator of environmental testing equipment. Write today for literature describing Tenney's complete line of prototype chambers, or for information on Tenney's research and development, engineering consultation, and design services.

 COLD, HUMIDITY, VACUUM, EXPLOSION, SAND, DUST, FOG, AND MOST OTHER ENVIRONMENTAL CONDITIONS,

\section*{IS CONSTANT VOLTAGE POSSIBLE IN THESE CHANGING TIMES?}

... Basically, the problem is a classical one of semantics. Higher minds than ours have pondered this question for centuries.

As a practical exercise, let us examine the case of voltage regulation reference source in the power supply circuit shown above. This passive network corrects input voltage changes of more than \(\pm 15 \%\) of rated outputs and controls them to within \(\pm 1 / 2 \%\)...a feature that is highly important in keeping storage batteries alive longer.

The point is that constancy is a relative term understood only against a background of change. The answer then to the initial question is "yes"...constant voltage is possible.

You can get the

regulators from the higher minds at Raytheon by writing to:

VOLTAGE REGULATOR MAN
Raytheon Manufacturing Company Magnetic Components Department
Section 6120
Waltham 54, Massachusetts

\section*{NEW PRODUCTS}

\section*{Pulse Transformers}

May be impedance matched

Types PT-82 and PT-91 are miniature encapsulated units designed to plug into standard noval sockets. These transformers may be used for isolation, coupling, or blocking oscillator circuits. The windings may be connected in various ways for impedance matching. A typical blocking oscillator performance is a pulse width of \(1.1 \mu \mathrm{sec}\) and a pulse height of 70 v . (One winding.)

Berkshire Labs, Dept. ED, 578 Bank Village, Greenville, N.H.

CIRCLE 331 ON READER-SERVICE CARD

Magnetic Switching Amplifier
Designed for range of -67 to +200 F

The SA6A-1 unit, which operates from 115 v , 60 cps commercial power sources, is specifically designed for such applications as controlling temperatures in hermetic integrating gyroscopes to an accuracy of less than 0.5 F ; for use with various types of fuels and liquids in circulating systems and for accurate and reliable oven temperature control. The device is designed for a temperature operating range of -67 to +200 F continuous operation. It meets all requirements of MIL-E-5272C.

Magnetic Controls Co., Dept. ED, 6405 Cambridge St., Minneapolis 16, Minn.

CIRCLE 332 ON READER-SERVICE CARD
high input impedance with extremely low drift
The Model REL-120 is a completely transistorized. direct-coupled, instrumentation d-c amplifier featuring: (1) long life resulting from the use of such passive elements as transistors and diodes; (2) low heat generation from an average required input power of only 10 watts: and (3) a self-contained power supply that works directly from either 60 or 400 cycles. For full specs. write for Dala File ED-501-1
RHEEM MANUFACTURIMG COMPany ; ELECTRONICS DIIISION

for mobile and portable military shelters

- designed and produced in accordance with military specifications for space, equipment and personnel heating requirements.
- 5 basic models - each customengineered for a wide variety of applications - for ground control and maintenance equipment in missile systems, radar, microwave and radio communication systems, etc.
- BTU/Hour range: from 15,000 to 60,000 .
- multi-fuel-burning models; also models which burn any type gasoline.
- all models air-circulating, thermostatically controlled, all designed for cold starts as low as \(-65^{\circ} \mathrm{F}\).

Other Hunter equipment for military applications: engine beaters; unpowered, instant lighting torches; refrigeration units.

for complete specifications and details

Miniature Electrical Connectors 25 modifications available

Over 25 modifications of the basic 19-contact miniature electrical connector are now available. All connectors are environmental and meet or exceed the requirements of the latest revision of MIL-C-5015.
The Deutsch Co., Dept. ED, 7000 Avalon Blvd., Los Angeles 3, Calif.

CIRCLE 335 ON READER-SERVICE CARD

\section*{Digital Instrument} Displays numbers on cathode tubes

Model DR-4C is an electronic digital display unit providing digital readout for instrumentation and computers, features printed circuit modular construction. It operates on \(115 \mathrm{v}, 60\) cps, 50 va.

Hoffman Electronics Corp., Semiconductor Div., Dept. ED, 930 Pitner Ave., Evanston, Ill. CIRCLE 336 ON READER-SERVICE CARD

\section*{Servo Motor}

125 C ambient operating temperature

This compact damped 400 cps servo motor in BuORD size 11 provides low cost servo loop damping. Ambient operating temperature is 125 C. Stall torque is 0.60 oz -in. minimum.

Servomechanisms, Inc., Mechatrol Div., 1200 Prospect Ave., Westbury, N.Y.

CIRCLE 337 ON READER-SERVICE CARD

\section*{CONQUEST OF SPACE}

There are some who find fulfillment in boundless outer space. And more power to them!

But those of us who still have our feet on the ground also find real challenges in less expansive surroundings.

With the aid of a medium-power microscope and several years' experience with fluorochemical designs, we successfully pack 4 filter reactors and a 350 VA power transformer into 60 cubic inches of hermetically sealed inner space. Result is 6 pounds of streamlined reliable power for small space platforms...proved in performance in '58model missiles and (pardon the expression) aircraft.

HERE'S HOW
\(=\)

with 4 layers, alternate \(n\) and \(p\) type
\(=\)

2-terminal switching diode

CTERISTICS
\(V_{t}\) (breakdown voltage) . 20-100v
\(\mathrm{I}_{\mathrm{b}}\) (breakdown current) . \(<500 \mu \mathrm{a}\)
\(\mathbf{V}_{\mathrm{h}}\) (holding voltage) . . . \(<2 \mathrm{~V}\)
\(I_{h}\) (holding current) . . \(<50 \mathrm{ma}\) structure of 5 components
RANGE OF CHARACTERISTICS (from 1-3 amps.. voltage \(<1\) volt plus 0.2 to 1.5 ohms times current Dissipation N 100 mw Time to close . . . \(<0.1 \mu \mathrm{sec}\)
Time to open . . . \(<0.2 \mu \mathrm{sec}\)
STANDARD TYPES AVAILABLE FOR DELIVERY NOW
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & \[
\begin{aligned}
& V_{b} \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& I_{b} \\
& \mu \mathrm{a}
\end{aligned}
\] & \(V_{h}\)
Volts & \[
\begin{gathered}
I_{n} \\
m a
\end{gathered}
\] & \[
R_{n}
\] ohms \\
\hline 4N20D & \(20 \pm 5\) & < 500 & <2 & \(<50\) & \(<20\) \\
\hline 4N30D & \(30 \pm 5\) & < 500 & \(<2\) & \(<50\) & <20 \\
\hline 4N40D & \(40 \pm 5\) & \(<500\) & \(<2\) & \(<50\) & < 20 \\
\hline 4N50D & \(50 \pm 5\) & \(<500\) & \(<2\) & \(<50\) & \(<20\) \\
\hline
\end{tabular}

ENGINEERING DATA AND ASSISTANCE
Our engineering staff, under the direction of Dr.William Shockley, will undertake circuit problems in typical applications such as: sawtooth oscillators, pulse generators. bistable circuits, ring counters and various switching functions. Special types of transistor diodes are being developed to individual specifications. Technical information on request. Write to Dept. 1-2H8.
-Invented at Bell Telephone Laboraturies.

\section*{NEW PRODUCTS}

\section*{Torque Motor}

Has output stroke of \(\pm 0.007\) in.

The model 102 torque motor has a \(\pm 5 \mathrm{lb}\) midposition output force; \(\pm 0.007 \mathrm{in}\). output stroke; and 800 cps resonant frequency. Hysteresis is 2 per cent maximum. Maximum power required is 2.75 w , and normal temperature range is -65 to +350 F.

American Measurement and Control, Inc., Dept. ED, 240 Calvary St., Waltham, Mass.

CIRCLE 340 ON READER-SERVICE CARD

\section*{Digital Load Indicator}

Basic accuracy is \(\pm 0.15\) per cent

Using a precision null balance servo system, the model DLI-2 digital load indicator gives continuous digital presentation directly in desired units. Basic instrument accuracy is \(\pm 0.15\) per cent.
Performance Measurements Co., Dept. ED, 15301 W. McNichols, Detroit 35, Mich.

CIRCLE 341 ON READER-SERVICE CARD

\section*{Recorder}

Accuracy is \(\mathbf{2}\) per cent of full scale
Rectilinear recorder with standard chart speed of 1 in . per hr, standard scale of 0 to 1 ma , and rated accuracy 2 per cent of full scale. Response time is 1 sec maximum and galvanometer sensitivity is 1 ma dc full scale. Dry marking process utilizes pressure sensitive paper. Unit contains 63 ft chart roll.

Rust Industrial Co., Inc., Dept. ED, 130 Silver St., Manchester, N.H.

CIRCLE 342 ON READER-SERVICE CARD

Call Speer for a complete line of fixed composition resistors. phenolic coil forms

For detailed information on specifications, characteristics and applications ask for this catalog of Speer Electronic Components!
Automation Soldering your concern? Be sure to send for Speer's Bulletin on this subject.

Other Speer Products
for the Electronics Industry
R. F. coils - chokes - fixed composition capacitors - Speer PAC made by Jeffers Electronies. apacirors. Also electronic fube anodes. contacts - rocket and missile parts - brushes • graphite products for the steel and chemical industries.

\section*{Why do it Yourself? \\ \\ It Pays to Standardize on Jeffers R.F. Choke Coils \\ :You can save time, labor, and} - money by stocking the wide range - of Jeffers R.F. choke coils just as - you do resistors, capacitors, and - other similar components. You can - forget tedious, expensive hand : assembly from miscellaneous : forms, wires, and coatings by using : standardized Jeffers coils, com© pletely assembled for use.
- Jeffers coils are well made, using - insulated copper wire windings... - husky molded jackets. All windings - are soldered to leads. . . shorted end - turns are completely eliminated.
- Put these advantages to work in : - your circuits! Jeffers Electronics - offers you .. . ready for delivery -... a complete line of R.F. choke - coils with a complete range of inductance values. Write today for : our specification sheets.

Other doffers Preducte
fixed composition capacirops

\section*{Opher Speer Products}
for the Elocirenics Industiry
anodes - confacts - resisfors dises - brushes - molded notched coil forms - boltory carbon - graphito plates and rods
- Pafonied -

JEFFERS ELECTRONICS

\section*{DIVISION}

SpEER CARBON COMPANY Du Bois, Ponnsylvania

\section*{Other Speer Divisions:} Sneer Rosistor, Speer Carbon Products, infernafional Graphite \& Electrode

\section*{Slip Rings}

Custom molded

Precision molded from a combination of precious metal alloys and Plaskon Alkyd, these miniature slip rings are spotwelded to the leads to assure permanent, noise free connections. Concentricity is held to 0.002 in . T.I.R. or better.

Electro Development Co., Dept. ED, 14701 Keswick St., Van Nuys, Calif.

CIRCLE 345 ON READER-SERVICE CARD
Wirewound Resistors
Miniature

Wirewound resistors in this miniature line can be obtained in values from 1 ohm to 1 megohm to tolerances of \(\pm 0.05\) per cent. Standard temperature coefficient is \(\pm 15 \mathrm{ppm}\), and power dissipation is 0.15 w .

Ultronix, Inc., Dept. ED, 116 S. Bayshore Blvd., San Mateo, Calif.

CIRCLE 346 ON READER-SERVICE CARD

\section*{Relay}

Operates from -65 to +125 C
Model R-9800 sensitive 5 amp dc relay operates from -65 to +125 C . Switch contact: 5 amp resistive load, 3 amp inductive load. Coil sensitivity is from 1 w to 40 mw with coil resistance up to 25,000 ohms. The unit withstands 30 g up to 3000 cps at the pick-up voltage. Life is 100 ,000 operations (minimum), 50,000 operations at +125 C with 60 mw coil sensitivity.

Hi-Spec Electronics Corp., Dept. ED, 7328 Ethel Ave., North Hollywood, Calif.

CIRCLE 347 ON READER-SERVICE CARD

\section*{for versatile 'scope recording... SINGLE FRAME OR MOVING FILM \(1 / 2^{\prime \prime}\) TO 12,000" PER MINUTE}

\section*{only one of its kind... ETC MODEL SM-100}

Accurate records are yours with this sensational, new ETC recording camera. Look at the range. Where else can you find such versatility? Or use the binocular viewer which allows continuous viewing in subdued light during the recording progress.

The ETC Model SM-100 recording camera is designed primarily for use with \(5^{\prime \prime}\) oscilloscopes, can be mounted either in horizontal or vertical position, with provision also for use with larger, sloping-face console-type 'scopes.

This camera is typical of the pioneering development of ETC in its broad line of industrial and military electronic devices, as well as single- and multi-gun cathode ray tubes.

No matter how complicated your research or testing problem, if it involves electronics, bring it to ETC.

\section*{Headquarters for Multi-Channel Scopes and Multi-Gun CR Tubes ETC produces a complete line of standard and special 2- to 8-channel oscilloscopes; power amplifiers; and multi-gun cathode ray tubes with from 2 to 10 guns operating on a single tube face.}

ETL
Write for complete ETC catalos

- f:1.5 camera, to \(1 / 100\) sec.
- adequate film magazine
- universal mounting tripod
- continuously variable motor speed control
owv \({ }^{\text {ond }} 985\)

 Camera moumted on cilloscope. Insel shows ir Ifod mounsing and speed and spe
control. F EATURES:
- Wollensack \(\mathrm{f}: 1.5,50 \mathrm{~mm}\). coated lens.
- Shutter speeds 1 to \(1 / 100 \mathrm{sec}\). - Diaphragm f:1.5 to f:8.
- Object to image ratio 4.5:1.
- Miniature glow lamp provides timing marks on edge of film.
- Lamp excited at line frequency using pulse shaping circuit.
- Connections available for external marker timing pulses.
- Film magazines individually removable.
- Built-in light traps.
- Solenoid actuated drive with magnetic break in supply magazine; reduces film waste.
- \(1 / 15 \mathrm{hp}\). motor with variac speed control; no warmup time needed.
- Direct reading tachometer in in./min.
- 115 V ., \(50-60\) cycles.
- 35 mm . film or paper (perforated or unperforated).
- 400 ft . film capacity (1,000 ft. supply slightly extra). - Weighs 35 lbs.

\section*{AN UNPRECEDENTED EXPERIMENTAL OFFER!
 ot virtually HALF PRICE! \\ Limit is 2 \\ We pay the freight! \\ Immediate air delivery \\ 27: \\ Standard Price \$53.50}

\begin{abstract}
- Every engineer who needs or wants our versatile, most-used, No. 461-C lockingcontact Meter-Relay for use or experiment ...but never ordered because of price or wait...can now order at half-price and get immediate delivery by return air mail!
\end{abstract}

D'Arsonval might say:
"Formidable!

Translation:

"It is a matter of great amazement to me that Assembly Products can manufacture such a superb version of my sensitive electric meter
...then add the ingenious adjustable contact within the meter
...then insure the concise, reliable contact action for 10 to 20 million cycles by means of the unusual locking-unlocking coil
...then develop the refinements which make this magnificent device capable of indicating and controlling an infinite variety of electrical, physical and mechanical actions
...then build a substantial business by direct sales to the user at most reasonable prices
...enjoy unqualified success
...AND THEN MAKE THIS UNUSUAL OFFER!"
"Could I write, I would."

AT THE WESCON SHOW AND AT THE PHILADELPHIA IS SHOW

Sold over our counter at the same \(\$ 27.50\) !

OFFER ENDS OCTOBER 1, 1958 (Order postmark date) ALSO REQUEST FREE CATALOG OF COMPLETE METER-RELAY LINE
 Assembly

Phone: HAmilton 3-4436 Products HAmilton 3-4446 75 Wilson Mills Road, Chesterland, Ohio

\section*{NEW PRODUCTS}

\section*{Magnetic Servo Amplifer}

Reversible output

The type III magnetic servo amplifier features rugged construction and encapsulated windings. The half-wave, reversible output amplifier will drive a variety of standard low-impedance, 2-phase servo motors delivering up to 10 w mechanical output.

Reflectone Corp., Dept. ED, Stamford, Conn.

CIRCLE 350 ON READER-SERVICE CARD

\section*{Wafer Bearings}

\section*{Variety of shaft and housing diameters}

Microwafer bearings, narrower than standard, come in bore diameters from 0.0937 to 0.1875 in . housing diameters from 0.2500 to 0.4375 in . Of 440 C stainless steel, they have tolerances of ABEC 7 or better.

New Hampshire Ball Bearings, Inc., Dept. ED, Peterborough, N.H.

CIRCLE 351 ON READER-SERVICE CARD

\section*{Relay}

Provides 3pdt switching
Model KM miniature armature type relay occupies about 0.5 cu in . and can operate on 750 mw . With arrangements up to 3 pdt , the dc operated unit switches up to 2 amp at 115 v 60 cps resistive loads.

Potter \& Brumfield, Inc., Dept. ED, Princeton, Ind.

CIRCLE 352 ON READER-SERVICE CARD

Automatic equipment with automatic controls makes it possible for Spectronic to provide tighter conformity to specifications. For example, our new Automatic Rack Plater insures uniform plating thickness throughout any piece.

IF YOU HAVE UNIQUE PROBLEMS CONCERNING THE PRECIOUS METAL PLATING OF A PRODUCT OR COMPONENT, CONTACT SPECTRONIC.

\section*{SPECTRONIC PLATING CO., INC.}

652 Hudson Street, Now York 14, New York
CIRCLE 353 ON READER-SERVICE CARD

\section*{Frequency Converter}

Input adjustable from 300 to 900 eps
Transistorized converter for ac and dc power supplies. Full scale input is adjustable from 300 to 900 cps with a minimum frequency of 10 cps . Output is 0 to 5 v dc into a 500 K load; 0 to 100 mv dc into a 10 K load; or 0 to 50 mv de into a 5 K load.

Fischer \& Porter Co., Dept. ED, 752 Jacksonville Rd., Hatboro, Pa.

\section*{Photoelectric Transducer}

\section*{Pin-point sized}

Pin-point sized photo-electric transducer with up to 50 individual outputs per linear inch. For use in reading control signals from tape, digital computation, and evaluating optically measurable quantities.
Waldorf Instrument Co., Dept. ED, Huntington Station, N.Y.
CIRCLE 355 ON READER-SERVICE CARD

\section*{Strip Chart Recorder}

\section*{Provides 1 per cent limit of error}

The G-11A strip chart recorder is a small, null-balance potentiometer type. It provides 1 per cent limit of error and 1 sec full-scale balancing time with span adjustable from 9 to 100 mv .

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.
circle 356 on reader-service card

\section*{Toroidal Signal Transformers}

\section*{For low-level applications}

Series 791 miniature toroidal signal transformers are for low-level applications where high impedance, low phase shift, and minimum pickup are required. They can be used with input voltages of 0.5 mv .

Arnold Magnetics Corp., Dept. ED, 4613 W. Jefferson Blvd., Los Angeles 16, Calif.

CIRCLE 357 ON READER-SERVICE CARD

\section*{learn how" TALENT GROWS at EMERSON ELECTRIC''}

COME ALONG on this illustrated tour of Emerson Electric's engineering facilities. Meet our engineering staff as they meet the challenges of complex problems related to advanced olectronics and missiles projects. Find out about our operating philosophy, diversified projects, size, benefits, educational opportunities, our future and yours!

We believe we offer the wide-open challenges and career opportunitios you've been looking for. This new brochure is our way of introducing ourselves and our operations.

SEND TODAY for colorful. illustrated bro. chure using convenient coupon, or simply address a letter or card to A. L. Depke. Engineering Employment Supervisor. There is no obligation.

MR. A. L. DEPKE
EMERSONELECTRIC
8100 W. FLORISSANT ST. LOUIS 21, MO.
Please send me lllustrated brochure:
"Talent Grows at Emerson Electric"

Name

Address \(\qquad\)

Clty \(\qquad\)

\section*{TOBE}

CREATIVE ENGINEERING

THE NRG-200 SERIES OF LOW-INDUCTANCE THERMONUCLEAR ENERGY-STORAGE GAPACITORS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{NRG-200 SERIES SPECIFICATIONS} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Type } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{Watt Seconds} & \multicolumn{2}{|r|}{Hating} & \multirow[t]{2}{*}{Self Inductance (MIcrohenries)} \\
\hline & & Mfd. & DC: l'eak & \\
\hline NRG. 201 & 1000 & 5.0 & 20 KV & . 04 \\
\hline NRG-202 & 1500 & 75 & 20 KV & . 045 \\
\hline NRG-209 & 2000 & 10.0 & 20 KV & 055 \\
\hline NRG-204 & 3000 & 13.0 & 20 KV & . 08 \\
\hline
\end{tabular}

Tobe now announces the availability of a series of reliable, low-cost energystorage capacitors for thermonuclear equipment and similar applications. The NRG-200 series capacitors have a minimum life expectancy of 1000 operations, and may be operated at ambient temperatures up to \(40^{\circ} \mathrm{C}\). Maximum permissible reversal voltage is \(90 \%\). They can be discharged into a very low-impedance load with complete safety.

For further technical information or engineering aid, write Tobe Deutschmann Corporation, Norwood, Mass.

Specify (TOBE

\section*{NEW PRODUCTS}

\section*{Tuneable Transformers}

Encapsulated units for printed circuits

This series of sealed miniature tuneable transformers and reactors for printed circuit use meets MIL-T-27A, Class R, Grade 2 or 3, and may be provided with electrostatic shielding. Construction is available with 2 to 8 functional terminals.
Coil Winders, Inc., Dept. ED, New York Ave., Westbury, N.Y.

CIRCLE 360 ON READER-SERVICE CARD

\section*{Tape Transport System}

Fully transistorized
Model 424 transistorized t เpe transport system has start-stop times under 2 msec , permits t.pe speeds from 7.5 to 160 ips in both directions. Tape widths from \(1 / 4\) to 2 in.; storage bins for 3000 in. of tape.
D. G. C. Hare Co., Dept. ED, 30 Burtis Ave., New Canaan, Conn.

CIRCle 361 on reader-service card

\section*{Transistorized Power Supply}

Provides \(28 \mathrm{rdc}, 0\) to 5 amp
This transistorized, precision. regulated power supply provides \(28 \mathrm{v} \mathrm{dc}, 0\) to 5 amp . Voltage regulation is 0.1 per cent from no load to full load with \(\pm 10\) per cent change in input. Ripple is 0.1 per cent to peak.

General Electric Co., Dept. ED, Schenectady 5, N.Y.

CIRCLE 362 ON READER-SERVICE CARD

\section*{Stretch Cable}

\section*{Silicone}

Silicone stretch cable extends 200 per cent and retracts to its original size. The wire has a temperature range of -150 to +375 F , dielectric strength of 550 v per mil, and tensile strength of 1500 psi.
Stretch Wire Corp., Dept. ED, P.O. Box 893, New Rochelle, N.Y. CIRCLE 364 ON READER-SERVICE CARD

Printed Circuit Holder Adjustable

These adjustable combination chassis and work positioners are for
holding printed circuits during assembly of component parts. Boards can be positioned in any plane of a half sphere and instantly locked there.

Wilton Tool Mfg. Co., Inc., Dept. ED, Schiller Park, Ill.

CIRCLE 365 ON READER-SERVICE CARD

\section*{Ferrite Memory Core}

Offers square B-H hysteresis loop
Type IR880 ferrite memory core offers a square B-H hysteresis loop, making it useful for fast switching memory matrices in digital computers. Core magnetic properties are designed for use with driving currents of about 820 ma . Output for a single turn is above 120 mv . OD is \(0.08 \mathrm{in} . \pm 0.003 \mathrm{in}\)., ID is 0.05 in . \(\pm 0.003 \mathrm{in}\)., and thickness is 0.025 in. \(\pm 0.003\) in.

International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.

CIRCLE 366 ON READER-SERVICE CARD

\section*{\(1 / 3\) the size. . \(1 / 2\) the cost!}

\section*{Metronix ELECTRONIC VOLTMETERS panel-mounted, single and multi-range}

FROM \(1 / 3\) to \(1 / 6\) smaller than convenFtional units, these METRONIX instruments occupy no more panel space than the meter.

METRONIX AC and DC models are the smallest available with such a wide choice of ranges. Single-range, military, rack-mounted and plug-in types. Ask for Bulletin M-602

MODEL 300 D. C. (illustrated) RANGES: \(0.1 / 3 / 10 / 30 / 100 / 300 / 1000\) volis D. C.
ACCURACY: \(\pm 3 \%\), full scale deflection INPUT RESISTANCE: 10 megohms
PRICE: \$94.50

Assembly Products Inc.
Chesterland 17, Ohlo
CIRCLE 367 ON READER-SERVICE CARD

\section*{UP TO 1000 MFD-VOLTS IN LESS THAN 2/100 OF A CUBIC INCH PYRAMID TANTALUM CAPACITORS}

Pyramid Tantaium slug capacitors are miniaturized to provide maxı mum space economy.

New Pyramid Tantalum slug capacitors have cy!indrical cases and contain a non-corrosive electrolyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both seep and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance - made to meet MIL.C. 3965 Specifications.

Commercially available immediate!y, these new Pyramid Tantalum capacitor units have an operating range between -55 C to 100 C for most units without any de-rating at the higher temperature

To obtain complete engineering data and prices for Pyramid Tan talum slug capacitors, write to: Pyramid Research and Development Dept. Pyramid Electric Company, 1445 Hudson Boulevard, North Bergen. New Jersey

CAPACITORS - RECTIFIERS FOR ORIGINAL EQUIPMENT FOR REPLACEMENT

\section*{Progress in the Science of Cbronometry}

In 1714, the British government offered a prize of \(£ 20,000\) for any means of determining a ship's longitude within 30 nautical miles at the end of a six week's voyage. John Harrison, a self-educated Yorkshire carpenter, won the prize in 1760 with an accurate clock.

In 1958, ICBM s and earth satellites created the need for new concepts in accurate timing. To fill this need, Hycon Eastern has developed an electronic Timing System with heretofore unattainable timing precision capable of operating anywhere in the world.

\section*{AN INTEGRATED TIMING SYSTEM FOR TODAY'S GLOBAL CONCEPTS}

Solar or sidereal time is displayed visually and is available for input to automatic computers and indexing data with many types of recorders . . . magnetic tape, oscillograms, photographs and strip charts. Furnishing a time scale with resolutions available to one microsecond, this system is ideally suited for tracking and control of missiles, astronomical measurements, and navigation systems. Write for Bulletin TS-00.

\section*{NEW PRODUCTS}

\section*{Shut-Off Valves}

\section*{Operate in ambient temperatures of 450 F}

Fabrilite series of in-line shutoff valves to control the flow of hot, cold, or mixed air through jet plane ducts. Lighter and smaller than similar types, they operate at duct temperatures from -65 to +850 F against pressures from 5 to 225 psi , and in ambient temperatures of 450 F .

Vapor Heating Corp., Vap-Air Div., Dept. ED, 6444 W. Howard St., Chicago 31, Ill.

CIRCLE 370 ON READER-SERVICE CARD

\section*{Precision Attenuator}

Frequency range of dc to 3000 mc
A 10-position turret precision attenuator which features pull-turnpush detent action. Frequency range of dc to 3000 mc on all values to 50 db , and dc to 1000 mc on val-
ues 51 db to 60 db . Any combination of values to 60 db , including fractional values, is available.

Stoddart Aircraft Radio Co., Inc., Dept. ED, 6644 Santa Monica Blvd., Hollywood 38, Calif.

CIRCLE 371 ON READER-SERVICE CARD

\section*{Tantalum Capacitors}

\author{
6 to 75 v range
}

Small sintered-anode tantalum electrolytic capacitors with low leakage currents and power factors. Temperature range is -55 to +85 C. Voltage range is from 6 to 75 v . Capacities are from 3.5 to \(325 \mu\). International Telephone and Telegraph Corp., Dept. ED, 100 Kingsland Rd., Clifton, N.J.

CIRCLE 372 ON READER-SERVICE CARD

\section*{Miniature Relay}

\section*{For printed circuit use}

The dpdt Type GS dc relay is an improved version of the G-200. For printed circuit and other use, the
> call on BART for controlled PRECIOUS METALS PLATING

BART specializes in plating to heavy industrial thicknesses with every type of precious metal. Backed by 44 years of experience and equipped with large modern facilities augmented by one of the most extensive engineering and research organizations in the electroplating field. Bart Manufacturing Corporation can provide an unequalled plating service.
Contact BART today regarding your present precious metal plating problems or future requirements.
GOLD PLATIMG: Specification plating up to .001 inch with conventional or bright gold over complete surface or on specified areas. Heavier deposits on critical areas can be deposited by use of BART-developed techniques. Piece parts up to \(6^{\prime} 0^{\prime \prime}\) long can be processed. Complete barrel facilities available for small parts.
SILVER PLATING: Heavy platings running up to \({ }^{1 / 1 "}\) and more for caustic processing equipment and other uses. Specification platings as under-plating for Gold and Rhodium.
RhODIUM PLATING: Heavy platings to \(.000150^{\prime \prime}\) and heavier for corrosion resistance and wear resistance on contact surfaces.
PALLADIUM PLATING: Heavy platings for corrosion resistance used as a non-tarnishing finish on silver plated waveguides and other electronic components.
unit has a coil resistance of 600 ohms for 26.5 v dc circuits. Ambient temperature range is -65 to \(+i 25\) C. Contact rating is 3 amp resistive load at 28 v de or 115 v ac for 100,000 operations; 2 amp resistive load at the same voltages for 500,000 operations.
General Electric Co., Dept. ED, Schenectady 5, N.Y.

CIRCLE 374 ON READER-SERVICE CARD

\section*{Shaft Angle Indicator}

\section*{For telemetering}

In the Optisyn shaft angle indicator, the shaft rotation input yields two output wave forms which contain all information needed to measure total shaft angle. Two photo diodes are used in a current push-pull mode for each electrical wave form. With the Optisyn, a shaft position can be telemetered by transmitting two binary wave forms.
Dynamics Research Corp., Dept. ED, 44 Winn St., Woburn, Mass.
CIRCLE 375 ON READER-SERVICE CARD

\section*{Oscilloscope}

\section*{Has identical \(X\) and \(Y\) amplifiers}

The K-11-R rack-mounted general purpose oscilloscope has identical horizontal and vertical amplifiers and a rectangular crt. The two amplifiers cover a bandwidth from de to 300 kc with sensitivity from 1 mv per cm to 150 v per cm .
Electronic Tube Corp., Dept. ED, 1200 E. Mermaid Lane, Philadelphia 18, Pa.

\section*{CIRCLE 376 ON READER-SERVICE CARD}

\section*{Tape Wound Cores}

High saturation flux density
Tape-wound cores of Supermendur, a rectangular-loop material in the range of induction from 16 to 22 kilogausses which permits weight and size reduction. An oriented cobalt-iron-vanadium alloy, Supermendur combines high saturation flux density with hysteresis loop rectangularity.

Arnold Engineering Co., Dept. ED, Marengo, Ill.

CIRCLE 465 ON READER-SERVICE CARD

\section*{The surest name* in}

\section*{GUN MOUNTS!}

I - New \(11^{\circ}\) deflection gun 2 - Electrostatic focus gun 3 - Electromagnetic gun 4 - Electrostatic defiec. tion gun
5 - Special purpose gun
6 - New short neck
\({ }^{90^{\circ}}\) gun
E AND LARGEST EXCLUSIVE MANUFACTURER OF ELECTRON GUNS

\section*{Prodelin Pioneers an All-Americanl}

Spir - -line \({ }^{\circ}\) Transmission Line Assembly with \(\mathbf{9 0 \%}\) Less Work • Consistent, Low VSWR

Here's Prodelin's revolutionary design approach to coaxial transmission line connectors . . . Spir-O-lok! Its unique construction makes assembly with the Prodelin combination many times faster than with any other line and connector assembly in the industry . . . while providing consistently reliable VSWR.

