

EBHMD

MAGNETIC AMPLIFIERS AND SATURABLE TRANSFORMERS

FAST RESPONSE MAGNETIC AMPLIFIERS
2 ~ response Phase reversible

Cat. No.	Supply Freq. in req. c.r.s.	$\begin{aligned} & \text { Power } \\ & \text { out. } \\ & \text { Watts } \end{aligned}$	Volt. Out. V. AC	AC or DC signal voltage req'd fer full output.	
MAF-1	60	13	110	1.0	-
MAF-S	400	5	57.5	1.2	0.4
	400	10	57.5	1.6	0.6
MAF. 7	400	15	57.5	2.5	1.0

SINGLE ENDED MAGNETIC AMPLIFIERS

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Supply } \\ \text { crpq. } \\ \text { c.p.f. } \end{array}$	$\begin{aligned} & \text { Power } \\ & \text { Oot } \\ & \text { Watis } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { sig. req'al } \\ \text { ofor fill } \\ \text { outp. MA.OC } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Total res. } \\ \text { Contr. wds. } \\ \text { Ks? } \end{array}$	
MAO. 1	¢0	4.5	3.0	1.2	3800
MAO-2	¢0	20	1.8	1.3	700
MAO-A	∞	400	9.0	10.0	25
MAO. 5	60	575	6.0	10.0	25

PUSH.PULL
MAGNETIC AMPLIFIERS
Phase reversible

cat. No.	Supply Freq. C.P.S	$\begin{gathered} \text { Power } \\ \text { out. } \\ \text { watts } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Volt. } \\ \text { out. } \\ \text { V. AC } \end{array}$	Sig. req'd for full outp. MA-DC	Total res. contr. wde K.
MAP-1	SO	5	-	1.2	1.2
MAP-2	¢	15	115	1.6	2.4
MAP. 3	60	50	115	2.0	0.5
MAP-3-A	60	50	115	7.0	2.9
MAP.4	¢0	175	115	8.0	6.0
MAP-7	400	15	115	0.6	2.8
MAP-	400	50	110	1.75	0.6

SATURABLE TRANSFORMERS
Phase reversible

Cat.	Supply Fres. C.P.S.	Power Out. Watts	Volt. Out. Y. AC.	Sig. req'd for full outp. MA.DC	Total res. contr. wdg. $K!$
MAS-1	40	15	115	6.0	27
MAS-2	400	6	115	4.0	10
MAS-5	400	2.7	26	4.0	3.2
MAS-6	400	30	115	4.0	8.0
MAS. 7	400	40	115	5.5	8.0

All units designed for 115 V -AC operation

VARIABLE TEST VOLTAGE MEGOHMMETER NO. 1620

The Freed Type 1620 Megonmmeter is a versatile
insulation resistonce measurement tnstiument with o
continuousir variable $D C$ test potentiol from 50 . continuously variable DC test potential from 50 to
1000 volts.
Components such as transtormers, condensers, motors, Drinted circuits, cobles and insulation material
con be tested at their roted voltage and above, for
safety foctor. Resistance -0.1 megohm to $4,000,000$ megohms.
Voltage variable. $50-1000$ volts. Accurate- olus or minus 5% on all ranges
simple - for use by unskilled ooerators. Simple - hor use by unskilled operatat.
Safe -
Self contained - AC celoy controlled. contained - AC operoted.
OTHER MEGOHMMETERS AVAILABLE OTHER MEGOHMMETERS AVAILABLE Thonal citcuitry tor festing capacitors,
Type 10208 Megohmmeler -a 500 fixed lest potential Range
iype 2030 Portable Mego Megohmmeter
ated, 500 volt tery

FREED
NULL DETECTOR AMPLIFIER TYPE 1140-A

USES ator
 A sensitive null indicator for bridge measurements,

n coniunction with headohones. The unat may also be
used as a high gain amplifier for general laboratory

MIL-T-27A POWER, FILAMENT, PULSE \& AUDIO TRANSFORMERS

POWER TRANSFORMERS -STANDARD

	$\begin{gathered} \text { Hiotr } \\ \text { Soet } \end{gathered}$	ct 0 \%		- 0 会	Filament Filament$\# 1$				
No.				$\stackrel{\square}{0}$	長	$\stackrel{\square}{\circ}$			
Mepi	400/200	\checkmark	185		. 070	6.3/5	2	6.3	HA
MGP2	650	\checkmark	260	. 070	8.3/5	2	6.3		
MGP3	650	\checkmark	245	. 150	6.3	5	5.0		
MGP4	800	\checkmark	318	. 175	5.0		6.3		
MGP5	900	V	345	. 250	5.0	3	6.3		
MGPG	700	v	255	.250				KB	
MGP7	1100		419	. 250				18	
MGP8	160		640	. 250					

FILAMENT TRANSFORMERS-STANDARD All primaries $105 / 115 / 125$ v., 60 c.p.s.				
cat.	Secondary			
	Volt	Amp	VRMS	ca
MGFi	2.5	3.0	2,500	EB
M6F2	2.5	10.0	2,500	68
m6F3	5.0	3.0	2,500	FB
MGF4	5.0	10.0	2,500	HB
Mefs	6.3	2.0	2,500	${ }^{\text {FB }}$
MGFG	6.3	5.0	2,500	GB
M6F7	6.3	10.0	2,500	18
mGF8	6.3	20.0	2,500	KB
MGF9	2.5	10.0	10,000	18
MEF 10	5.0	10.0	10,000	KB

Write for detailed listing, or special requirements, and copies of complete Transformer and Laboratory Test Instrument Catalogs

COVER STORY

IRE Show Highlights
Sessions p 22
New Products p 80
Preview new products being shown for the fiirst time at the IRE National Convention by turning to the New Products department. Capsule summary of trends in components precedes this section.

Transistor Simulated
Reactances
Very large reactances can be replaced by compact transistor circuiis with large savings in cost, size, and weight.
How To Measure FM
Bandwidth at Microwave
Frequencies
Mr. Larson provides here a very simple, yet effective technique for measuring fm bandwidth. A few simple components make it possible to measure bandwidths greater than one per cent.

Transisior Voliage
Standards
p 50
A proposal for the standardization of power supply voltages for transistor circuits. Recommended voltaces are $-1.5,3,6, i 2,25,50$, and 100 v , with voltages above 100 falling in $50 \vee$ increments.

Silicon Diode Application
Notes, Part II
For rapid solution of diode design problems, a nomogram enables qu ck inspection adjustment of thermal ad electrical variables.
\& CIRCLE I ON READER-SERVICE CAP

Mirch 5, 1958 Number	Vol. 6	8UBSCRIPTION POLICY
		ELECTRONIC DESIGN is circulated only to qualifed electronic design engineers of U. 8. manufacturing companies, Industrial consultante, and government agencies. If design for manufac. turing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letter head: Your name and engineering title, your company's main products, and description of your design duties. The letter must be signed by you personally. Any address changes for old subscribers necessitates a restatement of these qualifications. Subscription rate for non-qualified sub-scribers- $\$ 15.00$ for 1 year only.
		Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y.

CONTENTS

ELECTRONIC DESIGN is published bi-woekly by Hayden Publish.ng Company, Inc., 830 Third Avenue, New York 22, N. Y., T. Richord Gascoigne, President; James S. Mulholland Jr.. Viee-President \& Treasurer and David B, Landis, Secrefary. Prinfed ized. Copyrighted 1958 Hayden Publishing Company, Inc. 30,000 copies this issue.

When the industry required a portable microwave repeater station that behaved like a permanently installed, unattended unit, RCA developed its Television Microwave Relay Station, Type TVM-1A. In it, to protect the unit's cathodes, RCA design engineers rely on G-V thermal time delay relays to delay the application of plate voltage.

In both industrial and military equipment, G-V thermal relays are providing long, dependable, proven service in time delay applications, voltage and current sensing functions and circuit protection.

Write for extensice application duta and catalog materiol.

ENGINEERING REVIEW

For more information on developments described in "Engineering Review," write directly to the address given in the individual item.

Airborne TV Gives Pilot Geographical Location

The Horizontal Situation Display is a TV device which permits the pilot to see his exact location in relation to the ground. The 45 -pound system automaticolly correlates navigational computer information and presents a TV picture in the form of a map corres sonding to the pilot's exact location over the terrain.

A closed circuit television device that gives an airplane pilot a continuous and automatic pictorial presentation of the aircraft's geographical position and flight track has been developed by Avion Division of ACF Industries Inc.
Designated the Horizontal Situation Display (HSD), the device correlates information fed to it by navigational instruments and presents this information in the form of a map of the territory below the plane. The aircraft position is also indicated on the display screen by a silhouette of the aircraft which changes correspondingly with its movement through the air.
When signals from the navigation computer are fed into the HSD, controls governing the position of the map and plane image in relation to each other are actuated. The result is picked up by the TV camera located in a remote part of the plane and transmitted to the 5 -inch cathode ray tube on the pilot's instrument panel. The map, approximately $4 \times 3 \mathrm{in}$., is a microfilmed chart mounted on a rigid glass plate with only a small but enlarged portion of the slide projected at a time on the vidicon pickup.

The map slide is located on a carriage which is movable in both X and Y directions by means of precision lead screws.

Latitude and longitude drive information to (Continued on next page)

TV Titan.-This 57 -feet-long, 5,500 pound helical television broadcast antenna will soon be blanketing the Seattle, Wash., area with VHF TV picture and sound signals. Designed by General Electric, Syracuse, N.Y., the antenna is self-deicing and can withstand severe lightning and other weather hazards.

Focal point for the requirements of a growing industry

Today great companies in an ever-widening circle depend on Raytheon to supply magnetrons and klystrons for their microwave equipments.

By joining this distinguished roster you can be sure of tubes made to the highest standards of engineering craftsmanship - the ultimate in rugged duty,
first-rate performance and long, dependable life.
Comprehensive data booklets on Raytheon magnetrons, klystrons and special tubes are available on request. Our free Application Engineer Service is at your disposal. There is no obligation. Write for complete details.

ENGINEERING REVIEW
the lead screws from the computer is transformed into X and Y signals by the coordinate converter.

The image of the aircraft is etched on a glass disk in reticle fashion and is placed directly in the main optical path in close proximity to the map slide. This design feature makes it possible to project both the reticle marker and the map detail on the screen with the same optical system. The reticle marker also is mounted on a carriage which is positioned in X and Y and may be rotated to indicate heading. The reticle lead screws and map lead screws are linked together through the X and Y servos. It is possible to track either by marker or map motion.

Semiconductor Rectifier Use Increasing

Semiconductors as sources of rectified power are achieving increasing popularity, according to statements made at the Winter General Meeting of the American Institute of Electrical Engineers.
"The interest in semiconductor power supplies, which was touched off by early industrial installations in January 1954, continues unabated," R. M. Crenshaw and A. L. Munn of General Electric Co. told a symposium on metallic rectifiers.

According to General Electric, the silicon rectifier's superior characteristics at high voltages and high temperatures is resulting in its broad application for outputs of 100 v dc and up. At lower voltages it is expected that germanium will continue to be used.
High amperage semiconductor rectifiers are replacing mercury arc rectifiers for high current applications, particularly to handle electrochemical loads. The mercury arc rectifier has been the most important source of direct current power in the electrochemical industry, but "semiconductor rectifiers are destined to furnish a much larger proportion of future loads.'

New Drafting Aid Developed At Eastman

A new drafting technique has feen developed at Eastman Kodak Company, Rochester, N.Y., which uses photographs to convey engi:leering drawing information in a form easier to visualize.
Photographs are reproduced on translucent material. To this, ensineering detail and additional superimposed sketches can be added. The method saves both time and money, according to Walter C. Foulks of the Kodak Park engineering staff, speaking at a recent meeting of the American Society of Mechanical Engineers in New York City. The easy readability of the prints makes them especially useful for equipment assembly and, because of the small cost of photographic reproductions, they fit in situations where expense prohibits the use of engineering drawings. Shop time can often be reduced because one does not have to visualize the end result from a written specification sheet. One can see the scope of the project at a glance from a photograph of existing equipment or a model.

Additional information on this new photodrawing technique can be obtained from Kodak's pamphlet P-22

First the Law of Parity and Now. .

Superatomic energy, a theory which challenges the concept of absolute zero and the speed of light as atomic ultimates, has been proposed by Navy physicist Robert L. Carroll as a possible future rocket power source.

He asserts that as an atom gets colder and becomes less active it gravitates toward the nucleus at an increasing velocity. At a sufficiently cold temperature the atom would coilicle with and disintegrate the nucleus, releasing its energy.
the Air Force has reportedly aticed to explore the possibility of D. Carroll's theory.

CIRCLE 5 ON READER-SERVICE CARD $>$

Standard Lambda power supplies are components of the Digital Computer Intervention and Display System associated with the UNIVAC Scientific Computer at the Air Proving Ground Center (ARDC) Armament Division, Eglin Air Force Base, Florida.

Available for immediate delivery, Lambda power supplies from stock are being used in major rocket and missile programs, among other military projects. They are specified also for more industrial and re search applications than the ten next-most-popular makes combined.
Send for the current Lambda catalog. It covers the complete new Com-Pak series, as well as other rack, bench and portable models, for all needs through 1.5 amperes.
COM-PAK ${ }^{\text {® }}$ SUPPLIES SAVE PANEL SPACE models through 1.5 amperes
Three voltage ranges: 0-200, 125-325, 325-525 vDC
$\mathrm{C}-200$ series- $200 \mathrm{MA}-5 \% / \mathrm{Al}^{\prime \prime}$ panel height-from $\$ 159.50$ C-400 series- $400 \mathrm{MA}-5 / 4^{"}$ panel height-from 244.50 $\begin{array}{cc}\text { C-400 } & \text { series- } \\ \text { C-800 } \\ \text { series- } \\ 800 \\ \text { MA- }\end{array}$ C- 1500 series- 1500 MA- $834^{\prime \prime}$ panel height-from 550.00

Electronics Volume to
 Double by 1965

The American electronics industry will almost luuble its present 12 billion dollar business volume by 1965 according to Frank M. Folsom, Chairman of the Executive Committee of the lioard of the Radio Corporation of America. At a meeting of the San Francisco Security Analysts society, he indicated that the greatest increase would be achieved primarily in industrial equipment, microwave and other forms of radio communication, closed-circuit TV, broadcasting equipment and electronic data processing system areas, a projected growth approaching 300 per cent. The most significant advances will occur in automated sensing and control devices for production, and in data processing. Television spurred by color, should more than double in dollar volume between now and 1965, he estimated, while defense electronics is expected to reach a volume of nearly $\$ 6.5$ billion by 1965 .

Popcorn Returned to the Gourmet

Popcorn, which has been used in some instances in packaging electronic equipment, is not a savory cushioning material. This conclusion, based on tests of the material in comparison with conventional cushioning agents such as bound hair and cellulosic wadding, was noted in a report released by the Office of Technical Services (PB 131162). Results showed popcorn to be relatively stiff and to have very little ability to recover after compression. Its extreme hydroscopicity causes shrinkage in high humidity.

Moviegoers, a word to the wise is sufficient.

Anticipate Thermonuclear
 Temperatures Of 40 Million Degrees

A thermonuclear torus is being designed at Associated Electrical Industries, Berkshire, England, which may permit temperatures of thirty to forty million degrees to be reached by the end of the year. The reaction will occur through a mixture of deuterium and tritium.

These higher temperatures may offer further evidence that neutrons produced in this and similar equipment are actually the result of thermonuclear fusion.
At present experiments are being performed with the Sceptre Three, with which temperatures of 12 million deg. will perhaps be achieved. The torus of the Sceptre Three is made of $12-\mathrm{in}$. dtam tubing, the ring diameter being 45 in .

Orders for DRIVER-HARRIS Nickel and Nickel Alloy Wire FILLED IN 24 HOURS

If we receive your order in the morning, it will be shipped out before evening . . . this is the new service policy of DriverHarris in the manufacture and distribution of 18 most frequently purchased Nickel and Nickel Alloys in wire form. In addition to this new warehouse stocking program, is the improved delivery schedule for Monel, Grade "A" Nickel, Inconel, R Monel and some Stainless Steels with lead time reduced to only 7 days in certain cases. The following list covers immediate availabilities. For complete detailed current listing showing all sizes and specifications, contact the nearest Driver-Harris branch - or call HUmboldt 3-4800 (New Jersey), REctor 2-9579, 80, 81, 82 (New York City).

N STOCK READY FOR DELIVERY

MONEL 25 wire sizes from .0021 to .091
GRADE "A" NICKEL 12 wire sizes from .0025 to 091
GRADE "D" NICKEL 9 wire sizes from .005 to .015
INCONEL 3 wire sizes from .0253 to 050
. .12 wire sizes from .0025 to 091 INCONEL

STAINLESS STEEL
Type 304 Type 316
Type 330 NICHROME* NICHROME* CHROMAX* KARMA*
ADVANCE* MANGANIN LOHM*
MIDOHM*
30 ALLOY

 24 wire sizes from .0016 to .164 6 wire sizes from .007 to .0135 25 wire sizes from .0063 to 144 .65 wire sizes from .0007 to .289 .62 wire sizes from .00045 to .289 35 wire sizes from 0031 to .258 .36 wire sizes from . 0.005 to 036 49 wire sizes from . 0008 to .258 .37 wire sizes from $.001^{-t}$ to .1285 .29 wire sizes from 001 to 182 .28 wire sizes from .00175 to .182

LEAD time for manufacturing wire a riebon
As low as 10 days for
COLD DRAWN MONEL GRADE "A" NICKEL COLD DRAWN INCONEL \qquad
\qquad R MONEL
\qquad
wire sizes from . 001 to .1875 wire sizes from .001 to 1875 As low as 7 days for
STAINLESS STEEL wire and ribbon
Types: T-302, T-304, T-305, T-316, T-430, T-446

ENGINEERING REVIEW

The Air Data Computer provides pressure altitude, indicaled air speed, Mach number, true air speed, and vertical speed information.

Automatic Computing of Aircraft Data

A fully automatic integrated air data computer system providing a centralized source of aerodynamic data for various services in an aircraft, has been developed in Britain.

The Central Air Reference System, is completely duplicated for safety reasons each half consisting of a transducer unit, a temperature unit, a computer, and first and second pilots' repeaters. The transducer unit, designed for installation close to the pressure head, is a two-capsule, pitot/static type in which deflection of the capsules is first corrected for instrument error, magnified, and then converted to electrical signals by means of a low-friction, low-hysteresis system statically and dynamically balanced. The signals are transmitted to the computer together with signals from the resistance probe temperature unit, and corrections are applied for position, compressibility errors, and temperature.

The corrected static signal gives pressure altitude and is differentiated to obtain rate of climb or descent. Pitot and static signals are also computed to provide indicated air speed, true air speed, and Mach Number, this information being transmitted to the repeater units by means of synchros.

The fully duplicate system necessitates two pressure heads and two resistance probe temperature units. Dimensions of each measuring unit are approximately $7.5 \mathrm{in} . \times 6.5 \mathrm{in} . \times 5 \mathrm{in}$., and its weight 7 lb . Total power consumption for the duplicated system is estimated to be 60 watts. In
makers of the most complete line of alloys for the electrical, electronic, and heat-treating industries CIRCLE 8 ON READER-SERVICE CARD
der to provide good legibility on the Altimer/V.S.I. and the A.S.I./Machmeter within a asonable panel area, these instruments are of ie moving tape type.
The system was developed by Elliott Brothers, ondon, England, in conjunction with the Bendix Corporation of America.

Luminous Steel

An opaque fabric woven from stainless steel wire can become a flexible light source when coated with phosphors and a transparent conductive material according to researchers in electroluminescent lighting at the Westinghouse Lamp Division, Pittsburgh, Pa. Before it was curled into a cylinder, the steel fabric was twelve in. sq and lay flat upon the lab bench. Light output visible here resulted from the application of 250 v at 4000 cycles. Other light sources have been made with a nylon base.

We Admittance Our ЭJNVOヨdWI Error

The following is a letter we recently received. Our apologies to Robertshaw-Fulton.
"I would like to thank you for the publicity we received in your January 8th issue of Electronic DISIGN concerning our Universal Bridge, Type B -21 , which appeared as item 81 under your Products Section.

Unfortunately, the photograph appeared inverted from the instrument's normal operating pusition. Perhaps the bridge will operate better ini this position, but since it is an impedance brige this may change its characteristics to one of an admittance bridge." Boyce M. Adams, M :., Electronic Instruments Dept.

Another Clevite Break-through I

HIIRHI FREQUENCY POWES JRANSISTORS

This history-making addition to Clevite's line of PNP germanium power transistors offers longsought advantages to designers of high frequency audio amplifiers as well as high-speed switching and core driver circuitry in digital computers.
For high frequency audio amplifiers: (TYPE CTP 1133)
POWER DISSIPATION = 10 WATTS at $70^{\circ} \mathrm{C}$ base temperature
POWER GAIN $=27$ to 33 db
when $\mathrm{lc}=420 \mathrm{ma}$ and power output $=2.0 \mathrm{w}$
POWER GAIN CUTOFF FREQUENCY = 20 kc minimum
compared with 5 to 7 kc for conventional transistors
DISTORTION $=5 \%$ maximum at 1.2 w output
For high-speed switching: (TYPE CTP 1135)
POWER DISSIPATION = 10 WATTS at $70^{\circ} \mathrm{C}$ base temperature
DC CURRENT GAIN $=40$ minimum at 0.5 amp
COMMON EMITTER GAIN BANDWIDTH PRODUCT = 1 megacycle
SEE US AT BOOTH 2626 AT THE I.R.E. SHOW
OTHER CLEVITE DIVISIONS: Brush Instruments • Clevite Ltd. Clevite Ordnance • Cleveland Graphite Bronze Clevite Harris Products, Inc. - Clevite Electronic Components - Clevite Research Center - Intermetall G. m. b. H.

MICRO-MINIATURE RELAYS

by Iron Fireman

Take a good look

These test results mean what they say. Iron Fireman's micro-miniature relays conform to and exceed the requirements of MIL-R 5757C; and the data, shown in the illustration above, were obtained under the strict requirements set forth in the military specifications.
These brand new Iron Fireman dualcoil, balanced armature relays are designed for applications demanding
either voltage or current sensitive relays with high reliability and performance in small, hermetically sealed enclosures.
These latest additions to the line of dependable Iron Fireman relays are tooled for high production.
WRITE TODAY for Bulletins 600 and 680: Iron Fireman Electronics, 2810 S.E. Ninth Ave., Portland 2, Ore.

TRO
IRON FIREMAN Slactronic
Manufacturers of high speed relays,
sensitive relays, micro-miniature relays, vertical gyros, slip rings and brushes.

ENGINEERING REVIEW

NBS Summer Career Program Aids Scientist Recruitment

A program which gives students an opportunity to become ac. quainted with a Government rc. search laboratory during their summer vacation periods is helping the National Bureau of Standards to meet its increasing demand for high-caliber technical graduates. Having discovered for themselves the advantages of a professional career at the Bureau, of the 236 students employed at the Washington laboratories in the past summer, 44 are still on full- or parttime duty and 130 who plan to return to the Bureau have been granted leave without pay to continue their education. One-half of the 208 students employed in 1956 were included in last summer's program. The program, inaugurated in 1948 was extended to the NBS laboratories in Boulder, Colo., in 1956, where it has resulted in a number of permanent appointments.

The Student Trainee Program, which enables college men and women to apply their education in jobs selected according to their interests, is proving mutually beneficial to NBS and the students. Actual participation in laboratory work has been found to be not only an incentive for continuing scientific studies but also a help to the student in formulating career objectives and in integrating classroom work with actual experience.

During the past summer, students aided in projects ranging from radio propagation studies to developing test methods for acoustic tiles. Programming problems for automatic computers, standardizing isotopes used in medicine, measuring the velocity of freeradical recombination, and designing cryogenic equipment were just a few of the activities.

The Student Trainee Program supplements on-the-job experience with a series of lectures and tours designed to familiarize the summer employees with the research proj-
(ts carried on throughout NBS. or example, during the past sumuer, details of the free-radicals reearch program were presented to he students. They were given the ${ }^{1}$)portunity to view computer failities, reactors, the solar furnace, and experiments on purification ind high temperature physics.
To gain eligibility on the register from which appointments to the program are made, college men and women must pass a written Civil Service Examination for Stulent Trainees. At the high-school level a limited number of direct appointments are offered winners in the Westinghouse Science Talent Search and other national science competitions. A student who has taken part in the program and is recommended by his supervisor may return each summer while he is completing his education. Trainee appointments are limited to science majors planning careers in the fields of research carried on at the Bureau. The trainee group ranges from high-school graduates entering at the GS-2 level (\$2960 per year) to students who have completed their junior year in college at the GS-4 level (\$3415). Graduates who return to the Bureau receive a GS-5 rating (\$4480), and those who are employed in a permanent capacity are advanced to a grade 7 (\$5335) after three months if they have qualified under a special training agreement during the preceding summer so that their summer work experience can be counted toward promotion. Graduate students are also accepted for summer employment, a master's degree qualifying scientists or engineers for a GS-7 and half the required PH.D work for a GS-9 rating (\$6250).

John Ryder Is New Editor of IRE Proceedings

John D. Ryder, Dean of Engi"eering at Michigan State Univer,ity, has been appointed Editor of the IRE to succeed Donald G. Fink. resident for 1958. Dean Ryder as appointed at the January meetg of the IRE Board of Directors.

eqppe has shipped over 23,000 size 8 synchros

Field Tests Prove their Built-In Reliability

and

made provision to deliver much larger quantities with their new Colorado Springs synchro facility
 cision size 8 units have been designed, developed, in production 2 years and are now being built into field equipment tested and accepted by end-use agencies.
Such acceptance made it necessary for us to estab. lish another plant in Colorado Springs to produce size 8 synchros.
Accuracies not exceeding 7 minutes max. of error are guaranteed.
A full line of size 8 rotary components is available ircluding $A C$ and $D C$ motors, linear transformers and motor generators.
For full information write or call Sales Department, SUnset 9.7521 (Suburban Philadelphia) or our representatives.

Clifton Precision Products Co., Inc.
Clifton Heights

Pennsylvania
VISIT OUR HOSPITALITY SUITE I.R.E. Convention, March 24-27, Studio K, Barbizon-Plaza Hotel, 106 Central Park So., N.Y.C.
 CIRCLE 10 ON READER-SERVICE CARD

ENGINEERING REVIEW

Atom-by-atom buildup of the transparent phosphor screens is accomplished with this vapor phase deposition equipment. An evaporation process may be used.

Transparent Phosphor CRT Now Utilized

Transparent phosphor cathode ray tubes are now being designed into classified military systems and air traffic control systems in what is reportedly the first such application.

The product of ten years of research at General Electric, Schenectady, N.Y., the tubes afford higher resolution capabilities, higher ambient light viewing, and increased burn resistance over conventional tubes. In addition, the phosphors are virtually noiseless with practically constant light output.

Utilizing low temperature condensation or evaporation processes, non-scattering phosphor screens 1-2 microns thick have been achieved as opposed to the 15-25 micron thickness of standard phosphors.

Theoretically, resolutions of 10,000 lines per inch may be attained with these phosphors although only 1000 lines per inch have been obtained at present. This lag is due to the limitations in the electron optics area and not the state-of-the-art of the phosphors.
The normally diffuse reflecting surface of the standard phosphor has been eliminated so that incident light is not reflected permitting displays under extremely high conditions of ambient lighting. Instead the incident light is trapped inside the transparent phosphor tube resulting in excellent contrast. Light which is specularly reflected may be trapped by a light trap. Up to 97 per cent of the external light has been eliminated in this fashion.

What's YOUR Flectronic

> Solderability?...
> Temperature?...
> Unusual Shapes?... Space?...

Here are five proven solutions to

A Class "B" 130 C epoxide-polyester film wire for higher temperature windings.

SODEREZE
A polyurethane-coated wire-solders at low temperature - without stripping!

Modem black enamel with uniform O.D., high tensile for layer-wound caits.

First for Lasting Quality-from Mine to Market!

VISIT OUR BOOTH, NO. 4516-4518, AT THE I.R.E. SHOW

Coil Problem?...

Phelps Dodge can supply the right answer to your particular magnet wire problem from its complete, up-to-date line. The products shown here have varied electronic applications. These magnet wires are the result of Phelps Dodge research and development of new materials, combined with practical experience in application engineering.

The complete line of Phelps Dodge magnet wire includes:
Enamel • Formvar • Sodereze ${ }^{\circledR}$ • Bondeze ${ }^{\circledR}$ • Thermaleze ${ }^{\circledR}$ • Grip-eze ${ }^{\circledR}$ • Silicone Enamel Daglas ${ }^{\oplus}$ Daglas ${ }^{\circledR}$ Silicone • Paper • Cotton • Multiple Combinations

lower-cost electronic coils

Self-bonding wire for furn-fo-furn bonding in unusual shaped coils, bobbinless coils, yoke coils, etc.

Controlled friction solderable film wire for winding universal latficewound coils, fly-back coils, choke coils, etc.

Wire packaged in Phelps Dodge special "Pakeze" containers if required.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

PHEIPS DODEE EOPPER PRODUGTS corporation

INCA MANUFAGTURING DIVISION
FORT WAYNE, INDIANA
CIRCLE 11 ON READER-SERVICE CARD

Since the transparent phosphors are in intimate contact with the glass face plate of the tube, the glass may serve as a heat sink allowing greater heat dissipation. In some instances, beam currents in the order of 50-500 times higher than their equivalent standard phosphor tube may be used safely without deteriorating the transparent phosphors.
One unusual development arising from these phosphors is the penetron, a multi-colored device consisting of separate layers of phosphors, with various color emission characteristics. The change of voltage of the cathode ray beam controls the penetration of the beam to the appropriate color emitting layer.

Automated Ultrasonic Welder

An ultrasonic welder, reportedly the first automated, continuous seam welder has been developed by Gulton Industries, Inc., Metuchen, N.J. The unit joins aluminum to aluminum, aluminum to stainless steel, or any two dissimilar or similar metals, as a result of a molecular transference or plastic flow at the interfaces of the two metals below the melting point of either metal. Achieving a rate of speed of 200 in . of welding per min, the welder stands $13 \times 12 \times 10 \mathrm{ft}$, and weighs three tons. It is powered by two, 2 kw generators which operate alternately depending on the forward or backward motion of the welding heads, and which supply 500 watts to each welding head. The eight welding heads are driven in the range of $10,000 \mathrm{cps}$.

Correction

A large error conspicuously occurring in a subtitle is the painful admission we must make about a product written up on page 52 of the February 5 issue. The HD file drum, manufactured by Laboratory for Electronics, Inc., has a storage capacity of $15,000,000$ bits, a much more impressive figure than the 15,000 we stated.

FOR: TRANSMITTERS - MODULATORS • VACUUM PROCESSIMG - ELECTROSTATICS • AND LABORATORY APPLICATIONS - (CUSTOM Units to 50 KW)

... at high voltage! ...by the power supply leader...

We are pleased to offer 10 new stock-model high-voltage supplies. All the time-tested reliability of our lower-power industrial H-line equipment, including the famous "BASIC 20 " safety and convenience features, at power levels up to 5 KW continuous duty, are available in our new HH units. As always - NJE's highvolume, mass-production techniques hold prices down, quality up!

MOOEL	VOLTAGE RANGE	CURRENT RANGE	RIPPLE (\% RMS)	PRICE
HH-140	0.2 .5 KV	0.1 AMP.	1.0	\$2,200
HH. 230	0.5 KV	0.500 MA	1.0	2,400
HH-320	0.10 KV	0.250 MA	1.0	2,550
HH. 410	0.15 KV	0.150 MA	1.0	2,750
HH-600	0.25 KV	0.100 MA	1.0	2,980
HH. 150	0.2 .5 KV	0-2 AMP.	1.0	2,700
HH-240	0.5 KV	0.1 AMP.	1.0	2,950
HH-330	0.10 KV	0.500 MA	1.0	3,280
HH. 520	0.20 KV	0.250 MA	1.0	3,500
HH-710	0.30 KV	0.150 MA	1.0	3,800

CORFORATION

Electronic Development \& Manufacturing
343 CARNEGIE AVENUE KENILWORTH, NEW JERSEY
Competent engineering representation everywhere
Have we sent you the new, comprehensive NJE Power Supply Catalog yet?
Over 900 models, half of them brand newl Write today!

Washington Report

Herbert H. Rosen

Quickening of Pace

What's been done? What's going to be done? What are you doing now? These are the three big questions being asked most often in Washington these days. Congress is now in the process of finding out if the President's request for nearly $\$ 74$ billion in FY'59 will or will not do the job. And that job? The defense of the nation against the threat of Russian technological and military supremacy.

Major interest, naturally, is in the department with the largest share of the budget, Defense. How and where it expects to spend its $\$ 40$ billions has been of extreme and particular interest since October 1957. Public interest has been at a peak since December, provoked chiefly by the many inquiries being made by Congress.

A preview of general congres sional sentiment on the way the De partment of Defense conducts itself is reflected in the 17 -point program recommended in the interim report of the Johnson Committee. These are the steps the committee feels should be taken immediately by the Administration: 1. Strengthen the Strategic Air Command; 2. Step up dispersal of SAC bases; 3. Step up development of antimissile missiles; 4. Improve the early warning system for manned aircraft and accelerate development of early warning detection of ballistic missiles; 5. Modernize the ground and naval forces; 6. Provide an ade quate airlift for troops; 7. Speed up our antisubmarine program; 8. Step up production of the Atlas, Thor, Jupiter and development of the Titan; 9. Reduce lead time in developing weapon systems by cutting down decision times and simplifying procurement procedures; 10. Provide for a freer exchange of technical and scientific information between the nations of the free world; 11. Give serious at tention to questions of sheltirs
< CIRCLE 12 ON READER-SERVICE CARO
and stockpiles for civil defense; 12. Reorganize the Department of Defense; 13. Provide increased incentives for trained persons in the military services; 14. Accelerate and expand the R\&D programs. Provide funding on a long-term basis, and improve the administration and control within the Department of Defense or through an independent agency; 15. Step up development of manned missiles; 16. Accelerate the development of the Polaris missile system; 17. Start work now on the development of a rocket motor with one million pounds of thrust.

The Key to Survival-Money

The goal of all these points is to buy time. Time to get our ballistics missiles into production. Time to develop radar, guidance, and data processing systems to cope with enemy manned and unmanned missiles.
This year's spending program-January to June, 1958-has been given a substantial transfusion in the form of a supplemental appropriation. Over $\$ 1.4$ billion has been allotted to the Defense Department for IR and ICBM production and bases, antimissile research, and atomicmissile launching submarines. Funds have been earmarked for support of the new operational agency in the DOD, the Advanced Research Projects Agency. The Defense Secretary's emergency fund has been augmented to pay for any rapid breakthroughs that may develop.
In all, defense electronics should exceed $\$ 4$ billion in calendar 1958. More than $\$ 1.7$ billion should be spent in the missiles field alone. Even at a reduced procurement rate, aircraft electronics should approach $\$ 1.1$ billion. Ground type electronics and communications should amount to $\$ 860$ million. And electronics share of the R and D category should go beyond the $\$ 40$ million level.
This year should also produce some startling developments in electronics because of the emphasis on new techniques. Frequency diversity radar is looked upon as a brand new method for interference-free detection and ranging. The Army's Nike Zeus antimissile program should come up with innovations that will be valuable to the future growth of the industry. More than $\$ 721$ million will be spent by the Air Force alone in the area of antimissile detection (part (f) the defunct Wizard program).

Money-and the quick decision to spend it in lissignated areas-should be adequate for the (urrent defense program. Yet, in testimony before the House Appropriations Committee, Secutary of Defense McElroy forecasted that he -pects to be forced to ask for another supplewental appropriation next January. At this point, wdustry should consider where it is to get the tannpower for these accelerated programs.

Nominal Performance Characteristics of Typical SPRAGUE Magnetic Shift Registers

OPERATING FREQUENCY Maximum (kc)	0-25			0.100			0-200		
Recommended (kc)	0-20			0-90			0-190		
VOLTAGE SIGNAL LEVEL	4	15	30	4	15	30	4	15	30
SHIFT PULSE Nominal Operating Current (ma)	160	160	160	140	200	200	220	220	220
Voltage Drop per Stage (v)	3.4	8.0	9.5	8.0	10.0	13.5	6.8	6.0	9.5
Duration ($\mu \mathrm{sec}$ at $1 / 2$ amplitude)	7.0	6.5	5.8	2.0	2.0	2.5	1.2	1.2	1.2
Rise Time ($\mu \mathrm{sec}$)	1.8	1.8	1.8	0.8	0.8	0.8	0.3	0.3	0.3
Fall Time ($\mu \mathrm{sec}$)	0.9	1.8	0.9	0.8	0.8	0.8	0.3	0.3	0.3
Peak Pulse Power (watts)	. 55	1.5	1.6	1.12	2.0	2.7	1.5	1.4	2.1
INPUT PULSE Amplitude (ma)	15	10	5	15	10	15	15	10	10
Duration ($\mu \mathrm{sec}$)	10	10	10	3	3	3	2	2	2
PARALLEL OUTPUT PULSE Amplitude (ma)	4	16	32	5	18	30	4.5	16	30
Ratio (min.)	10:1	10:1	10:1	10:1	10:1	10:1	8:1	8:1	8:1
Load Impedance (ohms, min.)	2000	6000	25,000	1800	8000	15,000	10,000	10,000	18,000
DIODE TYPE (or equivalent)	T-7	т-7	T-7	T-7	T.7	T-5	T-7	T-5	T. 5
ENGINEERING DATA SHEET	9111	9113	9115	9121	9123	9125	9131	9133	9135

core-diode type magnetic shift register assemblies

100% pulse performance tested

Wherever you use Sprague Magnetic Shift Register Assemblies . . . in the air or on the ground... in counters for industrial controls or basic logic circuits for computers . . . chances are you'll be looking for uniformity and reliability. That's why Sprague uses truly reliable components throughout their construction. Why every core used is subjected to rigid switching tests before installation. And why every assembly is 100% pulse performance tested before shipment.
Packages matched to the application
assure long register life at minimum cost. Register assemblies for ground use are available in hermetically sealed corrosion-resistant metal cases with glass-to-metal solder-seal terminals for severe environmental conditions, or embedded in plastic for moderate environments. Special minimum volume airborne packages are ideal for limited space applications.
All standard packages are characterized by terminal spacing that simplifies external mounting of semi-conductor diodes, or they can be permanently
packaged as integral assembly components in Sprague special designs.
Single and multiple stage register assemblies are available with read and write provisions to meet most system requirements. Standard designs can easily be modified with additional windings to perform various logical operations.
For Data Sheets on core-diode type magnetic shift register assemblies, write the Technical Literature Section, Sprague Electric Company, 347 Marshall St., North Adams, Massachusetts.
the mark of reliability

SPRAGUE COMPONENTS:
MAGNETIC COMPONENTS • TRANSISTORS • RESISTORS • CAPACITORS • INTERFERENCE FILTERS • PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE • PRINTED CIRCUITS See Us at the I.R.E. Show-Booths 2416-2424.

CIRCLE 13 ON READER-SERVICE CARD
\square

- the most advanced concept in silicon rectifiers -

MEETINGS

Mar. 16-21: 1958 Nuclear Congress
Chicago Amphitheatre and Palmer House, Chicago, Ill. Sponsored by the AICE, AIEE, IRE, and many others. The congress will include five separate conferences: The Fourth Nuclear Engineering and Science Conference (Mar. 17-21); The Fourth International Atomic Exposition (Mar. 16-21); The Sixth Atomic Energy in Industry Conference (Mar. 17-19); The Sixth Hot Lab oratories and Equipment Conference (Mar. 1920); and The American Power Conference (Mar. 17-19). For more information write to the American Institute of Chemical Engineers, 25 West 45th St., New York 36, N. Y.

March 18-19: Conference on Extremely High Temperatures

Air Force Cambridge Research Center, L. G. Hanscom Field, Bedford, Mass. Sponsored by AFCRC. The purpose of the Conference is to further the exchange of information among those interested in research into temperatures above 30,000 Kelvin. Emphasis will be placed upon theoretical and experimental aspects although the Conference will also cover applications. Write Dr. Heinz Fischer, AFCRC, L. G. Hanscom Field, Bedford, Mass. for details.

Mar. 24-27: IRE National Convention
Waldorf-Astoria Hotel and New York Coliseum, New York City. More than 55,000 engineers and scientists from 40 countries are expected to attend this technical convention. Program includes 275 papers, covering the most recent developments in the fields of all 27 IRE Professional Groups, and two special symposia. For information contact E. K. Gannett, IRE, 1 East 79th St., New York, N.Y. (See program on page 22.)

Mar. 27-29: Ninth Biennial Electrical Industry Show and Fifth Electrical Maintenance Conference

Shrine Exposition Hall, Los Angeles, Calif. Some of the topics to be discussed are maintenance to prevent breakdown, maintenance of electrical and electronic equipment and maintenance of lighting to assure peak output. For more details write Paul H. Henrichs, Southern California Edison Co., P.O. Box 351, Los Angeles, Calif.

Mar. 31-Apr. 2: AIEE South West District Meeting
「ulsa, Okla. For information send to the AIEE, i:3 West 39th St., New York, N.Y.

Mar. 31-Apr. 2: Instruments and Regulators Conference

University of Delaware, Newark, Del. Sponsored hy the IRE, ASME, AIChE, and ISA. For details send to E. M. Grabbe, P.O. Box 45067, Airport Station, Los Angeles 45, Calif.

Apr. 2-4: ASME Conference on Automatic Optimization

University of Delaware, Wilmington, Del. AIEE, IRE, ISA, AIChE with professional groups analogous to the RE will participate in the conference by sponsoring technical papers centered around the theme, "Automatic Optimization." For details write W. E. Vannah, Control Engineering, 330 W. 42nd St., N. Y. 36, N. Y.

Apr. 8-10: Sixth National Conference on Electromagnetic Relays

Oklahoma State University, Stillwater, Okla. Sponsored by the National Association of Relay Manufacturers. More information may be obtained from Charles F. Cameron, Dept. of Electrical Engineering, Oklahoma State University, Stillwater. Okla.

Apr. 8-10: Symposium on Electronic Waveguides Auditorium of Engineering Societies Bldg., 33 W. 39th St., New York. Sponsored by IRE, PGED and PGMTT, and the Department of Defense Research Agencies. The symposium will deal with the interaction of electromagnetic fields and electron or plasma beams in general waveguide regions. The symposium covers the fields of electron beams, plasmas, and electromagnetics to compare the rather widely disparate theories and techniques employed to describe the wave phenomena encountered in the interaction of such fields. For further information contact the Polytechnic Institute of Brooklyn, 55 Johnson St., Brooklyn 1, New York.

Apr. 10-12: IRE South West Regional Conference ard Electronics Show
S in Antonio Hotel and Municipal Auditorium,
S in Antonio, Tex. Write for details to J. O. Parr,
Jr. 202 Janis Ave., San Antonio, Tex.

ECONOMICAL . . . Competitive in price with ceramic discs in the capacity range of 0.1 MFD and above.
-Dupont's trademark for polyester fitm.
TYPE 6 O1PE DIMENSIONS
(FOR 50 VDC RATING

(AP MFD) A	B	D	E	CAP MFD) A	B	D	E		
.01	.310	.800	.187	.187	.1	.650	.850	.375	.225
.022	.359	.800	.187	.187	.15	.671	.900	.375	.260
.033	.531	.650	.312	.171	.22	.718	.900	.375	.296
.047	.531	.700	.312	.203	.22	.718			
.068	.531	.781	.312	.218	.33	.812	.950	.500	.312

SPECIFICATIONS

Insulation Resistance-Greater than 75,000 meg.
ohms when measured at 100 volits D.C. at
$25^{\circ} \mathrm{C}$ for a maximum of 2 minutes. Capacity Tolerance-Standard tolerance is 20%. Winding Construction-Extended foil (non-inductive) MYLAR ${ }^{\text {(Dielectric. }}$
Lead Variations- Formed or straight leads.

Dissipation Factor-Less than 1% at 1,000 cycles
per second at $25^{\circ} \mathrm{C}$.
Dielectric Strength- 100 volts D.C. for 1 io 5 seconds thru a minimum current limiting resis.
Temperature Range-May be operated at full rated voltage to $85^{\circ} \mathrm{C}$. Derate to 50% when oper-
ating at $125^{\circ} \mathrm{C}$.

TECHNICAL BROCHURE AVAILABLE ON REQUEST
MANY COOD-ALL CAPACITOR TYPES ARE NOW AVAILABLE AT YOUR LOCAL DISTRIBUTO
ADGOD-ALL ELECTRAC WRFG. CO.
 ...tailored for transistors

SLIM LIRE A DISC ... Wafer-thin shape of the Good-All 601PE makes \longrightarrow it ideal for upright mounting in tight spaces.

EXCELLENT TEMPERATURE STABILITY...The TC of the 601PE is \longrightarrow identical with that of a conventional tubular capacitor.

MOISTURE TICHT EPOXY COATING ...This tough, durable epoxy has exceptionally high dielectric strength and lead entries are tightly sealed.

SPACE SAVING CAPACITOR

Hughes, many years a leader in the semiconductor industry, has Hughes, many years a leader in the semiconductor industry, has added another series to its expanding line. These new units can
withstand temperatures as high as $200^{\circ} \mathrm{C}$ while sustaining all the withstand temperatures as high as $200^{\circ} \mathrm{C}$
important features your circuits demand:

- high forward conductance
- high reverse voltage
- Iow dynamic forward resistance
- high back resistance at high temperatures and/or high voltages They are quality diodes, rugged and reliable like all Hughes diodes. And each is packaged in Hughes' famous glass envelope, designed for complete protection from contamination and moisture penetrafor complete protection from contamination and
tion. Maximum body dimensions: . $107^{\prime \prime} \times .265^{\prime \prime}$.
Special types are available, too. Perhaps you have a design with unique requirements and can't find the right diode for the job. If so, ask for a call from one of our sales engineers or visit our booth at the IRE show this month. Either way, we would be pleased to discuss your requirements.

Type Number*	Max. Forward Current +1 Vort	Max. Rated Average Forward Current (a) $25^{\circ} \mathrm{C}$ @ $150^{\circ} \mathrm{C}$		Max. Inverse Current (a) $25^{\circ} \mathrm{C}$ (a) $150^{\circ} \mathrm{C}$ Voltage			Max. Rated Inverse Operating Voltage
IN482B	100 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$	$5_{\mu} \mathrm{A}$	30 V	36 V
1 1 4838 B	100 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$	${ }_{5 \mu} \mathrm{~A}$	60V	70 V
1 N 484 B	100 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125V	130 V
1 14858	100 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	180 V
INA86A	100 mA	200 mA	50 mA	. $050 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	225 V	225 V
1N487A	100 mA	200 mA	50 mA	. $100 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	300 V	300 V
(*Lettered and unlettered versions not listed are available.)							
Hughes has related types with higher forward currents. Here are three of the many which could be listed:							
HD6764	200 mA	200 mA	50 mA	. 0254 A	$5 \mu \mathrm{~A}$	60V	70 V
HD6768	200 mA	200 mA	50 mA	. $925 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	180 V
H06773	200 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$	$5_{\mu} \mathrm{A}$	300 V	300 V

For printed literature, please write: Semiconductor Division, HUGHES PRODUCTS, International Airport Station, Lüs Angeles 45, California

MEETINGS

Apr. 30-May 1-2: 7th Regional Technical Conference \& Trade Show

Hobbies Bldg., State Fair Grounds, Sacramento, Calif. Write Ewald W. Berger, 3421 58th St., Sacramento 20, Calif. for information.

May 4-7: 4th National Flight Text Instrumentation
Park-Sheraton Hotel, New York City. Sponsored by the Instrument Society of America. Coverage of all phases of instrumentation for aircraft testing will be offered including sessions on helicopter and power plant instrumentation. Three sessions will be specifically devoted to Missile Instrumentation. Another session will be spent on the instrumentation for ground testing of aircraft and aircraft systems. Theme of the Symposium is "More Data Per Dollar." For details write P.O. Box 113, Bethpage, N. Y.

May 5-7: PGMT\&T National Symposium
Stanford University, California. For details, write to Dr. K. Tomiyasu, GE Microwave Lab., 601 California Ave., Palo Alto, Calif.

May 6-9: Western Joint Computer Conference

Ambassador Hotel, Los Angeles, Calif. Cosponsored by IRE, ACM, and AIEE. Theme of the conference will be "Contrasts in Computers," with panel discussions on controversial aspects of modern computers. For more information write David Parry, 6363 Wilshire Blvd., Los Angeles 48, Calif.

May 13-15: Spring Assembly Meeting of the Radio Technical Commission for the Marine Services

Benjamin Franklin Hotel, Philadelphia, Pa. Write R. T. Brown, Radio Technical Commission for Marine Services, c/o Federal Communications Commission, Washington 25, D.C.

May 21-23: AIEE, IRE, RETMA, WCEMA, Joint Electronic Components Conference

Los Angeles, Calif.

June 2-4: National Telemetering Conference
Lord Baltimore Hotel, Baltimore, Md. Sponsored by the AIEE, ARS, ISA, and IAS. The technical program will feature sessions in telemetering int
the IGY program, telemetering overseas, rocket clemetering, industrial telemetering, and data reduction. In addition there will be the annual hibit staged by manufacturers of telemetering quipment. For further details about the conference write W. J. Mayo-Wells, Program Chairman, 3830 Beecher St., N.W., Washington, D.C.

June 5-6: 2nd National Symposium on Production Techniques

Hotel New Yorker, New York, N.Y. Sponsored hy PGPT. For information write John W. Trinkaus, Sperry Gyroscope Co., Great Neck, L.I., N.Y.

June 9-13: 6th Annual Technical Writers' Institute Rensselaer Polytechnic Institute, Troy, N.Y. For details contact William E. Price, News Bureau, Rensselaer Institute, Troy, N.Y.

June 16-18: 2nd National Convention on Military Electronics

Sheraton Park Hotel, Washington, D.C. Sponsored by PGMIL. Contact Dr. J. McLaughlin, Naval Research Labs, Washington 25, D.C., for information.

June 22-27: AIEE Summer General Meeting Buffalo, N.Y.

June 23-27: ASTM 61st Annual Meeting

Hotel Statler, Boston, Mass. Highlighting the meeting will be the 12th Technical Photographic Exhibit of the ASTM. Entries will be accepted from members of ASTM, employees of company members, and engineering students. For further information, contact E. W. Walsh, Chairman, ASTM Photographic Exhibit, Narragansett Electric Co., 15 Westminster St., Providence, R.I.

Paper Deadlines

May 1: Deadline for papers to be presented at the 1958 WESCON Show and Convention. The convention is planned for August 19-22 and is to be held in Los Angeles. Prospective authors sliould submit 100 word abstracts and either the cumpleted texts or detailed summaries. All material should be mailed to Dr. Robert C. Hansen, Microwave Lab., Hughes Aircraft Co., Culver (ity, Calif.

Rugged and stable under high temperature conditions, these Corning S-Type resistors provide savings in space and cost.

Now you can have resistors with all these advantages...

1. $120^{\circ} \mathrm{C}$. operation with 100% power, derating to $200^{\circ} \mathrm{C}$. 2. Same size as deposited carbons 3. Wide resistance range

ohms to 4.2 megohms.
Corning Type S resistors have an

To help you solve the problem of small space and high ambient temperature Corning has developed these Type S resistors.
These are not ordinary film-type resistors. They are integral units made by bonding a metallic oxide to a Pyrex ${ }^{\text {ch }}$ glass rod at red heat. They're noninductive and completely impervious to moisture.

Three sizes are now available in production quantities:

S-20-1/2-watt at $120^{\circ} \mathrm{C}$. (or 1 -watt at $40^{\circ} \mathrm{C}$.). Range from 50 ohms to 500,000 ohms.

S-25-1-watt at $120^{\circ} \mathrm{C}$. (or 2-watts at 40° C.). Resistance range from 50 ohms to 1.5 megohms.
S-30-2-watts at $120^{\circ} \mathrm{C}$. (or 4-watts at $40^{\circ} \mathrm{C}$.). Resistance range from 100
average change in resistance of less than 1.5% after 1.000 hours at rated power.

Tolerances of $1 \%, 2 \%, 5 \%$ and 10% are available to meet your exact applications.

And how does a volume price of 25 c each for the $\mathrm{S}-20 \pm 1 \%$ tolerance sound to you?
Write for detailed descriptive bulletin CD-2.05.
Ask for information on these other Corning resistors:
Type LP-Low-cost, low-power. In 3-, 4-, 5-, and 7-watt sizes.
Type R-Power resistor to MIL-R11804 B . Tolerances of 2% or $5 \%, 7$ to 115 watts. Range: 50 to $1,000.000$ ohms.