\section*{See how easy a Spir-O-lok installation is:}

CUT - With a common tubing cutter, cut the outer conductor of the Spir-O-line. Remove. The soft aluminum tubing cuts cleanly and easily.

TRIM - With an ordinary jack knife, trim the six dielectric tubes flush to the outer conductor. This is Prodelin's unique construction that simplifies connector assembly while affording best broadband performance, highest power handiling, lowest attenuation and VSWR. The 6 tubes keep the Spir-0-line inner conductor perfectly centered on bends.

ASSEMBLE - So simple, one man can do it in a few minutes. Slide the nut assembly on cable, hold body while tightening nut with wrench. This forms a pressure-tight joint that cannot distort outer aluminum sheath. The connection can be re-made repeatedly without redressing cable or affecting VSWR. Insert inner conductor connector. MATE WITH ANY EIA (RETMA) OR MILITARY SPEC CONNECTORS

ELIMINATE TERMINAL CONNECTOR; SIMPLIFY CONNECTION PROCEDURE Incorporate Spir-0-10s in original design of equipment panel or bulkhead to save time, trouble and expense later.

PATS. PENDING
Spir-O-line and Spir-O-lok . . . ALL-AMERICAN FROM DESIGN TO MANUFACTURE

Design Engineers are highly enthusiastic about the positive impulse control performance of this ON-OFF Latching Relay by Guardian. It is ideally suited to positioning devices, T-V remote controls, appliances, lighting controls and applications requiring positive ON.OFF impulse control. Special armature toggle spring reverses position of cam actuator either to open, close, or transfer the snapaction switch. Unit utilizes power only on impulse or coil energization. Replaces costlier ratchet relays, conserves power, saves space, cuts costs, increases the salability of your product.

Thousands of Variations
in Guardian's Complete Stepper Line

Electaical reset
stiper

P.C. STEPPER ROTATIOM

R.A.S. ANE SUETRACT
STEPPER
write for details on Guardian's ON-OFF Relay and for Stepper Bulletin P. 84

\author{
 \\ 1622-J W. WAINUT STREET CIRCLE 379 ON READER-SERVICE CARD
}

\section*{NEW PRODUCTS}

\section*{Cooling Unit}

Capacity to 30 tons

The model 1204 air conditioning unit has a capacity of 30 tons for cooling large electronic computers. To insure continuous operation, six separate identical refrigeration systems are used.
Ellis and Watts Products, Inc., Dept. ED, Cincinnati 36, Ohio.

CIRCLE 380 ON READER-SERVICE CARD

Strain Gauge Amplifiers
Provide 0 to 5 v dc output

Models CA3 and CA5 strain gauge carrier amplifiers operate from a \(28-\mathrm{v}\) dc supply and provide an output of 0 to 5 vdc exactly proportional to the quantity being measured. Frequency response is virtually linear up to 2000 cps , and the unit provides infinite resolution. Transistorized throughout, the amplifiers sustain vibration up to 35 g in any axis as high as 2000 cps without change in response or accuracy. Operating temperature range is -65 to +165 F .

Statham Instruments, Inc., Dept. ED, 12401 W. Olympic Blvd., Los Angeles 64, Calif. CIRCLE 381 on reader-service card

\section*{IVESTIGATE}
the Genalex
Two-Way Stepping Switch

THE ONLY ONE OF ITS KIND! 10 MILIION STEPS IN BOTH DIRECTIONS

For: Selection Sequence Control - Counting (including Subtraction) - Totalizing - Pulsing - Step-by-Step Servo Drive.
Self-Cycling or Remote Control Operation. Bridging or Non-Bridging Wipers, or any Combination. Sturdy, compact construction.
Gel complete dato ond price information now on the unique GENALEX Two-Way Stepping Switch AND the companion 100 Million Stop genalex One-Way Stepping Switchl Write today, to:
GENERAL ELECTRIC COMPANY. LTD., OF ENGLAND CARE OF COMPRPRA
11 University Rd., Cambridge 38, Mass.
CIRCLE 384 ON READER-SERVICE CARD

\section*{Count on SYSTRON} RDB COUNTER
with in-line readout

MEASURES
*RDB Channels \(1-18\)
* RPM
* Mass Flow Rate
* Frequencies
* 1 to 100,000 Periods

\section*{Precision Resistors}

\section*{Use alloy grid resistance element}

These hermetically sealed, precision resistors use a specially designed metal alloy grid resistance element. Available in three types: CAH, 0.25 w ; EAH, 0.5 w ; and GAH, 1 w , with full ratings at 100 C ambient temperatures. Standard resistance tolerances are \(0.1,0.25,0.5\), and I per cent. Units exceed Mil specs for wire wound and metal film type precision resistors in all tests.

Allen-Bradley Co., Dept. ED, 136 W. Greenfield Ave., Milwaukee 4, Wisc.

CIRCLE 386 ON READER-SERVICE CARD

\section*{Radar Simulator}

Maintains signal-to-noise ratio within 1 db
This simulator supplies radar video simulating that of a search type radar. The unit simulates the effects of antenna radiation pattern, target scintillation, and receiver thermal noise with mathematical validity. The signal-to-noise ratio of the simulated target can be adjusted and maintained within 1 db . Output amplitude covers 0 to 5 v range into a 100 ohm load.

Federal Scientific Corp., Dept. ED, 615 W. 131st St., New York 27, N.Y.

CIRCLE 387 ON READER-SERVICE CARD
(Advertisement)
These Handles Give
A Lifetime of Service

Cambion \({ }^{(1)}\) handles are made to last carefully manufactured from stainless steel, brass, or aluminum, they are finished with nickel plate highly polished to a "'jeweler's finish," black oxide, or black alumilite.
Available in folding, adjustable, and rigid models, in a wide variety of sizes with many special features, Cambion handles meet every specification requirement.

Newest additions are two folding handles with standing heights of \(1^{13} / 6^{\prime \prime}\). The X2062, a handle series designed for pulling purposes, stands perpendicular to the panel or folds flat against it in either direction. The 1900, designed specifically for lifting, stands perpendicular to the panel or can be folded flat against it in one direction.

Other handles illustrated are X1884, with a standing height of \(17 / 8^{\prime \prime}\), (1965 with a standing height of \(13 / 4 \prime\)) , 2111-D with a standing height of \(19 / 32^{\prime \prime}\), and X2066 standing \(1^{19} 932^{\prime \prime}\). For further information write to Cambridge Thermionic Corporation, 457 Concord Avenue, Cambridge 38, Massachusetts.

CIRCLE 383 ON READER-SERVICE CARD

smooth-performing ring rheostats

\section*{New 100- and 150-watt sizes incorporate latest design improvements}

Naturally, they give you the same outstanding, proved design features you get in \(25-\) - 50 -, and 300 -watt sizes. Exclusive "twin-contact" shoes insure uniform contact resistance, extra-smooth resistance change. Sintered, self-lubricating contacts can't gall or seize, insure long, stable operating life.

Ward Leonard Vitrohm vitreous enamel permanently bonds base and core, firmly secures the high-stability resistance wire. Base and core are of high-density, lowporosity molded ceramic of high dielectric strength.

A new ceramic hub design substantially eliminates backlash and makes it easier for you to get fast delivery on special shaft requirements.

For complete data, write for Ward Leonard Bulletin 60RR. Ward Leonard Electric Company, 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)

ENGINEERING DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type & Rating* & \begin{tabular}{c}
Rings \\
Diamoter
\end{tabular} & \begin{tabular}{c}
Max. Depth \\
behind panel
\end{tabular} & \begin{tabular}{c}
Resistance Range \\
(Stock Values)
\end{tabular} & \begin{tabular}{c}
Rotational \\
Traval
\end{tabular} \\
\hline 100R & 100 Watts & \(35 / 32^{\prime \prime}\) & \(12 / 2^{\prime \prime}\) & 1 to 10,000 ohms & \(300^{\circ}\) \\
\hline \(150 R\) & 150 Watts & \(4^{\prime \prime}\) & \(13 / 4^{\prime \prime}\) & 1 to 10,000 ohms & \(314^{\circ}\) \\
\hline \multicolumn{7}{|c|}{ "-Ratings based on a \(300^{\circ} \mathrm{C}\) rise in a \(40^{\circ} \mathrm{C}\) ambient. } \\
\hline
\end{tabular}

Contact Shoe: "Twin" metal graphite, equipped with integral copper leaf conductor ribbon riveted to the control arm Contact Arm: Balanced beryllium copper, locked directly 10 insulating hub.
Base and Core: High-grade ceramic of high dielectric strength with toroidally wound wire or ribbon of highest stability. Max. Voltage Spacings: 300 volts in accordance with Underwriters' Laboratories Requirements.

LIVE BETTER...Electrically
WARD LEONARDELECTRIC CO, -isenult-Enginerred Contade Since 1892

CIRCLE 389 ON READER-SERVICE CARD

These subminiature snap-acting switches have

\section*{a BIG advantage... INTEGRAL ACTUATORS \\ The leaf}
or leaf-roller
actuator -
an integral par
of the switch -
is pro-adjusted and mechanically locked in the
switch a durine
manufacture.

\section*{NEW PRODUCTS}

The magnetic and tubeless Model KM-251 delivers an output in the ranges 2 to \(8 \mathrm{v}, 0\) to 30 amp , and 8 to \(14 \mathrm{v}, 0\) to 15 amp . Regulation for line or load is less than \(\pm 1\) per cent. Ripple is less than 0.5 per cent. An additional feature is high conversion efficiency, 75 per cent at full load.
Kepco Labs, Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y.

CIRCLE 391 ON READER-SERVICE CARD

\section*{PDM Coder}

Service-free life of 1000 hours
Using two Type 7-501 galvanometers with flat frequency response from 0 to 88 cps , the Type 40-101 Plexicoder has a service-free life of 1000 hr , a commutator life of 2500 hr . The unit provides four operating modes in which the communtation rate equals 112.5 samples per sec.

Consolidated Electrodynamics Corp., Dept. ED, 300 N. Sierra Madre Villa, Pasadena, Calif. CIRCLE 392 ON READER-SERVICE CARD

\section*{Multiple Radar Target Simulator}

Range positioning accuracy of 0.5 per cent

The RP 375 provides a single target, at the true radar range, for two or three nonsynchronous radars. The unit may also be used as a pulse code generator or as a general purpose precision multi-pulse generator. It has a range positioning accuracy of 0.5 per cent of the full scale range, and a range rate accuracy of 0.25 per cent of the selected value.

Remanco, Inc., Dept. ED, 128 Broadway, Santa Monica, Calif.

CIRCLE 393 ON READER-SERVICE CARD

ELECTRICAL RATINGS: \(21 / 2 \mathrm{amp} .30 \mathrm{v}. \mathrm{d.c}\). inductive 5 amp. 30 volts \(\mathrm{d}-\mathrm{c}\), resistive, 5 amperes \(125 / 250\) volts a-c. Write today for information on Unimax subminiature snap-acting integral-actuator switches.

\section*{UNIMAX SWITCH}

IVES ROAD, WALLINGFORD, CONNECTICUT
CIRCLE 390 ON READER-SERVICE CARD

Twelve-and-a-half microvolt resolution at 20 readings per second! That's the outstanding feature of the analogue-todigital converter, developed by Non-Linear Systems, Inc., Del Mar, California, to "digitalize" the output of low-voltage transducers in either ground or airborne service.
It's significant that Non-Linear Systems engineers selected thirteen miniature Bristol Syncroverter* high-speed relays (inset, top) for use in the converter scanning circuits. This versatile, high-speed, polarized relay has earned an enviable reputation for reliability, long life and immunity to shock and vibration in just such critical low-level, dry-circuit applications.

\section*{Are dry circuits your problem?}

If so, we believe we have the answer. Dry-circuit reliability and long life are outstanding features of the Syncroverter high-speed relay. It's unaffected during severe shock and vibration. It has fast pull-in and drop-out and negligible contact resistance, and it operates reliably over a wide temperature range.

\section*{More than \(\mathbf{2 0}\) models available}

You can specify Bristol Syncroverter high-speed relays in an extremely wide variety of operating characteristics and in various case and mounting arrangements. Ask us for complete details. Write: The Bristol Company, 151 Bristol Road, Waterbury 20, Conn.
\({ }^{\circ}\) T. M. Reg. U. S. Pat. Off.
BRISTOL fine precision instruments FOR OVER 68 YEARS
Come see us in dooth 803 at the Wescon Snow. CIRCLE 394 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958

\section*{NEW} Telonic SSX-2 Sweep \& Signal Generator
Offers a Complete Marker System and Provisions for Obtaining Audio and Pulse Modulated CW.
Telonic's SSX-2 covers the entire low RF and common IF frequencies and simplifies testing of IF and RF amplifiers by combining functions of sweep generator, signal generator, pulsed CW, and marker generator into one extremely accurate, compact and versatile instrument.

\section*{SPECIFICATIONS:}

Sweep Generator: Tuning: 25 to 75 mc . Sweeping: 0.40\%. Leveling: 1.5\%.
Signal Generator: Tuning: 25 to 75 mc . Accuracy: \(\pm .25 \%\).
Attenuation: (Sweep and CW) Step to 131 db . Vernier: 0.10 db . Output: . \(1 \mu \mathrm{v}\) to 1.0 v .
Variable Marker: Accuracy \(\pm .25 \%\).
Calibrations: every 250 kc to 40 mc . Every 500 kc to 75 mc .
Up to 6 additional plug.in crystal-controlled markers are available. A birdy-bypass marker system is provided for exceptional accuracy and stability.
For complete information write for Tcchnical Bulletin T-206.
See the SSX-2 in operation at Buoth 1649 WESCON.

INDUSTRIES, InC.
BEECH GROVE, INDIANA

\section*{Line Terminals}

Enables solderless connections

These terminals can be used on both stranded and solid wire and are available in sizes 22 through 16, 16 through 14, and 12 through 10. The design enables solderless connections. They feature small over-all size, wide bell-mouths, and open-end construction.
Buchanan Electrical Products Corp., Dept. ED, Hillside, N.J.

CIRCLE 396 ON READER-SERVICE CARD

\section*{NPN Transistors}

For low frequencies
The \(2 \mathrm{~N} 619,2 \mathrm{~N} 620,2 \mathrm{~N} 621\), and 2 N 622 are npn silicon types. All four types are for low frequency service-the highest has an alpha frequency cutoff rating of about 400 kc . The 2 N 622 is a low noise type.

Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton 58, Mass.

CIRCLE 397 ON READER-SERVICE CARD

\section*{Voltage and Frequency Sensor}

Magnetic or transistor amplifier types

The sensors are available in either the magnetic amplifier or transistor amplifier types for monitoring undervoltage, overvoltage, or voltage band, and sensing underfrequency, overfrequency, or frequency band. Nominal voltages range upwards from 18 v ac or dc with accuracy of \(\pm 1\) per cent. Frequencies nominally are 300 cps ac or higher with accuracy of \(\pm 2\) per cent.

Jordan Electronics, Div. of The Victoreen Instrument Co., Dept. ED, 3025 W. Mission Rd., Alhambra, Calif.

CIRCLE 398 ON READER-SERVICE CARD

\section*{High Accuracy Mach Information in the}

GIANNINI MODEL 451212 PRESSURE TRANSDUCER

Fast, accurate Mach information is supplied from two Giannini Model 451212 Pressure Transducers for control purposes in the new Douglas DC-8 jet-liner. This is critically important information for a passenger transport that will operate in the transonic range at 40,000 feet.
The high resistive output of the transducers, which are accurate to within \(1 \%\) of reading, eliminates the need for a computing servo... greatly simplifying the instrumentation.

See Us at WESCON Booth No. 1665 \& 1666

G. M. GIANNINI \& CO., INC., 918 EAST GREEN STREET, PASADENA, CALIF.

\section*{§ELLCO Specaizized \\ \\ FOR CHARACTER DISPLAYS}

\section*{YEARS AHEAD IN DESIGN PERFORMANCE}

For critical applications, many of our customers have saved years of trial and error in YOKE selection by specifying, Cello YOKES.

The construction of our yokes makes it possible to achieve sensitivities, linearivies, responses and distortion-free deflecting fields not possible with the usual types of yoke.

For precision military and commercial displays, Celco also offers standard yokes in \(7 / 8^{\prime \prime}, 1^{\prime \prime}, 1\) Ki" \(2^{\prime \prime}, \& 2 \frac{112 \prime \prime}{\prime \prime}\) CRT neck diameters.

Write for CELCO DEFLECTION YOKE Catalogue \&
Design Sheets or for immediate engineering assistance Call your nearest CELCO Plant:
Ceto

Constantine Engineering

\section*{NEW PRODUCTS}

MERCURY SWITCH.-Handles 100 amp current at \(115 \mathrm{v}, 70 \mathrm{amp}\) at 230 v . Suitable for direct control of motors and generators.

American Designed Components, Inc., Dept. ED, Jericho, N.Y゙.

CIRCLE 401 ON READER-SERVICE CARD
SNAP-ACTION SWITCH.-Minature 5300 series with operating forces from 2 to 20 oz.

Haydon Switch, Inc., Dept. ED, Waterbury 20, Conn.

CIRCLE 402 ON READER-SERVICE CARD
FERRITE LOAD ISOLATORS.-Xband. Models with \(25,15,30,17\), and 12 db isolation.

Rantec Corp., Dept. ED, P.O. Box 18, Calabasas, Calif.

CIRCLE 403 ON READER-SERVICE CARD
LINE REGULATOR. - Monitor Model 4.010 detects variations in conditions of voltage, frequency, and phase in power sources.

Electric Regulator Corp., Dept. ED. Pearl St., Norwalk. Conn.

CIRCLE 404 ON READER-SERVICE CARD

PRESSURE SWITCH.-Weighs 1 uz, operates from 25 to 1000 psi. Piston type spdt unit rated at \(5 \mathrm{amp}, 240 \mathrm{v}\)

Alloy Bellows, Inc., Dept. Ei), 18125 Roseland Rd., Cleveland :2, Ohio.

\section*{CIRCLE 405 ON READER-SERVICE CARD}

CARBON FLLM RESISTORS.-Types 400 E and 401 E , respectively rated at \(1 / 8\) and \(1 / 4 \mathrm{w}\), are added to depos-ited-carbon Filmistor line.

Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass. CIRCLE 406 ON READER-SERVICE CARD

SOCKET CAP SCREWS. - Coldforged, with chip-free, perfectly formed socket for full gripping area on the hex keys. In sizes \(5 / 8 \mathrm{in}\). diam.

Set Screw and Mfg. Co., Dept. ED, Bartlett, Ill.

\section*{CIRCLE 407 ON READER-SERVICE CARD}

DRAFTING MEDIUM. - Ageproof Film stands repeated erasures and folding. Impervious to water. Tensile strength is \(20,000 \mathrm{psi}\).
Eugene Dietzgen Co., Dept. ED, 2425 N. Sheffield Ave., Chicago 14, Ill.
CIRCLE 408 ON READER-SERVICE CARD
sp)
sol:

First costs of ten are only part of the total cost of plastic components. Poorly designed or inaccurately produced plastic parts can mean excessive inspection and assembly costs in your plant and a high failure rate, as well. American's precision production saves you money by eliminating these hidden cost factors and thus keeping your total cost per part to the barest minimum. That is why so many exacting buyers say, "We turn to American first for our plastic parts-because they are precision made."

American Plastics is equipped to give you full line service-injection, compression. extrusion, multiple-shot injection, and low pressure vacuum assisted forming.

Next time you need plastic parts, try American first. Others have for over 50 years! Write or wire Dept. ED.

IN-LINE FUSES.-Vari-Size Fuse-InLin's allow fuse sizes to be interchanged without tools. They may be spliced into the line close to the source of current or wherever desired.

Signal-Stat Corp., Dept. ED, 523\(53!\) Kent Ave., Brooklyn 11, N. Y.

CIRCLE 410 ON READER-SERVICE CARD
PHONO JACK.-No. 8575 may be mounted with single nut and washer.

Richards Electrocraft, Inc., Dept. ED, 4432 N. Kedzie Ave., Chicago, Ill.
CIRCLE 411 ON READER-SERVICE CARD
RELAY.-Hi-So dry circuit unit has 10 amp contact rating.

Relay Sales, Dept. ED, P.O. Box 186, West Chicago, Ill.
CIRCLE 412 ON READER-SERVICE CARD
PACKAGED MERCURY VACUUM sYSTEM.-Model SEL-3M, capable of ultimate vacuum in the order of \(8 \times 10^{-8} \mathrm{~mm} \mathrm{Hg}\). Valves can be set to close automatically in case of vacuum spoilage.
Scientific Engineering Lab, Dept. ED, 1510 Sixth St., Berkeley 10, Calif.
CIRCLE 413 ON READER-SERVICE CARD

MEDICAL SPECTROGAMMEO-METER.-Single-channel pulse height analyzer with linear or logarithmic count rate meter.

Radiation Counter Labs, Inc., Dept. ED, 5121 W. Grove St., Skokie, Ill.
CIRCLE 414 ON READER-SERVICE CARD

PANEL MOUNT VOLTMETER.Model 520A-P ac amplifier/voltmeter mounts interchangeably with the 510B-P audio oscillator.

Waveforms, Inc., Dept. ED, 331 Sixth Ave., New York 14, N.Y.

CIRCLE 415 ON READER-SERVICE CARD

\section*{TRIMMER POTENTIOMETER.-}

Model 224 miniature Trimpot operates in the -65 to +175 C range. Standard resistances from 100 ohms to 50 K .

Bourns Labs, Inc., Dept. ED, P.O. Box 2112, Riverside, Calif.

CIRCLE 416 ON READER-SERVICE CARD

OSCILLOGRAPH.-Model 606 D/R features flash timing up to 1000 cps , 5 magazine types, extremely fast or slow recording speeds.

Midwestern Instruments, Dept. ED, 41st and Sheridan, Tulsa, Okla.

CIRCLE 417 ON READER-SERVICE CARD

\section*{RESISTANCE TO 0.1\%}

0-1200 kilohms in seven ranges.
CONDUCTANCE TO 0.1\%
0-1 200 millimhos in seven ranges.

\section*{CAPACITANCE TO 0.2\%}

0-1200 microfarads in seven ranges.

\section*{INDUCTANCE TO 0.3\%}

0-1200 henrys in seven ranges.

\section*{PRICE: \(\$ 775.00\)}

For complete information on the Model 291 Universol Impedonee Bridge, see your ESI sales representative or send for ESI catalog shoel C-13.

\section*{Voltage Stabilizers}

\section*{WILL Desicin to your PERFFRRMACE REQUIREMENTS}

When performance and dependability are the most significantly important factors in your requirements, your best source of supply is Acme Electric. Send your prints and outline of application performance for confidential review and quotation.

\section*{ACME ELECTRIC CORPORATION}

9OB WATER STREET• CUBA, NEW YORK

CIRCLE 420 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

TRANSFORMERS.-For transistor applications, TA-15, TA-16, and TA-17 have been added to the Stancor line.
Chicago Standard Transformer Corp., Dept. ED, 3501 Addison St., Chicago 18, Ill.

CIRCLE 421 ON READER-SERVICE CARD

CONNECTORS.-Similar in size to the BNC series, TNC connectors have a positive-locking threaded type of coupling.
Kings Electronics Co., Inc., Dept. ED, 40 Marbledale Rd., Tuckahoe, N.Y.

CIRCLE 422 ON READER-SERVICE CARD
TRIMMER POTENTIOMETERS.-Trim-Tite and Trim-Tite Jr. are respectively \(1 / 2\) and \(3 / 8 \mathrm{in}\). in diam. High temperature units rated to 150 C , standard units to 85 C .
Fairchild Controls Corp., Dept. ED, 225 Park Ave., Hicksville, N.Y.

CIRCLE 423 ON READER-SERVICE CARD

HIGH VACUUM RECTIFIER.-Ruggedized version of the half-wave 705A unit. For use in airborne radar, electrostatic precipitators, and high voltage power supplies.
Vacuum Tube Products Co., Inc., Dept. ED, 2020 Short St., Oceanside, Calif.

CIRCLE 424 ON READER-SERVICE CARD

...1/2\% accuracyl
Accuracy mainfainod over entire military temperature range of \(-55^{\circ}\) to \(+65^{\circ} \mathrm{C}\). No oven or heater needed.
Time-stable - negligible drift over long periods of time. Small slze - the expansion network projects
only \(11 / 4^{m}\). AC or DC units for military or industrial applications. Military units meet all industria appications. Military units meet
requirements of MIL-M-10304. Off-shelf deliveries. 30 to 45 days on specials. WRITE FOR LITERATURE.

\section*{VOLTRON products}
- 1010 Mission St., South Pasadena, Calif. CIRCLE 425 ON READER-SERVICE CARD

\section*{CMC's
Short Form} Catalog
is quick reference for counting, timing, and frequency
measuring
equipment
CMC's concise short form catalog gives specifications and condensed buying information for Universal Counters and Timers, Inline-Inplane quency and Period Meters, Preset Counter-Controllers, Decade Counting Units, Time-Function Translators, Time Interval Meters, Jotalizing Counters, etc.

9 For your free copy, address Dept. 1986

CompuierMeasurements Corporation LE 428 ON READER-SERVICE CARD

This new fush mounting, miniature ESNA Clinch nut is easily installed by a simple flaring operation-becomes a pormanent fastoner.

ELASTIC STOP NUT CORPORATION
OF AMERICA
CIRCLE 429 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 6, 1958

SILICON RECTIFIERS.-Types \(1 \mathbf{N}\) 1730 through 1 N1733, rated at 1000 , 1500 , and 2000 v at 200 ma and 3000 v at 150 ma .

Pacific Semiconductors, Inc., Dept. ED, 10451 W. Jefferson Blvd., Culver City, Calif.

CIRCLE 432 ON READER-SERVICE CARD

PARTS CONTAINER.-Vac-Tite box seals out moisture, opens easily. Used to protect electronic components or small ball bearings.

Clover Industries, Inc., Dept. ED, 578 Young St., Tonawanda, N.Y.

CIRCLE 433 ON READER-SERVICE CARD

\section*{ROTARY SELECTOR SWITCH.-}

Model C-80335-001, hermetically sealed, rated at 1650 v dc and 20 ma .
G. H. Leland, Inc., Dept. ED, 123

Webster St., Dayton 2, Ohio.
circle 434 on reader-service card

\section*{BETA-GAMMA SCINTILLATION} ANALYZER.-System for analytical measurement of isotopes emitting gamma or hard beta rays or both in solid or liquid samples.

Baird-Atomic, Inc., Dept. ED, 33 University Rd., Cambridge 38, Mass. CIRCLE 435 ON READER-SERVICE CARD

PHOTO-RECORDING PAPER. -Tru-Graf 1 high speed projection paper for oscillograph testing equipmont. Picks up faint lines without overexposure and blurring of the impulse trace.

Peerless Photo Products, Inc., Dept. ED, Shoreham, N.Y.
CIRCLE 436 ON READER-SERVICE CARD
PRESSURE TERMINALS. - StackLugs can be nested together in pairs and the pairs stacked vertically, doubling number of terminations on each board.

Panduit Corp., Dept. ED, 14461 Waverly Ave., Midlothian, Ill.

CIRCLE 437 ON READER-SERVICE CARD

\section*{MULTI-CIRCUIT CYCLE TIMER.} -In Model WD all adjustments and settings are easily made on panel face.

Zenith Electric Co., Dept. ED, 152
W. Walton St., Chicago 10, Ill.

CIRCLE 438 ON READER-SERVICE CARD
OVERPOTENTIAL TESTER. - For measuring leakage currents in insulatron at voltages up to 120 kv dc. May also be used for breakdown tests.

Peschel Electronics, Inc., Dept. ED, R.F.D. 1, Paterson, N.Y.

CIRCLE 439 ON READER-SERVICE CARD

\section*{Sturges Storage Battery}

\section*{the answer to any portable power problem}
- new method used for completely sealing all binding and terminal posts, prevents any leaking or creeping of electrolyte
- can be encased with any electronic units without damage from corrosion
- non-spill in any position
- redesign of " \(\mathbf{H \text { " }}\) type cells increases output capacity a full \(20 \%\) over catalogued rating
- no liquified gas or vapor is discharged from cells on charge or discharge
- lightweight transparent molded plastic case

Write for FREE literature on various types of storage batteries.

Bush Terminal Building No. 4•28-34 35th Street, Brooklyn 32, New York
 sub-miniature relays with high performance characteristics

Vibration: 10 to 34 cyclos per second at maximum oxcursions of. \(4^{4} .34\) to \(2000 \mathrm{CPS} 20 \mathrm{G}^{\prime}\) s acceleration.
Weight: 0.45 ounce (max.)
8ize: \(.875^{\prime \prime}\) high x \(.797^{\prime \prime}\) wide \(\mathrm{x} .359^{\prime \prime}\) thick max. Pull-in Power: 250 milliwatts at \(25^{\circ} \mathrm{C}\).
Contact Rating: 2 Amps renistive at 32 VDC or 115 VAC.
Vibrations 10 G to 500 cps .
Weights . 09 oz.
Sire: H: . \(530^{\prime \prime} \pm .015 ;\) W: . \(392^{\prime \prime} \pm .010^{\circ}\); D: . \(196^{\prime \prime} \pm .010^{\prime \prime}\); Lead length: \(1.5^{\circ} \pm .0625^{\prime \prime}\).
Pull-in Power: 100 Milliwatts.
Contact Rating: . 25 Amp at 28 VDC resistive load.

Vibration: Low Frequency-10 G's, 10-55 CPS
(total maz. excursion, \(06^{\prime \prime}\)).
High Frequency-15' \({ }^{\prime}\) 's, 55-2,000 CPS.
Weight: 1.5 ozs., approzimately.
sise: \(7 / 8^{\prime \prime} \pm 1 / 4^{\prime \prime}\) sq. \(x \quad 11 / 8^{\prime \prime}=1 / 4^{\prime \prime}\).
Pull-in Power: 340 Milliwatts at \(25^{\circ} \mathrm{C}\).
Contact Rating: 5 Amps at 26.5 VDC or 115 VAC, 60 Cycles resistive load.
shocks 100 G's, per MIL-R-5757C, Shock Test II.

CIRCLE 441 ON READER-SERVICE CARD

\section*{NOW弃 CONSOLES \\ at MASS PRODUCTION PRICES}

The new Bud Console Assembly is the modern concept in versatility and utility whereby a number of individual units may be quickly and easily combined to provide housings for electrical or electronic components or instruments.

Since all the components may be ordered separately and assembled on the site, substantial savings can be made in shipping and manufacturing costs.

The Bud Console Assembly consists of a number of units which are adaptable to control or testing centers of 3 standard sizes while a combination of these can provide practically unlimited expansion possibilities.

The components of the Bud Console Assembly comprise pedestals, ball cornered sides, ball cornered doors, panels, tops, drawers and other units, all beautifully finished ready for assembly.

For your housing requirements involving consoles, see your nearest Bud distributor or write for Bulletin 4458 for complete description.

BUDRADIO, INC.
2118 East 55th Street Cleveland 3, Ohio Dapf. ECD

\section*{NEW PRODUCTS}

INERTIA-DAMPED SERVOMOTOR.-Size 15 offers acceleration and deceleration damping for high speed and/or high gain servo systems.
Helipot Corp., Div. of Beckman Instruments, Inc., Dept. ED, Newport Beach, Calif. CIRCLE 443 ON READER-SERVICE CARD

TELETYPE SEND-RECEIVE SET.-Automatic model 28 operates at 100 wpm , provides facilities for sending and receiving tape and page copy.
Teletype Corp., Dept. ED, 4100 Fullerton Ave. Chicago 39, Ill.

CIRCLE 444 ON READER-SERVICE CARD
TEST-POINT JACK.-Type SKT-27 accepts probe 0.450 in . long by 0.093 in . in diam. Operates over -55 to +200 C range.
Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N.Y.

CIRCLE 445 ON READER-SERVICE CARD
BUTT WELD AND OVERLAP SPLICER.-Combination model 300.1 handles any type magnetic material in tape widths up to 2-3/4 in

Prestoseal Mfg. Corp., Dept. ED, 37-27 33rd St., Long Island City 1, N.Y

CIRCLE 446 ON READER-SERVICE CARD
MOISTURE PROOF WINDOW CONNECTOR.-Certi-Seal splice provides permanent seal against vapors and fluids.

Amp Inc., Dept. ED, 2100 Paxton St., Harrisburg, Pa.

CIRCLE 474 ON READER-SERVICE CARD
LIGHT FLASHER FOR AIRCRAFT.-Smaller than previous models, the AFS-125 and AFS-126 have long life, are free from radio interference.
P. R. Mallory \& Co. Inc., Dept. ED, Indianapolis 6. Ind

CIRCLE 475 ON READER-SERVICE CARD
NIOBIUM TOLL-ROLLING.-Strip rolled as thin as 0.0005 in . to tolerances as close as 0.0001 in .

American Silver Co., Inc., Dept. ED, 36-07 Prince St., Flushing 54, N.Y.

CIRCLE 476 ON READER-SERVICE CARD
TRANSISTOR CLOSURES.-Closures for transistors, diodes, and other miniature components to specification.
Hudson Tool and Die Co., Inc., Dept. ED, 18 Malvern St., Newark 5, N.J.

CIRCLE 477 ON READER-SERVICE CARD
INSTRUMENT KNOBS.-Added to standard line, No. 1068 aluminum knobs have nylon locking bushing. Size is 1 or \(1-3 / 8 \mathrm{in}\). diam for \(1 / 8\) or \(1 / 4 \mathrm{in}\). shaft.
Vemaline Products Co., Dept. ED, Hawthorne, N.J.

CIRCLE 478 ON READER-SERVICE CARD

ACE FABRICATED PLASTIC PAR'S fast Service low cost

New e-x-p-a-n-d-e-d production facilities now give you ACE PRECISION on all types of screw machine conterless ground parts and special shapes....all colors...all materials.

Write, wire, phone for samplos,
price:
stock items. Send specifications
or blueprinis for prompt quota-

\section*{ACE PLASTIC COMPANY}

91-58 Van Wyck Expwy., Jamaica 35, N. Y. JAmaica 3-5500
CIRCLE 479 ON READER-SERVICE CARD

\section*{LOW-COST}

Miniature Thermal-Magnetic CIRCUIT BREAKER E-T-A
Series 4000
Assured protection for electronic and communication equipment.

Two auxiliary circuits, N.O. and N.C., available to provide visual or audio release indication.

Manual release to switch off equipment from power supply.

\section*{Write for Bulletin 88}

\section*{E-T-A PRODUCTS CO. of AMERICA}

6284 NORTH CICERO AVENUE
CHICAGO 46, ILLINOIS
E-T-A Products Co. of Canada
265 CRAIG STREET
WEST MONTREAL I, CANADA
CIRCLE 454 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 195
 CIRCLE 455 ON READER-SERVICE CARD

\section*{INSERTMOLDED PARTS AT HUGE SAVINGS..}

\section*{Also Small Plastic Parts and Assemblies}

Get the complete facts on how Whitso can supply these custom molded products in large volume at lower cost than heretofore possible . . . achieved by our Blow-Loading process and exclusive Freeloader Machines which automatically orient and position small parts a batch at a time. The more parts loaded the greater the savings, giving you the additional advantage of wide latitude in part and tool design.
Years of specialized experience in plastic molding stand behind and have led to the development of our nethods and equipment.

Request defails. Send b/p or specs, for quotation.

9326 BYRON STREET SChiller park, ill. (Chicago Suburb)

MOBILE RADIO TUBES.-Industrial tubes for 2-way mobile radio systems operating from 12 v storage batteries: RCA-7054, -7055, -7056, -7057, -7058, -7059, -7060, -7061.
Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 472 ON READER-SERVICE CARD
NEON LAMPS.-NE2K and NE2T high intensity miniature lamps consume 0.25 w at current of 2 ma .
Circon Component Corp., Dept. ED, Santa Barbara Municipal Airport, Goleta, Calif. CIRCLE 457 ON READER-SERVICE CARD

TRIMMER.-Replacing models 120, 130, and 205, the model 200 Trimpot potentiometer has an increased power rating of 0.25 w at 70 C and an increased resistance range of 10 ohms to 50 K .
Bourns Labs., Inc., Dept. ED, P.O. Box 2112, Riverside, Calif.

CIRCLE 458 ON READER-SERVICE CARD
QUICK CONNECT SWITCH.-Type V3 spdt has ratings of: \(10 \mathrm{amp}, 125\) or 250 v ac; \(0.5 \mathrm{amp}, 125 \mathrm{v}\) \(\mathrm{dc} ; 0.25 \mathrm{amp}, 250 \mathrm{v} \mathrm{dc}\).

Micro Switch, Div. of Minneapolis-Honeywell Regulator Co., Dept. ED, Freeport, Ill. CIRCLE 459 ON READER-SERVICE CARD

TUBEAXIAL FANS.-Compact units for equipment cooling in variety of shapes, sizes, and mounting arrangements. Low cost; not recommended for extreme environments.

American Standard, American Blower Div., Dept. ED, Detroit 32, Mich.

CIRCLE 460 ON READER-SERVICE CARD
SOLENOIDS.-Series O1 and O2 miniaturized industrial quality solenoids with multi-million cycle life. In push or pull models, vertical or horizontal mounting.

Detroit Coil Co., Dept. ED, Ferndale, Mich. CIRCLE 461 ON READER-SERVICE CARD

MULTIPLIER PHOTOTUBE.-Type 7200, a 9stage unit for detection and measurement of ultraviolet radiation. Also useful for low-level light applications.

Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J

CIRCLE 473 ON READER-SERVICE CARD
DC POWER SUPPLIES.-Model Q28-. 5 is added to Q-Nobatron line of transistorized low-voltage highcurrent dc supplies. Output range is 18 to 36 v dc at 0 to 0.05 amp .

Sorensen \& Co., Inc., Dept. ED, Richards Ave., South Norwalk, Conn. CIRCLE 462 ON READER-SERVICE CARD

POWER INVERTERS.-Transistorized sine wave power inverters with \(100 \mathrm{va}, 150 \mathrm{va}\), and 500 va outputs.
Jordan Electronics, Div. of Victoreen Instrument Co., Dept. ED, 3025 W. Mission Rd., Alhambra, Calif.

CIRCLE 463 ON READER-SERVICE CARD

\section*{MAMMOTH narda SonBlaster}

America's first mass-produced industrial-size ultrasonic cleaner!
SATI 7 ways over costly solvent, alkaline or vapor degreasing:
- Clean faster, speed production! - Cut rejects, eliminate botflenecks! - Save on chemicals \& solvents! - Eliminate expensive installation! © Cut maintenance and downtime! - Save on floor space! - Release labor for other work!

Other modals from \(\$ 175\).
2-year guarantee on all units. SPECIFICATIONS
Interior Tank size (in.), \(10 \mathrm{~W} \times 14 \mathrm{~L} \times 91 / 2 \mathrm{H}\). Tank Capacity, 5 gallons. Submersible Transducers
Model NT. 604 - Hermetically sealed heli-arc welded stainless steel \begin{tabular}{l}
Model NT. 604 - Hermern \\
case. Radiating faco: 27 sq. in. Effective plane of radiation: 40 to 50 \\
\hline 10
\end{tabular}
 cu. in. at \(24^{\prime \prime}\) tank height (5 gal.) and 2400 cu . in. at \(48^{\prime \prime}\) tank height
(10 gal.). Swagelok tube fitting on side or end for internal tank wiring. Model NT-605 - Same as NT-604 oxcept for bulkhead fitting on back for extornal wiring. Eliminates olectrical conduits in solutions.
Now you can say goodbyo to expensive chomicals, solvonts, and dogroasing equipment... reciaim valuable floor space ... olliminato high installation coste... |ust by installing a Narda Sorios 1500 Sonsiastor. At the same time, you'll got better, fastor cleaninge and you'll need fower people to do the jobl
Get the tremendous activity of the now 200 .watt Narda SonBlastor, with the largest transducerized tank ever made, at the lowest price: In the Industry) Choose from transduccorizod tanke or submersible Up to 4 submerslble transducors can be essily operated from the same generator at one time; load selector switch provided - an oxclusive Narda foaturc.
Simply plug the SonBlaster Into any 110-115 V AC line, and flip the witch. In seconds, you'll cloan most any mechanical, optical, electrical, medical or horological part or assembly you can think of. Perfect, too, for brightening, polishing, radioactive decontaminating, pickling, quenching and plating; omulsifying, mixing, storilizing, ImprognatIng, degassing, and other chemical process applications.
Mail the coupon for free help in determining the model that's best for you.

The SonBlaster catalog The Sonblaster catalog
line of ultrasonic cleaning equipment ranges from 35 watts to 2.5 KW , and includes transducerized tanks as well as immersible transducers. If ultra. sonics can be applied to help improve your process, Narda will recommend the finest, most dependable | equipment available - and industry!
 CIRCLE 464 ON READER-SERVICE CARD

\section*{with Chassis-Trak slides}

\section*{chassis locks in seven positions}

With the touch of a finger on the handles of the chassis, it can be tilted up or down (\(45^{\circ}, 90^{\circ}\), or \(105^{\circ}\)), and locked in any one of seven different positions.

This means you can remove tubes or check circuitry on the chassis quickly and easily, even though the chassis is at the top or the bottom of the rack... and the chassis will not swing or move during servicing. It is firmly locked in position! A spring mechanism allows instant removal of the chassis for complete maintenance.

Chassis-Trak slides are produced from cold rolled steel, and give smooth slide action because of a permanentdry, dust-repellant phenol epoxy formulation . . . the more you use the slides, the smoother they operate.
With the pencil-thin Chassis-Trak design, you can cut engineering costs, by mounting \(17^{\prime \prime}\) chassis in standard
\(19^{\prime \prime}\) racks. The slides (9 lengths, \(10^{\prime \prime}\) to \(24^{\prime \prime}\) supporting up to 275 lbs.), are available from stock, in either the "detent" model shown above, and the "basic" model, which tilts freely upwards but has no lock assembly. Chassis-Trak engineers will also cus-tom-build slides for any of your special installations.
"Defent" model, locked in one of seven different positions.

\section*{INDEX OF ARTICLES}

January 8th through June 25th, 1958

\section*{Reference Keys}
\begin{tabular}{ll}
ABS & Abstract \\
BD & Background for Designers \\
DF & Design Forum \\
GA & German Abstract \\
ID & Ideas for Design \\
PF & Product Feature \\
RT & Russian Translation
\end{tabular}

\section*{A}

AC Measurements, Pitfalls in Precision, Part 1, p40, May 28; Part 2, p58, June 11
AC Operation of Magnetrons . . GA, p84, June 25 Accelerometer, MiniaturePF, p42, Mar. 19
Accuracy Requirements in Sine-Cosine Transmission, L. Young. Angular accuracy graphically determined in terms of amplifier periormance and vice versap32، Mar. 5
All-Pasa Filter Time and Frequency Response. Reference equation for two lattice-type all-pass filtersGA, p96, May 28 Amplifier, Audio, Transistorized, from 12 v Supply pl07, Mar. 19 Amplifier Circuit, Improved Dual Frequency pl08, Feb. 19 Amplifier, Fast SquareID, p81, May 28 Amplifier, Feedback, Design with Nichols Chartp32, Mar. 19 Amplifters, DC, Floating Input and Output Amplifiers, Photoelectric pA, pl18, Jan Amplifiers, Transistor, DC Feedback Equations for Apr. 16 Amplifiers, Transistor, Non-Linear Distortion in
Aldit...GA, pl24, Jan. 22 Amplifier, Two Watt, in Size 32 , May 28 Analog Solution of Polynominals GA, pl02, Feb. 5 Angular Position Transducer, Telemetering Simplified withPF, p48, Feb. 5 Antenna, Ferrite Core for ADF PF, pl02, Jan. 22 Applications of Non-Linear Magnotics, H. F
Storm. One of the world's leading authorities examines applications in other than magnetic amplifiers Part 1, p32, Feb. 19; Part 2, p44, Mar. 19; Part 3, p62, Apr. 16; Part 4. p60, May 14 Approximation for Logarithmic Functions .GA, p97, May 28 Attenuation, Microwave, Feedback Controlled PF, p54, Mar. 5
Automatic Classifier Speods Selection of Magnetic Memory Cores. (Rixon Electronics, Inc.) Quality selections made; checks squareness ratio and switching timePF, p74, Mar. 5 Automatic Flight Control Servo System
Automatic Sequence Tester, (Optimized Devices Inc.) Automatic go, no-go tester checks out large number of system preset characteristics PF, p42, Jan. 22
Avoiding Crosstalk in Multichannel High Impedance CircuitID. pl05, Feb. 19

B
Bridges, Thermistorp40, Apr. 30 Billionth Second Timer, (Eldorado Electronics) Makes nanosecond measurements routine Breadboard, servo hardwareJune 25

\section*{C}

Capacitors, Saving Tantalum ...ID, p144, June 11 Card Operated Switch. (Hickok Elec. Inst. Co.) 187 switches make complex switching eisy 40 , Apr. 16 Cathode Follower Circuit Design, Simplifying p42, Apr 15 Chopper Tests, To Determine Operating Characteristics forID, pl46, May 14 Circuit Elements in R-F Couplers ID, pl04, Feb. 19 Code Matrices for Indoxing. W. C. Tooker. Servo system interconnection reduced to minimum by code matricesp34, Mar. Colloidal GraphiteID. pl20. Apr, 16 Colored Glass Threads Identify Magnet Wires ID, pl06, Jan. 22
Commutators, Magnetic, Low Level ..p70, Mar. 5
Compensation Networks, Thermistor, Quick Design ofpl6, Apr. 30 Components, new developments at 1958 Elec. tronics Component Conference ..plO, June 25
Composite Germanium-Silicon Power Transistor, (Advanced Research Assoc., Inc.) Stable 40,000 gain ratioPF, p86, Apr. 13 Computer Low-Power "Plug Ins." Packages requiring far less power and coolingABS, p178, May 14 Computer, Synchronization of ap64, Mar. 5 Computer Wire TestingID, plo0, Jan. 8 Computers, Building Blocks for ..PF, p54, Jan. 8 Computing Indicator, Two Galvanometers Make
 Concealed Loudspeaker Has Unusual Sound Pattern ID, pl50, May 14 Connector, Multiple-Contact, Improved ..ABS, pl36, Apr. 16
Cool Canned Power Rebistor (Topaz Transformer Prod.) Dissipates 25 w, gets no hotter than 175 CPF, p70, May 14 Coppor-Motallised Printed Circuit Boards (Corning Glass) High bond strength withstands 250 CPF, pl8. Apr. 2 Core, Ferrite, for ADF Antenna PF, plo2, Jan. 22 Cores, Magnetic MemoryPF, p74, Mar. 5 Cost of Missile Unreliability, The ..p22, Feb. 19 Crosstalk, Avoidance, in High !mpedance Circu:!
.ID, pl05, Feb. 19
Current-Carrying Capacity of Printed Wiring J. Caroline. Factors affecting design of printed conductors; test procedures and conclusion with specific data on six popular laminates Current Measurement Without. p22, Jan. CircuitID, plll, Feb. 19

\section*{D}

DC Amplifiers, Floating Input and Output .. PF p56 June 11
DC Differential Amp, Wide LoadPF, p34, Jan. 22
DC Feodback Equations for Transistor Amplifiorit H. Lefkowitz. Design equations supplied to: three basic circuit configurations ..p52, Apr.
DC Transformer Has Continuous Adjustable Ratio H. E. Darling. Design details of ratio amplifie: .p40, Mar. Delay Lines, Millisecond Megacycle (Ferran: Electric)PF, p36, Feb Delay Line, New (ESC Corp.) . .PF, p38, May Demodulator Circuits, Using Transistor in, Part p24, May 28; Part 2, p52, June Design. Cathode Follower Circuit, Simplitying p42, Apr.
Design Data for Ulira Low Tomperature Thormir for, H. B. Sachse. Wattage rating, tirl: con. stant, reliability estimates given .. p30, Apr. 30

\section*{Jan}

\section*{Diode
Feb}

Feb
Diode

\section*{Mar}
ded
Diode
Dioce
Diode,
Diode
Jun
Dise
sup
p36,
Distort
pl24
(C.
p78.

Driver

\section*{號}

De. jn, Feedback Amplifier with Nichols Chart Derign '58. Forecast of '58 design pi. Mar. 19 ver 75 R \& D Engineers p28 Ian. Design for Reliability. Three basic ground rules aid down for oblaining high reliability . . pl26. ;n. 22
Design for Reliability. Staff report-offers neverLefore published part reliability curve. In cuded in section following p66, Feb. 19: What Government Is Doing, p ; What Industry Is Doing, p3. Guides to Design, p5; Paper Prediction, p9; Part Reliability Curves, pll
Design of Multivibrator with Self-Excitation. With handy nomograms and examples ..RT, p92 Feb. 5
Design, Optimums, of Power Transformer and Saturable Reactors, Part 1, p26, Apr. 16; Part 2, p48, May 28
Design, Quick, of Thermistor Compensation Networks . pl6, Apr. 30 Design, Rapid, of Transistorized Regulated Power Supplies ID, pl04, Mar. 19 Design, Servo, Resisting Transistor for ..pl4, Apr. 2
Design, Simplifying, with Floating Power Supply .p24, Mar. 5 Design Tips for Using High Tomperature Procision Potontiometors, R. J. Sullivan. Some factors to help equipment designers insure best system performance p54, May 14 Design, Transistor NOR Circuitp26, Feb. 5 Design, Wien-Bridge Oscillator, Graphical Method Simplifies p20, May 28 Designing An Electronic Filtor Servo, J. A. Webb. Filtering extremely narrow bandwidths with good phase stability p32. Apr. 16 Designing Components for Now Applications. Component development to meet future requirements Mar. 5 Dosk Top High Speed Printor (Pottor last.) Prints 28 lines of numbers per sec., maximum printing rate of 1120 numbers per sec. . .PF, p28, Jan. 22
Determination of Transistor Lead in Resistance. Contact resistance measured using " \(h\) " parameters pl22. Jan. 22 Device for Tension ControlID, pl52, May 14 Differential Amp, Wide Load DC (Kin Tel) ..PF, 34, Jan. 22
Differential Meter Rolay (Assembly Products, Inc.) Serves as control devicePF, p64, Mar. 19 Digital Signal CheckerID, p42, Âpr. 2 Digital Voltmeter (Servonice, Inc.) ..PF, p44, Jan. 22
Diode Measurements in the X-Band ..GA, pl26. Feb. 19
Diode, Silicon, Application Notes, Part 2 . .p58, Mar. 5
Diode, Silicon, Helps Gas Diode Get To Work ID, p48, June 11 Diode, Zener Characteristicsp26, Mar. 19 Diode, Zener, Uses p78, May 28 Diodes, ZenerGA, pl70, June 11 Direct Reading Frequency MeterGA, p84, June 25
Disc Megnetic Momory. (Âutonetics) Air bearing supports methory unit of new computer ..DF, p36, Jan. 22
Distortion, Non-Linear, in Transistor Amp . .GA, pl24, Jan. 22
Do It Yourself, Printed Circuit Assemblies, (Gorn Electric Co.) Quick assemblyPF p78, Mar. 5
Driver Stage, Push-PullID, pl06, Jan. 22 Dyncmic Compression, (Dynamics Instr. Co.)
. BD. p56, Apr. 16

\section*{\(E\)}

Eflec's of Processing and Environment on Printed W ing Laminates, St. J. Bain. Consideration of eft zts upon electrical and physical characterist 3 of paper-phenolic and glass fabric epoxy lar nates .p48, June 11
Electr cal Charectoristics of Printod Circuit Panels.
\(S_{E}\) ral copper-clad laminates investigated ABS, pl20, Mar. 19

Eloctronice is USSR. Impressions and observations of engineers who toured Russia ..ABS. p48, Apr. 2
Electronic Uses of High Tomporaturo Liquid Dielectrics, C. G. Currin. What to know about and how to use liquid dielectrics for component cooling . p48, May 14
Environmental Requirements for Electronic Parts, Military . p26, Jan. 22

\section*{\(F\)}

Fast Square Amplifier, A ID, p81, May 28 Feodback Amplifier Deaign with Nichols Chart. W, D. Wade. Time saving design tool allows designer to obtain closed loop data immediately from open loop information p32, Mar 19
Feodback Circuit Analysis Using Impodance Concopts. G. Pellegrino, Jr. Visual approach to feedback circuit analysis p36. Feb. 5
Feedback Controllod Microwavo Attonuation (Airtron Inc) Splits, attenuate, modulates power at 3 to 10 kmc frequencies .. PF, p54, Mar. 5 Feedback, DC, Equation for Transistor Amplifiersp52, Apr. 16 pl02. Jan Filing. Uniterm System of p48, Apr. 16 Filter, All-Pass, Time and Frequency Response GA, p96, May 28
Filter. Electronic, TransistorizedID, pl50, June 11
Filter, Servo, Designing an Electronic p32, Apr. 16
Filters, VHF Bandpass p20. Mar. 19
Flight Conirol, Automatic, Servo System ..ID, pl06, Feb. 19
Floating Input and Output DC Amplifiors. (Neft Instrument Corp.) Carrier type amplitier uses an electro-mechanical chopper as an input modulator; amplitude of 400 cps squarewave proportional to magnitude of input dc ..PF p56, June 11
Floating Power Supply, Simplifying Circuit Design With.
..p28, Mar 5
Function Generctor for Two Independent Variables. Produces output which is function of twn independent input variables .. ABS, pl72. June 11

\section*{G}

Gear Principle, New, Has Interesting Design Possibilities ID, p148, May 14 Generator. Simple ToneID, plo5, Jan. 22 Germanium Diodes, Time Delays in Pulsed ..GA, pl96, Mar. 5
Graphical Mothod Simplifies Wion Bridge Oscillator Design. E. D. Grim. Avoids "dogwork" of rigorous mathematical design and sloppiness of trial and error method p20, May 28
Ground Strips for Electron Tube, NewIID. pl04, Mar. 19
Growing Thermistor Fiold, The. A. J. Gizzi. Survey of recent activity and prophesy of things to come in next decadepl2, Apr. 30 Gyros: Two Gyzo Master Reforence (Lear, Inc.) Serves as source of both directional and vertical gyro intelligencePF, p24, Apr. 2

\section*{H}

Handy Use of Dual Nut Plate ..ID, pl52, May 28 Heat Sink, TransistorPF, p56, Mar. 5 High Speed PrinterPF, p28, Jan. 22 High Speed Rotary Photoswitch, (Automation, Inc.) No cams, no contacts ..PF, 38, Feb. 19 High Tomporature Compononts, Staff Report. Evaluates state of development of principle components and materials for electronic equip. ment, May 14 issue. Report includes: How Hot Is Hot?, p24: Tubes and Semiconductors, p28; Resistors, p32; Capacitors, p34; Inductors, p36 Transducers and Electromechanical Devices, p38; Temperature Conversion Chart, p40; Materials and Hardware, p42; Manufacturers of High Temperature Components, p44.
High Temperature Liquid Dielectrics, Electronic Uses of M8. May 14
 MISSILES AND AIRCRAFT OR GROUND BASED AND SHIPBOARD APPLICATIONS.

\section*{FEATURING:}

Circular or Linear Polarization
High Power Handling
Broad Bandwidth
Equal E- and HPlane Beamwidths
Light Weight
Simple \& Inexpensive
Reflector Sizes
From \(71 / 2\) inches to
10 feet are available

\section*{\(S, C, X\), and \(K_{u}-B A N D\)}

Canoga Corporation has a series of tracking scanners available employing a circular feed which provides a circularly polarized or nutating linearly polarized tracking beam. A hollow shaft drive motor and spin reference generator are mounted around the waveguide spindle near the high-speed rotating joint. This direct drive eliminates gears and other drive members and provides minimum weight, maximum reliability, and optimum dynamic balance for high-speed operation. The use of only one moving part, the rotating feed-motor rotor provides the maximum in reliability and long life.

\section*{SPECIFICATIONS}

Any reflector size from 8 inches to 10 feet in diameter is available. Any frequency range within the 2700 to 14,000 megacycles range is available.
Bandwidth 10 percent
Standing waves
Less than 1.2
Gain and side lobes Determined by reflector size
Circularity Better than 3.0 db Crossover \(50 \%, 80 \%\) or as required

NAME AND TITLE \(\qquad\)
COMPANY \(\qquad\)
ADDRESS \(\qquad\)
CITY \(\qquad\) STATE \(\qquad\)

These new DIEHL small size, light weight Package Power Amplifiers achieve ideal motor conditions by providing constant \(90^{\circ}\) phase angle, infinitely smooth proportional reversing control and symmetrical control of motor voltage.

\section*{Important design and operating characteristics}
- Power gain per cycle-can be unlimited.
- Smooth 60-cycle AC (not pulsating DC)-fed to motor by inverse-parallel connected thyratrons.
- Low-impedance transistor-controlled grid circuits-prevent accidental firing of thyratrons by external signals.
- No special power source needed-operates directly from 60cycle, 3 -phase power supply.
- Tachometer feedback provided-for AC or DC operation.
- Exact \(90^{\circ}\) phase relation-between control and reference phases.
- 85-90\% efficiency.
- Response- 008 seconds (\(1 / 2\) cycle).
- Driver stages-Transistorized.
- Rugged industrial thyratron output sfage-with 10,000 hour life expectancy.

ONE-SOURCE CONVENIENCE
DIEHL alone makes AC servomotors up to 3 HP range and now offers a complete package of Power Amplifier and matching AC Servomotors in these ratings.

\section*{DIEHL MANUFACTURING COMPANY}

Electrical Division of THE SINGER MANUFACTURING COMPANY Finderne Plant, SOMERVILLE, N. J.

Other ovailable components:
A. C. SERVOMOTORS - A. C. SERVOMOTORS WITH A. C. TACHOMETERS
A. C. SERVOMOTORS WITH D. C. TACHOMETERS - A. C. AND D. C. TACHOMETERS
D. C. SERVO SETS - RESOLVERS
- A Trodomork of DIEHL MANUFACTURING COMPANY

\section*{INDEX OF ARTICLES cont.}

High Temperature Precision Potentiometer. Design Tips for Usingp54, May 14 High Tomperature Rolay Designs are Difforenf. S. M. DePuy. What happens to high temperature relays at lower temperature .. p66, May 14 High Vacuum Pump (Varian Assoc.) Completely electronic; \(1 \times 10^{\circ} \mathrm{mm}\) vacuums ..PF, p40, Mar. 19
High Voltage Semimetal Thermocouples, R, W Fritts. Investigates manulacture, properties, and new electronic applicationsp28, May 28 How to Correct Phase Distortion With An L-C Lattice. J. D. Fogarty. Presents universal phase curve to design lattices for controlling distortionp20, Apr. 2
How to Measure FM Bandwidth Rt Microwave Frequencies, R, G. Larson. Absorption cavity wavemeter makes for simple technique ..p36. Mar. 5
How to Minimize Radar Effocts on Eloctronic Circuits, W. G. Egan Considers susceptable instruments and corrective techniques to offset Radar effects upon themp52, Mar. 19

\section*{I}

Impedance Concepts, Feedback Circuit Analysis Using . p36, Feb. 5 Inverter Design, Static, Transistorizedp58, Apr. 16
Improved Dual Frequency Amplifier Circuit ..ID, pl08, Feb. 19
Improved Multiple Contact Connector 20 point connector permits quick circuit connection interchangeABS, p. 136, Apr. 16 Improved Power Fault Protection, I. T. Mark. Simple circuit provides both dump tube and rectifier-blocking protectionp46, Mar. 5 Inductor, VariableID, p43, Apr, 2

Industrial Processes, Magnetron for GA pl23, Jan. 22
Information Theory in USSR. Paul E. Green Ir Analysis of Soviet work in cybernetics, I. ath, engineering, filtering, and detection .. 294 , Feb. 5
Insido-Out Motor Makes Shallow Saucer Fan (Rotron Mig. Co.)PF, pl06, M -5
Interference-Free Switching (Gray Electro: ics) 40 db drop in noise level with transistor ci zuit PF, pl02, Jc.2. 8
Instrinsic Barrier Transistor, The BS, p98, May 28
Inverter Design, Static, Transistorized058, Apr. 16

\section*{L}

Laminates, Printed Wiring. Effects on Processing and Environment onp48, June 11
L-C Lattice, How To Correct Phase Distortion with ... p20, Apr. 2
L-F Cathode By-Pass Arrangement, Novel ..ID p81, Feb. 5
L-F High Powered Transmission, Short Pulse Operation ofID, pll2, Feb. Is Lead-In Resistances, Transistor, Determination of

GA, pl22, Jan. 22
Liquid Dielectrics. High Temperature, Electronic Uses ofp48, May 14
Logarithmic Functions, Approximations of ..GA p97, May 28
Logical Building Blocks. Transistorized ..PF, p54, Jan. 8
Loudspeaker, Concealed, Has Unusual Sound Speaker ID, p150, May 14 Low-Cost Transistor Modulator ..ID, p104, Jon. 22 Low-Cost Wien Bridge OscillatorID, pllo. Feb. 19
Low Impedance Elements, Noise Voltage Meas. urement in GA, p94, May 28 Low Leval Magnetic Commutators, D. C. Kalbiell. Function of commutation and conversion from

We developed this ceramic-insulated connector to obtain performance features we needed in our airborne communications and test equipment. Doubly silicone coated, it is virtually impervious to extremes of moisture, and mechanically stable under heat. Eight contact points per pin make for
low contact resistance. Being of small overall dimensions, these connectors are space savers. \(2,3,4,6,8,12\) and 19 contact connectors each are available in three-key keyway combinations to prevent incorrect insertion. Design them into your equipment for extra dependability. Write for details.