Type H -High-frequency 2% or 5% tolerance. Standard ranges from 50 to $1,000,000$ ohms and ratings from 7 to 140 watts.
Type HP-High-power resistors. 17, 30 , 70 , and 150 watts. Tolerances of 2% or $5 \% .50$ to 500,000 ohms.
Type WC-5-Water-cooled. Range-35 to 300 ohms. Versatile and adaptable. Type \mathbf{N}-Accurate grade. Made to meet all requirements of MIL-R-10509B.

Other products for Electronics by Corning Components Department: Fixed Glass Capacitors*, Transmitting Capacitors, Canned High-Capacitance Capacitors. Subminiature Tab-Lead Capacitors, Special Combination Capacitors. Direct-Traverse and MidgetRotary Capacitors*, Metallized Glass Inductances, Attenuator Plates. - Distributed by Erie Resistor Corporation

CORNING GLASS WORKS, $97-3$ Crystal Street, CORNING, N. Y. Corming meand research in Glass

CIRCLE 17 ON READER-SERVICE CARD

AHEAD AGAIN...

U. S. Radium's Newest Instrument Dial

A current problem in integral instrument lighting is that of obtaining, at reasonable cost, a dial for a particular unit which will light within the brightness ratio spec of MIL-L-25467A. Since different instruments will have different lighting systems and will require different dial configurations and indicia, the dial contractor must be able to vary the opacity of his dials in order that the finished instrument assemblies will light to MIL spec, regardless of the internal light levels and the number and position of the lights.
U. S. Radium's new production process for MIL-L-25467A dials permits the variation of the opacity factors of the background and indicia within wide limits, to provide a compatible instrument-dial assembly. It also allows piece-to-piece uniformity which excels conventional methods for meeting this spec, and at lower unit cost. These advantages, plus the availability of U.S. Radium's light engineering service during the formative stages of light housing design, provide a foolproof working method for eliminating light engineering headaches, cutting costs and speeding delivery.

For information, contact Department D3
सीत्वाजm

UNITED STATES RADIUM CORPORATION

MORRISTOWN, N. J. Offices: Chicago, Illinois and No. Hollywood, Calif. Affiliates: Radelin-Kirk, Ltd., Toronto, Canada and United States Radium Corp. (Europe), Geneva, Switzerland

IRE National Convention Program

All A.M. sessions begin at 10:00, P.M. sessions at 2:30, Eve. sessions at 8:00 P.M.
Abbreviation Key: Waldorf (W)—Astor Gallery (A), Grand Ballroom (G), Jade Room (J), Sert Room (SE), Starlight Roof (ST). Coliseum (C)—Morse Hall (MO), Marconi Hall (MA), Faraday Hall (F).

Session and Number

Time and Location

Aeronautical Electronics

Aeronautical and Naviga-
tional Electronics (14)
Aeronautical and Naviga
Tues am-C-MO
tional Electronics (26)
Wed am-W-ST
Antennas and Propogation
Propogation and General Antennas-1 (40)
General Antennas-II (47)
Microwave Antennas (54)
Wed pm-C-F
Thur am-C-MA
Thur pm-C-MA

Audio

Stereophonic Disc
Recordings (12)
Amplifier and Receiver
Development (20)

Tues am•W.SE
Tues pm-W-SE

Circuit Theory

Modern Delay LinesSymposium (29)
Filter Design (42)
Topological and Group
Concepts (50)
Wed am-W-SE
Thur am-W-A
Thur pm-W-A

Communications

Vehicular (2)
Broadcast Transmission Systems (11)

Mon pm-W.A
Tues am.W.J
左 and Communications Systems (19)

Tues pm.W.J
General Communications Systems (16)

Tues am-C.F
Long Distance Comm. (52) Thur pm-W-SE

Components

Papers on Inductors,
Ceramics, Miniature
Meters (28)
Wed am-W-J
Papers on Capacitors.
Filters, Amplifiers and
Radiation Effects (36)
Microwave Components
(39)

Wed pm-W-J
Wed pm-C-MA

Computers

Computers and Control (37) Wed pm-W-SE Magnetics and
Computers (41)
Data Reduction and
Recording (46)
Thur am-W-ST
Thur am-C-MO
General Systems (49)
Thur pm-W-ST

Control Systems

Telemetry and Remote
Control (3)
Mon pm-W.J
Automatic Control.
General (9)
Canadian Postal
Operations (30)
Tues am-W-ST
Wed am-W-G

Defection Theory

Tutorial Session on
Applications (1)
Mon pm-W-ST

Electronic Engineering

Techniques and Criteria (4) Mon pm-W.SE
Engineering Writing and
Speech (6)
Mon pm-C-MO
Industrial Electronics (44) Thur am-W-SE

Information Theory

Code and Detection (35) Wed pm.W-A

Session and Number

Time and Location

Instrumentation

Instrumentation Systems
wed pm-C.MO
High Accuracy
Instruments (53)
Thur pm-C.MO
Microwaves

Measurements (32)	Wed am-C-MA
Components (39)	Wed pm-C-MA
Tubes (48)	Thur am-C-F
Antennas (54)	Thur pm-C-MA

Medical Electronics

Medical Electronics (15) Tues am-C.MA

Nuclear Science

Controlled Thermonuclear
Power (10)
Tues am.W.A
Atomic Clocks and
Masers (18)
Tues pm-W-A

Panel Discussions

Educational Needs in
Systems Engineering (5) Mon pm-W-G
Changing Demands on En-
gineering Education (17) Tues pm-W-ST
Biological Transducers (22) Tues pm-C-MA
Electronics in Space (24) Tues eve-W-ST
Electronics Systems in
Industry (25)
Tues eve.C.F

Planning

Planning Against Time (13) Tues am-W.G Production Engineering (8) Mon pm-C-F Radar, Military (31) Wed am.C-MO

Radio Frequency Inferference

R-F Interference (7)
Mon pm-C-MA
-F Interference in
Military Systems (45)
Radio and TV (55)
Thur am-W-G Thur pm-C.F

Reliability
Reliability Through
Components (23)
Tues pm-C-F
Reliability Through Systems (34)

Wed pm.W-ST

Semiconductors

Semiconductor Devices (33) Wed am.C.F

Stafistics

Statistical Applications (27) Wed am•W-A

Telemetering

Telemetry and Remote Control (3)

Mon pm-W.J

Tubes

Beam and Display Tubes (21)

Microwave Tubes (48)
Tues pm-C-M Thur am-C.F

Ulirasonics
Delay Lines-
Symposium (29)
Wed am.W.SE
Delay Line Measurements (43)

Radiated Acoustic Power
Measurement (51)

Thur am-W.J
Thur pm-W-J

EDITORIAL

'58 IRE National Convention

World's Biggest Ice Breaker

Where else will so many people meet so many other people? Mike Todd's highly publicized extravaganza at Madison Square Garden catered to 10,000 . That party will be outdone by the IRE National Convention. Over 15,000 will be present each day. You could have done some limited table hopping at Todd's show to enlarge your acquaintance a bit. At the Coliseum you can booth hop 850 times meeting new faces with common interests every time. You can join in the discussion at any one of 255 sessions.
Todd, of course, had champagne. Most parties count on cocktails to spread congeniality. No forced chemical change is needed at the IRE Convention, however, to break down the engineer's reserve or inhibitions, because the catalyst is simply the interesting new product, the provocative session paper (or the common malady, tired feet).
To persist in this soliloquy, I can't help but think of another markedly similar point between Todd's show and the IRE Show. Prizes could be won at both; for the person who wants to escape it all, suites at nearby hotels are dispensing hospitality à la Todd.

Break the Ice with Your ED Editor

In making your rounds, make it a point to stop and meet some of your $E D$ editors. We'll have an editorial office for that purpose at Booths 4101-4102 (next to the elevators). We'd like to hear about what youre doing and at the same time twist your arm to do some writing for us. We have a list of articles that we want somebody to do. Maybe you'll be interested.

We're especially interested in lining up some engineers to critique U.S.S.R. literature. If you're at all intrigued by something like this, let's chat.
Incidentally, this year's IRE Convention marks the anniversary of associate editor, George Rostky joining our staff. We met George at the Coliseum-we're looking for others like him again this year.

Latest New Product Information

You can preview many of the new products being introduced at the show by scanning the New Products department in this issue. To get the very latest on new products, check our booth. We will post announcements and pictures of new devices unveiled at the show, opening day. As a matter of fact, one of the best things you can do when you get to the Coliseum is to take the elevator to the fourth floor and turn left. You'll see us standing there.

and makes it better!

A Complete Line of Ceramics from a Single Source

C-D Ceramic Capacitors are produced under one roof, with full control over all operations, from start to finish. Whatever types of ceramic capacitors your designs call for, C-D has them ... and C-D is your most dependable source.

- DISC TYPES: Temperature compensating, close tolerance, general purpose bypass, high voltage, A-C line bypass.
- TUBULAR TYPES: Temperature compensating, close tolerance, trimmer.
- SLUG TYPES: High voltage.
- AUTOMATION: Plug-in termination available in temperature compensating, stabilized capacity, general purpose bypass, close tolerance dise types.
- SPECIAL DESIGN TYPES: Feed-thru, standoff, miniaturized.

Engineering samples sent on request. For complete data on C-D Ceramics, write for Catalog No. 616 to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

SOUTH PLAINFIELD, NEW JERSEY, NEW BEDFORD a CAMBRIDGE, MASS, PROVIDENCE A HOPE VALLEY, I I. INDIANAPOLIS, IND, SANFORD FUQUAY SPRINGS a VARINA, N. C.; VENICE, CALIF, : SUBSIDIARY, THE RADIART CORPORA-
TION, CLEVELAND, OHIO, CORNELL-DUBILIER ELECTRIC INTERNATIONAL, N. Y.

LO

Transistor-Simulated Reactances

Richard H. Stern
Norden Ketay Corp.
Milford, Conn.

Circuit designs using large values of reactance are often limited by the cost, size, or weight of the reactors. The compact transistor circuits described here can substitute for chokes and capacitors wherever cost and size are important. Applications include the suppression of spike and ripple voltages in power supplies, or use in delay networks requiring large lumped-constant reactances.

THE CIRCUIT designer is frequently caught between circuit specifications requiring the use of large values of reactance and limitations of cost, size, or weight which prohibit large reactors. In the past there was no choice but to accept the inferior performance resulting from economic restrictions. The advent of transistors made possible a solution of this problem in certain applications. In power supplies, for example, transistorized regulators can sometimes be substituted for conventional filter circuitry.
This solution is not wholly satisfactory. If bat-
teries are used as regulator reference sources, periodic replacement must be made; on the other hand, alternate reference sources such as diodes are costly. A true voltage regulator will not pass changes in dc level, causing unregulated parts of a system to vary in level with respect to the regulated parts. Changes in dc input level to the regulator due to changes in ac line input voltage impose high collector dissipation upon certain stages of a series regulator.
An alternate approach to the problem is suggested by the vacuum tube operational amplifier developed by Ragazinni et al during World War II as a refinement and generalization of the Miller effect. The transistor equivalents of these circuits are compact, light and inexpensive units which simulate large values of reactance within a linear operating region. Although these circuits present an impedance to input signals which is a function of frequency, they depart from ideal reactive behavior in a number of important respects. Because their performance depends upon transistor current gain, they are inoperable above transistor cutoff frequency. The capacitive reactance circuits do not show infinite impedance at dc and the inductive circuits do not show zero impedance at dc. Nevertheless, in well-biased Class-A operation, they furnish extremely large values of reactance in small space at little cost.
The principal applications envisioned for the circuits developed in this article are filtering and decoupling. However the circuits and analytical treatments are equally applicable to phase shift and delay network applications.

Transistor-Simulated Capacitance

The circuit for a transistor-simulated shunt capacitance is shown in Fig. 1. Both pnp and npn transistors are suitable, and the unit may be placed across a positive or negative polarity load. This circuit effectively multiplies the capacitance of the base capacitor by the current gain, $h_{t e}$ of the transistor. Analytically, the current through the transistor may be represented as ${ }^{2}$

$$
\begin{equation*}
i_{c}=h_{v e} v_{c}+h_{f e} i_{b}+I_{C E O} \tag{1}
\end{equation*}
$$

Fig. 1. Circuit for transistor-simulated shunt capacitance. The value of the capacitance used in the base path is multiplied by the transistor gain.

-ij
Fig. 2. Complex plane representation of eq. (3) illustrating the variation in impedance with respect to frequency.

Fig. 4. Shunt inductance circuit, using only capacitance as a reactive parameter.

Substituting into this equation the values of \boldsymbol{v}_{c} and i_{b} obtained by replacing the transistor with its z-parameter equivalent and then writing loop equations, the equation may be rewritten as follows:
$i_{c}=h_{o e}\left(e-i_{c} R_{L}\right)+h_{f e} \frac{e}{h_{i e}+R_{1} /\left(1+R_{1} C s\right)}$
If the impedance of the unit is defined as the voltage across it divided by the current through it, then

$$
\begin{equation*}
z_{u n i t} \equiv \frac{e}{i_{e}} \approx h_{i b}+\frac{1}{h_{f_{e}} / R_{1}+h_{f e} C s} \tag{3}
\end{equation*}
$$

This approximation is correct so long as $i_{c} \approx h_{f e} i_{b}$ From Equation 3 it can be seen that, essentially, the circuit does multiply the value of capacitance used in the base path by the transistor gain, $h_{f e}$. The advantage to be obtained by adding stages of gain is apparent. Moreover, while for "real" capacitors the capacitance is roughly proportional to size, for transistor-simwated capacitors the capacitance increases expunentially with size. Each stage of gain (and cunsequent increment in size, weight, and cost) multiplies capacitance rather than merely adding c pacitance.
The complex plane representation of $z_{u n i t}$ from

Equation 3 is shown in Fig. 2, illustrating the variation in impedance with respect to frequency. It may be seen from the figure that maximum phase shift can be set at any desired frequency by choice of a suitable value of C, and that maximum phase angle can be set at any desired value by choice of a suitable value of \boldsymbol{R}_{1}.

In Fig. 3, the circuit of Fig. 1 is shown as modified for use as a series capacitance. Conversion to negative polarity loads may be effected by reversal of the direction of conduction of the trunsistor and associated base paths. The analytic approximation of the impedance of this circuit is the same as that given in (3) for the shunt capacitance circuit, and the complex plane representation in Fig. 2 is therefore applicable as well.

Transistor-Simulated Inductance

Transistor-simulated inductances could be developed from the circuits of Figs. 1 and 3 by substitution of small inductors for the capacitors shown. However, it is much more desirable from an engineering standpoint to use no inductors at all. For this reason, alternative circuitry is developed which requires only capacitance as a reactive parameter. Only grounded collector configurations are used. Grounded emitter configurations are unsatisfactory because the effec-

吅 M D D W M

 and High Purity Metals...As one of the world's largest primary producers, we are supplying TADANAC Brand Indium and Indium Alloys to leading American, European and Canadian electronic firms. We are in quantity production of the forms shown and are prepared to preform and alloy to your specifications. Our prices include customs duties and we handle all customs procedures. Our Technical Service Depart ment, backed by the full facilities of our Research Division, is ready to assist you in the use of this versatile metal, available as
TADANAC High Purity Indium- 99.999% (by diff.) TADANAC Standard Grade Indium-99.97+ \% TADANAC Indium Alloys-a wide range to customer specifications

Other TADANAC High Purity Metals We can supply LEAD, CADMIUM. SILVER or BISMUTH with a total impurity content of less than 1 p.p.m.* or ZINC with a total impurity content of less than 2 p.p.m.*
with a total impurity content of less than 2 P.D.m.

For further information and a new booklot on Indium Properties and Uses worite:

The Consolidated Mining and Smelting Company of Canada Limited METAL SALES DIVISION-215 St. James Streat, W.
87230 ME Montreal I, Quebec, Canada

CIRCLE 20 ON READER-SERVICE CARD

Fig. 5. Transistor simulated series inductance, using only capacitance as the reactive parameter.

Fig. 6. Practical two-stage tran-sistor-simulated shunt capacitance, designed to replace a $6 \mathrm{v}, 150$ uf capacitor.
tiveness of the circuit depends on the path through the capacitor being the element which controls magnitude of base current. If no external resistance is used in the emitter circuit, the only resistance shunting the capacitor is $h_{i e}$ or $r_{b}+$ $h_{r e} r_{e}$. Since this quantity is of the order 2 K for common transistors, crossover frequency will be unduly high unless very large capacitances are used. But this, of course, defeats the whole economic advantage to be gained from the circuit. Hence, the load must be placed in the emitter path.

Analytic expressions for the approximate impedances of the transistor-simulated shunt and series inductance circuits may be developed as
was done in Equations 1-3. For the shunt inductance circuit of Fig. 4, the expression is

$$
\begin{equation*}
z_{u n i t} \equiv \frac{e}{i_{e}} \approx\left(R_{L}+\frac{R_{1}}{h_{f_{e}}}\right)+R_{1} R_{L} C s \tag{4}
\end{equation*}
$$

while for the series inductance circuit of Fig. 5, the expression is

$$
\begin{equation*}
z_{u n i t} \equiv \frac{v_{c}}{i_{c}} \approx \frac{R_{1}}{h_{f e}}+R_{1} R_{L} C s \tag{5}
\end{equation*}
$$

Effect of Parameter Variation

When an exact value of effective reactance is required, negative feedback should be employed
to lessen the effect of $h_{/ e}$ variation with temperature and with manufacturing control. ${ }^{3}$ On the other hand, if a variable capacitance is desired, advantage may be taken of the decrease in $h_{f e}$ displayed by transistors as quiescent current increases. ${ }^{4}$ A variable resistance or another transistor (the base of which is controlled) may be substituted for the bias resistor R_{1} of Figs. 1, 3, 4 and 5 in order to control quiescent current level. Variation in R_{1} does not substantially affect the real part of the denominator in Equations 3, 4 and 5-and thereby alter the de level-since the quantity $R_{1} / h_{/ e}$ will tend to remain constant when both numerator and denominator vary in the same direction. A variable reactance as de-

,ed here is suitable for use in changing the ating frequency of an oscillator, e.g. as in : systems, or for varying the crossover freney of a filter.

Ceneralized Transistor-Simulated Impedance
he foregoing analysis may be expanded from the special cases developed to the generalized ca of the transistor-simulated impedance. Procceling according to the methods of Eqs. 1-3 fo! the generalized grounded emitter case, it may be shown that the admittance of the base circuit is multiplied by the current gain of the transistor: For the generalized grounded collector case, it may be shown that the impedance approximates

$$
\begin{equation*}
\frac{Z_{C}}{h_{f_{e}}}+\frac{Z_{L} Z_{C}}{Z_{e}} \tag{6}
\end{equation*}
$$

where Z_{c} is the impedance shunting the collector, Z_{l} is the load in the emitter path, and Z_{e} is the impedance from base to ground, shunting the emitter. In the series impedance connection, the transfer function of the circuit approximates Z_{r} / Z_{e}; the similarity between this expression and the transfer function of the vacuum tube operational amplifier should be noted. The utility of the generalized transistor-simulated impedance circuit is that band-pass and band-rejection filters may be developed which are not loaded down when used to feed low impedance loads. In general. it may be said that the loading effect is reduced by a factor of $1 / h_{f e}$-since in the grounded emitter case the filter admittance is multiplied by $\boldsymbol{h}_{\text {fe }}$, while in the grounded collector case the filter looks into a load of $h_{l e} \boldsymbol{R}_{L}$ (emitter follower effect). ${ }^{5}$

Applications Data

A practical two-stage transistor-simulated shunt capacitance circuit is shown in Fig. 6. Designed to replace a 6 v electrolytic capacitor in an application where specifications permitted only mica, paper, or ceramic capacitors, the unit provides the effect of about $150 \mu \mathrm{f}$ at intermediate frequencies and a minimum impedance of 1.2 ohms at 5 kc . Beyond 20 kc , impedance rises because of loss of gain due to internal phase shift. If this is undesirable, suitable feedback correction may be employed to extend range. The effective impedance of the circuit, $E_{i n} / I_{i n}$, is ploted against frequency in Fig. 7. When develnping such a circuit, the designer should avoid a cascaded emitter configuration in order to leep input impedance down. The latter acts as series resistive component to the simulated cal citance, determining minimum impedance for the unit. Input impedance can be kept down, als by keeping collector current in the first
stage relatively high, since $h_{i b} \approx 26 \mathrm{mv} / I_{e}$.
The circuit shown in Fig. 8 uses emitter follower effect to match a 75 ohm load to a 470 K terminated filter. A maximum attenuation of 55 db is attained at 2 kc , beyond which frequency, attenuation decreases due to phase shift losses. A plot of attenuation- $E_{i n} / E_{\text {out }}$-is shown in Fig. 9. When designing such a circuit, quiescent collector voltage should be kept low to permit high dc current, but collector voltage must exceed peak input voltage variation to avoid overdriving.
The designer can adapt a conventional regulator circuit to a filter-simulation circuit by regarding the latter as a regulator which uses a function for its reference rather than a constant. The reference battery or diode of the regulator is then replaced by the output of an RC network.

The circuitry described here will help the electronics designed to avoid a conflict between performance requirements and space, weight and cost limitations. Principal consideration has been given to an effort to develop inexpensive low-pass filters for applications where the suppression of ripple, spike and input voltage fluctuation are more important than the maintenance of an absolute dc level. The circuits presented are equally appropriate for use in delay or phase-shifting networks which require large lumped-constant reactances. The development of variable reactances and of generalized transistorsimulated impedances has also been suggested. The compactness and relatively large currenthandlirg capabilities of these circuits will recommend them as substitutes for chokes and capacitors wherever cost and size are important considerations.

References

1. Ragazinni, Randall, Russell. Proceedings of the IRE, Vol. 35, No. 5, 1947, p. 444. See also Electron Tube Circuits, Seely; 1950, pp. 160-161.
2. Transistor Electronics, Lo, Endres, Zawels, Waldhauer, Cheng. Prentice-Hall, New York, N.Y., 1955. P. 84, Fig. 3-2(b).
${ }^{3-2(b)}$ 3. Transistor Bias Stabilization, Penfield. Audio, June and July, 1956.
3. Transistor Electronics, Lo, Endres, Zawels, Waldhauer, Cheng. Prentice-Hall, New York, N.Y., 1955. Pp. 205-206. 5. For a more elaborate treatment of the generalized transistor filter, see RC-Transistor Network Design, I. M. transistor filter, see RC-I ransistor Network Design, I. M.
Horwitz, ELECTRONIC DESIGN, Aug. 1 and Aug. 15, 1957, pp. 28-31; RC Active Filters, Linvill, Proceedings of the IRE, Vol. 42, March 1954, p. 555; Transistor Negative Impedance Converters, Linvill, Proceedings of the IRE, Vol. 41, June 1953, p. 725; Theory of the Negative Impedance Converter, Merril, Bell Systems Technical tive Impedance Converter, Merril, Bell Systems Technical
Journal, Vol. 30, 1951, p. 88 . However, the use of the negative impedance converter involves more exacting design work than does the relatively simple circuitry described here. For routine regulation applications where the unique negative impedance characteristic of the converter is not required, such effort probably will not be verter is
justified.

Baird-Atomic Transistor Test Equipment has been specifically designed and developed to provide highly accurate transistor characteristics and classification data. The units illustrated below are part of our complete line of transistor testing instruments.

The transistor tester that is rapidly becoming the standard of the industry . for h parameters and equivalent coefficients... NPN and PNP junction and surface-barrier transistors.... grounded-base or emitter circuits alpha and beta cut-off . . . lco . . and C . Test frequency from 100 cps to 1 mc .

MEDIUM POWER TRANSISTOR TESTER Model Kp1

Measures all h parameters
Measures all h parameters ... pro-
visions for measuring transistor reverse char-
visions for measuring transistor reverse char- Wide
range of test conditions - 1c and le, variable from 0.5 to 300 ma ; Vc, 0 to 100 volts; frequency 200 cps to 200 KC .

BETA, $h_{11}-l_{c o}$ TESTER

Model KT1

Light . . . portable - completely selfcontained. utilizes transistorized. printed-circuit construction. Contains 1 KC oscillator and long-life mercury-cell power supply. Provision for collector waveform observation load protection.
Complete technical data available on these and other B-A Transistor Test Equipment.
Engineering representatives throughout the United States and abroad.

See Our New Transistor Curre Tracer at Booth 3221, I.R.E. National Convention, March 24-27, New York City
Baird-Atomic, Inc.
33 UNIVERSITY RD., CAMBRIDGE 38, MASS. CIRCLE 21 ON READER-SERVICE CARD

Simplifying Circuit Design with Floating Power Supplies

Floating power supplies have not seen widespread use in circuit design despite the fact that they simplify circuitry and solve many design problems. When a floating supply is resorted to, it is usually conceived of as a bias supply, because appreciable current will limit the life of a bias supply. This is not the case with circuits operated for short periods of time from batteries, or for circuits operating from isolated electronic supplies. With substantial currents available, isolated supplies can be used to furnish plate and screen energy, resulting in new and simple circuits with many advantages.

ASUITABLE power supply needs a carefully isolated secondary and a low shunt capacitance from the dc output to ground. Either batteries may be used or an electronic supply such as the one manufactured by Elcor, Inc., P. O. Box 354, McLean, Virginia. This supply uses special construction to insure capacitive isolation from ground (see Electronic Design, Jan. 15, 1957). Such supplies permit the addition of two or three extra stages often found necessary in removing the bugs from an instrument, without exceeding the capacity of the original supply.

Cathode Followers

The familiar triode cathode follower can be improved upon in several ways for applications requiring more critical circuit performance. Fig. 1 shows a pentode cathode follower in which the screen grid is direct coupled to the cathode by means of an isolated supply. In this circuit the usual advantages of the pentode cathode follower, namely, higher input impedance, better linearity, and nearer unity gain are obtained without the disadvantages inherent in the conventional capacitance coupling between cathode and screen grid. A bootstrapped triode cathode
follower circuit is an alternate solution for obtaining higher input impedance, or a bootstrapped pentode cathode follower operated in its positive grid region. This makes possible relatively high currents at moderate plate voltages and yields a very low output impedance. A close analogue of this is shown in Fig. 2. In transistor circuits bootstrapping is essential in obtaining a high value of input impedance. The circuit of Fig. 2 in addition to high input impedance has a gain very close to unity and good linearity. ${ }^{1}$

Fig. 3 is a transistor analog of a constant-current cathode. The circuit incorporates a constantcurrent cathode or emitter load impedance. It will handle signals whose peak-to-peak potentials are nearly equal to the sum of the $B+$ and B - supply voltages.

Where performance requirements are unusually rigid, requiring not only very high input impedance and gain very near unity, but also very low output impedance and the capability of supplying peak charge and discharge currents several times the quiescent tube current to a capacitive load, and, further, requring the advantages of direct-coupling, the superior cathode follower and driver ${ }^{2}$ of Fig. 4 is most satisfactory.

John F. Walton
Elcor, Inc.
McLean, Virginia

The transistor circuit of Fig. 5 is the approximate analogue of the superior cathode follower and driver shown in Fig. 4. This emitter follower and driver would be suitable for sweep and deflection needs.

Sweep Generators

Because of their improved gain and linearity, these cathode and emitter followers lend themselves very appropriately to certain sawtooth, ramp, or sweep voltage generators. It is interesting to note that introductions to sweep voltage generators occasioinally start with a bootstrap sweep circuit. After extolling its merits and simplicity, some authors then dismiss the circuit to make it practical. Actually the circuit is very practical. An improved version shown in Fig. 6 is very simple to design; it requires no linearity adjustments; ramp voltage change with respect to time is quite linear; and the circuit is very ind pendent of tube changes.

Greater ramp voltage excursion and even beter linearity may be achieved by replacing B_{5} (Fig. 6) with a constant-current cathode load in. pedance. A transistor version with the latter sul gestion appears in Fig. 7.

Details of missile development are secret and can only be discussed on a "need to know" basis. But when it comes to missile component reliability, it's no secret that Exide has the most experienced engineering team and the best laboratory facilities in the industry.

Exide Missile Batteries are available on short notice in a number of types and sizes. Write for catalog and engineering data. Missile Applications Department, Exide Industrial Division, The Electric Storage Battery Company, Philadelphia 2, Pa.

Want more information? We'll be glad to send you Diamonite technical literature or answer any of your specific questions regarding Diamonite applications. Off-the-shelf service is available, too, for quick delivery of standard rods, rings and tubes to help you in your development work. Ask for bulletin \#357-R. SEE us at the i.R.E. Show-bOOTH \#4217

products manufacturing company $<$ The dovelopment in of high canton 3. Onio
EAss ${ }^{\text {diumine coramics Phone: GIendale 6-8195 }}$

Fig. 8. Basic direct-coupling circuit with adjustable output bias.

Fig. 7. Bootstrapped transistor ramp-voltage generotor

Amplifiers

Cathode and emitter followers are but one general application in which isolated supplies are extremely helpful. Other improvements are possible in the performance of amplifiers. The availability of an isolated supply enables the designer to interchange the location of power supply and plate load resistor, achieving a simple method of direct coupling (Fig. 8). The output voltage across R_{L} is some value between 0 potential and some negative value that depends on the plate current. This is convenient for feeding the fol-
lowing stage directly. In class A amplifiers where R_{L} may be a moderately high resistance which would result in too negative a bias for the following stage, a voltage divider may be connected across the isolated supply in Fig. 8. The voltage divider acts only to divide the dc voltage and not the signal. The divider may load the supply slightly or as much as desired, but this in no way loads the amplifier. If needed, the output may be taken simultaneously at several dc biases.

Another improvement made possible by the use of a floating supply is increased linearity of amplification. Fig. 9 shows an amplifier with

ELECTRONIC DESIGN • March 5, 1958
iod linearity obtained by means of a constant irrent plate load impedance. Along with the provement in linearity over the conventional iode amplifier comes higher gain (very close to ie mu of the triode) nearly constant output imedance, and better high frequency response. A mbination of the circuits found in Figs. 8 and produces the circuit of Fig. 10 having a group desirable properties:
Gain equals the mu of the triode.
Distortion is substantially lower than the conentional triode or pentode amplifier.
Output impedance is approximately the plate resistance of the triode and is nearly constant aver the entire output voltage range.
Output bias is adjustable plus or minus with respect to ground, which is very suitable for direct coupling to other circuits.
No signal degeneration occurs across the cathode bias resistor of the triode, since the plate current is nearly constant.
One isoply furnishes all plate circuit and screen grid energy and output bias voltage.
Decoupling from other circuits is essentially complete.
The signal output voltage is high compared to conventional amplifiers with the same supply voltage.
These amplifiers are the starting points for a host of more specialized circuits. There are several types of difference amplifiers utilizing isolated supplies to obtain superior operating performance along with direct coupled output. Also, the design of direct coupled feedback circuits is accomplished with uncommon facility. In the design of direct-coupled logical networks, isolated supplies produce a considerable simplification. The use of isolated supplies combines the means of direct-coupling and plate circuit energy source into one unit which is simpler than designing a circuit and then a suitable common power supply. They afford essentially complete decoupling, often a trouble spot in conventional design. Appropriate bias voltages are obtained very simply.
Considering the cost of isolated supplies separately, its use may be found a more costly method in some systems. In other cases the overall cost would be comparable to conventional methods, or less costly. Considering the savings in design time and effort, the often superior circuit functioning, increased reliability, ease of servicing and breadboarding, and elimination of many normally required components, there are miny cases where the use of floating supplies is the most economical one.

Fiotnotes: \quad Philip J. Anzalone. Electronic Design, Vol. 5, N. 11 (June 1, 1957) p. 39.

J John H. Reaves. Electronics, Vol. 27, No. 8. (Aug. 1(4) D. 172.

actual size

NEWESC
 ELECTRICALLY VARIABLE DELAYLINE...

... miniaturized series EV-600-designed to your specifications

ESC's entirely new Series EV-600 introduces miniaturized electrically variable delay lines with a time delay propor. tional to the voltage applied. The new unit offers a 50% delay variation over the nominal delay value. Since delay is proportional to control voltage, an amplitude function can be converted into time modulation of a pulse or phase modulation of a frequency. The Series EV- 600 requires no power and has infinite resolution. Simplified circuitry
takes advantage of the inherent reliability of passive networks. Designed for Military Applications.

SERIES EV-600

Delay Range: . $5 \mu \mathrm{sec}$. to $50 \mu \mathrm{sec}$. (variable 50\% from nominal value). Impedance Range: 50 ohms to 2,000 ohms. Delay to Rise Time Ratio: 5 to 50

Write for complete technical data and specifications.
See the Series EV-600 in operation at the I.R.E. Show - Booth \# 2843

exceptional employment npportunities

534 Bergen Boulevard, Palisades Park, New Jersey

CIRCLE 24 ON READER-SERVICE CARD

Accuracy Requirements in Sine,

Cosine

Transmission

Leo Young

Electronics Div.,
Westinghouse Electric Corp.,
Baltimore 3, Md.

USE OF angular position information has ap plication in such devices as analog computers and radar displays. The transmission of such information is often accomplished by resolving the direction at the transmitter into sine and cosine signals. These are then amplified before reconstituting them into the original direction information at the receiver.

Accuracy is specified in terms of angle, but is determined by the linearity in the sine and cosine channels. The sine and cosine amplifiers are so designed that their combined deviations from linearity are some function of amplitude (and hence angle), which keeps the angle error within a fixed upper bound. It is the purpose here to derive this function and present graphs, so that the angular accuracy can readily be expressed in terms of amplifier performance, and vice versa.

Problem Formulation

An angular position of θ deg of arc at the transmitter is reproduced to an accuracy of $\pm A$ deg at the receiver, due to amplifier distortion. The components, $s=\sin \theta$, and $c=\cos \theta$, are resolved and amplified and finally recombined to give the direction θ. The two amplifier's (for s and c) have a voltage gain G, defined by
$G=\frac{\text { Output voltage at carrier frequency }}{\text { Input voltage at }}$
Input voltage at carrier frequency
This gain will generally not be constant over the selected operating range, but will have some average value G_{0}. The percentage deviation of G from G_{0} at any point will be defined as the percentag.
d ortion at that point. The exact choice of G_{0} is at itrary, but its precise value is unimportant for sti 11 distortions. Let the percentage error or distc: ion be

$$
\begin{equation*}
E=\frac{100\left(G-G_{0}\right)}{G} \tag{2}
\end{equation*}
$$

Let E_{s} and E_{c} be the percentage errors of the sine and cosine amplifiers, respectively. They are functions of the normalized inputs s and c, and are therefore both functions of θ.

Problem Analysis

At the input to the amplifier the two voltages s and c are related by

$$
\begin{equation*}
\tan \theta=\frac{c}{s} \tag{3}
\end{equation*}
$$

Owing to distortion, the output angle differs from θ by a small amount $d \theta$. Taking logs and differentiating eq. 3 yields

$$
\begin{equation*}
d \theta=s c\left(\frac{d s}{s}\right)-s c\left(\frac{d c}{c}\right) \tag{4}
\end{equation*}
$$

where θ is in radians. Converting to degrees and introducing A and E gives

$$
\begin{equation*}
\frac{\pi A}{180}=\frac{s c}{100}\left(E_{s}-E_{c}\right) \tag{5}
\end{equation*}
$$

or,

$$
\begin{equation*}
\Delta E=\frac{1.745 \mathrm{~A}}{\sin \theta \cos \theta} \tag{6}
\end{equation*}
$$

where

$$
\Delta E=E_{\mathrm{a}}-E_{\mathrm{c}}
$$

Eq. (5) gives angular error when E_{s} and E_{c} are known; and eq. (6) shows how E_{s} and E_{c} must be limited when A is specified as the maximum permissible angle error.
Notice that E_{s} and E_{c} are not constant, but are functions of θ. Also note that A depends on E_{s} and E_{c} only through their difference.

Explanation and Use of Graph

If the maximum permissible angle error is specified and denoted by A, then eq. (6) determines the maximum distortion, $\triangle E$ max. $\triangle E$ max/ A is plotted against θ on the graph, using eq. (6). To determine whether a given pair of sine, cosine amplifiers is sufficiently linear, their distortions E_{s} and E_{c} are measured for each as a function of their inputs. E_{s} / A and E_{c} / A are then plotted on the graph as functions of the normalized inputs, s and c, respectivily. The curves are finally subtracted, and a plut of $\triangle E / A$ against θ is thus obtained. If it falls be iveen the two curves, $\pm \triangle E \max / A$, then the (tw, amplifiers reproduce the original direction θ ev rywhere to an accuracy of $\pm A$ degrees or better.

-

El CTRONIC DESIGN • March 5, 1958

REGULATED
RELIABLE
MANTENANCE
FREE

only STABLVOLT* with

Dual Magnetic Regulation offers all these features...

- Ultra-fast transient regulation
- Static magnetic amplifier circuitry. No łubes, variacs or vibrator elements
- Maintenance free. No costly downtime
- Short circuit protected, without breakers or fuses
- Quiet operation
- Modern and distinctive cabinet design
- Competitively priced

Model DMR 28-5
Other Models Available
-Reg. Trade Mark
These new power supply units from the Stablvolt Division of Magnetic Research Corporation carry the same high quality of workmanship and superior design that has always been attributed to our products. products you can depend upon to be the finest of their kind.

STABLVOLT DIVISION

of Magnetic Research Corporation

200-202 Center Street, El Segundo, California
You are cordially invited to visit our booth \#3710 at the IRE Show. CIRCLE 167 ON READER-SERVICE CARD

EAstgafe 2-2403

Table 1. A table of possible positions with a definite number of wires.

Fig. 1. A code wheel for radial brushes, shown in position 1.

Code Matrices for Indexing

Walter C. Tooker
Hughes Aircraft Company Culver City, California

INN SERVO mechanisms of the type that index to discrete positions, the number of wires between the transmitter and receiver can be reduced to a minimum by a code matrix. The maximum number of positions which can be defined by the interconnecting wiring is

$$
\text { Positions }_{\max }=2^{n}-1
$$

where n represents the number of wires. Table 1 shows a definite number of possible positions with a definite number of wires.
In setting up the matrices, there are two general approaches.
a. A possible configuration for concentric rings of contacts on the rotor with a radial arrangement of the stationary brushes is the first approach, and is shown in Fig. 1.
b. Fig. 2 shows a single ring of contacts on the rotor (code wheel) with the stationary brushes arranged circumferentially.
The selection of the proper approach depends on three factors:

- The uniformity of position spacing
- Number of positions required
- Space available

In approach b, the brush spacing is equal to 360 degrees divided by the number of positions and the space available will determine whether it can be used. If the spacing is non-uniform, approach a is mandatory.
Matrices for the single ring of contacts on the code wheel are set up as shown in Table 2, Part a, shows the contact positions possible with four wires. b is a matrix for checking for ambiguity in the results of part a. It should be noted that the contacts and spaces are arranged with a 45 deg slope in the matrix.
This matrix may also be used for concentric rings of contacts on the code wheel. However, as the number of positions is increased, the difficulty of creating a 45 deg matrix increases. If the number of positions is large, a binary matrix is easier to set up. Such a matrix is exemplified in Tab. 3 but it is suitable only for a concentric arrangement.

Table 2. Matrices for a code wheel with a single ring of contacts.
a. Contacts possible with four wires.
b. Matrix to check for ambiguity.

Table 3. A four wire matrix for determinational of concentric contact arrangements.

Fit 2. A code wheel for circumfer en al brushes, shown in position 1.

Sample Problem

To illustrate both types of code wheels, one may consider the problem of indexing 12 equally spaced positions.
With 12 positions required, 4 wires are necessary. (See Tab. 1).
For circumferential brushes, the brush spacing will be $360 / 12=30 \mathrm{deg}$. Examination of the matrix in Tab. 2 for 15 positions shows that it is not suitable for this arrangement. The matrix shown in Tab. 4 is arranged for 12 positions.

Using the matrix for 12 positions, the two types of brush arrangements are shown in Figs. 1 and 2.
In Fig. 1, the connection between the contacts and the common slip ring would be made on the reverse side of the code wheel. If photoetched code wheels are used in this arrangement of brushes, the matrix would have to be of the binary type. The binary matrix lends itself to interconnections on one side of the code wheel. For a reprint of this article circle 26 on the Reader-Service Card.

able 4. A 12 position, four wire matrix for radial or circumferential brush arrangement.

electron tube division ts TUNG-SOL ELECTRIC INC., newark 4, n. J.
SALES OFFICES: ATLANTA, GA.; COLUMBUS, OHIO; CULVER CITY, CALIF.; DALLAS, TEX.; DENVER, COLO.; DETROIT, MICH.; IRVINGTON, N. J.; LIVINGSTON, N. J.; MELROSE PARK, ILL.; NEWARK, N. J.; SEATtLE, WASH. CANADA: TORONTO, ONT. CIRCLE 27 ON READER-SERVICE CARD

Fig. 1. The components em ployed for the simple measurements are a directional coupler to sample the energy, a wavemeter, a funed probe crys tal mount, and an oscilloscope

Fig. 2. The magnetron's tuning rate curve.

Fig. 3. Response curve of the tuned probe crystal mount.

How To Measure

FM Bandwidth

at Microwave Frequencies

R. G. Larson
Electronic Tube Division,
Westinghouse Electric Corporation
Elmira, New York

A very simple method has been found to measure fm bandwidth at microwave frequencies. This method is especially effective when the bandwidth is greater than can be easily observed on a spectrum analyzer. The method can be used with any kind of signal source. With proper attenuation to protect the crystal, it can be used for any power level from a few milliwatts up. The method can be used for any frequency band for which the few simple components are available. The technique is most useful for fm amplitudes of one per cent or greater. It is not precise enough for amplitudes less than 0.1 per cent.

ANEED for a technique to measure large bandwidths arose during investigation of the properties of the WL-6177 magnetron. This tube provides a cw signal at about 4300 mc with an fm amplitude of ± 1 per cent. The fm rate is approximately 100 cps . To measure this bandwidth, a simple combination of standard components is effective and easy to use. (See Fig. 1.) The cost is relatively low.
A series of graphs shows how this simple system works. A tuning rate curve, shown in Fig. 2, shows the change of frequency produced by changing the position of a driven reed inside the vacuum envelope of the magnetron. With the reed at rest, a rest frequency, f_{r}, is generated. As the reed is driven, it oscillates between a maximum and minimum displacement position. This gives rise to a maximum frequency, $f_{\text {max }}$, and a minimum frequency, $f_{\text {min }}$.

A tuned probe crystal mount, with a
response as shown in Fig. 3, detects the energy. When the probe is tuned accurately to the rest frequency, any shift in frequency will give a lower amplitude response on the scope. This is easily done when the scope's dc amplifier is used with zero drive voltage, V_{d}.
An absorption cavity wavemeter is used to measure the frequency. When the wavemeter is set at a frequency within the range of the magnetron, an absorption of energy causes a reduction of signal amplitude at that frequency.
A crystal rectifies the signal, and the resultant dc output is displayed on a cro. The negative characteristic of the crystal causes positive power output to deflect the oscilloscope trace downward.
The drive voltage, shown in Fig. 4, is sinusoidal. The anode-reed spacing is proportional to the drive voltage by nature of the reed construction. The frequency, however, does not vary sinusoidally because of the non-linearity of

Fig. 4. Time relationship of the drive voltage, anode reed spacing, frequency variation, and power output.
the tuning rate curve. With the probe tuned to rest frequency, the scope trace is deflected downward a maximum amount. With drive voltage applied, the pattern appears on the screen.
When the wavemeter is tuned from a value above maximum frequency toward the range of the output frequency, the first indication is a spike on top of the smaller "hump" on the trace at maximum frequency. The frequency at which this indication appears is noted in the bottom curve of Fig. 4.
As the wavemeter tunes through the fm range of the magnetron, this spike splits into two spikes. They move down the smaller "hump," climb the larger "hump," then disappear at the top at minimum frequency. The difference between maximum and minimum fre(uency is then directly measured to the ${ }^{\text {a }}$ acuracy of the wavemeter, 0.05 per cent. This method of bandwidth measureent is speedy, precise, and easy.

For precise power measurements in all bands

Microlines 123B Wattmeter Bridge. Measures average power to accuracy of 3%. Self-balancing and direct-
reading, bridge operates with Microline barretter or reading, bridge operates with Microline barretter or
thermistor mounts. Frequency coverage depends on mount used.

Microline $\mathbf{6 3 0}$ Peak Power Meter. New direct-reading meter measures true peak power in radars and other meter measures true peak power in radars and other independent of width, shape, and repetition rate of pulse

Other Microline Barretter and Thermistor Mounis cover coaxial and waveguide lines for frequencies between 0.82 and 9.6 kmc . All Microline mounts are fixed-tuned for low VSWR over their bands.

Now available from Sperry for immediate delivery is a complete line of Microline ${ }^{\text {® }}$ equipment for measuring power in all bands. Ready to meet the growing demand for instruments capable of a high order of accuracy, Microline equipment design is based on Sperry's wide experience in developing preci-

Microline Combination Test Sets. All are capable of measuring both peak and average power in radar systems. Also do the job of three or more standard test sets in measuring many other important system parameters. Special gating feature selects and idenpower measurement and spectrum observation. Available for LP, S, C, X, K, and V band systems.

New Microline Barretter Mounts. For peak or average New microiline sarretter Mounts. For peak or average
power measurements, these mounts are fixed-tuned and broad-banded to cover complete frequency range of their waveguide with high Internal efficiency. Designed with low shunt capacity especially for peak power measurements with Microline 630 Meter. Barretters can be replaced by user. Three mounts cover all frequencies from 2.5 to 12.4 kmc .

Microline Directional Couplers. For sampling system power for measurement and test purposes. Available for coaxial and waveguide lines covering 0.96 to 40.0 kmc . Coupling ratios cover 10 to 50 db . Dual couplers are available for special comparative and ratio techniques, such as reflectometer measurements for fast production testing.
sion test and production equipment for major weapon and defense systems. Write our Microwave Electronics Division for latest data on "Microline Power Measuring Instruments."

Visit our booths 1416-1422 at 1958 Radio Engineering Show, March 24-27. CIRCLE 25 ON READER-SERVICE CARD

microline Barretters and Thermistors. Preciston eiements for reliable power measurements as well as inear detection and probe uses. Seven types are available for special requirements of all types of power measurements, frequency bands, and bridge or meter circuits.

DIVISION OF SPERRY RAND CORPORATION brooklyn - cleveland - new orleans - los angeles geattle - san francisco. in camadai sperar oinostor

for molybdenum furnaces

This transformer has a 10,000 Ampere secondary with a maximum of
5 volts. The primary taps are extended to reduce secondary to
0.75 volts. The secondary copper is $3 / 8^{\prime \prime}$ thick and $16^{\prime \prime}$ long, over which is
connected and built-in a 5 Ampere current transformer. This special transformer is made for air-blast cooling as the physical size had to be kept extremely small.
The heating transformer, a new member of the well-known family of NWL custom-built Transformers, is made to fit the particular needs of the user.

Each Nothelfer transformer is individually tested for core loss polarity, voltage, corona, insulation breakdown and aging characteristics and must
meet all customer's requirements before shipment. We shall be glad to receive your specifications and quote you accordingly,

NOTHELFER WINDING LABORATORIES, INC., P. O. Box 455, Dept. 3, Trenton, N. J. (Specialists in custom-building)
CIRCLE 29 ON READER-SERVICE CARD

Using a dynamometer meter movement;

Precision VTVM Reads

True RMS

LABORATORY standard accuracy and true rms measurements of complex waves are combined in this VTVM by the use of a dynamometer meter movement. Squaring is performed automatically in a dynamometer meter movement, since the deflection is directly proportional to the square of the current through both coils. This provides direct, instantaneous true rms readings. The true rms reading is independent of harmonic phase shift and gives a highly
accurate value of the fundamental sine wave.

The dynamometer instrument, developed by Trio Laboratories Inc., 4025 Merrick Road, Seaford, N.Y., gives a true rms reading with an accuracy of $1 / 4$ per cent of full scale. This is somewhat better than electronic wave-squaring instruments and overcomes the disadvantages of thermocouple detectors. A multi-stage high-gain amplifier converts the signal voltage into a current sufficient to drive the dynamometer movement. A large amount of current feedback assures that the overall gain remains constant and eliminates line voltage effects. A laboratory standard mirror-scale meter with hand-drawn markings provides readability and accuracy.

The meter will find application in the measurement of ripple and noise in audio circuits where the true rms value is significant. Measuring the value of the fundamental with high accuracy is important in data type synchros, carrier systems, and control systems. The instrument overcomes the errors inherent in peak-reading instruments in the presence of thin spikes, and the harmonic distortion errors of averaging meters. The accuracy of true rms measurement is shown in the curves of the figure. In computing the value of the fundamental

Precision vtvm reads true rms (opposite page)
from the true rms of a complex wave, the accuracy is much less for a given harmonic distortion.
Ranges up to 500 rms full scale are available with a frequency response of $50-2000 \mathrm{cps}$. A military version of the instrument is in development for field test and ground support equipment applications.
For more information about this product turn to Reader-Service Card and circle 30.

Computed errors between true rms voltage of a complex wave and value of the fundamental, and between average voltage and value of the fundamental.

Nowl Solve any DC measurement problem-with a proven KIN TEL instrument

MEASURE MICROVOLTS TO KILOVOLTS, MICRO-MICROAMPS TO AMPS WITH STABILITY, ACCURACY, SIMPLICITY:
From research and development to production line testing... one of these versatile DC measuring instruments can meet your most exacting requirements.
All units incorporate KIN TEL's proven chopper-stabilized circuitry for rock-solid measurement of microvolt level DC signals. All have zero center meters for instant polarity indication.
KIN TEL's microvoltmeters feature high input impedance and can be used as stable DC amplifiers. The model 301 both measures and supplies dC from 1 to 501 volts with 0.02% accuracy - provides 20 ma output as a supply.
One of these instruments can solve your DC measurement problem. And remember - reliable, accurate performance is assured by kIN TEL's experience in manufacturing more than 10,000 instruments.

Instrument	Model 203	Model 202B	Model 204A	Model 301	Model 203AR
DC Voltage Ranges (Full Scale)	$\begin{gathered} \pm 100 \mu \mathrm{v} \text { to } \\ \pm 1000 \mathrm{v} \\ 15 \text { ranges } \end{gathered}$	$\begin{aligned} & \pm 300 \mu v \text { to } \\ & \pm 1000 \mathrm{~V} \\ & 14 \text { ranges } \end{aligned}$	$\begin{aligned} & \pm 10 \mu v \text { to } \\ & \pm 10 \mathrm{l} \\ & 7 \text { ranges } \end{aligned}$	$\begin{aligned} & 1 \text { to } 501 \\ & \text { volts } \end{aligned}$	$\begin{aligned} & \pm 100 \mu v \text { to } \\ & \pm 1000 \mathrm{v} \\ & 15 \text { ranges } \end{aligned}$
DC Current Ranges (full Scale)	$\begin{gathered} \pm 100_{\mu \mu} \mathrm{a} \text { to } \\ \pm 100 \mathrm{ma} \\ \pm 10 \text { ranges } \end{gathered}$	None	$\begin{gathered} \pm 0.001 \mu \mathrm{a} \text { to } \\ \pm 1 \mathrm{ma} \\ 7 \text { ranges } \end{gathered}$	Not Applicable	$\begin{aligned} & \pm 0.001 \mu \mathrm{a} \\ & \text { to } 1 \text { amp } \\ & 19 \text { panges } \end{aligned}$
Input Impedance	10 megohms below 10 mv 30 megohms at $30 \mathrm{mv}-$ 100 megohms above 30 mv	10 megohms below 10 mv 30 megohms at $30 \mathrm{mv}-$ 100 megohms above 30 mv	10,000 ohms	Infinite at null	10 megohms at 30 mv and below 100 megohms above 30 mv
Measurement Accuracy	3\%	3\%	$\begin{aligned} & 3 \% \text { on } 2 \text { lower } \\ & \text { ranges, } \\ & 4 \% \text { above } \end{aligned}$	0.02\%	3\%
Max. Output as Amplifier	$\begin{aligned} & 1 \text { volt across } \\ & 1000 \text { ohms } \end{aligned}$	$\begin{aligned} & 1 \text { volt across } \\ & 2000 \text { ohms } \end{aligned}$	$\begin{aligned} & 1 \text { volt across } \\ & 1000 \text { ohms } \end{aligned}$	Applicable	$\begin{aligned} & 1 \text { volt across } \\ & 500 \text { ohms } \end{aligned}$
Equiv. Input Drift (Max. Long Time)	$10 \mu \nu$	$15 \mu \nu$	$<2 \mu \mathrm{~V}$	$\begin{aligned} & 0.01 \% \\ & \text { stability } \end{aligned}$	$10 \mu \nu$
Price	\$550	\$350	\$325	\$625	\$550

*The 301 utilizes a null voltmeter to indicate difference between voltage being measured and output
of its variable 0 C supply. Its null meter has 4 full scale ranges from +0.05 to +50 V . of its variable DC supply. Its null meter has 4 full scale ranges from ± 0.05 to $\pm 50 \mathrm{~V}$.
Write for detailed literature -5725 Kearny Villa Rd., San Diego 11. Cali/. Representatives in all major cities.