Dependable Alrberne Electrenlc Equipment Since 1925
AIRCRAFT RADIO CORPORATION BOONTON,

New Jersey

CIRCLE 534 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, 1958
a: ylog to digital form combined by using mag5. tic null detectors in digital feedback loop .p70, Mar. 5

\section*{M}

Mçnet Wire, Identification of...ID, pl06, Jan 22 Mognetic Commutators, Low Level ..p70, Mar. 5 Magnetic Drums, Read and Write Transistor CirGuit for, Part 1, p42, Feb. 5; Part 2, p44, Mar. 5 Maṭnetic Memory Cores. Automatic Classifier Speeds Selection ofPF, p74, Mar. 5 Magnetic Memory, Disc DF, p36, Jan. 22 Magnetic Parts HolderID, p175, Mar. 5 Magnotic Toggle Relay, (American Monarch Corp.) Permanent magne:s provide holding power PF, p20, June 25 Magnetics, Non-Linear, Applications of, Part 1, p32, Feb. 19; Part 2, p44. Mar. 19; Part 3, p62. Apr. 16; Part 4, p60, May i4
Magnotrons for Industrial Processes. Three German makes notedGA, pl23, Jan. 22 Making Thormistors. Photographs illustrate various steps in manufcciurep44, Apr. 30 Maser Is Hore. (Polytechnic R \& D Co.) First commercial unit is portable with better than one part in billion accuracy PF, p24, Mar. 19 Master Reference, Two-GyroPF, p24, Apr. 2 Matching Network, VHF, Designp20, Mar. 19 Materials Change Cut Costs by Two-Thirds ID, p78, Feb. 5 Megawatt TWT. (Varian Associates) Considerations in the new megawatt twt PF, p38, June 25 Memory Cores, Magnetic, Automatic Classifier Speeds Selection ofPF, p74, Mar. 5 Memory, Disc, Magnet:cDF, p36, Jan. 22 Metal Fabrication, Short Cut to ..ID, p79, Feb. 5 Meter Rectifier for High Temperature Operation ID. pl07. Feb. 19 Microwerve and Optical Propertios of Matorials. W. G. Egan Analysis to attenuation characteristics of shielding materials p52, May 14 Microwave Applications of Thermistors, Part 1, L. I. Kent. Investigates thermistor characteris-
tics, thermistor mounts, dc characeristics, broadband mounts, coaxial mounts p26, Apr. 30 Microwave Attenuation, Feedback Controlled icrowave Frequences, How to Bandwidth atp36, Mar. 5 Microwave Tubes, Survey ofGA, pll8, Jan. B Microwaves, Resonant Absorbers for Microwaves, TWT Oscilloscope Detects tronic Parts. Government provides chart of R \& \(D\) requirements 26 , Jan. 22 Millisec MC Delay Line. (Ferranti) Electronic delays of 5 msec at 500 kc or 1 msec at 1 mc .PF, p36, Feb. 19 Miniature Accelorometer. (Statham Instruments) Strain gage typePF, p42, Mar. 19 Miniature Sorvo Breadboard. (Waldort Instrument) Describes a new approach in hardware for mounting servo partsPF, p26, June 25 Minimize Local Oscillator Drift, Part 1, W. Y. Pan, D. J. Carlson Design steps suggested
...................................pl8, June 25 Missile Unreliability, Cost ofp26, Feb. 19 Modulator, Transistor, Low-Cost .ID, pl04, Jan. 22 Multichannol Electronic Switch, (General Devices Inc.) 24 non-shorting channel switch for reliable telemetry PF, p50, Feb. 5 Multiple Contact Connector, Improved
....................ABS, pl36, Apr. 16 Multiplior Phototube. (RCA) High red to nearinfrared response PF, p40, Feb. 5 Multivibrator, Design of, with self-excitation
\(\mathbf{N}\)
Now Delay Line (ESC Corp.) Triples delay/risetime ratio PF, p38, May 28 New Gear Principle Has Interesting Design PossibilitiesID, pl48, May 14

\section*{SPECIAL TERMINALS, SAPPHIRE-TO-METAL SEALS AND MAGNETRON WELLS AVAILABLE}

High alumina ceramic and metal parts are brazed together to form a high strength, long.life, molecular seal.
Stocksizes for up to 100 KV.DC operatıng voltages available for short delivery. For complete information, brochure, spec sheets and price lists, write or phone: Ceramaseal, Inc., New Lebanon Center, N. Y. West Lebanon 3-5851.

\section*{NOW AVAILABLE IN FOUR VERSATILE MODELS}
```

SNAP-ACTION CON-
TACT speed gives posi-
tive acfuation ... up io
double-pole, double
throw switching in
standard models

```

```

SIMPLE TIME ELEMENT, hermetically sealed, is nol subject to aging or faligue. Core design permits fast resef: $25^{\circ}$ 。 of relay operafing fime, even with longest delay periods!

```

MAGNETIC COIL is accurafely calibrated uses no heaters or thermal elements. Resulis: relay may be energized continuously. It's a load carrier in itself, does nol require auxiliary lock-in circuits

\section*{the proven Silio-O-Netic time-delay relay}

ECONOMICAL Type A Relay is non-enclosed, offers lime delay from \(1 / 4\) to 120 seconds. A lowcost relay with superior performance specifications.

PLUG-IN Type H Relay adds convenience of pin-type mounting, fits standard eight-hole sockets. Removable aluminum cover. Also made with solder-lug terminals.
hermetically-sealed Type F Relay gives complete protection against dirt, dust and moisture. Hermetic seal is permanent relay never requires adjustment. Choice of pin-type or solderlug mounting.

PHENOLIC-ENCLOSED Type C is a low-cost, fully encased relay with D.P.D.T. switching capacity. Compact design allows easy mounting, is available with "quick-on" type contact and coil terminals.

\section*{EIエNENERN}

ELECTRIC COMPANY
156 Plume St., Irenton 2, N. d.
Now Bulletin No. 5003 includes full details and specifications for Silic-O-Netic Relays. Write for a copy.

Increasingly important to environmental testing, the TP-625 Wave Analyzer System offers performance features never before available. Determines frequency and amplitude of vibration... strain... pressure - any mechanical, chemical, optical or other variable which can be converted to an electrical signal ranging from 2 to 25,000 cycles. Individual wave components are measured in decibels, in percent of total signal, or both. Results are indicated on a calibrated attenuator and meter, and

TRACKS AUTOMATICALLY
Auxiliary equipment - TP-628 Servo Drive - allows automatic tracking to frequency set by speed of equipment being analyzed... follows RPM, multiples of RPM, or shake-table drive ...
throughout an operating range.
Uses and applications are limitless. Other auxiliary equipment includes a TP-633 Power Integrator, which provides a power spectral density analysis of random waves. Get full details on this important design and environmental testing tool. Write for new bulletin on the TP-625 Wave Analyzer System.
Developed, improved and manufactured by

\section*{Technical Products Company}

\section*{INDEX OF ARTICLES cont.}

New Ground Strip for Electron Tubes ID pl04, Mar. 19
Now 6000-Line Resolution CRT (CBS Hytron) Naw Terminal Strip Naw Terminal Strip Design tor Toroid Reduces SciapID, pll, Mar. 5 Now Visual Recordor (Tally Register Corp.). Electroplates on paper. Plots up to 12 variables at rate of 30 points \(/ \mathrm{sec} /\) channel .. PF, p34, Feb. 5 Now Wavelorm Translator (Transdata). Battery operated device aids quantitative ascillograph measurements PF, p30, Feb. 19 No More Lost WiresID, p81, May 28 Noise Voltage Measurement in Low Impedance Elements p94, May 28 Non Destructive Transistor Punch Thru Test . .ID, p80, Feb. 5
Non-Linear Distortion in Transistor Amplifier GA, pl24, Jan. 22 Non-Linear Magnetics, Applications of ..Part 1, p32, Feb. 19; Part 2, p44, Mar. 19; Part 3. p62, Apr, 16: Part 4, p60. May 14
NOR Circuit Design, Transistor p26, Feb. 5 Novel L-F Cathode Bypass Arrangement ..ID, p81, Гeb. 5
Null Detector, Servo ID, p42, Apr. 2

\section*{0}

Oblaining Dual Trace on Single Trace Pulse ScopeID, pl07 Feb. 19 Optical, Microwave, Properties of Materials ..p52, May 14
Optimum Design of Powor Transformers and Saturable Reactors, Part 1. T. R. Nisbet. Here's how to design lightest transformer to do job, with nomograms26, Apr. 16 Oscillator Design, Wien-Bridge, Graphical Method Simplifies 20 , May 28

Oscillator, Transistor, for छิ MC pl76, May 14
Oscillator, Wien-Bridge, Low Cost D pllo, Feb. 19
Oscillator, Wien-Bridge, Stabilizing D, pl53, May 14
Oscillator, Sine-Wave, Square Wave Adaptes or
 Oscillators, local, minimizing drift ..pl2, Jun 25 Ovarlap Mothod Makes Fast Pulses in Transi tor Circuits. M. Smith. Provides very high p ise repetition, very steep use and tall times, nd very high quality pulsesp44, Ma: 28

P

Parts Boards Design Considerations, J. R. Sn th. Points to remember in designing subass:-mblies . p22. Jun 25 Phase Distortion, How To Correct With an L-C Lattice . p20, Apr. 2 Photoelectric Amplifier. A Light amplifier for control system and precision measurements
. GA, pll̄̈, Jan. 8 Photoswitch, Rotary, High Speed PF, p38, Feb. 19 Phototube, Multiplier PF, p40, Feb. 5 Pitfalls of Precision AC Measurements. H. \& Poehler. Examines many common errors and corrective techniques, Part 1, p40, May 28; Part 2, p58, June 11
Plastic. Reinforced Radar Reflectors Of
p34, May 28 Plastic Microphone Diaphragm Solves Moisture Problem ID. pl74. Mar. 5 Potentiometers, High Temperature Precision. Design Tips for Using p54, May 14 Power Fault Protection, Improved ..p46. Mar. 5 Power Resistor, Cool Canned .. PF, p70, May 14 Power Supplies, Floating, Simplifying Circui: Design with p28, Mar. S Power Supplies, Rapid Design of Transistorized Regulated ID, pl04, Mar. 19

\footnotetext{
Po:

Prec
Corp

Prssu

Print
Pr

Print
Print
Krc
pri
for
Print
Print
Print
ind
prı
Fac
Printe

Printe
Probe
Pulse
}

\section*{Instant Reset, Voltage Compensated THERMAL TIME DELAY RELAYS "IR" and "STR" Series for military applications}
- Vibration resistant - withstand \(5-500 \mathrm{cps}\)
- Ambient temperature \(-65^{\circ} \mathrm{C}\). to \(+125^{\circ} \mathrm{C}\).
- Time delays - up to 180 seconds
- Small size - miniafure

The "IR" and "STR" relays are part of the Curtiss-Wright Thermal Time Delay Relay line which includes:

\section*{H-Series}
- vibration resistant, for missiles, aircraft S-Snapper
- double-throw, snap-action contacts MR and CR
- double-throw, fast reset, no chatter K, G and W
- economical, low-cost, stocked For our new catalog, write or phone Electronics Division, Components Dept., Carlstadt, New Jersey, GEneva 8-4000.

Pow irTransformers, Optimum Design of Part 1, p26, Apr. 16; Part 2. p48, May 28 Pov.er Transistor, Composite Germanium-Silicon .PF, p86, Apr. 16 Practical RC Differentiator Design. L. Saporta, I harity, Valuable curves developed which simplify designp30, Feb. 5 Pre ision ClipperID. pll3, Feb. 19 i: \(\varepsilon\) zision Electronic Temperature Controller Precision Pressure Transducer (Computer Instr Corp.) Uses carbon film element . . PF p p68. Mar. 5 Precision VTVM Reads True RMS (Trio Lab, Inc.)

Lises dynamometer meter movement ..PF, p38, Mar. 5
Prssure Transducer, Precision ..PF, p68, Mar. 5 Printed Circuit Assemblies, Do-lt-Yourself PF, p78, Mar. 5 Printed Circuit Boards, Copper-Metallized ..PF pl8, Apr. 2
Printed Circuit Panels, Electrical Characteristics of \(\ldots\)....................ABS, pl20 Mar. 19 Printed Circuit Standardization, S Kramer, L Krauss, J. Monturo. Standards established for printed-wiring design, procurement, and processing have resulted in highly reliable designs for militaryp22, June 11 Printed-Wiring Laminates, Effecis of p48, June 11 Printed-Wiring. Current-Carrying Capacity of Printod-Wiring Roliability. (Staf! Report) Latest industry practices for cchieving reliable printed-wiring. Report includes: Standards. p28; Board Design Techniques, p32; Choosing Board Materials, p36; Proper Care and Handlirg, p40; Factors in Soldering, p44: Other Forms, p46 ..June 11 Printed Wiring Technique Makes Control PanelID, pl74, Mar. 5 Printer, High SpeedPF, p28 Jan. 22 Probes for VTVMID, p102, Feb. 19 Pulsed Germanium Diodes, Time Delays in GA, pl96, Mar 5

Quadratic Equation Nomogram. P. Gheorghiu. Design aid for solving quadratic equations ..p34. June 25
Quick Design of Thermintor Compensation Notworks. B. R. Schwartz. Simple three step solution using normalized curves and nomograms .pl6, Apr. 30

\section*{R}

RC Differentiator Design, Prcciical ..p30, Feb, 5 RC Differentiator Nomogram. Yield amplitude and pulse durationRT, p192, Mar. 5 R-F Couplers, Circuit Elements in ID. p104, Feb. 19 R-F Tight Joints at Low Costpl02, Jan. B Radar Effects on Electronic Circuits. How to Minimizep52, Mar. 19 Radar Reflectory of Reinforced Plastics, R. L Mondano. Traces design and development of this highly advantageous struciure ..p34, May 28
Radome Sandwich Using Artificial Dielectric Foam, W. R. Cuming. Method offers substantial reduction in radome weightp36, Apr. 16 Rapid Design of Transistorized Regulated Power SuppliesID, pl04, Mar. 19 Rapid Testing of Tube Shorts and Continuity. (Armor Research Foundation) Short tests for tubes simultaneouslyPF, p36, Mar. 19 Reactances, Transistor-Simulatedp24, Mar. 5 Reactors, Saturable, Optimum Design of, Part 1. p26, Apr. 16; Part 2, p48, May 28
Read and Write Transistor Circuits for Magnotic Drums. Part 1, B. A. Mangan General approach to design for high reliability ..p42, Feb. 5

\section*{Shatterproof, Clear Plastic Containers}

- For individual packaging or kits - Wide range of sizes • \(1 / 5\) the weight of glass • Lower shipping costs • Can be printed or decorated - Low cost - Reusable

Write for complete prices and literature LERMER PLASTICS, INC.

\section*{IDEAL FOR:}
- Baffery Substifufion
- Computers
- Transistor Bias
- Motor and Relay Control
- Television
- All High Current

Laboratory and Industrial Applications

\section*{SPECIFICATIONS}

Models listed are designed for 105-125 VAC input, \(60-400 \mathrm{cps}\). Continuously adjustable output. Line regulation is within \(\pm 0.5 \%\). Load regulation is within \(\pm 0.5 \%\). Front panel regulation control. Frequency response of regulator extends into high audio frequencies. Ripple less than \(0.05 \%\) or 5 mv . Current limiter control on front panel for full overload and circuit protection. Units are for bench or standard 19" rack mounting.
- Continuously Variable

Outpuf
- Vernier Voliage Conirol
- Fast Transient Response
- Low Output Ripple
- Positive, Negative, Zero \% Regulation Control
- Line Frequency Insensitive
- Remote Sensing
- Constant Current Overload Limit Control
- Positive or Negative Outputs, Ungrounded
- Terminals On Front and Rear
- Hinged Panel For Full Accessibility
- High Efficiency
- Low Heat Dissipation
- Compact, Light Weight
- Instant Warm-up Time

TYPICAL STOCK MODELS
\begin{tabular}{ccccc}
\hline \hline \begin{tabular}{c}
Model \\
Number
\end{tabular} & \begin{tabular}{c}
Voltage \\
V DC
\end{tabular} & \begin{tabular}{c}
Current \\
Amps.
\end{tabular} & \begin{tabular}{c}
(Output DC \\
R (uhms.)
\end{tabular} & FOB Frice \\
\hline TR32-4 & 4.32 & \(0-4\) & 0.01 & \(\$ 455.00\) \\
\hline TR32-8 & \(4-32\) & \(0-8\) & 0.005 & \(\$ 495.00\) \\
\hline TR32-12 & 4.32 & \(0-12\) & 0.002 & \(\$ 575.00\) \\
\hline TR150-1 & \(20-150\) & \(0-1\) & 0.5 & \(\$ 455.00\)
\end{tabular}

Additional stock models also available. Special designs also made to customers specifications. Write for quotation. Pioneors in Somi-Conductor and Transistorized Products.

ERA PACIFIC INCORPORATED - SANTA MONICA, CALIFORNIA ERA ELECTRIC CORPORATION - NUTLEY, NEW DERSEY

This new EG\&G tube delivers 30 megawatts peak power in a smaller package than any comparable unit. It supersedes many older types and surpasses the performance of the Type 5948 1754 on all counts, in less than 1/7th the size. The new 1802 is air-cooled by convection and will tolerate ambient temperatures up to \(100^{\circ} \mathrm{C}\). Yet its warm-up time is only 5 minutes. Other comparisons with the 5948, 1754:

Input Trigger Power
Delay time
Jitter
Reservoir range
Filament power
Ambient temp. max.

1802
250 V at
400 ohms max.
\(0.5 \mu \mathrm{~s}\) rated
(average is \(0.25 \mu \mathrm{~s}\))
.002 to \(005 \mu \mathrm{~s}\)
\(\pm 10 \%\)
90 watts
\(100^{\circ} \mathrm{C}\).

5948/1754
650 V at
250 ohms max.
\(1 \mu \mathrm{~s}\)
\(.02 \mu \mathrm{~s}\)
\(\pm 5 \%\)
200 watts
750 C .

Ever since the hydrogen thyratron was invented by K. J. Germeshausen, president of EG\&G, this company has kept in the forefront of hydrogen thyratron development. For specific data on the 1802 and for most authoritative information on gasdischarge tube types and MILLI-MIKE* CRT's, TW oscilloscopes and systems, write to us on your company letterhead.

160 Brookline Avenue, Boston, Mass. 1622 South " \(A\) " Street, Las Vegas, Nev.

\section*{INDEX OF ARTICLES cont.}

Roceding Chin Motor Showe Face Only. (Assembly Products Inc.) Magnetic error of one per centPF, p38, Feb. 19 Recorder, VisualPF, p34, Feb. 5 Rectifier Circuit, Silicon, Protects DC Meter Over loadID, p76, Feb. 5 Rectifier Meter, For High Temperature Operation .ID, pl07, Feb. 19 "Reds" Problem for 1958. Highlights of East German convention citing Communist 58 pursuits p52, Jan. 8 Reflectors, Radar, of Reinforced Plastic p34, May 28
Regulated Power Supplies, Rapid Design of Trans:storizedID, pl04, Mar. 19 Relay Conference Stresses Reliability, (Meeting Report) ps, June 25 Relay Designs, High Temperature. A:e Different p66, May 14 64, Mar 19 ...p20, June 25 Reliability, Design forp126, Jan. 22 Reliability, Design for, (Staff Report) (See Design for Reliability)
Roliability-Sonsitivity Function Analysis, H. E Blanton. Shows what part to change to improve system reliabilityp22, Feb. 19
Resistances, Determination of Transistor Lead-In GA, pl22, Jan 22 "Resisting" Transistor for Servo Design. The T. R. Nisbet. Device gives twice output of class B stage with 95 per cent e!ficiencypl4, Apr. Resistor, Power, Cool Canned p70. May 14 Resonant Absorbers for Microwaves. Singly, doubly, triply resonant absorbers give reflectionless loadingGA, pl70. June 11 Rotary Photoswitch, High Speed ...PF, p38, Feb 19
Rotary Switch, SealedPF. p68, May 14

S
Safor Solvont Roplacen Carbon Totrachlorido. Methyl Cnlorotorm approved for use as cle ner of electrical and electronic equipment by U.S.N. Bureau of ShipsABS, pl26, Jan 22 Saturable Reactors, Optimum Design of, Pa: 1. p26, Apr. 16; Part 2, p48, May 28
Saving Tantalum Capacitors ..ID, pl44, June 11 Sealed Rotary Switch (Daven Co.) Consist: of free floating wipers and completely watert.ght \(1 / 2\) in. shellPF, p68, May 14 Sequence Tester, AutomaticPF, p42, Jan. 22 Series Regulator Warm-UpID, pl77, Mar. 5 Servo Design, Resisting Transistor for ..pl4, Apr. 2
Servo, Electronic Filter, Desıgning An..p32, Apr. 16
Servo Null Detector ID, p42, Apr. 2 Servo System, Automatic Flight Control ..ID, pl06, Feb. 19
Servo Systems, Code Matrices for Indexing .p34, Mar. 5 Shiold Insert Keops Tubes Cool, (Atlas E-E Corp.) Triangular contiguration makes for better heat dissipationPF, p76, Mar. 5 Short Cut to Metal Fabrication ID, p79. Feb. 5 Short Pulse Operation of L-F High Powered TransmittersID, pll2, Feb. 19 Silicon Diode Application Notes, A. Bergson Nomogram enables quick inspection adjustment of thermal and electrical variables (.......p58, Mar. pl48, June 11
Silicon Rectifier Circuit Protects DC Meter Up to 1000 Times Rated Current ID, p76, Feb. 5
Silicon Unijunctoin Transistor, S. R. Brown, T. P. Sylvan. Exhibiting open circuit stable negatve resistance, new three terminal device, which is primarily useful for switching and oscillator

MINIATURE PRECISION WIRE WOUND

\section*{POWER RESISTORS}

\section*{for today's critical requirements}

Materials and Process Research to yield ever higher quality at moderate cost is given major emphasis at Sage Electronics. Quality control is carefully linked into each step of production. Environmental testing on a continuous basis is the final guarantee of satisfactory standards of reliability as against customer or military requirements.

Send for complete catalog today!
opplication, is explained .. Part 1, p56, Jan. b; art 2, p30, Jan. 22
Sir ple Count-down DeviceID, p70, June 25 Siruple Transistorized 1 Per Cent Voltage RegulatorID, p71, June 25 Sir:ple Network Reduces Power Supply "Down Time" ID, pl49, June 11 Simple Tone GeneratorID, pl05, Jan. 22 Simplifying Cathode Follower Circuit Design. D. W. Moffat. Design of series of circuits noted of particular value to those who have occasion to use cathode follower .BD, p42, Apr. 16 Simplifying Circuit Design with Floating Power Supply. J. F. Walton. Notes many instances in which application most economical and advantageous .p28, Mar. 5 Slow Speed, Transistor Driven, Stepping Switch ID, p80, May 28 Specitying Militery Thormistors. B. R. Schwartz Armed services or industry have as yet made no standardization efforts. RCA prepared general spec enabling purchase of reliable devicesp34, Apr. 30 Square Wave Adapter for Sine.Wave Oscillator Stabilizing Emitter Current p151, June 11 Stabilizing Wien-Bridge Oscillator ..ID, pl53, May 14
Standards, Transistor Voltage p50, Mar. 5 Standardization, Printed Circuitp22, June 11 Static Inverter Design, Transistorized ..p58, Apr. 16
Steel Wool Finds Bad Joints ..ID. pl47, June 11 Stepping Switch, Slow Speed, Transistor Driven ID, p80, May 28 Survey of Microwave Tubes. Velocity modulated tubes notedGA, pl18, Jan. 8 Switch, Card-OperatedPF, p40, Apr. 16 Switch, Multichannel Electronic . . PF, pSO, Feb. 5 Switch, Rotary, Sealed PF, p68, May 14 Switch, Stepping, Slow Speed, Transistor Driven ...ID, p80, May 28 Switching. Interference-Freepl02, Jan. 8

Synchroniration of a Computor, G. Smoliar, J. Keilsohn. Shift register solves synchronization problempf4, Mar. 5
\[
\mathbf{T}
\]

Tantalum Capacitors, Saving ...ID, p144, June 11 Tape Rocorder Motor Does Almost Evorything TWT Oscilloscope Detects Microw, p71, June 25 (Edgerton. Germeshausen and Grier, Inc.) Detects 2000 \(\mathrm{mc}, 1 / 10 \mu \mathrm{sec}\) use time PF, p62, Jan. 8 Tolomotaring Simplified With Angular Position Transducer (Uliradyne, Inc.) Infinite resolution Feb. 5 ID, pl76, Mar. 5 Terminal Strip Design, New, for Toroids Reduces ScrapID, pl71, Mar. 5 Tester, Automatic Sequence ..PF, p42, Jan. 22 Testing, Rapid, of Tube Shorts and Continuity Tests for Chopper to Determine Operating Char acteristicsID, pl46, May 14 Thermintor Bridges, M. L. Miller. Large output thermistor bridges compared to several types of thermocouplesp40, Apr. 30 Thermistor Compensation Network. Quick Design of . pl6, Apr. 30 Thermistor Data Chart. Staff Report. Tabulation of representative groups of thermistors by major manufacturersp20, Apr, 30 Thermistor Field, The Growingpl2, Apr. 30 Thermistors, Design Data for Ultra Low Tempera-
ture . p30, Apr. 30 Thermistors, Making p44, Apr. 30 Thermistors, Microwave Applications of, Part 1, …....................................26, Apr 30 hermistors, Specifying Miliaryp34, Apr. 30 Thermocouples, Semimetal, High Voltage ..p28, May 28
These Parts Were Cold Headed . .ID, pl72, Mar. 5

\section*{\(\square\) NEW and IMPROVED! cav Attenuators}

- Rugged Mi-Frequency SwitchesSolid Silver Contacts in Tefonfor Low Loss and Superior Match
- Choice of 50, 70, or 90 Ohm Impedance
sPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|}
\hline & MODEL CAT. MO. & MODEL CAT. MO. & MODEL CAT. MO. & MODEL EAT. NO. \\
\hline & \begin{tabular}{ll}
\hline \(20^{\circ}\) & \(430-8\) \\
\(21^{+}\) & \(440-8\) \\
\(22^{2}\) & 450.8
\end{tabular} & \begin{tabular}{ll}
\(20.0^{\circ}\) & 431.8 \\
\(21.0^{\circ}\) & 441.8 \\
\(22.0 \pm\) & 451.8
\end{tabular} & \begin{tabular}{ll}
\(30.0^{\circ}\) & \(432 . C\) \\
\(310^{+}\) & \(442 . C\) \\
\(32.0 t\) & \(452 . C\)
\end{tabular} & \begin{tabular}{ll}
\hline \(40.0^{\circ}\) & \(433-A\) \\
\(41.0^{\prime}\) & \(443-A\) \\
\(42-0!\) & \(453-A\)
\end{tabular} \\
\hline \(\boldsymbol{r}_{\text {in }}{ }^{2}\) out & \multicolumn{2}{|l|}{\({ }^{\circ} 50\) ohms nom. \({ }^{+} 70\) on} & nom. & 990 olms nom. \\
\hline D8 Switched & \multicolumn{2}{|c|}{41 db in 6 steps} & \[
\begin{aligned}
& 101 \mathrm{db} \\
& \text { in } 9 \text { steps }
\end{aligned}
\] & \[
\begin{aligned}
& 119 \mathrm{db} \text { total } \\
& \text { in } 1-\mathrm{db} \text { steps }
\end{aligned}
\] \\
\hline Stops & \multicolumn{2}{|l|}{\[
\begin{gathered}
20 \mathrm{db}, 10 \mathrm{db}, 5 \mathrm{db}, 3 \mathrm{db}, \\
2 \mathrm{db}, 1 \mathrm{db}
\end{gathered}
\]} & Same as 41 db units, plus 3 extra \(20-\mathrm{db}\) steps & 1 db and 10 db \\
\hline & 10 dt & \multicolumn{3}{|c|}{Itro ith at fer frequetacies; approx, 0.1 fit at 250 mc ; apprax, 0.2 obl at 500 mc} \\
\hline Maximum Total Errur lincludes insertion loss) & \multicolumn{4}{|l|}{\begin{tabular}{c}
At full attenuation: 0.5 db at 250 mc \\
1.2 db from 250 to 500 mc \\
BETTER ACCURACY AT LOWER FREQUENCIES AND/ OR USING FEWER ATTENUATION STEPS
\end{tabular}
\begin{tabular}{l}
At full attenuation: 1.0 db at 250 mc \\
2.0 db from 250 to 500 mc \\
\hline
\end{tabular}} \\
\hline Frequency Range & \multicolumn{4}{|c|}{DC to 500 mc ; useful to 1000 mc} \\
\hline SWh & \multicolumn{4}{|c|}{1.2:1 max. up to 250 mc ; 1.4:1 max., 250 to 500 mc} \\
\hline Maximum Power & \multicolumn{4}{|c|}{1/2 watt} \\
\hline Connectors & \multicolumn{4}{|c|}{8NC type UG-185/U} \\
\hline Oimensions & \multicolumn{2}{|c|}{2" \(\times 7\) " \(\times 2\) "} & 2" \(\times 93 /{ }^{\prime \prime} \times 2^{\prime \prime}\) & \(53144^{\prime \prime} \times 53 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}\) \\
\hline Weizht & \multicolumn{2}{|c|}{2 lbs .} & 3 lbs . & 41/4 lbs. \\
\hline Prices & \$65.00 & \$60.00 & \$95.00 & \$195.00 \\
\hline
\end{tabular}

On SPECIAL ORDER: 0.5 db stops and your choice of insertion loss, atfenuation range, and impedance rating.
Write fer 1958 Kay Cataloy

CIRCLE 8 ON READER-SERVICE CARD
ELECTRONIC DESIGN - August 6, 1958

\section*{U.S. RADIUM for NEW IDEAS - edge-lighted dials and panels \\ All USR dials and panels manufactured by the}
 LACKON® process satisfy MIL-P.7788. Skilled personnel and advanced production techniques provide dials, panels, knobs and knob skirts with pinpoint reproduction and accuracy, as well as resist. ance to solvents and weathering. USR's integral edge-lighted panels represent the most significant development in the instrument and control panel field since introduction of printed circuits. These new panels simplify lighting circuit assembly and provide greater flexibility for the design engineer.

\section*{CATHODE-RAY TUBE PHOSPHORS}

Phosphors for all cathode-ray tube applications are unsurpassed in adhesion and brightness. Closely controlled through every step of processing, USR phosphors feature high batch-to-batch uniformity. Colors are prepared to customer requirements.

UNITED STATES RADIUM CORPORATION
MORRISTOWN, M. J. Offices: Chicago, Illinois and No. Hollywood, Calif. Affilistes: Radelin Ltd., Toronto,Canada and United States Radium Corp. (Europe), Geneva,Switzerland

\section*{BUYERS are delighted... DESIGNERS are inspired... TUFF=TUBE \\ Fiberglass-Epoxy Laminated Tubing}

Picture of an economy-minded P.A. in his moment of glory! Just placed a production order for Lamtex TUFF. TUBE and is counting the money he's saved. He used to buy NEMA grade G5 glass-melamine tubing - then he heard about TUFF-TUBE's new low price that's the talk of the industry.

PURCHASE PRICE COMPARISON
(3/16 ID \(\times 1 / 32\) Wall)

Glass-melamine 650 per 100 ft . \(-{ }^{-2} 66^{30}\)

Picture of a real smart designer who has just checked the specs on Lamtex TUFF-TUBE, He used to think that NEMA grade G5 glass-melamine tubing was good enough. Now he's convinced that TUFF-TUBE is more than just "good enough"-it's ideal. Below are a few reasons why.