Model 203. Measure 10 microvolts to 1
to 100 ma . 25 ranges. This is the ONE

Model 2028. Wide range, $D C$ microvolt.
meter-amplifier, neter-amplifier. Ze glves instant polarity indication.

Model 204A. Electronic galvo. Transistorized. null detector, amplifier, null detector, amplifier
microvoltmeter
micro-microammeter.

CIRCLE 31 ON READER-SERVICE CARD

ORA//AR DC Transformer Has Continuous

Horace E. Darling
The Foxboro Company

Foxboro, Massachusetts

ATYPICAL industrial application of the "ratio amplifier" is in flow ratio control with all electronic control systems. This device is especially handy for accurately adjusting the blending proportions of two components of a process.

Amplifier Specifications

In one application, this ratio amplifier is to operate from a 60 cycle line regulated to within two per cent. It must meet rather exacting requirements.

- Its 9:1 continuously adjustable ratio must provide, at one extreme, a 10 to 50 ma output for a 10 to 23.33 ma input, and at the other extreme, a 10 to 23.33 ma output for a 10 to 50 ma input. - It must supply a 600 ± 60 ohm load with a current constant to within $1 / 2$ per cent of full scale. - An ambient temperature rise of 100 F must not change the output current more than one per cent.
- The "zero" of the system is such that a 10 ma input must always deliver a 10 ma output regardless of ratio setting.
- The system must maintain $1 / 2$ per cent linearity and stability.

Variable Feedback or Constant Gain?

A high current gain magnetic amplifier with lots of degenerative current feedback tends to be immune to changes in temperature, load resistance, supply voltage, and other factors which affect internal gain.
This particular application calls for an amplifier whose zero and span are to be stable to $1 / 4$ per cent. This requires an open loop current gain 400 times the net gain of the system. Thus, a gain of 1200 and a gain of 133 are required at the extremes.
The desired current ratio could be achieved by varying the amount of feedback. However, it was decided that a constant gain magnetic amplifier would be most suitable. The input is attenuated through the desired range by a precision variable resistor.

Amplifier Design Details

A 10 ma input must look like a zero to the amplifier. Hence, 10 ma are balanced out by a reference current from a Zener diode system. Fig. 1 shows the amplifier in block form.

A precision amplifier-attenuator is an important building block in electronic control systems. In use, this device accepts a direct current from a measuring system and delivers a direct current, accurately related to the input by a manually adjustable ratio.
The output current must be independent of moderate changes in temperature, load resistance, and power supply voltage. What is required, in effect, is a direct current transformer with continuously adjustable transformation ratio.

Resistance values for the input circuit elements are shown in Fig. 2. For maximum sensitivity, a measurement change of 10 to 23.33 ma must produce a 10 to 50 ma output change. This represents minimum control resistance.

Maximum control current will be about 3 ma . To achieve a current gain of 1200 with a high degree of stability, a current feedback factor of .995 was chosen. Thus, the maximum net error signal that the amplifier sees is $(1-.995) \times 3 \mathrm{ma}$ or 15μ a. Accordingly the magnetic amplifier was designed to deliver a 10 to 50 ma change as an open loop amplifier, for a 15μ a control signal change. This calls for an open loop current gain of 3300 .
The complete amplifier, with its two stages of amplification is shown in Fig. 3. Winding specifications are given in the Appendix.

Input Stage

The input stage uses two toroidal cores of 3 mil "Hymu 80" tape. This magnetic material is sensitive to very small magnetizing forces, ye has the moderately square hysteresis loop re quired for good current gain.

The 90 turn feedback winding, in series with the load, produces the desired current feedback. Since all the output current flows through the feedback winding, copper resistance changes with temperature cannot appreciably alter the feedback ratio. A highly stable amplifier results, approximating a constant current source. The feedback is actually accomplished as a flux balance in the input stage cores.
The 500 turn winding biases the first stage for linear operation and, with the control circuit open, adjusts the output current to 10 ma . The Zener source provides this bias current.
The control signal, applied to the 1000 turn winding, is derived from a voltage developed across a fixed resistor. Its magnitude is directly related to the total control circuit resistance. This fact is used to provide the required ratio adjustment. A 50 ohm negative temperature coefficient resistor in series with the control winding neutralizes resistance changes due to temperature. This is essential to eliminate span error.
The 5 turn shorted winding provides a low impedance path for second harmonic signals and decouples the input stage from the measuring system. A scope, across the open circuited 1000 turn winding with the 5 turn winding also open would show a large second harmonic signal. With the 5 turn winding shorted, most of this induced voltage disappears. In fact, the 1000 turn winding itself can now be shorted with only a small effect on the amplifier's zero. This provides higher power gain than can be obtained with conventional circuitry, since the usual decoupling resistor in the control circuit is no longer required.

Output Stage

The second stage uses two cores of 4 mil "Orthonol" tape. This material has a high saturating flux density and a nearly square hysteresis loop, allowing high power and current gains.

The output of the first stage flows into the 200 turn winding of the second stage through a 10 ohm resistor. This adjusts the interstage circulating current to the bias level required for the output stage. This 10 ohm resistor can be eliminated by using a smaller wire size for the 200 turn winding.
The 1000 turn winding of the output stage provides derivative feedback to stabilize the amplifier when the overall feedback loop is closed. Since this type of high gain amplifier has an appreciable transport lag and time constant, hunting will occur when the feedback loop is closed. Derivative feedback is obtained by a resistor and capacitor in series with the feedback winding, all across the load. Adjusting this resistor changes the gain vs phase shift characteristics of the amplifier over wide limits, and by
properly polarizing the feedback winding for positive feedback, counteracts the amplifier's tendency to hunt. The amount of derivative feedback required is related to the time constant of the output filter.
A $50 \mu \mathrm{f}$ filter in the output leaves a 20 per cent ripple. This may not be sufficiently smooth dc for many purposes. A pi network, comprising two $50 \mu \mathrm{f}$ capacitors and a 1.5 henry choke can reduce the ripple to $1 / 2$ per cent. This would require a dehunting resistor of approximately half the value of that used with a single capacitor.
A Zener diode system, corrected for a small
inherent temperature error, supplies a constant current for the reference resistor. With the use of high quality wire wound resistors, the Zener system's output current can be made constant to .05 per cent for a 100 F temperature rise. This system is used also to provide bias current to the first stage of the magnetic amplifier. All units operate from a common power transformer.

Silicon junction diodes are used throughout to minimize temperature effects on the front-toback ratio as well as to keep forward resistance of the rectifiers constant.
(Continued on following page)

Fig. I. Block diagram of ratio amplifier.
Fig. 2. Amplifier input circuit. The voltage developed across the 150 ohm resistor is the input to the magnetic amplifier.

ElECTRONIC DESIGN • March 5, 1958

Fig. 4. Open loop transfer characteristic of ratio amplifier.

Fig. 5. Linearity and temperature response.

Amplifier Performance

With the derivative circuits disconnected, and the current feedback winding shorted, the open loop transfer characteristic of the amplifier is determined by measuring input vs output current into a 700 ohm load. The results for two ambient temperatures are shown in Fig. 4. The effect of temperature on the open loop gain of the amplifier is to produce a slight zero shift, amounting to 0.2 per cent of full scale in terms of the closed loop operation.

With the dehunting and feedback circuits connected, the amplifier performance is measured using input current from a battery through an adjustable resistor. This insures that the input signal remains sufficiently constant to allow accurate measurements of both input and output currents. Both currents were sent through precision ten ohm resistors. The voltage drop across these resistors was measured with a Rubicon

Fig. 6. Ratio amplifier constant current properties.

Fig. 7. Effect of ratio setting on "zero."
potentiometer, as shown in Fig. 8. With this calibration, the currents are read directly in milliamperes to four figures.

Load Resistance Variation

Fig. 6 shows the effect of load resistance change on the output current of the amplifier. The specifications call for an output current change of no more than $1 / 2$ per cent for a load resistance change of 10 per cent. Actual measurement showed a span error of .01 per cent full scale and a zero error of .06 per cent. Extending the load resistance variation from 200 to 900 ohm gave maximum errors relative to the 600 ohm load of .38 to .1 per cent zero shift and .04 to -.04 for span change. This is a striking illustration of the constant current properties of the amplifier.

Ratio Set

The system requires that the output remain

Fig. 8. Circuit for precision testing of ratio amplifier.

Fig. 9. Effect of ratio setting on temperature response.
at 10 ma when the input is 10 ma regardless of the position of the ratio set resistor. If the voltage drop produced by the 10 ma input is equal and opposite to that produced by the Zener reference, then, theoretically, no current should flow in the control circuit. However, in spite of the use of the shorted decoupling winding, a small residual voltage is induced with its magnitude affected by the total control circuit resistance. Fig. 7 shows that a .1 per cent net error results as the ratio resistor is changed through its limits. A high quality variable resistor is essential since changes in contact resistance have the same effect as changes in ratio setting.

Linearity and Temperature Response

With a $1: 1$ ratio setting for several tests, the amplifier had a zero shift of +.47 per cent per 100 F rise and a span change of -.28 per cent per 100 F rise. The repeatability was .1 per cent. Results for a typical run are shown in Fig. 5.

Temperature Effect

The effect of temperature is somewhat affected ') y the ratio setting as shown in Fig. 9.

Zero Stability

The system's zero stability depends on the Zener reference, which, in turn, depends on the type of power supply regulation. In ac regulators having high distortion (20 per cent), a flat top waveform is produced whose peak value remains constant while the wave form varies with supply voltage. Such a wave form, rectified and filtered, produces a different average direct current output than a true sine wave of the same peak value. Hence, different regulators would supply different voltages to the Zener diode, causing it to operate at a different region of its characteristic. This introduces a small zero error. Wave form also affects the gain and zero of magnetic amplifiers, since these devices are frequency sensitive.

A Constant Current Source

This amplifier constitutes a true variable transformation ratio dc transformer. If the measurement signal is replaced by the Zener reference, a highly stable constant current generator is formed. The output current can readily be adjusted over a 5:1 range.

Appendix

First Stage Construction Details
Core: .938 in . od x .75 in . id, x .25 in ., 3 mil Hymu 80 tape in protective box. (Magnetics Inc. No. 500033D). Core area $=.135 \mathrm{~cm}^{\circ}$; core length $=6.74 \mathrm{~cm}$. Two carefully matched cores are required.
Gate Winding: 1320 turns of no. 34 copper wire over each core. Cover with one layer of 1 mil Mylar tape. Feedback Winding: 90 turns of no. 34 copper wire wound over gate winding. Place cores together with paper separating washer and bind with one layer Mylar tape.
Control Winding: 1000 turns of no. 40 copper wire wound over two core assembly. Cover with one layer Mylar tape.
Bias Winding: 500 turns of no. 38 copper wound over control winding. Cover with one layer of Mylar tape. Decoupling Winding: 5 turns of no. 22 copper with shorted terminals.
Second Stage Construction Details
Core: 1.5 in. od $\times 1$ in. id $\times .375$ in., 4 mil Orthonol tape in protective box. (Magnetics Inc. No. 50026-4A). Core area $=.544 \mathrm{~cm}^{\circ}$; core length $=9.84 \mathrm{~cm}$. Two matched cores required.
Gate Winding: 2850 turns of no. 32 copper wire over each core. Place cores together with paper separating washer. Bind with one layer of 1 mil Mylar tape.
Control Winding: 200 turns of no. 36 copper over both cores. Cover with one layer Mylar tape.
Anti-hunt Winding: 1000 turns of no. 38 copper wire. Cover with one layer Mylar tape.
Decoupling Winding: 7 turns of no. 22 copper with terminals shorted.
(.11l copper wire is triple Formvar covered.)

From a paper presented at the IRE-AIEE Sivecial Technical Conference on Magnetic Amp lifiers, September, 1957 at Pittsburgh, Pa.

industrial tube sales, allen b. du mont laboratories, inc., 2 main ave., passaic, n. J. CIRCIE 28 ON READER-SERVICE CARD

Read and Write

Transistor Circuits

 for Magnetic DrumsA general approach to the design of transistorized magnetic drum read-write circuits for high reliability is presented in this article.
Part I, which appeared in a previous issue of ELEC TRONIC DESIGN, outlined considerations for writer circuits. Parl II, presented here, concludes the article with consideration of the read preamplifier.

B. A. Mangan

International Business Machines Corp.
Kingston, N. Y.

Part II

THE FUNCTION of the read preamplifier is to transistors. It can be seen that in the useful operat- value for $I_{c 1}$. Therefore, the values of R_{e} and R_{c} are accept an input signal of approximately $30-50$ ing range, the gain is fairly independent of bias. also determined. mv and faithfully amplify it to a useful amplitude. However, the operating point will shift as the difIn addition, the read preamplifier must reject a ference between the two biases varies. This effect 10 mv signal and any pickup noise. Fig. 1 shows a preamplifier ideally suited to fulfill the above specifications. Operation of this circuit is in the megacycle range. This is obtained by the use of a drift transistor. ference between the two biases varies. This effect
can be minimized by returning both bases to the

Discrimination against small signals is accoman minimized by returning both bases to the second stage. Fig. 2 (a) shows that cutoff occurs for same source. Variations in beta will displace the equal base voltages. To reject a small input signal, fos as shown in Fig 2 (b). However, the ac gain e $e_{s 1}$ (as shown in Fig. 1), the relation between the the circuit configuration is inherently stable. Since times the input signal. These base voltages are
emitter-coupled input stage feeding both sides of an emitter-coupled output stage.

- The advantages of this configuration are:
- Overall gain is increased.

A conversion from double-ended input to singleended output is obtained without the use of a transformer.

Operation

A positive signal at the base of $Q 5$ (as shown in Fig. 1) produces an increase of current through the load resistor. A negative signal at the base of Q6 also increases the current through the load. In the case of pickup noise, both signals are of the same polarity, hence they tend to cancel. However, since Q2 and Q4 look into different impedances, complete cancellation does not occur. This latter condition is of little consequence, however, since the small noise output can subsequently be amplitudediscriminated. It can also be seen in Fig. 1 that the circuit presents a high impedance to the read signal. The number of voltage sources have been kept down and are so chosen that the loss of any source will not result in the destruction of any component.
The emitter-coupled stage is a lighly linear amplifier for small signals. Fig. 2 (a) indicates the gain stability ats a function of the biases on the two effects of $I_{c o}$ can be swamped out. For the emitter current through it will swamp out the base currents. coupled stage in Fig. 3 we have:

$$
\begin{gathered}
I_{t}=I_{r_{1}}\left(1+\frac{1}{B_{1}}\right)+I_{c_{2}}\left(1+\frac{1}{B_{2}}\right)-I_{r o_{1}}-I_{c o_{2}} \\
I_{c_{2}}=\frac{I_{e}-I_{c_{1}}\left(1+\frac{1}{B_{1}}\right)}{1+\frac{1}{B_{2}}}+\frac{I_{r v_{1}}+I_{c o_{2}}}{1+\frac{1}{B_{2}}} \\
\text { Lett } \gamma=1+\frac{1}{B_{2}} \text { and } \phi=1+\frac{1}{B_{1}} \\
I_{c_{2}}=\frac{I_{e}-\phi I_{c_{1}}}{\gamma}+\frac{I_{c c_{T}}}{\gamma} \\
I_{c_{2}}-\frac{I_{c c_{T}}}{\gamma}=\frac{I_{e}-\phi I_{c_{1}}}{\gamma}
\end{gathered}
$$

Where: $I_{* \sigma_{1}}=I_{\sigma_{1}}+I_{\text {cog }}$, each being the maxinum $I_{\text {co }}$ at the highest allowable temperature. This minimizes variations in the operating point as Q6 turns on and off.

Using this arrangement, I_{e} must be kept small to Q

Conclusion

To the extent that the circuits described are concerned with the application of transistors to magnetic drum requirements, the circuits are therefore typical of some of the problems encountered in reliable design. It must be remembered, however, that reliability and a good basic design are not necessarily one and the same. It is the responsibility of the circuit designer to settle for nothing but the optimum design, and then to build further reliability into it.
Whereas much has been written on the many facets of reliability, it is nevertheless true that there is still a need for a set of rules (or a general procedure) to cover the design of high-reliability circuits. To have a true value, however, each set of rules must be identified with a particular field of endeavor. The design of faster, more reliable circuits for drum applications is continuing.
As the state of the art of transistors improves and satisfy the high frequency requirements ($f_{c o}=1 / I_{0}$). better techniques are developed for their utilization. Knowing $I_{\text {cor }}$, and that it must be swamped out, reliability far in excess of that of present-day sysfixes the valuc of $I_{c 2}$. This will determine a suitable tems will be realized.

Tape Wound Cores

Bobbin Cores

Not only G-L but our customers, too, claim consistent' uniformity with every G-L Tape Wound Core and Bobbin Core. This consistent uniformity is the result of: an accuracy of control never before achieved in each and every step of the manufacturing process; the use of the highest quality raw materials and new and exclusive manufacturing technologies.

Prove our claims and the claims of our customers, Write, wire, call or teletype us about your requirements and for our technical bulletins.

G.L ELEEETRONOES

2921 ADMIRAL WILSON BOULEVARD CAMDEN 5, NEW JERSEY

[^0]

This article describes a simple high speed fault-protection circuit which provides both dump tube and recti-fier-blocking protection. The circuit was designed for use with a 10 kw , 10 kv plate voltage supply used in tests of medium power transmitting tubes, but is easily adaptable to other applications involving high, medium or low power equipment.

Improved Power Fault Protection

John T. Mark

Electron Tube Division
Radio Corporation of America

E LECTRONIC equipment operating at high volttages and powered by rectifier-filter-type supplies capable of storing large amounts of energy can be seriously damaged or destroyed by arcovers or other faults. Although such equipment is usually provided with electro-mechanical overload relays and circuit breakers which remove primary power in the event of a fault, these devices do not protect the equipment against damage by the energy stored in the power supply filter, and may not remove primary power rapidly enough to prevent damage to the power supply itself.

For adequate protection against fault damage it should be possible to shunt the faulted tube or circuit in a few microseconds. The shunting device should be capable of dissipating the energy stored in the filter or delivered by the power supply during the interval required for the removal of primary power. Dump tube or electronic crowbar circuits designed to provide such high speed protection have been described ${ }^{1,2}$ and are now in use in commercial and military high power electronic equipment. Increased protection can be obtained if the power supply rectifier is blocked at the same time. In this way no energy is delivered to the filter in the interval required for the electromechanical protective devices to operate.

Operation of Dump Tube Circuit

The essential elements of the fault-protection circuit is shown in Fig. 1. The dump tube is an RCA 5563-A mercury vapor thyratron connected across the 10 kv de supply leads to the equipment load.

Fig. I. High-speed fault-protection circuit showing dump tube.

Under normal load conditions the dump tube is revented from conducting by the 90 v grid bias supplied by B_{1}. When a fault occurs in the load circuit the resulting surge voltage-developed across he fault-detector resistor R_{5}-overcomes the battery bias and fires the dump tube. Because the impedance of the ionized dump tube is substantially lower than that of the load and the limiting resistor R_{2}, the dump tube diverts the current delivered by the power supply. When the overload relay or circuit breaker operates, the energy stored in the filter circuit is dissipated.

The time required for a dump tube circuit to divert the current is determined by the tube ionization time and by the reactance of the firing circuit. A mercury vapor thyratron such as the RCA 5563-A has a rated ionization time of approximately $10 \mu \mathrm{sec}$, but can be ionized in a considerably shorter time if its grid is triggered by a suitably steep waveform. Although the rated ionization time of a hydrogen thyratron such as the 5C22 is only 0.1 to $0.2 \mu \mathrm{sec}$, such extremely rapid ionization can only be achieved if the fault detection circuit has extremely good high-frequency characteristics. In general, adequate protection can be obtained with an ionization time of $10 \mu \mathrm{sec}$. The amount of energy that can be delivered by a low frequency rectifier-filter system during this interval is not great enough to cause damage.

Operation of Rectifier-Blocking Circuit

Additional protection for the faulted circuit is obtained by the use of grid-control rectifier tubes which can be blocked simultaneously with the firing of the dump tube.

The rectifier shown in Fig. 1 is a 3φ half wave type using an RCA 866-A and an RCA 5563-A in each phase. The use of the 5563-A's permits the rectifier to be turned off by a relatively small blocking voltage to the grids. The blocking voltage is obtained from a simple low voltage de supply; its application to the rectifier tube is controlled by the 2050 hydrogen thyratron.

The unblocking switch S_{1}, and the contacts of the blocking relay K are normally closed. When filament power is applied to the rectifier tubes and the dump tube, the blocking-voltage supply circuit is energized and applies -250 v to both plate and grid 1 of the 2050. This is more than enough to overcome the -6 v grid bias supplied by battery B_{2}, and fires the 2050. The resulting drop across $R_{4}-250 \mathrm{v}-$ blocks the 5563-A rectifier tubes.

Application of plate-supply power to the rectifier tubes opens the contacts of relay K, removing the positive dc supply from grid 1 of the 2050. The 2050, however, continues to conduct because it cannot be deionized except by removal of plate ioltage. It therefore keeps the rectifier tubes blocked.

The unblocking switch S_{1} is a spring-return type

CIRCLE 34 ON READER-SERVICE CARD

The Elcor ISOPLY is used in Fccurfacy ${ }^{\text {® }}$

because it is isolated and has low shunt capacitance

STRAIN-GAGE POWER SUPPLIES

- Transistor Regulated
- Low Shunt Capacitance
- Excellent Electrostatic shield-
- Low Temperature Coefficient
- Line and Load Voltage Regulation
- Maximum Isolation
- ISOFORMERS (Low-capacitance isolation transformers) - RECTAN-GULAR-WAVE GENERATORS GATED OSCILLATORS - DECADE WIDE-BAND D.C. AMPLIFIER - FLIP FLOP - BINARY SCALER • PULSE GENERATOR - TRANSISTOR-REGULATED POWER SUPPLIES

PARTIAL LIST OF ISOPLY USERS

- Sylvania Eleetric Prodects Ine. - Intornational Business Maehines Corp. - General Electric Company - Maval Resoarch Laboratory Westinghouso Electrie Corp. - Industrial Nueleonics Corp. - Taylop Instrument Companies - Melpar. Ine. - Mational Institutes of Hoalth - Pieatinny Arsenal - Land Alr, Ine. - Ereo Division, A.C.F. Industries - International Resistance Co. - Reed heseareh Corp.

CIRCLE 35 ON READER-SERVICE CARD
which, when pressed, removes plate voltage from the 2050. The resulting deionization of the control tube removes the short across R_{s}, reduces the drop across R_{4} to a negligible value and unblocks the 5563-A rectifiers. When S_{1} is released the 2050 control tube is held in the deionized state by the -6 v bias supplied by B_{2}. During these starting-up operations the 5563-A dump tube is, of course, cut off by the -90 v grid bias supplied by B_{1}.

Fault-Protection Action

Under normal load the maximum drops across $R_{1}(3 \mathrm{v})$ and $R_{3}(10 \mathrm{v})$ are too small to overcome the battery bias voltages on the grids of the 2050 control tube and 5563-A dump tube, so that these tubes remain deionized. Under fault conditions, however, the voltages across R_{1} and R_{3} very rapidly become large enough to trigger the control tube and dump tube. The rectifier is then blocked and the faulted circuit shunted in microseconds. The control tube will continue to conduct and keep the rectifier blocked after primary plate power is removed. It will maintain the rectifier tubes in the blocked condition after the fault has been cleared and plate power reapplied. The rectifier cannot be unblocked except by means of the switch.
In many cases, a fault is present or develops at the instant the power supply is turned on, with the result that the dc output voltage of the supply does not rise to the normal value. In such cases, an ac-coupled or voltage-sensitive fault-detection cir-
cuit might not respond to the fault, and would nol provide the desired protection. The fault-detection circuit shown in Fig. 1 is free from these disadvantages because it is direct coupled, current sensitive, and substantially independent of the dc operating voltage. In addition, the rectifier-blocking feature automatically prevents application of power to a faulted circuit.
Although this fault-protection circuit is not "fail safe," it is conservatively designed and extremely reliable. Similar circuits have been used for several years in the RCA Electron Tube Division laboratories, and have given very little trouble.

Complete Protection Circuit

A schematic of the complete fault-protection circuit is shown in Fig. 2. The unblocking switch S_{1}, is a spring-return type equipped with make-before-break contacts. When pressed, the lower (make) contact closes first, maintaining a large current flow through R_{i}. In this way the rectifier tubes are not without blocking protection during the unblocking operation. The upper (break) contact then opens, and removes plate voltage from the 2050. The rectifier, therefore, is not unblocked until S_{1} is released. N_{1} and N_{2} are neon indicator lamps which show whether or not the rectifier is blocked. S_{2}, which was not shown in the simplified circuit diagram of Fig. 1, is a normally-open springreturn switch which provides a convenient means for checking the operation of the rectifier-blocking

Fig. 2. Complete fault-protection circuit.
c icuit. It is connected in parallel with the cont cts of relay K, open when the rectifier is operating under normal load conditions. Momentary pressure ${ }_{\text {oi }} S_{2}$, therefore, triggers the 2050 control tube, and blocks the rectifier.

Design and Construction

In the design of the power-supply circuit, consideration was given to the fact that the supply would have to be capable of operation under shortcircuit conditions during the interval required for the dump tube and control tube to ionize. No special components were required, because experience showed that standard components were fully capable of standing the anticipated short-time overloads without damage. The inductance of the filter choke was the minimum critical value ${ }^{3}$. Excessive choke inductance can cause the development of a negative voltage kick after the rectifier has blocked. This kick may be of sufficient magnitude to exceed the piv rating of the rectifier tubes, causing arc back.
Considerable care was taken in layout and lead dress to minimize reactance, because excessive reactance may be responsible for transients which can cause the blocking and dump tube circuits to misfire.
Note that S_{2}, S_{2}, and the entire blocking-voltage supply circuit, including the heater supply for the 2050 control tube, are at high potential. The expense of a supply transformer having adequate primary insulation for T_{2}, may be avoided, as shown, by the use of a conventional $6.3 / 5 \mathrm{v}$ filament transformer with its 117 v primary used as the high voltage secondary and its 5 v winding as the primary. The entire transformer, as well as all components and wiring of the blocking-voltage supply circuit, and the blocking and unblocking switches must be insulated from ground for the peak output voltage of the rectifier.
The effectiveness of this protection circuit is demonstrated by the fact that when a small piece of soft solder wire is placed across the output terminals of the supply, only a small spit and flash results. The solder is not marred and shows no evidence of an arc even when examined through a 10 -power magnifier. In operating tests, the supply was repeatedly turned on into a short circuit, and short-circuited while delivering 10 kv , without damage.

Acknowledgements for valuable assistance in the development of this circuit are due to A. C. Grimm, S. E. Pennyucker, and F. S. Keith of the RCA Electron Tube Division, ancaster, Pa .

References

High-Speed Electronic Fault Protection for Power Tubes d their Circuitry, W. N. Parker, M. V. Hoover. IRE Conntion Record, 1955
Gas Tubes Protect High-Power Transmitters, W. N. rker, M. V. Hoover. Electronics, Jan. 1956. RCA Transmitting Tube Manual TT-4, pp. 74-77.

Everywhere-but everywherethere's a friendly -hp-engineer

All across North America, in almost every part of Europe, in Japan, Australia and New Zealand, in Africa-literally throughout the Free World-there's an -hp-representative as near as your telephone. -hp-representatives are broadly experienced instrumentation engineers who have been trained and re-trained at Hewlett-Packard's plant in California. Annually these men return to California from all parts of the world for refresher work, and instruction in application and operation of new instrumentation.
It is a simple fact that the $-h p$-representative's organization is the best trained, best informed and most helpful electronic instrument engineering group in the world. Call your -hp-representative for complete engineering information, sales or service on Hewlett-Packard equipment as applied to your measuring problems.

HEWLETT-PACKARD COMPANY
4625K PAGE MILL ROAD
PALO ALTO, CALIFORNIA, U.S.A Cable "HEWPACK" DAvenport 5-445
-hp- at IRE, top of escalators as you enter show
> (tip. means complete coverage in service, too!

- (Factory-level service and repairs available) EASTERN SEABOARD
Asbury Park. N. J., 1. E. Robinson Company, 905 Main St., KE 1-3150 Saltimore, Md.; Horman Boston Area El, Burlingion, Masss, Yowoll Associotes, Inc., Middlesex Turnpike, BR 2-9000. Iridge-
 Mon Compony, 2120 Markot St., RE $7-8791$. Engle-
 son Company. 7404 Woit Choslor Pike, SH 8-1 294.
Plinsburgh 22, Pe., S. Storling Company, Rm.

 Area El, Rockville. Md., Horman Associotos, SOUTHEASTERN STATES
Allanta S, Ga, Bivins \& Caldwell, 3133 Maple Yynch \& Associates, 35 W. North Shore Avo, ED 2-1 $109 . \mathrm{Hlgh}$ Polnf, N. C. ©.
Inc., 1923 N. Mivins
. Main St., Tol.: 2.6873.

ENTDAL SOUTM CENTRAL STATES

 Chicego. A5, III.E. Crossloy Associates, Inc. Ohlo, S . Howard St: SH Storling Company, 43500 Cloveland 21, Mayfold Rd. EV 2.A1i4. Dayton 19, Ohio M., CCossiloy Associ-ates, Inc., 53 Pork Ave., AX 9.3594 . Dotroif 35, ares. Inc., 53 Park Avo., Ax 9.3594 . Dotrait 35,
Mlich. 5 . Storling Compary. 15310 W. Mc. Nichols Rd., BR 3-2900. Indlanapolis 20, Ind.,
Crousloy Asiociatos, Inc., 320 N. Collogo Avo.,
 7. Mo. 17mpon
 comb Alsociotes, P. O. Box 7084, FL
ED 2-6667. Houston S, Tex., Eari Lid
iatos, P. O. Box 6573 , IA 4.9303 .

western states

Albuquerquo, N. M.■, Nooly Entorpribes, 107
Woshington St., S.E., AL 5.5586 . Donver 10 , Colo. Llahana \& Company. 1886 S. Broadwoy,
Cor

 Glison, CA $7-1281$, Sacramonto ia, Colif. W,
Neoly Entorprises, 1317 . 15 th St, GI 2.8901

 Son Carlos, Calif., Nooly Entorprises, SO1 La urol
St., IY 1-2626. Soatio
 Entorprises, 232 So. Tucion Blvd., MA 3-2564. CANADA
 B. C., Alla Rodio. Corporation. Ltd. $106-525$
 Allos radio

cables too!

Leader in miniature and sub-miniature insulated wires and cables,
Hitemp Wires, Inc. now keeps pace with the growing need for large diameter, multi-conductor cables which meet today's toughest environmental problem . . . high temperatures.
Hitemp's cable engineers have already designed, developed and fabricated
hundreds of custom, large diameter assemblies destined for unique
high temperature applications. Cables with fifty or more individually color coded conductors - cables in combinations of insulated conductors with ratings of 1000,600 and 300 volts - cables using Hitemp's new
"High Strength" conductor for 400\% more flex-life.
Whether you're in the blueprint stage or in prototype testing, whenever or wherever you need temperature control in large diameter (jumbo) cables
call Hitemp for the design help you need.

A proposal for the standardization of power supp voltages for transistor circuits. Recommended voltag:are $\pm 1.5,3,3,12,25,50$ and 100 v , with voltage. above 100 falling in $50 v$ increments. The method use to select these voltage standards, akin to that originally used to select standard resistor values, is described.

Transistor

Voltage \uparrow RANSISTOR supply voltage requirements have placed greater demands on power supplies. While the majority of the vacuum-tube voltage reStandards quirements fall within a $2: 1$ range between 150 and 300 v , most transistor requirements are spread over a $100: 1$ range between 1.5 and 150 v .

A method for arriving at standard voltages is to select a series of voltages that are equally spaced by a constant multiplying factor. In this way the percentage difference between an ideal power supply voltage and the closest standard voltage would always be less than a certain fixed amount no matter what part of the voltage spectrum was needed. Fig. 1 shows a fairly uniform spread of transistor power supply voltages used by a number of aircraft companies.

The homogeneity of transistor circuit voltage requirements over the voltage spectrum from 1.5 to 150 makes it desirable to use a system of power

Fig. 1. Proposed standard power supply voltages.
upply voltages separated a given percentage from ch other. In this manner the engineer selecting a andard voltage near 2 v or 80 v would not be enalized more for one requirement than the other. in illustration might clarify this position further. Suppose standard voltages were set up as 3,50 , and 100 v . Now let two circuits be designed which inust use one of these standard voltages but which will be optimized when using 12 and 75 v , respecively. The engineer who needs 12 v is penalized by a factor of $4: 1$ by going to either 3 or 50 v . On the other extreme the circuit that works best at 75 v is only penalized $1.4: 1$ by going to 50 or 100 v .
If only three voltages were permissible they would be $1.5,15$, and 150 , separated by a factor of $10: 1$. If thirteen were permissible the 20 per cent tolerance series used for resistors would suffice. The desirable series falls in between these two; one does not include enough and the other has too many.

Standard Voltages

A series spaced by a factor of $2: 1$ is recommended as shown here with voltages about 100 v spaced in 50 v increments: $\pm 1.5,3,6,12,25,50$, $100,150,200,250$, and 300 v . This series retains the 2;1 spacing between values for transistor voltages below 100 v and retains the most popular vacuumtube voltages above 100 v . It also seems as though a ratio of less than $2: 1$ would yield more power supply voltages than desirable and a ratio of over 2:1 would not include enough voltages.
Several of the voltages in this recommended series are standards now in popular usage. The 1.5 and 3.0 v voltages could be supplied from dry cells or electronic supplies. The 6 and 12 v storage batteries are in common use. In the 20 to 30 v range, $22-1 / 2,23,24,25,27-1 / 2,28$, and 30 are all used extensively. For reasons already stated, the 25 v supply, which is consistent in the $2: 1$ spread for 25,50 , and 100 v , was picked. In the region of $50 \mathrm{c}, 45,50,55$, and 60 are used; 50 was chosen.

Transistor Specs Influenced

A transistor rated by the manufacturer for a maximum collector voltage of 30 v must not be operated above 30 v : the collector might break down and damage could result if the collector current were not limited.
If a circuit engineer were to design a circuit around the type 2 N 118 transistor (rated at 30 v) using the recommended power supply voltages, it is doubtful that he would want to choose the 50 v supply, because it exceeds the transistor ratings by - large margin. Because the next lower standard supply voltage is 25 v , he would prefer to use this one for a resistive load and 12 v for an inductive load. If a transistor rated for a maximum of 20 v "ere selected, it is possible that the 25 v supply ight still be used, and most transistors would - ork satisfactorily. This is because manufacturers

CIRCLE 38 ON READER-SERVICE CARD

TEST EPOXY "EGOASE" ENCAPSULATION ON YOUR OWN COMPONENTS:- Y

If you're involved with encapsulation, this is a dream come true. Here, in one complete, low-cost kit, EPOXY PRODUCTS provides all the materials and data needed to test their new epoxy encapsulation procedures and materi-als-right in your own laboratory, on the very components you are handling.

You get a variety of epoxy "E-Case" shells, "E-Form" pellets, powder, liquid and hardener,
epoxy sheef, and a comprehensive instruction manual... all you need to encapsulate components in a number of new, different ways. Best of all, when you've established the right encapsulation method, it is immediately transferable to production line applications. And everything in the kit is available in production quantities. Order your test kit from your local distributor; or from:

PRODUCTS, INC.

A DIVISION OF JOSEPH WALDMAN \& SONS
137 Coit St., Irvington, New Jersey
cannot produce a production run of transistors win a single value of breakdown voltage (due to pro. ess control) but rather a spread of values whi h range above and below the rated value. Reliabla manufacturers choose transistors from their distribution so that most, if not all, of those shipped fa! above the value in question.
The manufacturer has little control over the way a product is used in research and development. It is only after a product has gone into production and trouble arises that the component supplier is called in. One good way to decrease the possibility of the misuse of a component is to establish standards in such a way that it will be more difficult to go wrong

Transistor Ratings

As shown above, a transistor rated for a maximum of 30 v will probably be used with a 25 v supply for a resistive load; this is a 20 per cent safety factor when the transistor is operated in a cut-off condition. On the other hand, a transistor rated for a maximum of 20 v could be operated from a resistive load and a 25 v supply, as stated above, with a good probability that many units would work satisfactorily. As frequently seems to happen, these transistors might all have a collector breakdown above 25 v and work satisfactorily. But in production, when large quantities are used, a certain percentage of the transistors will inevitably have a breakdown just above 20 v and would not be suitable for the application.

If the standard supply voltages are adopted and used by a majority of users, the transistor manufac turer will have gained the tremendous advantage of knowing the universal market requirements for collector voltage. By adding 20 per cent to these standard supply voltages, a new series of voltages is obtained, which are ideal ratings for transistor collector voltage. This new series will be $\pm 2,4,8$, $15,30,60$, and 120 v . Circuit designers will then be in a position to use the recommended power supply voltage and to operate transistors out to their maximum ratings with a 20 per cent safety factor. This will certainly tend to discourage the use of the next higher standard voltage because of the very obvious overrating of transistor collector voltage.

Other Advantages

The above series of voltages ($2,4,8$, etc.) would be ideal voltage ratings for capacitors when used in circuits using the standard voltages recommended here. Component manufacturers will be able to produce parts to be used in systems already designed as standard voltages will be available.
Checkout equipment for testing components will be simplified if only standard voltages are needed to power the components. Standard power supplies can be designed and used in many systems without redesigning for new voltages in each new system

Nonstandard Voltages

No matter how much one wants to standardize, there will be some justifiable exceptions. The hearing aid industry, for instance, will continue to use 1.34 and 2.68 v because the mercury cell was not informed about the proposed standard of 1.5 and 3.0 v . No justification is needed for these voltages. One point three four and 2.68 v will be standards in the hearing aid industry.
In those companies that produce portable transistor radios 9 v will be a standard. It might complicate the proposed standard to use this voltage but the engineer desiring to use 9 v will have no trouble. Nine volts is accepted in the entertainment field. The time may come when transistor, capacitor, and battery ratings will be such that 6 or 12 v might be more economically desirable.

Another group of users desires 18 v for a comparatively large system since this voltage is being used on present equipment. If a survey were made of all equipment in the country, there would be strong justification for certain voltages not recommended here. But if each new voltage were to be put on the standard voltage list to satisfy the needs for certain users, standardization would be doomed to failure. It is probably safe to say that a majority of circuits in use today could have been designed around this recommended series of standard voltages with no consequent deterioration in performance if standard voltages had been available. Many circuits will work just as well over quite a range of collector voltages; when a standard is announced a majority will use it. For those who cannot conscientiously use a standard voltage because of reduced performance, a nonstandard voltage is desirable and should be used. But if the users of nonstandard voltages influence the voltages listed in the standard list, the result will be an overall reduction in the benefits that accrue from voltage standards.

Standard Tolerances

The voltage values suggested here are nominal. The 25 v supply could be $25 \mathrm{v} \pm 0.1$ per cent for a precise computer reference voltage or it could be $25 \pm 5 \mathrm{v}$ when taken from an aircraft dc supply. The current capacity, per cent ripple, regulation, and other power supply characteristics are not considered in this standard. They are dictated by the requirements of the system.

Conclusion

A standard acceptable to industry must offer advantages to a large majority of users. The series of voltages recommended here is realistic and a large number of circuits can be modified easily. In those specialized cases where standard voltages (annot be used, the engineer should have no rouble in justifying his special needs.

SPECIFICATIONS

- Size: $1 / 22^{\prime \prime}$ dia. Weight: $1 / 402$.
- Power rating: 1.5 watts at $40^{\circ} \mathrm{C}$.
- Resistance Range: to 40 K ohms. Resistance Tolerance: $\pm 10 \%$ standard. Linearity: (Independent) $\pm 2 \%$ standard; $\pm 1 \%$ special. Welded connections.
- Dielectric Strength: 1000 V . AC for 1 minute at atmospheric pressure.
- Torque: Less than 0.5 oz.in.
- Completely enclosed to meet toughest environmental conditions. Applicable solder canno get into potentiometer.
- Mountings: Servo and bushing. Also locking type.
- Rotation: Limited or continuous.
- High-frequency operation.
- Modifiable to your require. ments.

HIGH ReLIABBLITY $1 / 2^{\prime \prime}$ PRECISION wige wio POTENTIOMETERS

Designed to meet the ever-increasing demand for greater performance and highest reliability in less space, the Clarostat Series 57 Precision Potentiometers feature a new rotor and brush assembly for maximum stability and longest trouble-free service. Nickel-silver body. Thermally compatible cover with sturdy terminals molded in place. . Write for details . .

ELECTRONIC DESIGN • March 5, 1958

Hoffman Electronics
CORPORATION

SEMICONDUCTOR DIVISION

930 PItNer avenue
EVANSTON, ILLINOIS
UNiversity 9-9850
SPECIALISTS IN
SILICON SEMICONDUCTORS

Hoffman Micro-Miniature ZENER Silicon Junction Diodes are made with Hofman Micro-Miniature ZENER Silicon Junction Diodes are made with
GOID ALIOY Ohmic Contacts in order to withstand higher operating temperatures. This line of Hoffman Zener Diodes was developed for Clipping, Limiting and Regulating and similar applicalions where physical mounting space is at a minimum.
Rated at 250 milliwatts at $25^{\circ} \mathrm{C}$ (ambient temperature) and derated at one (1) milliwatt per degree centigrade above $25^{\circ} \mathrm{C}$.
Operating and storage temperature range: $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. Special selections from Types GZ1 thru GZ6 are available with a tolerance of $\pm 5 \%$.
Units with ZENER voltages from 8 volts thru 51 volts are available at tolerances of $\pm 10 \%$ and $\pm 5 \%$. From 56 volts thru 100 volts at $\pm 10 \%$ tolerance.
Write for Hoffman Technical Information Bulletin No. 27-58 for detailed data on this new line of Micro-Miniature Zener Diodes. VISIT BOOTH \#3830 AT THE I.R.E. SHOW CIRCLE 41 ON READER-SERVICE CARD

Feedback Controlled

Microwave

Attenuator

WITHOUT bulky mechanical equipment, this device accurately splits, attenuates, or modulates microwave power. With the advantage of a closed loop system, it automatically regulates output waveform and amplitude, and can handle frequencies from 3 to 10 kmc .

Airtron, Inc., of Linden, N.J., designed reserve gain into this 5 tube system at a total cost of only 25 watts of power consumption

One can feed power from a klystron or magnetron into this unit and electronically stabilize the amplitude, modulate the power with sine or square waves, split the power and direct it into two discrete outputs, and attenuate or simply monitor the output.

The unit features a voltage standing wave ratio of no more than 1.2 , insertion loss from 1 to 20 db , and 2 per cent stability. Sine wave modulation frequency can be as high as 150 cps and square wave modulation can go to 50 cps . The harmonic distortion for 10 db sine wave modulation does not exceed 5 per cent

The block diagram illustrates the operation. A klystron or magnetron microwave source feeds

This block diagram (discussed in the text) shows how the plumbing and electronic components work together.

This is the compact control box for the programmed microwave attenuator.
a ferrite rotator. A magnetic field applied to a ferrite rod in the rotator, rotates the plane of polarization of the rf wave traveling along the guide. Two coupling windows, 90 degrees apart in a section of circular waveguide, sense this rotation of the rf wave.
As the electric field rotates, the power ratio between the two windows changes. A bolometer detector couples the rotator to an operational amplifier's feedback circuit. The bolometer's output, which represents the actual power in the waveguide, is compared with reference signals to provide an error signal which is fed to the amplifier. The amplifier, in turn, drives the electromagnet which applies the magnetic field to the waveguide ferrite.
Though the ferrite is sensitive enough to find laboratory applications, it can also handle quite high power levels. In the \mathbf{X} band, it can accept 100 watts of average power and 100 kw peak. In the C and S bands, it can handle three times these levels.
For further information, turn to the ReaderService Card and circle 42.

Here is the plumbing associated with the attenuator. F.t the upper left is the directional coupler and at'enuator. To its right are the orthogonal junction, the : rrite rotator, and a 45 degree twist. The dummy load shown at the lower right and the bolometer mount - the lower left.

Data-packedcatalogon new Pulse Transformerline

...now available from FYC's Electronic Components Division

This comprehensive catalog-folder on ESC's completely new line of custom-built and stock pulse transformers includes test circuit diagrams, operational data, case styles and other important information. It fits right into your own data file. And, in addition to the important data it now contains, you'll receive, just as soon as they are published, individual sheets on new developments from ESC's ultra-modern research laboratories... thus, your ESC catalog.folder stays right up to
date on one of the most important pulse trans. former lines in years.

Just send your name on the company's letterhead to receive the catalog.folder and additional authoritative, up-to-date data as it comes off the presses. Write today.

Pulse transformers. Medium and low-power transformers • Filters of all types - Pulse-forming networks. Miniature plug.in encapsulated circuit assemblies.
exceptional employment opportunities
for ongineers experienced in pulse technigues
electronic components division
for

cut final test time 80\%

WITH THE LAVOIE ROBOTESTER

FOR USE AS PRODUCTION TESTER, SYSTEMS COMPONENT, AND MAINTENANCE TOOL

The ever increasing demand by the military and industry for greater reliability of electronic circuits places the responsibility squarely on the shoulders of the suppliers. Up to now, you must spend more time testing your unit than assembling it.
The Lavoie Robotester will save you up to 80% of this time in reducing labor, space and equipment \ldots and by minimizing the human factor, you get the optimum in accuracy. This unit is ruggedy constructed Which in incorporates the famous "Lavoie Unitized Subassembly" which assures fast, easy maintenance when required.

The Robotester has virtually unlimited application ... depending upon the bounds of your imagination! For example, the Robotester can be used as a systems component, providing your equipment with internal programmed testing and function facilities. And when this unit will provide permanent records of errors, allowing a single operator to handle several Robotesters. Other accessories lend ample support to the unit's versatility.
To see the Robotester in full action, visit the Lavoie IRE Show Booth No. 3242-43-44. Meanwhile, write for complete details.

Lavoie Laboratories, Onc.
 MORGANVILLE, NEW JERSEY

po
OWER transistors using these new heat sinks no longer require large surface mountir ; areas for heat dissipation. Combining conviction and radiation cooling, these new heat di sipators can solve many power transistor appication problems where conduction cooling is not feasible.
Designed by International Electronic Research Corporation, 145 West Magnolia Boulevard, Burbank, Calif., they allow efficient and compact form factors in equipment where it is now necessary to allow large surface areas for heat dissipation.
By keeping transistors cooler, they improve their operation and extend their life. In addition, they reduce the heat transferred into printed circuit boards.
The heat dissipators are made of aluminum with a black anodize finish. They have holes for convective cooling, and slots, which provide a tight spring friction fit on the transistor.
Tests were made to compare the cooling efficiency of these units with other designs. The guinea pig was a power transistor screwed into a small soldering iron. A thermocouple attached to the top center surface of the transistor monitored the temperature.
The new heat dissipator was compared with bare aluminum samples, with and without convective holes, and with a black anodized sample without the holes. It was found superior to all the others. The graph, shown below, illustrates how effectively it reduces case temperature.
Models are available to fit various transistor case sizes.
For more information, simply turn to the Reader-Service Card and circle 45.
See these dissipators at the Radio Engineering Show at Booth 3704.

This graph compares transistor case temperatures with and without the heat sink. Temperatures are in dr zrees Centigrade.

Radio Receptor silicon diodes

 CHARACTERISTICS INCLUDING...
high speed high conductance high temperature high voltage high back resistance
General Instrument semiconductor engineering has made possible these new silicon diodes with a range of characteristics never before available to the industry. Particularly outstanding is the all-purpose type 1 N 658 which offers
uniform excellence in all parameters. The RRco. diodes shown here are just a small sampling of the line the complete list will be sent you upon request to Section DN-3

$\begin{aligned} & \text { cose } \\ & \text { No. } \end{aligned}$	Max. Fwe. Voltage Drep © Indicatod DC Currant	Max. Rev. DC Cur. © rest V.		$\begin{gathered} \text { Tast } \\ \text { Voltage } \end{gathered}$	Min. Creato dowa Voltaso	Reverse Recemery
		$25^{\circ} \mathrm{C}$.	$150^{\circ} \mathrm{C}$.			
1N658	1 @ 100 mA	. $05 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	50 V	120V	80\% Ω in 0.3 usect
IN457	1 @ 20 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	60 V	70 V	
1N458	1.@ ${ }^{\text {@ mA }}$. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125 V	150 V	
1N459	1.@ 3 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	200 V	
DR668	1 @ 200 mA	. $025 \mu \mathrm{~A}$	$5 \mu A$	60 V	80 V	
DR669	1.@ 200 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125V	150 V	
DR670	1.@200 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	200V	
			$100^{\circ} \mathrm{C}$.			
1N625	1.5 @ 4 mA	$1 \mu \mathrm{~A}$ $10 \mu \mathrm{~A}$	$50^{-} \mu \mathrm{A}$	10 V 20 V	30 V	$15 \mathrm{~K} \Omega$ in $0.15 \mu \mathrm{sec} t$
IN627	1.5 @ 4 mA	$20 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	75V	100V	400k Ω in $1.0 \mu \mathrm{sect}{ }^{\dagger}$
IN629	1.5 @ 4 mA	$20 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	175V	200 V	400K8 in $1.0 \mu \mathrm{sect}$
DR677	1 @ 100 mA	$0.5 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	20V	30 V	15Ks in $0.15 \mu s e c t$
DR673	1 @ 100 mA	$0.5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	75V	100V	400k Ω in $1.0 \mu \mathrm{sect}$
DR675	1 @ 100 mA	$0.5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	175 V	200 V	$400 \mathrm{~K} \Omega$ in $1.0 \mu \mathrm{sect}$
- Reverse tWhen s \ddagger When s	voltage at which a thing from 5 mA tching from 5 mA	verse curr -40 V . -20 V .	of $100 \mu \mathrm{~A}$	flows.		

Soe us at our booths \#2211-2213-2215-2217 of the I.R.E. Show
semiconductor division
Subsidiary of General I ns trument Corporation
240 Wythe Avenue, Brooklyn II, N. Y. EVergreen B-6000
Germanium \& Silicon Diodes - Dielectric Heating Generators and Presses Selenium Rectifiers - Communications, Radar and Navigation Equipment CIRCLE 46 ON READER-SERVICE CARD

A COMPREHENSIVE
NEW LINE OF $125^{\circ} \mathrm{C}$
HIGH RELIABILITY CHOKES

NYT

small encapsulated

R.F.chokes

100,000 to 1 Inductance range. Here is the widest range available -0.1 uH to 10 MH !
Miniature to subminiature sizes. For example, a unit with an inductance of 100 uH measures only .0122 cubic inches.
$125^{\circ} \mathrm{C}$-the operating temperature range of these units is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Excellent environment features-NYT chokes are epoxy encapsulated for resistance to moisture and immersion. All units are designed to meet MIL-C. 15305A, Grade 1, Class B.
Do your application engineering with a minimum of experimental work. New technical and performance data including description of electrical parameters in Bulletin 125.

Chokes now available from stock
ELECTRONICS, INE.
2978 N. ONTARIO ST., BURBANK, CALIF.

Silicon Diode Application Notes

Arnold Bergson
Raytheon Mfg. Co.
Newton, Mass.

Medium power silicon diodes can be applied where small size, high efficiency, high temperature operation, high reverse resistance and medium forward current are required. Equations and criteria for use in designing silicon diodes into practical circuits are given here, together with problem examples.

THE BASIC equations described in the previous article Electronic Design, March 1, 1957, require separate solution for a trial set or electrical and thermal conditions of limiting diode operation. In many cases repetitive solution will be required for optimum design. For rapid solution, and to permit simple inspection of the results of adjusting independent variables, it is convenient to adapt the main functions to nomograph form.