SPECIFICATIONS COMPARISON
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{array}{|l|}
\hline \text { Lamter } \\
\text { TUFF-TUBE } \\
\hline
\end{array}
\] & \[
\begin{array}{c|}
\hline \text { Typical } \\
\text { Glass-Melamine } \\
\hline
\end{array}
\] \\
\hline INSULATION
RESISTANCE
REOOLT & 100.000 & 75 \\
\hline DIELECTRIC STRENGTH volts per mil. short time & 500 & 225 \\
\hline \begin{tabular}{l}
WATER ABSORPTION \\
\%. 24 hr . immersion
\end{tabular} & . 20 & 3.9 \\
\hline \begin{tabular}{l}
AXIAL \\
COMPRESSIVE \\
STRENGTH \\
psi \\
\hline
\end{tabular} & 20,000 & 13,000 \\
\hline CINTINUOUS HIGH TEMP. deg. Cent. & . 180 & 150 \\
\hline
\end{tabular}

Get complefe info at our WESCON exhibit - booth 1902

\section*{INDEX OF ARTICLES cont.}

3D-Rugged Kssembly (Moore Assoc., Inc.) Long life, high production rate without extensive toolingBD, p56. Apr. 16 Thyristor, The. L. E. Barton. Characteristics and application of thyratron-like transistor .. p48, Mar. 19
Time Delays in Pulsed Germanium Diodes ..GA pl96, Mar. 5
Timer, Billionth SecondPF, p64, May 14
Tone Generator, Simple ID. pl05 Jan 22
Transducer, Angular Position ... PF, p48, Feb 5
Transducer, Precision Pressure .. PF, p68, Mar. 5
Transformer, DC, Has Continuous Adjustable Ratiop40, Mar. 5
Transiormers, Power, Optimum Des gn of, Part 1. p26, Apr. 16, Part 2, p48, May 28
Transistor Amplier, DC Feedback Equations for
..Apr. 16
Transistor Amplifiers, Non-Linear Distortion of
GA, pl24, Jan. 22
Transistor Circuits, Fast Pulses in, Overlap Method Makesp44, May 28 Transistor Circuits, Read and Write, For Magnet:c Drum, Part 1, p42, Feb. 6; Part 2, p44, Mar. 5
Transistor Data Supplement. Mid-year supplement of July ' 57 transistor issue-all types introduced from Aug-Oct. '7p38, Jan. 22
Transistor Driven Slow Speed Stepping Switch .ID, p80, May 28
Transistor Heat Sinks (International Electronic Research.) Eliminates large surtace transistor mountingPF, p56, Mar. 5
Transistor, Intrinsic Barrier ... ABS, p98, May 28
Transistor Lead-In Resistances, Determination ofGA, pl22, Jan. 22 Transistor Modulator, Low Cost ..ID, pl04, Ian. 22 Transistor NOR Circuit Design. W. D. Rowe Combination of new NOR logic elements can replace any standard English logic p26. Feb. 5

Transistor Oscillator for 8 MC ..GA, pl76, May Transistor, Fower, Composite Germanium-Silicon Transistor Priority SystemID, pl46, Jun il Transistor Punch Thru Test, Non Destructive ..ID p80, Feb. 5
Transistor Resisting, for Servo Design pl4, Ay t. 2
Transistor, Silicon Unijunction. Part 1, p56, an. 8. Part 2, p30, Jan. 22

Transistor-Simulated Reactances, R. H. Sirn Very large recc:ances replaced by com act transistor c:rcuits offer large savirgsj224, Mar. 5
Transistor Voltage Standards. W. W. W ills, Stardardization proposal of power supply voltages for transistor c-rcuits p50, Mar.
Transistors in Eemodulator Circuits Usirg ..p52 June 11
Transistorized Audio Amplifier from 12 v Supply .ID, p107, Mar. 19
Transistorized Elec:ronic Filter ID, pl50, June 1)
Transistorized Logical Building Blocks (Âvco Re search) Comple:e set of packaged, miniaturzed circuits for computer designPF, p54, Jan 8
Transistorized Regula:ed Power Supplies, Rapid Design of ID, pl04. Mar. 19
Transistorized Seatic Inverter Design, J. F. Lohr Delivers large arpounts of ac power at effic.ercy previously considered unatainable p58 Apr. 16
Transistors, Using, in Demodula*or Circuits p24, May 28
Traveling-Wave Tube List. Tabulation of twit tubes p28, Jur.e 25
Tubes, Electron, New Ground Strips forLD pl04, Mar. 19
Tubes, M:crowave, Survey of . . GA, pll8, Jan. 8
Two Galvanometers Make a Computing Indicator (Aero Electronics) Instrument indica es three qualities-tvo independert variables and one which may be furction of other two. Serves as an indicairg device an dcomputerPF p50, Jen. 8

Two Gyro Mastor Roforence (Lear, Inc.) Serves as source of both directional and vertical gyro intelligencePF, P24, Ap. 2 Two Watt Amplifior in Sise 1 Can (Precision components, Inc.) Delivers 2 w of 40 cps power at 100 c ambient with no heat sinkPF, p32. May 28

\section*{U}

Unijunction Trensistor, Silicon, Part 1, p56, Jan. 8; Part 2, p30, Jan. 22
Unitorm Systom of Filing. The, W. D. Bell. Simple, practical filing system makes for rapid retrieval of informationp48, Apr. 16
Using Transistors in Demodulator Circuits, A. N DeSautels. Discusses half-wave and full-wave phase distortion using transistors and diodes to produce outputs to drive magnetic amplifiers, energize relays, heating coils, hydraulic valves . P24, May 28
v
Vacuum Pump, High PF, p40, Mar. 19 Variable Inductor, AID, p43. Apr. 2 VHF Matching Network Design, A. E. Sanderson New method tor desigring optimum bandbass filters and matching networksp20, Mar 19
VTVM, Precision, Reads True RMSPF, p38, Mar. 5
VTVM, Probes forID, pl02, Feb. 19 Voltage Regulator (Sorenson \& Co.). One cycle response: unusual distortion attenuation ..PF. p82, June 11
Voltage Standards. Transistorp50, Mar. 5 Voltmeter, DigitalPF, p44, Jan. 22 Voltmeter, VT, Probes forID, p102, Feb. 19

Waveform Translator, NewPF, p30, Feb. 19 West Coast Conferences (Meeting Report). Describes RCA's new micromodules, tenor of Western Computer Conference ..pl0, June 25 What The Russians Are Saying And Writing. High points of sessions at Russian Radio Engineering Show. Part 1, pll8, Jan 22; Part 2, p88, Feb. 5; Part 3, pl20, Feb. 19
Wide-Load DC Differential Amplifior. (Kin Tel), Ollers insensitivity to wide output load variation and good common mode rejection .. PF, p34, Jan. B
Wien-Bridge Oscillator Design, Graphical Method Simplifies p20. May 28 Wien-Bridge Oscillator, Low-CostID, pllo, Feb. 19
Wien-Bridge Oscillator, StabilizingID, pl53, May 14
Wire, Magnet, Identification of . .ID, pl06, Jan. 22 Wire Stripper Saves TimeID, pl03, Feb. 19 Wire Testing ComputerID, plo0, Jan. 8 Wiring, Current Carrying Capacity of Printed22, Jan. 22 Write, Read, Transistor Circuit for Magnetic Drums, Part 2 p44, Mar. 5

\section*{X}

X-Band, Diode Measurements inGA pl26, Feb. 19

\section*{2}

Zener Diode Charactoristics. List of 321 Zener diodes with electrical characteristics ..p26 Mar. 19
Zener Diode UsesID, p78, May 28 Zener DiodesGA, pl70. June 1]

Complex Ratio Bridge

\section*{MODEL CRB-1 \& 2}

The Complex Ratio Bridge is supplied in two models: The CRB. 1 covering a frequency range of 30 to 1000 cps with the input voltage limited to 2.5 times the frequency in cps lie: 150 volts at 60 cps); and the CRB-2 covering the frequency range of 50 to 3000 cps with the input limited to 0.35 times the frequency in cps (ie: 140 volts at 400 cps). The units are identical in all other respects.

WESCON SHOW, Booths 1218-1219.

\footnotetext{
3211 South la Cienega Boulevard, Los Angeles 16, California - TExas 0.2761. VErmont 9.2201
}

\section*{THECHINITROI \\ ENGINEERING COMPANY}

\section*{PULSE}

Whatever your requirements may be for miniature pulse transformers, Technitrol has a design that will meet
TRANSFORMERS your circuit specifications. Commercial or Mil-T-27A low-power transformers with pulse widths ranging from 0.05 to \(20 \mu \mathrm{sec}\). are available as standard stock components. Send for Catalog 166

DELAY LINES

Technitrol manufactures and maintains a complete stock of distributed parameter delay lines in standard package form for plug-in or pigtail mounting. Specially-designed delay lines to meet specific performance characteristics are available on order. Send for Bulletin 174.

\section*{TEST INSTRUMENTS}

Diode Tester: for rapid, accurate checking of semiconductor diodes using dynamic curve. Send for Bulletin 1001
Cathode Ray Indicator: a visual indicating device for observing the output of diode testers and transistor curve tracers. Send for Bulletin 1002 Variable Pulser: converts any type of signal source up to 5 mc . into standardized pulses of controlled amplitude and duration. Bulletin 1010 Variable Frequency Oscillator: supplies a source of frequencies from 100 cps . to 5.6 mc . in 7 bands with continuous tuning over each band. Send for Bulletin 1011

\section*{SEE THESE REPRESENTATIVES:}

\section*{ARIZONA}

Emory F. \& Lincoln Howe
4328 N. 42nd Place
Phoenix
NORTHERM CALIFORNLA
Carl A. Stone \& Assoc., Inc. 325 San Antonio St.
Palo Alto
colorado
Hytronics Meas., Inc. 1295 S. Bannock St. Denver 23

\section*{ILLIMOIS}

Robert J. Kennedy 6713 N. Oliphant Ave. Chicago 31

MASSACHUSETTS
W. B. Pray Sales 44 Washington St. Wellesley 81

MINHESOTA
Edward Hoffman Co. 216 Liberty Bank Bldg. St. Paul 4

NEW YORK
Syracuse:
Land-C-Air Sales Co.
317 State Tower BIdg.
Tuckahoe:
Land-C-Air Sales Co.
140 Marbledale Rd.
texas
Airep Engineering
P.O. Box 9555

Dallas 14
technitrol
ENGINEERING COMPANY
East Coast Office: 1952 E. Allegheny Ave., Philadelphia 34, Pa. West Coast Office: 252 North Irving Boulevard, Los Angeles 4, Calif:

\section*{PATENTS}

\section*{Cathode Ray Tube Apparatus}

Patent No. 2,820,921. James D. McGee. (Assigned to Electric \& Musical Industries Ltd., England)
The persistance of a display on a cathode ray tube is increased by monitoring the repeated writing and erasure of
the signal on a storage mosaic.
An adaptation of the invention is il. lustrated. Signal input 7 eonnects to the intensity control of electron gun 4 through switch 8 and the scanning elec. tron beam writes the signal on mosaic 2 A low velocity beam originates at elec-

\section*{Now...}

\section*{POSITIVE ACTION SWITCHES}
- Wiping contacts insure perfect switching for very low energy circuits
- Positive-break action insures safe, reliable switching with high energy circuits
- Direct tnggle-to-contact mechanism guarantees switching action
- First totally enclosed, environment proof toggie switch
- \(1^{\circ}\) lever throw opens circuit
- Positive detent action prevents switch teasing
- New insulating material gives 3 times greater arc tracking resistance
- Greater terminal clearance for easier wiring
- Improved bushing seal is molded in place

Cutler-Hammer single, double, and four pole Positive Action Switches will be avail able in unlimited circuit arrangements ... single throw. double throw, momentaries, etc. For detalled information, write for Pub. EA168-Q217. CUTLER-HAMMER Inc.. Mllwaukee 1. Wisconsin.

CUTLER.HAMMER
CONTROL
tron gun 5 and scans the back side of mosaic 2 to restore the mosaic to the potential of the cathode of gun 5. The return beam from mosaic 2 is applied to electron multiplier 10 which connects to amplifier 15. The amplified signal is monitored by the display tube 16 . Switch 8 connects the output of amplifier 15 to the writing gun 4 and the cycle is repeated to renew the charge image as it is discharged.

\section*{Transistor Oscillator Circuit}

Patent No. 2,829,257. Elihu Root III. (Assigned to R. E. Dietz Co.)
A simple transistor switch provides a stable means which is particularly adaptable for use in a flasher warning lamp ordinarily used by motorists making repairs on the road.
The circuit operates as follows: The lamp 11 is connected to the battery 10 through the pnp junction transistor 15 which is controlled by the npn junction transistor 20 . Initially, the voltage division of resistors 27 and 28 in series establishes cut-off of transistor 20 so that transistor 15 is cut-off. A small current
flows through lamp 11 to charge condenser 14 until the emitter 21 becomes slightly more negative than the base 30 . Transistor 20 begins to conduct through resistor 24 , and the base 25 of transistor 15. As a result, transistor 15 begins to conduct a heavy current through lamp 11, collector 17 becomes more positive, and additional current flows through transistor 20. This provides more load current for transistor 15 which lights the lamp.

Condenser 14 now discharges through transistor 20 until the condenser voltage becomes so low that it cannot maintain conduction of transistor 20 . Both transistors are therefore completely shut off, the lamp becomes extinguished and a new cycle begins.

\section*{COOLS RACKS} SAVES SPACE TOO!

RECESSED MODELS
High performance, minimum panel height. Permanent filter and blower recessed into unused portion of open base rack. Fit \(31 / 2^{\prime \prime}\).
\(51 / 4^{\prime \prime}\), \(7^{\prime \prime \prime}{ }^{\prime \prime} 83 / /^{\prime \prime}\) and \(101 / 2^{\prime \prime}\) heights "Deliver 150 to 800 cfm . Reliable 115 volts,
60 cycle motors. Also Mil. Spec. Mclean Fans \& Blowers*

\section*{FOR ELECTRONIC APPLICATIONS}
rack mounted for easy assembiy - fit standard ig" racks
STANDARD MODELS FOR OTHER RACK WIDTHS AND ANY ANGLE OF AIR DISCHARGE
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Over 15 models available \\
in panel heights of \(31 / 2^{\prime \prime}\) \\
to \(121 / 4^{\prime \prime}\) in increments \\
of \(13 /^{\prime \prime} \ldots\) range 80 to \\
1200 CFM \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Install McLean Fans and Blowers in computers, control units, etc. McLean's small packaged units pressurize cabinet with cool filtered air, keeping dust out. Complete in one unit and ready for use. Standard RETMA notching allows mounting on rack . . . without cutting or fitting. Smart stainless steel grilles . . . easily removable filters.

\section*{BUILD-IN}

By designing-in trio miniature panelmounting instruments into operating and testing equipment, you . . .
- customize both your test set-up and instruments
- save space (average trio medel is \(4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}\))
- save time: af-a-glance sequential or continuous monitoring
- save money: exclude unnecessary instrument functions, ranges
* make monitoring foolproof: read "go/no-go" by switching
* improve lesting efficiency and

BEFORE . . . 3 external instruments were used to measure \(A C\) and DC voltages ...cluttered, tedious, wasteful, subject to error.

AFTER . . . 3 trio VTVMs integrally built-in now are always on hand to measure just the parameters you designate.
```

3 ways you can use Trio Labs' pioneer know-how

1. choose from frio's complete line of "standard" models.
2. select a "special" already produced-and you save
the engineering time and money that went into it.
3. consult us for design specific to your own needs.
Wrate for tree "how to
Engineering Guide to Dep1 ED-8
Trio Laboratories, linc.,
instruments are too big
or madequate
PLAINVIEW, IONG ISIAND.
trio
```

Get \(\$ 10.00\) plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

\section*{Difference Voltmeter Uses Digital Techniques}

HERE'S an example of how digital and logical techniques can solve analog problems. We had to make a rock solid voltmeter to measure the potential difference between two dc inputs. These two inputs could be different by only three or four millivolts, or as much as a hundred mv . Our meter was to be very stable and was to stop drifting after a minute of warm up. We also
had to indicate which of the two input signals was more positive.
Here's how it was done. We fed both inputs into a "perfect chopper"." The output was a square wave whose phase indicated the polarity of the difference between the input signals. Then we amplified the square wave in an ac amplifier, and detected the output to run a high level vtvm.

Fig. 1. Timing diagram with \(X\), the clipped amplifier output when in phase with the chopper drive, and \(X\) the out of phase output.

Since the vtvm does not distinguish polarity, a separate circuit operates two lights to indicate the polarity of the difference signal. This circuit logically compares the amplified and clipped output of the amplifier to the squared up signal that drives the chopper. If these signals are in phase, we get a true output, if not, we get false These true and false signals are strong enough to saturate or cut off a vacuum tube which drives a relay to control the individual lights.

\section*{Logical Polarity Comparator}

The desired performance of the logic box to detect polarity is summarized by the Truth Table in Fig. 2, which refers to the timing dia-

Fig. 4. Logical and digital techniques are used to make a phase sensitive difference voltmeter.
griun in Fig. 1. The table shows that:
With \(X\) true AND \(C\) true, output is true With \(X\) false AND \(C\) false, output is true. With \(X\) false AND \(C\) true, output is false. With \(X\) true AND \(C\) false, output is false. (\(X\) is a chopped de input signal. \(C\) is the square \(l\) up chopper drive signal.
In logical symbols, the truth table is expressed by Fig. 3. Diode logic and voltage gating are used as in Fig. 4. Here +3 v represents the True or 1 state, and -3 v represents the false or 0 state. David H. Bryan, Senior Electronic Eng., Hughes Aircraft Co., Culver City, Calif.
*Since a "perfect chopper" wasn't handy, we used a regular chopper with a capacitor memory. This preregular chopper with a capacitor memory. This preing the transition time of the vibrating reed. Inpur followers reduced the capacitive coupling between contacts and the reed, since this coupling lowers the contact impedance to ground. An input cathode follower extended the memory time without the need for a huge capacitor.

TRUTH TABLE
\begin{tabular}{c|c|c|c}
TIME & \(X\) & \(C\) & DESIRED OUTPUT \\
\hline\(t_{1}\) & 1 & 1 & 1 \\
\hline\(t_{2}\) & 0 & 0 & 1 \\
\hline\(t_{1}\) & 0 & 1 & 0 \\
\hline+2 & 1 & 0 & 0
\end{tabular}

Fig. 2. Truth table represents the timing diagram conveniently.

Fig. 3. Logical expression of truth table.

\section*{Temproof Mountings provide:}
- optimum isolation efficiency from 5 to 500 c.p.s.
- unchanging chararteristics from \(-80^{\circ} 10+250^{\circ} \mathrm{F}\).
- approximately 8 times the service life of other metallic isolators (based on independent tests)

Separate operating elements are used. A load carrying steel spring assures high isolation efficiency over a wide load range. Special elastomeric snubbers absorb shock loads preventing metal-to-metal contact. Damping limits magnification at resonance to approximately 3.
Amplitude sensitive damping limits transmissibility at resonance with no impairment of isolation efficiency at the higher frequencies. The controlled friction force reaches a maximum in the resonant (normally high amplitude) range and diminishes in the high frequency (normally low amplitude) range. Therefore, in high frequency operation, the mountings provide an essentially undamped system with maximum isolation efficiency.
Temproof Mountings are available as individual isolators or as component parts of complete mounting base assemblies. Full information is contained in Bulletin 710, available from your nearest Lord Fieid Engineer or the Home Office, Erie, Pa.

FIELD ENGINEERING OFFICES ATLANTA. GEORGIA.CEdar 7.9247 DAYTON, OHIO-BAIdwin 4-8871 BOSTON, MASS. • HAncock 6.9135 CHICAGO, ILL. • MIChigen 2-6010 CLEVELAND, OHIO - SHadyside 9.3175 DALLAS, TEXAS - RIverside 1-3392 PHILADELPHIA

LORD MANUFACTURING COMPANY - ERIE, PA.

CIRCLE 519 ON

\section*{IDEAS FOR DESIGN}

\section*{Direct Reading "Shock"}

Shock levels for different block arrangements on the Barry 150/400 VD sand drop shock machine are not presented directly on the machine. Setting up shock tests necessitates converting manual data to an ordinary scale on the machine. This process is extremely time consuming.

A multiple scale was developed which presents the acceleration levels for each drop height and block arrangement. This scale replaced the ordinary inch scale supplied with the machine. Acceleration levels are presented in increments of 5 g 's and drop height in increments of 1 in . The block arrangements and pulse time are presented on a reinforced transparent indicator which is attached to the movable platform. The platform is raised to the desired drop height and the acceleration and pulse time can be determined directly for a particular block arrangement without time consuming data conversion.

David D. Blair, Jr., Senior Systems Design Eng., Chance Vought Aircraft Inc., Dallas, Texas.

\section*{Bridge To Measure Voltage Variable Capacitors}

We needed to measure the range of capacitance variation of the V56 Varicap (Pacific Semiconductor Industries) at 400 cps . This is a silicon pn junction device designed to work as a voltage variable capacitor. We wanted a bridge whose accuracy would not be affected by the impedance of the dc bias control.

The three terminal bridge, shown in the figure, did the trick. Its ac output voltage is
\[
E_{o}=\frac{j \omega\left(V_{1} C_{1}-V_{2} C_{2}\right)}{j \omega\left(C_{1}+C_{2}+C_{3}\right)}+1 / R_{d c}
\]

At null (\(E_{0}=0\)), \(V_{1} C_{1}=V_{2} C_{2}\), so the bridge accuracy is not affected by the de supply impedance. \(C_{2}\) is a calibrated voltage variable capaci-

Three terminal bridge measures voltage variable capacitors.

\section*{HELP US KEEP THE THINGS WORTH KEEPING}

Photograph by Howard Zief
It's always so good to have Dad home!

Home-the place he works hard to keep safe and secure. In a free and peaceful world he can always be there to take care of his family. But peace costs money. Money for strength to keep the peace. Money for science and education to help make peace lasting. And money saved by individuals.
Your Savings Bonds, as a direct investment in your country, make you a Partner in strengthening America's Peace Power. Are you buying as many as you might?

HELP STRENGTHEN AMERICA'S PEACE POWER
BUY U. S. SAVINGS BONDS

The U.S. Government does not pay for this advertisingThe Treasury Department thanks, for their patrioth donation. The Advertising Council and this migazin

\section*{1 MEGACYCLE}

\section*{AUTOMATIC}
cAPACITANGE LIMIT BRIDGE

BUILT-IN STANDARDS

\section*{MODEL AB-5 AUTO-BRIDGE}

First time available anywhere... high speed, 1 MC automatic capacitance limit bridge to meet all government and commercial testing specifications. Complete in itself with built-in precision standards . . . no external capacitors required. Perfect for lab or production testing applications. Truly high-speed testing . . . no knobs or dials to turn . . . no meters to read. When used as a simple indicator, green light indicates test capacitor within tolerance, red and amber lights indicate high or low out of tolerance unit. This can also be supplied with semi or fully automatic component feeding and sorting mechanisms.

SPECIFICATIONS
- FREQUENCY-1 megacycle
- RANGE OF MEASUREMENT 0.1000 mmf (+ tolerance adjustable to \(100 \%\), - tolerance to 25\%).
- ACCURACY - Guaranteed accuracy \(1 / 2 \%\) from 0 to 500 mmf . \(1 \%\) up to 1000 mmf.
- SPEED OF RESPONSE - Less than \(1 / 10\) second.

Write today for full technical details to ...

Industrial Instruments inc.
Be Commerce Road. Cedar Grove. Esser County. M. J
CIRCLE 522 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 6, 1958
tor to rebalance the bridge when the dc control function is varied.

The \(500 \mu \mu \mathrm{f}\) capacitor across the voltage variable capacitor brings \(C_{1}\) to a capacity level in the range of \(C_{2}\).

Jerome Lyman, Electrical Engineer, Liquidometer Corp., Long Island City, N.Y.

\section*{Selecting Tapping Screws}

Analyzing design factors instead of using rules of thumb in selecting tapping screws provides easier assembly and greater assurance of sound joints. Fastener specialists point out some of the important factors to consider.

Of the five common types of tapping screws, two are thread forming and three are thread cutting. The thread forming screws, types \(A\) and \(B\), should be used with material, ductile enough to permit the deforming action of the screw. Type \(A\) is pointed and should be used in pierced rather than drilled holes, and where the exposed point doesn't matter.

Where the material is very hard or thick, types \(A\) and \(B\) may require too much driving effort. Then one of the thread cutting screws should be used. For hard, ductile materials, type 1 is best; while type 23 is best for soft, friable materials.

A

B

1

F

23

Type \(F\), with four equally-spaced longitudinal slots, drives straighter than the other types.

Where load is not a factor, the metal thickness determines the screw diameter. Use a screw whose thread pitch gives at least one full thread engagement in the metal. For example, with metal \(1 / 16 \mathrm{in}\). thick, any screw with at least 16 threads per inch can be used.

Where the load must be considered, use a screw strong enough to take the load, and one that provides the greatest thread engagementfour or five threads fully engaged, if possible. If a screw large enough to develop enough holding power doesn't have enough thread engagement, use a greater number of smaller screws.

The size of the hole in the metals to be joined is very important. If the hole is too large, the screw cannot develop enough thread depth; if too small, the screw will be hard to drive. The required hole size varies with the material thickness, type of material and style of screw.

Russell, Burdsall \& Ward Bolt and Nut Co., Port Chester, N.Y.

\section*{HIGH PRECISION}

APPLICATIONS
SPECIFICATIONS

(4)

Here are important new tools to eliminate your logic circuit design problems. Providing significant cost advantages, Epsco's Transistor Digital Circuits save you valuable engineering design time, cut your costs and space requirements and give you dependable, reliable operation.

\author{
- Lowest Cost \\ - Save Time \\ - Save Space \\ - Color Coded \\ - Shock-Resistant \\ - Fully-Encapsulated \\ - Low-Power Rzquirements \\ - Proven Dependability \\ - Complete Compatibility \\ - Easily Accessible Test Points \\ - Efficiently Arranged Pin Connections \\ - 250 KC Operation \\ - \(-55^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) Temperature Range
}

Standard packages gan be modified to provide you with custom circuitry bl no extro packaging cost.

Type A Circuit Packaging (lwo-thirds actual size)

Write for technical bulletins.
Epsco Components, Dept. E88, 108 Cummington Street, Boston 15, Mass.

Epscort

\section*{REPORT BRIEFS}

\section*{Electromagnetic Research}

This paper presents current electromagnetic research efforts and research completed during the past few years at New York University. In the research itself emphasis has been placed on basic problems involving appreciable mathematical methodology. However, this account describes the results from the standpoint of their contribution to microwave problems, ionospheric and tropospheric progagation, diffraction, the inverse propagation and synthesis problems, an tenna and waveguide theory, and other physical problems. Electromagnetic Research at The In stitute of Mathematical Sciences of New York University by Morris Kline, New York Univer sity, Institute of Mathematical Sciences, Div. of Electromagnetic Research, New York, N.Y., July 1956, 20 pp, microfilm \(\$ 2.40\), photocopy \(\$ 3.30\) Order PB 126370 from Library of Congress, Washington 25, D. C.

\section*{Influence of Magnetic Saturation}

In order to investigate the effect of saturation on transients and on voltage regulating properties, transients in a linear machine are compared with those in a machine with saturation. The usual methods for treating a linear machine are developed so that the additional complications arising from losses in the stator circuit and from the damper-winding on the rotor are taken into account. The stability conditions in connection with an actual high-speed regulator are also considered. The effect of saturation on transients is shown by a number of examples and experimen. tal recordings. The stability limit with capacitive impedance load is calculated and checked by tests. Where relevant to working with a long line. practical aspects are discussed. Influence of Magnetic Saturation on Transients and Voltage Regulating Properties of Synchronous Alternators, with Special Reference to Large Capacitive Loads by Erkki Voipio, Sweden, Kungl. Tekniska Hogskolan, Stockholm. 1955, 126 pp, photos, diagrams, graphs, tables, microfilm \(\$ 6.30\), photocopy \(\$ 19.80\). Order PB 124923 from Library of Congress, Washington 25, D.C.

\section*{Two-Channel Receiver}

The principles of a matched channel receiver for RDF applications are described where in the incoming signal selection is made by local uscillator tuning only. Several of the design prohlems are discussed, especially those dealing with the
input circuit and phase and gain matching. The design data and circuits for various parts of the receiver are given. Phase and Gain Matched Tioo-Channel Receiver with Signal Selection by Local Oscillator Tuning Only, by Harold D. Webb, Illinois, Engineering Experiment Station, Electrical Engineering Research Lab., Urbana, Ill. May 1956, 41 pp, diagrams, graphs, tables, microfilin \$3.30, photocopy \(\$ 7.80\). Order PB 126677 from Library of Congress, Washington 25, D.C.

\section*{Measuring Confact Potential Differences}

A widely used modification of the Kelvin method measures the contact difference of potential between two metals by making them the plates of a vibrating condenser and measuring resulting ac flowing in an interconnecting resistor. Such an apparatus is described in which the time changes of the potential difference are to be observed in various controlled gaseous atmospheres. This report describes the factors which influence the improvement of the sensitivity and the stability of the apparatus. A routine reset accuracy of better than \(\pm 1 \mathrm{mv}\) has been obtained in the determination of the contact potential difference. With stabilized, aged condenser electrodes in a constant atmosphere, an overall stability of \(\pm 5 \mathrm{mv}\) was measured over 96 hours. Improvements in The Vibrating Condenser Method of Measuring Contact Potential Differences, by K. Bewig, U. S. Naval Research Laboratory. Feb. 1958, 10 pp, diagrams, graphs, table, 50 cents. Order PB 131530 from OTS, U. S. Dept. of Commerce, Washington 25, D.C.

\section*{Phase-Frequency Characteristics}

Contents: the Taylor approximation in the low interval; an outline of Darlington's approximation method by Chebyshev polynomial series; the "Chebyshev" approximation of an arbitrary low-interval phase; the Taylor approximation of an arbitrary band-interval phase; the Taylor approximation for band-interval attenuation phase; transformations using elliptic functions; Examples of band-interval "Chebyshev" approximatio:1; some mathematical notes; Conclusions. Appendix A: notes on some Chebyshev approximations. Appendix B: the "delay" functions. On Ti:e Approximation of Arbitrary Phase-Frequ(in. y Characteristics, by Victor H. Grinich, Stanjod University, Electronics Research Laborutory, Stanford, Calif. May 1953, 151 pp, diagrams, graphs, tables, microfilm \(\$ 7.50\), photoc(1)y \(\$ 24.30\). Order PB 126342 from Library of C.ingress, Washington 25, D.C.

\section*{Nickelonic News}

DEVELOPMENTS IN NICKEL AND NICKEL ALLOYS AND THEIR APPLICATIONS

\section*{Underseas two years: Atlantic phone cable amplifier tubes retain full emission, promise 20 years continuous service}

175HQ amplifier tube used in underseas phone cable repeaters. There are 306 tubes in the Atlantic cable. All rely on parts made of Nickel.

Nickel parts are essential in the 175 HQ tubes, shown in this portion of phone cable repeater unit. Tubes designed and built at Bell Telephone taboratories, Inc.

New G-E Solid Tantalytic Capacitors. Electronic grade "A" Nickel lead wires help make it rugged.

\section*{Small, rugged electrolytic} capacitor... Nickel leads boost its strength
Hudson Falls, N. Y.: The new Solid Tantalytic@ capacitor is designed for low voltage circuits - its capacitance low voltage circuits - its capacitance \(+85^{\circ} \mathrm{C}\) down to \(-80^{\circ} \mathrm{C}\). General Electric designers gave it unusual resistance to mechanical shock with Electronic grade "A"* Nickel lead wires. They chose Nickel for three good reasons: (1) welds easily - high thermal coefficient of electrical resistivity aids
quasily - strong spot welding. (2) solders assembly into circuits. (3) meets stringent mechanical upecifications - leads (\(0.0201^{\prime \prime}\) diameter) withstand 30 second pull test of 3 pounds, four \(90^{\circ}\) alternate bends.
Pertinent literature: Write for "Inco Technical Bulletin 544
(BGeneral Electric Co.

Murray Hill, N. J.: These Atlantic phone cable tubes must have long, nofailure lives - tube replacement costs run to half a million dollars each!
Designers at Bell Telephone Laboratories have left nothing to chance in tories have left nothing to chance in
developing this kind of reliability. They developing this kind of reliability. They
use Nickel in many parts of the 175 HQ amplifier tubes for both cables of the Atlantic phone system. Experience backs up their use of Nickel. The very first telephone cable to use these tubes -Key West-Havana-have had no tube failures in over 8 years!
These repeater tubes rely on Inco Nickel and Nickel alloys in 12 parts - cathode lead, connector, tubing and sleeve; getter tapes and flag; electrostatic shield wings and Nickel-plated steel shielding; Nickel anode side steel shielding; Nickel anode side
rods; eyelets in mica; connecting tape; rods; eyelets in mica; connecting tape;
and carbonized Nickel in control grid and carb

\section*{radiator.}

The record proves that electronic grades of Nickel and its alloys, now freely available, possess high strength at high temperatures, outstanding vacuum characteristics, good weldability and the ductility needed for intricate forming operations.
Pertinent Literature: Electronic grades of Nickel and Nickel alloys (such as of Nickel and Nickel alloys (such as
" 330 "* Nickel for anodes, "D" Nickel " 330 "* Nickel for anodes, " \(D\) "* Nickel
for supports) with their uses, are defor supports) with their uses, are de-
tailed in "Inco Nickel Alloys for Electailed in "Inco Nickel Alloys for El
tronic Uses." Write for a copy. 545

\section*{Non-magnetic Monel "403" alloy aids} precise tuning by klystron bellows
"San Bruno, Cal.: The low permeability of Monel "403"* non-magnetic nickel-copper alloy (1.1 max . at \(27^{\circ} \mathrm{F}\)) in the tuning bellows of this new Eimac X. 639 Klystron permits precise frequency adjustment without disturbing the tube's magnetic circuit And the good forming and brazing characteristics of Monel " 403 " alloy make for easy bellows manufacture. Inco Nickel for the cathode assures stable emission characteristics. Electronic grade "A"* Nickel for the focus electrode is readily formed, does not contaminate vacuum. Monel* nickel-copper alloy for the neck provides strength at elevated temperatures... withstands oxidation and corrosion.
Pertinent literature: Write for Inco Technical Bulletin 546
 Nickel and Monal alloys aid manufacture, operation of this Eimac X-639 Klystron by Eitel-McCullough, Inc.' Delivers 50 watts in \(7100-8500 \mathrm{me}\) range.