Electrical Functions

The general equation for forward power dissipation $\left(P_{f d}\right)$ is:

$$
\begin{equation*}
\mathrm{P}_{f d}=I_{a} E_{o}+K_{f}{ }^{2} I_{a}^{2} R_{d} \quad \text { watts } \tag{1}
\end{equation*}
$$

where, $P_{f d}=$ forward power dissipation
$E_{o}=$ approximate diode threshold voltage
$K_{f}=$ theoretical forward current form factor
$R_{d}=$ diode dynamic forward resistance

$$
I_{a}=\text { diode forward average current }
$$

Equation (1) lends itself readily to three scale nomograph presentation using the following scales (a) $K_{f}^{2} R_{d}$, (b) I_{a}, and (c) $P_{1 d}$. E will nor-
mally range from 0.7 to 1.0 volt at 25 C , with a temperature coefficient of $-1 m v /{ }^{\circ} \mathrm{C} . R_{d}$ will vary over many orders of magnitude with diode size and type. Both parameters are normally given in manufacturer's literature.

Thermal Functions

There has been a recent industry wide tendency to simplify the form of limiting thermal curve (Fig. 2, Part I) to the form:

$$
\begin{equation*}
P_{f d a}=\frac{T_{s}-T_{e}}{K_{d} R_{t i}} \text { watts } \tag{6}
\end{equation*}
$$

where $T_{\boldsymbol{d}}=$ maximum (inoperative) storage temperature
(continued on page 60)

Fig. 1. Modified thermal limit curve. The range covered is usually limited to some extreme temperatures, T_{1} and T_{2}.

BIG-POT PERFORMANCE in Miniature-pot size

宛 , MINIATURE POTENTIOMETERSare built, tested, and certified* to such rigid specifications as AIA, RETMA, JAN-R-19, MIL-E-5272A, and other applicable military specifications. This new line of single-turn pots packs Waters
NOVi! A complete single turn pot line traditional performance into tight spots.
trom Waters

BIG-POT PERFORMANCE in Miniature-pot size

 TRIMMER POTENTIOMETERSare built, tested, and certified* to rigid military environmental specifications and are available in many variations. ganged, tapped, with various electrical and mechanical angles, locking shafts, antirotation pins, "O" rings, etc.

NOW! a complere single turn pot line

Write for catalog of the Waters complete single-turn pot line precision, trimmer, low-torque, miniature. I.R.E. Show

MANUFACTURING, inc.

Sperry klystron tests OK after missile explosion and $1 \frac{1}{2}$-mile plunge into sea

Proves accurate to 0.01% despite 100 -g battering

Here is Exhibit A in the case for rugged construction of Sperry klystron oscillator tubes. This klystron was recovered from the ocean floor off Florida where it plunged after the deliberate destruction of a long-range missile in mid-air. (The precision tube is an essential component in the missile's electronic guidance system.)
Sperry engineers estimate the tube withstood an explosive force more than 100 times gravity when the missile was exploded $11 / 2$ miles in the air. Then the tube plummeted down to the ocean. It smashed into the surface at several hun dred miles an hour. Hitting water at
this speed is like hitting solid concrete. Yet the only effect of all this violent punishment was a slight deformation of the klystron's heavy cooling fins. Tested in the lab, the tube proved accurate within 0.01% of its design frequency!
This is undoubtedly the severest test of klystron ruggedness since Sperry developed the first klystrons years ago. But the precision tube proved more than equal to its job-solid evidence that you can count on superior performance from every Sperry klystron. When your design calls for tube ruggedness and dependability, the first step is to write our Electronic Tube Division.

Visit our booths 1416-1422 at 1958 Radio Engineering Show, March 24-27

DIVISION OF SPERRY RAND CORPORATION nooklyn - cleveland. new orleans. los angeles. sanfrancisco. seattle CIRCLE 49 ON READER-SERVICE CARD
$T_{0}=$ case temperature
$\boldsymbol{R}_{t \iota}=$ maximum effective, diode interm termal resistance
$K_{d}=$ a derating factor
$P_{f d a}=$ maximum allowable forward power dissipation
The modified thermal limit curve is plotted in Fig. 1. The range covered by this curve is nor mally limited to some extreme temperatures, T_{1} and T_{2}, where:
when $T_{c} \leqq T_{t}, \quad P_{l d a}=P_{m l} \quad$ (7) (and) when $T_{z}<T_{c} \leqq T_{s}, P_{t d a}$ may be derated to zero, but T_{ε} may equal T_{s} for a given diode.

The choice of the test measurement point is purely arbitrary. Equation (6), covering case temperature measurement, can be generalized to include any reference point from ambient (ground) to junction as follows:

$$
\begin{equation*}
P_{f d a}=\frac{\Delta T_{\mathrm{ar}}}{K_{d} R_{\ell \mathrm{r}}} \quad \text { watts } \tag{8}
\end{equation*}
$$

where $T_{\mathrm{sr}}=$ the temperature difference between the junction and the reference point
$R_{t r}$ is the effective thermal resistance between the junction and the reference point
$K_{d}=$ is a derating factor.
Equation (8) can be conveniently adapted to a three scale nomograph for using the following scales: (a) $\Delta T_{s r}$, (b) $P_{j d a}$, and (c) $K_{d} R_{t r}$.

Combined Electro-fhermal Functions
By equating the actual forward power dissipation ($P_{j d}$, eq. 1) to the maximum allowable forward power dissipation ($P_{\text {sda }}$, eq. 8), a single equation is produced relating the diode electrical operation to its thermal environment:

$$
\begin{equation*}
E_{0} I_{a}+K_{f}^{2} I_{a}^{2} R_{d}=\frac{\Delta T_{a r}}{\bar{K}_{d} R_{t r}}=P_{f d}=P_{f d a} \tag{9}
\end{equation*}
$$

Since the power scales are common, the resulting nomograph will have five scales, of which three are linear, and two exponential. In order to provide maximum legability and accuracy, it is necessary to limit use of each nomograph to a single diode type.
The nomograph shown in Fig. 2 covers a family of silicon diodes having a nominal power dissipation rating of approximately 0.5 w at 150 C case temperature. This family is a large one, covered by many manufacturers, in several types of junctions (bonded, fused, and diffused) in different mechanical packages (coaxial lead, stud). Temperature reference points used by the various manufacturer's range from ambient and case, to junction.

Nomogram Problems

The problems selected for nomogram solution illustrate the range and flexibility of this method.
roblem 1: A bonded silicon diode has a forward mit of $I_{t}=0.3$ ampere at 1.0 v dc . The derated iternal thermal resistance can be found from a rublished curve to be: $K_{d} R_{t r}=120$ degrees C / w fom junction to ambient. Storage temperature is civen as 150 C . From the above data, determine the maximum output current which can be used from a three phase bridge in an ambient temperature of 125 C :
Solution: Assume $E_{0}=0.7 \mathrm{v}$, and calculate $R_{d}=\frac{E_{f}-0.7}{I_{f}}=1 \mathrm{ohm} . K_{f}$ (from the Table, part I) is 1.74 , and $K_{f}{ }^{2} R_{d}$ is $3.03 \Delta T_{\text {er }}$ is $150-$ 125 or 25 degrees. Draw a line on the nomograph connecting 25 degrees on the $\Delta T_{\text {er }}$ scale and $120 \mathrm{C} / \mathrm{w}$ on the $K_{d} R_{t r}$ scale. Extrapolate to the $P_{f d a}$ scale, and read the maximum allowable forward power dissipation as 0.22 watts. Find 3.03 on the $K_{t}{ }^{2} R_{d}$ scale, and draw a line connecting this point with the previously determined point on the $P_{f d a}$ scale. This line passes through the I_{a} scale at an average, per diode current of 0.18 ampere. The total bridge output current will then be triple this value or 0.54 ampere. Problem 2: A fused silicon diode has a forward specification of 0.5 ampere at 1.0 v , dc, for an R_{d} of 0.6 ohm . Given a storage temperature of 175 C , and a $K_{d} R_{t r}$ of $80 \mathrm{C} / \mathrm{w}$ from junction to ambient, determine the maximum ambient temperature at which an output current of 1.6 amperes can be supplied from a single phase center tap supply: Solution: Since each diode will supply half the load current, find point 0.80 on the $I_{a} /$ diode scale, and $K_{t}{ }^{2} R_{d}\left(1.57^{8} \times 0.6=1.47\right)$ on its scale. Connect these points and extrapolate to the $P_{f d a}$ scale, reading 1.48 watts. Connecting this point to $80 \mathrm{C} / \mathrm{w}$ on the $K_{d} D_{\text {tr }}$ scale, and extrapolation to the $\Delta T_{s r}$ scale, read 118 degrees. The ambient temperature (max.) is then $175-118$ or 57 C . Problem 3: A stud mounted, diffused junction, silicon diode has a forward of 2.0 amperes at 1.0 v , dc. $\Delta t_{\text {or }}$ and $K_{d} R_{t r}$ are 175 C , and $10 \mathrm{C} / \mathrm{w}$ (junction to case), respectively. It is required to supply 3.0 amperes to a resistive load through a capacitor input filter. The supply will be a single phase bridge, and diodes will be operated at a maximum case temperature of 150 C . The capacitor will cause a poorer current from factor than that indicated by the Table (1.57). Find the maximum value of K_{f} which can be used:
Solution: From the above data, $\Delta T_{\text {er }}=175$ $1.50=25 \mathrm{C}$. From the nomograph find $P_{f d a}=2.5$ w. Each diode will carry an average current of 1.5 amperes. Therefore, the nomograph gives a ruaximum permissible value of $K_{f}{ }^{9} R_{d}$ as 0.625 . The dynamic resistance, R_{d} is $(1.0-0.7) / 2.0$ (0) 0.15 ohm . Therefore K_{f} is the square root of (: $625 / 0.15$ or 2.02 . Since the resistive load value K_{f} is 1.57 , an increase of about 30 per cent up 1.2 .02 is permissible.

WILLIMANTIC

CONNECTICUT

- molded mica - mica trimmer - dipped paper
- rubular paper
- ceramic
- silvered mica films - ceramic discs Arco Electronics, Inc., 64 While St., Now York 13, N. Y. Exelusive Supplier To Jobbers ond Distributors in the U.S. and Canada CIRCLE 50 ON reader-service card

COMPACT, 3-OUNCE TIME DELAY RELAY with silicone-controlled delay from $1 / 4$ to 120 seconds

Worth a closer look . . . the Heinemann Type A Silic-ONetic Relay. Despite its small overall size, the relay offers many big performance features.
For example, double-pole, double-throw switching . . . at fast snap-action contact speed.
The relay is a load carrier in itself: it may be energized continuously . . . does not require auxiliary lock-in circuits.

And it has a hermetically sealed time element that is forever free from the effects of aging or fatigue. The Type A Relay has prover itself in countless applications; it will give you reliable service over a long, long operational life.
for full details, refor to Butbetin T-5002. A copy will be sent on request.

BRIEF SPECS
Time Delays: from 1/4 to 120 seconds
Overall Dimensions: 2-1/16" x $2^{\prime \prime} \times 1-9 / 16^{\prime \prime}$
Contact Capacity: 3 amps at 120 V AC, 1.5 amps at 240 V AC (non-inductive load), 1 amp at 50 V DC, 0.5 amp at 125 V DC.

$=1$

Designing Components for New Applications

PRESENTED here is a method for accomplishing the design and development of a given component to meet the requirements of a future electronic system. A specific example is given-the design and development of a miniature, en-vironment-free, electrical connector for airborne equipment.

Preliminary Thinking

Once the requirements of a future electronic system are known, it should be determined whether existing components will meet the advanced system requirements. Where new components are needed, it is necessary to list the design and performance requirements necessary to make the component function properly in the advanced electronic system, and bring these requirements to the attention of component manufacturers.

Profotype Development

Two approaches may be pursued in order to obtain the prototype design
and development of a given component based upon the performance requirements of the advanced electronic system. The usual method is to write a design specification and prepare outline drawings, which are then released to the component manufacturers for bid. An alternate approach is to induce direct development by a component manufacturer if there appears to be a wide application for a non-existing product. If a large market is anticipated, it would be financially beneficial and a credit to the manufacturer's reputation to design and develop a component to meet these requirements.

Example

In one case-because of the universal need for miniature electrical connectors -Douglas selected the latter approach and submitted a list of requirements to all known connector manufacturers in June, 1955. All of the connector manufacturers commented favorably on the re-

The prevailing philosophy prior to World War II was to design and build electronic systems from available components and then test them to determine their capabilities. Depending upon their performance, the systems were then applied to the installations for which they were suitable.

With the rapid advance in the state of the art during the past fifteen years, this former philosophy has, of necessity, yielded to that of designing and developing components to meet the requirements of future electronic systems.

The philosophy presented here is based on a paper presented by Ted. A. Thompson of Douglas Aircraft Co., Inc. at the 1957 National Conference on Aeronautical Electronics.
uirements and expressed a desire to deelop a connector for the DC-8. Only ne, however, was willing and in a posi'ion to undertake the development and toling program on their own capital.
Coordinating closely with Douglas engineering, this one company com${ }_{\text {p }}$ leted the development of an acceptable prototype connector in August, 1955. By October of the same year they were tooled on a basic insert arrangement and by November were prepared to submit specimens for test.
Seeing the progress which had been made and being impressed by the Douglas emphasis on dual sources a second company submitted hand made prototype connectors for Douglas evaluation in November, 1955. Many detailed comments on their design were submitted by Douglas, but connectors modified accordingly have not yet been presented.
A third company, working completely independent of Douglas engineering, showed a prototype miniature connector in December, 1955, but stated that much development work remained and did not leave the sample for comment. Samples for the evaluation were not received until April, 1956. Detailed comments were immediately submitted by Douglas and connectors ordered for test. The connectors for test were not received, however, until September, 1956, and then still with reservations.

Tests

When prototype components, which have been designed to meet the performance requirements of the advanced electronic system, are received, testing is necessary to evaluate their operational capabilities and to determine their reliability under various environmental conditions. Tests are usually selected to simulate the worst conditions under which the component is expected to function in service. Tests may also be performed to discover how the component will operate under unrealistically severe circumstances in order to reveal its application limitations.
When test results establish the suitability of a given component for the adanced electronic system, its application 10 other future or presently existing sysems should be considered. Since it was lesigned to meet future performance reuirements, it may contribute favorably , the reliability of other systems.

Big magnesium and aluminum extrusions produced from Dow's 13,200 ton press

A whole new range of king-size dimensions is now available for design engineers. Dow's new 13,200 ton extrusion press at Madison, Illinois, is producing "special" sizes for quick delivery. These projects include work for aircraft and missiles, automotive, building, and highway construction.
Here's what the big press can do in the way of magnesium and aluminum extrusions to meet your special requirements.

Check this list:

1. LARGER EXTRUSIONS. Sizes up to a circumscribing circle of 30"
2. LONGER EXTRUSIONS. Up to 80 feet in length
3. THINNER SECTIONS. Down to $0.125^{\circ \prime}$
4. STEPPED EXTRUSIONS. Solid or hollow
5. COMBINED HOLLOW EXTRUSION-FORGINGS

FOR DESCRIPTIVE LITERATURE on the blg press, contact your nearest Dow soles office, or write The Dow Chemical Company, Mid-
land, Michigan, Dept. MA I4OIM.

CIRCLE 52 ON READER-SERVICE CARD

Synchronization of a Computer

Gerald Smoliar
Manager
\section*{Jacob Keilsohn}
Senior Engineer
Magnetic Computers Dept.
Remington Rand Univac
Division of Sperry Rand Corp.
Philadelphia, Pa.

Fig. 1. Ferractor magnetic cores shown in the packaging stage. Note small size of the cores.

INN ELECTRONIC computing systems, the central computer operates at high speed. The pulses in the central computer circulate essentially at uniform speed. In contrast, the speeds of auxiliary units such as input and output devices are slower and irregular. Their pulses occur at random in respect to the central computer speed.

The slower, irregular speeds of auxiliary units must be synchronized with the higher, uniform speed of the central computer. This especially is important in the case of input devices which transmit the information to the central computer where the problem will be solved.

A shift register is used for synchronization. A register holds information, in the form of numbers, before it is fed into the central computer. A shift register can hold information or keep it moving so the information is released to the central computer at the right time.

This paper describes how a new type of shift register was used to solve the synchronization problem in the Cambridge Computer, built by Remington Rand Univac for the Air Force Cambridge Research Center, Cambridge, Mass. The new register used Ferractor ${ }^{(81}$ magnetic amplifiers developed by Remington Rand Univac. The Cambridge Computer was the first to use the

Ferractor amplifier and its related circuitry.

The Cambridge Computer

Because all normal amplifying functions in the Cambridge Computer are performed with Ferractor cores, the computer is considered a magnetic device. Germanium diodes are used for the logical operations of gating ${ }^{*}$ and buffingł. Magnetic amplifiers perform the functions of pulse shaping and delay. Separate components aren't needed for these functions.

The Cambridge Computer is relatively restricted in input-output function, because it lacks the array of auxiliary equipment found in more diversified computing systems. Despite its specialization, the Cambridge Computer still has many external communication paths.
There are data links for real-time operation, an in-and-out paper-tape punch and reader, and a modified typewriter for input and output. Consideration of the typewriter only will involve all fundamental principles of the operation of the synchronizer.
Data is transferred from the typewriter

- A gate is a device whose output is energized when all inputs are energized.
\dagger A buffer is a device whose output is energized when one or more inputs are energized.
through a shift register. The 10 characters of a computer word (sign digit and space between words not counted) are assembled in the register.

The digits coming from the typewriter occur at random in relation to the central computer speed. The order in which the digits are typed is reversed in the computer. The operator types the most significant digit first while the word is carried in the computer with the least significant digit first.

For example, in the number 357, the operator types the most significant digit 3 first. The computer carries the least significant digit 7 first. This is done so the result of a carry may be recorded after the carry. In this respect, the computer functions like a person adding numbers. When adding digits, a person begins at the right (the least significant) and works to the left (toward the most significant).

During computing, the sign of a word is stored separately. Even though the sign is part of the word-pulse sequence within the computer memory, it presents no special synchronizing problem.

The Magnetic Amplifier

The Ferractor amplifier consists of two windings on a toroid of square hysteresis loop magnetic material. The core is made from a meta

SHIFT REGISTER
Fig. 4. A typical shift register. There is an additional input winding for each amplifier. In addition, there is a second core with two windings for each bit of information.
bobbin which is first wound with a metallic tape and then wound with wire. The finished amplifier is about one-tenth of an inch in diameter (See Fig. 1). The Ferractor cores have proven more reliable, require less power, last longer and are smaller than vacuum tubes.
A pulse applied to the amplifier input will bring the core from the normal flux state of $+B$, to $-B_{r}$ on the opposite point of the hysteresis loop. The core then presents a high impedance to a clock pulse which will return the core to $+B_{r}$ without producing appreciable output. If there is no input pulse, the core stays at $+B_{r}$ for the entire input period. The clock pulse then encounters a low impedance and produces an output pulse.
The device shown in Fig. 2 is an amplifier since the power required to change the polarity of the core is much less than the power which can be sent through the output winding. The core allso reshapes and delays the pulses.
With minor modifications, this circuit is the one most frequently used in the Cambridge Computer. The circuit complements the information. It substitutes pulses for no pulses and vice versa.

The circuit is modified to make a true amplifier by adding a bias winding carrying direct current and phased opposite to the input winding, as
shown in Fig. 3. In this type of amplifier, an input pulse brings the core from $-B_{r}$ to $+B_{r}$, so the clock pulse finds it in the low impedance state. The input pulse thus produces an output. When there is no input pulse, the bias current returns the core to - B_{r}. The succeeding clock pulse produces no output. This is a non-complementing amplifier type.

Recirculating registers may be made by cascading strings of these amplifiers and connecting the output of the string back to the input. However, a true shift register is preferred for the assembly and transfer of asynchronous information. This register is a component which can hold the information in essentially static form or circulate it, either at computer rate or one pulse at a time.

The shift register is more versatile than a static register which holds numbers until they are ready to be used, or a dynamic register where the numbers are circulated constantly.

Shift Register

The shift register is based on the non-complementing amplifier. It has two input circuit differences and one difference in operating timing. Fig. 4 shows the shift register circuitry.
The shift register operates with the same timing as the rest of the computer. But the action
is in three steps instead of two. These steps are: 1 -input to the lower core, 2 -interrogate the lower core, setting or not setting the upper core, and 3 -clock pulse to the upper core.
Information enters the shift register through the lower Ferractor core which is called the blocking core. A pulse applied at the external input makes the blocking core a low impedance. One half cycle later an interrogating pulse in the hold winding tries to send current through both cores. If the blocking core has been brought to low impedance, the hold pulse brings the amplifying or output core to $+B_{r}$. On the third half cycle, the clock pulse produces an output.
When the shift register is used for static information storage, a series of hold pulses causes the information to circulate back and forth between the output and blocking cores. The output of the upper core is connected through a diode to the input of the lower core in Fig. 4. If no shift or hold pulses are applied for one cycle, the register is cleared. This results since the bias resets the output core and the negative excursion of the second clock pulse resets the blocking core.
Shifting is done by reading into an output core from the preceding blocking core, rather than from the one shown directly below the output core in Fig. 4. In this way, a series of shift pulses

12 tips on resistors

Unusually versatile Vitrohm ${ }^{\circledR}$ resistor line simplifies design problems

Did you know that high reliability Vitrohm Resistors can take on more than 11 styles to fit almost every design requirement? All have outstanding Ward Leonard quality that protects your reputation as an equipment designer.
1 FIXED Vitrohm tubulars come in 5 -to-200 watt sizes. 2 AXIOHM, standard in 3, 5, or 10 watts, with axial leads is ideal for compact electronic gear. 3 adjustohms make it easy to get the right voltage, bleeder or bias current.
4 NON-INDUCTIVE Vitrohm tubulars, up to 160 watts in stock sizes. Famous flatted sides and 'Ayrton-Perry' winding keeps down inductance and capacitance. 5 dIscohms, at 24 watts, feature extra compact mounting and 6 PLAQOHMS, sizes to 150 watts, are also non-inductive. 7 STRIPOHMS, from 20 to 75 watts, are another way to save space-easy to stack mount. 8 RIBFLEX resistors (made to order), up to 550 watts, take terrific momentary overloads.
9 ferrule terminal resistors (made to order) feature fuse-clip-type mounting. 10 SCREW BASE resistors (also made to order) permit ready change of resistance values. 11 BRACKET TERMINAL resistors have leads silver-brazed to mounting brackets. Mounting completes electrical circuit. 12 MIL-R-26C Vitrohm Resistors available in all styles -sizes-characteristics and resistance values listed in spec.

Write for 64 -page Catalog 15 today. Ward Leonard Electric Co., 77 South Street, Mount Vernon, N. Y. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)
e. 2

LIVE BETTER...Electrically
WARD LEONARD ELECTRIC CO.
Rerult-Enginered Contrals Since 1892
risistors - Rheostals - relars = Controls - dimeters

CIRCLE 54 ON READER-SERVICE CARD
will move the information through the register at computer rate.
Intercommunication of shift register stages is accomplished by joining the INT OUT to the INT IN terminal of the stage immediately to the right. In these circumstances, information would move from left to right.
Either direction could have been chosen. If both were needed, one more winding on each output core and one more diode at the CR13-CR1 junction would suffice. In operation, both left and right shifts are needed. Since plenty of time is available for these operations the left shift is done by moving the information 10 places to the right in the 11-bit loop.
Information can enter the computer in parallel through all external input terminals, or serially, through any terminal with a series of shifts. It can be read out in either form as well.
The operator register, one of the shift registers, is used for most input-output operations. It consists of four loops of 11 bits each, with each loop containing one of the four bits of a character.

All entries in the register are made at the most significant digit position. Information from input devices is presented to the computer in the form

Fig. 5. Synchronizer logic. Two flip-flops (A and B) are used in a set, partial set, or reset condition.
of five bits (the fifth being a parity bit for checking purposes) and a sprocket.

The sprocket must be shaped to a computer sized pulse and properly timed, because it appears at an arbitrary time and must trigger logical operations in the computer. The sprocket pulse is shaped through an R-C network. It is longer than three computer pulse times, but shorter than two word times or 24 computer pulse times.

This pulse then sets flip-flop A, Fig. 5, and shapes the sprocket to computer pulse-size. To time the pulse is the function of flip-flop B, Fig. 5. At the proper time, the state of flip-flop A is sampled. The flip-flop may be set, partly set, or reset. The result of this sampling is placed in flip-flop B.

If flip-flop A is fully set, flip-flop B will be fully set. If flip-flop A is being set, a partial set will be passed to flip-flop B. The possibility of a partial set in flip-flop A makes flip-flop B necessary. The partial set is allowed to recirculate in flip-flop B for time enough to cause the partial set to either disappear or build up to full size. The result then is sampled. Either a full-sized sprocket or no pulse is obtained.

Fig. 6. A shift register package on a single card.

It no pulse is received, a second sampling of lip-flop A is made. This always results in a full et of flip-flop B, and a full-sized sprocket at the nd of the waiting time. Generation of the procket clears flip-flop A and B, allows the four uformation bits of the input data to be placed II the most significant digit position of the shelf egister, and starts the register shifting to the right 10 places. Since the register is 11 digits long, the information now is in the least significant digit position. This arrangement ensures that the computer will operate on the least significant ligit first. The computer now is ready to accept , nother input character.
This operation can be stopped either by a special fill character or by a counter which keeps track of the number of characters in a word. The information, now in computer sequence, goes out of the register at computer rate by means of a full word of shift pulses. The transfer operation is complete.

Construction

Like most of the computer components, the shift registers are made of standard printedwiring cards. These cards are interconnected by using backboard wiring of the machine. Fig. 6 shows the shift register on a single card which holds four cores and associated circuitry-two bits of shift register storage. The card circuits as they appear in the computer are shown in the photo on the facing page.

Testing

The shift register's versatility makes testing it in the computer a simple operation. In normal sequence of testing, typewriter operation is checked out and then used to generate the characters to fill the shift register. Operation of the register is observed when it is holding information in static form and when it is shifting continnously. A check is made to determine that the characters are correct and that they can be cleared out by dropping the hold and shift lines.

Conclusions

Maintenance experience on these components has been very satisfactory to date. The Ferractor cores perform normal amplifying functions, prove more reliable, require less power, last longer and are smaller than vacuum tubes. This usage provides another example of the excellent reliability of magnetic amplifiers using Ferractor cores.

The new shift register, using Ferractor ampli fiers, is able to effectively synchronize the rela tively high speed of the central computer with the input-output devices.

The work reported here was sponsored by the Air orce Cambridge Research Center under contract AF30 02)-1055.

Quick-Opening Fasteners Selecting Small Fastenings for Metal Closures

* Quotation from "Designing Electronic Equip. mens for Maintainability"; Machine De. sign, July 12. 1956.

Quarter-Turn Fastener
Lion Fasteners open and close with a $1 / 4$ turn, hold sheets tightly under the compression of a rugged spring. Quickly operated and fully retained in the outer panel, they are approved under U. S. Government military specificati)ns. Stud and receptacle float for easy alignment and simplified hole preparation. Flush, oval, wing, knurled, ring, and key head styles available. Sizes - No. 2, No. 5, and High Strength for extra heavy duty.

Cabinet Latch

Just drill a hole, push the fastener stem through, and slide the special push-on
"Use captive fasteners wherever feasible. .. Avoid the use of loose washers and loose nuts... Fasteners on equipment covers should be operable either with no tools or with standard hand tools"*
(Jobn D. Folley, Jr. E James W. Altman, Research Scientists, American Institute for Research)
clip into place. No welds, screws, bolts or rivets: the fastener is permanently installed in seconds
Adjustable to any grip length or panel thickness, the pawl is fixed in place by a single set screw. The fastener's brightly finished knob is set off by a plated washer. Also furnished with screwdriver operated flush head.

Spring Tension Latch
For fastening slide-out drawers and hinged panels the Southco Arrowhead Latch is recommended. It locks or opens with a quarter turn yet occupies less than $1 / 2^{\prime \prime}$ inside space.

Doors are held under spring tensiona push against the arrowhead knob relaxes this tension, allows operation with fingertip ease. Drill a single hole for installation-no fastening to the door is necessary. No striker plate is needed.
Pawl stop is eliminated-arrowhead shows at a glance exact position of pawl.

Adjustable Panel Latch
Small doors and panels can be fastened with greatest speed and lowest cost with the Southco Adjustable Latch.
The entire fastener is quickly installed through two holes punched in the door; no bolts or rivets are needed.
It operates with a quarter turn, requires no striker plate. An extra twist after the nylon pawl is engaged pulls up the door to form a seal and eliminate vibration.
Available with wing, knurled, or Phillips head.

Send for your free copy of Fastener Handbook No. 7, just released. Gives complete engineering data on these and many other special fasteners. Fifty-two pages, in two colors.
Write on your letterhead to Southco Division, South Chester Corporation, 235 Industrial Highway, Lester, Pa.

CIRCLE 55 ON READER-SERVICE CARD

TODAY'S GREATEST VALUE

IN ELECTRONIC COMPUTERS!

ROYAL PRECISION LGP-30
Compare it, feature by feature, with the other computers in its class

Feature	Computer	$\underset{\mathbf{B}}{\text { Computer }}$	$\underset{\mathbf{C}}{\text { Computer }}$	Computer	LGP-30	
Memory Size	220 words for data only	2160 words	1000 or 2000 words	84 words for data only	4096 words for data \& program (either or both)	LARGEST CAPACITY IN ITS CLASS
Max. Speed Add Multiply	$\begin{aligned} & 20 / \mathrm{sec} . \\ & 4 / \mathrm{sec} . \end{aligned}$	Comparable to LGP-30	Comparable to LGP-30	$\begin{aligned} & 3 / \mathrm{sec} . \\ & 1 / \mathrm{sec} . \end{aligned}$	Over 440/sec. Over 50/sec.	SPEED EQUAL TO MANY ROOM-SIZED COMPUTERS
Size	$17 \mathrm{sq} . \mathrm{ft}$.	6.5 sq . ft. plus table for typewriter.	45 sq . ft.	9.2 sq . ft. plus table for typewriter \& control unit.	11 sq . ft.	COMPACT, DESK-SIZED, COMPLETELY MOBILE
Input. Output	Keyboard only tape at extra cost.	Independent tape preparation at extra cost.	Extra cost peripheral equipment required.	Tape and typewriter for numerical inputoutput only. Independent tape preparation at extra cost.	Tape typewriter for alpha-numeric input-output standard equipment.	DELIVERED COMPLETE. NO ADDITIONAL EQUIPMENT NEEDED to prepare data, PROGRAM OR REPORTS
No. of tubes	165	450	2,000	248	113	FEWER COMPONENTS MEAN LESS MAINTENANCE FEWER CHECKOUTS
Voltage	220 V	110 V	220 V	110 V	110 V	PLUGS INTO ANY REGULAR WALL OUTLET
Power	2.5 KW	3.0 KW	17.7 KW	1.65 KW	1.5 KW	NO SPECIAL WIRING OR AIR-CONDITIONING REQUIRED
Ease of programming \& operation	Not alpha-numeric. No internal program storage.	Alpha-numeric at extra cost. 8 part instruction. Requires computer specialist.	Alpha-numeric at extra cost. Requires computer specialist.	Not alpha-numeric. No internal program storage.	Alpha-numeric. Complete internal program storage. Standard typewriter keyboard. Simplest command structure of all.	$\begin{aligned} & \text { EASY } \\ & \text { TO PROGRAM } \\ & \text { ANO OPERATE. } \end{aligned}$
Cost Sale Rental	$\begin{aligned} & \$ 38,000 \\ & \$ 1000 / \mathrm{mo} \end{aligned}$	$\begin{aligned} & \$ 49,500 \\ & \$ 1485 / \mathrm{mo} . \end{aligned}$	$\begin{aligned} & \$ 205,900 \\ & \$ 3750 / \mathrm{mo} \text {. up } \end{aligned}$	$\begin{aligned} & \$ 55,000 \\ & \$ 1150 / \mathrm{mo} \end{aligned}$	$\begin{aligned} & \$ 49,500 \\ & \$ 1100 / \mathrm{mo} . \end{aligned}$	$\begin{aligned} & \text { LOWEST COST EVER } \\ & \text { FOR A } \\ & \text { COMPLETE } \\ & \text { GENERAL PURPOSE } \\ & \text { COMPUTER } \end{aligned}$

Nation-wide sales and service. Trained staff of applications analysts. Library of subroutines available, plus programs for wide variety of applications.

For further information and specifications
on Royal Precision LGP-30, call your nearby

Royal McBee office, or write Royal McBee Corporation, Data Processing Division, Port Chester, N. Y.
ROYAL MCBEE
WORLD'S LARGEST MANUFACTURER OF TYPEWRITERS AND MAKERS OF DATA PROCESSING EQUIPMENT

CIRCLE 56 ON READER-SERVICE CARD

Precision

THE INFINITE resolution properties of a precision carbon film resistive element are used in this pressure transducer to permit the direct coupling of pressure capsule to potentiometer wiper. The elimination of intermediate linkages minimizes sensitivity to vibration, shock, and temperature change, and insures maximum sensitivity, repeatability, and long life.
Excellent frequency response is obtained by the minimization of inertial components and intermediate linkages in the Series 6000 unit manufactured by the Computer Instruments Corp., Hempstead, N.Y. Linearity is insured by the use of a carbon film resistive element developed by the company, and by the elimination of linkages. Accuracy of output is thus determined by the linearity of the pressure capsule. A special manufacturing technique trims the resistance element to compensate for this error. A mechanical milling process applied to the resistive element brings the overall linearity to within 0.2 per cent of full scale. This adjustment in the pressurevoltage relationship also fixes the scale factor of the unit, eliminating individual calibration and temperature correction.
While shown with only one potentiometer element, the unit is also available with dual or multiple elements, with separate functional or linear outputs. A Bourdon Tube pressure unit is used for pressures in excess of 100 psi , so that the units have ranges from $0-5$ psi to $0-5000$ psi. Direct application to control functions is permitted by a maximum fullscale output of 60 v . The transducer has a life in excess of 500,000 cycles and will operate over a temperature range of -55 C to +85 C . Overall length is 3 in .
For more information about this product turn to Reader-Service Card and circle 57.

Pressure Transducer

uses carbon film element

Pressure transducer with cover removed. The pressure capsule (1) and resistance element (4) are both mounled on a common yoke (2). A precious metal wiper (3) welded to the free end of the capsule rides the surface of the resistance element, which is fastened to the yoke arms. Thermal expansion of parts has been kept down to 0.001 per cent per degree C. A guide rod (5) rides freely in a Teflon guide (6) and becomes effective only under severe shock and vibration. A stop bar (7) prevents overload damage.

-Reg. U.S. Pat. Off.
Currently the world's highest force electro-dynamic vibration exciter, the MB Model C250, made by the MB Manufacturing Co., is vital to government research in today's air age... has a frequency range of 2-500 cps., and a total force output of $25,000 \mathrm{lbs}$. It can be adapted to operate in chambers where temperatures range from $-100^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$ and simulated altitudes hit 125,000 feet.
Test specimens of up to 2190 lbs ., subjected to accelerations of 10 g , must be securely held to the unit's moving assembly.
The thread assemblies within the vibrator, and joining test specimens to the unit, are subjected to grueling shock and vibration. Yet, even under these extreme conditions, Heli-Coil Screw-LOCK Inserts (277 of them) function perfectly ... protect threads against stripping . . . hold fasteners securely.
Meeting military specifications for torque and vibration, this new, one-piece stainless steel Screw-LOCK Insert:

1. positively locks screws against loosening under impact and vibration
2. prevents thread wear, stripping, corrosion, galling, seizing
3. eliminates the need for lock-nuts, lock-wiring, and other supplementary locking devices
4. offers high re-usability on repeated disassembly and reassembly. Heli-Coil Screw-LOCK Inserts are available in many sizes, including the new miniature 4-40. For further information, write (94) 4227

HELI-COIL CORPORATION
 A Division of Topp Industries, Inc.

IN CANADA: W. R. WATKINS CO., LTD., 41 Kipling Ave. S., Toronto 18, Ont. CIRCLE 58 ON READER-SERVICE CARD

NEW Compactness... NEW Versatility in ROTARY SWITCH DESIGN

ELECTRICAL SPECIFICATIONS: Operating Voltage-lo 2000 volts; Breakdown Voltage-io 3000 volts; Breaking Current-5 amp @ 125 V. ac.; Carrying Current-15 amp.

Write for complete specifications on the new Shallcross "Miniature Series".
shallcross manufacturing company, 526 Pusey Avenue, Collingdale, Pa.

Magnetic commutation offers very high reliability low cost, high speed and high accuracy. New basic techniques are here presented which embody the use of magnetic null detectors in a digital feedback loop so that the function of commutation and conversion from analog to digital form is combined. The absence of linear amplification minimizes drift.

Low Level

Magnetic Commutators

D. C. Kalbfell
Kalbfell Electronix
San Diego, Calif.

MECHANICAL commutators and diode switching matrices are widely used today for sampling the outputs of a number of transducers, but each has some disadvantages. The mechanical commutator is short lived and unreliable at the higher speeds, while the diode switching matrix requires a good dc preamplifier for each transducer. The magnetic commutator differs fundamentally from these in that the signal circuit is not interrupted directly, and linear amplification is not required. An additional advantage is that the system can be constructed almost entirely from solid state components.

Fig. 1 shows an elementary form of magnetic commutator. Each magnetic amplifier has a dc signal input winding, a carrier winding, and output terminals. The gates allow carrier current to flow into only one magnetic amplifier at a time, effectively interrupting the other circuits. The outputs are mixed in some suitable circuit. The gates are opened sequentially upon command from a ring counter.

Fig. 2 illustrates a common type of magnetic amplifier which might be used in such a commutation system. It is constructed from two toroidal cores. The carrier windings C1 and C2 and the bias windings $B 1$ and $B 2$ are applied to the two cores separately. The cores are stacked, and feedback and input windings applied. If there were no bias current, the first cycle of carrier current would saturate the cores, and thereafter windings $C 1$ and $C 2$ would offer little impedance to the carrier.

However, bias current flowing during the halt cycle when the carrier current is blocked by the diodes will reset the magnetic flux to about point P on the B-H curve of Fig. 3. On the next conducting cycle, carrier current will flow for ap-

Fig. 1. An elementary form of magnetic commutator. Each amplifier has a signal input winding, a carrier winding and output terminals. Gates allow carrier current into only one magnetic amplifier at a time.

Fig. 2. An analog type magnetic amplifier which can be used in commutation systems. The signal winding and feedback windings act oppositely with respect to the carrier flux, making the average currents in the load resistors differ in accordance with the net de input signal.

Fig. 3. When the carrier in Fig. 2 is blocked by the diodes, the bias resets the flux to about point P on the $B-H$ curve.

For saturating Alnico magnets weighing up to 34 lbs. and high flux ceramic magnets of any shape or pole configuration. Operates on condenser discharge principle from regular 115 -volt, 60 -cycle line.
Charging outputs from 100,000 to $\mathbf{2 0 0 , 0 0 0}$ ampereturns through plug-in transformers, up to 3600 wattseconds using wire-wound fixtures. Adapters for multi-pole rotors, rod, bar, ring and various other shapes available. Designed for continuous production use with low power consumption. Price of basic unit is less than $\$ 2100$.

A medium power Magnet Charger capable of developing peak magnetizing force of $\mathbf{4 0 , 0 0 0}$ ampere-turns. Designed for production, research and instrument repair work. The Model 1500 easily saturates the new high coercive materials such as Cobalt Platinum and Barium Ferrite. Portable table model operates on 115 -volt, 60 -cycle line; size $11^{\prime \prime}$ wide $\times 15^{\prime \prime}$ high $\times 20^{\prime \prime}$ deep; weight 125 lbs. Price \$945.

A low cost, condenser discharge unit employing novel, plug-in wire-wound type charging fixtures, the Model 1221 is designed for the user of small magnets. Its $\mathbf{1 0 , 0 0 0}$ ampere-turn output will saturate about $\mathbf{2}^{\prime \prime}$ of Alnico \mathbf{V}. Charging cycle rate is approximately 3 seconds, continuous duty, operates from 115 -volt line. Price $\$ 180$.

Performance of all models is rigidly guaranseed. Prices are nef f.o.b. Boonfon, N.J. and subject to change without notice.

13 years' magnet charging experionce is yours for the caltine-send for fllutroted dala shaets. illustraled dava
Radio Jrequency LABORATORIES, INC. Boonton, New Jersey, U.S.A.

SEE STACKPOLE COLDITE $70+$ AD ON FACING PAGE
CIRCLE 61 ON READER-SERVICE CARD

proximately 90 deg. The exact amount of curr t flow depends upon the total flux resetting tije cores, including the flux due to signal source and feedback windings. The two latter windings act oppositely on the two cores with respect to the carrier flux. Hence, the average currents flowing through the two load resistors will differ in accordance with the net dc input signal to the magnetic amplifier. A capacitor across the output terminals smooths the output voltage. This magnetic amplifier can be commutated by simply interrupting the carrier.

A more accurate system, in which the output tends to be independent of the linearity of the amplifiers, is illustrated in Fig. 4. Here, the magnetic amplifiers function simply as null detectors. In the case of an analog system, the converter might be eliminated. The output is available as the feedback current, or as the voltage drop across a resistor in series with the feedback loop.

The null detecting amplifier must provide a "yes" or "no" answer to the question of whether

Fig. 4. A more accurate commutation system than that of Fig. 1. Here the magnetic amplifiers function as null defectors.

Fig. 5. In this novel magnetic amplifier, when the two identical cores have no dc flux, an interrogation pulse provides zero output. Any dc flux due to input and feedback windings causes an unbalance which provides an output pulse with a polarity dependent on the relative magnitudes of the input and feedback flux.
the feedback current is too great. It may hence be operated as a digital device, considering each cycle of the carrier current to be an interrogation pulse. The corresponding output pulse will be positive or negative depending on the magnitude of the feedback current.
The converter becomes a digital-analog device whose output constitutes the feedback current. The converter register is set up iteratively, by first trying $1 / 2$, then $1 / 4,1 / 8$, and so on. After each trial, the appropriate flip flop is reset or not as determined by the polarity of output pulse. After ten cycles, the feedback current would be within 0.1 per cent of the correct value, and the shift register would move on to the next channel. The digital output is available serially at the converter input, or in parallel from the converter register.

A novel magnetic amplifier, particularly suited to digital operation is shown in Fig. 5. If the two cores are identical and have no dc flux, then an interrogation pulse should provide zero output. Any dc flux due to input and feedback windings will cause an unbalance and an output pulse will be produced whose sign depends upor, the relative magnitudes of the input and feedbank fluxes.
firom a paper presented at the Western Electrinic Show and Convention, San Francisco, Ci'if., August 1957.

A major resistor development for major commercial and military equipment producers

FIXED COMPOSITION

Stackpole Coldite $70+$ Resistors substantially exceed MIL-R-11B and other critical requirements . . . at regular resistor prices. Exclusive Stackpole cold-mold processing assures truly outstanding performance in essential characteristics such as load life and moisture resistance. They're the easiest resistors to solder . . . and you can get them either in reels or Strip-packs for cost-saving automatic assembly. Prompt deliveries on small quantities from leading electronic distributors too!

Eloctronle Components Division
STACKPOLE CARBON COMPANY, St. Marys, Pa.

. . . In all standard values and tolerances

BUYERS are delighted...

 DESIGNERS are inspired... T凹FF=T놀Fiberglass-Epoxy Laminated Tubing

Picture of an ecunomy-minded P.A. in his moment of glory! Just placed a production order for Lamtex TUFF. TUBE and is counting the money he's saved. He used to buy NEMA grade G5 glass-melamine tubing - then he heard about TUFF-TUBE's new low price that's the talk of the industry.

PURCHASE PRICE COMPARISON
(3/16 ID x 1/32 Wall)
Glass-melamine 6500 ${ }^{5} 66^{30}$ TUFF-TUBE per 100 ft .

Picture of a real smart designer who has just checked the specs on Lamtex has just checked the specs on Lamtex
TUFF-TUBE. He used to think that NEMA grade G5 glass-melamine tub-
ing was good enough. Now he's conNEMA grade $G 5$ glass-melamine tub-
ing was good enough. Now he's convinced that TUFF-TUBE is more than just "good enough"-it's ideal. Below are a few reasons why.

	Lamtor	$\begin{aligned} & \text { Typical } \\ & \text { Glass-melamine } \end{aligned}$
IUSUUATION RESISTINCE megohm	100,000	75
DIELECTRIC STREMGTH volts per mil, short time	500	225
WATER ABSORPTIOM \%, 24 hr . immersion	. 20	3.9
AXIAL COMPRESSIVE STRENGTH PSi	20.000	13,000

SPECIFICATIONS COMPARISON

(

Electronic design engineers are using TUFF-TUBE for waveguides, coil forms, spacers, component jackets, antenna housings, brush holders, tuning coils, motor insulation, commutator and printed circuit forms, and many other applications that require any or all of these characteristics:
IMSULATION RESISTANCE MIGH TEMPERATURES DIELECTRIC STRENGTH LIGHT WEIGHT

THIN WALLS, FROM .008" SMALL DIAMETERS, FROM .062" DIMENSIONAL STABILITY
available in almost any cross-section shape
Writu for complote info - dosign features, toch data, application notos.

Mechanical sorter in operation. Cores are fed into the tube at the top and delivered to the three cups in front-the acceptable cores in the right cup, the intermediate cores in center cup, and reject cores in the left cup.

Automatic Classifier

Speeds Selection

of
Magnetic
Memory

AUTOMATIC checking of "squareness ratio" and switching time of magnetic memory cores can be performed with the instrument shown. Quality decisions are made by an electronic circuit which evaluates both the switching rate and total flux change produced by a switching current of controlled rise time and duration. Unique electronic circuitry is employed for producing the controlled switching pulse and evaluating the resultant voltage generated in a single-turn secondary winding. Mechanical selector gates are automatically energized in accordance with pre-set quality limits to segregate the cores into one of five grades. The instrument is manufactured by Rixon Electronics, Inc., 2414 Reedie Drive, Silver Springs, Md.

Operation

Core handling and sorting is automatically accomplished by a mechanical system with a single input chute and three to five ontput chutes. This unit automatically places the ungraded core in a sequential carrier, passes the core through the electronic evaluation system where a mechanical stop is positioned to represent classification, and carries the core to the output chute appropriate for its class. It handles approximately 1000 cores an hour.

Electronic Circuitry

The electronic circuitry has four major divi-sions-sampling pulse generator, core sampling circuit, evaluation circuit, and command circuits. Evaluation of the core consists of measuring thi
pak voltage and total energy induced in a circuit linked by the resultant core flux. The sampling circuit is designed to balance out any voltage induced directly by the driving circuit and divelop voltages proportional only to the rate of clange of flux in the core under test.

Eight successive and identical driving pulses are applied to the core under test by means of the Sampling Pulse Generator. Evaluation as performed by the Evaluation Circuit, is based on two measurements-the peak amplitude of the voltage pulse to determine the maximum rate of clange to flux, and the time-voltage integral to determine the total flux change.

The Command Circuit accepts the quality information from the evaluation circuit and delivers current pulses to the appropriate relay within the mechanical unit to deliver the core to the proper output chute.
For additional information on this product, turn to the Reader-Service Card and circle 64.

Hew the various circuits are inter-related in the Automatic Memory Core Classifier.

ELECTRONIC DESIGN • March 5, 1958^{*}

GIANNINI AC OUTPUT ACCELEROMETER

Wide Dynamic Range

Extremely Low Threshold
Low Null

ACCURATE, CONSISTENTLY RELIABLE AC out put, proportional to linear acceleration, is provided by this new Gian. nini accelerometer. Available in ranges from $\pm 1 \mathrm{~g}$ to $\pm 20 \mathrm{~g}$, the instrument has a full scale output of 6 volts which may be fed directly into a relatively low impedance with little or no phase shift.
NULL VOLTAGE IS 0.015 VOLTS, of which at least 90% is harmonic, assuring a wide dynamic range for the instrument. With a basic threshold sensitivity as low as $0.0001 \mathrm{~g} / \mathrm{g}$, input accelerations on the order of 0.0017 g's will provide a 10 millivolt change in output.
NO COULOMB FRICTION IS EXHIBITED in this design, bearings are eliminated by suspending the mass between
two disc springs. Acceleration in puts move the magnetically damped mass, causing a proportionate change in the output voltage of a differential transformer. Cross-talk effect is minimum $10.003 \mathrm{~g} / \mathrm{g}$ at 10 g cross acceleration on a $1 g$ instru ment) ; repeatability and hysteresis are below thresholds of measuring equipment.
IDEAL SECOND ORDER SYSTEM RESPONSE is achieved in the Model 24614 by mag. netic eddy-current damping.The her metically sealed instrument is oilfilled for stability of output under vibration. Specially designed and constructed for use in critical airborne control, stabilization, and flight test applications, the instrument is readily adapted to telemetering.

SUPERMENDUR tape wound cores ...A Real Breakthrough in Miniaturization

The successful development of tape wound cores of Supermendur represents a giant step in the field of circuit miniaturization and simplification. The unique characteristics of this new rectangular-loop core material in the range of induction from 16 to 22 kilogausses permit significant weight and size reduction of toroidal transformers and magnetic amplifiers.
Supermendur, an oriented cobalt-iron-vanadium alloy, combines the high saturation flux density of the cobalt-iron alloys with the desired hysteresis loop rectangularity of the oriented 50% nickel-irons.
Coercive forces substantially lower than those of previously available cobalt-iron alloys are obtained. The lower core losses and excitation properties of Supermendur show a decided improvement in high density characteristics compared with oriented silicon steel, as illustrated by the curves
partially shown above. Complete curves are available in a new' Supermendur Bulletin TC-113, available on request. Specific advantages of Supermendur cores in toroidal transformers are: high operating induction, low core loss, low exciting current and high permeability at high induction. In magnetic amplifiers or saturable reactors, they include: rectangular hysteresis loop, high saturation induction and moderate excitation at high induction. Advantages in all uses are: thin tape, small size and low weight.
Supermendur is an ideal material for high temperature core components, because of its high Curie temperature.

- Supermendur is manufactured by Arnold under license arrangement with the Western Electric Company. We'll be glad to send you additional information or furnish you engineering assistance on any of your tape core applications if you'll just drop us a line.
wsw 7026

Visit us at the IRE SHOW NEW YORK

March 24 through 27
BOOTH 2201-2205

The Arnold Engineering Company

Main Office \& Plant: Marengo, Illinois

Repath Paelfic Division Plants 641 East blat Stroot, Les Angoles, Calif.
Distric! Sales Offices
Boston: 49 Waltham St., Lexington Los Angeles: 3450 Wilshire Bivd. Now Yort: 350 Fifth Avo. Wazhingion, D.C.: 1001-15th SI., N.W

Shield Insert Keeps Tubes Cool

E ULL CONTACT between tube and shield, and therefore better heat dissipation, is made possible by the triangular configuration of this insert. The insert is made of black cadmiumplated beryllium copper, measuring 0.0015 in . thick. Besides providing heat-dissipating qualities, the insert's succession of oppositely oriented triangles acts as a cushion for tubes under environmental stress.
The Full-Contact inserts, made by Atlas E-E Corp. of Woburn, Mass. represents the end result of a train of thought originating at the Navy Electronics Laboratory. In October, 1956 the NEL issued a supplement to their Reliability Design handbook describing a corrugated insert which had been designed at the laboratory for use in TS Shields. This liner, although of a square-wave configuration contacting only about one-half of the tube surface, served to reduce bulb temperatures by 50 C or more. Reports were received of spectacular results in prolonging tube life through its use. The present insert, by increasing the contact area to between 95 and 98 per cent, provides even better results.

The insert however lowers only one of the three thermal barriers existing in a tube and shield assembly. The remaining two barriers exist between shield and shield base, and between shield base and chassis. Work had also been done in these areas by the Navy, and re-

Fig. 1. The one piece shield assembly, showing the Full-Contact insert in place. The surfaces of the insert plus the one-piece construction of the shield lower the usual barriers to heat conduction.

Fig. 2. Bottom curve approximates the cooling performance of the insert in a one-piece shield, using a type 5687 tube.
cently Atlas E-E Corp. has developed the onepiece assembly as shown in Fig. 1. The comparative performance of the different types of assemblies is shown in the graph, Fig. 2. As compared to a bare tube (type 5687), the NEL corrugated insert provides a substantial improvement. The one-piece shield and base assembly, along with the Full-Contact insert, afford even cooler operation, in fact in many cases it is below the curve as shown.

The Full-Contact inserts are available in widths to 1-1/2 in. either in strips or cut to fit a particular shield. The one-piece shield assembly is furnished with double-head screws which, when installed in place of the usual tube base screws, allow the unit to be twist-locked in place.
For more information on the insert and onepiece shield, turn to the Reader-Service Card and circle 69, or stop by at Booth 4235 at the IRE Show.

Ficrtroc's. advanced engineering departments offer tomorrow's microwave designs ... today!

50% size reduction
48% input power reduction
40\% weight reduction
while maintaining equal performance.
(2) Ferrite Licensee of Hughos Aircraft

Airtron, Inc., with one of the most advanced engineering departments and manufacturing facilities in the microwave field, has recently designed, under developmental contract, a new high-performance mixer-ferrite duplexer for the new transmitter-receiver unit of the Bendix Radio RDR-1D Airborne Weather Radar System.
The difficult assignment of designing and developing this assembly similar in design to the previous one developed by Airtron was undertaken at the extensive engineering facilities of Airtron, Inc., in Linden, New Jersey. The highly skilled engineering staffs of all of Airtron's divisions functioned as a team in developing this new ferrite rotational duplexer and low noise figure mixer assembly. Through the combined efforts of its advanced engineering teams, working closely with the skilled technical staffs of its manufacturing facilities both here and in Cambridge, Mass., a new mixer-ferrite duplexer was designed, developed and perfected which gave improved performance with a considerable reduction in size and weight that met the stringent requirements set forth.
Production follows development and Airtron's extensive manufacturing facilities are fully equipped with the latest in production facilities, from compounding special ferrite materials to precision casting and dip-brazing final assemblies to meet and satisfy the needs of industry. It was Airtron, Inc. who pioneered in the development of one transmission line to carry both " C " and " X " band frequencies . . . the double-ridged waveguide, ARA-136 and produced it in production quantities.
This is just one example of the confidence industry has placed in the creative abilitiy of Airtron's exceptional engineering staff. Couple this with one of the most extensive manu facturing facilities in the microwave field and you know why Bendix Radio and other leading manufacturers and users of weather radar systems and microwave components come to Airtron, Inc., for prototype design - specify Airtron components for their microwave requirements ... and Look To Airtron Today For Their Microwave Designs Of Tomorrow.

SEE US AT BOOTH \#3318 IRE SHOW

AIRTRON. CAMBRIDGE (FERRITE)DIVISION CAMBRIDGE, MASS
AIRTRON. CAMBRIDGM, INC.

CIRCLE 70 ON READER-SERVICE CARD

Wherever you require high power, consider

DELCO HIGH POWER TRANSISTORS

Thousands of Delco high power germanium transistors are produced daily as engineers find new applications for them in switching, regulation, or power supplies-in almost any circuit that requires high power-Delco transistors are adding new meaning to compactness, long life and reliability
All Delco transistors are 13-ampere types and, as a family, they offer a collector voltage range from 40 to 100 volts. Each is characterized by uniformly low saturation resistance and
high gain at high current levels. Normalizing insures their fine performance and uniformity regardless of age. Also important-all Delco transistors are in volume production and readily available at moderate cost.

For complete data contact us at Kokomo, Indiana or at one of our conveniently located offices in Newark, New Jersey or Santa Monica, California. Engineering and application assistance is yours for the asking.

DELCO RADIO DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA

BOOTH 1619 AT THE I.R.E. SHOW CIRCLE 7 II ON READER-SERVICE CARD

Do It Yourself

Printed

Circuit

Assemblies

PRINTED circuit board assemblies can now be put together quickly with off-the-shelf stock parts. The parts include a channel framework, strips of appropriately cut plastic for the bodies of receptacles, contacts, and printed circuit board guide rails.

Gorn Electric Co., Inc., of Stamford, Conn., conceived the idea of these structural parts and connectors to eliminate the delays in ordering special connectors and hardware.
The receptacles, made of nylon, polystyrene, or diallyl phthalate are quickly and easily assembled. The contacts are slipped into notches on the edge of plastic strips, and their crimped ends are held in grooves by outside strips of plastic. The strips are available in long lengths which may be cut to size.

The receptacle assembly can be held together with screws and nuts, as shown in the photograph, or they can be cemented together with

The parts on the left can be quickly assembled to make the complete printed wiring receptacle.
special cement which is provided.
A large variety of contact types is available. The contacts may be made of phosphor bronze, spring temper brass, or beryllium copper; and may be terminated in solder eyes, turrets, taper tabs, wire wrap forms, or dip solder lugs. Two facing contacts may be joined or kept separate. The resistance at the spring action contacts is no greater than five milliohms.
The channels supplied for the framework can be cut and spaced to suit individual requirements. The guide rails are available to take printed circuit boards from $1 / 16$ to $1 / 4$ in. thick.
Receptacles are secured to the channels with cotter pins, allowing just enough play to ease the insertion of the printed circuit boards when there isn't perfect alignment.

For more information and specifications on a prototype kit for experimental use, turn to the Reader-Service Card and circle 72.

MODEL 371 FIXED COAXIAL TERMINATION
This Narda coaxial termination is the first and only to cover
the entire frequency range from S to x band. Same range and the entire frequency ran
element VSWR as above.
W Connectur, mall or fumio $\$ 55 \mathrm{C}$ Connector, mato or femalo $\$ 58$
MODEL 372 SLIDING COAXIAL TERMINATIONS This equipment, avallable only from Narda, provides the
most convenient means for evaluating the residual VSWR of most convenient means for evaluating the residual VSWR of
coaxial slotted IInes. VSWR of the element is 1.05 or less; covers range from 2000 to $12,400 \mathrm{mc}$.

HIGH DIRECTIVITY COUPLERS
The 40 db high Power Coupler is another exclusive Narda are in the narrow wall, it may be used at full roited poower

 VSWR termination and standard coves flinne on secondary.
All bands covering irequencies from 2600 to $18,000 \mathrm{mc}$.
STANDARD REFLECTIONS
Narda offers five values of reflections for each of six different waveguide sizes the most complete cholce we
know of! Provides callbrated reflections or VSWR'\& for ws In standardizing reflectometers or calibrating slotted use impedance meters.

Reflection Coefficient	0.00	0.05	0.10	0.15	0.20
Accuracy	0.002	0.0025	0.0035	0.0045	0.007
VSR Equivalent	1.00	1.105	1.222	1.353	1.50

Models for 2.60 to 18.0 kmc , from $\$ 125$ to $\$ 300$

NEW PRODUCTS

PREVIEW OF THE 1958 IRE SHOW . . .

COMPONENT TESTER

Punched Cards allow simplified programming for the incoming inspection of transformers, relays, resistors, transistors, diodes, capacitors, and similar items. The component tester is able to make a complete series of tests according to values indicated by a punched card, thus enabling it to make complex tests and yet permitting instant change-over to the next type of component.

California Technical Industries, Division of Textron, Inc., Dept. ED, 1444 Old County Rd., Belmont, Calif.

IRE Booth No. 1111, 1112
CIRCLE 74 ON READER-SERVICE CARD

DC-AC CHOPPERS

Twin-Contacts in these choppers serve to increase their over-all reliability. The units have two independently adjustable, parallel connected contacts, making a total of four for spdt and eight for dpdt. Case size is $1-1 / 4 \times 1 \times 2-11 / 16 \mathrm{in}$. Electrical noise and thermal emf's are nearly eliminated through the use of a Mu-metal case, internal shielding, and a noval plug-in low loss base with gold plated pins. Eleven different models are available for use either on $50,60,94$ or 120 cps .

Stevens-Arnold, Inc., Dept. ED, 22 Elkins St., South Boston, Mass.
IRE Booth No. 2937
CIRCLE 75 ON READER-SERVICE CARD

SILICON CONTROLLED RECTIFIER

Control of the Volume of Power fed into a load is the featured characteristic of this semiconductor device. Six models of the silicon rectifier will be available in sample form at the show. These devices are all rated at an average forward current of 5 amp at 125 C stud temperature and variously at $25,40,75,100,150$ and 200 pivw. All models have a typical gate current to fire of 10 ma at 25 C and a typical minimum holding current of 10 ma .

General Electric Co., Semiconductor Products Dept., Dept. ED, Syracuse, N.Y.

IRE Booth No. 2906
CIRCLE 76 ON READER-SERVICE CARD

See us at our booth (4101-02) for the latest information on products announced at the show.

Electronic Design, together with Electronic Weex-Electronic Daily, will maintain a running coverage of products announced just prior to or during the IRE show. Information and photographs of these items will be displayed at our booth.
In this issue, you will find a preview of the majority of products to be exhibited. In collecting this information, we have taken note of a few components, described more fully on the following pages, which you may find of interest:

In the semiconductor field, there have been more significant developments in devices related to the transistor than in refinement of the conventional transistor itself. Described on the opposite page, for instance, is a heavy duty silicon rectifier which is controlled by a minute voltage. Zener diodes will be displayed in an interesting fashion by International Rectifier Corp. An X-Y graph of each diode will be plotted on the spot; a look at one of these shows a very sharp breakdown curve. Thermistors are being supplied in accurately matched pairs for gas analysis by Fenwal Electronics. Other devices of interest include Transitron's silicon transistors which, with a R_{cg} of 1.5 ohm , permit 80 w ratings.

Capacitors being exhibited include a British electrolytic type with an interesting end seal; the Daly Ltd. electrolytic employs a compressed plastic plug to provide hermetic sealing. Pyramid Engineering will display a low-leakage series of electrolytics. Vitramon's standard line of thin design axial radial capacitors will be expanded by the addition of a few new types.

Some of the more rugged relays exhibited include a 200 C unit, manufactured by Union Switch and Signal, that will withstand 55 g shock, 25 g vibration, and have a contact bounce of less than $250 \mu \mathrm{sec}$. An impulse latching relay, utilizing only one coil instead of the usual two, will be exhibited by Comar Electric. Other electromechanical devices of interest include a chopper from Airpax Products exhibiting very low noise over a 40 kc bandwidth.
> forst in Deffommance Reliability and Quality

Transistoonizo

the most complete line of POWER SUPPLIES

V.R.P.S.*

- REGULATION (for line or load) 0.03% or 0.003 Volts (whichever is greater)
- RIPPLE $1 \mathrm{mv} . \mathrm{rms}$.
- RECOVERY TIME 50 microseconds
- STABILITY (for 8 hours) 0.03% or 0.003 Volts (whichever is greater)
- Tubeless.
- 0.005% resolution with 10 turn voltage control.
- Continuously variably output voltage without switching.
- External overload and short circuit protection included.
- Either positive or negative can be grounded.
- Units can be series connected. Suitable for square wave pulsed loading.
- Power requirements: $105 \cdot 125$ volts, $50-65$ cycle. 400 cycle units available - Terminations on front and rear of unit. High efficiency. Low heat dissipation. Compact, light weight. Color: grey hammer tone. Suitable for bench or rack use - Voltmeter and ammeter provided.

KEPCO OFFERS MORE THAN 120 STANDARD VOLTAGE REGULATED POWER SUPPLIES COVERING A WIDE RANGE OF MAGNETIC, TRANSISTOR AND TUBE TYPES. MOST MODELS AVAILABLE FROM STOCK. SEND FOR BROCHURE B-581

NEW PRODUCTS
 at the IRE Show

Overcoming the limitations of previously available types, these Transpac power supplies may be completely short circuited without damage to the semiconductors or other components. The units are available in 150 and 300 v dc ratings, $0-100 \mathrm{ma}$. Input is $105-125 \mathrm{v}$ ac, 60 or 400 cps . Regulation is better than 0.1 per cent. Size of the 150 v model is $3-1 / 16 \times 3-9 / 16 \times$ 4-7/8 in.

Electronic Research Associates. Inc., Dept. ED, 67 Factory Place, Cedar Grove, N.J.
IRE Booth No. 2705
CIRCLE 79 ON READER-SERVICE CARD

Cooling Motor

Changes speed according to altitude

The E2123-200 is a high-speed, 3 -phase, 400 cps motor. It automatically changes speed with varying altitudes and air densities to provide constant cooling efficiency from sea level (high density) to $70,000 \mathrm{ft}$. Used in conjunction with a 4 -in. impeller the motor delivers 145 cfm at $\mathrm{O}^{\prime \prime}$ SP at sea level and < CIRCLE 78 ON READER-SERVICE CARD
changes speed to deliver 440 cfm at $\mathrm{O}^{\prime \prime}$ SP at $70,000 \mathrm{ft}$. This motor is rated at a minimum life of 1000 hrs at a 125 C ambient. This 1.4 lb motor meets the requirements of MIL-M-7969A, MIL-E-5272A, Air Force spec \#32590 and MIL-P721B. This motor type can also be produced in 1-phase, 400 cps or variable (320 to 1000 cps.)
Air-Marine Motors, Inc., Dept. ED, Amityville, N.Y.
IRE Booth No 2315
CIRCLE 81 ON READER-SERVICE CARD

A line of miniature glass Zener diodes has been designed for clipping, limiting, regulating, and similar applications. They are made with gold alloyed ohmic contacts in order to withstand high operating temperatures.
Low voltage types GZ1 through GZ6 cover the Zener voltage range from 2 v through 8 v in approximately ± 10 per cent stops. Special selections from types GZ1 through GZ6 and available with tolerances of ± 5 per cent. Units with Zener voltages from 8 v through 51 v are available with similar tolerances. 'These diodes are designed to function at an extended operating and storage temperature range of from -65 to +200 C . They are rated at 250 mw at 25 C and derated at 1 mw per deg C above 25 C.
Hoffman Electronics Corp., Semionductor Div., Dept. ED, 930 Pit-
ler Ave., Evanston, Ill.
RE Booth No. 3830
CIRCLE 82 ON READER-SERVICE CARD
CIRCLE 83 ON READER-SERVICE CARD \geqslant

Flush antennas for supersonic aircraft use insulators of TEELON to beat shock...cold...heat

IMSULATORS Of TFE.fluorocarbon resins with. stand severest climatic and flight conditions. High dielectric strength, moisture repellence, keep 1 KW of RF power isolated even in rare-
fied and humid air. (Antenna by Dorne \& Margolin, Inc., Westbury, N. Y.: parts machined from TEFLON TFE-fluorocarbon resins by Tri-Point Plastics, Inc., Albertson, L. I., N. Y.)

Insulation of TEFLON ${ }^{\text {® }}$ resin permits soldering in tightly wired equipment

Nineteen relays are incorporated in this $6 \times 6 \times 5$-inch relay unit that outperforms a previous unit nine times its size. Wire insulation and sleeving of TFE-fluorocarbon resins are used because they withstand the heat of soldering irons during the

WIRE INSULATION and sleeving of TEFLON TFE-fluorocarbon resins permit tight wiring in this miniaturized relay unit for the supersonic B.58. (Unit by Potter \& Brumfield, Inc., Princeton. Ind.; wire and sleeving by Warren Wire Co., Pownal, Vt.)

final assembly where the working area is very limited. TFE-fluorocarbon resins are rated for continuous use at $260^{\circ} \mathrm{C}$. The heat resistance and high dielectric strength of these materials permit miniaturization of electronic components. Sensitivity of high-frequency equipment is maintained by the low attenuation factor of insulation made of Du Pont Teflon resins.

TFE-fluorocarbon resins are among the few insulators that remain effective at microwave frequencies under severe conditions of mechanical and climatic shock. This is proven by their use as insulators in flush antennas for supersonic and nearsonic aircraft such as the Boeing 707.

To keep weight down, the parts are used as both insulators and structural members. They are machined to tolerances of one mil. TFE resins have practically zero moisture absorption. Thus, their almost ideal electrical characteristics are not altered by humidity. Sensitivity of high-frequency equipment is maintained by their low attenuation factor. Dielectric constant and power factor of TFE-fluorocarbon resins are extremely low, and remain virtually unchanged through the high frequency and temperature ranges. In tests, flush antennas equipped with insulators of Teflon resins withstand continued immersion, minus $60^{\circ} \mathrm{F}$. to $250^{\circ} \mathrm{F}$. cycling, and 50 to 1000 cps vibration at 10 g acceleration.
Reliability is insured since the excellent electrical characteristics of TFE resins do not change with time, even at elevated temperatures. To find out how the properties of these resins can help you solve tough design problems, write to E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Dept., Rm. 18-3-5, Du Pont Bldg., Wilmington 98, Del.
In Canada: Du Pont Company of Canada (1956) Limited, P. O. Box 660. Montreal, Quebec.

VISIT THE DU PONT EXHIBIT

 BOOTH 4410-4412
at the

1958 I. R. E. SHOW
The Coliseum
New York City
March 24 through 27

TEFLON

is a registered frademark . . .
TEFLON is Du Pont's registered trademark for its fluorocarbon resins, including the TFE (tetrafluoroethylene) resins discussed herein.

Phase Meter
Direct measure regardless of peak values

The 410 panel mounted phase meter is suitable for measuring phase angle between two periodic potentials of any shape, sinusoidal or nonsinusoidal, regardless of the relations between the peak values. It requires no adjustment, including zeroing, for obtaining a phase reading. The instrument consists of two clipping circuits, one for each channel, a rectifier and a panel meter. Accuracy is ± 2.5 per cent of full scale on all ranges for input voltages of $110 \pm 10 \mathrm{v}$ and ± 3.5 per cent on all ranges for input voltages of 110 $\pm 20 \mathrm{v}$. The operating frequency is 20 to 1000 cps, with no effect on accuracy. The impedance is 5500 ohms per phase on standard model.

Advance Electronics Lab., Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N.J.
IRE Booth No. 3606
CIRCLE 84 ON READER-SERVICE CARD

Decade Counter
Resets in one microsecond

Designed as a companion unit to the decade counters types 101 and 102 whose counting rate is 10 kc and 100 kc respectively, this 1 mc Nixie readout unit resets to zero in less than $1 \mu \mathrm{sec}$. All outputs are available for print-out or other applications. The power requirements are 300 $\mathrm{v}-30 \mathrm{ma} \mathrm{dc}$, and $6.3 \mathrm{v}-0.9 \mathrm{amp} \mathrm{ac}$.

Burroughs Corp., Electronic Tube Div., Dept. ED, P.O. Box 1226, N. Plainfield, N.J.
IRE Booth No. 1718, 1724

AMIP-lok

The new concept in

AMP.lok eliminates the necessity for supplementary mounting devices in through panel multiple connector applications.

We will feature the AMP Automated Shielded Wire Ferrule of the IRE Show. Visil our Booth \#2427-29.

multiple
 connector design

. . . IT'S SELF-ANCHORING

AMP-lok obsoletes all it replaces because of the following design features:

- contacts are identical . . . self-cleaning . . . recessed for safety
- finger grip engagement and disengagement
- polarized to eliminate circuit error
- wide panel thickness accommodation - one simple mount. ing hole required
- color-coding available

AMP-lok can be used as a safe, free-hanging multiple connector, also.

Additional liferafure and samples avallable on request.

AMP INCORPORATED OENERAL OFPICES:
 3639 Elsenhower Blvd. Harrisburg. Pa.

 Wholly Owned Subsidiaries: Aircraft-Marine Products of Canada, Ltd., Toronto Canada - Aircraft-Marine Products (Great Britain) Ltd., London, England Societe AMP de France, Le Pre St. Gervais, Seine, France - AMP - Holland istributorlogenbosch, Holland

Servo Cam Assembly
Adjustable limits for switching purposes

For use in servo mechanisms where it is desired to actuate switches and similar devices at predetermined angular limits, the T-159 cam assembly can be adjusted through 180 deg . A bal anced clamp secures the assembly to the shaft as well as locking the cams for the desired setting. Maximum diameter is 1-1/8 in. and hubs are available for $1 / 8,3 / 16$, and $1 / 4 \mathrm{in}$. shafts.

Sterling Precision Corp., Dept. ED, 54-17 Lawrence St., Flushing 54, N.Y. IRE Booth No. 1621

CIRCLE 87 ON READER-SERVICE CARD

Silicon Rectifiers
Ratings up to 16,000 piv

Designed for forced-air or liquid cooling, these rectifiers utilize metallized ceramic housings with ferrule-type terminals for insertion into standard 30 -amp fuse clips. Available in peak inverse voltage ratings of from 1500 to $16,000 \mathrm{v}$ at rectified dc output currents ranging from 210 to 360 ma . For short durations, load current several times the rated values can be withstood.

Primarily designed for airborne power supplies, these units can also be used for dc over-potential testing damping out oscillation in electric welding circuits, pulsing of magnatrons, or as power supplies in electrostatic precipitators due to their ability to withstand surge currents.
International Rectifier Corp., Dept. ED, 1521
E. Grand Ave., El Segundo, Calif.

IRE Booth No. 3915, 3917
CIRCLE 88 ON READER-SERVICE CARD

NEW PRODUCTS
at the IRE Show

Delay Line
Delays of 5 to $100 \mu \mathrm{sec}$

This delay box offers standard impedances of 50,73 , or 93 ohms and delays of $5,15,10,25,50$, and 100 musec. A jumper for connecting and two delays in series is provided, as well as two adaptors from BNC to uhf or type N connectors.
Electrical \& Physical Instrument Corp., Engineering Div., Dept. ED, 42-19 27th St., Long Island City 1, N.Y.

IRE Booth No. 3240
circle e9 on reader-service card
SSB Generator For X-band use

The 3036 side band generator covers the frequency range of 8.5 to 9.6 kmc . A 20 db suppression of the undesired side band frequency and 15 db suppression of the carrier has been obtained. No tuning of the microwave assembly needed.

Microwave Development Labs., Inc., Dept. ED, 92 Broad St., Babson Park, Mass.
IRE Booth No. 3415
CIRCLE 90 ON READER-SERVICE CARD
CIRCLE 91 ON READER-SERVICE CARD $>$

RELIABLE PREMIUM-QUALITY FRAME GRID TUBES

 and Exacting industrial applications.

by March, 1958!"

FOR MILITARY SYSTEMS REQUIREMENTS

II

actual size or
and
anio usto in
ramerio useo in esiz
The frame grid is the closest approach to the ideal "physicist's grid" -the grid with only electrical characteristics but no physical dimensions. It results in

- higher transconductance
- tighter Gmand plate cur
rent tolerance
- low transit time
lower microphonics
- rugged construction

Transistors

Computer, r-f and audio types

Part of the component line available from the manufacturer are 13 germanium and fusion alloy transistors in a case measuring 0.002 cu . in. There are four computer, four general purpose rf and 5 general purpose audio types. Four types of glass silicon rectifiers all rated at 400 ma forward current, having piv ratings from 225 to 500 v , and the CK1053 low power, subminiature time indicator for determining electronic component and equipment life are also included in the line.

Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton 58, Mass.
IRE Booth No. 2611-2614
CIRCLE 80 ON reader-Service card

Ultrasonic Cleaners

Wide range of mass-produced sizes

Series 600 ultrasonic cleaners cover two types of submersible transducers and seven different process tanks. Thirteen ultrasonic systems in all are available. Powered by the model G-601 generator, the stainless steel tanks in this series range from 1/2 gallon to one gallon capacity with single or double tank compartments. Some use external recirculating systems and others have self-contained recirculating pumps, filters and temperature controls. Models NT-604 and NT605 transducers are hermetically sealed in heli-arc-welded stainless steel cases for use in installed process tanks, metal-finishing and heavy duty cleaning tanks.

The Narda Ultrasonics Corp., Dept. ED, 160 Herricks Rd., Mineola, N.Y.
IRE Booth No. 4053, 3021, 3607, 3609
CIrCIE 218 ON reader-service card

HOW ONE CONCEPT IN POTENTIOMETER DESIGN SOLVES THREE BASIC PROBLEMS

SPACE-SAVING SIZE AND SHAPE

You can pack a lot of Bourns potentiometers into a small space - 12 in one square inch of panel area (or 17 TRIMPOT JR.* units!) Fit them into corners, between other components, flat against chassis or printed circuit boards. Mount them individually or in stacked assemblies.

ADJUSTMENT STABILITY

Bourns potentiometers are self-locking (no lock nuts required). Any adjustment remains stable. Shock, vibration or acceleration can't affect a setting. Bourns potentiometers are helping thousands of engineers make reliability a reality.

CIRCUIT BALANCING ACCURACY

Bourns potentiometers are 33 times as accurate as conventional single-turn rotary types -the screwactuated mechanism provides 9000° of rotation instead of only 270°. Circuit balancing, calibration adjustments of all types are easier, faster, more precise. And repeatability is assured.

BOURINS

Laboratories, Inc.
P. O. Box 2112 - Riverside, California

HERE ARE ADJUSTMENT POTENTIOMETERS

 TO MEET ALL YOUR REQUIREMENTS
high performance military potentiometers and rheostats

General Purpose Type
The original wirewound TRIMPOT®. Model 200 (terminals L, S or P-see drawings below). $105^{\circ} \mathrm{C}$ operation. 0.25 watt. Also available as a rheostat, Model 201 TrimR(1) (terminal L only).

High-Resistance Wirewound Hi-R® TRIMPOT Model 207 (L). Resistances to $250 \mathrm{~K} .175^{\circ} \mathrm{C}$ operation. Two watts. Rheostat : Hi-R TrimR Model 208. (L)

Micro-MInlature Potentiometer The TRIMPOT JR.* Model 222 is so small you can fit 17 units in one square inch of panel space. $175^{\circ} \mathrm{C}$ operation. One watt. Humidity proof. (Terminals L or W).

High-Resistance Deposited Carbon
An unusually significant achievement in militory quality potentiometers-infinite resolution at $125^{\circ} \mathrm{C}$ operation. 0.25 watt. Uses the Bourns research. 20 K to 1 af 3 years of Bourns research. 20K to megohm range.
TRIMPOT Model 215. (L, S or P).

Dual Potentlometer
TWINPOT(1) Model 209 is two potentiometers in one. (L). $105^{\circ} \mathrm{C}$ operation. 0.25 watt.

HIgh-Temperature Operation
$175^{\circ} \mathrm{C}$ operation. One watt. TRIMPOT Model 260. (L,S or P). Available as a rheostot Model 261 (L).

Humidity Proof, $135^{\circ} \mathrm{C}$ Operation TRIMPOT Model 236. (L, S or P). 0.8 wott. Also available as a rheostat, Model 231. (L).
low-cost commercial adjustment potentiometer

TRIMIT ${ }^{\text {® }}$ - an important new development for manufacturers of computers, industrial controls, communications equipment and high-quality test and measuring equipment. Provides 33 times the adjustment accuracy of single-turn rotaries, occupies only a fraction of the space, and has far greater stability of setting-at no additional cost. Wirewound Models 271 (L), 273 (S), 275 (P).
Carbon Models 272 (L), 274 (S), 276 (P).
military and commercial units available in these terminal types:

Visif our booth \# 3716.3718 of the I. R. E. Show

Write for detailed technical information on Bourns Potentiometers. Pleose specily the model or type and mention your application.

BOURIN:

Laboratories, Inc.
P. O. Box 2112 •Riverside, California
originators of trimpot® trimit and potentiometer instruments

High Voltage Resistors

For high temperature ambients
These pyrolytic carbon alloy film resistors, type PVX can operate in high ambient temperatures with improved stability under high voltage loads.
International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia, Pa.

IRE Booth No. 2821, 2825
CIRCLE 219 ON READER-SERVICE CARD

Switches

A lighted panel type includes nameplate in one unit

Among the switch and control products which will be displayed are these lighted push-button panel switches (shown), a long life miniature snap-action switch, and an adjustable sealed limit switch. The lighted push-button panel switches (series C6) are of modular design. Most of the models combine a nameplate, pilot light and switching unit into a single assembly. Two or more switch units may be stacked side-by-side in one panel slot. Through variation of circuit arrangements, colored lights for color monitoring, and colored push buttons for color coding, a large number of operating and indicating conditions can be provided for sequencing, movement limit, start-and-stop, and similar applications. Models are available with push-push alternate action, momentary contact, momentary contact with over-centering, and an assembly for pilot light duty only which includes no switching mechanism.

The miniature snap-action switch (model E4134) measures $25 / 32 \mathrm{in}$. long and has a mechanical life rating of $1,000,000$ operations at 0.005 over travel. It is electrically rated at 0.5 amp $125 / 250 \mathrm{v}$ ac.
The adjustable sealed limit switch (model H11-2), is designed for control or indicating applications at any exposed locations on machines or aircraft. All exposed metal parts are stainless steel or Monel, and the entire switch is corrosion resistant.

Electro-Snap Switch \& Mfg. Co.. Dept. ED, 4218 W. Lake St., Chicago 24, Ill.
IRE Booth No. 2225
CIRCLE 220 ON READER-SERVICE CARD

HIGH TEMPERATURE ceramoplastic INSULATION

SUPRAMICA ceramoplastics provide broader design scope for product engineers

Increased thermal endurance . . . total, permanent dimensional stability . . . better electrical properties . . . lower density and improved machineability of SUPRAMICA ceramoplastics bridge the design gap between organic plastics and conventional ceramics. The world's most nearly perfect insulation, SUPRAMICA ceramoplastics allow product engineers to meet the requirements of today's thermal problems.
There is no possibility of shrinkage, growth or age polymerization since the materials are completely inorganic, made with SYNTHAMICA* synthetic mica. Metal inserts molded in SUPRAMICA ceramoplastics cannot loosen during thermal cycling because coefficients of expansion are
closely matched. Other desirable properties are high dielectric strength, radiation and arc resistance, low electrical loss, resistance to moisture, oil and organic solvents. In thousands of military and critical industrial applications, SUPRAMICA ceramoplastics are contributing to better, safer, more reliable operation of electrical and electronic equipment.
Write for complete technical information.
SUPRAMICA * 560 - for temperafures over $500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right.$) SUPRAMICA * 555 - for temperatures up to $650^{\circ} \mathrm{F}$ SUPRAMICA * 500 - sheet and rod material for machining

SUPRAMICA is a registered trademark of Mycalex Corporation of America. 560 and 555 and 500 are trademarks of Mycalex Corporation of America.
SYNTHAMICA is a trademark of Synthetic Mica Company, a Division of Mycalex Corporation of America.

VISIT US AT THE IRE SHOW BOOTH

Nos. 2221 \& 2223
${ }_{6}^{2}$

MYCALEX (nimb nink

CORPORATION OF AMERICA
EXECUTIVE OFFICES: 30 ROCKEFELLER PLARA
NEW YORK 2O, NEW YORK

GENERAL OFFICES AND
CLIFTON, NEW JERSEY CLIFTON, NEW JERSEY
sales offices:
CHICAGO-LOS ANGELES DAYTON WASHINGTON - MIAMI

WORLD'S LARGEST MANUFACTURER OF GLASS-BONDED MICA AND CERAMOPLASTIC PRODIICTS. CIRCLE 99 ON READER-SERVICE CARD

NEW PRODUCTS at the IRE Show

Diode Tester
Provides rapid, accurate testing

Model DT-257 diode tester is designed to measure the characteristics of medium and low-power semiconductor diodes. A lever switch is provided which automatically selects the desired test voltage and meter ranges for both forward and reverse tests. The reverse voltage supply is regulated to 0.5 per cent. Either one of three preset voltages or a continuously variable voltage covering the range from 0 to 150 v may be selected. The forward voltage supply is continuously variable from 0 to 2 v . Accuracy of the voltage and current meters is ± 2 per cent. The instrument is housed in the company's CA-846 modular case (11-1/2 x 8-3/8 x 6-1/8 in.)

Teletronics Lab., Inc., Dept. ED, 54 Kinkel St., Westbury, N.Y. IRE Booth No. 3417

CIRCLE 100 ON READER-SERVICE CARD

VSWR Monitor

Handles up to 500 w

Type 1273 vswr monitor satisfies requirements for a lightweight, rugged unit to monitor r-f power, vswr, and side-tone. Built into a
set on of transmission line, it furnis es two dc voltages representing inc lent and reflected power.

I wer handling capacity ranges up to 500 w depending on refles ed power. Output to indicator is ne volt (nominal) from 500 ohris. The unit may be used to modulate a sub-carrier oscillator for telemetry. Frequency range is 100 to 400 mc .

Hycon Eastern, Inc., Dept. ED, 75 Cambridge Pkwy., Cambridge 42, Mass.
IRE Booth No. 3038, 3039
CIRCLE 101 ON READER-SERVICE CARD
Frequency Converters
Supply 330 to 3700 cps power
Supply 330 to 3700 cps power

Models 411, 421, and 431 frequency converters are used in conjunction with equipment requiring 330 to 3700 cps power. Power output is 250 va for model $411,500 \mathrm{va}$ for model 421 and 1000 va for model 431. All three units are useable with loads having power factors ranging from 0.7 leading to 0.7 lagging. The converters provide full power output over the entire output voltage range of 90 to 130 v through the use of an impedance matching circuit. A Wein bridge oscillator covers the entire range of 330 to 3700 cps in seven bands.
Specifications include less than 2 per cent harmonic distortion; voltage regulation of ± 2 per cent from no load to full load; frequency stability of better than 0.25 per cent after $15-\mathrm{min}$ warm-up; and frequency accuracy within 3 per cent of dial calibration.
Tel-Instrument Electronics Corp., Dept ED, 728 Garden St., Carlstadt, N.J.
IRE Booth No. 3406, 3408
CIR IE 102 ON READER-SERVICE CARD
CIRCLE 103 ON READER-SERVICE CARD >1

Rectifier Corp.

XY Plot of Reverse Breakdown Characterlstics supplied with Each Dlodel
Here's the versutile zener line - a type for every application-coupled with a new service conceived to conserve engineering time! Excellent characteristics, especially in terms of low impedance values, hermetic sealing, all-welded construction and a high thermal capacity package qualify these diodes
for your consideration. Receiving ia plot of characteristics with cach diode eliminates guesswork for your consideration. Receiving a plot of characteristics with cach diode eliminates guesswork
and tedious testing on your part - means more time for creative engineering. Inquire further about these diodes... and the special application services we are prepared to offer you.
SEE THE COMPLETE LINE DEMONSTRATED AT BOOTHS 3915-3917, I.R.E. SHOW
executive offices: el segundo. california • phone oregon e.6201• cable rectusa
 27 dunster street, cambrioge, mass., phone university 4 -6520 - pennstlvania area office suburban square builoino, aromore, penna., phone mioway 9-14ze WORld'S largest supplier of industrial metallic rectifiers - selenium - germanium - silicon

Heart of TITAN ICBM Inertial Guidance System

When the Titan's electronic umbilical cords are severed, the giant missile begins life. With no ground contact, its unjammable inertial guidance system must work...there's no second chance. Arma Division of American Bosch Arma Corporation, maker of the Titan's computer brain, demands printed circuit boards that must function the first time...every time. A defect, at any assembly point, means discarding the board and the costly components mounted on it.
That's why Arma relies on PHOTOCIRCUITS printed circuit boards with plated-thru holes to do the job.
PHOTOCIRCUITS pioneered plated-thru holes...manufactures them with built-in reliability for military and industrial applications.
Plated-thru hole reliability is based on PHOTOCIRCUITS' unequalled experience in every phase of printed circuitry. Consistent dependability is the result of proper design, precision production and advanced quality control techniques.
Check the advantages of plated-thru holes by PHOTOCIRCUITS ...the largest and most experienced manufacturer in printed circuitry. For complete information, write our Engineering Department PS-2 today.

PHONES
GLEN COVE 4.8000 FLUSHING 7.8100 CABLE
PHOCIRCO
 SEE US AT THE IRE SHOW, BOOTH \#s 2302-2304

CIRCLE 104 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Ferrite Isolators

L-band types for low to high power

The L-band, WR-650 waveguide-size absorption ferrite isolators provide constant isolation for low, medium and high power microwave applications. All these units operate over the range from 1250 to 1350 mc . Isolation is 10 db \min, insertion loss 0.5 , input vswr 1.15 , and average power handling capacities are 100, 2000 and 5000 w respectively. While the low and medium power versions do not require cooling, the high power unit requires either forced air or a liquid cooling agent. Recommended liquid flow is one gallon per minute with the cooling liquid at a maximum temperature of 65 C .

Airtron, Inc., Dept. ED, 1096 W. Elizabeth Ave., Linden, N.J. IRE Booth No. 3318

CIRCLE 105 ON READER-SERVICE CARD

Epoxy Resin For dipping applications

Specifically designed for dipping applications, No. 253 Scotcheast resin is a flexible, all solids material which can be applied in a controlled thickness with no run-off during the cure.

Since the new resin can be applied by dipping, brushing, or spraying, as well as extrusion, costs of molds are eliminated.

Pot life is from two to four days at room temperature. The cured specific gravity is 1.44 ; water absorption is 0.52 per cent; heat aging weight loss is 0.02 per cent after 168 hours at 105 C ; and the dielectric strength is 450 volts per mil. The resin meets all Mil-T-27A requirements.

Minnesota Mining and Manufacturing Co., Dept. ED, 900 Bush St., St. Paul 6, Minn.
IRE Booth No. 3901, 3903

*TRANSLATION: You Can't Beat The Bendix "Supermarket"

Our "supermarket" of rotating components offers a larger variety of highprecision, low-inertia servo motors, rate generators and servo motor generators than any other single source. Bendix units are available in frame sizes $5,8,10,11$, 15,20 and 28 ; they meet or exceed practically any applicable specification and include both corrosion-resistant and high-temperature models. Volume-production prices. Immediate delivery in many cases. Why not find out about our "supermarket" service!

FEATURING

CENTER-TAPPED
CONTROL
WINDINGS . . .

for use in transistor circuits and for either parallel or series operation. Reduce size and weight of transistorized packages by eliminating coupling transformers. Standard models, or will wind to meet your specific requirements.

Eclipse-Pioneer Division

Teterboro, N. J.
District Offices: Burbank and San Francisco, Call:i Seatlle. Wash.; Dayton, Ohio; and Washingtan, D. C. Export Sales \& Service: Bendix Infernatioral Division, 205 E. 42 nd St., New York 17, N. Y.

CIRCLE 107 ON READER-SERVICE CARD

Transistorized Inverters
Ratings up to several kvo

These inverters transform low voltage dc to either 60 or 400 cps . An addition to the Transpac line, the inverters are available in stock models with ratings up to 250 va, 15 v ac, or on order with ratings up to 5 kva. Input is 24 v dc nominal. The inverters are self-starting, with diode stabilized design, which use type E core magnetic circuits. Efficiencies of these units exceed 90 per cent.

Electronic Research Associates, Inc., Dept. ED, 67 Factory Place, Cedar Grove, N.J.
IRE Booth No. 2705
CIRCLE 108 ON READER-SERVICE CARD
Microwave Absorbent
Lightweight film type

A lightweight, space-saving microwave absorbent, this material is designed for frequency coverage ranging from 9317 to 9434 mc . It is also available for coverage at other frequencies upon request. It measurcs $22 \times 22 \times 0.03$ in., and weighs 2.5 to 3 oz per sq ft . Maximum reflection is rated at 4 per cent.
B.F. Goodrich Sponge Products, Dept. ED, Shelton, Conn.
IRE Booth No. 3232
(rcle 109 on reader-service card
(2CLE 110 ON READER-SERVICE CARD \rightarrow

VHF Transistors!

First From

 PHILCO

New family of Micro Alloy

 Diffused-hase Transistors (MADT)*
Rise, Storage, Fall Time in Low musec Range High Oscillator efficiency at 200 mcs Amplifier gains of 10 dh at 200 mcs

Here is a major breakthrough in the frequency barrier... a new family of fieldfow Micro Alloy Diffused-base Transistors. Philco MADT's extend the range of high gain, high frequency amplifiers; high speed computers; high gain wideband high speed and other critical high frequency circuitry.
MADT's are available to various voltage and frequency specifications for design of high performance transistorized equipment through the entire VHF and part of the UHF spectrum. These transistors range in $f_{\text {max }}$ from 250 mc to as high as 1000 mc . MADT gains are typically 10 db at 200 mc and greater than 16 db at 100 mc . A low cost general purpose unit is available which will deliver typically 18 db at 50 mc and 32 db at 10 mc .
Make Philco your prime source of information
for high frequency transistor applications.
Write ro Lansdale Tube Company, Division of
Philco Corperation, Lensdalo, Pany Dept. ED-358
Tradomark Philco Corporation for Mikro Alloy Diffiused-base Tromisten

PHILCO. CORPORATION

LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

NEW PRODUCTS

at the IRE Show

Laminated Plastics

High temperature and flame retordent
Phenolite grade G-11 is a glass base epoxy material which retains 70 per cent fluxural strength at 150 C for one hour, and is stated to be superior to other glass base grades in insulation resistance and dielectric strength. It has high impact strength, low in water absorption and dissipation factor measurements, and meets MIL-P-18177-A. Type G-11 is also available as a copper clad material. Another material, grade XXXP-467, is a flame retardent hot punching type also being announced.

National Vulcanized Fibre Co., Dept. ED, Box 311, Wilmington, Del.
IRE Booth No. 4419, 4421
clircle ill on reader-service card
Static Inverter Supplies
Provide $400 \mathrm{cps} \pm 0.01$ per cent

This line of static inverter supplies has been developed from similar items which the company has been building for some time. Covering a range of power ratings, the units are particularly suitable for gyro wheel supplies or where 400 cps accurate to ± 0.01 per cent is required. Waveform, simplicity of circuitry, fast starting time, and good voltage regulation are featured.

Magnetic Amplifiers, Inc., Dept. ED, 632 Tinton Ave., New York 55, N.Y.
IRE Booth No. 1518 and 1520
CIRCIE 112 ON READER-SERVICE CARD
CIRCLE 113 ON READER-SERVICE CARD $>$
Typical digital, missile electrical
checkout checkout system using the new E-I modular design. All E-I modules are designed to fit standard $19^{\prime \prime}$ racks.

From Electro Instruments
comes the newest advance in precision digital instrumentation-

Transistorized, plug-in modules for measuring $D C$ to $0.01 \%, A C$ to 0.1%, ohms to $0.01 \%, D C$ ratios to 0.01%, and $A C$ ratios to 0.02% Plus auxiliary modules for building complete automatic digital systems

AC-DC DIGITAL VOLTMETERS

Specificestions Display	Model ova 400 4 dilits. polarity. decimal point	Model DVA-500 5 digits. polarity. decimal point
Range	.0001.999.9 volts	0.0001 -999.99 volts
Acturas	± 1 digit	\pm (0.01\% and 181 lig (t)
Antematic	Polarity, ransing	Polarity, ramsing
cemeras	Digits gain, manual and aulomatic ranging. Dower on-ofl-standby	Digits gain, manual and automatic ranging. power onoffestandby

Spectications	Model OVA-410	Mosel DVA-510
0c	Sam	
ac		
Fraguency Abspeas	30.10,0	30-10,000
Remso	.0001-999	0.0001-999.99 volts
centrols	Sume as dVA-00,	Same as DVA.S00

Modules nover become obsolofe-As needs change simply regroup present modules or add new ones. Your system is always up-to-date at minimum cost and engineering. Internal construction is also modularized for maintenance ease. Fully tronsistorized circuitry-All transistor circuits on encapsulated plug-in cards

- gives increased reliability
- reduces power consumption
- lowers heat dissipation
- permits miniaturized packages
- eliminates radio noise and line transients

Many now advanced application foatures and spocifice-flons-The result of thousands of applications and field experience from more than 2,500 digital instruments and systems.

- Now you can "read through" superimposed ripple on DC -and know its magnitude-by using the calibrated digits gain control located on the front panel. Steps by 1, 2, 3, $4,5,10,50$ and 100 digits.
- Controlled ranging by switch position-"automatic", "hold", "manual"-enables operator to manually control range position but still select automatic ranging in the same instrument.
- Power control for "on," "off", and "stand by" positions.
- Wider dynamic range covering all voltages from 100 microvolts to 1,000 volts, resistance range from 10 milliohms to 10 megohms - in single instruments.
- Input power frequencies from 50 to $\mathbf{4 0 0}$ cycles.
- New balance logic for faster down ranging.
- Automatic AC ranging from 30 to 10,000 cycles.
- Controlled stepping switch drive increases switch life by a factor of five-proved by actual tests.
- Meets many MIL specifications.

DIGITAL OHMMETERS

Spocitieations	Mosel D0a-400	Model 00a-S00
Dispay	4 disits	
Rance	00.01 chms to 10 mezohms	000.01 ohms to 10 meg ohms
Automplic	Ransing	Ranging
Controls	Digits gain, manual and automatic ranglne, ower on-off-standby	Digits cain, manual and automatic ranging. power on-off-standby
For accura	erificatione	

Write Ior Eulletins 180.1, 180.3

MAXIMUM FLEXIBILITY

1. Universal $31 / 2^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime}$ chassis with mounting hardware for any rack.
2. Digital outputs may also drive storage matrices, go-no go com parators, and other auxiliary modules.
3. All contacts readily accessible at rear panel on connectors.
4. With auxiliary plug-in modules, dig itized data is provided in printed form, punched cards or tape with no modification to basic measur ing instruments.

Transistor Socket

Compression mounted Teflon unit
A low-loss transistor socket, Teflon-insulated for environmental extremes, has been announced. The sockets are of compression-mounted design to cut assembly time. They are also suitable for subminiature tubes with in-line leads, and are applicable to printed circuits.

Fluorocarbon Products, Inc., Div. of United States Gasket Co., Dept ED, 602 N. 10th St., Camden, N.J. IRE Booth No. 4036, 4037

CIRCLE 114 ON READER-SERVICE CARD

Shock Testing Machine
 Portable unit for testing units

 up to $60^{\circ} \mathrm{Ib}$

Simulating shocks with closely controllable and repeatable waveforms, the type 15575 shock machine is a portable completely integrated instrument occupying $22 \times 39 \mathrm{in}$. of floor space. Assemblies weighing up to 60 lb may be tested.

Utilizing the vertical-drop design, the unit requires no auxiliary reservoir of power, since impact on various materials of different con figuration generate the desired wave shapes. The range of shock pulses provided is from 2 msec at up to 700 g peak acceleration to 60 msec at up to 25 g peak acceleration. Precision and uniformity of the pulse shape is preserved by structural rigidity in design.
Barry Controls, Inc., Dept. ED, 700 Pleasant St., Watertown 72, Mass.
IRE Booth No. 2534
CIRCLE 115 ON READER-SERVICE CARD
< CIRCLE 113 ON READER-SERVICE CARD

Filtors, the leading specialists in the development and manufacture of sub-miniature relays is proud to announce the addition of the new Powrmite micro-miniature relay to its existing line of traditionally outstanding relays.

In every field of achievement there is always one leader. In
relays with highest available reliability the leader is Filtors, Incorporated. All of the experience and know how gained in attaining its position of leadership have gone into making Filtors new Powrmite micro-miniature relay truly reliable again the leader in a field of many.

NEW PRODUCTS
at the IRE Show
Binary Timer
Generates 128 binary counts

This binary timer provides 128 binary counts at a rate of one per second. The unit is comprised of a recently designed commutator and brush assembly plus low inertia gold plated code drums driven by a 28 v dc chronometric type motor. Each data frame, or second of time, contains a synchronizing commutor pulse, followed by an identifying 8 bit train of pulses.
Instrument Development Labs., Inc., Dept. ED, 67 Mechanic St., Attleboro, Mass.
IRE Booth No. 3925
CIRCLE 117 ON READER-SERVICE CARD

Choppers

Noise level below $10 \mu \mathrm{v}$
Type 2300 and 2400 choppers feature noise levels below $10 \mu \mathrm{v}$ in low-impedance circuits. These noise levels are for band widths extending from a few cps up to 40 kc , and are measured by a thermocouple voltmeter for a true rms reading. These few microvolts of chopper noise can be further reduced by restricting the band width.
The contacts are rated for operation in dry and nearly dry circuits, yet will withstand surges as high as 2 ma at 100 v into resistive loads. Drive is rated at either 400 ± 20 cps (type 2300) or $60 \pm 6 \mathrm{cps}$ (type 2400) at 6.3 ± 0.6 volts rms. Nor mal operating temperature range is -65 to +100 C . In usual applications the choppers can be expected to remain within ratings for over 5000 hours.

Airpax Products Co., Cambridge Div., Dept. ED, Cambridge, Md. IRE Booth No. 3502, 3504

CIRCLE 11 ON READER-SERVICE CARD

Fork Amplifier

Frequency accurate to 1 part in 10^{7}

The fork amplifier, model FK5, is designed for maximum frequency stability. An oven is added for applications requiring a frequency source accurate to 1 part in 10^{7}. The FK5 chassis is $6-5 / 8 \times$ $6-1 / 2 \times 4$ in. high, and the FK5A (with oven) is $5-1 / 6 \mathrm{in}$. high. The amplifier may be mounted in any position. Power requirement is 200-300 v dc and 6.3 v ac. No regulated $\mathrm{B}+$ supply is required. Temperature stability of the oven is well within 0.1 C at the fork assembly.

Time Facsimile Corp., Dept. ED, 540 W. 58th St., New York 19, N.Y.
IRE Booth No. 1824
CIRCLE 119 ON READER-SERVICE CARD
Impulse Latching Relay
One coil provides efficient operation

Type W impulse latching relay features an insulated rocker arm activated by a single coil, instead of the two coils usually used. In this onecoil design, the contacts are set up in one position when the coil is energized or pulsed and return to the first position on the next pulse.
Designed for both ac or dc operation, the relay has a coil rated from 2 to 7 w dc , or from 15 va to 115 va ac . The larger values are for a 4 pdt combination. The relay measures about 2 in. high.
Comar Electric Co., Dept. ED, 3349 W. Addison St., Chicago 18, Ill.
IRE Booth No. 3821
CIRCLE 120 ON READER-SERVICE CARD

CIRCLE 121 ON READER-SERVICE CARD >

At IBM
Poughkeepsie, N. Y.
Where high temperature plastic tubing is necessary as capacitor lead insulation in their electric accounting machines, IBM counts on Turbotherm® 105 or Turbotrans ${ }^{\circledR} 105 \mathrm{U} / \mathrm{L}$ approved extruded tubing. In addition, Turbotrans 105 fubing meets the requirements of MIL-I-631C, Grade c, Class II, Category 1.

BE SURE TO VISIT THE

assure product pertormance for malor manulacturers

At United Transformer

 New York, New YorkTo assure long service life, U.T.C. covers the leads of their high temperature transformers with Turbo 117 ® silicone rubber coated glass tubing. A Class H material with outstanding heal resistance and low temperature flexibility, the five ovailable grades meet NEMA VS1.1957 and the performance requirements of MIL-1-3190A.

At Lockheed
Marietta, Georgia
To provide low temperature abrasion protection for wiring assemblies, Lockheed uses Turbozone ${ }^{\circledR} 40$ extruded plastic tubing for use in the C. 130 Hercules. This tubing meets the requirements of MIL-1.7444A(2) and is available in three size ranges - from . $022^{\prime \prime \prime}$ to $2.500^{\prime \prime}$ inside diameter.

At American Bosch Springfield, Mass.
Miniature electric windshield wiper motors require moisture resistant insulation, so American Bosch chooses Turbo® varnished fubing, a cotton or rayon braid coated with a tough, organic varnish. Manufactured in five
grades it meets the Class A requirements of MIL-I-3190A, ASTM D-372, and NEMA VS1-1957.

At Allis-Chalmers Norwood, Ohio

For stator connections in their semi-enclosed slot motors, Allis-Chalmers uses Turbotu@@, a highly flexible, heat resistant, vinyl coated glass tubing. This Class B material is supplied in two grades meeting all requirements of the NEMA VSI-1957 and the MIL-1-3190A specifications.

At Avco's Crosley Div. Cincinnati, Ohio
For applications ranging from test and fire control equipment to navigational and radar units, Crosley selects Turbolex ${ }^{\circledR} 76$ general purpose plastic tubing, a flame and fungus resistant material operable from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. This tubing meots MIL-1-631C, Grade a, Class I, Calegory 1 and ASTM D-922.

High dielectric strength; flame, fungus, moisture, solvent or abrasion resistance; low temperature flexibility; high temperature operation; chemical inertness .. whatever your requirement in a coated textile or an extruded plastic tubing, there is a Brand product to meet your specifications. Turbo tubings are manufactured in all standard colors and a range of sizes \#24 (.022") 10 $21 / 2^{\prime \prime \prime}$ I.D. Produced with engineer-supervised techniques, subjected to continuous in-process inspection testing, Turbo tubings meet and exceed all applicable military and commercial specifications. Samples are available, your inquiry is invited.