ThE INTERNATIONAL NICKEL COMPANY, INC. 67 Wall Street • New York 5, N. Y.
Circle 544, 545 or 546 on Reader Service Card

\section*{Delivers the Balanced Design EVERYTIME!}

Custom cables are made, not "born". There is a certain elusive "balance" in the design of every custom cable which makes it perfect for the requirement . . . or which, when it's missing, can prove expensive. Phalo engineers have the "cableability" needed to strike the exact combination you call for.

Find out why more and more custom cables come from Phalo. Start by asking for the Phalo catalog

\section*{REPORT BRIEFS}

\section*{Hypersonic Shock Tube}

Theoretical and experimental studies were made of the feasibility of using a shock tube for quantitative investigations of hypersonic flow phenomena at temperatures simulating freeflight conditions. Discussions are given of high Mach number production, limitations on the test section Mach number, methods of generating strong shock waves, flows with variable specific heats and dissociation, and types of problems amenable to study with the hypersonic shock tube. The experimental investigations to date have dealt with pressure studies using piezoelectric gages and Schlieren studies of the flow. Hypersonic Shock Tube, by Y. A. Yoler, California Institute of Technology, Guggenheim Aeronautical Laboratory, Hypersonic Wind Tunnel, Pasadena, Calif. July 1954, 183 pp, photos, graphs, microfilm \(\$ 8.40\), photocopy \(\$ 28.80\). Order PB 126833 from Library of Congress, Washington 25, D.C.

\section*{Dielectric Condensers}

The article describes the technical and technological elements which served as a basis for the evolution of two series of metal foil/paper condensers encased in metal housings (parallelipiped shape in one case, and tubular in the other). These items are comparable to better foreign products of the same type. Translated from L'Onde Electrique, Vol. 36, No. 348, Mar. 1956, pp 194-213. Development of "Standardized Series of Impregnated Paper Dielectric Condensers (Capacitors), by C. M. Laurent, translated and edited by F. A. Raven, Sept. 1956, 54 pp, photos, drawings, diagrams, graphs, tables, microfilm \(\$ 3.60\), photocopy \(\$ 9.30\). Order PB 124802 from Library of Congress, Washington 25, D.C.

\section*{Antennas}

This report states the results of a study of various antenna types having characteristics suitable for use in VHF ionospheric scatter applications for point-to-point communications over distances of approximately 1900 to 2200 km . Antennas for the Extreme Distance Range of VHF Ionospheric-Scatter Propagation, Page Communications Engineers, Inc., Washington, D.C. Nov. 1955, 92 pp, diagrams, graphs, tables, microfilm \$5.40, photocopy \$15.30. Order PB 126147, Library of Congress, Washington 25, D.C.

\section*{STILL GOING STRONGI}

Electronics corp. Leader in Leader in
Special Purpose Tube

The new Pioneer high vacuum switch The new Pioneer high vacuum switch rugged, long lasting, single pole double throw high voltage relay. Ideally suited for switching purposes in DC pulse systems and in many circuits where a fast-acting relay is required in a high oltage circuit, or under varying atmos phere conditions.
For application in Mining, Chemical Aircraft and Petroleum Industries.
Write for descriptive literature and specifications. Dept. ED8

223E S. CARMELINA - LOS ANGELEE B4. CALIFORNIA CIRCLE 514 ON READER-SERVICE CARD

radomes aitenn selectronic components
The RANTEC MICROWAVE DEPARTMENT, composed of highly qualified ongineering personnel, offors varied services in research, design, development, lesting and fabrication of microwave components and ferrite devices. Recent facilit and challenging assignments. Such devices as a low to accept a varialy of ne particular prob er need in the her have discuss it with you. \(\longrightarrow\) WESCON SHOW BOOTH \(=935 \longrightarrow\)

\section*{000000 com}

23999 ventura blvd. calabasas, california diamond 7.5446

\section*{Extraction of Noise}

Message reliability is formulated in terms of risk, or average cost, associated with the process of extraction of random signals from a whitenoise background. The optimum extraction process is obtained for cost criteria of different forms, and expressions for the corresponding risk are presented, together with curves which show their dependence on the signal-to-noise ratio. Extension of the theory to more general cases is briffly considered. On The Extraction of Noise Like Signals from A Noisy Background, from The Risk Point of View, by Neil Ashby, U. S. Air Force, Air Research and Development Command, Cambridge Research Center, Electronics Research Directorate, Components and Techniques Laboratory, Bedford, Mass. Dec. 19.56, 3.5 pp, graphs, microfilm \(\$ 3.00\), photocop!! \(\$ 6.30\). Order PB 126376 from Library of Congress, Washington 25, D.C.

\section*{Reflection of Elecłromagnetic Waves}

By solving the integral equation of Hallen it is possible to compute the current which is caused in a straight thin metal strip by an outside incidental electromagnetic field. The present work deals with various methods for approximately solving the integral equation, and the current is represented both in the form of standing waves and in the form of waves continuously reflected. The radiation caused by the current arising has been computed. Reflection of Electromagnetic Waves from Thin Metal Strips (Passive Antennae), by Kristen Lindroth, Kungl, Tekniska Hogskolan, Stockholm, Sweden. 1955. 64 pages, diagrams, graphs. Order PB 124920 from Library of Congress, Washington 25, D. C.

\section*{Fibrous Microwave Absorber}

Microwave absorbers made in the form of mats using fibrous materials impregnated with pigmented rubber solutions have been found to live efficient broadband absorption from 2,500 to \(30,000 \mathrm{mc}\) with less than 5 per cent of the eflection obtained from a smooth metal plate. Modifications of these absorbers can be made to fill such recuirements as fire resistance, mechanital strength, and indifference to water and veatlering. These absorbers are adaptable to Drws, roduction techniques and have been used successfully in radar dark rooms for antenna reearch Darkflex, A Fibrous Microwave Absorber, H. A. Tanner, A. G. Sands, and M. V. McDowell, I.S. Naval Research Laboatory. April 1953, 11 pp, microfilm \$2.40. Order PB 130312 from Libuary of Congress, Washington 2.5, D.C.

\section*{Announcing a new ALLISON FILTER with READING CONTINUOUSLY VARIABLE PASSIVE NETWORK} AUDIO FREQUENCY FILTER-MODEL 420P
A new Allison High Pass-Low Pass Filter permits direct reading of the frequency dial! The new filter, Model 420P, has separate High Pass-Low Pass Continuously Variable sections, allowing you to set up any band width within the range of 20 cycles to 20,000 cycles. For rapid, accurate analysis of noise, specify Allison Filters!

- Continuously variable frequency range from 20 cycles to 20,000 cycles
- 20 db attenuation in first octave
- Passive network - No power supply
- No vacuum tubes
- Dynamic range 140 db
- Designed for 600 ohms impedance
- Plug-in input--uutput transformers for other impedances
- Maximum input 2 volts
- Low loss-Approximately 2 db in pass band
- Low Pass Signals from dec to cut-off frequency
- Minimum band width approximately one-half octave Bulletin with complete fechnical data.

\section*{Allison Laboratories, Inc.}

14185 E. SKYLINE DRIVE - LA PUENTE, CALIFORNIA

\section*{If you need plating for}

\section*{AIRCRAFT} ELECTRONICS ELECTROMECHANICS missile INDUSTRIES
: look to PIERCE PRECISION PLATING COMPANY for prompt, reliable service in strict accordance with your specifications for plating with PLATINUM, LEAD INDIUM, CHROME, RHODIUM, GOLD, SILVER, COPPER, NICKEL, and TIN. We guarantee complete cooperation on your design and developmental problems.

For detailed information write for ENGINEERING SPECIFICATION BULLETIN "A.

\section*{PIERCE precision plating co.}

Specialists in both immersion (alectroless) and olectro-plating 1040 VARIAN STREET, SAN CARIOS, CALIFORNIA

NEW miniature rotary switch \({ }^{\text {wret }}\) MA-12 12 POSITIONS 5 SECTIONS 3 AMP. 115 V .

MA-12
FEATURES:
- Small - square
- Versatile - up 106 poles
per section; up to 5 sections
- Currenf-carrying capacity - 3 amp.
ACTUAL SIZE
- Inferrupting rafing - \(1 / 2 \mathrm{amp}\). 115 v .
- Voliage breakdown - 1000 volts RMS
- Rofation - unlimited, or limited 2 to 12 pos.
- Electrical life - 10,000 cycles at rated load
- Designed to meet MIL-S-3786

Write for complete information today.

\section*{R-F ELECTRONICS. inc.}

167 King Ave., Weymouth 88, Massachusetts

\section*{NEWS ABOUT beNDIX SHAFT ENCODERS}

\section*{Photo-Electric Sensor Types Added to Line}

The Bendix \({ }^{(8)}\) "Supermarket" for precision components has long served your analog-digital converter needs with miniature, brush slip-ring shaft encoders featuring extremely high resolution. Now, with the addition of new photo-electric sensor types, the Bendix shaft encoder line makes Bendix extra quality available for even broader applications.

With these new photo-electric sensor units, you enjoy the important advantages of higher operating speeds, lower operating torque requirements, longer life, and finer resolution in relation to physical size.

The specification table below is the best evidence we know that your shaft encoder needs find their most efficient answer at the Bendix Supermarket.

District Offices: Burbank and San Francisco, Calif.z Seatile. Wash.; Dayton, Ohio; and Washington, D. C. Export Sales \& Service: Eendix International Division, 205 E. 42nd St.. Now York 17. N. Y.
bendix offers wide choice to fit your exact shaft encoder needs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE MO. & C8.7-A1 & -8-8-A1 & -8-6-A1 & 08-8-A1 & 28-4-A1 & -8-8-A1 \\
\hline OUTPUT & \[
\begin{aligned}
& 9 \text { DIGIT } \\
& \text { GRAY }
\end{aligned}
\] & \[
\begin{aligned}
& 13 \text { DIGIT } \\
& \text { BINARY }
\end{aligned}
\] & \[
\begin{aligned}
& 8 \text { DIGIT } \\
& \text { GRAY }
\end{aligned}
\] & 9 DIGIT BINARY DECIMAL (GRAY) & \begin{tabular}{l}
7 DIGIT \\
BINARY
\end{tabular} & \[
\begin{aligned}
& 13 \text { DIGIT } \\
& \text { GRAY }
\end{aligned}
\] \\
\hline STYLE & PHOTO. ELECTRIC & DOUBLE BRUSH & BRUSH & BRUSH & DOUBLE BRUSH & BRUSH \\
\hline RESOLUTION & 1 PART IN 512 & I PART IN 8192 & 1 PART IN 256 & I PART IN 198 & 1 PART IN 128 & I PART IN 8192 \\
\hline MILLI. AMPS/DIGIT & . 075 (MAX.) & 10 (MAX.) & 10 (MAX.) & 15 (MAX.) & 10 (MAX.) & 10 (MAX.) \\
\hline CONT SPEED (RPM) & HIGH SPEED & 150 (MAX.) & 150 (MAX.) & 150 (MAX.) & 150 (MAX.) & 50 (MAX.) \\
\hline OPERATING TORQUE & \[
\begin{aligned}
& .05 \text { OZ-IN. } \\
& \text { (MAX.) }
\end{aligned}
\] & \[
\begin{aligned}
& .50 \text { OZ-IN. } \\
& \text { (MAX.) }
\end{aligned}
\] & \begin{tabular}{l}
20 OZ-IN. \\
(MAX.)
\end{tabular} & \[
\begin{aligned}
& .22 \text { OZ-IN. } \\
& \text { (MAX.) }
\end{aligned}
\] & \[
\begin{aligned}
& .31 \cdot 02-1 \mathrm{IN} . \\
& (\text { MAX. }
\end{aligned}
\] & \[
\begin{gathered}
40 \text { OZ.IN. } \\
\text { (MAX.) }
\end{gathered}
\] \\
\hline CASE DIAMETER & 1.191 INCH & 1.411 INCH & . 937 INCH & . 937 INCH & . 937 INCH & 2.50 INCH \\
\hline
\end{tabular}
tRPM DETERMINED BY APPLICATION

Eclipse-Pioneer Division

Teterboro, N. J.

\footnotetext{
"You Can't Beat The Bendix Supermarket.
}

\section*{What The .0.onomoron
 Russians}

\title{
Are Writing
}

\author{
J. George Adashko
}

\section*{INFORMATION THEORY}

\section*{Conditions for Obtaining High Carrying} Capacity in Communication Channels with Random Variations of Parameters by V. I. Siforov. EC 1/58, pp 3-8.

Communication channels with a random parameter variation are classified into two kinds, in accordance with their carrying capacity at low level of additive noise. The author introduces the concept of the intrinsic carrying capacity of channels of one of these types. If the total bandwidth of the frequency spectra of all the random-varying parameters of a multiple channel is less than its frequency bandwidth, then its carrying capacity increases without bound as the level of additive noise is reduced without limit. Refers to work by Shannon (The Zero Error Capacity of a Noisy Channel IRE Transactions, IT-2, No. 3, 1956) Elias (Predictive Coding, IRE Transactions on Information Theory IT-1, No. 1, 1955) and Feinstein (A New Basic Theorem of Information Theory IRE Transactions, IGIT-4, 1954).

Distribution of the Envelope at the Output of a Selective System Under Accidental Frequency Deviations by \(A\). V. Prosin. EC 1/58, pp 9-14, 3 figs.

A method is given for determining the
distribution curves for the envelope of the amplitudes at the output of selective systems owing to accidental swings of the voltage frequency. The distribution curves are obtained for the output of resonant systems consisting of \(n\) identical networks and \(n\) pairs of coupled networks. The condition is that the modulating voltage has a normal distribution and that the so-called quasi-stationary solution is used for the output oscillations. Simple formulas are obtained for the dis tribution function of a quantity that is the reciprocal of the voltage amplitude On the basis of these formulas it is pos sible to calculate the probability that the envelope will exceed a previously specified value. The probabilities are plotted for various values of both the parameters of the selective systems and of the pa rameters of the messages. This makes pos sible an estimate of the requirements that must be satisfied by the amplitude limiters.

Principle of Quantization of Stochasti Signals with Unlimited Spectrum and Certain Results in the Theory of Pulse Transmission of Communication by N. A Zheleznov. REE 1/58, Pp 3-18, 2 figs.

The principle of quantization, which establishes the possibility of represent ing continuous signals with the aid of
(discrete aggregate of quantities, shifted rclative to each other with time, is extended to include the case of stochastic signals with unlimited spectrum. A theorem is proved for the optimum expansion of the signals into orthogonal components, yielding a minimum rms error. For the transmission of pulse-modulated signals there exists a maximum possible fidelity, which cannot be exceeded for any modulation method. A method for selecting the characteristics of a transmission line to insure high fidelity is described.

Interference Immunity of Hamming's Code by G. A. Shastova. REE 1/58, pp 19-26, 8 figs.

The interference immunity of transmission of discrete communications by the Hamming code, by simple binary codes, and by a code with repetition and protection are compared subject to two initial conditions. The first condition is that the probability of distortion of one symbol be constant, the second is that the energy of the signal, which can be used for the transmission of a single communication, be constant. Conditions are obtained under which the Hamming code insures a higher interference immunity. Refers to work by Hamming (Bell System Technical Journal, 1950,

29, 147-160) and Elias (Transactions IRE PGIT-4, 1954).

\section*{MEASUREMENTS}

\section*{New Method for Measuring Very Small Alternating Electric Quantities by V. S. Voyutskiy. REE 2/58, pp 244-248, 3 figs.}

Description is given of a null-type compensation method for measuring very small (noise) electric voltages (or currents), whose level is considerably below the level of the intrinsic noise of the apparatus. This method is equivalent to the modulation method with respect to the freedom of the results from the fluctuations in the apparatus parameters and of the level of the apparatus noise, but does not require computing devices. An analysis of the method is given, circuits are shown, and results of the experiments are reported. See Figs. 1 and 2.

\section*{Sensitivity of a Radio Meter with Automatic Gain Control by N. V. Karlov and P. N. Lebedev. REE 1/58, pp 74-79.}

Expressions are obtained for the sensitivity of a modulation radio meter, in which the sensitivity threshold is reduced by the use of automatic gain control. In practice, this changes the natural sensitivity threshold. The advisability of using automatic gain control

Fig. 1. Scheme for comparing the measured quantity on the left with a standard quantity on the right.

Fig. 2. The newly proposed comparison circuit.

tired
of CHOPPER

\section*{troubles?}

This new, hermetically sealed, single pole, double throw dc modulator is virtually free from DC drifts. Each individual unit has less than 5 microvolts DC offset and drifts less than 2 microvolts over long periods of time. Normal contact dwell time is \(55 \%\), other dwell times being available. Constancy of dwell time better than \(2 \%\) for first 1000 hours operation, less change afterwards. Life expectancy \(10,000-25,000\) hours.

Due to their rigid production standards these modulators are freely interchangeable, normally not requiring re-zeroing after replacement.

A new magnetic driving system provides unprecedented freedom from magnetic and electrostatic interference between coil and contacts making hum immeasurably small. A radically new contact design and contact treatment keeps RMS contact -noise voltage-generation well below \(1 \mathbf{u V}\).
This DC modulator is used in the most stable amplifiers and DC vacuum tube voltmeters available on the market today.
For further details write to:

WESCON SHOW
BOOTHS 1527 \& 1528

BOX 997

\section*{P\&B MICRO-MINIATURE RELAYS LEAD IN performance}

SHOCK: \(100 \mathrm{~g} *\) VIBRATION: 30 g to 2000 cps*

New \(\mathrm{P} \& \mathrm{~B}\) crystal-case size relays, the SC and the SL (magnetic latching), show amazing shock and vibration capabilities. They absorb shocks of 100 g and vibrations 30 g to 2000 cps . without contact openings!
One watt of power for 3 milliseconds operates either relay. Transfer time is unusually fast- 0.5 milliseconds maximum.

St-dual coil latching relay. Operates on a watt, 3 ms pulse at nominal voltage. Permanent magnef latch locks the armature in either position. SC-non-latching relay with series-connected dual coils. Operates on approximately 1 watt at nominal valtage. Coils must remain energized to hold the armature in the operote position.

\section*{SC and SL Serles Engineering Dafa} GENERAL:
Insulation Resistance: 10,000 megohms, min. Breakdown Volfage: 1,000 V. RMS.
Shock: 100。
Temperature Range: \(-65^{\circ} \mathrm{C} .10+125^{\circ} \mathrm{C}\).

Vibration: 30g 55 to 2000 cps.; \(0.195^{\prime \prime}\) max excursions from 10.55 cps .
Welght: 15 grams without mounting bracket.
Operate Time: 3 MS max. with 550 ohm coil (a) \(24 \mathrm{~V} . \mathrm{DC}(\mathrm{SL}, 630 \mathrm{ohm}\) coil at \(24 \mathrm{~V} . \mathrm{DC})\). Transfor Time: 0.5 MS max.
Terminals: (1) Plug-in for microminiature receptacle of printed circuil board.
(2) Hook end solder for 2 \#24 AWG wires. (3) \(3^{\prime \prime}\) flexible leads

Enclosure: Hermetically sealed.

\section*{CONTACTS:}

Arrangement: 2 Form C.
Material: Gold flashed palladium.
Lead: 2 amps @ 2ธ V. DC, resistive; 1 amp (a) 115 V 60 eycles AC, resistive.
Pressure: SC—16 grams min.s St -20 grams min. COIL:
Power: Approx, 1.0 watt at Nominal Volrage. Resistance: SL-40 to 1400 ohms; SC -35 to 1250 ohms.
Duty: Continuous.
MOUNTINGS:
Bracket, stud and plug-in.
paE standard relays are available at your local electronic parts distrieutor
POTTER B BRUNATELD DNS。
PRINCETON, INDIANA - SUESIDIARY OF AMERICAN MACHINE FOUNDRY COMPANY

\section*{RUSSIAN TRANSLATIONS}
in the presence of fluctuations in the gain and in the case when the receiver has a noise factor is discussed. Reference is made to work by Selove (Review of Scientific Instruments, 1954, Vol. 25, page 120), Machin, Ryle, and Vonberg (Proceedings IRE, 1952, Part III, Vol. 99, page 177), and Ryle (Proceedings Royal Society, 1952, 211 A, 359).

Measurement of the Bandwidth of the Signal Radiated by a Radio-Telegraph Transmitter by M. S. Gurevich. Measurement Engineering, (lzmeritel'naya Tekhnika), 1-2/58, pp 62-67, 10 figs.

The bandwidth occupied by the radiation of a transmitter is defined as the frequency band that contains 99 percent of the radiated power. It includes any discrete harmonic, whose power amounts to not less than 0.25 per cent of the total radiated power. The author considers methods for measuring this bandwidth, and gives several experimental results. He also lists various methods used for this measurement.

\section*{Electrodynamic Ammeter for the Measurement of High Frequency Currents by V. R. Lopan'. Measurement Engineering Izmeritel'naya Tekhnika), 1-2/58, pp 71-74, 2 figs, 1 table.}

Electrodynamic ammeter developed at the Scientific Research Institute for Physical-Technical and Radio Technical Measurements, is described for measuring currents from 5-100 amp in the frequency range from 1 to 100 mc . The various errors in current in such measurements are discussed and tabulated. See Fig. 3.

Fig. 3. The meter movement for high current measurements at high frequencies.

Let X equal your problem in ef tronics or atomics. Technic ent rience is that application of \(P\) (Precious Metal Plating Me lurgy) may be your solution.
ALLOY GOLD PLATIN
Growing complexity of requi ments in the electronic and ator fields brings demand for coatings that have qualities on than 24 K gold. Technic metirin and equipment enable you to mo problems with a new toolexact metallurgy which alloys plating gold with trace amou or more, of desired elements.

\section*{TECHNIC SERVICE}

We engineer and install all requirements for precious m electroplating with rigid scien control. And our specialists your specialists until your inser tion achieves optimum perfo ance. Send us your problema old or new - for Technic rea mendations.
PM
TECHNIS, II
39 Snow Strect.
Providence, R. I.
JAckson 1-4200
Chicago Office-7001
North Clark Street

THE LARGEST Enterprise of its wind in thi

\title{
ELECTRICAL ELECTRONIC
}

Here is the lacing tape that solves the knotty problems in complicated harness work. Gudebrod Flat Braided Lacing Tape is the ultimate in knot strength and freedom from slip. The special Gudebrod method of applying finishes makes the tape stick like a fly's foot... knots just won't slip. Harnesses are firm and stable when tied with Gudebrod Lacing Tape.

For harness or winding applica. tions-wherever unfailing per. formance under severe envir. onment is vital-there is no sub. stitute for proved Gudebrod quality. Write us your problems ...ask for samples of Gudebrod Lacing Tape today.

> GUDEBROD BROS. SILK CO.

EIECTRONICS DIVISION 225 West 34 th Sireet, New York I, N. Y executive offices d 2 South 12 h Stieet, Phila 7. Pa.

\section*{VISIT THE GUDEBROD BOOTH 334} at the wescon show

Phase Sensitivity of Frequency Multipliers by M. Z. Klyumel'. Measurement Engineering (lzmeritel'naya Tekhnika), 1-2/58, pp 58-62, 2 figs.
The phase-sensitivity of a frequency multiplier is important in designing molecular microwave generators. The article describes briefly the final results of an experimental investigation of the phase sensitivity of multipliers in this range.

\section*{CIRCUITS}

Investigation of the Stationary Mode of Operation of a Regenerative Frequency Divider with a Two to One Ratio by V. S. Andreyev. REE 2/58, pp 214-226, 7 figs.

Although regenerative frequency divider circuits have been in use since 1939 (see R. L. Miller, Fractional-Frequency Generator Utilizing Regenerative Modulation, Proceedings IRE, \(1939,27,7,446\)), they have not yet been theoretically investigated, even in the stationary mode. The author uses the "abbreviated" system of equations to derive relations which would permit an analytical calculation of the circuit. The theoretical equations and the characteristics are different for circuits in which the tuned circuit employs an iron-core transformer and for those where an air-core transformer is used. Higher selectivity is obtained with air-core transformers, and higher phase-stability is obtained with ironcore transformers.

Operation of a Ring Converter at Small Input Signals by V. S. Andreyev. RE 12/57, pp 10-18, 7 figs.
The nonlinear elements of the ring converter are approximated by an exponential function. Relations are derived for the dependence of the output signal and the input impedances on the input signals and on circuit parameters. Numerical methods are used to solve the transcendental equation. It is shown that the purest multiplication of the input signal is reached for certain definite relationships between the circuit parameters.

Synthesis of Mixed Relay Circuits of The SeriesParallel Type by V. N. Roginskiy. AT 12/57, pp 1120-1131, 6 figs.
A Boolean treatment of analytical methods for equivalent transformations of switching circuits. It includes means for obtaining mixed relay systems by introducing elements of finite conductivity. The application of these methods in the synthesis of multi-relay circuits may reduce the number of contacts in the circuits. Reference is made to work by Shekel, "Sketch for an Algebra of Switchable Networks" (Proceedings IRE, Vol. 41, July 1953).
(Continued on page 184)

\title{
Speed Production... Lower Assembly Costs with this New Simmmetrical Feed-Thru Capacitor*
}

\section*{Centiniab's New DA-741 בix-工ap,} the feed-thrus you can't put in wrong
. . . can be inserted from either end . . . a natural for machine insertion or other types of automation
. . . embodies a new metalizing technique that completely eliminates capacitance drop-off, silver migration, and silver burn-off during soldering operations
. . . will withstand soldering temperatures of \(450^{\circ} \mathrm{F}\) for two minutes
. . . has a solder fillet around center ring eliminating need for solder preforms
. . . rugged 16 gauge tinned wire lead assures positive connections

\section*{SPECIFICATIONS:}

Capacitance: Available in values up to \(\mathbf{1 , 0 0 0} \mathbf{m m f}\). GMV
Power Factor: \(\mathbf{3} \%\) maximum, measured at 1KC
Voltage: \(\quad 500\) VDCW, 1300 VDCT; special units can be supplied for 900 V. RMS test

DA-740, with same electrical characteristics but without solder fillet or leads, can also be supplied.
For details write for Centralab Engineering Bulletin No. EP-556. For the most complete line of ceramic capacitors in the industry see your Centralab distributor.

A DIVISION OF GLOBE.UNION, INC. 96OH E. KEEFE AYE. - MILWAUKEE I, WIS. In Cenada: 804 MP. Pleasant Rd. - Yoronto, Ontario

VARIABLE RESISTORS - PACKAGED ELECTRONIC CIRCUITS - ELECTRONIC SWITCHES CERAMIC CAPACITORS - ENGINEERED CERAMICS - SEMI-CONDUCTOR PRODUCTS See the newest Centralab products at Wescon-Booth 1520

CIRCLE 486 ON READER-SERVICE CARD

What's behind this quality? - it's VECO's ever-constant research, development and engineering program, designed to keep abreast of today's fast-changing industry. Backed by one of the country's largest and finest equipped plants, VECO works hand-in-hand with customers to improve existing products and develop new applications utilizing Thermistors and Varistors.

VECO also publishes technical and educational literature to tell customers of the uses and characteristics of Thermistors and Varistors. A new Technical Catalog, covering over 250 VECO stock items, and an educational series entitled "Meet The VECO Thermistor" are available. Write or call for your free copy today!

Also Manufocturers of VECO cas Analysis and

Chromatography Cells
Combustion Analyzers
Temporature-Sensing Devices Low Temperature (Lox Probes) (Pat. Applied For)
Tap-A-Therm (Multi-Tapped
Thermistors) (Pat. Applied For)
Custom-Built, Constant Temp-
erature Baths and Controls
Compactrol (Electronic Controls) (Pat. Applied For)
Descriptive liferafure covering each item available on reques!

\section*{区 \\ Victory \\ ENGINEERING}

CORPORATION
108 Springfield Road, Union, N. J.
Telephone MUrdock 8-7150

See us at the WESCON Show, leoth 1734—August 19-22, Pan Pacific Auditorium, Los Angeles, Californic CIRCLE 487 ON READER-SERVICE CARD

CIRCLE 488 ON READER-SERVICE CARD

\section*{RUSSIAN TRANSLATIONS}

Null Type Telemetering System with Static Transmitter by V. S. Popov. Measurement Engineering (lzmerifel'naya Tekhnika), 1-2/58, pp 43-47, 4 figs.

A telemetering system patented in Russia is described, in which the compensating element is not dynamic, but static (a thermistor). The circuit, shown in Fig. 4, is described in detail, along with the construction of the indirectly-heated thermistor.

Fig. 4. The telemetering system with a thermistor as the compensating element.

The telemetering system consists of a bridge, fed from a commercial-frequency source. The line is connected to the output of the bridge through an amplifier, phase-sensitive rectifier, and a LC filter to smooth the pulsating current. A negative feedback loop, insuring automatic balancing of the bridge, is formed by connecting the filament of the thermistor in the line. When the measured quantity changes, the changed resistance of one or several of its arms unbalances the bridge. The resistance arms are so chosen that the bridge balances automatically by change of the filament current over the entire range of measurement.

Nomogram for the h-Parameters of Transistors by E. M. Manukian. RE 12/57, pp 29-35, 3 figs, 1 table.

Equvialent two-terminal pair network parameters expressed as \(h\)-parameters are most suitable for low frequency calculations. The article gives the most widely used formulas and a nomogram with which one can calculate the \(h\)-parameters and also convert \(h\)-parameters into equivalent \(T\) circuits. An example illustrates the use of the nomogram. The \(h\)-parameters are treated in detail by Lo and others in "Transistor Electronics," 1955.

\section*{most complete}

Design Forum
- Product Features
- Ideas for Design
- Engineering Review
- Standards and Specs
- Russian Translations
- Background for Design

More and more electronic engineers report: "I read Electronic Design first. It's complete, timely, easier to read, and I can depend upon getting all the new product in formation."
Electronic Design's 8 full time editors, plus staff of assistants, contributors, and correspondents scan the electronic horizons to bring you the complete design picture.
With reading time at a premium, ED's every-other-week frequency assures the prompt delivery of topical material; keeps up with this rapidly moving industry.

\section*{ELECTRONIC DESIGN}
a HAYDEN publication
830 Third Ave., New York 22, N. Y. PLaza l-5530

\section*{Krohn-Hite wide range rc OSCILLATORS \\ }

\section*{FEATURING}
- DISTORTION LESS THAN 0.1\%.
- 100 MILLION TO 1 frequency range
- PUSH BUTTON RESETABILITY

The Krohn-Hite Oscillator Line
\begin{tabular}{|c|c|c|c|c|}
\hline Moses & fieguency Renseo & Frequency Accurac| & \({ }_{c}^{013}\) & Prea \\
\hline 400-A & . 009 cps 101.1 lcc & \(2 \%\) & 1\% & \$375.00 \\
\hline 400.0000 & . 009 cps to 1.1 kc & 2\% & 1\% & 3395.00 \\
\hline 410-A \({ }^{\text {a }}\) - & . 02 cps 1020 kc & 2\% & 1/10\% & \$1050.00 \\
\hline 420.4 & . 35 cps to 52 kc & 2\% & 1\% & 3315.00 \\
\hline 420.1000 & . 35 cps 1052 kc & 2\% & \(1 \%\) & 3345.00 \\
\hline 430.AB & 4.5 cps 10520 kc & 2\% & \(1 \%\) & \$145.00 \\
\hline 40.A \({ }^{\circ}{ }^{\circ}\) & . 001 cps 10100 kc & \(1 \%^{\circ}\) & 1/10\% \({ }^{\circ}\) & \$550.00 \\
\hline \(40 .-8^{\circ 0}\) & 1 cps 101 kc & 1/20\%* & 1/10\% & 8950.00 \\
\hline
\end{tabular}

All oscillators except 430-AB and 440-B have both sine wave and square wave oulputs. \({ }^{\circ}\) Higher at end of range.••Push Button Operation in Models 440 ONLY. "oorack panel construction.

For further information on:
- Filters
- Power Supplies
- Oscillators
- Power Amplifiers
write for our free catalog D

- Current Range - \(100 \mu\) a to 1 amp. (special models to 2 amp.\()\)
- Collector Voltage Range - 0 to 100 v .
- Frequency Range - 100 cps to 200 kc
- Direct measurement of h parameters plus \(\alpha\) and \(\beta\) cutoff
- Meter indication of DC parameters, Ico, IEO, \(\mathrm{BV}_{\text {CER, }} \mathrm{V}_{\text {EgF }}\)

Designers of custom test equipment for specific applications (e.g., automatic and production test sets). B-A transistor test sets are designed by transistor circuit engineers.
Other Baird-Atomic Transistor Test Equipment Available:

\section*{TRANSISTOR TEST SET - GP. 4}

The transistor tester that measures: \(h\) parameters and equivalent \(T\) coefficients . . . NPN and PNP junction and surface-barrier transistors . . . grounded-base or emitter circuits . . . alpha and beta cut-off . . . Ico . . . and Cc. Measurement frequency from 100 c.p.s. to 1 mc .

\section*{TRANSISTOR BETA hie TESTER - KT-I}

Portable, lightweight transistor tester measures Beta hio and Ico. Completely self-contained with a transistorized l kc oscillator and batteries, featuring printed-circuit construction and meter overload protection.

Two transistor sockets - one standard socket for in-line or JETEC cases, plus easy insertion socket for long lead transistors.

DIRECT reading digital converter fits all vertical DCU system counters - no wiring changes, no plugin connections or mechanical modifications required.

remote cabinet

DIGIVERTER clamps on front panel of counter over vertical windows; has self-contained power supply with line cord for 115 -volt, 50-2400 cycle outlet; uses less than one watt per DCU. Its photoelectronic system transmits directly whatever the counter reads without interference; no relays, vacuum tubes, thyratrons, or transistors are used. Utmost simplicity results in greatest reliability.

DIGIVERTERS are available with Nixies \({ }^{(2)}\) mounted on converter case for integral readout (as illustrated above) or with Nixies (8) in a separate housing or on a standard relay rack panel for remote reading (as shown at left).

DIGITAL converters for individual DCU's are also available for OEM installation, customizing or installation in special purpose test equipment and computers where "in-line" display is desirable. These are called DIGIDECS and can be supplied for either integral or remote reading.
* WHY TRAIN PERSONNEL . . .
to random display when "in-line" reading is the natural way.

\section*{RUSSIAN TRANSLATIONS}
rection of the permanent magnetization of the material. The equations of motion of the gyromagnetic moment are solved in the first approximation in terms of the amplitude of the weak modulating field. Conditions are obtained under which the imaginary part of the complex magnetic permability of the medium becomes positive with respect to this field. This corresponds to power amplification of the modulating signal on the part of the medium. The resonance relationship between the frequencies causing maximum amplification is determined. Reference is made to work by Codrington, Olds and Torrey (Physical Review, 1954, 95, 607), Wangsness (Physical Review, 1955, 98, 927), Rabi, Ramsey and Schwinger (Reviews of Modern Physics, 1954, 26, 167), Kaplan (American Journal of Physics, 1955, 23, 585) and Pippin (Proccedings IRE, 1956, 44, 1054).

\section*{Effect of Dielectric Film on the Attenuation of \(H_{01}\) Wave in a Straight Nearly-Circular Waveguide by B. Z. Katsenelenbaum. REE 1/58, pp 38-45.}

A thin semiconducting film, placed on the internal surface of a waveguide, causes attenuation of the wave propagating in the guide. An article by Malin (Effect of Semiconducting Film on Attenuation of Waves in a Round Waveguide, Radiotekhnika i Elektronika, Vol. 1, 1956, No. 1, page 34) showed that in a round waveguide this attenuation has a different order of magnitude for waves of type \(H_{o m}\) on one hand, and for all other types of waves on the other. In this article the author calculates the additional attenuation for the \(H_{o m}\) mode, due to small deformation of a round waveguide, not accompanied by curvature of the axis. Reference is made to work by Morgan (Journal of Applied Physics, 1950, 21, 329), Miller (Proceedings IRE, 1952, Vol. 40, No. 9, page 1104), and Sims (Proceedings IEE, 1953, 100, Part IV, No. 5, page 25).

Optimum Linear In-Phase Antenna with Continuous Current Distribution by I. F. Sokolov and D. Ya. Vakman. REE 1/58, pp 46-55, 8 figs.

Dolph (Proceedings IRE, 1946, Vol. 34, No. 6, page 3:35) developed a method for calculating the optimum linear in-phase antennas, consisting of individual dipoles. This method is extended by the authors to include antennas with continuous distribution of current along the dipole. They derive and analyze formulas for the directivity patterns, for the distribution of the current amplitude, and for the efficiency.

pick the
best pilot light
for your application
in seconds!

\section*{Johnson pilot lights}
immediately available for original equipment or in-the-field replacement

Choose your next group of pan indicators from E. F. Johnson "preferred" line-over 47 separat assemblies carefully selected fror Johnson's standard line by many the nation's top design and develop ment engineers. Available in a wid variety of types, these "preferred units may be obtained from stock a: parts distributors throughout the country for original equipment of in-the-field replacement. Write for your free copy of Johnson's neweid pilot light specification catalogsee how easy it is to select the righ pilot light . . . fast!

CIRCLE 492 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6, \(195{ }^{\circ}\)

> OV....ANY MICROWAVE CIMPONENT CAN BE ULT AND ENGINEERED TO YOUR PARTICULAR APPLICATION

Regariless of complexity, design 0 tolerance problems-you canget UHF or microwave components that are job-engineered to your application. All units are delivered, electrically tested and proven, ready for immediate operation.
Components can be built from your prints or can be designed and built to integrate with the application. Close and confidential coordination is maintained from drawing board stage to installation.
Range of assemblies is practically unlimited - from dc. to over \(40,000 \mathrm{mc}\)., military or industrial. Typical examples are these components, delivered ready for field use:

elemetering

Tuneable
S-Band
Pransmitter Cavify -
re-entrant type, pulse output 150 w .,operates at extreme altitudes and under extreme conditions of temperature, humidity and salt spray.
mproving signal-to-noise ratio . . . lectivity..

UHF
Prt-Selector-
relatively low frequency
coaxial resonator with very low insertion loss, extreme selectivity and very high signal-to-noise ratio. Especially adapted to use in aircraft or in crowded communication bands.

re-entrant type,
complete with thermistor mount and calibrated variable attenuator. Frequency range 2700 to 3400 mc .

Get the facts on our complete design, engineering and mechanical fabrication facilities. Have us quote on your needs-cavities, mixers, duplezers, multipliers, rotary joints, twists, bends and other comporents or assemblies.
Contact us today. Request catalof
20-2N J-V-m microwave

\section*{COMPANY}

9301 WEST 47Th STREET, DROOKFIELD, ILL. P' ne: Hunter 5.2000 TWX: Brookfield, III. 2796 CIRI LE 493 ON READER-SERVICE CARD EC: RONIC DESIGN - August

Diffraction of Surface Electromagnetic Waves by a Semi-Infinite Impedance Plane by N. G. Trenev. REE 2/58, pp 163-171, 4 figs.
Diffraction of surface waves by the edge of an impedance half-plane results in surface waves that are both reflected and transmitted downward, as well as in a radiation field. The transmission of the surface waves takes place only if both sides of the half-plane have equal impedances. Equations are derived for the reflection and transmission coefficients.

Reference is made to an article by T. B. A. Senior, Deflection by Semi-Metallic Sheath, Proceedings Royal Society, 1952, 22, 1115, 213).

Diffraction of Electromagnetic Surface Waves by An Impedance Step by N. G. Trenev. REE 1/58, pp 27-37, 5 figs.

The diffraction of surface \(E\) and \(H\) waves by an impedance step is analyzed. Expressions are derived for the reflection and transmission coefficients. The diffraction field is determined, and the radiation characteristics are established. In connection with the great recent interest in waveguides that employ surface waves, it becomes advisable to study such systems, comprising several segments of surfaces, and to analyze the impedance discontinuities that takes place at the edges of these surfaces.

Power Absorbed by an Antenna from an Incident Non-Plane Wave by E. L. Burshteyn. REE 2/58, pp 186-189, 1 fig.

An expression is derived for the power absorbed by an antenna from an incident non-plane wave. Certain approximations (equivalent to the Kirchhoff approximation used in the ordinary calculation of the directivity pattern) are used to transform the resultant expression to a simple form, suitable for engineering calculations and estimates.

Symmetrical Diaphragm of Arbitrary Thickness in Round Waveguide by M. V. Butrov. REE 1/58, pp 56-60, 2 figs.

The Schwinger variational method is used to analyze the problem of the effect of a round aperture in a diaphragm of arbitrary thickness in a round waveguide, for a \(H_{01}\) mode. Unlike a planar partition, the behavior of a thick partition with an aperture is describable by means of a system of two integral equations for the electric fields specified at the input and output of the diaphragm. The symmetry of the problem makes it possible to transform the system of integral equations into two independent integral equations in terms of a certain combination of

\section*{STEDER AUTOMATIC \\ STEDER AUTOMATIC}

OPERATION KNOB NOLOC MC/R
AN3102E-14S-5P
(START, STOP\&RESET) CONNECTOR

This Automatic Pulse Timer mounts in a standard \(31 / \mathrm{s}^{\prime \prime}\) mounting. The initial usage

Modal K-165 of the Automatic Pulse Timer was for a difficult instrumentation problem encountered on test aircraft-timing the pulses from a fuel flow transducer and thus determining specific fuel consumption. It successfully replaced a complex and unreliable method.
The Automatic Pulse Timer incorporates an uni-directional Stepper Motor along with complimentary gears, cams, solenoids, switches, an indicator light and-for an accurate independent time base-a stop watch. It is designed to visually record the lapsed time of an occurance of a specific number of electrical impulses. The Pulse Timer can count pre-selected quantity of 2 to 60 pulses, having a uniform or variable rate up to 25 pulses per second.
In this application the combined accuracy of the fuel flow transmitter and the automatic pulse timer is better than \(1 \%\), and of this the timer contributes essentially no error. When the broad input requirements are available, the unit can be used for timing pulses regardless of the source from which they may originate.
dETAILED OPERATIONAL SEQUENCE IS AVAILABLE UPON REQUEST.

\section*{STEPPER MOTORS corporation}

Subsidiary of California Eastern Aviation, Inc.

\section*{7445 West Wilson Avonue - Chicago 31, Illinois}
- WEST COAST FACILITY . . . 1732 W. SLAUSON AVE., LOS ANGELES 47, CALIF. CIRCLE 494 ON READER-SERVICE CARD

\section*{RUSSIAN TRANSLATIONS}
the fields at the input and the output of the diaphragm. The resultant integral equations are then transformed to a stationary form, with the quasi-static solution being used as a comparison function. Formulas are given for the elements of the equivalent four-terminal network for one particular case. The quasi-static solution was originally obtained by Sheingold (Journal of Applied Physics, 1953, Vol. 24, page 4).

Contribution to the Theory of Scattering of Electromagnetic Waves by a Statistically Uneven Surface by F. G. Bass and V. G. Bocharov. REE 2/58, pp 180-185.

Scattering of electromagnetic waves by a statistically uneven surface is considered either by methods of geometrical optics (see paper by Rice, Communication of Pure and Applied Mathematics, 1951, Part IV, 351), or by perturbation theory (Davies, Proceedings IEE, 1954, Part IV, 101, 7, 209). However, neither have carried out the theory to completion, particularly when it comes to small irregularities in the surface, in which the irregularities are on the order of the wavelength or smaller. The authors formulate the boundary conditions, and determines the first-approximation field, the dispersion tensor, the second-approximation field, and the Poynting vector. Reference is also made to an article by Staras, (Journal of Applied Physics, 1952, 23, 10, 1152).

\section*{MICROWAVES}

Radio Spectroscope for the Investigation of Rotafional Spectra of Molecules by T. M. Murina. REE 10/57, pp 1271-1278, 6 figs.

A high sensitivity radio spectroscope, operating in the range from 10,000 to \(43,000 \mathrm{mc}\) is described. A stabilized klystron is used in the circuit, and the spectrum is automatically recorded.

\section*{Investigation of the Superregenerative Mode in a} Magnetron with Slotted Anode by M. K. Belkin. REE 10/57, pp 1307-1310, 4 figs.

The superregenerative mode can be considered as a regenerative mode in which the damping varies periodically in magnitude and in sign with the superregenerative frequency. This can take place in any circuit consisting of a resonant portion and device with a drooping characteristic, whose slope is controlled by an auxiliary voltage. Normally, such a device in a superre-

\section*{COMLPACT} regulated DC power supply

Looking for a source of regulated power that fits into a little space? If then you'll find the Sola Constant Volta; DC Power Supply is just what you Tz

You'll also like to know that it space-saver is a top performer too. ideal for intermittent, variable or inus loads. It delivers current in the "amp" range", regulates within \(\pm 1 \%\) with to \(10 \%\) line voltage variation, has la than \(1 \% \mathrm{rms}\) ripple, and even toletaio dead shorts. It is \(80 \%\) efficient and has very low output impedence.

How's it done? Well, the answer is unique combination of three romponeiii A special Sola Constant Voltage Triiis former is teamed up with a semicondutiil rectifier and a high-capacitance filter. T Sola transformer's electrical charactiit tics maximize most of the advantag the rectifier and filter, while virtuat eliminating all their disadvantages. \(\Pi\) resultant regulated dc power supply simple, highly reliable, compact moderately priced.

Write for Bulletin 31H-DC-235

Sola Electric Co., 4633 W. 16th St., Chicago 50,1

CIRCLE 496 ON READER-SERVIC = CARD ELECTRONIC DESIGN • August 6,1954

Rack containing 6 Model SR-200A power supplies. Each SR-200A supplies up to 200 ma. The outpul is variable from 51012 volts.
Less than \(10 \mu v\) of noise and ripple are infroduced info a strain gage which has one leg grounded. Special care in design and construction of type SR Supplies assures minimum coupling between power line and output circut. (Less than \(5 \mu \mu\) f.)
Specifications
Regulation: Betfer than \(0.1 \%\)
Ripple: Less than 1 mv
Output Impedance: Less than 0.1 ohm
Leakage Resistance: At least 10,000
megohms
Stability: Better than \(.005 \%\) per degree F .

\section*{\(\$ 95.00\) per SR-200A}

\section*{f.o.b Sanfa Monica, Calif.}
generative circuit is a triode, on whose anode or grid is applied the superregenerator voltage. A magnetron with slotted anode can also be used.

\section*{TELEVISION}

Development of a Transmitting Television Network in the USSR by M. Krivosheyev, and V. Vinogradov. R 1/58, pp 35-36.

Traces the development of the number of television centers in Russia, from two in 1951 to 37 in 1957, listing their location and characteristics. It is proposed to increase the number of television stations to 60 by the end of 1958.

Descriptions are given also of the various communication lines used to interconnect the television centers, the principal television cameras used, and various other improvements proposed for the Russian television system.

Amplitude Selector for Television Sets by A. Korniyenko. R 1/58, pp 37-40, 9 figs.

Description of the circuit used for separating the synchronizing pulses from the total television signal. The circuit in general is discussed, ard some simplifications are described in detail.

Instrument for Television Alignment by F. Kuz' miuskiy and S. Sher. R 1/58, pp 41-43, 4 figs.

The apparatus described in this article can display the frequency characteristic of the amplifier circuits of the television directly on the screen of the kinescope of the television being aligned. The instrument consists of an fm oscillator, a modulator, a marker device, and a mixing stage intended for visual observation of the frequency characteristic. The diagram of the equipment is given as is an external view and operating instructions.

\section*{KEY}

The sources of the Russian articles and their dates of issue follow the authors' names. Here is the key to the names of the journals in which the articles originally appeared.
AT Automation and Telemechanics (Avtomatika Teleméhhanika)
CJ Communications Journal (Vestnik Svyazi)
EC Electrical Communications (Elektrasvyaz')
IET Instruments and Experimental Techniques (Probori i Tekhnika Eksperimenta)
R Radio
RE Radio Engineering (Radiotekhnika)
REE Radio Engineering and Electronics (Radiotekh nika i Elektronikal

SO2 PENNSYIVANIA AVENUE EXbrook 3-1244 © TExas 0.6393 CIRCLE 497 ON READER-SERVICE CARD

\section*{"30 g'sto 5000 cycles"}

These words from Sigma last Tuesday told industry that a new break-through had been made in the struggle for more and more vibration resistance in relays. What the words didn'l tell was the poignant, human story of the Sigma project engineer whose life is devoted to vibration - Ralston E. " 63 g Rally" (pronounced "rawley") Bates. Asked to comment on the remarkable vibration immunity f| of the Series 32 , Rally answered with characteristic scientific calm
"Boy, we shake 'em till they yell uncle!" Bates' co-workers are quick to point out that the new fame hasn't spoiled the simple pleasures and quiet life of this dedicated man. He still joins the car pool to South Braintree once a month, and a quiet evening at home

Long-time friends like to recall how
even as a small boy, Rally was destined for a future of simple harmonic motion. His contributions to the design of

Sigma relays in the last 12 years are legion;
as he himself puts it, "You can't work for Sigma for a
dozen years without making some improvements."
Since his last statement no one has been able to reach Mr. Bates for further particulars on the Series 32. Other or a weekend spent boating are all he asks

reliable sources, however, have said that a 32 is: a subminiature DPDT relay which needs no standby power (magnetic latching), and only a trifle (50 mw .) at the instant of switching; measures \(0.800^{\prime \prime} \times 0.400^{\prime \prime} \times 0.900^{\prime \prime}\) maximum; has pins spaced equally on \(0.200^{\prime \prime}\) centers; is priced low, and is available. Bulletin, which says nothing about Bates, is available on request.

91 Pearl Street, So. Braintree 85, Massachusetts
-n afpllate of the fighen
Visit Sigma Booths \(1132-1133\) at the Woscon
CIRCLE 498 ON READER SERVICE CARD
SERIES 32

ADC has completed design and tooling on a line of transformers which are electrically and physically interchangeable with components made by the Western Electric Company. This provides a quality source for those affected by Western Electric's announcement that they would no longer supply these items to manufacturers. Included in the ADC line are the oval can types popular in the 120 repeat coil series.

In addition to their regular stock, and custom transformers for the electronic industry, ADC has long been a dependable source of telephone-type transformers and coils. If you need iron core components which are interchangeable with Western Electric, check ADC. You'll be pleased with both price and delivery.

WRITE TODAY FOR TELEPHONE COIL LITERATURE

\section*{GERMAN ABSTRACTS}

\author{
E. Brenner
}

\section*{Loading of}

\section*{Transistor Oscillators}

USE OF THE four-pole theory makes it possible to design transistor oscillators such that the conditions for oscillations are independent of the load impedance. (A similar procedure for vacuum

(a)

(b)

Fig. 1. (a) Parallel connection of a passive two-port and the load impedance \(Z\); (b) Series connection of a passive two-port and the load impedance \(Z\).

Fig. 2. Cascade connected oscillator. The impedances \(Z_{1}\) and \(Z_{2}\) are used to terminate the transistor so that the two driving point ad. mittances are adjustable.
tube oscillators was abstracted in the July 23, 1958 issue of Electronic Design.)

Since the conditions for oscillations can be deduced from linear analysis, an active two-port, such as a transistor, can be described through the short circuit admittance matrix
\[
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{22} \\
& I_{22}=y_{21} V_{1}+y_{22} V_{22}
\end{aligned}
\]

In the case of vacuum tubes only the equation for \(I_{22}\) applies since it can often be assumed that the input impedance at the grid is infinite and that the internal feedback in the tube is negligible.

In addition to the load impedance a passive four-pole is used in conjunction with the transistor, both to furnish the frequency selective network in the feedback loop and to allow adjustment for independence from load impedance. A load impedance can be connected either in series or in parallel with the passive four-pole which is obtained either by addition of the admittance matrices (parallel case) or of the open circuit impedance matrices (series case). The

e ther in cascade with the transistor as ii. Fig. 2 or in parallel with the transistor as in Fig. 3. Algebraic manipulations tien provide the condition for oscillatoons. These conditions generally involve the load impedance. It is possible, however, to choose the passive elements in the four-pole so that at the frequency of oscillation the load impedance is not involved in the unit loop gain condition.

For the cascade connection shown in Fig. 3 the condition for oscillation is \(-z_{12}^{1}\left(y_{12}+y_{21}\right) \geqslant 1+z_{11}^{1}\left(y_{22}+Y_{1}\right)\)
\[
+z_{22}\left(y_{11}+Y_{2}\right)+\frac{\Delta^{1}}{\Delta}
\]
where
\(z_{11}{ }^{1}, z_{221}{ }^{1}, z_{12}{ }^{1}\), are the elements of the open circuit impedance matrix of the passive four-pole and
\(\Delta^{1}=z_{11}{ }^{1} z_{22}{ }^{1}-\left(z_{12}{ }^{1}\right)^{2} ; \mathbf{1} / \Delta=\left(y_{22}+Y_{1}\right)\)
\[
\left(y_{11}+Y_{2}\right)-y_{12} y_{21} ;
\]
where
\[
Y_{1}=1 / Z_{1} ; Y_{2}=1 / Z_{2}
\]

It is also possible to deduce conditions under which two load impedances are used, neither of which influences the conditions for oscillations.

Abstracted from an article by W. Herzog, Nachrichtentechnische Zeitschrift, Vol. 10, No. 11, Nov., 1957, pp 564-569.

Fig. 3. Parallel connected oscillator. The condition \(v_{1}=v_{2}\) must be imposed in addition to other conditions so that a load voltage is developed, if the passive four-pole is as in Fig. la.
and the inductance, then have appropriately modified amplitudes.

The author cites as examples a 4.5 kv , 5 ma supply and an \(8 \mathrm{kv}, 1 \mathrm{ma}\) source. Both of these have the required stability (0.01 per cent) with 10 per cent variation in supply voltages.

Abstracted from an article by \(W\). Mueller-Warmuth, Zeitschrift fuer An-gewandte-Pkysik, Vol. 10, No. 3, March 19.58, pp 122-12.5.

Controlling the internal resistance of a special (load rp) pentode with feedback.

\section*{Chemelec} SOCKETS TEFLON* INSULATED - MINIATURES.

TEST POINT SOCKETS

CRYSTAL SOCKETS

Complete variety in standard and assembly-cost saving compression mounting types. Teflon insulated, with all metal parts and finish to JAN specifications. High reliability factor-withstand mechanical shock, vibration, high temperatures. Low loss insulating qualities, zero moisture absorption. Non-tracking arc resistance. Non-DC plating. Great weight savings (sub-miniature tube socket, for instance, weighs only . 04 oz.). Catalog EC-358. Fluorocarbon Products, Inc., Division of United States Gasket Co., Camden 1, N. J.
- at The wescon show .

\section*{Booth \# 1360}

\section*{-du Ponl}

Irademark
(Western Control Equipment Co.)

Maximum contact protection for relays

\section*{in new crossbar telephone system provided by GLOBAR Varistors}

Arcing of relay contacts causes pitting and wearreduces contact life. The North Electric Company of Galion, Ohio solved this problem in their new crossbar telephone relay unit by using GLOBAR varistors. These insure maximum contact protection by suppressing the arc.

In North Electric's design, varistors also eliminate "radio interference" and assure noise-free transmission of telephone conversations in many independent, automatic telephone exchanges.

Varistors are relatively small in size, convenient to assemble, and virtually unaffected by age. Globar varistors can also be used for protection of rectifiers in inductive circuits and have applications in many other kinds of electronic circuitry. Find out now how you can profit by putting Carborundum's experience to work on your problem. Contact: The Carborundum Company, Refractories Division, Dept. ED-85, Globar Plant, Niagara Falls, N. Y.

Precision Engineered Electronic Products

Registered Trade Mark

GLASS TO METAL SEALS

KOVAR ALlOY

\section*{ABSTRACTS}

\section*{Electrostatically}

Focused TWT

BY APPLYING the principle of biperiodic beam focusing a new travel-ing-wave tube, entirely electrostatically focused, has been achieved through the use of a pair of concentric bifilar helices and an annular gun. Experimental de focusing results have agreed very well with theoretically calculated results. With a non-optimized gun, a beam of perveance \(2 \times 10^{-6} \mathrm{amp} /\) volt \(^{3 / 2}\) has been focused to 97 per cent current transmis-

sion. An rf gain of 10 db has been o , tained at a power level of 100 mw it \(2,970 \mathrm{mc}\).

An experimental traveling-wave tuk , the sketch of which is shown, was bult for testing the focusing performance and the rf performance. The outer bifilar helix is wound with 0.020 in . tungsten wire on a mean diam of 0.380 in and a pitch of 10 turns per in. To eliminate all possible undesirable rf interaction with the inner bifilar helix, the inner helices are wound with 0.020 in . resistance wire on a mean diameter of 0.200 in . and 10 turns per inch. The alignment between the gun and the helices is uniquely determined by a set of precision quartz rods.

The tube was tested first for its focusing performance. The results obtained are tabulated in Table I.

Because of the large diameter of the present tube envelope, the coupling and attenuation could not be optimized Hence, the above results are considered particularly promising.

Design curves for optimum geometries of the tube for a given perveance using a minimum focusing field are presented in the paper.

Abstracted from RCA Review Techni. cal Journal, Volume XIX, Mar., 19.58, No. 1, by K.K.N. Chang, RCA Labs., Princeton, N.J.

Table 1-Experimental Results DC Performance
\begin{tabular}{l|l|}
\hline Average helix voltage & 200 v. \\
Bifilar helix voltage & \(100 \mathrm{v}, \mathbf{,} 300 \mathrm{v}\). \\
Collector current & 4 ma \\
Helix-intercepted current & less than . 11 ma \\
Current transmission & 97 per cent
\end{tabular}

RF Performance
\begin{tabular}{l|l}
\hline Frequency & \(2,970 \mathrm{mc}\) \\
Synchronizing voltage & \(1,850 \mathrm{v}\). \\
Gain & 10 db
\end{tabular}

Output power

THE TRAVELING-WAVE tube has an important element located outside the glass envelope-the beam-focusing magnet-which must be precisely designed and its field accurately aligned with the tube axis to insure satisfactory operating efficiency and long life in microwave amplifiers. If the axis of the mag netic field were coincident with the mechanical axis of the magnet and the tube axis, ideal focusing conditions would prevail and the radial field components on the common axis would be zero. However, because the magnetic field builds up 0 its full value over a finite distance, and beause this field may vary somewhat along the xis, there will be radial field components off the axis even under ideal conditions. The prinipal cause of these transverse field components in homogeneities of the magnetic material. Small errors in both positioning the magnetic enter and aligning the magnetic axis of the neasurement device with respect to the axis of he magnet would result in large errors of measrement. Precise determinations can be made, onvever, despite errors of positioning and alignrent, by a method which is essentially an exloration of the field for axial symmetry. A chematic diagram of the field exploration nethod is shown in Fig. 1.
A test probe, or search coil, must be used to rplore the air-gap field of a magnet. The coil fixed on a non-magnetic mandrel so that the oil and the mandrel axis are mutually perpenicular. The axis of the mandrel-made coincient with the mechanical axis of the magnetthe axis of reference. The search coil is conected to a fluxmeter which detects changes in ne nagnetic flux inter-linking the coil. This 4x is due to radial components of the axial agn tic field and to field components resulting om errors in positioning the probe with rerect to the mandrel axis.
Th \(s\), the relative position of the probe to the is manins fixed for all mandrel orientations. le lield is axially symmetric if there is no nange in flux interlinking the probe when the all rel orientation is changed by 180 deg . This trie even for large errors of positioning and igl nent of the test probe. A resultant change

ull Indicafor wins proference fest at IRC. At International Resistance Company, where hundreds of stock resistors are daily subjected to rigid MIL performance tests, an ElectroniK Null indicator was recently matched against a spotlight galvanometer for speed, sensitivity and ease of use The Null Indicator proved superior on each count, and operators indicated a strong preference for it.

\section*{Electronik Null Indicator is easier to watch, easier to use}

\section*{SPECIFICATIONS}

Period-less than \(1 / 2\) second
Cerrent Sonsitivity -.001 microamp \(/ \mathrm{mm}\).
Voliage Sensifivity- 1 microvolt \(/ \mathrm{mm}\).
nput Impedance- 1000 ohms at mar. sensitivity
Overload Rating-1 volt at max
sensitivity
Stabilliy-less than 1 mm . zero shift/hour Damping-critically damped; independent of external resistance Torminals-input and ground; for spade, pin or banana pluga Powor- 115 volts, 60 cycles

\section*{Scale Markings-}
-1 to +1 in mm . \(\left\{\right.\) over \(21 / 8^{n}\) radius \(~\)
-4 to +4 in cm .
imensions \(-177_{16 "}\) " long \(\times 5 \frac{3}{8} 8^{\prime \prime}\) wide 73/4" high Woight-15 lbs

The big, clearly legible dial on this all-electronic instrument 1 is easy to read, reduces the chance of error. Even in bright light, there's no need to shade the meter. The needle comes to rest in less than half a second. And there's never "loss of spot" when excessive signal is applied - you always know which direcwhen excessive signal is applied
tion to go for bridge correction.
The ElectroniK Null Indicator goes to work quickly . . . without need for leveling or special mounting. Zeroing is simple, with just a turn of the front-of-panel bar knob. The unit withstands just a turn of the fro
shock and vibration.

The Null Indicator is sensitive enough for all your d-c bridge measurements, and rugged enough for production line work. Order this modern successor to the galvanometer today. Price: \(\$ 175\), f.o.b. Philadelphia.
Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Avenues, Philadelphia 44, Pa.

Honeywell
H Fint in Contuela

These new DC power supplies feature line transient suppression, fast response, and achieve the highest possible degree of reliability.
Designed for a broad range of applications, they are recommended wherever accurate, trouble-free performance is desired.
Dual magnetic regulation plus the most modern electrical and mechanical design techniques are combined in these competitively priced power supplies. Built and guaranteed for the most rugged duty by Stablvolt*-your assurance of quality in service and performance.

Write for bulletin DMR-100.

\section*{Model DMR 136 -15}

Regulated broad range unit with output voltage from 0.5 to 36 volts DC, 0.15 amps.

\section*{Model DMR \(28-5\)}

One of many versatile mod. els engineered to meet your specific requirements. 18. 36 volts DC \(\quad 0.5\) amps.

- Reg trade mark

fig. 2. Transverse-field patterns of field before straightening (top), and field after installation of field-straightener in the air-gap (bottom).
any point along the axis is a measure of the resultant radial field-defined earlier as the transverse field. If there were no transverse-field components, the two curves would coincide. To get a complete picture of the transverse-field components present in the air-gap, the distribution patterns in two right-angle planes are generally plotted for each magnet. For plotting the longitudinal field, a second coil is mounted on the mandrel with its axis coincident with the mandrel axis. Longitudinal- or transverse-field distribution curves can then be taken by simply switching the fluxmeter to the appropriate coil. Field misalignments corresponding to transverse fields of thirty oersteds are not unusual, as illustrated by the patterns in Fig. 2
Traverse components of this magnitude would cause complete interception of the electron beam by the helix of the traveling-wave tube.