> THE WILLIAM BRAND \& CO., INCORPORATED WILLIMANTIC 2, \qquad CONNECTICUT
electrical and electronic wires and cables - harnosses and cable assemblies - plastic and coated insulating tubings identification markers

NEW PRODUCTS

at the IRE Show
Rheostats
Ring types rated at 100 and 150 w

These 100 and 150 w ring rheostats have twin-shoe self-lubricating contacts; molded ceramic base and core featuring high density, low porosity, and high dielectric strength. Ratings of 100 and 150 w rings are based on a 300 C rise in 40 C ambient. Both sizes are available in resistance values to 10,000 ohms. Tapered windings, tandem mountings, dial plates, and other accessories are available.
Ward Leonard Electric Co. Dept. ED, Mt. Vernon, N.Y.
IRE Booth No. 2231
CIRCLE 123 ON READER-SERVICE CARD

Having low thermal construc tion, this chopper is useful in dc amplifiers requiring thermal sta bility and low noise. Contact ratings and reliability are identical with the company's standard ex ternal coil units. As in the standard < CIRCLE 122 ON READER-SERVICE CARD

CIRCLE 506 ON READER-SERVICE CARD \geqslant

YOUR

REFERENCE

Semiconductors GERMANIUM • SILICON

A WIDE SELECTION OF

COVERING ALL MARKETS IN
THE ELECTRONIC INDUSTRY

w 4PDT relay to all requirements MIL-R-25018!

se with the Class C, Type II, Grade 3 reIS 24114-9, MIL-R-25018. You don't have ow Union Switch \& Signal has a 4PDT, relay designed to meet these specifications ${ }_{3}{ }^{3}$ the first of its type to do so. In fact, it the rugged requirements.
hd of performance you can expect from this
mperature. Even at an ambient temperature lay gives optimum performance. The use of 1 provides consistently high insulation reesult, you can install this relay closer to ten can use it without temperature conIways, you will find it supremely rugged
esistance. This new UNION Relay withater than 55 g for 11 milliseconds-and cone. In vibration tests, it shows no contact 00 cycles at an acceleration of 25 g .
ftact reliability. Contact reliability of this sthat of comparable devices because of its furcated contacts. Bifurcation also increases 3 capacity (each button easily handles a ad) . . . and makes gold alloy contacts prac-w- and high-level loads.
ility is enhanced, too, by the ceramic insulatains no volatile material to contaminate separate hermetic sealing of the magnet coil.
e rotarȳ-armature suspension improves remal shock . . . increases reliability over the ure range ... and greatly extends the opis new 4PDT relay. Call or send the coupon formation about this and other miniature :ured by Union Switch \& Signal.

- - COMPLETE FACTS
\& Signal, Dept. ED-38
estinghouse Air Brake Co.
- Pennsylvania
he following:
:ription of your new 4PDT relay which meets every requirement \square Catalog of other miniature dc and ac relays which you manu-- -25018, MIL-R-6106C, and MIL-R-5757C requirements. \square DeDigital and Alpha-Numerical Indicators for data display.
\qquad
oth \# 2122-2124 af IRE Show-New York City

SIGNAL

APANY \longrightarrow
8, PENNSYLVANIA

NEW PRoDUCTS at the IRE Show

Rheostats
Ring types rated at 100 and 150 w

These 100 and 150 w ring rheostats have twin-shoe self-lubricating contacts; molded ceramic base and core featuring high density, low porosity, and high dielectric strength. Ratings of 100 and 150 w rings are based on a 300 C rise in 40 C ambient. Both sizes are available in resistance values to 10,000 ohms. Tapered windings, tandem mountings, dial plates, and other accessories are available.
Ward Leonard Electric Co. Dept. ED, Mt. Vernon, N.Y. IRE Booth No. 2231
CIRCLE 123 ON READER-SERVICE CARD

Chopper

Thermal stability low noise

Having low thermal construc tion, this chopper is useful in dc amplifiers requiring thermal stability and low noise. Contact ratings and reliability are identical with the company's standard external coil units. As in the standard < CIRCLE 122 ON READER-SERVICE CARD

CIRCLE 506 ON READER-SERVICE CARD $>$

YOUR

REFERENCE

GUIDE TO....

A WIDE

SELECTION OF

COVERING ALL MARKETS IN
THE ELECTRONIC INDUSTRY

Semiconductors GERMANIUM • SILICON

BY GENERALELECTRIC

Specify G-E TRANSISTORS

RECTIFIERS for your every need!

 SILICON/GERMANIUM | G-E Santronductor Ruelifiess are GREATER POWER-HIGHER TEMPERATURE RATINGSIN1115 Serien: For direst chassis med... or on lins, permitting for ward curres. Extremely low reverwe current at max. junction temperature ratink Extremeny low reverse current at max junction lemperature
iN253 teries offers sperifications dexikned for applications reyuir
ink forward current

?

 4JA11 Stacks: Comhine hith temperature
operation (up to 150 (C) with increased ratines
(up to 18 amps d-c). Iundreds of stack com-
1N536 Series: IN1095-96: Desiknod for maximum orward conductance at hish operatink temperatures. The IN4.0-440H Series is similar to the IN5.36 Serip hut with extremely low reverse current. The 1 N 1.48
Series provides leas expensive units for lower tem perature recuirements. No heat sink reguired. Hating
up to $160^{\circ} \mathrm{C}$ ambient. binations to meet a variety of circuit conditions. High elficiency plus excellient rekulation.

Designed for individual cell applications in the 2 to 20 amp ranke. Hikh junction temperature ratings, extremely low for-
ward voltage drop and thermal resistance. May be mounted directly or electrically insulated from heal sink with mica
washer mounting kit provided with each unit.

Stacks provide a broad ranke of power applications
with d-c outputs up to 100 amps

Large area junction type. Uperating temperature to 200° C. D-C out 6211 units are for applications which do not require the full curren ratings of $4 \mathrm{NA60}$ line. Reverse polarities provided in 4JA61 and 4JA6.
units. Stack combinations offer d-c outputs up to 915 amps.

For general purpose power supplies, control devices, blockink cir cuits. and many other applications. Exxtremely low power dissipa tion and forward voltage drop provide excellent regulation and
efliciency. Available in stacks up 4012 lins. providink ratings in thousands of watla, depending on circuit design. with operation
(:homae the performance range requircal for your particular nerde from ane of the mant comprehenwite line of rectifiern in the induatry,
 or (;-F: Ty pre No.

RECTIFIER CELLS

JFTEA: or (:-F: Type No.	I'IV	Mar. Ioc at $\mathbf{T}^{\circ} \mathbf{(}$:	Mav. 1 (iycle (all c (ph) Surke	Max. Storage Temb. ${ }^{\circ}$ (:
INul 1N92 IN03 ISNIN9.3	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 300 \end{aligned}$	150 ma at $55^{\circ} \mathrm{amb}$. 100 ma at $55^{\circ} \mathrm{amb}$. 75 ma at $55^{\circ} \mathrm{amb}$ 75 ma at $55^{\circ} \mathrm{amb}$.	$\begin{aligned} & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 85^{\circ} \\ & 8.0^{\circ} \\ & 8.5^{\circ} \\ & 85^{\circ} \end{aligned}$
IN151 1N152 1N15:3 IN1:5	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 380 \end{aligned}$	500 ma at $55^{\circ} \mathrm{amb}$. 500 ma at $55^{\circ} \mathrm{amb}$. 500 ma at $55^{\circ} \mathrm{amb}$. 500 ma at 55° amb.	$\begin{aligned} & 25 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 85^{\circ} \\ & 85^{\circ} \\ & 85^{\circ} \\ & 85^{\circ} \end{aligned}$
	$\begin{array}{r} 95 \\ 190 \\ 380 \\ 580 \end{array}$	1000 ma at 135° stud 400 ma at 135° stud 400 ma at 1355° stud 200 ma at 135° stud	$\begin{aligned} & 4 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150^{\circ} \\ & 150^{\circ} \\ & 150^{\circ} \\ & 150^{\circ} \end{aligned}$
$\begin{aligned} & \text { IN315 } \\ & \text { INAFIN31.5 } \\ & \text { IN: } 368 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 200 \end{aligned}$	100 ma at $85^{\circ} \mathrm{amb}$. 100 ma at $85^{\circ} \mathrm{amb}$. 100 ma at $85^{\circ} \mathrm{amb}$.	$\begin{array}{r} 5 A \\ 5 A \\ 10 A \end{array}$	$\begin{array}{r} 95^{\circ} \\ 100^{\circ} \\ 85^{\circ} \end{array}$
1N4 41 \| N: 1.1013 1N111 1N1.113 INH2 1N442! 1N1:3 1N44:313 1N444 1N41.13 1N115 1N44513	100 100 200 200 300 300 100 400 500 500 600 600	300 ma at 100° amb. 500 ma at $100^{\circ} \mathrm{amb}$. 300 ma at $100^{\circ} \mathrm{amb}$. 500 ma at $100^{\circ} \mathrm{amb}$. 300 ma at $100^{\circ} \mathrm{amb}$. 500 ma at $100^{\circ} \mathrm{amb}$. 300 ma at $100^{\circ} \mathrm{amb}$. 500 ma at $100^{\circ} \mathrm{amb}$. 300 ma at $100^{\circ} \mathrm{amb}$. 425 ma at $100^{\circ} \mathrm{amb}$. 300 ma at 100° amb. 350 ma at $100^{\circ} \mathrm{amb}$.	$15 A$	175°
IN5.36 IN5:37 1N5:38 IN5.39 INS. 10 1N1199:5 IN100n	50 100 200 300 100 500 600	500 ma at $100^{\circ} \mathrm{amb}$. 500 ma at $100^{\circ} \mathrm{amb}$. 500 ma at $100^{\circ} \mathrm{amb}$. 500 mi at $100^{\circ} \mathrm{amb}$. 500 ma at 100° amb. 425 ma at $100^{\circ} \mathrm{amb}$. 350 ma at $100^{\circ} \mathrm{amb}$.	$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 175^{\circ} \\ & 175^{\circ} \end{aligned}$
1N1115 INIII 1N1117 1N1118 NN1114 INII20 1NII20	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$1.5 A$ at 85° stud $1.5 A$ at 85° stud $1.5 A$ at 85° stud $1.5 A$ at 85° stud $1.5 A$ at 85° stud $1.5 A$ at 85° stud	15 A 15 A 15 A 15 A 15 A 15 A	$\begin{aligned} & 175^{\circ} \\ & 175^{\circ} \end{aligned}$
1 N1301 1 N1:302 1N1306	$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{array}{ll}1.5 \mathrm{~A} & \text { at } 85^{\circ} \text { stud } \\ 15 \mathrm{~A} & \text { at } 160^{\circ} \text { stud } \\ 15 \mathrm{~A} & \text { at } 160^{\circ} \text { stud } \\ 15 \mathrm{~A} & \text { at } 160^{\circ} \text { stud }\end{array}$	$\begin{aligned} & 300 \mathrm{~A} \\ & 300 \mathrm{~A} \\ & 300 \mathrm{~A} \\ & 300 \mathrm{a} \end{aligned}$	$\begin{aligned} & 200^{\circ} \\ & 200^{\circ} \\ & 200^{\circ} \\ & 200^{\circ} \end{aligned}$
1N1: 187 1N118 1Nitso 1N1:40 1N1491 1N1 192	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	250 ma at $125^{\circ} \mathrm{amb}$. 250 ma at $110^{\circ} \mathrm{amb}$. 250 ma at $95^{\circ} \mathrm{amb}$.	15A 15A 15A 15 A 15A 15A	$\begin{aligned} & 175^{\circ} \\ & 175^{\circ} \end{aligned}$
IJABOA 4JA6013 IJA60C 13AboF 4JA60(; 4JAb0H	$\begin{array}{r} 100 \\ 200 \\ 300 \\ 50 \\ 150 \\ 250 \end{array}$	$\begin{array}{ll}70 \mathrm{~A} & \text { at } 120^{\circ} \text { stud } \\ 70 \mathrm{~A} & \text { at } 120^{\circ} \text { stud } \\ 70 \mathrm{l} & \text { at } 120^{\circ} \text { stud } \\ 70 \mathrm{l} & \text { at } 120^{\circ} \text { stud } \\ 70 \mathrm{l} & \text { at } 120^{\circ} \text { sud } \\ 70 \mathrm{~A} & \text { at } 120^{\circ} \text { stud }\end{array}$	900 A 900A 901 A 900 A 900 A 900 A	$\begin{aligned} & 200^{\circ} \\ & 200^{\circ} \end{aligned}$
4JA6IA 4JABII tJAbIC. AJABIF 4JA61(: 4JA6II	same as 4 JA 60 A . except reverse polarity same as 4JA6013, except reverse polarity shme as 4JA60C, except reverse polarity sume as 1JA60F, except reverse polarity same as iJA60C; except reverse molarity same as $\$ J A 60 H$, except reverse polarity			
4JA62A $4 \mathrm{JAn2l}$ IJAB2C 1J A62 I) 4JAn? 4JA62(: 4J A62II 4 A 42J	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \\ & 50 \\ & 150 \\ & 250 \\ & 350 \end{aligned}$	40 A at 120° stud 40 A at 120° stud 40A at 120° stud 40 A at 120° stud	900 A 900A 900 A 900A	$\begin{aligned} & 200^{\circ} \\ & 200^{\circ} \\ & 200^{\circ} \\ & 2001^{\circ} \\ & 200^{\circ} \\ & 200^{\circ} \\ & 2000^{\circ} \\ & 200^{\circ} \end{aligned}$
4J46.34 4 A A63 ${ }^{2}$ HA63C 1JA6.3I) 1JA63F AJABis; 4JA63II iJ A6:3J	same as $4 J A 62 A$, except reverse isolarity sume as 4JA62II, except reverse polarity same as 4JA62(., except reverse polarity same as 4JA62I), except reverse polarity same as $1 J A 62 F$, except reverse polarity same as 4JA62(i, except reverse polarity same as $4 J A 621 \mathrm{H}$, except reverse polarity sume as iJ Ah2J. except reverse polarity			

RECTIFIER STACKS
(:-F: Tspe
PIV (up (o) Max. Ioc at $\mathbf{T}^{\circ} \mathbf{Q}$: (up (o)

4JA211	63.30	6 amps . at $5.5{ }^{\circ} \mathrm{amb}$.
\$JA11	3360 V	18 emps. at $25^{\circ} \mathrm{amh}$.
4JA3011	6.30 V	18 amps. at $55^{\circ} \mathrm{amb}$.
\& A 3511	6.30 V	100 amps . at $55^{\circ} \mathrm{amb}$.
1JA6011	840 V	573 amps . at $35^{\circ} \mathrm{amb}$.
2. 1 A6211	840 V	

SILIGON i GERMANIUM ADVANCEMENTS

MEAN GREATER STABILITY - FASTER SWITCHING - MORE POWER

Gemeral Electrices new streamlined line of transistors offers you loth standard reliable transistors that you have used successfully for years. and exciting new dev ieres that are "xtending ther range of applications suitahle for transistorizationt
Foor multivibrators. pulse, generators. flip-flopse ete. the I nijunction Pransistor enahles you to simplify circuitry, and in many cases reduce the mumber of transistors used by as much as half.

Forsersuamplifiers switches. DC to DC (or AC) comerters Mc.. (i.E.'s Silicon Power Transistor's power handling ability allows you to design equipment never before practical.
For high freguence switching applications, the 2 N3912N397's extrome stability of hes and $I_{\text {co- }}$ Ieo simplify your design prohbems and contribute to high equipment reliability Whatever your application is, be sure to check your (i-f: Semiconducher Products District Sales Manager firsi

The man to know: your Headquarter

The foregoing specifications and data are presented to give you a general and compact guide to General Electric's broad line of Semiconductor Products. You may obtain detailed information concerning any of the devices listed by contacting your nearest G-E Semionnductor district representative, your local G-E Tube Distributor, or by writing to:

General Electric Company
Seiniconductor Products Department
1224 West Genesee Street
Syracuse, New York

ny (i-l: Tube Distributors now have adequate inventories of G-I: sisistors and rectifiers to give you immediate delivery on your orders. eck for yourself and soe if his service facilities and prices don't work (o) your great advantage. For really fast delivery of transistors and tifiers, see your G-E Tube Distributor first.

N: your nearest G-E Semiconductor Products representative

Gemeral Electric: Company

2111 Kouth (iroen Road Clevoland 21, Ohiw Phome: E: Vergrewn 2-(0)(880 A. C. Orinck

Cieneral Eiloctric Company 1:31 Wrestwond Blud. las Angeles. California Phomes: Blkadshan 2-7322
(ilanite 8-8:312
11. W. (ichhardt. Ir.
13. W. Olsin

Gioneral Electric Company 200 Main Avinus Cliflon. Vew Jorsery Phomes: (ilbogory 3-638:
New York WI Weonsin i-lom.io
A. Worolaver
J. (i. Wallon
A. I3. 1)all
I). W. I. Ilickio

Cinoral Wlectric Company 1927 (akton Sitreet
Skokir. Illimois
Phomes: ()llehard in-7.50. Chicago-Il3ving 8-8608
12. Vi. Merry
V. J. Huntinan
I. A. Menomey
R. R. Faullin
mits, this chopper has complete lectrostatic shielding of the coil rom the contact assembly. Modular construction permits use of interchangeable coils in the operating frequency range of $0-700 \mathrm{cps}$. Thermal stability under general laboratory conditions is less than $\pm 2 \mu \mathrm{v}$.
The Bristol Company, Dept. ED, Waterbury 20, Conn.
IRE Booth No. 3932
CIRCIE 124 ON READER-SERVICE CARD

Sweep and CW Signal Generator
 Separate units providing sweep-marker

Model M5-X/L5-X is a combination of two separate instruments which work together to provide a sweep-marker system. This instrument covers a range of 20 to 40 mc with other ranges from 1 mc to 100 mc available.
The top unit contains two identical variable oscillator and attenuator systems. Each oscillator provides 1 v rms into 50 ohms (metered). Frequency calibration is made in 0.25 mc increments, with accuracy of better than 0.25 per cent. The bottom unit is the sweep generator which provides 1 v rms into 50 ohms. Output is flat to better than 5 per cent, with sweep width variable from 0 to 40 per cent of center frequency. Included in this section is a crystal-controlled 1 mc harmonic generator marker system and output attenuator.
Telonic Industries, Inc., Dept. ED. 73 N. 2nd Ave., Beech Grove, Ind.
IRE Booth No. 3826
CIRCLE 125 ON READER-SERVICE CARD
\& CIRCLE 506 ON READER-SERVICE CARD CIRCLE 126 ON READER-SERVICE CARD \rightarrow

Don't compromise with the Class C, Type II, Grade 3 requirements of MS 24114-9, MIL-R-25018. You don't have to any more. Now Union Switch \& Signal has a 4PDT, rotary-armature relay designed to meet these specifications completely. It is the first of its type to do so. In fact, it exceeds some of the rugged requirements.

Here is the kind of performance you can expect from this new relay:
High operating temperature. Even at an ambient temperature of $200^{\circ} \mathrm{C}$, this relay gives optimum performance. The use of ceramic material provides consistently high insulation resistance. As a result, you can install this relay closer to engines. You often can use it without temperature controlled boxes. Always, you will find it supremely rugged and reliable.
High in shock resistance. This new UNION Relay withstands shock greater than 55 g for 11 milliseconds-and continues to operate. In vibration tests, it shows no contact chatter up to 2,000 cycles at an acceleration of 25 g .
New high in contact reliability. Contact reliability of this relay is six times that of comparable devices because of its new 2 -hutton, bifurcated contacts. Bifurcation also increases current carrying capacity (each button easily handles a full 2 -ampere load) . . and makes gold alloy contacts practical for both low- and high-level loads.

Contact reliability is enhanced, too, by the ceramic insulation which contains no volatile material to contaminate contacts and by separate hermetic sealing of the magnet coil.
New torsion-type rotary-armature suspension improves resistance to thermal shock . . . increases reliability over the entire temperature range \ldots and greatly extends the operating life of this new 4PDT relay. Call or send the coupon for complete information about this and other miniature relays manufactured by Union Switch \& Signal.

```
Union Switch & Signal, Dept. ED-38
    Union Switch & Signal, Dept. ED-38
    Division of Westinghouse Air Brake Co.
    Pittsburgh 18, Pennsylvania
    Please send the following:
    Complete description of your new 4PDT relay which meets every requirement
    of MIL-R-25018. [Catalog of othel miniature dc and ac relays which you manu-
    racture to MIL-R-25018, MIL-R-6106C, and MIL-R-5757C requirements.\square De-
    scription of your Digital and Aloha-Numerical Indicators for data display.
    Name
    Position
    Firm
    Address
    City
    Also. put me on your technical mailing list.
```

See our Booth \# 2122-2124 at IRE Show-New York City

NEW PRODUCTS at the ire show

Coaxial Termination

Terminates pulses with 1μ sec time

A one per cent terminating resistor mounted in a BNC male connector provides resistance values of 50,73 , and 93 ohms. The units can be used as satisfactory terminations in wide band pulse line systems from dc to pulses of one musec rise time (approximately 400 mc). Maximum rated pulse voltage is 200 v and average rated power dissipation is $1 / 2 \mathrm{w}$.

Electrical \& Physical Instrument Corp., Engineering Div., Dept. ED, 42-19 27th St., Long Island City 1, N.Y.
IRE Booth No. 3240
CIRCLE 128 ON READER-SERVICE CARD

Transformer Line
High power pulse types plus others

This microwave manufacturer is offering a variety of magnetic components and assemblies, including high and low power pulse transformers, specialized audio transformers, current limiting filament transformers for high power magnetrons, and hermetically sealed power supplies. Radar modulators in sealed packages of minimum size and weight are also available including soft tube conventional types and magnetic types.

Specifications on one of these, the high power pulse transformer package, are as follows: 1600 kw peak pulse power, 1050 w average, 0.5 to 4 usec pulse width, duty cycle of $.00066,8.7 \mathrm{kv}$ peak input, impedance ratio 503:48 ohms. Self contained dc filament supply uses silicon diodes.

Airtron Inc., Dept. ED, 1096 W. Elizabeth Ave., Linden, N.J. IRE Booth No. 3318

CIRCLE 129 ON READER-SERVICE CARD

Servo Package
 Used in radar scanning systems

Model T-950 which is a compact vervo-package combining a servo motor, a geared reducer, a magnetic clutch-brake and a potentiometer. In this particular unit, the motor drives the potentiometer arm at a speed corresponding to a radar scan rate of approximately 40 rpm . Upon a given signal the motor can be uncoupled and the potentiometer braked within 2 msec .

Sterling Precision Corp., Dept. ED, 34-17 Lawrence St., Flushing .34, N.Y.
IRE Booth No. 1621
CIRCLE 130 ON READER-SERVICE CARD

Crystal Filters

Feature High Selectivity

These crystal filters permit single conversion with high selectivity in the early stages of the receiver close to the antenna. Specifications include a center frequency of 10.7 mc ; shape factor of $2: 1$; insertion loss of approximately 1 db , and size of $2-3 / 8 \times 1 \times 1-1 / 32 \mathrm{in}$. Model 10MA has a 6 db bandwidth of 30 kc and model 10MF has a bandwidth of 3.5 kc .

Hycon Eastern, Inc., Dept. ED, is Cambridge Pkwy., Cambridge 42 , Mass.
IRE Booth No. 3038, 3039
CIRCLE 131 ON READER-SERVICE CARD CIRCLE 132 ON READER-SERVICE CARD *

HOT

We don't see many hot-skillet applications for sealed relays these days. But, if there were, General Electric miniaturized sealed relays could do the jobeven in scorching bacon grease!

The best of laboratory equipment is used to check the continuous operation of all G-E sealed relays at ambient temperatures of plus 125 C . And, special forms are now available for use at ambients up to 200 C ! Inherent temperatureresistant characteristics qualify all General Electric sealed relays for use on

EALED RELAYS

but still in service!

any job where extreme heat is a serious environmental problem.

Extreme high-temperature operation is just one of the many "plus" featuressuch as high-shock resistance, highvibration resistance, low-temperature operation, and rugged construction-you get with all Miniature, Sub-miniature, and Micro-miniature G-E sealed relays. Today, General Electric sealed relays are proving their reliability on a wide variety of military and industrial electronics applications

What's more, you get all of General

Electric's complete line of standard-listed relays on only $\mathbf{3}$-week shipment from receipt of order-plus-rapid service on samples and prototypes.

For further information, contact your G-E Apparatus Sales Office-or-write to General Electric Co., Section 792-9, Schenectady 5, N. Y., for your copy of the brand new G-E sealed relay catalog. Specialty Control Dept., Waynesboro, Va.

Progness Is Our Most Importiont Product
GENERAL (6

Punched Tape Reader
Provides strip and reel feed

The Dykor paper tape reader offers the advantages of strip and reel feed by combining both in one unit. The unit stops within one character at a reading rate of 600 characters per sec and within two characters at 750. The tape is set in motion when a solenoid squeezes the tape against a continuouslyrotating capstan. To stop tape motion, the driving solenoid is released, and stop solenoids engage the tape against non-rotating capstans. Fast reading is made possible through photoelectric sensing using silicon photocells. All standard 5, 6, 7 , or 8 level tapes (plus sprocket hole) are handled and $11 / 16,7 / 8$, or 1 in . wide tape can be used interchangeably.
Digitronics Corp., Dept. ED, Albertson Ave., Albertson, Long Island, N.Y.
IRE Booth No. 1730
CIRCLE 133 ON READER-SERVICE CARD

Decade Counter

Maximum frequency of 1 mc

Model M6744 transistorized decade counter occupies 3.75 cu in . and has a maximum operational frequency of 1 mc . The decade

Speed Design of Super-Power Radar

When tube designers and equipment manufacturers work together on advanced projects early in the planning stages, vital time is saved. Also, future availability of new tubes in desired quantities is assured.

The three developmental General Electric hydrogen thyratrons shown above are examples. New design and manufacturing techniques-and new applications of materials-were conceived by G-E designers to meet the specific needs of advanced super-power
radar equipments now being developed. The result, months saved in the development of both new tubes and the equipment in which they will be used.

Call any of the General Electric Power Tube offices listed at the bottom of this page now if you are planning or developing advanced electronic equipmentand take advantage of General Electric's comprehensive facilities and experience. Power Tube Department, General Electric Company, Schenectady, New York.

EASTERN REGION

200 Main Avenue, Clifton, New Jersey Phones: (Clifton) GRegory 3-6387 (N.Y.C.) WIsconsin 7-4065, 6, 7, 8 CENTRAL REGION
3800 North Milwaukee Ave., Chicago 41, III Phone: SPring 7-1600 WESTERN REGION
11840 West Olympic Blvd., Los Angeles 64, Cal Phones: GRanite 9-7765; BRadshaw 2-8566

Inspect these three new hydrogen thyratrons in the

 General Electric exhibit at the IRE Show.Progress /s Our Most Imporrant Product
consists of four binary circuits separately constructed in an individual cartridge assembly, each of which is independently usable as a flipflop or binary stage. Each binary module is replaceable in the decade and packaged with a hermetically sealed header, and additionally protected by complete encapsulation in epoxy resin.

In addition to the 1 mc model, the decade is available in 800 kc and 400 ke medels. Silicon transistor models are available for operation at temperatures in excess of 100 C . The decade output is 6 v with $0.1 \mu \mathrm{sec}$ rise time.
The Walkirt Co., Dept. ED, 141
W. Hazel St., Inglewood 3, Calif.

IRE Booth No. 3923

CIRCLE 135 ON READER-SERVICE CARD

The series 30 group of temperature test chambers provide 30 cu ft of work space and have outer dimensions of $4-1 / 2 \times 5 \times 7-1 / 4 \mathrm{ft}$ high. The units have low temperature ranges of $-40 \mathrm{~F},-100 \mathrm{~F}$, -120 F , and high temperature ranges of +240 F , or +350 F optional. The units can provide for relative humidities of 20 to 98 per cent (limited by +35 F dewpoint) and 5 per cent at +160 F . The chambers are heliarc welded, with stainless steel interior and a positive seal dual door gasket.

Tenney Engineering, Inc. Dept. ED, 1090 Springfield Rd., Union, N.J.

IRE Booth No. 1516
CIRCLE 136 ON READER-SERVICE CARD
< CIRCLE 134 ON READER-SERVICE CARD

HICKOK EXCLUSIVE

LONG SCALE
SUB-MINIATURES

1"barrel
%accuracy \"depth

FEATHER-WEIGHT RUGGEDIZED \& SEALED SELF-SHIELDED
HIGH SENSITIVITY

MODEL 72
Actual Size
This unusual instrument development meets all the requirements of MIL-M-10304A as applicable, and is available in all standard DC ranges.
The completely self-shielded 180 degree arc-angle movement features a new type pivot with a new reinforced jewel holder and other construction advantages designed to withstand exceptionally high impact and vibration without
 impairing the accuracy or funcfioning qualities of the meter.

ALSO AVAILABLE

- $2-1 y^{\prime \prime}, 3-1 / 2^{\prime \prime}$ and $4-1 / 2^{\prime \prime}$ round case styles with standard scale longths in $A C$ or $D C$ ruggedized types.
- $3-1 / 2^{\prime \prime}$ and $4-1 / 2^{\prime \prime}$ round case styles with 250° are-angle long scale types in DC or AC Rectifior ruggedized.

We invite your inquiry and specification details. (Form MSM and Catalog 37 are available at your request.)

THE HICKOK ELECTRICAL INSTRUMENT CO. 10525 Dupont Avenue - Cleveland 8, Ohio

Visit us af the I.R.E. Show, Booth Nos. 3516 and 3518

NEW PRODUCTS at the IRE show

Multiturn Dial
 Eliminates ambiguity

The Colvern multi-turn dial has a quick change indicator to avoid ambiguity. Ten and 15 turn dials are available with accuracies of 1 part in 1000 and 1 part in 1500 respectively.

British Radio Electronics Ltd., Dept. ED, 1833 Jefferson Pl., N.W., Washington 6, D.C.
IRE Booth No. 2815
CIRCLE 94 ON READER-SERVICE CARD

Oscilloscope

Highly linear sweep in low frequency range

The model 85 -A oscilloscope is designed particularly for the teletype communications field and allied operational systems. Emphasis has been placed on providing superior low frequency sweep linearization and balanced input dc amplifiers of high gain. The oscilloscope generally fulfills the technical specifications outlined in MIL-O-15525D, with greatly improved capabilities in the low frequency spectrum.

Specifications for the horizontal sweep include range of 3 cps to 40 kc in 4 bands with a minimum of 5 per cent frequency overlap on each end of each band; linearity of ± 1 per cent on all frequencies up to 5 kc , and ± 2 per cent on frequencies above 5 kc ; recovery time of less than 1 part in 100 frequencies up to 5 kc , and less than 1 part in 70 above 5 kc . The vertical and horizontal amplifiers have identical characteristics. Input impedance is single ended, 1 meg , shunted by $25 \mu \mu \mathrm{f}$ on all attenuator positions. Input sensitivity is $5 \mathrm{mv} / \mathrm{cm}$ to $500 \mathrm{v} / \mathrm{cm}$. Band pass is 0 to 250 kc .
James S. Spivey, Inc., Dept. ED, 4908 Hampden Lane, Washington 14, D.C.

CIRCLE 95 ON READER-SERVICE CARD
for Military Equipment and Commercial Applications

- Switching Capacities up to 5a., 30 v., d.c.
- Sensitivity down to 9 mw .
- Coil Resistances to $20,000 \mathrm{Ohms}$
- Environmental specifications will meet latest revision of MIL R-5757 and MIL R-20518.
- Standard contact arrangement up to 4 Form A and 2 Form C.

For commorcial and industrial applications see the new Series SC high sensitivity relay af Booth 2709
Radio Engineoring Show
WRITE FOR RELAY DATA BULLETIN

BASO, INC.
Dept. RN-1, Milwaukee 1, Wisconsin
CIRCLE 214 ON READER-SERVICE CARD

and
METAL STAMPINGS

We'll prove that our high speed production means lower unit costs for you!

You'll save two ways - (1) the initial low unit cost made possible by high speed machines; (2) precision and quality control guarantees accurate parts and performance.

STRAIGHTENING AND CUTTING

Perfect straight lengths to 12 feet. .0015 to .125 diameter.

WIRE FORMS

.0015 to .125 diameter.
SMALL METAL STAMPINGS
.0025 to .035 thickness.
.062 to 3 inches wide.
Specializing in production of parts for electronic, cathode ray tubes and transistors.
Write for illustrated folder.
ART WIRE AND STAMPING COMPANY
17 Boyden Place, Newark 2, N.J. CIRCLE 215 ON READER-SERVICE CARD

Printed Circuit Module

Pulse transformer measuring 1 in. sq

Type BA transformer has been designed to include all qualities required for printed circuit applications keeping low cost in mind. Plug in terminals are arranged on the accepted 0.1 in . grid. The units are keyed for easy insertion with automatic machinery. Four spacers provide board clearance to eliminate condensation problems. Epoxy encapsulated pulse transformers and toroids in the plastic BA case meet applicable sections of MIL-T-27A and 21038. Dimensions: $15 / 16 \mathrm{in} . \mathrm{sq}, 1 / 2 \mathrm{in}$. high, $1 / 4 \mathrm{in}$. pins.

Polyphase Instrument Co., Dept. ED, Bridgeport, Pa .
IRE Booth No. 2235
CIRCLE 97 ON READER-SERVICE CARD

Servo Amplifier

Provides 15 w of controlled power

Requiring 115 v 60 cps power, this amplifier is capable of supplying up to 15 w controlled power for the operation of standard 60 cps servo motors. The amplifier has a nominal 30 k input impedance, voltage gain of $400,90 \mathrm{deg}$ phase shift and as a plug-in unit, it sits on a miniaturized 28 v de regulated power supply as required.

Also being shown is a hermetically-sealed, high gain $(30,000)$ servo amplifier designed to meet MIL-E-5400A and MIL-E-5272A. The unit, measures $1-15 / 32 \times 1-29 / 32 \times 4-3 / 32 \mathrm{in}$. has an input impedance of $200 \mathrm{ohms}, 90 \mathrm{deg}$ phase shift, can drive a 60 cps 6 w servo motor from a 0.1 $\mathrm{mv}, 60 \mathrm{cps}$ input and requires only 28 v dc at 350 ma power.
M. Ten Bosch, Inc., Dept. ED, Pleasantville, N.Y.

IRE Booth No. 1316
CIRCLE 98 ON READER-SERVICE CARD

WIRES \& CABLES

Engineered for the Electronic Industry

WRITE FOR COMPLETE CATALOG

LENZ ELEGTRIC MANUFACTURING CO.

SOME LENZ REPRESENTATIVES

Florida Area

STANLEY K. WALLACE P. O. Box 67 Lutz, Fla.
Phone: TAmpa 99.3241
CIRCLE 216 ON READER-SERVICE CARD

Minneapolis Area FRED B. HILL CO. 6110 Excelsior Blvd.

PRODUCT-DESIGN MEMOS
 FROM DUREZ

Elecirical-grade phenolic
Fire-retardant prepreg
Large inserts no problem

Brain cells for a bird
Chill fog swirls in around the slim white missiles poised on their launchers. From clouds massing above, snow begins to spiral faster and faster.

For these silent sentinels on 24 -hour watch, weather can be an enemy. Within the missile. and in the incredibly complex electronic brain that guides it, thousands of parts and connections must be ready to function perfectly in the few vital seconds of the rocket's flight.

This is one of the basic reasons why many thousands of mechanical and electrical missile components are made with Durez 16274 Natural, a mineral-filled phenolic with highly stable electrical characteristics.

Molded by standard compression or transfer methods, 16274 has excellent surface finish and can be machined with tung-
sten carbide tools. It is designed to meet the requirements of Mil-P-14D, Type MFE.
If these properties suggest a place for 16274 in a current project, check the coupon for a special 4 -page bulletin detailing properties and molding and finish ing procedures. For an evaluation sample, write us on your business letterhead.

Fire-retardant prepreg

Now you can meet the most exacting re quirements for reinforced plastic parts that must be strong, tough, and flame-retardant.
You get these properties in a new prepreg, made with Hetron ${ }^{(1)}$ polyester, that eliminates weighing, mixing, and pouring of resin in your plant.
This material provides exceptionally high tensile, flexural, and impact strengths; smooth glossy surface; and excellent wetstrength retention. It is self-extinguishing without the use of additives.
The drapable sheet conforms iocomplex The drap curvatures, facilitating layup. It is supplied in rolls up to 60 yards long, which have

shelf life of six months or more under normal storage conditions.
For a list of manufacturers of prepreg materials, write us. For data on the Hetron resins with which they are made, check the coupon.

Big inserts no problem

Do you hesitate to specify large molded-in-phenolic inserts for fear the phenolic will crack?
Your molder can now allay your ap-prehensions-with Dure: 18001 Black.
Developed specifically for use with large metal inserts, as in this brush-holder cap for an electric hammer or saw. 18001 is for an electric hammer or saw.
highly crack-resistant. It combines many other qualities: high dielectric strength excellent dimensional stability; arc resistance of 180 seconds by ASTM D495and low cost.
For a more complete rundown on 18001 check the coupon and we'll send you tech nical data.

For more information on Durez materials mentioned above, check here: \square Electrical-grade molding compound, Durez 16274
\square Hetron polyester resins (technical data file)
\square Phenolic molding compound, Durez 18001
Clip and mail to us with your name, title, company address. (When requesting samples, please use business letterhead.)

PLASTICS DIVISION
hooker electrochemical company
2203 Walck Road, North Tonawanda, N. Y. CIRCLE 141 ON READER-SERVICE CARD

Where's the motor?

Inside-Out

Motor

Makes

Shallow "Saucer"

Fan

YOU IVONDER where the motor is, when you see this fan with a "new look." Saucershaped, with its driving motor built into the propeller hub, it embodies an entirely new concept in fan design.
The rotor, which is part of the propeller hub, surrounds the stator. It rides on high quality ball bearings. The stator is secured to spokes on the rear of the fan, which, in turn, are secured to the rim. A terminal block on the rim connects a single phase, 115 v line ($50-60 \mathrm{cps}$) to the fan's 2-pole
induction motor. Wiring enters the stationary winding through one of the spokes.
Developed by Rotron Manufacturing Company of Woodstock, N.Y., for cooling electronic consoles, the new design constitutes a step forward in space conservation. The fan's axial length is down to no more than the depth of the propeller, about $2-1 / 2 \mathrm{in}$. With a diameter of about 7 in ., the fan weighs but a trifle more than a pound and a half.
In free air, the fan delivers 280 cfm to keep temperature rise down to only 25 deg F for 2 kw heat dissipation inside a cabinet. It maintains a 35 C winding temperature rise.
The "saucer" fan is designed for use with the modern washable dust filters. Its pressure buildup is adequate to overcome the loss of head introduced by the filter in addition to the back pressure in the equipment. The aifflow can be di-

Static pressure and power input curves for 60 cycle operation.
rected in either direction, simply by reversing the fan end-to-end.
Three servo-motor clamps secure the fan to a panel or filter box at either end of the venturi. Both ends of the venturi have "servo" type clamping rims.
The fan meets all government specifications for humidity, fungus, and altitude.
For further information on this unusual fan, turn to the Reader's Service Card and Circle 142. IRE Booth No. 2334-6

minimizes transistor derating

 for thermal conditions . . .UAP cold plate U-521330, designed for Collins Radio Company, dissipates heat generated by power transistors used in ground and airborne electronic circuits. The heat is transferred across a pressure thermal contact to cooling air. The cold plate controls the transistor junction temperature within operating limits compatible with the installation. Therefore, transistor derating is minimized.
The cooling air, which is forced through the cold plate, can be ducted from an air cycle refrigeration system; a ram air supply; an air manifold within
the electronic compartment or a pressurized equipment package.
The aluminum cold plates are bonded by UAP's dip braze method which produces extremely lightweight assemblies with maximum heat transfer area within the core. Cold plates can be used individually or assembled in manifolded banks.
DESIGN PERFORMANCE CHARACTEIISTICS
Air flow: 7 lbs. per hr.
Air pressure drop: $0.25 " \mathrm{H}_{2} \mathrm{O}$ corrected to .0765 densily
Temperature drop in cold plate: $1.5^{\circ} \mathrm{C}$ por watt dissipated
Woight: Approximatoly 102
Performance characteristics can be modified to requirements.

For complete information call the nearest UAP Contractual Engineering Office
CALIfORNIA. 1101 Chestnut St., Burbank Calif., VI 9-4236 NEW YORK................... . 50 E. 42nd St., Now York 17, N. Y., MU 7-1283 оніо. 1116 Bolander Ave., Dayton, Ohio, BA 4-3841 CANADA United Aircraft Products, Ltd., 5257 Queen Mary Road, Montreal, Canada, Elwood 4131
a famous family of aireraft essentials since 1929 UNITED AIRCRAFT PRODUCTS, INC.
1116 BOLANDER AVENUE, DAYTON, OHIO circle 143 ON reader-service card

New trends and developments in designing electrical products

"Work backward'"-a new design approach that's bringing the advantages of General Electric permanent magnets to fields traditionally reserved for electromagnets

A new approach to the design of motors, generators, relays, and similar products is making it possible lar products is making it possible to produce smaller, more efficient and economical units by using per-
manent magnets, instead of electromanent magne
The new approach is simply to "work backward." That is, design the most efficient magnet assembly first, and then the rest of the component.

In the past, where designers tried to replace electromagnets in these to replace electromagnets in these products, permanent magnets often
proved uneconomical. Here's why:
The traditional approach was to work the permanent magnet into an existing design for a wire-wound field, to save the cost of new dies and other major manufacturing changes.

Under these conditions, permanent magnets will seldom show to best advantage. But, by using the "work backward" approach, many outstanding results can be obtained.

For example, permanent magnets had been limited to fractional-hp applications, such as the $1 / 150-\mathrm{hp}$ applications, such as the 1/150-hp
But today, through imaginative design and more efficient alloys, permanent magnets are now used for rotors and stators in much larger equipment.
The DC tachometer generator in Figure 2, for example, uses a 2-lb. G-E Alnico 6 stator.
The permanent magnet provides greater reliability and accuracy than copper windings, over wide ambient temperatures. It eliminates an external power source and field regulating equipment. And, there is no replacement problem since the magnet - unlike wire - never burns out.
These are some of the advantages that can be realized from early con-

sideration of the permanent magnet in design.
Alone, these can more than justify the cost of redesigning equipment to eliminate wound fields. Yet, there are other advantages that result from the magnet's ability to supply a constant field without external excitation, including:

- Elimination of field interruptions due to power failure.
- Elimination of heat and need for costly cooling equipment and in-sulation-thus conserving valuable weight and space.
- Elimination of danger from faulty wiring or damaged insulation.
These are important advantages where equipment must be reliable despite severe environmental condidions. But equally important to the tions. But equally important to the
designer is the permanent magnet's designer is the permanent magnet's
superior volumetric efficiency. A G-E superior volumetric efficiency. A G-E
Alnico magnet can usually supply Alnico magnet can usually supply
a given magnetic field in a fraction of the space needed by even the best designed electromagnet.

The TV-tube focusing magnets in Figure 3 gives some idea of the savings in space and weight a de signer can effect.
The electromagnet weighs 2 lbs., and takes up 16.35 cubic inches. The G-E Alnico 5 permanent magnet weighs just 15 ounces, and requires only 1.30 cubic inches - a spacesaving of 87%.
In addition to the problem of economics, two other traditional objections to permanent magnets have also been largely eliminated:
First, early permanent magnets were relatively unstable. But modern permanent magnet materials from improved manufacturing techniques are really "permanent". . . even under temperature and humidity conditions ruinous to electromagnets.
Second, applications requiring "onoff" field action seemed outside the capabilities of permanent magnets. But modern design techniques have developed practical ways to handle this by shunting flux around the air gap.
With the new high-energy alloys and the development of more scientific design methods, the future for permanent magnets-and the opportunity for designers - is virtually unlimited.
For example, a recent use of the "work backward" approach has, for the first time, made it possible to use powerful Alnico magnets to supply uniform fields in equipment like traveling wave tubes.
General Electric Magnet Engineers have accumulated a wealth of information on the problems of redesigning for permanent magnets. They will share their knowledge with you at any stage of the magnet design project.

For more information, or the services of a G-E Magnet Engineer, write: Magnetic Materials Section of General Electric Company, 7820 N. Neff Road, Edmore, Michigan.

Progress /s Our Most Important Product GENERAL
 ELECTRIC

NEW PRODUCTS at the IRE Show

Silicon Transistors

Ratings up to 80 W
Low $R_{c s}$, typically 1.5 ohm, enables the ST40 and 2N389 60-v transistors to operate at currents to 5 amp . The units are useful in servo-amplifiers, relay drivers, and power switching applications Other applications include audio amplifiers, dc to ac power converters and voltage regulators.
Transitron Electronic Corp., Dept. ED, Wakefield, Mass.
IRE Booths No. 3912, 3914
circle 145 on reader-service card

Electrolytic Capacitors

Feature low leakage current

Series ML electrolytic capacitors is designed for use in miniature devices such as transistorized radio receivers, portable tape recorders, and hearing aids. The low leakage current of type ML capacitor prevents excessive current drain and permits proper functioning in coupling capacitor applications.

The maximum permissible leakage current is determined from the expression $.03 \mathrm{VC}+2$, where V is the rated dc working voltage, and C is the rated capacitance in microfarads. The units are designed to operate from -20 to +65 C . The capacitors withstand the rated working voltage (from 3 to 100 v) for 500 hours at the rated ambient temperature.
Type ML can be supplied with an insulating paper sleeve (designated as type MLS) or without one (type ML). A plastic sleeve capacitor is also available (type MLV). For mounting on printed circuit boards, both leads are brought out at one end and the metal case covered with an insulating paper tube. This type is referred to as AMLS.
Pyramid Electric Co., Dept. ED, 1445 Hudson Blvd., North Bergen, N.J.
IRE Booth No. 2832
CIRCLE 146 ON READER-SERVICE CARD

This 4pdt relay has the following characteristics: Operates in an ambient temperature of +200 C , withstands 55 g shock for 11 msec , withstands 25 g vibration up to 2000 cps , and has a contact bounce of less than $250 \mu \mathrm{sec}$. Insulation consists of all ceramic material in order to maintain high resistance at maximum operating temperature. The coil is hermetically sealed from the contact structure. The relay retains the rotary principle of operation standard in the Company's line of relays.
Westinghouse Air Brake Co., Union Switch \& Signal Div., Swissvale, Pa.
IRE Booth No. 2122, 2124
CIRCLE 147 ON READER-SERVICE CARD

Coil Winder

Produces cross-wound coils

The No. 111 coil winder is equipped with a precision traverse system to produce accurate cross-wound coils. The machine is also equipped with an electronic drive and other attachments to speed up production and reduce handling operations. A programming attachment automatically stops the winder for the removal of taps. A piewinding attachment automatically indexes coils. Gears are located on fixed centers so that a machine operator can change from one coil specification to another by dropping the new gears into place without using tools.
Universal Winding Co., Dept. ED, P.O. Box 1605, Providence, R.I.
IRE Booth No. 4313, 4315 CIRCLE 148 ON READER-SERVICE CARD

newflame retardant plastic laminate

INSUROK

 хт-901
by Richardson

Here's another new Richardson product which offers many advantages for electronic and electrical applications.

New INSUROK XT-901, as shown in the photos above, is flame retardant. This self-extinguishing feature is not affected by age or service conditions. This material also resists the formation of a carbonized path in the presence of an arc, which feature is desirable in many high voltage applications. Electrical characteristics of this paper base laminate, which is identified by its distinctive red color, exceed the published NEMA values for XXXP phenolic laminates. Electrical and are resistance properties are retained after exposure to high humidity or immersion in water.

It is readily fabricated and punches in the temperature range of $225-275^{\circ} \mathrm{F}$.

USES FOR XT-90I INCLUDE:

- High voltage applications such as the TV flyback transformer.
- Applications involving sliding contacts because XT-901 has superior wear and abrasion resistance coupled with excellent arc resistance.
- Riveted assemblies such as relays because low cold flow assures retention of spacing.
Additional features are low water absorption and good dimensional stability under humid conditions.

IV'rite today to Dept. 33 for more information on new XT-901.

See XT-901 in Booth 1628-I.R.E. Convention
New York Coliseum-March 24-27, 1958
the RICHARDSON COMPANY

RICHARDSON

PLASTICS \qquad

2682 LAKE STREET • MELROSE PARK, ILLINOIS • OFFICES IN PRINCIPAL CITIES CIRCLE 149 ON READER-SERVICE CARD

 through 15,631 accepted types

UNIQUE FEATURES AND CHARACTERISTICS

These guarantee superior quality in all TRIPLETT meters:

- High torque to weight ratio for extra rugged movement. Specially developed bearings withstand severe vibration and reduce friction to a minimum.
- Bearings are microscopically graded not only for depth and radius, but also for polish. Only best quality jewels are used.
- Unique hardening method assures uniformly hard pivots.
- High flux scientifically aged alnico magnets for greatest permeability. Micrometrically balanced all metal frame construction protects bearings against vibration from any direction.
- Simplicity of frame construction assures easy, accurate alignment in servicing.
- Dials are all metal-no paper dials are ever used-will not become abrasive, warp, crack or discolor under normal conditions. (Printing presses in Triplett's own plant allow fast, inexpensive service on special dial requirements.)
- Extra strong ribbed pointers precisely balanced with triple "slide and lock" adjusting weights.
- Insulations provide extra allowance for breakdown voltages.
- All metal parts processed, all molded parts pre-cured to eliminate distortions from stresses and strains.

TRIPLETT ELECTRICAL INSTRUMENT COMPANY • 52 years of experience • BLUFFTON, OHIO
triplett design and deevelopment fucilities are arvailable for sour syecial requirements for meters and test equipment.

NEW PRODUCTS at the ire show

Potentiometer
Dissipates 2 W at 60 C

Offering high stability under temperature cycling in a small size, these Aceset potentiometers will dissipate 2 w at 60 C . They are available in nine resistance ranges between 100 and 25,000 ohms. Temperature cycling stability is made possible through the use of 20 ppm temperature co-efficient wire.

Mechanical specifications include a rotation of 330 deg nominal and size of $1 / 2 \mathrm{in}$. diam by $5 / 16 \mathrm{in}$. body length. Electrical specifications feature voltage breakdown of 1000 v dc, electrical angle of 325 . deg nominal, resistance tolerance of $\pm 10 \%$ and linearity of $\pm 5 \%$.

Ace Electronics Associates, Inc., Dept. ED, 99 Dover St., Somerville, Mass.
IRE Booth No. 1807
CIRCLE I5I ON READER-SERVICE CARD

A rack-mounted, continuously variable power supply, model $810-\mathrm{A}$ delivers from 0 to 60 v at 0 to 7.5. Regulation at any output voltage is less than 0.05 v output change from no load to the full 7.5 amp . The dc internal impedance is less than 0.007 ohms. Ripple is 7 mv rms. Overload and short circuit protection are provided by magnetically-operated circuit breakers.

Harris Labs., Inc., Dept. ED, 45 Industrial Rd., Berkeley Heights, N.J.
IRE Booth No. 1910

$$
\text { CIRCLE } 152 \text { ON READER-SERVICE CARD }
$$

60-V Power Supply
Regulation of 0.05 v , for 0 to 7.5 amp

Model 810A is a transistorized unit providing regulation at any output voltage of 0.05 v output change from no load to the full 7.5 amp . Internal impedance (dc) is less than 0.007 ohms. Ripple is 7 mv rms . Overload and short circuit protection are provided by magnetically-operated circuit breakers.

Harrison Labls., Inc.. Dept. ED, 45 Industrial Rd., Berkeley Heights, N.J.
IRE Booth No. 1910
circle 153 on reader-service card

Power Supplies

Two precision rack mounted units

The first of two power supplies being featured is MTR060-5 shown. This unit is a transistorized magnetic amplifier regulated de supply having an output voltage of $0-60 \mathrm{v}$ at 5 amp and an ac input of $95-135 \mathrm{v}$ single phase, 60 cps . The ripple supplied is 2 mv rms maximum; line regulation (static) is less than $\pm 5 \mathrm{mv}$; and dynamic line regulation is less than 10 mv . Static load regulation is less than 25 mv for no load to full load changes. All of these regulation accuracies are applicable for any output setting between 0 and 60 v dc.,

The second supply, model MTB300-200, is a $B+$ type with circuitry similar to the above. The ac input on this unit is $105-125 \mathrm{v}$, single phase, 50-400 cps. Ripple is 6 mv peak to peak, and regulation is ± 0.1 per cent for line and load. Dynamic impedance is 1 ohm from 20 to 20,000 eps. Unit is supplied in rack panel construction, and has dimensions of $5-1 / 2 \mathrm{in}$. ligh x 19 in . wide. The de output rating is $300 \mathrm{v} \pm 10$ per cent at 200 ma .