Although manufactured to very strict specifications and from the best obtainable permanentmagnet materials, beam-focusing magnets cannot be used "as manufactured" because of serious field misalignment. This condition, however, can be counteracted by "field straightening." A very effective field straightening device has been developed at Bell Laboratories. This device consists of an assembly of permalloy dises and aluininum spacers. The field-straightening assembly is inserted in the air-gap along the axis of the magnet. The discs shield the space betwe \(s\) them from transverse fields and, as planeper sendicular, equipotential surfaces, they direct the longitudinal field parallel to the axis. The effec iveness of a permalloy-disc field-straightener is " istrated by a comparison of the transversein lit ratterns before and after correction shown in bio. 2 .
Thstracted from an article by P. P. Cioffi, Bell L. ooratories Record, Vol. XXXVI, No. 5, May 19 S, pp. 172-175.

\section*{INSTALL HUMPHREY POTENTIOMETERS INSIDE ACTUATORS FOR HIGH PERFORMANCE SERVOS}

For better performance in your servo systems, make a Humphrey potentiometer an integral part of the hydraulic actuator. You get most accurate feedback and zero backlash. You eliminate brackets and external mountings that take up space and permit mechanical deflection, introducing errors.
Humphrey makes a complete line of rectilinear and sector potentiometers for severe duty applications. Typical of the tough environmental conditions they are meeting in current missile
applications are vibration \(25 \mathrm{G}, 10\) to \(2,000 \mathrm{cps}\), and shock of 100 G while operating.
If your application imposes stringent demands on potentiometers, let Humphrey engineers recommend a standard Humphrey model or design a special potentiometer to meet your exacting specifications. Complete qualification tests to your specifications can be furnished. Phone or write today for information on Humphrey ruggedized precision potentiometers
PROVEN
PERFORMANCE
FROM
SEA LEVEL
TO
70,000 FT
M
MAINTAINS
CONSTANT
COOLING
EFFICIENCY

Mounting: \(\mathbf{2 1}^{1 / 20}\) across flais

\section*{M \\ IMPROVED HIGH SLIP MOTORS DRIVE COOLING FANS AT VARYING ALTITUDES}

New, improved, high-speed, highslip motor design changes speed with lower densities (higher altitudes) to maintain constant cooling efficiency. These high-slip motors are rated at a minimum of 1,000 hrs. @ \(125^{\circ} \mathrm{C}\).; longer life expectancy at lower ambients. Choice of 400 cps or Variable at \(1 \%\), or 400 cps at \(3 \%\). Prototypes delivered in 2-6 weeks; Production deliveries 6-8 weeks. Circle card for data sheefs and performance curves.

145 CFM of O"SP
at Sea Level
440 CFM at O"SP
at \(70,000 \mathrm{ft}\).

See us at Booths 1612, 1613 Wescon
Show

air.marine mofors, inc.

CIRCLE 505 ON READER-SERVICE CARD

\section*{ABSTRACT \\ Thermo- \\ Compression Bonding}

Development of high-frequency transistors has been hampered by the inability to form reliable electrical contacts between extremely fine wires and minute areas of semiconductor crystals. A promising solution to this problem has been found at Bell Laboratories using thermo-compression bonding.

WHEN structures are to be fabricated to virtually microscopic dimensions, an imposing mechanical difficulty is that of securing a bond between very thin electrical conductors and the semiconductor. The bond must be accurately positioned in a small area; it must have the least possible effect on the electrical characteristics of the semiconductor; and it must be mechanically strong and reliable. This difficulty is substantially overcome by thermo-compression bonding.
This bonding process does not involve liquid phase formation and hence avoids problems of alloy depth control, wetting and chemical contamination associated with soldering and alloying techniques. As shown in functional schematic form in Fig. 1, it merely involves the application of heat and pressure to the members being bonded. When these are applied for a few seconds, adhesion occurs.
The most important issue involved in application of thermo-compression bonds to semiconductors is the possible mechanical damage to the semiconductor.

Fig. 2 relates temperature and pressure of bonding to brittle fracture and plastic stress of silicon and germanium. The shaded area represents the region of successful bonding; it encompasses all the pressure and temperature conditions used to date to bond gold, silver, aluminum and various alloys of these materials to silicon and germanium.
By noting the distance of the bonding

Fig. 1. Representation of the bonding proce ss. Heat and pressure produce the bond with \(v\) iy little contamination of the semiconductor ra terial.

Fig. 2. Tensile-strength curves for brittle fracture (horizontal lines) and plastic yield (steep lines) for germanium and silicon. Bonding region for experiments (shaded area) is well inside these limits. is apparent that sufficient margins exist for both temperature and breaking strength. The curve for the onset of plastic flow in the crystal is at least 100 C from the bonding region, and along the vertical axis, breaking stress is seen to be at least double the highest stress used for bonding. It is also apparent in Fig. 2 that silicon is even better in these respects. Actually, since no compression data for silicon and germanium are available, tensile-strength values are plotted in Fig. 2, which means that the safety factors are still higher. Several thermocompression bond areas have been studied, and no increase in density of dislocations associated with plastic flow or cricking has been found.
The electrical characteristic of a metal-to-germanium thermo-compression bond is of considerable interest, both for potential application in device technology and also for the investigation of a metal-to-semiconductor interface. When carefully formed, bonds of this sort give either rectifying or nonrectifying (ohmic) contacts in accordance with surface doping produced by the bonding wire.
Fig. 3 illustrates the conditions under which rectification is produced in a therno-compression bonded contact of an aluminum wire to a block of n-type germinium. For the germanium under this lype of bond, curve A shows theorutical values of spreading resistancethe resistance introduced by the crowding of flow lines of electricity in the germallum as they come to the confining are: under the bond. Curve \(A\) is to be

Fig. 3. Theoretical "spreading resistance" \((A)\) compared to actual volt-age-vs-current characteristic curves for bonds made by the various methods.
compared with curve \(B\), which represents actual data obtained from a contact bonded in air. As can be seen, this curve is intermediate to curve \(D\). Data for curve \(D\) were obtained after bond \(B\) was heated to a temperature slightly above the aluminum-germanium eutectic -the lowest temperature that gives a liquid phase when Ge and Al are heated (425 C). Curve \(C\) shows the effect of using a hydrogen atmosphere for bonding instead of air. In this case, we have a bond that forms a rectifier which will saturate. The difference between curves \(B\) and \(C\) is accounted for by the contamination introduced by the air ambient. Trace contamination on either the wire or the germanium surface probably accounts for the difference between curves \(C\) and \(D\) seen in Fig. 3.

One distinct possibility for application of this type of bond is the process illustrated by curve \(D\). At the expense of introducing a liquid-phase eutectic into the process, we can form both an electrode and a lead in one operation. A measure of control of alloy depth is obtainable in this case because the liquidphase eutectic forms at one or two degrees above the eutectic temperature, and wetting occurs over the bonded area. Another feature of alloy depth control is the fact that the lead wire can be of eutectic composition, so that it does not require much germanium to go into solution to form the liquid phase.

Abstracted from the article Electrical Contact with Thermo-Compression Bonds by H. Christensen, Bell Laboratories Record, April, 1958, pp 127.

\section*{Electronic and Electrical Components}
```

We build our business on prompt deliveries af competitive prices SALES OFFICES:
NEW YORK • ATTLEBORO, MASS. - CHICAGO • LOS ANGELES

```


New Miniature POWER OUTLETS For Small Electrical ano Electronic Units

SHOWN FULL SIZE

CIRCLE 509 ON READER-SERVICE CARD

\title{
 \\ STANDARDS AND SPECS
}

\author{
Sherman H. Hubelbank
}

\section*{Aircraft Equipment}

ANA Bulletin No. 444, Design Criteria for Piloted Aircraft Electronic Equipment, 26 November 1957
This bulletin supersedes MIL-E-25647(USAF), dated September 4, 1957. Although this spec supersedes MIL-E-25647 there are few changes. One of the major changes is that the title of the spec now is directed strictly toward piloted aircraft applications. The earlier spec was directed toward all airborne electronic equipment. MIL-E-5400 is no longer referenced as an applicable spec. This bulletin now covers the philosophy of design of equipment within the scope of MIL-E5400. Major policy as a major design factor has been deleted. Hazards to safety have been deleted as a function of reliability. Design considerations have been added to include heat transfer problems and techniques, as well as a cooling

CIRCLE 510 ON READER-SERVICE CARD

\section*{Faster,Sufer Flux Removal} ONCO

\section*{ESPECIALLY DEVELOPED} FOR PRINTED CIRCUITS
Whatever your particular application or problem, there is a fast acting, completely safe Lonco Flux Remover to efficiently handle the job: LONCO LN-10-especially efficient for hot or cold flux residues where fast removal by simple dip is essential . . . completely non-flammable.
LONCO MC-1136-designed for fast removal of residue on parts which contain decals, coding, silk screening, fungicidal lacquers, etc.
LONCO HCR-for removal of hot residue by simple dip or cold residue by brush, yet harmless to most decals, finishes of all types and plastic parts.
LONCO 65-completely neutral, practically odorless remover LONCO 65 -completely neutral, practically odorless remover
for use on warm or hot residues immediately after soldering. LONCO SPECIAL REMOVERS-engineered to any application or LONCO SPECIAL REMOVERS-engineered to any application or
problem encountered with critical printed circuit boards and problem encountered with critical printed c
All Lonco Removers are either non-flammable or are
rated as safety solvents and are in the lowest toxicity range. Available in 1 or 5-gallon cans or

\section*{ONCO LONDON CHEMICAL CO., INC.}

1531 N. 3lsi AVENUE - MELROSE PARK, ILINOIS
Other Lonco Producis: SOLDER FLUXES - PROTECTIVE CHEMICAL SOLDER MASKS - CHEMICAL WIRE STRIPPE CIRCLE 511 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 6,1558
sistem compatible with the aircraft in which the equipment is to be used. Definitions have been added to cover terms such as research model, breadboard model, experimental model, developmental model, service test model, prototype model, preproduction model, and production model.

Canadian Standards
CSA Code C22.1-1958 (7th Edition), Essential Requirements And Minimum Standards Covering Electrical Installation For Bulldings, Structures, And Premises (All Potentials)
This code represents the result of continuous study of current Canadian practices and contemporary codes of practice dealing with electrical installations for buildings, structures, and premises. A voluntary code, it is intended to establish essential requirements and minimum standards for the installation and maintenance of electrical equipment for adoption and enforcement by electrical inspection departments throughout Canada. Copies may be ordered directly from the Canadian Standards Association, 235 Montreal Road, Ottawa 2, Canada, for \(\$ 1.50\) per copy.
CSA C22.2 No. 11-1957, Fractional Horsepower Electric Motors For Other Than Hazardous Locations
This standard covers fractional-horsepower electric motors for potentials up to, and including, 600 volts between conductors. These motors are designed for general domestic, commercial and industrial applications in ordinary non-hazardous locations. Copies of this standard may be obtained from the Canadian Standards Association, 235 Montreal Road, Ottawa 2, Canada for \(\$ 1.00\) per copy.

\section*{Resistors}

MIL-R-11C, General Specification for Fixed Composition (Insulated) Resistors, 31 March 1958
Tests and requirements for acceleration, shock, and high-frequency vibration have been added. Two new styles of resistors have been added. A seal test applicable to styles RC08 and RC22 only has been added.

MIL-R-93B, General Specification for Fixed Winewound (Accurate) Resistors, 31 March 1958
Tests and requirements for acceleration, shock, and high-frequency vibration have been added. A characteristic \(C\) specifying a maximum ambient temperature of \(125^{\circ} \mathrm{C}\) at rated wattage has been added. Four new resistor styles have been added.

\title{
TAKE THE \({ }^{\text {ee }}\) ELECTRONICS HIGHWAY"
}

SYLVANIA'S WALTHAM LABORATORIES
TO BOSTON
to discuss our newest projects and your professional opportunities

Cruising north along Route 128 through historic Middlesex County, you'll see Sylvania's Waltham Labs high above the highway. Stop off on your way to nearby Lexington for what could be an important interview about a future in advanced electronics with Sylvania.
Big things are happening in your profession at Waltham Laboratories. This is where Syl vania engineers and scientists are developing

Express artery around Boston: \(\frac{\text { Rt. } 128 \text {, in heart of Pilarim }}{\text { Country. Goins north, take }}\) Country. Goingi north, take from Boston Common.) Many tourist attractions are close enough for a day's sightseeing. And 128 connects with main routes to all New England.
current
opportunities
at Sylvania are too good to pass by...

DATA PROCESSING
LABORATORY
- Sr. Development Engineers
- Sr. Packaging Engineers
- Project Engineers
- Sr. Logical Design
- Entiners
- Engineers with experience and Display Handing
and Display
Previous digital data
processing experience Processing experienc
mportant for most aspignmente.) the Data-Processing nerve-center of BMEWS (giant new program for a Ballistic Missile Early Warning System).
Work on PLATO (AMM system for which Sylvania is Weapons System Manager) is also centered here...plus development programs for other major electronic defense projects.

Send your resume to Erling Mostue
WALTHAM LABORATORIES, Electronic Systems Division
Interview and relocation expenses paid by Sylvania. Inquiries will be answered within 2
weeks. Convenient Saturday interviews arranged.

100 First Avenue - Waltham 54, Massachusette

\section*{- \(-\sqrt{-1}\) RADAR-NAVIGATION DEVELOPMENT}

Outstanding opportunities for highly developed specialists in the advanced development of integrated radar-navigation systems AN/ASQ. 28 for the B- 70 chemical-driven bomber.

RADAR ENGINEER with a minimum of two years' experience as technical leader of radar systems development project. Duties should have included technical responsibility for major equipment and control of subcontractors' work. Further experience with transistor circuits of radar test equipment highly desirable.

INERTIAL GUIDANCE ENGINEER with a minimum of eight years' experience in servo-mechanisms or development of complex devices for military applications, including three years as technical leader of inertial guidance system development. Must have experience in astro-compass, with ability to analyze relationship of inertial equipment with bombing and navigation computer. Will assume broad project leadership in planning and controlling work of major subcontractors.
Qualifications: Bachelor's or Master's Degree in Electrical Engineering or Physics.

SYSTEMS ENGINEER with a minimum of eight years' experience in development of complex military devices in the fields of servomechanisms, radar, or computers. Able to integrate these elements in weapons systems. At least three years' experience in over-all systems analysis. Will design and analyze closed-loop systems consisting of inertial and radar equipment, display materials, and analog digital computers.
Qualifications: Bachelor's or Advanced Degree in Engineering.
COMPUTER ANALYST with one to four years' experience in digital techniques used to solve real-time control problems. Will do mathematical analyses of inertial control systems.
Qualifications: Advanced Degree in Physics or Engineering Science with strong math background.

AIRCRAFT INSTRUMENTATION SPECIALIST with flight test experience and thorough knowledge of servo-mechanisms and electronics. To work on new methods of aircraft instrumentation.
Qualifications: Master's Degree in E.E. or A.E. and four years' experience, or Ph.D. in E.E. or A.E. and background in aircraft instrumentation, especially air speed and altitude measurements.

ADVANTAGES OF IBM A recognized leader in the electronic computer field . . . products used in both military and commercial applications . . . advancement on merit . . . company-paid relocation expenses . . . liberal company benefits . . . salary commensurate with ability and experience.

Immediate openings in Owego, N.Y., in new modern engineering laboratory situated in colorful, rolling hillside of southern New York.
WRITE, outlining qualifications and experience to:
Mr. Paul E. Strohm, Dept. 555T
IBM Corporation, Owego, N. Y.

Work where it's fun to live. Advance your career - both in recognition and financial gain at Motorola in Phoenix.

Your family will share your opportunity when you settle down in sunny, dry, healthful Phoenix! Tourists spend millions of dollars every year just to visit Phoenix. The attractions of this fabulous vacationland can be yours to enjoy year'round with Motorola!

If you are qualified for any of the positions below, write. wire or phone today.

ELECTRONIC ENGIMEERS,
MECHANICAL ENGINEERS, PHYSICISTS
System Analysis, Desige and Test Radar Communications Navigation Missile Guidance Data Processing and Display

Circuit Design, Development and Packaging
Microwave Pulse and Video
\(\begin{array}{ll}\text { Antenna } & \text { Digital and Analog } \\ \text { R-F and I-F } & \text { Transistor }\end{array}\)
R-F and I-F
Transistor

\section*{Servos}

Technical and Specifieation Writias Printod and Etched Cireulty Wrise:

Mr. Kel Rowan
Western Milltary Electronics Center Motorola, Inc.. Dept. 8-8 8201 E. McDowell Roaa
Phoenix. Arizona

Engineorim peshions also avoilablo ef Motorels, Inc. in Chicase, Milinels, and alverside, Califernia.

MOTOROLA』Ne。

\section*{ADVERTISERS' INDEX}

August 6, 1958

Advertiser

AMP. Inc
Ace Plastic Co.
Acme Electric Corp
Advance Relays
Advance Stamping
Air Marine Motors, Inc.
Aircraft Radio Corp.
Airpax Products Co.
Alford Mfg. Co., Inc
Allied Control Co.
Allison Labs
American Machine \& Foundry
American Plastics Corp.
Amphenol Electronics Cor).
Anaconda Wire \& Cable
Andrew Corp.
Arnold Engineering Co.
\(\qquad\)
Arnoux Corp.
Assembly Products, Inc.
Assembly Products, Metronix Div.
Astron Corp.
Audio Development Co.
Automatic Mfg. Co.
Automatic Electric Co.

B-J Electronics, Borg-Warner Corp. Baird-Atomic. Inc.
Ballantine Laboratories Bart Mfg. Corp.
Bendix Aviation Corp., Eclipse Pioneer Div.
Bendix Aviation Corp., Scintilla Div.
Bogart Mfg. Co., Inc.
Bourns Laboratories
Bristol Co.
Brush Instruments, Div. of Clevite Corp.
Bud Radio, Inc.
Burndy Corp.
Burnell \& Co.. Inc.
Burroughs Corp., Electronic Tube Div.

\section*{CBS-Hytron}

Cambridge Thermionic Corp.
Cannon Electric Co.
Canoga Corp.
Carbonundum Co., The
Celco Constantine Engineering Labs Co.
Centralab, Div. of Globe Union, Inc
Ceramaseal Co., The
Chassis-Trak Corp.
Clarostat Mfg. Co.
Clifton Precision Products Co., Ins
Communications Accessories Co.
Computer-Measurements Corp.
Constantine Engineering Labs Co.
Corning Glass Works
Couch Ordnance, Inc.
Cubic Corp.
Curtiss-Wright Corp.
Cutler-Hammer, Inc.

Dale Products, Inc.
DeJur Amseo Corp.
Delco Radio, Div. of General Motor;
Diehl Mfg. Co.
Dow Chemical Co., The
Dow Corning Corp.
dilucrtiser
Page
D issen-Barnes Corp. 137
PMMont. Allen B. Lahoratories,
Technical Products Div.
D)„Pont, E. I. de Nemours \& Co., Mylar Div. 103
ESC. Corp. 79
E T A Products Co. of America 158
Eastman Kodak Co., Graphic Arts Div. 150
Fidgert in, Germeshausen \& Grier, Inc. 166
Fili in, Thomas A., Inc. 62
Eи 1-McCullough. Inc. 61
Elastic Stop Nut Corp. 156
Electro-Mcasurements, Inc. 155
Electro Products Laboratories 138
Electronic Batteries, Inc. 157
Electronic Enterprises, Inc. 55
Electronic Measurements Co. 145
Electronic Research Assoriates, Inc. 165
Electronic Tuhe Corp. 143
Elgin Metalformers Corp. 29
Emerson Electric . 145
Epoxy Products Div. 85
Epsco, Inc. 178
Erie Resistor Corp. 150

Faber-Castell, A. W. Co., Inc. 89
Fansteel Metallurgical Corp. 20, 21
Fenwal Electronics, Inc. 134
Frepuency Standards, Inc. 41
Fusite Corp., The . 47

Camewell Co. 138
Garrett Corp. 95
General Ceramics Corp. 102
General Devices . 52
Gencral Electric Co., Receiving Tubes 66
General Electric Co., Lamp Glass Dept. 137
General Electric Co., Light Military Div. 201
General Radio Co. 128
General Transistor Corp. 74
Genisco. Inc. 109
Gertsch Products. Inc. 169
Giannini, G. M. \& Co.,
Electromechanical Div. 153
Glohe Industries, Inc. 72
Good All Electric Mfg. Co. 127
Grayhill, Inc. 159
Gries Reproducer Corp. 198
Guardian Electric . 1.50
Gudehrod Bros. Silk Co., Inc. 183

Halliamore Electronics Co. 126
Hardwick Hindle, Inc. 148
Haydon, A. W. Co., Inc. 198
Heiland Div., Minneapolis Honeywell 92, 93
Heimemann Electric Co. 163
Hetherington, Inc. 48
Hewlett-Packard Co. 202. 203
Hi-C., Inc. 136
Hudson Teol \& Die Co., Inc. 16
Hughes Aircraft Co. 7, 96, 97
Hughe's Aircraft Co..
Ke warch \& Development 76, 77
Humy:hrey, Inc. 195
Hunter Mfg. Co. 141
Hyent Eastern, Inc. 148

IT \& T, Components Div. 80, 86 Imtr,t Corp.

151
Ind, trial Instruments, Ioc. 175
Inlan 1 Automatic, Inc. 131
Inter.ational Business Machines Corp. 200

Excellent openings for Design Engineers exist in General Electric's Light Military Electronic Equipment Dept.

The capable man will find rough problems to lick in designing complex indicator circuitry. He will be called upon to assist in the development of indicators and associated equipment for display of data obtained from high-power, long range airborne search radar. The problems will tax his knowledge of digital computer techniques, CRT display and video indicating circuitry.

To learn more of these opportunities, forward your resume to: Mr. Richard C. Kimm, Room 66-E

LIGMP militant electaomic couipment ocpantment
GENERAL 6
ELECTRIC
French Road, Utica, New York CIRCLE 553 ON READER-SERVICE CARD

Advertiser
International Instruments, Inc Intemational Nickel Co., Inc. International Resistance Co.

J-V-M Microwave Co.
Johnson, E. F. Co. .

Kay Electric Co. 187
Kearfott Co., Inc., Little Falls Div Kester Solder Co
Kintel
Krohn-Hite Instriment \(\mathbf{C o}\)
Kulka Electric Corrp.

Lamtex Industries, Inc
Lavoie Laboratories
Leach \& Gamer-General Findings \& Supply Lermer Plastics, Inc.
Linde Co.
Linemaster Switch Corp.
Lockheed Aircraft Corp
Missile Systems Div London Chemical Co. Lord Mfg. Co.

McDonnell Aircraft Corp. McLean Engineering Laboratorics Magnetic Rescarch Corp
Magnetics, Inc.
Marion Electrical Instrument Co
Mesa Plastics Co.
Microdot. Inc.
Micro Switch
Millivac Instrument Corp
Minneapolis-Honeywell
Minneapolis-Honeywell …..........
Minnesota Mining \& Mannfacturing C. Minnesota Mining Monitor Products
Monroe Calculating Matchine \(\mathbf{C o}\)
Moseley, F. L. C
Motorola, Inc.
Mycalex Corp. of America

Narda Ultrasonics Corp.
National Cash Repister
National Vulcanized Fibre Co.
Networks Electronic Corp.

Oak Mfg. Co.
Ohmite Mfg. Co
Oster. John Mfg. Co.

PCA Electronics, Inc.
Pacific Automation Products, Inc
Pacific Semi-Conductors, Inc
Panoramic Radio Products. Inc.
Perkin-Elmer Corp
Phalo Plastics, Inc.
Phileo Corp.
Pierce Precision Plating Co
Pioneer Electronics Corp.
Potter \& Brumfield
Potter Instrument Co
Prodelin, Inc.
Pyramid Electric Co
Pyrand Eletric Co.....

R-F Electronics. Div. of Electro Switch Radio Corp. of America Radio Frequency Laboratories, Inc.

\section*{ypu choose, you get convenience features...}

dc to 200 KC — \(\$ 435.00\)
-hp- 120A/AR Industrial Oscilloscope.
For lab or production line work, outstanding value and performance. Automatic trigger, 15 calibrated sweeps in 1-2-5 sequence, sweep speed range \(1 \mu \mathrm{sec} /\) cm to \(0.5 \mathrm{sec} / \mathrm{cm}\), x 5 sweep expansion all ranges, automatic synchronizing on all internal or external voltages, including line power. High sensitivity, calibrated vertical amplifiers, all power supplies regulated. 120AR rack mount instrument only \(7^{\prime \prime}\) high. Utmost dependability ; extra rugged construction. 120A (cabinet) or 120AR (rack) \$435.00.

\section*{es increase convenience of your 150 A}

-hp- AC-21C 50:1 Voltage Divider Probe A \(50: 1\) divider with high 10 megohm input impedance and low \(2.5 \mu \mu\) input apacitance. Convenient "pen" size for aximum handling ease. Probe has durle, attractive nylon barrel, alligator ip contactor. \$25.00.
-hp-115A Oscilloscope Testmobile
Most convenient mobile oscilloscope mounting. For 150A Oscilloscopes but usable with other instruments. Rolls easily on large \(4^{\prime \prime}\) rubber-tired wheels. Extra-sturdy construction of \(7 / 8^{\prime \prime}\) tube stock, gleaming chrome throughout. Oscilloscope shelf tilts \(30^{\circ}\) in four \(7-1 / 2^{\circ}\) increments for bette viewing. \(\$ 80.00\).
Data subject to change without notice. Prices f.o.b. factory.
HEWLETT-PACKARD COMPANY
4649K PAGE MIIL ROAD - PALO ALTO, CALIFORNIA, U.S.A. CABLE "HEWPACK" - DAVENPORT 5-4451 field engineers in all principal areas

Rantec Cong.

Raytheon Mfg. Co.,
Magnetic Components 140. 141

Haytheon Mfg. Co.. Personnel 90
Raytheon Mfg. Co..
Semi-Conductor Div
Resistance Products Co
Rheem Mfg. Co.
Robertshaw-Fulton Controls Co.
Rotron Mfg. Co.

Sage Electronics Corp.
Sanhorn Co.
Sanders Associates, Inc.
San Jose Scientific Co.
Sarkes Tarzian, Inc.
Shockley Transistor Corp., Div. of
Beckman Instruments, Inc.
Sigma Instruments, Inc.
Sigma Instrument
42

Spectronic Plating Co., Inc.
Speer Carbon Co., Jeffers Electronics Div 14 Sperry Gyroscope Co.,
Div. of Sperry Rand Corp

Sperry Microwave Electronics Co.
Div. of Sperry Rand Corp.

Sprague Electric Co.
Stackpole Carbon Co.,
Electronic Components Div.
Statham Instruments, Inc.
Stepper Motors, Div, of Land-Air, Inc.
Sterling Precision Products
Superior Electronics
Sylvania Electric Products, Waltham Div.
Sylvania Electric Products. Electronics Div. Systron Corp.
universal automatic triggering
color-coded controls, simplest to use
"no-pre-amp" operation from many transducers
highest performance, outstanding value

Technic. Inc.
Products Co.
Tenol Engineering Co.
Technology Instrument Corp.

Telonic Industries, Inc.
Temco Aircraft Corp.
Tenney Engineering, Inc.
Texas Instruments, Inc
Tinnerman Products, Inc.
Tobe Deutschmann Corp.
Torwico Electronics, Inc.
Trio Laboratories. Inc.
Tung-Sol Electric, Inc.,
Chatham Electronics Div.

Unimax Switch Div. of W. L. Maxon
Union Switch \& Signal,
Div. of Westinghouse Air Brake Co

United Aircraft Products
U. S. Radium Corp.
U. S. Semi-Conductor Products

United States Gasket Co.,

Fluorcarlon Products Div.

Varian Associates
Victory Engineering Corp.
Video Instrument
Voltron Products

Ward Leonard Electric Co.
Whitso, Inc.

\section*{What You "Need To Know"} Oscillating frequency is dotormined by the olectrical dimnal to fubo onode). Covities store RF energy throug olectrical coupling to the onode-resulting in vastly im proved mode stability. Unlike other tuning mothods,
new RCA Coupled Cavity funing ossuras optimum mo. new RCA Coupled-Cavity funing ossures optimum me
chanical and olectrical fube performance-because fune ond anode structures can be designed independentlyI
\begin{tabular}{|l|c|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ RCA Funable Magnetrens Fer Pulsed Oscillater Service } \\
\hline Type No. & \begin{tabular}{c}
Frequency \\
Range \\
(Mc)
\end{tabular} & \begin{tabular}{c}
Tuning \\
System
\end{tabular} & \begin{tabular}{c}
Peak \\
Power \\
Output \\
(xw)
\end{tabular} & \begin{tabular}{c}
Duty \\
Cycle
\end{tabular} & \begin{tabular}{c}
RRV \\
kV/. \\
usec
\end{tabular} \\
\hline 7008 & \(8500-9600\) & Servo-tunable & 230 & 0.001 & 225 \\
\hline 7110 & \(8500-9600\) & hand-tunable & 220 & 0.001 & 225 \\
\hline 7112 & \(8500-9600\) & remote-funable & 220 & 0.001 & 200 \\
\hline 7111 & \(8500-9600\) & hand-lunable & 220 & 0.001 & 200 \\
\hline A-1127 & \(8500-9600\) & liand-tunable & 280 & 0.001 & 200 \\
\hline \(6865-A\) & \(8750-9600\) & hand-tunable & 220 & 0.001 & 180 \\
\hline A-1086-G & \(8750-9600\) & hand-tunable & 240 & 0.001 & 160 \\
\hline
\end{tabular}

You are looking at the first published picture of the tuned-coupled cavities of an RCA Tunable Magnetron. in development for several years, this unit is setting a new standard of eliable magnetron performance-because provides an effective tuning system outside the high electrical field region of the anode ere fow the advantages: PCA Here are a few of the advantages. RCA coupled-cavity tuning (1) does away with tuner arcing, and galling, or jamming-(2) provides a rugged mechanical tuning system thus minimizing vibration-induced frequency modulation-(3) offers improved mode stabil ity at high rates of rise of voltage pulse-(4) permits uniform power output across the tuning range of the magnetron-(5) lends itself o "customized" tube designs for virtually any magnetron frequency and power requirement.
Designed for superior performance throughout long life, RCA New-Concept Tunable Magnetrons are now offered in a wide choice
of designs for either hand- or servo-drive tuning. And note this: They have been thoroughly proved for operating reliabilius and long life in microwave systems under the most adverse conditions of military field enironment.
For inforrnation on RCA Tunable Magne-trons-and how RCA's Coupled-Cavity tuning concept can help solve your problems involving the application of tuned magnetrons-call the RCA Field Office nearest you.

\section*{GOVERNMENT SALES}

415 South Fifth St., Harrison, N. J. . HUmboldt 5.3900 24 N. Wilkinson St. Doyton 2, Ohio - BAldwin 6.2366 \(1625^{\text {'"K" St., N.W., Washington 6, D.C. • Dlatriet } 7.1260 ~}\)

\section*{INDUSTRIAL PRODUCTS SALES} S4 Brood Sl., Nowork 2, N. J. • HUmbold 3.3900 Suite 1154, Merchandise Mart Plozo
Chicago 54, Illinois - Whitoholl 4.2900
S35s E. Woshingion Blivd., Los Angolos 22, Calif. RAymond 3.8361

Now RCA Microwave Tube foldor
(1CE-180). A handy listine of RCA Magerbiron ond Traveling. Wove Tubes ond their solient charocter. istics. Froo-from RCA Commorcia
Engineoring, Soction \(\mathrm{H}-18-\mathrm{Q}\) Marrison, N.

RADIO CORPORATION OF AMERICA
Electron Tube Division```