Perkin Engineering Corp., Dept. ED, 345 Kansas St., El Segundo, Calif. IRE Booth No. 3711, 3713 circle 154 ON reader-service card

Continental Corrrector announces... NEW

CLOSED ENTRY DESIGN... FOR 100% MORE RELIABILITY

A solid ring limits socket contact expansion to maximum tolerance of pin diameter. This prevents over-stress of the individual socket contact leaves and possibility of any contact distortion. Also, an oversized probe cannot enter the socket contact. Even "rocking" and "prying" actions will not distort the contact.
Constant and uniform insertion pressure is guarantecd while a consistently low millivolt drop is maintained. The new contact was developed for use in intercontinental ballistic missiles and other applications requiring high reliability. It is another example of Continental Connector's constant research into improved design.
Technical brochures on various Continental Connectors are available free on request. Specify your requirements to Electronic Sales Division, DeJur-Amsco Corporation, 45-01 Northern Boulevard, Long Island City 1, N. Y.
aVallable in all standard continental connectors

\star Solid Construction-Cannot be Forced Out of Shape

* Extremely High Reliability Maintestrucuctible in Normal Maintenance
* Maintains Low Millivelt Drop Under Constant and Uniform Insertion Pressure
* Terminations Include Solder Cup, Turret, or Solderless aper Pin (Solder Cups can be hot pre-filled, if de-
sired.) sired.)

With a disappearing waste line and no bay window, this new API meter trims itself into your instrument

The beauty on the pillow is designed to complement your product; not hog it. Its bottom $1 / 3$-the part youl don't need to see-is tucked behind your panel. What's left is today's best looking meter, with a modern picture frame look.
The forte of this slim design is its obvious good looks, but other features are worth mentioning: like easy back-of-panel lighting through a translucent
rear window, and almost-nil magnetic panel effect. For a good look at the Model 561, ask for Data Sheet 10; for a better look see us at the show: for the best, order a sample. We know you'll want to look at one, so we made up a quantity. To whet your appetite, the sample price is $\$ 10.00$. A request on your company letterhead will bring a 200 microampere Model 561 to your door by air.
apf Assembly Products Inc. CHESTERLAND 17, OHIO

Booth 3815, IRE Show, Coliseum, N.Y.C. March 24-27 circle 156 ON reader-service card

NEW PRODUCTS at the ire show

Trimming Capacitor Kits
Seven types for various mounting needs

Each of these seven kits includes from four to nine piston capacitors designed for a particular mounting application. The PK11 kit contains 5 glass and invar miniature trimming capacitors for panel mount uses. The PK12 kit contains similar trimmers designed especially for printed circuit applications. The PK13 kit features 4 lead mountings for shock resistance, and polarization for wiring board plug in. The PK14 kit houses 5 glass dielectric split stator trimmers for standard panel mount. The PK15 kit includes 4 quartz split stator trimmers for panel mount. The PK16 kit offers 9 glass and invar and glass and brass trimmers for panel mount. The PK17 kit includes 4 quartz dielectric trimmers.

JFD Electronics Corp., Dept. ED, 6101 16th Ave., Brooklyn 4, N.Y.
IRE Booth No. 2333
CIRCLE 157 ON READER-SERVICE CARD

These S-band ferrite isolators are equipped with female type N connectors to meet particular coaxial requirements. Frequency range is 2670 to 2930 mc . The unit's characteristics are as follows: frequency range, 2670 to 2930 mc ; isolation, $20 \mathrm{db} \min$; insertion loss, 0.8 db max; input vswr, 1.2 max, and power handling capacity of 10 w average with a $2: 1$ load vswr.

Airtron, Inc., Dept. ED, 1096 W. Elizabeth Ave., Linden, N.J.
IRE Booth No. 3318
CIRCLE 158 ON READER-GERVICE CARD
ELECTRONIC DESIGN • March 5, 1958

Zener Diodes

Full line of 65 will be exhibited

A complete line of silicon Zener voltage reguator and reference diodes comprised of a series of types in each of seven styles will be displayed. The 64 types includes: miniature types rated at 500 mw , standard top-hat style with pigtail leads rated at 1 w ; 3.5 and 10 w types featuring stud construction; double-anode types rated at 350 mw; 5 w multiple junction high voltage types; and the $1 \mathrm{~N} 430,1 \mathrm{~N} 430 \mathrm{~A}$, and 1 N 430 B reference element types. All diodes in this group are designed for temperatures of -65 to +150 C and high load current capacity. An x-y plot of the reverse breakdown characteristics is supplied with each of the diodes.
International Rectifier Corp., Dept. EI). 1521 E. Grand Ave., El Segundo, Calif.

IRE Booth No. 3915, 3917
CIRCLE 159 ON READER-SERVICE CARD

Circuit Breaker

Miniature unit with ratings up to 10 amp

The model SM3 circuit breaker is a seriesoverload type designed for operation at 110 v at either 60 or 400 cps , or for 50 v dc . It is available in ratings from 50 ma to 10 amp . A choice of two time delay curves is offered, for fast or slow overload response. The breaker is also available for instantaneous-trip response.

Since the SM3 combines magnetic actuation with hydraulic time delay, its current capacity and trip points are free from ambient temperature effects. The breaker will maintain its 125 per cent trip point from -65 to +125 C .

Heinemann Electric Co., Dept. ED, 449 Plum St., Trenton 2, N.J.
IRE Booth No. 3811, 3818
CIRCLE 160 ON READER-SERVICE CARD

KEEP UP-TO-DATE ON MAGNETICS

Here are Iaminations for miniafurization

If you are making transformers for transistorized or other miniaturized equipment, information about our ultra-small size "performance-guaranteed" laminations can be important news to you. These nickel-iron laminations are produced in standard gauges, and are available in Hy Mu 80, 48 Alloy and, if required, Orthonol.
Dry-hydrogen annealed by our exclusive process, these laminations provide all-important uniform quality. This annealing at a dewpoint of $-60^{\circ} \mathrm{C}$. brings our PerformanceGuaranteed laminations to ultimate permeability from as little as 5% of that value in the unannealed state.
Like all laminations from Magnetics, Inc., the "miniatures" are packed in standard nine-inch boxes to facilitate handling in your plant, and are immediately available from stock. These features alone provide substantial savings.

CIRCLE 161 ON READER-SERVICE CARD

Edges of these fine tolerance laminations are cut off squarely and cleanly to minimize air gap where mating parts are butted. Thus, high operating efficiency is insured.
There's no room here for the really detailed story, but for complete information on our "Performance-Guaranteed" magnetic laminations, send for our newest catalog-just published-ML-41. Write today. Magnetics, Inc., Depl. ED11, Butler, Pennsylvania.

IIAEMETIESIME.

NEW PRODUCTS at the ire show

Microsecond Indicator

Measures time between two points of a pulse

The fundamental application of the type 206 microsecond indicator is to measure the time interval between any two points of one or two pulse waveforms with a high degree of accuracy. Operation using an oscilloscope is as follows: first, balance the time delay between two channels by using an identical signal for both inputs and record the reading of the delay dial as T_{1}; then apply two input signals under test separately to both channels E_{1} and E_{2}; adjust the delay lines again until the pulse of E_{2} is aligned with the pulse of E_{1} channel; record the dial reading as T_{2}. The difference between T_{1} and T_{2} is the time delay between the two input signals.
Advance Electronics Lab., Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N.J. IRE Booth No. 3606

CIRCLE 163 ON READER-SERVICE CARD

Trimming Potentiometer

Dissipates 1/2wat 150 C

715 Murfreesboro Road, Nashville 2, Tenn.; Tarrytown, N. Y.; Pasadena, Calif.

CIRCLE 162 ON READER-SERVICE CARD

more and more people are thinking of Aladdin as the standard of the electronic industry in pulse transformers

Electrolytic Capacitors

Hermetically sealed types, up to 150 wvdc

The positive connection of the Daly electrolytic capacitors is hermetically sealed by a compressed plastic plug. The foil, rivet, and internal connections are high purity aluminum. Availability range is $5 \mu \mathrm{f}$ to $150 \mu \mathrm{f}$ covering voltages from 6 to 150 wvdc. Tube diameter varies from $1 / 4$ to $1 / 2 \mathrm{in}$. Lengths vary from $3 / 4$ to $1-1 / 8 \mathrm{in}$., including the seal. Leads are at right angles to the axis of the capacitor and are suitable for printed circuit or tag board mounting. Positive lead cannot make accidental contact with the can.

British Radio Electronics Ltd., 1833 Jefferson Pl., N.W. Washington 6, D.C.
IRE Booth No. 2815
CIRCIE 185 ON READER-SERVICE CARD

Relay
Rugged unit for low level switching

Frame and header assembly or bridge-type construction affords high resistance to shock, vibration, and temperature in this relay. Oversize instrument type bearings at both ends minimize hinge friction. The unit is hermetically sealed and filled with inert gas.

Contacts are dpdt, rated at 100,000 operations minimum at $2 \mathrm{amp}, 28 \mathrm{v}$ dc or 115 v ac, noninductive. Available for low level and dry current switching. Resistance range, 22 to 500 ohms and up. Power requirement, 500 mw , dc. Insulation to ground, 500 v ac rms minimum. Insulation resistance, 100 meg minimum at 500 v oc, 25 C . Vibration, 10-55 cps at 10 g acceleration; 55-500 cps at 20 g . Shock, 40 g for 11 msec . Weight, 0.35 to 0.55 oz. Dimensions $0.797 \times 0.875 \times 0.359$ (maximum).

Magnecraft Electric Co., Dept. ED, \#3350D W. Grand Ave., Chicago 51, Ill. IRE Booth No. 2342

CIRCIE 186 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 5, 1958

For your Magnetic Shielding Problems ... MUMETAL is the answer:

Write for your copy

"MAGNETIC MATERIALS"

This 32-page book contains valuable data on all Allegheny Ludlum magnetic materials, silicon steels and special electrical alloys. Illustrated information on properties, tharacteristics, applications, etc. Characteristics applications, etc. request.

ADDRESS DEPT. ED-3

Mumetal shields will give instant relief to interference caused by extraneous magnetic fields. This material can cure many troublessolve many a problem for you.

Use it where high permeability is required at low flux densities, such as in input and microphone trans. formers, hearing aid diaphragms, instruments, wire and tape recorders, etc. For properly heat treating Mumetal, we can also offer commercial hydrogen annealing facilities.

A fund of technical data on shields
and other applications for Allegheny Ludlum Mumetal is available -let us help with your problems.
In addition to Mumetal and other high-permeability alloys, we offer a range of magnetic and electrical alloys and steels that is unmatched in its completeness. Our services also include the most modern facilities for lamination fabrication and heat treatment. - Let us supply your requirements. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry

 Allegheny Ludlum CIRCLE 187 ON READER-SERVICE CARD

OFF-THE-SHELF STRUCTURAL PARTS AND CONNECTORS TO BUILD YOUR SPECIAL PRINTED CIRCUIT BOARD PACKAGES

The GORNET and GORNECTOR concept offered by the Gorn Electronics Division make it possible for the first time for the Electronic packaging Engineer to order stock parts to build Printed Circuit Board Assemblies. Standard GORNET parts and GORNECTOR receptacles are available to accommodate any Printed Circuit Board Size, thickness, number of terminafions, and number of boards to form a rigid electronic printed circuit board module. Standard printed circuit board guide rails are also available to facilitate printed circuit board insertion. The GORNECTOR receptacles can be supplied
terminated in solder eyes, furrets, taper tabs, wire wrap forms, dip solder lugs, with contacts joined or separated for top and bottom circuit connection or individual face termination. Available in a variety of materials and finishes, these standard elements are suitable for a variety of military and commercial environments. Easily polarized or color coded, GORNECTORS increase assembly efficiency and correct utilization. Great effort has been made in developing the GORNECTOR to design the most efficient electrical contact to transfer electric signals from printed circuit board to wire.

For full datails on the GORNET or GORNECTOR includ. ing specifications on the handy "prototype" kit for experimental purposes write: GORN ELECTRIC CO. STAMFORD, CONN.

*Pai. Pend.

Thermostat

Sensitivity of $\pm 1 \mathrm{~F}$

Featuring good sensitivity in a small size, the Thermoswitch measures 1.25 in . long x 0.562 in . high $x 0.401 \mathrm{in}$. deep and has a sensitivity of one deg F . Temperature changes act to expand or contract the stainless steel outer shell which actuates the inner assembly to make or break totally enclosed contacts. Operating temperature limits are -65 to +220 F . No resonant frequencies occur between 5 and 500 cps vibration. Testing at 500 cps vibration with 10 g acceleration, the temperature set point will not shift over $\pm 3 \mathrm{~F}$.

Fenwal, Inc., Dept. ED, Pleasant St., Ashland, Mass.
IRE Booth No. 3001
CIRCLE 189 ON READER-SERVICE CARD

Analog-Digital Converter

Speeds of up to 200,000 conversions per sec

An addition to the company's Datrac line of high-speed analog-digital converters, the Transicon Datrac is designed primarily for industrial usage. Applications include scaling of data into engineering units, linearizing transducer nonlinearities, and arithmetic operations for function generation. As a digital-to-voltage converter the unit has speeds of up to 200,000 conversions per sec. As a voltage-to-digital converter, the speed is 5μ sec per binary bit maximum. Up to 100,000 alarm tests can be performed per second. Accuracy is ± 0.05 per cent, $\pm 1 / 2$ least significant digit, regardless of code. Available output control current is 25 ma .
Epsco, Inc., Dept. ED, 588 Commonwealth Ave., Boston 15, Mass.
IRE Booth No. 3823
CIRCLE 188 ON READER-SERVICE CARD

CIRCLE 190 ON READER-SERVICE CARD

Test Oscillator

Calibrates $\mathbf{f m} / \mathrm{fm}$ sub-carrier units

Push-button selection of frequency is featured in the model TO-258 telemetering test oscillator. The unit is designed to provide convenient calibration for sub-carrier units of $\mathrm{fm} / \mathrm{fm}$ telemetering systems. Standard $\mathrm{fm} / \mathrm{fm}$ frequencies from 400 cps to 70 kc are supplied with calibrated deviation control of ± 15 per cent of center frequency. Distortion is less than 1 per cent to 21 ma rms, frequency error is less than 1 per cent and output voltage is constant to 1 db from 1 to 25 v .

Teletronics Lab., Inc., Dept. ED, 54 Kinkel St., Westbury, L.I., N.Y
IRE Booth No 3417
CIRCLE 191 ON READER-SERVICE CARD

Video Sweep Generator

For use with wide band circuitry

Intended for the observation of frequency versus amplitude characteristics of wide band circuitry, such as radar and video amplifiers, type 1105 radar-video generator features high output and low harmonic distortion. It provides a sweep from 50 kc to 10 mc and has an r-f output adjustable from 1 mv to 2 v peak-to-peak into a 75 ohm load from 75 ohm source. The r-f output signal may be attenuated from 0 to 63 db by means of a pushbutton attenuator. The swept oscillator, of the varible-permeability type, has an extremely linear incremental frequency characteristic, and is keyed at a 60 cps rate to provide a return trace baseline. Ten crystal-controlled frequency markers are provided to indicate $1,2,3,4,5,6,7,8,9$, and 10 mc points.

Tel-Instrument Electronics Corp., Dept. ED, 728 Garden St., Carlstadt, N.J.
IRE Booth No. 3406, 3408
CIRCLE 192 ON READER-SERVICE CARD

What do these latest aircraft and missiles have in common?

All are equipped with Genisco flight control

 or instrumentation accelerometers. What better proof of reliability?With component reliability getting increased attention from missile and aircraft designers, it is significant to note the number of supersonic weapon systems equipped with Genisco accelerometers.
A complete list reads like a roll call of tactical and strategic missiles and aircraft now in the nation's arsenal. Included are such weapons as the Atlas, Thor, Nike Ajax, Nike Hercules, Bomarc, LaCrosse, Bull Pup, Talos, Dart, Matador, Corporal and Terrior missiles; and the F100D Super Sabre, F101 Voodoo, F106A, and Canada's CF105 aircraft. What better proof of the reliability of Genisco instruments than this acceptance by designers of these weapons?
Combining product reliability with guaranteed delivery schedules and competitive pricing has made Genisco the free world's largest producer of potentiometer-type flight and fire control accelerometers. More than 40,000 have been delivered to date.
Send for technical data sheets on all Genisco Accelerometers.

and electronics industry-General Electric

Gold-plated and dip-soldered at $500 \mathrm{~F}^{\circ} \ldots$

No blisters, no bond failure with 11558 newest Textolite copper-clad laminate

Reliable in roughest applications - that's new General Electric Textolite 11.558 . Prin:ted circuits made from this easy-to-machine $\mathrm{G}-10$ copperclad laminate stand up through processes that ruin ordinary copper-clads-come out ready to give top reliability in computers and missiles. Here's the kind of treatment 11.558 takes without blistering, bond failure, or circuit breaks

- 30 minutes in boiling trichloroethylene
- 15 minutes plus, in gold-cyanide plating solution
- 2 minutes in $500^{\circ} \mathrm{F}$. solder bath

Find out about the full line of Textolite laminates in Sweet's Product Design File, Catalog 2b/Gen. Fabricated Textolite parts come to you from independent local fabricators geared to give you speedy delivery. (They're listed in the Yellow Pages under "Plastics.") For prompt, expert help with special problems, write to Technical Service, Laminated Products Dept., Section ED-8:3, Ceneral Electric Co., Coshocton, Ohio.

Textolite

GENERAL (\%) ELECTRIC
see our booth in the
glant General Electric exhlbit at the IRE Show. March 24-27.

CIRCLE 194 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Sine-Cosine Potentiometer
± 0.05 per cent peak to peak accuracy

The Colvern precision sine cosine potentiometer, type 9600 , makes possible a law accuracy of ± 0.05 per cent peak to peak. The machined light alloy case if fitted with resistance elements wound on shaped cards, each card covering 180 deg. These pairs of cards are joined with metal bridges giving 360 deg of track. Center taps are on a single turn of wire. One or two pairs of concentiac cards can be fitted, each carrying two brushes to give rither one sine and cosine or two separate sine and cessins outputs.

British Radio Electronics L\&d , Dept. ED, 1833 Jefferson Pl., N.W., Washington 6. D.C. IRE Booth No. 281.5

CIRCLE 195 ON READER-SERVICE CARO

Frequency Meter

Five heads cover 170 kc to 700 mc range

The 90680 series consists of self-indicating, absorption frequency meters covering the range of 170 kc to 700 mc . This frequency range is covered by five basic heads. Each head has three or four plug-in inductor probes and the same number of individual frequency calibrations. A single $500 \mu \mathrm{mp}$, end-indicating, plugin circuit is used with each of the heads. The indicating circuit is partially self-limiting so that a high power signal will not damage it.

James Millen Mfg. Co., Inc. Dept. ED, 150 Exchange St., Malden, Mass.
IRE Booth No. 2523
CIRCLE 196 ON READER-SERVICE CARD

Magnet Wire

Thermal life of $30,000 \mathrm{hr}$ at 180 C
A polyester film coated magnet wire, Beldtherm provides good resistance to heat aging, solvents, and abrasion. At temperature of 130 C , the magnet wire possesses the desirable qualities which Formvar has at 105 C . Thermal life is rated at $30,000 \mathrm{hr}$ at 180 C . However, this test measures limiting temperature only, and does not take into consideration the other properties, such as cut through values at elevated temperatures. Therefore a Class B rating has been assigned. Under favorable conditions the wire may be used where Class F insulations are indicated.
Belden Mfg. Co., Dept. ED, 4647 W. Van Buren, Chicago, Ill.
IRE Booth No. 1630
CIRCLE 197 ON READER-SERVICE CARD

Phase Meter

Direct reading unaffected by input amplitude

Series 405 precision phase meters measure the phase angle between two alternating voltages without either amplitude or frequency adjustment. The phase angle is presented directly in degrees on an 8 in . rectangular panel meter with mirror scale. No ambiguity exists at zero degree, and the instrument is perfectly stable for measuring a small fraction on the degree on all eight ranges including the $0-12 \mathrm{deg}$ range. The circuitry consists of a coincident slicer and cathode-c coupled limiter stages with plate-togrid degeneration providing equal accuracy for symmetrical waveforms of any shape.
Specifications are as follows: Type 405 L has a frequency range from 1 cps to 20 kc ; Type 405 H has a range from 8 cps to 500 kc . The relative accuracy is $\pm 1 / 4 \mathrm{deg}$ and the absolute accuracy is ± 1 deg or 2 per cent at any range. Input voltage is 0.3 v to 70 v for type 405 L , and 2 v to 40 v for type 405 H . Input impedance is 3 meg shunted with $20 \mu \mu \mathrm{f}$ on both input channels for type 405 H , and 6.8 meg for type 405 L .

Advance Electronics Lab., Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N.J. IRE Booth No. 3606

CIRCLE 198 ON READER-SERVICE CARD

The Westinghouse Electronics and Air Arm Divisions, Friendship Airport, Baltimore, Md. plants, have almost unbelievably high r-f interference ambient caused by radar transmitters, missiles, military planes, spot welders, motors, powerful transmitters, and other types of electric/electronic equipment. Testing critical electronic equipment under these adverse interference conditions is extremely difficult. The slightest outside interference would distort readings.
Westinghouse takes no chances. The flight control fighter armament systems, missile guidance systems, radar, and ship-board transmitters under design and development at the plant are completely shielded from outside interference and from each other by 49 Ace shielded enclosures.
See us at the IRE Show-Booth 1728.

The Ace patented RFI* and Cell-Type Designs provide the high attenuation required for satisfactory results at all frequencies. All enclosures are designed and constructed to insure permanent r-f leak-proof performance. Size-flexibility is another feature. The modular construction of the panels and doors permits rapid alteration of the size of the enclosure. Small rooms can be joined to make larger units or large enclosures can be converted into smaller ones.

If you have a shielding problem-big or small-in your plant, you'll want to talk to an Ace Engineer about an effective yet economical solution. Be sure to write for free catalog on standard Ace enclosures.
*Lindsay Structure First and Finest in Shielded Enclosures ACE ENGINEERING AND MACHINE CO., INC.
Tomitison Road - Huntingdon Valley - Pennsyivania
CIRCLE 199 ON READER-SERVICE CARD

McLEAN FANS \& BLOWERS* FOR ELECTRONIC APPLICATIONS

RACK MOUNTED FOR EASY ASSEMBLY FIT STANDARD $19 "$ RACKS

 STANDARD MODELS FOR OTHER RACK WIDTHS AND ANY ANGLE OF AIR DISCHARGESave sensitive components in computers, control units, etc. McLean's ready-to-use packaged units pressurize cabinet with cool, filtered air keeping dust out. All rack fans feature smart, heavy gauge, stainless steel grilles, easily removable filters, and standard RETMA notching to eliminate

STANDARD RACK

 MOUNTED FANS \& BLOWERSOver 15 models available in panel heights of $31 / 2^{\prime \prime}$ to $121 / 4^{" \prime}$ in increments of $13 / 44^{\prime \prime}$. Range, 80 to 1200 cfm . All units feature quiet operation. no electrical noise and maximum air delivery. Blower units provide better air delivery against pressure and higher velocity for faster cooling.
Highly reliable rubber mounted, 115 volts, 60 Highly reliable. rubber mounted, 115 volts, 60
cycle motors. Also Mil. Spec. and DC motors cycle motors. Also Mil Spec. and DC motors available. Permanent filters.

RECESSED MODELS

Provide higher performance with minimum panel height. Filter and blower are recessed into the unused portion of the open base commercial type rack. Fit $31 / 2^{\circ \prime}, 51 / 4^{\circ "}$ $7^{\prime \prime} 8^{83 / 4 "}$ and $101 / 2^{\prime \prime}$ panel heights and deliver 150 cfm to 300 cfm. Highly reliable, rubber mounted, 115 volts, 60 cycle motors. Mil. Spec. and DC motors available. Permanent filters.

FILTER GRILLE ASSEMBLIES
Developed as air outlets for racks without louvres. Prevent back flushing of dust when blower is not on. Use also as inlet for filtered air owith exhaust fan. Permanent filter acts as R-F shield. Mount on upper part of cabinet . . top. front or rear. Fit standard 19"' racks (or other widths), in $31 / 2^{\prime \prime}, 51 / 4^{\prime \prime}, 7^{\prime \prime}, 83 / 4^{\prime \prime}$ and $101 / 4^{\prime \prime}$ heights. Filter may be removed without removing assembly from rack. Disposable filters available.

HALF PANEL WIDTHS
For narrow racks or where space is a problem. Fit half the width of standard 19" racks leaving balance of space for other components. ing balance of space for other components.
Blower model ($51 / 4^{\prime \prime}$ high) delivers 100 cfm . Fan model ($7^{\prime \prime}$ high) delivers 225 cfm . Powered by highly reliable, rubber mounted, 115 volts, 60 eycle motors. Mil. Spec. and DC motors available. Permanent type filter.

half panel width filter-grille assemblies also available

CIRCLE 200 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Capacitors

$300 \mathrm{v}, 100$!uf, featuring thin design

This radial series of capacitors has ratings of 300 v up to $100 \mu \mu \mathrm{f}$. An extension of the company's axial radial series, the units feature a thin design of $5 / 64$ to $7 / 64 \mathrm{in}$.

The capacitors are produced by the company's standard process: silver electrode fused to porcelain enamel bonded into a homogenous unit that requires no hermetic seal. The process results in humidity immunity, Q in excess of 2500 dissipation factor less than 0.0003 , insulation resistance greater than $50,000 \mathrm{ohm}$ farads, capacitance drift less than 0.05 per cent, and temperature coefficient of $115 \pm 25 \mathrm{ppm} / \mathrm{deg} \mathrm{C}$ through the range from -55 to 125 C .

Vitramon, Inc., Dept. ED, Box 544, Bridgeport, Conn.
IRE Booth No. 2401, 2403
CIRCIE 201 on reader-service card

Differential DC Amplifier

Completely isolated input and output

Model 114A differential de amplifier features floating input and output both of which are completely isolated from each other. Specifications include 120 db common-mode rejection from dc to 60 cps , gain of 10 to 1000 in 5 steps with continuous variation in between, gain accuracy of 1 per cent from dc to $10 \mathrm{cps}, 3$ per cent to 30 cps , 3 db down at 120 cps . Dc gain stability and linearity is 0.1 per cent. There is less than $5 \mu \mathrm{v}$ noise, and less than 5 drift at gain of 100 or above. Maximum output capability is 10 v at 10 ma.

Cohu Electronics, Inc., Kin Tel Div., Dept. ED, 5725 Kearny Villa Rd., San Diego 11, Calif. IRE Booth No. 3401, 3403, 3405

automatic continuous

NOISE
 FIGURE measurement

The AIL Type 72 Automatic Noise-Figure Indicator permits rapid and accurate evaluation of parameters that effect receiver noise figure. This equipment finds wide use in the laboratory as well as on the production line. Noise figure can be measured over the 30 to 26,000 Mc range when either an AIL Type 70A Coaxial or an AIL Type 70B Waveguide Gas-Discharge Noise Generator is used. Accuracy of measurement is $\pm 0.5 \mathrm{db}$ over a 0 to 20 db range. The Noise Generator furnishes an excess noise output of $15.3 \pm 0.25 \mathrm{db}$.

Detailed literature is available on request.

1345 NEW YORK AVENUE Huntington Station, L. I., N. Y.

CIRCLE 203 ON READER-SERVICE CARD

SCANNING SWITCH

 BY EASCOPMaximum flexibility and ease of servicing have been achieved in the design of this Type AU multiplexer by ASCOP. Building block construction enables easy adaptation of the switch to a wide variety of requirements in systems using electrical time sharing techniques. Switch sections, gear reduction modules, and drive units can be changed rapidly in the field for system alterations and servicing. Reduction units can be installed between switch sections for various speed combinations. Only minutes are needed for replacing or changing any module. Brushes and contact surfaces are readily accessible for inspection. Each contact plate is externally phaseable with respect to shaft position while in operation.

DESIGN DATA

Contact plates per section: 2
Poles per plate: 1, 2 or 3
Contacts per pole: To a maximum of 240
Phase error between poles: $\pm 5 \%$
Leakage resistance: 100 megohms nominal 1000 megohms with more frequent service
Scanning rate: Up to 30 rps
Motors: $60 \mathrm{cps}, 400 \mathrm{cps}$, or D.C.
Duty: Continuous

For Further Information, Write:

Electro-Mechanical Division
Applied Science Corporation of Princeton P.O. Box 44, Princeton, N. J.

Full frequency range covered in one r-f head and use of triodes in all local oscillators are featured in this spectrum analyzer. Frequency range is from 10 mc to 16 kmc by interpolation. Sensitivity from 10 mc to 1000 mc is 85 dbm or better, ranging down to a figure of 50 dbm at $16,000 \mathrm{mc}$. Spectrum resolution is 10 kc measured at 3 db bandwidth points. Regulated plate supplies are employed to provide maximum stability. A panel mounted meter and selector switch is available to monitor line voltage and power supply voltages.

Lavoie Labs., Inc., Dept. ED, Morganville, N.J. IRE Booth No. 3242-43-44

CIRCLE <05 ON READER-SERVICE CARD

Phase Meter
Measures down to 0.01 deg

Model 200AB phase meter features high sensitivity, and high input impedance for the reference input as well as for the signal input. As with other of the Company's instruments, model 200 AB measures phase angles by the multiplying principle which permits measurements to be made accurately in the presence of noise and harmonic voltages. The instrument can be used to measure in-phase and quadrature components of voltage and may be used to measure phase angles in the order of 0.01 deg . The unit, measures from 0 to 360 deg without ambiguity.

The Industrial Test Equipment Co., Dept. ED, 55 E. 11th St., New York 3, N.Y.
IRE Booth No. 3229
CIRCLE 206 ON READER-SERVICE CARD

WITH ALPHA UHP* Liltra High Purity dot material

ONLY THE BEST ARE CHOSEM

ULTRA HIGH PURITY METALS - continuous spectrographic analyses assure purity of elements to $99.999+$.
METALLUREICAL RESEARCH - facilities, trained personnel, and skills available for your development problems.
EXTENSIVE SPECIALIZED EQUIPMENT \& FACIUTIES - for production of specific alloy requirements.
ALLOYING - atmospheric control, basic melts, and other techniques guarantee complete uniformity.
INSPECTION - precise control and measurement of physical dimensions and alloy compositions.
PACKACING - scientifically cleaned, counted, and packaged.
BREAK THROUGH the quality barrier on Dot Material SPECIFY ALPHA UHP*

NEW PRODUCTS at the Ire show

Phase Shifter

Accuracy of 0.1 deg

Type 208 consists of resistant-capacitance phase shifter networks, and electron-tube phase inverter, and an output cathode follower. Phase angle lag can be read directly at 400 cps . Phase range is 360 deg with a maximum error of less than 0.1 deg at 400 cps . Maximum input signal is 25 v rms . Impedance looking into the output is 300 ohms shunting resistance, and $2 \mu \mathrm{f}$ series for dc blocking. Input impedance is about 100 K in series with $2000 \mu \mu \mathrm{f}$ to ground.

Advance Electronics Lab., Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N.J. lRE Booth No. 3606

CIRCLE 209 ON READER-SERVICE CARD

Audio Spectograph

Three visual analyses in $85-12,000 \mathrm{cps}$ range

The Sona-Graph recorder is a sound spectrograph that makes a permanent, storable, aural record in addition to three visual analyses. The display graphs are made in two switched bands, the first from 85 cps to 6 kc , and the second from 6 kc to 12 kc . A characteristic of the recorder is that with slight loss in output amplitude it can be adapted to study subsonic vibrations.

The first of these displays, the Sonagram, relates frequency and intensity to time; the second, the Section, relates intensity (over a wider dynamic range than the first) to frequency at any selected time. The third displays amplitude.

Kay Electric Co., Dept. ED, Maple Ave., Pine Brook, N.J.
IRE Booth No. 2608, 2610
CIRCLE 210 ON READER-SERVICE CARD

LIBRASCOPE

SHAFT POSITION-TO-DIGITAL

CONVERTERS

Equipped with ANTI-AMBIGUITY DOUBLE BRUSH PICKOFFS

Useful in a wide variety of applications. including digital aircraft and missile controls, machine tool controls, digital readout from strip chart recorders, and as the modulator and de-modulator in pulse-code modulated radio links.

GRAY CODE MODEL - Capacity of 8 binary digits (single brush pickoff).
BINARY MODEL--Capacity of 7 to 19 binary digits.
GINARY CODED DECIMAL MODEL
BINARY CODED DECIMAL MODEL
Capacity range from $0-1999$ to $0-35,999$
Units for special codes or
capacities are built to meet specific requirements.

SHOCK ENDURANCE 20 g TEMPERATURE RANGE. - 50° to $83^{\circ} \mathrm{C}$ min. CODE DISCS....... Rhodium plated phenolic PICKOFFS................... Multiple wire brush. Multiple wire brush.
Two pickoffs/channel
ROTATION. Continuous, elther direction.
RUGGED - NON-MAGNETIC-LONG LIFE
MAY BE READ WHILE IN MOTION
SPECIAL CONVERTERS DESIGNED TO MEET YOUR INDIVIDUAL PROBLEMS

Send for illuserated brochure

WESTINGHOUSE, LEADER IN ELECTRONICS, BRINGS YOU

MORE EFFICLENT
 DC

 WHEREVER YOU NEED IT!
 ELECTRO-CHEMICAL PROCESSING

INDUSTRIAL POWER SUPPLIES GROUND AND AIRBORNE POWER SUPPLIES COMPUTERS ELECTROPLATING ARC WELDING

WESTINGHOUSE

"BEEF UP" DC POWER AT LOWER COST!

Now, greater power output at lower cost is obtainable for countless appli-cations-from smallest to heaviest industrial jobs (such as arc welding, electroplating, electro-chemical processing, etc.). Westinghouse silicon and germanium rectifiers give more efficient rectification, making possible important reductions in space, weight, and cost. Ruggedly designed to meet a wide range of operating conditions, they are hermetically sealed and are characterized by their long life, no detectable aging, excellent reliability and mechanical stability. For full information on Westinghouse Semiconductors, mail coupon on the page after next.

SEMICONDUCTORS

BRIDCES

This is a 4-1-1 single-phase full-wave bridge using 303 cells on $5^{\prime \prime} \times 5$ " copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 27 amperes d.c. with convection cooling, or 53 amperes d.c. with forced air cooling at 1000 I.f.m. The primary applications are d.c. power supplies, vibrator and magnet coil supplies, motor control, etc.

This is a 6-1-1 three-phase full-wave bridge using 3:2 cells on $5^{\prime \prime} \times 5^{\prime \prime}$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$ it will deliver up to 133 amperes d.c. convertion cooled, or 330 amperes d.c. with forced air cooling at 1000 I.f.m. The primary applications are welding, electro-plating, chemical reduction, are furnaces, motor drive, battery chargers, etc.

This is a 6-1-6 three-phase full-wave bridge using 32: cells on $5^{\prime \prime} \times 5^{\prime \prime}$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 780 amperes d.c. with convection cooling, or 1980 amperes d.c. with forced air cooling at 1000 l.f.m. The primary applications are electro-plating, battery forming, are furnaces, chemical reduction, motor drive, etc.

This is a 4-1-2 single-phase full-wave bridge using 302 cells on $5^{\prime \prime} \times 5^{\prime \prime}$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 94 amperes d.c. with convection cooling, or 178 amperes d.c. with forced air cooling at 1000 I.f.m. The primary applications are d.c. power supplies, vibrator and magnet coil supplies, motor control, etc.

This is a 4-1-1 single-phase full-wave bridge using 305 cells on $11,2 \times 11,2 "$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 3.2 amperes d.c. with convection cooling. The primary applications are power supplies, relays, solenoids, mag amps, etc.

This is a 6-1-1 three-phase full-wave bridge using 302 cells on $33^{\prime \prime} \times 3^{\prime \prime}$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 61 amperes d.c. with convection cooling, or 132 amperes d.c. with forced air cooling at 1000 I.f.m. The primary applications are d.c. power supplies, vibrator and magnet coil supplies, motor control, etc.

WESTINGHOUSE GERMANIUM TRANSISTORS

WRITE FOR DETAILED SPECIFICATIONS!
Mall Coupon Now

Type	Collector Supply. Voltage Volts	Power Output Milliwatts	Maximum Collector Dissipation (1) $25^{\circ} \mathrm{C}$ Milliwatts	Collector Load Impedance Ohms	Power Gain Decibels	Collector toBase Cutoff Current Micro-amps	Iunction Temperature Contigrade
Class B Applications							
2N59	-9	300	180	250*	30	-15	$+85^{\circ} \mathrm{C}$
2N60	-9	300	180	250*	28	-15	$+85^{\circ} \mathrm{C}$
2N61	-9	300	180	250*	26	-15 \%	$+85^{\circ} \mathrm{C}$
Class A Applications							
2 N 403	-9	30	180	500	34	-15^{+}	$+85^{\circ} \mathrm{C}$
Driver Applications							
2N402	-9	2	180	10.000	39	-151	$+85^{\circ} \mathrm{C}$
*Collector to Collector Load Impedance $+\mathrm{VCB}=$ minus 20 V							

Why do I favor SUPERIOR ELECTRONICS for electron GUN MOUNTS?
 Because this firm

Waveguide Rotary Joints

Broad band operation at high speeds

Series DIC-6500 waveguide rotary joints is of the in-line type and features ranges from 2600 mc to 18 kmc and operation at speeds up to 100 rpm. The joints employ special transducers from rectangular to loaded circular waveguide, producing a pure circularly symmetric TM mode. Because of the purity of the mode, no dissipative mode suppressors are required so that insertion loss is held to a minimum, and there is no phase shift with mechanical rotation.

Vswr is less than 1.5 , insertion loss is less than 0.1 db , and the variation of insertion loss with rotation is less than 0.05 db .

Diamond Antenna \& Microwave Corp., Dept. ED, 7 North Ave., Wakefield, Mass.
IRE Booth No. 3237, 3239
CIRCLE 221 ON READER-SERVICE CARD

Microwave Transition Member

Offers high heat dissipation

Featuring a high heat dissipation rate, this transition member of a microwave transmission line is a high-power waveguide component with a wide bandwidth. In conventional transition construction, the probe has a minimum opportunity to dissipate the heat generated by high power conduction, and the coax insulator tends in time to break down. In place of the round bar customarily placed at the quarter wave point, between the probe and transition sides to aid in heat dissipation, this transition member uses a flat bar at this point. The flat shape allows greater freedom of positioning for a given area. Better impedance matching with minimum loss results, and wider bandwidth becomes possible. Bandwidths up to 40 per cent of center frequency with a standing wave ratio of 1.1:1 have been achieved.
D. S. Kennedy \& Co., Dept. ED, Cohasset, Mass.
IRE Booth No. 2344
CIRCLE 222 ON READER-SERVICE CARD

Looking for a "POT"?

SERIES 341 TEN-TURN PRECISION

POTENTIOMETER

Smaller in diameter than a fountain pen - no longer than a shriveled up Gryllidae Gryllus*, this tiny "por" offers ultimate precision in the smallest package on the market.

Check some of the standard specifications of this precisionbuilt, wire-wound, ten-turn potentiometer:

```
SIZE: 0.55"\times 1.02"
WEIGHT: }10\mathrm{ gms:max.
BACKLASH: Essentially zero
PHASE SHIFT: Less than 0.1 at 400 cps
VIBRATION: 20gs to 2000 cps (3 attitudes)
POWER: }\quad2.5\mathrm{ watts at 40 C,0 watts at 140 C
```

* also known as a cricket

STANDARD MODELS AVAILABLE IN PRODUCTION QUANTITIES
NOW
TODAY FOR CIAL REQUIREMENTS CAN USUALIY BE MET. WRITE
TOLETE INFORMATION CONCERNING THIS AND OTHER MINIATURE WIRE.WOUND, PRECISION POTENTIOMETERS.

Openings exist for highly qualified engineers

NEW PRODUCTS
at the IRE Show

Synchronous Motor

Rotation accurate to $\pm \mathbf{0 . 1} \mathrm{deg}$

Model GS synchronous motor features a constant angular rotation (± 0.1 deg) no load to full load. The motor is provided with an integral start motor, and is capable of operating from a vacuum tube amplifier on signal frequencies from 60 to 3600 cips. The unit will operate single phase in the plate circuit of a single-ended amplifier or as a two-phase motor when driven by a push-pull amplifier, providing up to $1 / 100 \mathrm{hp}$ output. The motor current is about 75 ma per phase. The power input may be as high as 20 w .
Times Facsimile Corp., Dept. ED, 540 W. 5sth St., New York 19, N.Y.

IRE Booth No. 1824
CIRCLE 137 ON READER-SERVICE CARD

Magnetic Recording Test Unit
A modular read-write test system

This read-write system for magnetic tape or drum memoric's measures 11 in . high x 11 in . wide x 9 in. deep. Individual units are entirely transistorized and printed

CIRCLE 138 ON READER-SERVICE CARD \rightarrow

EIMAC FIRST

 Govering the spectrum with reliable

Ceramic Tubes

From audio into super high frequencies, Eimac covers the RF spectrum with modern ceramic tubes. This incomparable ceramic electron tube family - more than one-third of the Eimac line - includes reflex and amplifier klystrons, negative grid fubes, rectifiers, pulse modulators, and receiving tubes. The tubes illustrated are typical of more than 40 Eimac ceramic tube types that are being selected by leading equipment manufacturers for use in all types of applications - from tropo-scatter to industrial heating, from single sideband to pulse.

The advantages of reliable Eimac ceramic tubes include: resistance to damage by impact, vibration, and heat; smaller size; and better processing techniques.

Do it yourself - subject an operating Eimac ceramic fube to impact af our unique display, booths 2409-2412, during the New York IRE Show, March 24-27.

EITEL-MCCULLOUGH, INC. SANB B RUNO C C ALI FORN I A

Eimac First with ceramic tubes that can take it

X 300 A	6K50,000L0
$\times 2508$	X576
250K	X 597
250M	X626
-0,000La	X685C
150,000SG	$\times 693$
170.000LA	

circuit techniques are utilized throughout. The modular units pictured above are, from top to bottom, a 10 bit shift register for parallel-to-serial conversion of incoming data or serial-to-parallel conversion of outgoing data, a ten channel NRZ write-amplifier, a ten channel NRZ read-amplifier, and a regulated power supply. The units are compatible with all other units in the company's line of transistorized pulse programming equipment.
Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 45, Pa.
IRE Booth No. 1311
CIRCLE 139 ON READER-SERVICE CARD

Duplexer Tube

Two megawatt unit for L-band use

The MA-336/7166, first in a series of L-band high power duplexer tubes, is conservatively rated at 2 megawatts peak power and 4 kw average power for con(inuous operation over a minimum :ife span of 500 hr .
Features of the tube include a ruggedized window construction for high reliability under thermal hock or mechanical strain during high power operation. The keepalive structure of the tube makes possible controlled TR leakage energy over 500 hr operation. This is evidenced by a negligible change in the overall noise figure of crystals mounted behind the tube. Overall length of the MA-336 is 7-1/4 in.
Microwave Associates, Inc., Dept.
ED, Burlington, Mass.
IRE Booth No. 3508, 3510
CIRCLE 140 ON READER-SERVICE CARD
< CIRCLE 138 ON READER-SERVICE CARD

LINDSAY STRUCTURE

 application requires only

Lindsay Structure makes possible the prefabrication of enclosures for instruments, testing machines, radio and radar equipment; housings for processing, shielding, large towers and industrial equipment; truck and trailer bodies; and buildings. All shapes and sizes are possible to any desired dimension within $1 / 2$ inch. Lindsay Structure has demonstrated its efficiency in hundreds of different applications, and in all workable metals.
With Lindsay Structure you save the cost of expensive dies and "tooling" up. Production can be started almost immediately ... and assembly handled by workers without special training... and uniformity of finished structures is assured with die-drawn, die-cut Lindsay components to exact size requirements.
And there need be no delay in changing models, sizes, or other details that would normally slow down production - even in the largest Lindsay Structure units.

Make use of Lindsay Structure's 78,085 panel sizes for your housing, enclosure, building or equipment requirements. Write for descriptive folder, or send a single-line drawing for prompt cost estimate.

LINDSAY STRUCTURE DIVISION

INTERNATIONAL STEEL COMPANY

1427 Edgar Street

Evansville 7, Indiana

This line of i-f transformers, series 35 , is designed for transistor circuits. The unit pictured is a typical 455 kc i-f unit. Other transistor i-fs designed for frequencies up to 10.9 mc are similar in appearance but taller.

Aladdin Electronics, Dept. ED, 703 Murfreesboro Rd., Nashville, Tenn.
IRE Booth No. 1816
CIRCLE 225 ON READER-SERVICE CARD

Relay

Stands 500 cps 10 g vibration

Type BHSM-HT relay is rated at 500 cps at 10 g vibration. The unit uses cross-bar palladium contacts, silicone-glass pile up insulators, a welded bracket assembly and frame, Teflon magnet wire, and a Kel-F-Coil bobbin. The relay is designed to operate at a temperature range of -65 to +125 C and will withstand 30 g operating shock or 70 g non-destructive shock.

Available in contact form up to 4 pdt rated 3 amp at 32 v dc or 115 v ac non-inductive. Coils can be furnished up to 130 v dc with a minimum sensitivity of 0.2 w per pole and a maximum coil dissipation of 3.75 w . Approximate weight is 3.25 oz. Approximate dimensions are 1.332 x $0.960 \times 1.643 \mathrm{in}$.

Essex Wire Corp., RBM Div., Dept. ED, 1601 Wall St., Ft. Wayne 6, Ind.
IRE Booth No. 2525

Turn in your slide rule, Smedleyl

Smedley aimed his guided missile at the moon-and scored a bullseye on a farm pond just outside Keokuk. The ducks didn't lay for weeks.
Smedley's mistake: he based his schedule on an over-optimistic delivery date by a supplier of laminations. .. and, as zero hour approached, he had to accept substitute laminations not meeting specifications.
Thomas \& Skinner could have helped Smedley. T\&S handles inquiries promptly . . . quotes realistic delivery dates . . . and then ships on schedule with products meeting customer specifications in every respect. T\&S's entire staff is constantly aware of the importance of handling customer orders, no matter how big or little the order, no matter how big or little the customer. All T\&S customers are VIP's to the T\&S staff.
Specify T\&S laminations for your next project. Write for new lamination catalog, Bulletin L-1057.

SPECIALISTS IN MAGNETIC MATERIALS

Permanent Magnets Magnetic Tapes (a) Laminations 会 and Wound Coros (3)

Thomas ε
 Shinner. men

1157 E. 23rd St., Indianapolis 7, Indiana CIRCLE 227 ON READER-SERVICE CARD

says Slipstick Smith

We beg to differ. Some wound cores may not meet specifications. Some may not arrive on time. Some may never arrive at all! There is a difference, Mr. Smith.

Now consider wound cores from Thomas \& Skinner

Thomas \& Skinner handles inquiries promptly . . . quotes realistic delivery dates . . . and then ships on schedule with wound cores (as well as all T \& S products) meeting customer specifications in every respect. T \& S's entire staff is constantly aware of the importance of handling customer orders, no matter how large or small the order, no matter how large or small the customer. All T \& S customers are VIP's to the T\&S staff.

Specify T \& S OrthoSil(1) Wound Cores for your next project. Write for Bulletin WC-356.

See us at

Booth 2926 I.R.E. Show,
March 24-27

Electronic Measuring Equipment
Twenty-two models will be exhibited

Heading the list of 22 instruments being introduced by this manufacturer at the show are the 120 A and 120 AR oscilloscopes. With a range from dc to 200 kc , the 120 A (cabinet mount) and 120 AR (rack mount) have a sweep speed range of $1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$. They include a X5 sweep expansion on all ranges, with vernier for continuous control. Fifteen calibrated sweeps are provided, in 1-2-5 sequence. Automatic synchronizing is provided on any internal or external voltage; scopes may also be triggered by line voltage. Caliorated identical bandwidth vertical and horizontal amplifiers provide convenient phase measurement.

Other instruments that will be featured are: four microwave sweep oscillators, covering the G, J, X and P bands engineered to speed measurements between 3.95 and 18.0 kmc ; the 721 A transistor power supply having a 150 ma maximum output, with output resistance less than 0.2 ohm ; the 218 A digital delay generator, producing two exact time intervals or pulse delays independently adjustable from 1 to $10,000 \mu \mathrm{sec}$ in $1 \mu \mathrm{sec}$ steps; the 606A signal generator, covering the broad frequency range of 50 kc to 65 mc ; the 340A noise figure meter; enabling a semi-skilled worker to do receiver and component optimizing jobs in a few minutes; the 345A i-f noise source, designed specifically for i-f amplifier noise measurement, includes temperature-limited diode sources operating at either 30 or 60 mc ; the 425 A microvolt meter, a high stability voltmeter which reads voltages of $10 \mu \mathrm{v}$ to 1 v in 18 ranges and currents of $10 \mu \mathrm{mpp}$ to 3 ma .

Some of the other instruments are: the 434A calorimetric wattmeter; the 355 A and 355B 50 ohm attenuators; the P532A waveguide frequency meter; and the 152B oscilloscope differential amplifier.

Hewlett-Packard Co., Dept. ED, 275 Page Mill Rd., Palo Alto, Calif.
IRE Booth No. 2509, 2511, 2513, 2515
CIRCLE 229 ON READER-SERVICE CARD

ELIN POWER
 OSCILLATORS...

to "System-mate" Your Equipment Requirements!

 bridge-type transducers, time correlation, precision 400 cycle gyro testing, process control and preflight missile checkout, ELIN Precision Power Oscillators prove compatible and, in combination with other equipments, readily yield superior systems!

The desirable features of ultra-precise frequency and amplitude stability, low distortion and high output power capacities, make ELIN Precision Power
Oscillators the ideal "System-mate" in these applications, and are derived from an exclusive High-Q LC tuned circuit and a

FREQUENCY (FIXED) - 250 cps . to $15,000 \mathrm{cps}$. VOLTAGE (OUTPUT) - $10,30 \& 100$ volts RMS, all with floating center-tapped output. DISTORTION -0.1% maximum harmonic content, 0.05% maximum AC hum, 0.01% maximum noise. CALIBRATION ACCURACY - $\pm 0.02 \%$ under usual lab ambient conditions*, checked against station WWV as a primary standard. FREQUENCY STABILITY - $\pm 0.5 \%$ maximum, under usual lab ambient conditions* $\pm 0.02 \%$ maximum per ± 10 volts variation in line voltage, $\pm 0.05 \%$ maximum, zero to full load. AMPLITUDE STABILITY- $\pm 0.1 \%$ maximum under usual lab ambient conditions*, $\pm 0.02 \%$ maximum, per ± 10 volts variation in line voltage, $\pm 0.2 \%$ maximum, zero to full load.

Special models operating from other prime power sources, with higher power capacities
and at other frequencies supplied to your specs in cabinet or rack styles. Write today!

- Lab ambient, $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. feg, U.S. Pot. Off.

ELECTRONICS INTERNATIONAL CO.

145 West Magnolia Boulevard, Burbank, California
Special Products Division of International Electronic Research Corporation, Burbank, Callfornia
 standard and miniature sizes in all of the commonly used I.F. frequencies are stocked for immediate delivery. Conventional as well as printed circuit types are available for both vacuum tube and transistorized applications. Original equipment manufacturers will find the K-Tran the ideal choice for new equipment designs thus saving valuable engineering manhours and being assured of a top quality transformer designed by engineers with over 30 years of manufacturing experience in electronic components. The K-Tran also makes an excellent replacement transformer and will give results equal to or better than the original.

AVAILABLE IN THE FOLLOWING FREQUENCIES
CAT. No. CAT. No. Dimensions: $3 / 4^{\prime \prime}$ square $\times 2^{\prime \prime}$ high Printed Crimevit Cypus
Standard
13.PH1 $\quad 12$ H1 ${ }^{262}$ KC Input transformer
$\begin{array}{llll}\text { 13. PH2 } & \text { 12. } & \text { 12. } \mathrm{HZ} 2 & 262 \mathrm{KC} \\ 262 & \text { KC } & \text { Input transiormer }\end{array}$

13-PC1 $\quad 12-\mathrm{Cl} \quad 455 \mathrm{KC}$ Input transformer
$\begin{array}{llll}13 \cdot P C 2 & 12 . C 2 & 455 & \mathrm{KC} \\ \text { 13.PC6 } & \text { Output transformer }\end{array}$
13.PC7 12.C7 455 KC Input transformer for battery radios
$\begin{array}{lllll}\text { 13.PC7 } & 12 . C 7 & 455 & \mathrm{KC} & \text { Input transformer for battery radios } \\ 13 . \text { PC8 } & 12 . \mathrm{C8} & 455 & \mathrm{KC} & \text { Output transformer for battery radion }\end{array}$

13.PC10 $\quad 12 . \mathrm{Cl} 10 \quad 455 \mathrm{KC}$ Output transformer for AC-DC radios

$$
\begin{array}{lll}
\text { 13.W1 } & 1500 & \mathrm{KC}
\end{array} \text { Input and interstage transformer }
$$

$\begin{array}{llll}\text { 13.W1 } & 1500 & \mathrm{KC} & \text { Input and interstage } \\ \text { 13.W2 } & 1500 & \mathrm{KC} & \text { Output transformer }\end{array}$
$\begin{array}{llll}\text { 6203.PC } & 6203 & 4.5 \text { MC } & \text { Input or interstage transformer } \\ \text { 6204.PC } & 6204 & 4.5 & \text { MC } \\ \text { Discriminator transformer }\end{array}$
$\begin{array}{lllll}6204 \cdot \mathrm{PC} & 6204 & 4.5 \mathrm{MC} & \text { Discriminator transformer } \\ 6205 \cdot \mathrm{PC} & 6205 & 4.5 \mathrm{MC} & \text { Ratio } & \end{array}$
$6205-\mathrm{PC} \quad 6205 \quad 4.5 \mathrm{MC}$ Ratio detector transformer
1463-PC $1463 \quad 10.7$ MC Input or interstage transformer
1464.PC $1464 \quad 10.7 \mathrm{MC}$ Discriminator transformer
$\begin{array}{llr}\text { 1465-PC } & 1465 & 10.7 \text { MC } \\ \text { 6230.PC } & 6230 & 44 \text { MC detector transformer }\end{array}$
$\begin{array}{llll} & 6230 \cdot \mathrm{PC} & 6230 & 44 \mathrm{MC} \\ \text { TV Converter I.F. TransformeI } \\ \text { 6231.PC } & 6231 & 444 \text { MC } & \text { TV First I.f. Transformer }\end{array}$

$\begin{array}{llrl}\text { 6232.PC } & 623 & 42.5 \mathrm{MC} & \mathrm{N} \text { second I.F. Transformer } \\ 6233 \\ 6234 . \mathrm{PC} & 6233 & 42.5 \mathrm{MC} & \mathrm{NV} \text { third I.F. Transformer } \\ 6234 & 44 \mathrm{MC} & \end{array}$
Available Through Your Local Distributor
Miller Quality Products are recognized by the entire electronics industry as representing the finest in workmanship, performance, and dependability.
BUY WITH CONFIDENCE - BUY MILLER.
world over.
'Manufactured under K -Tran patents of and by Automatic Manufacturing Corp., Division of General Instrument Corporation.

Miniature 1.F. Transformers for printed circuit transistorized applications. These miniature I.F. Transformers have tuned primary and untuned secondary windings. Proper impedance match between primary and secondary insures optimum performance.
Dimensions:
${ }^{\prime \prime}$ square $\times 3 / 4$ " high
CAT. NO. FREQ. SPECIFICATIONS
$2031455 \mathrm{KC} \quad 10 \mathrm{~K} 0 \mathrm{hm}$ pri. to 600 hm Sec., Input $\begin{array}{lll}2032 & 455 \mathrm{KC} & 10 \mathrm{~K} \mathrm{hm} \text { pri. to } 10000 \mathrm{hm} \text { Sec., Output } \\ 2041 & 455 \mathrm{KC} & 25 \mathrm{~K}\end{array}$ $\begin{array}{llll}2041 & 455 \mathrm{KC} & 25 \mathrm{~K} 0 \mathrm{hm} \text { pri. to } 600 \mathrm{hm} \text { Sec., Input } \\ 2042 & 455 \mathrm{KC} & 25 \mathrm{~K} & \mathrm{hm} \text { pri. to } 1000 \mathrm{hmm} \text { Sec., Output }\end{array}$ $2051455 \mathrm{KC} \quad 100 \mathrm{~K} \mathrm{hm}$ pri. to 1000 Ohm Sec., Input
Sub-Miniature I.F. Transformers for printed circuit transistorzed applications. To our knowledge the smallest I.F. Transformers in existence. Ferrite cup core construction permits the use of extremely small shields without adversely affecting transformer operation. A high impedance, tapped primary winding coupled to a low impedance secondary provides optimum energy transter between stages.
Dimensions: $3 / 8$ " square $\times 5 / 8^{\prime \prime}$ high
CAT. NO. FREQ.
9.C1 $455 \mathrm{KC} \quad 25 \mathrm{~K} \mathrm{Ohm}$ pri. to 6000 Om Sec , Input $9 . \mathrm{C} 2455 \mathrm{KC} \quad 25 \mathrm{~K}$ Ohm pri. to 1000 Ohm Sec., Output
Also a sub-miniature I.F. Transformer for conventional circuitry using vacuum tubes. A 455 KC intermediate frequency transformer which has all the desirable features of the strough the use of a ferite cup core these sub-miniature. IF Trough she use of a ferrite cup core these sub-miniature previously otained only in larger IF assemblies. For ACDC previousty obained
Dimensions: $1 / 2^{\prime \prime}$ square by $1^{1} / 2^{\prime \prime}$ high
NOT. NO.

CAT. NO.	FREQ.	USE
10.C1	455 KC	Input transformer
$10 . C 2$	455 KC	Output transformer

Literature on any of the above I.F. Transformers or our latest general catalog is available on request.
Over 2,000 Radio \& TV parts distributors to serve you the

NEW PRODUCTS at the IRE Show

Cord Mounted Switch

Rated at 250 ma

Designed for numerous remote control applications, this push button switch, enclosed in a handle, provides a cord mounted or pendant switch. Housing is nickel plated brass or black phenolic. The red or black push buttons are nonlocking. The switch is rated at 250 ma , non-inductive load, ac 30 w maximum.
Switcheraft, Inc., Dept. ED, 1328 N. Halsted St., Chicago 22, IIl.
IRE Booth No. 2228
CIRCLE 232 ON READER-SERVICE CARD

Tape Recorder

Three motor drive, 7.5 and 15 ips speeds

This tape recorder, Type 800, has a $10-1 / 2 \mathrm{in}$. reel capacity with speeds of 7.5 and 15 ips. Equalization automatically switched with speed change. Signal-to-noise ratio is 60 db at 1 per cent distortion. Frequency response is 30 to $20,000 \mathrm{cps} \pm 2 \mathrm{db}$ at 15 ips . The recorder can accommodate up to four full or $1 / 2$ track. With a 3 motor drive, the unit features individually and functionally illuminated push button relay controls, provision for remote control, and a tape edit button which allows easy run-off of unwanted tape.
Presto Recording Corp., Dept. ED, P.O. Box 500, Paramus, N.J.
IRE Booth No. 1211
CIRCLE 233 ON READER-SERVICE CARD

Mixer Crystal

Improved noise figure in C and X band

The MA-423A is a point contact silicon mixer diode which requires no dc bias. It is mechanically interchangeable with other diodes of the 1N23 series, but provides improved receiver noise figures of 7 db or better when used with a 1.5 db i-f strip at 30 mc . For radar receivers which employ image termination techniques and which are designed to use 1 N 23 C or 1 N 23 E diodes, circuit adjustment of i-f impedance match, local oscillator drive, and r-f match may be necessary to derive maximum receiver noise figure improvement with the MA-423A.
Microwave Associates, Inc., Dept. ED, Burlington, Mass.
IRE Booth No. 3508, 3510
CIRCLE 234 ON READER-SERVICE CARD
Sweep Generator
Checks response to 0.01 db

Model 1099 sweep generator, covering the 100 kc to 20 mc range with crystal markers throughout this range, enables response measurements to be made with a discrimination of at least 0.01 db . A stabilized output level of 3 v max is provided, and the instrument is supplied with detector probes on both input and output. With these probes a greatly amplified indication can be obtained of the deviation of an amplifier frequency response from level. Measurements are largely independent of input level changes.
Marconi Instruments, Dept. ED, 111 Cedar Lane, Englewood, N.J. IRE Booth No. 3315, 3317

IN A HURRY FOR TEFLON* INSULATED High Temperature Wire \& Cable?

YOU GET IT FASTER FROM - imet. erup

MAGNET WIRES • HOOK-UP WIRES

COMPLETE

SERVICE: SUPER-TEMP'S management is not the ivory tower typel They are always available for personal discussion and advice. Your order, small or large, receives immediate interest, attention and continuous supervision at all production stages.
"KNOW-HOW": Years of experience, talent and craftsmanship at all levels are at your disposal SUPER-TEMP's advanced engineering skills are you assurance of high precision, dependable products.

TESTING FACILITIES: Quality production is insured by every conceivable environmental and physical test in SUPER-TEMP's modern research laboratory test in SUPER-TEMP's modern research laboratory
equipped with the latest scientific testing instruments.

PRODUCTION EQUIPMENT: SUPER.TEMP is now and will continue to be the industry's most completely integrated plant for all phases of wire and cable production. High speed, modern machines assure volume production with sustained reliability.

Send for 36 Page Cafalog
Contains valuable information and specifications.
*DuPont Polytetrafluoroethylene

CABLES • TUBING

SHIELDED AND JACKETED MINIATURE CABLES
Coax, Single Conductor and Multi-Conductor Constructions All Wires, Braided Shieldings and Jacket Specifications Available

TEFLON INSULATED MAGNET WIRES

Nos. 14 to 50 AWG Single, Heavy, Triple and Quad Thicknesses

TEFLON INSULATED HOOK-UP WIRES

Tape wrapped and extruded. All color codings including sfripes
SILICONE ENAMEL INSULATED MAGNET WIRES
Nos. 14 thru 50 AWG Single and Heavy Insulations
SPECIALTY WIRES AVAILABLE USING TEFLON, GLASS \& SILICONE
TEFLON TAPE (Unsintered) - SUPER-TEMP welcomes your inquiries on our new Teflon Tape production facilities. Extra long lengths available.

American Super-Temperature Wires, Inc.

20 West Canal Streat, Winooski, Vormont - Phone University 2-9636 General Sales Office: 195 Nassau Street, Princeton, N. J. Phone Princeton 1-4450 Agents in Principal Electronic Manufacturing Areas

Now

An all-around pressure-tight seal for hinged-cover transit cases with LINK-LOCK and HINGE-LOCK

No. 3 LINK-LOCK

No. 3 HINGE-LOCK

SIMMONS
Two HINGE-LOCK and two LINK-LOCK Fasteners provide all-around sealing pressure on this container manufactured for the U.S. Navy by the Bonded Structures Division, Swedlow Plastics Company.

The new Simmons HINGE-LOCK, used in combination with LINK-LOCK, provides an even, pressure-tight seal on equipment containers and transit cases with hinged covers. A half-turn applies pressure to both types of fasteners. When pressure is released HINGE-LOCK becomes a free-operating hinge, and LINK-LOCK disengages to permit opening.

Originally developed by Simmons Fastener Corp. for the Engineering Department of Swedlow Plastics Company, Bonded Structures Division, HINGE-LOCK is similar in principle and appearance to LINK-LOCK. Both are available in light and medium duty sizes as matched hardware. LINKLOCK is also available in a higher-capacity, heavy-duty size.

SEND TODAY for complete data, including dimensions, capacities. Engineering service is available... Outline your requirements. Samples on request.

Visit us at Booth 1020, Design Engineering Show, International Amphitheatre, Chicago, April 14-17, 1958
See our 8 page catalog in Sweet's 1958 Product Design File
FASTENER CORPORATION 1763 North Broadway, Albany 1, New York QUICK-LOCK • SPRING.LOCK • LINK-LOCK • HINGE.LOCK • ROTO-LOCK • DUAL-LOCK CIRCLE 237 ON READER-SERVICE CARD

NEW PRODUCTS at the IRE show

Copper Clad Laminates

Epoxy paper and epoxy glass bases
Two copper clad laminates, types 11574 and 11558, will be featured. Type 11574 self-extinguishing epoxy paper laminate has: flame retardency; outstanding cold punching; high mechanical strength; and high insulation resistance. Type 11558 cyanide proof copper clad epoxy glass laminate features: resistance to cyanide plating solutions; resists cleaning solvents such as MEK; and it withstands thirty seconds plus in 500 F solder pot. A high mechanical strength allows use of minimum thickness in fabricated parts.

General Electric Co., Chemical and Metallurgical Div., Dept. ED, Coshocton, Ohio.
IRE Booth No. 2914
CIRCLE 238 ON READER-SERVICE CARD

Welding Attachment Welds wires of 8 or 10 gage

A heavy-duty handpiece accessory for precision welders, the UT-865 is capable of welding wires of 8 or 10 gage and smaller. The accessory is adaptable to existing weldmatic precision welder models and handles up to 500 watt seconds of energy. It is especially useful in heavygage thermocouple welding, and in performing general heavy-duty precision welding in hard-to-reach locations.
The handpiece provides adjustable pressure ranging from 1 to 25 lb and has a 3 to 1 mechanical advantage. The electrodes are pressure sensitive, firing only when a pre-set pressure is reached, regardless of electrode spacing or configuration.
Unitek Corp., Weldmatic Div., Dept. ED, 380 N. Halstead Ave., Pasadena, Calif.

IRE Booth No. 4417
CIRCLE 239 ON READER-SERVICE CARD

AMCO MODULAR SYSTEM FOR IMSTRUMENT ENCLOSURE

Amco provides the most complete system for custom instrument enclosure, at mass production cost! One of many exclusive features of the Amco system is provision for internal mounting (as seen above) of Amco standard $19^{\prime \prime}, 38^{\prime \prime}$, and $57^{\prime \prime}$ wide panels.
Panels, frames, turrets, blowers, bench cabinets, chassis slides, these and the other standardized Amco components do the entire enclosure job . . . with ease, versatility, and reasonable cost. Conform to EIA (formerly RETMA) mounting provisions. Write for full information. You'll see why Amco is years ahead.

SEE US AT THE IRE SHOW BOOTHS 1919 AND 1921

ENGINEERINGCO.
7333 W. Ainslie St. - Chicago 31 CIRCLE 240 ON READER-SERVICE CARD

Oscilloscope

Small $6 \times 8 \times 13$ in. unit

A portable, relatively inexpensive unit, the Serviscope features balanced dc coupled amplifiers giving flat response to $6 \mathrm{mc}(-3 \mathrm{db})$ and having a rise time of better than $0.06 \mu \mathrm{sec}$ for less than 2 per cent overshoot. Both automatic sync and precision trigger level are provided as well as TV field and frame sync selectors. Voltage and time calibrating signals facilitate quantitative measurements and X- expansion, about the center, gives a 50 cm effective trace length. Eighteen sweep speeds and an attenuator permit time and voltage measurement over the ranges $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$ and from 20 mv to 250 v , ac or dc respectively. The unit weighs 16 lb and measures $6-1 / 2 \times 8-1 / 2 \times 13-1 / 2 \mathrm{in}$. overall.

Scopes Co., Inc., Dept. ED, 22-02 Raphael St., Fairlawn, N.J.
IRE Booth No. 2815
CIRCLE 241 ON READER-SERVICE CARD

Testing Chamber

Accurately tests capacitor coefficients

The FB-411 capacitor coefficient testing chamber features adjustable indicating temperature control for the range of +150 to -70 C , with proportioning action for heating or cooling demand, whichever is being controlled. A stainless steel inner chamber is furnished for encasing capacitors being tested. Movable dampers are provided to permit rapidly circulating air through this inner chamber for rapid cooling or heating effect. At stabilized conditions, the movable dampers are kept closed, and a very small circulator within the member circulates the air to prevent stratification. This equipment permits stability of items on test to as close as $\pm 1 / 10 \mathrm{~F}$, as measured with static load conditions. The refrigeration equipment employs Freon-13 and Freon-22 coolants in a patented arrangement.

Conrad, Inc., Sub. Crampton Mfg. Co., Dept. ED, 141 Jefferson St., Holland, Mich.
IRE Booth No. 3834
CIRCLE 242 ON READER-SERVICE CARD

Curves for extended-voltage operation vary between models. Request Specification Sheet 3022 for additional curves.

Model 212AM shown above has less thon .0005 volt hum; regulation is within 0.1% or 0.02 from no load to full load; ouppui impedance is less than 1.0 ohm at 40 KC. dropping off to less than 0.01 ohm at low audio frequencies. A modulation inpul is provided.

RELIABLE, DEPENDABLE...

this power pack will furnish almost three times its rated maximum voltage

The extra margin of safety built into every E / M Power Pack is no idle boast. E/M's smallest Power Pack, Model 212A, is rated at 0100 V dc and $0-100 \mathrm{ma}$. . . yet it can and will deliver almost three times its rated maximum voltage at reduced current. What's more, opcration beyond its rated voltage is a practical, safe performance fcature.

Notice too, that within normal operating limits, 100% rated current is always available . . . even at a fraction of a volt.

But that's not all . . . for automatic test facilities, Regatron Programmable Power Packs have provisions for the simplest remote control system known-a variable resistor.

CIRCLE 243 ON READER-SERVICE CARD

STIPPER Mनомите anma

 standard $31 / 8^{\prime \prime}$ mounting. The initial usage

Model K-165 of the Automatic Pulse Timer was for a difficult instrumentation problem encountered on test aircraft-timing the pulses from a fuel flow transducer and thus determining specific fuel consumption. It successfully replaced a complex and unreliable method.
The Automatic Pulse Timer incorporates an uni-directional Stepper Motor along with complimentary gears, cams, solenoids, switches, an indicator light and-for an accurate independent time base-a stop watch. It is designed to visually record the lapsed time of an occurance of a specific number of electrical impulses. The Pulse Timer can count pre-selected quantity of 2 to 60 pulses, having a uniform or variable rate up to 25 pulses per second.
In this application the combined accuracy of the fuel flow transmitter and the automatic pulse timer is better than 1%, and of this the timer contributes essentially no error. When the broad input requirements are available, the unit can be used for timing pulses regardless of the source from which they may originate.
DETAILED OPERATIONAL SEQUENCE IS AVAILABLE UPON REQUEST.

STEPPER MOTORS corporation

7445 West Wilson Avenue - Chicago 31, Illinois

- WEST COAST FACILITY 11879 W. FIORENCE AVE. . . CULVER CITY, CALIF

NEW PRODUCTS at the IRE Show

Computing Transfer Oscillator

Measures cw and pulsed frequencies

A computing transfer oscillator, model 7580 , which measures cw and pulsed frequencies using the harmonic multiplying factor, will be introduced. The instrument extends the range of the companion 10 mc Eput meters to beyond 12 kmc . Accuracies are in the order of 3 parts in 10°.

A nomograph mechanism determines and displays the harmonic number of the fundamental at zero-beat against the unknown. The harmonic number is preset into two built-in decimal counting units which scale the fundamental so that the associated counter presentation is a directdigital reading of the unknown. The transfer oscillator has a built-in crystal detector, harmonic generator, and tuning stubs for maintaining input sensitivity.
Beckman Instruments, Inc., Berkeley Div., Dept. ED, 2200 Wright Ave., Richmond 3, Calif. IRE Booth No. 3416, 3418

CIRCLE 245 ON READER-SERVICE CARD

Cabinets and Racks
Of magnesium alloys

Utilization of corner castings and extrusions in the fabrication of control and instrument cabinets, racks, and chassis are featured. Emphasis is placed on late developments in fabricating light-weight metals such as aluminum and thorium based magnesium alloys.

Falstrom Co., Dept. ED, Falstrom Court, Passaic, N.J.
IRE Booth No. 1116

CIRCLE 247 ON READER-SERVICE CARD

Perfect for

 compact RF - equipment . . .These tiny variable capacitors provide the ideal solution to compact design problems. Requires just $5 / /^{\prime \prime}$ x $34^{\prime \prime}$ panel area-the longest model extends only $117 / 64^{\prime \prime}$ behind panel. Soldered plate construction, oversized bearings, and heavily anchored stator supports provide extreme ri-gidity-torque is steady-rotor stays "put" where set! Bridge-type stator terminal provides extremely low inductance path to Both stator supports. Nickel-plated rotor con-tact-steatite end frames DC-200 treated. Single section, butterfly. and differential types available.

SPECIALS-Johnson Minialure Air Variables are available in production quan. tities with the following features: 1. Locking bearing. 2.180° stop. 3. Various shaft extensions. 4. High torque. 5 . Silver or other platings

For complete information on these miniature capacitors or other Johnson electronic components-write for your free copy of our newest components catalog.

CIRCLE 248 ON READER-SERVICE CARD

Backward Wave TWT

Narrow band, voltage tunable types

Available for S and X bands, the BA-1 and BA- 2 backward wave traveling wave tube amplifiers find use as voltage tunable filters, possessing between 10 and 25 db gain. The narrow band characteristic makes possible their use as pre-selectors in wide-band receivers. Specifications for the BA-1 include: frequency range, $2.4-3.6 \mathrm{kmc}$; bandwidth, 0.1-1.0 per cent; magnetic field, 600 gauss; capsule length, 15 in . and a net weight of 1 lb . The BA-2, available for 8.2 to 12.4 kmc use, has similar characteristics.

Huggins Labs., Inc., Dept. ED, 711 Hamilton Ave., Menlo Park, Calif.
IRE Booth No. 3927, 3929
CIRCLE 249 ON READER-SERVICE CARD

True RMS VTVM
3 per cent accuracy for 5 cps to 500 kc

Model 900 true rms vacuum tube voltmeter reads cither true rms or average value of input voltage as selected by front panel switch. Frequency range is 5 cps to 500 kc . Seventeen ranges cover 0.0015 to 300 v full scale. Input resistance is 10 meg for all ranges. Input capacitance is approximately $20 \mu \mu$. The peak voltage rating in 5 times peak value of sine wave required for full scale meter deflection. Accuracy is 3 per cent for any signal whose frequency components are between 5 cps and 500 kc . The voltage at output terminals is proportional to instantaneous square of input voltage. Output voltage at full scale meter deflection is approximately 75 mv .

John Fluke Mfg. Co., Inc., Dept. ED, 1111 W. Nickerson St., Seattle 99, Wash.
IRE Booth No. 3413
CIRCLE 250 ON READER-SERVICE CARD

NEW ST-73X

"SHOCK MOUNTED" QUARTZ CRYSTAL
The Bulova ST-73X need never be babied. Effective new shock mounting and traditional Bulova manufacturing precision result in a rugged, extremely stable, frequency determining element for missiles, aireraft and other applications involving extreme environmental problems.
Where frequencies must be maintained with ultra-reliable stability under high shock and temperature conditions, you'll find no allequate substitute for Bulova quality.
THE ST-73X FEATURES: Frequency Range from 16 KC through 350 KC , with lower frequencies possible in holders of different configuration; Shock Tests of 100 G ; Dynamic vibration tests met per MIL-T-5422, MIL-E-5272 and MIL-E-5400 without adverse results; Storage Temperatures over a range of $-65^{\circ} \mathrm{C}$. to $+1355^{\circ} \mathrm{C}$. can be coupled with an operation temperature range of $-5.5^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.; Low excursions of frequency ($\pm .015^{\prime}$) over this range.
Precision Bulova Quartz Crystals are now available in quantity for frequencies from 16 KC and lower to 100 MC and above.

Bulova

$$
w a t c h c o m p a y
$$

Electronics Division
Woodside 77, N.Y.

Write Dept. A-738 For Full Information and Prices on Quartz Crystals

TELL YOUR PERSONNEL MANAGER ABOUT ELECTRONIC DESIGN'S "CAREER'S SECTION"

If your company is trying to attract skilled electronic design, development or research engineers, tell your Personnel Manager about ELECTRONIC DESIGN. Here is a concentrated audience of 25,000 engineers ready to read about the advantages offered by your plant.

Remember that more than 5,500 ELECTRONIC DESIGN readers inquire every issue-many will be interested in your job opportunities.

You can reach them in ELECTRONIC DESIGN'S
"Career's Section."

NEW PRODUCTS at the IRE show

VHF Receivers

35 to 150 mc range
Two VHF panoramic receivers designed to provide coverage from 35 to 150 mc have been added to the Trak line of receivers. All models feature three inductor-tuned rf stages in a double-superheterodyne circuit providing greater than 60 db attenuation of spurious responses and noise figures down to 4.5 db .

Models PAN-1D and PAN-1E, which cover the upper part of the band, have a 5 in . crt to display received signals logarithmically, with a dynamic range of 60 db as an 8 to 1 variation in observed amplitude. A precision marker circuit permits frequency measurements of signals to within 1 per cent accuracy. Model PAN-2, sweeping the lower part of the range, offers both an externally operated step marker and calibrated adjustable band edges which control upper and lower sweep limits individually. Any 5 mc segment of the band can be displayed across the full width of the crt.

CGS Labs., Inc., Dept. ED, 391 Ludlow St., Stamford, Conn.
IRE Booth No. 1310, 1312
CIRCLE 252 ON READER-SERVICE CARD

Servopot

Furnished completely aligned

This servopot is an integral combination of a two-phase instrument servomotor, gear reduction, slip clutch, and precision potentiometer. The instrument eliminates the need for mounting, testing and aligning separate units. The slip clutch is factory adjusted to permit servo operation into potentiometer stops without damage. Standard pots feature 0.5 per cent linearity and are available with resistances from 35 to 80,000 ohms. Single, multi-turn, and non-linear models are available.

Diehl Mfg. Co., Dept. ED, Finderne Plant, Somerville, N.J
IRE Booth No. 2237
CIRCLE 253 ON READER-SERVICE CARD

LOW NOISE

AC AMPLIFIER

has selectable bandwidths and a 400 megohm, 3 mmf input

VERSATILITY teams up with high input impedance in this new, improved broadband amplifier. Used as a general purpose preamplifier or as an isolation amplifier, it fits neatly in scores of tests at both audio and ultrasonic frequencies.

TYPICAL applications are: vibration and noise studies, work with accelerometers and hearing aids, and pulse amplification. A 5 -volt 50 -ohm output is provided for driving oscilloscopes, sound level meters, and pen recorder power amplifiers.

FEATURES of the Model 102B are: accurate decade gains of 0.1 to 1000 ; selectable bandwidths of 2 cps to 150 kc or to 1.7 mc ; noise below 10 microvolts with 150 kc response, and below 20 microvolts with 1.7 mc response.

Two very low capacitance input probes are available: $5 \mathrm{mmf}, 2 \mathrm{cps}$ to 150 kc response; and $20 \mathrm{mmf}, 2 \mathrm{cps}$ to 1.7 mc response.

NEW CATALOG B gives detailed data on the Model 102B and all other Keithley Instruments and accessories. Your copy will be sent promptly upon request on your company letterhead

KEITHLEY
4
INETRUMENTS. INC.

CIRCLE 254 ON READER-SERVICE CARD

If it's

 TOP-QUALITY INSULATION you need in TEFLON ${ }^{\circ}$

Es
o.othen you need

NOW AVAILABLE: Top-quality wire-coatings of "Teflon," in wall-thicknesses from 0.030" to $0.225^{\prime \prime}$; all sizes of rod from $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$, to nearest 0.001 " at no extra cost.

Here's what you get in wire insulations by Chemplast:

- maximum physical and electrical properties of "Teflon" . . . Chemplast coated wire, made by our own special process, uses high molecular weight "Teflon" exclusively.
- EXCEPTIONAL CONCENTRICITY of coating around wire.
- CONTROLLED TIGHTNESS of coating to wire.

Here's what you get in rod from Chemplast: -STRESS-RELIEVED ROD . . . no further treatment necessary.

- NO CONTAMINANTS . . . snow-white color.
- ANY LENGTH . . . normally supplied in 12-foot lengths, but we'll ship it any length you say. And in all Chemplast products for the electronics industry:
MADE FROM VIRGIN "TEFLON" . . . moct AMS 36518 and MIL-C-17B specifications.
IMMEDIATE DELIVERY on all sizes.
Chemplast also supplies tape, tubes, sheets, and molded shapes of "Teflon." Write torlay for a prompt quotation.

GH゙GMDRASEINC.

3 CENTRAL AVE., EAST NEWARK, NEW JERSEY
TEFLON ts the Du Pont Company'strade-marh for its tetrafuoroethylene resins.

Motion Testing System

Complete system for wide variety of needs

A complete sine-wave and complex motion testing system will be exhibited which will include a model T888 high output wide-band amplifier, model TEMC control console (shown), and a model C10 vibration exciter featuring the Unimode suspension of the moving element assembly. Designed for high g acceleration tests on relatively light specimens, the system is capable of vibrating sinusoidally 102 lb to 10 g ; 42 lb to 20 g and 22 lb to 30 g . Random motion testing is attained by the simple addition of a T67 or T88 compensation console. Capable of 850 lb rms force, the C 10 will vibrate 67 lb to 10 g rms with 30 g peaks; 25 lb to 20 g rms , 60 g peaks; and 11 lb to $30 \mathrm{~g} \mathrm{rms}, 90 \mathrm{~g}$ peaks.

Textron Inc., MB Mfg. Co. Div., Dept. ED, 781 Whalley Ave., New Haven, Conn. IRE Booth Nc. 1723, 1725

CIRCLE 256 ON READER-SERVICE CARD

Transistors
For computer applications

Four germanium alloy transistors designed for computer applications will be among the semiconductor devices exhibited by this company. Designated types 2N312, 2N356, 2N357, and 2 N358, the units feature rapid switching, high constant beta characteristics, and excellent leakage stability. The transistors have base-off-thecan construction for applications where it is necessary to isolate all elements.

Sylvania Electric Products, Inc. Dept. ED, 1740 Broadway, New York 19, N.Y.
IRE Booth No. 2402, 2408, 2501, 2507
CIRCLE 257 ON READER-SERVICE CARD

LOOK TO TOBE FOR PROGRESS

electronic interference
 filters

TOBE brings unequalled experience to the solving of your filtering problems. TOBE'S advanced designtechniques, and the technical data accumulated by TOBE filter specialists over the years, meet your problems with solutions that are quicker, more efficient, and more reliable. For all your filtering needs, look to TOBE deutschmann, the oldest name in interference filters.
tobe filterettes, available in wide range of ratings, sizes and mounting styles, are engineered to operate under the most severe environmental conditions.

Tobe Exclusives:

Feed-thru capacitor construction in filterettes.

Miniaturization with maximum quality.

Guaranteed attenuation char-acteristics-under full-load operating conditions.
: We invite inquiries on specific applications. The services of our engineers are always available. Write tobe-deutschmann Corporation, Norwood, Mass., the acknowledged authority on electronic interference-manufacturers of "FILTERETTES".
"TTHINK SMALLTHINK MICRODOT'"

Reliability and high performance with a minimum of size and weight. Proven by applications in military and commercial fields, one million combinations of Microdot micro-miniature coaxial cables and connectors are available from stock. Assemblies made by the exclusive Microdot technic to assure prompt delivery on standard and custom designs. Detailed 36 page catalog on request.

microdot

For micro-miniaturization, "Think SmallThink Microdot." Our sales engineers are located in all major cities to readily assist you in special design and standard applications.
microdot, inc. 220 pasadena ave. so. pasadena, calif.
Visit Our Exhibit at the 1.R.E. Show - Booths 2101-2103

Prepared by Guerin, Johnatone, Jeffries, Inc.
for MICRODOT. INC.
CIRCLE 259 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Attenuators

Feature low noise level

The resistive elements and contacts in these attenuators are embedded in a special tough, glass-fiber plastic compound which provides protection against extreme humidity, mechanical shock, and wide temperature variations. Brushes are secure, so they cannot trip. The switching noise level is kept extremely low.

International Resistance Co., Dept. ED, 401 N. Broad St., Phila., Pa.
IRE Booth No. 2821, 2825
CIRCLE 260 ON READER-SERVICE CARD

Thermal Time Delay

For airborne applications

The H series of thermal time delay relays are designed for airborne or other military applications. They will operate under vibration to 500 cps at 10 g and shock up to 50 g . Factory preset from 3 sec to 3 min , the hermetically sealed relay will operate at altitudes to $70,000 \mathrm{ft}$. They are ambient temperature compensated from -65 to +125 C . The spst normally open or normally closed contacts are rated at 3 amp 120 v ac or 2 amp 32 v dc resistive loads. Heater voltages are from 5 to 125 v ac or dc with standard 6.3 , 26.5 or 117 v types.

Curtiss-Wright Corp., Dept. ED, Wood-Ridge,

N.J.

IRE Booth No. 1327
CIRCLE 261 ON READER-SERVICE CARD

Standoff Terminal

Operates at 1000 C temperatures

This insulated standoff terminal can operate in the high temperature region of 1000 C and still maintain its electrical function. The terminal will also operate in an environment exposed to nuclear bombardment. High strength alumina is used as the insulator, permitting the terminal to withstand greater than 0.05 lb -ft impact on the

When Precision Counts... CIRCON INSTRUMENT SCREWS
\star Precision from Head
to Thread
Stainless Steel or Brass
\star
\star Largest Stock of Miniature Hardware
\star Immediate Shipment

Check These Dimensions on
Fillister Head Screws

SIZE	Threads Per Inch	Major Diam.	Pitch	Minor Diam.		Pitch	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { inread } \end{aligned}$
000	120	0.034	0.0286	60.02	260	0.00833	0.00400
00	90	0.047	0.0403	0.03		0.01111	0.00721
0	80	. 060	- 0519		438	01250	- 000812
1	72	. 073	3.0640	40 05	550	. 01389	- 00902
2	56	086	- 0744	44.06	628	. 01786	. 01160
3	48	. 099	9. 0855	5 . 07	19	. 02083	. 01353
4	40	. 112	2.0958	58.07	795	02500	. .01624
SIZE	Hear Diam.	Height D of Head	$\begin{gathered} \text { Depth W } \\ \text { of } \\ \text { Slot } \end{gathered}$	Width of Slot		Tap Drill	Body Drill
000	. 056	. 031	. 014	. 012		$71(.026)$	\#63(.037)
00	. 068	. 038	. 014	023		$65(.035)$	\#55(.052)
0	. 090	. 050	. 022	025		64 (.047)	\#51 (.067)
1	. 111	. 062	. 024	. 027		53 (.059)	\#47 (.078)
2	. 132	. 073	. 029	030		$50(.070)$	\#42 (.093)
3	. 153	084	. 035	. 032		47(.078)	\#37 (.104)
4	. 174	. 096	. 040	. 034		43(.089)	\#31 (.120)

All Tolerances are per AN and MIL Specs. OR BETTER.
We solicit your special and non-standard requirements

Representatives in United States and Canada

COMPONENT CORPORATION
Santa Barbara Municipal Airport Goleta, California
Telephone: Woodland 7-1113

Free! Quartz catalog

19 FACT-PACKED PAGES ON CLEAR AND TRANSLUCENT TYPES

YOU'LL FIND complete information on fused quartz including discussions on mechanical strength, low coefficient of expansion, and its electrical and chemical properties. Graphic comparison of the ultraviolet, visible and infrared transmission of fused quartz and various glasses. It explains why fused quart\% does most jobs better in laboratories and industry.

G-E FUSED QUARTZ CATALOG

 completely covers the physical sizes available firom Ceneral Flectric- plus:- Single. double bore. and capillary tubing
- Ingots, plates and disis's
- Immersion thermocouple and combus. tion tuble's
- Laboratory quartzriare - standard items or to vour specifications:
- Standaril tuper and bull and socliet joints
- Graded seuls and sealing cranc

SEND FOR YOUR FREE CATALOG

TODAY! For this free engineering booklet on fused quartz, or further information on any phase of guart\% and its uses, write: Lamp Glass. Quart\%, General Electric Co., Nela Park, Cleveland 12, Uhio.

Progress /s Our Most Important Product

 GENERAL ELECTRIC

CIRCLE 263 ON READER-SERVICE CARD

IZOD type test, and 400,000 psi compression.
Final terminal assembly test results show a resistivity at 25 C of greater than 10^{14} ohms per cm cube. At 800 C , the figure is 10°, and at 900 C , it is 4×10^{5}. The material is impervious to water absorption, and is unaffected by fungus growth.

Litton Industries, Components Div., Dept. ED, 5873 Rodeo Rd., Los Angeles 16, Calif.
IRE Booth No. 161 S
CIRCLE 264 ON READER-SERVICE CARD

Wave Analyzer System
Provides power spectral density analysis

A basic wave analyzer system, consisting of oscillator and analyzer, is equipped with the TP-633 power integrator that accepts intermediate frequency output from the analyzer, producing a direct current analog proportional to power spectral density.

Front panel controls allow output analog to be made proportional to peak level, to average value, to mean square value, and to continuous time integral-linear or square-of the voltages in the narrow frequency band input. The averaging time is continuously adjustable in three decades. Provision is made for dividing by the bandwidth to make output directly proportional to power spectral density. Scale factors are provided by a calibrated input potentiometer. Circuitry is provided for remote operation.

Technical Products Co., Dept. ED, 6670 Lexington Ave., Los Angeles 38, Calif.
IRE Booth No. 3032
CIRCLE 265 ON READER-SERVICE CARD

Transducers

Displacement and pressure

The "Compu-Tran" displacement transducer features higher sensitivity and a longer linear range for equivalent cost. The pressure transmitter is a low cost item useful in ground environment testing, multiple pressure scanning and alarm systems.

International Resistance Co., Dept. ED, 401 N. Broad St., Phila., Pa.
IRE Booth No. 2821, 2825
CIRCLE 266 ON READER-SERVICE CARD

ELECTRONIC ENGINEERS

19.58 definitely promises to exceed the recordselting volume of our Electronics and Avionies Division last year. And we are not overly optimistie at all in our plan- to double these figures during the next few years.

Emerson Electric, a leading medium-size manufacturer of mis. siles and electronic equipment, has a firmly outlined, long-range expansion program. Our plans require broadening our organǐational structure immediately. This han opened unusual career opportunities with complex challenges.

We emphasize research, design and development, and maintain a strong balance in production work. Current projects include the B-58 fire control system, mortar locators, radar components and assemblies, servomechanisms, missiles and rockets, ground support equipment, microwave antennas, F-10l Voodoo subsystems. phus many other classified electronic devices for the supersonic era.

These positions require an F..E. degree plus 1.6 years' experience in electronics. Experience must include electronic design work in any of the following: servomechanisms, radar systems, analog or digital computers, fire control systems or ground support equipment. Missile guidance and/or infra-red experience will be helphiul but is not essential.
Emerson Electric is a well-established dynamic organization with $\Theta(0)$ engineers and $50(1)$ employecs. Salarics and benefits, including advanced education, are top level. Our suburban lowation is ideal in every way. All moving expenses are fully paid.

Be sure to send your complete resume NOW, including business experience, education and salary requirements, to A. I.. Depke.

Your Future Is Our Business!

Electronics and Avionics Division

DO YOU THINK YOU MIGHT MAKE A GOOD EDITOR-?

This year's IRE Convention marks the anniversary of Associate Editor George Rostky joining our staff. We met George at the Coliseum. We're looking for others like him again this year. What does it take? A degree in electrical engineering, a few years' design experience, and a desire to communicate ideas.

Writing reports should have been more enjoyable than distasteful to you. If interested . . .

Check with us at Electronic Designs Booth 4101-2.

NEW PRODUCTS at the IRE show

Fan Assemblies

 Easily mounted

These square-mounted packaged assemblies eliminate the inconvenience of mounting ring fans and their accessory components. The same fan may be used to either suck or blow air, and may be mounted inside or outside a cabinet. The filter can be either permanent or disposable. Fan orifice is recessed for maximum air delivery. Three sizes are currently in stock.

McLean Engineering Labs., Dept. ED, P.O. Box 228, Princeton, N.J.
IRE Booth No. 3825
CIRCLE 268 ON READER-SERVICE CARD

Servo Motor Tach
Linearity of 0.2 per cent to 5400 rpm

Type 18-MTG-6302 servo motor tach has an operating temperature range from -54 to +125 C and a starting voltage as low as $1-1 / 2 \mathrm{v}$. The unit consists of 115 v 400 cps 2 phase size 18 servo motor with a size 15 tachometer integrally mounted on the motor shaft. The servo motor has a high torque to inertia ratio, a no load speed of 4700 rpm , a rotor moment of inertia of $5.73 \mathrm{gm}-\mathrm{cm}^{2}$, develops a stall torque of 2.4 oz-in. with a power input of 9.2 w per phase. The unit is rated for continuous duty at stall.

The tach's output is 3.1 v per 1000 rpm , null voltage of 13 mv max, and has a linearity within 0.2 per cent up to 5400 rpm . Entire unit weighs 20 oz.

John Oster Mfg. Co., Avionic Div., Dept. ED, 1 Main St., Racine, Wis.
IRE Booth No. 2129
CIRCLE 269 ON READER-SERVICE CARD

Jatuiss 10 pv
AT 400 CYCLES
LOW NOISE CHOPPYRS

10 MICROVOLT D.C. INSTRUMENTATION NOW POSSIBLE WITH JAMES 400 CPS CHOPPERS

- Double pole double throw switching for dual input or input/output circuits.
- New miniature packages.
- Both make before break and break be fore make closures.
- Models for driving frequencies of 5 to 450 Cps.
- Low driving power-less than 2 watts at 400 Cps .
- Operations unaffected by shock, temperature and vibrations.

JAMES is the complete source of critical components for low level D.C. amplifications, supplying choppers, transformers and chopper drivers.

Write for engineering literature.

Using Thermistors

Edited by
FENWAL ELECTRONICS

MATCHED THERMISTORS FOR GAS ANALYSIS

Now Fenwal Electronics offers resistance and voltage-current matched thermistor assemblies which are particularly useful for gas chromatography and other gas analyses.

The matched thermistor assemblies above are used in a balanced bridge circuit. One assembly is in each arm of the bridge and equal current is applied to each. The thermistors, self-heated by the passage of current, will dissipate heat at equal rates if the medium surrounding each thermistor is identical. The meter will show an equilibrium reading.
If the thermal conductivity of the gas surrounding either one of the thermistors should change, the rate of heat dissipation will also change, altering the resistance of the thermistor and unbalancing the bridge, thus causing a reading on the meter. The meter can, therefore, be calibrated to give an accurate indication of the percentage of a foreign element in the gas being analyzed, as related to a known reference gas.

It's all based on the unique characteristic of thermistors - when temperature rises, resistance falls. This relationship occurs whether the thermistor is self-heated, as in the example above, or externally heated through a liquid, gas or solid.

Write Fenwal Electronics, Inc., 32 Mellen Street, Framingham, Mass., for complete information on matched thermistors (Bulletin EM-14), and for many other thermistor applications (Catalog EMC-1).

Design - Engineering - Production of Precision Thermistors CIRCLE 271 ON READER-SERVICE CARD

Vacuum Storage Cart

For tube components

A vacuum storage cart for storing certain components of electronic tubes while awaiting the completion of other components has been developed. Storage of these parts under vacuum assures that they will be clean and more easily degassed when they are finally assembled in the completed tube.
F. J. Stokes Corp., Dept. ED, 5500 Tabor Rd., Philadelphia 20, Pa.
IRE Booth No. 4415
CIRCLE 272 ON READER-SERVICE CARD

Printed Circuit Connectors
 Bifurcation provides larger contact surface

The Bellows Action contact for printed circuit connectors provides a redundant circuit with two independent spring leaf contact actions for greater reliability. Coil spring action grip of the bifurcated contact clasps printed circuit board over its entire contact area. A gold plated phosphor bronze spring retains tension when used with either undersized or oversized tolerance boards. The contact resistance is rated at less than 20 mv at 5 amp .

Wiring styles include eyelet lug for soldering, solderless wire wrap lug, taper tab solderless wiring, and contacts for dip soldering.

Dejur-Amsco Corp., Electronic Sales Div., Dept. ED, 45-01 Northern Blvd., Long Island City 1, N.Y.
IRE Booth No. 3911, 3913
CIRCLE 273 ON READER-SERVICE CARD

AC Battery Unit

Delivers 110 v, 300 w

Incorporating a 15 v Silvercel battery and transistorized converter, with 80 to 90 per cent efficiency, this unit delivers 300 w of 110 v ac 60 cps power continuously for several hours and can be recharged from a 110 v ac outlet. The ac battery assembly weighs less than 20 lb and is the size of a 9 in . cube.

Yardney Electric Corp., Dept. ED, 40-50 Leonard St., New York, N.Y.
IRE Booth No. 2127
CIRCLE 274 ON READER-SERVICE CARD

$H e ' s$

 minding YOURbusiness

YOUR HEART IS HIS BUSINESS. He's a research scientist-one of thousands supported by the Heart Fund. His life is dedicated to finding the unknown causes of the heart diseases, and new methods of treating and preventing them. He and your Heart Association have made your heart their business.

YOUR HEART IS YOUR BUSINESS. Whatever your way of life, your future depends on your heart. Heart disease causes personal suffering and undermines the happiness and economic welfare of the family. No one-no child or adult-is immune.

THE HEART FUND IS EVERYBODY'S BUSINESS. When you support the Heart Fund, you help all hearts. You support heart research-and you make it possible for your Heart Association to bring the latest advances in heart research to you and your family through your doctor.

Give Generously for Every Heart You Love

MODEL GS SYNCHRONOUS MOTOR

60 poles minimize rotational cogging

± 0.1 degrees angular displacement, no load to full load

It is capable of operating from a vacuum tube amplifier on signal frequencies from 60 to 3600 cps . It was developed to provide the extremely accurate and invariable speed required for driving fork-synchronized

facsimile equipment. Its unique characteristics will be found the answer to many problems involving the need for constant angular rotation.

It can be operated single phase in the plate circuit of a single-ended amplifier or as two-phase motor when driven by a push-pull amplifier-providing up to $1 / 100 \mathrm{hp}$ output. The motor current is about 75 milliamperes per phase. The power input may be as high as 20 watts.

TIMES FACSIMILE CORPORATION
540 West 58th St., New York 19, N. Y.

for all SEMI-CONDUCIORS...

made of ULTRAHIGH PURITY metals \& alloys to 99.999% and of regular Grade A metals \& alloys

ANCHOR Metal Co., Inc. ED-3

966 Mooker Ave., Brookiyn 22, N.Y.
\square Sond FREE literature on your oldar mice oforms for somi
conduclors.
Have your representalive call for an appointment.
Name
Titlo
Firm
Address
Cily

ANCHOR . . . FIRST to pioneer the development of solder metals \& alloys for the semi-conductor field. Made from indium, indium-gallium, indium-gold, indium-tin, indiumlead, gold-antimony, gold-gallium, tin, tin-antimony, tinlead, lin-arsenic, lead-antimony, lead-arsenic, aluminum, aluminum-tin, platinum, and others. From "stock" or to your specificalion.

Send us your problem - our engineers are glad to help you. Fill in the coupon.

diALCiOR Metal Co., Inc.

966 Meoker Avo., Brooklyn 22, K. Y.

NEW PRODUCTS at the Ire show

Relay

Size of a postage stamp

This miniature relay meets and exceeds military specifications MIL-R-25018 and MIL-R5757C. Vibration resistance characteristics are in excess of 20 g to 2000 cps and shock in excess of 50 g . Contact form is dpdt, with dry circuit or 2 -amp contact capacity. Available models include conventional terminals 0.1 in . grid spacing for printed circuits. Temperature range is -65 to +125 C .

Telecomputing Corp., Dept. ED, 915 N. Citrus Ave., Los Angeles 38, Calif.
IRE Booth No. 2128
CIRCLE 278 ON RミADER-SERVICE CARD

Film Resistors
Feature stability

A line of high stability molded film resistors have been developed to provide improved moisture resistance and insulation properties. The resistors fulfill requirements of MIL-R-10509B. These units are available in $1 / 2 \mathrm{w}$ style in ± 1 per cent and 5 per cent tolerances for standard ranges of 10 ohm to 2 meg .
Wirt Co., Continental-Carbon Div., Dept. ED, 5221 Greene St., Philadelphia 44, Pa.
IRE Booth No. 2209
CIRCLE 279 ON READER-SERVICE CARD

Rate Gyro

Tough, subminiature unit

This subminiature floated rate gyro the RG-100 can take 100 g 's of shock and 15 g 's at 2000 cps vibration in any axis. Damping is held to within 15 per cent for any required percentage of critical. The dynamically balanced hysteresis motor reaches full $24,000 \mathrm{rpm}$ operating speed in less than 20 seconds. It is wound for two or three phase operation and is rated at three watts. The temperature range is from -40 to +200 F .

Fairchild Controls Corp., Dept. ED, 225 Park Ave., Hicksville, N.Y. or 6111 E. Washington Blvd., Los Angeles 22, Calif.
IRE Booth No. 2702, 2704

NEW RIDER BOOKS with modern concepts spark electronic progress

Small signal paramalers that predict large signal performance save angineoring time.
CONDUCTANCE CURVE DESIGN MANUAL, by Keaty Pullen. Jr., Ph.D., Eng.D. The author, a worldfamous electronics authority, has devised an original technique for designing electronic circuits based on conductance curves. $G_{m} R_{p}$ and μ are re-
plotted as necessary so as to enable design using small signal parameters to predict large signal performance. This technique greatly shorters de. sign time and minimizes problems arising from approximation. A vitally important contribution to engineering progress.
Circuit reliability can be improved and distortion reduced at the same time by using the tables and curves in the manual. Engineers, engineering students, and laboratory technicians can now select the proper tubes and their associated components to suit the needs of almost any type of circuit with greater reliability than ever before. The manual the most representative vacuum tubes used in of services. \#210, $81 / 2^{\prime \prime} x!1^{\prime \prime}$, stifi cover, spira binding, $\$ 4.25$.

Physics, mathematics and their relationship to electrical communications made crystal clear in this brilliant work.

PHYSICS AND MATHEMATICS IN ELECTRICAL COMMUNICATIONS, by James Owen Perinne, Ph.D. This is a profound and probing explanation of what happens in electrical circuits that contain resistance, inductance and capacitance. While it is a penetrating analysis, it is presented in an unusually lucid manner. The author demonstrates a talent for selecting that avenue of approach in analysis which leads to utmost clarity. The text contains numerous explanatory diagrams, many conceived by the author, that point out and simplify concepts that normally are considered complicated. Each graph, complete with point-by-point identifying nomenclature, illuminates the text. On a foundation of associated mathematics made comexamples, the author brilliantly ties together examples, the author briliantly ties together An entirely new approach is used in analyzing An entirely new approach is used in analyzing related functions. Of special significance is the content of the graphical demonstrations of electrical behavior. \#219, $81 / 2^{\prime \prime} \times 11^{\prime \prime}$, cloth bound, $\$ 7.50$.

First Omnibus of the Transistor Art
TRANSISTOR ENGINEERING REFERENCE HANDBOOK, by H. E. Marrows. Covering transistor perform. ance characteristics, operating specifications. manufacturing processes, applications, testing, sources, etc. Related components-electrical characteristics, physical dimensions, sources, etc. The most complete handbook for use in engineering, scientific research and manufacturing of transistor devices. \#193, cloth bound, 288 pp.. \$9.95.

CLOSED CIRCUIT TV SYSTEM PLANNING, by M. A. Mayers \& R. D. Chipp, P.E. Closed circuit television is science and industry's newest means of visual communication. This bouk is devoted to the applications of equipment and the planning of closed circuit TV systems for use in factories, schools, hospitals, railroads, department stores, banks, advertising agencies, airports, transportation terminals and in numerous other areas. System layout, available equipment, composition of a complete system are covered. Fully illustrated. \#203, cloth bound, $81 / 2^{\prime \prime} \times 11^{\prime \prime}, \$ 10.00$

FUNDAMENTALS OF TRANSISTORS, by Leonard Krugman. Written by one of the pioneers in Krugman. Written by one of the pioneers in transistor development, this book deals with basic
operation, characteristics, performance, and application. Soft cover, 144 pp., illus. \#160, Only $\$ 2.70$.

Buy these Rider books af your eloctronic parts jobber or book sfore. If your favorife sfore does not sell these books order direct. Add sfafo, cify fox where applicable. Canadian prices 5% higher.

SEE THESE BOOKS AT THE I.R.E. SHOW Booths $4532-4533$ - Combined Book Exhibif

CIRCLE 2BI ON READER-SERVICE CARD

GUDEBROD

GUDEBROD BROTHERS
ARE
PIONEERS
IN FLAT
\& BRAIDED
TAPES OF
NYLON, DACRON, TEFLON.
WAX-COATED, FUNGUS-PROOF, HEAT-RESISTANT.

Gudebrod flat braided lacing tapes hold harness securelyno bite-through or slip, yet are easy on the hands. Some resist high temperature, some are color-coded . . . and they come wax-coated or wax-free . . . rubber-coated . . . or with special coating. Gudebrod makes many tapes for many purposes, including defense work. Send us your lacing problems or your specifications . . . we can supply the answer to both.

GUdElace - GUde-nylace

gudelace h - teflace

GUDEBROD BROS. SILK CO., INC. ELECTRONICS DIVISION
225 W. 34th St., New York I, N. Y.

EXECUTIVE OFFICES

12 South 12th St., Philadelphia 7, Pa. CIRCLE 282 ON READER-SERVICE CARD

Sampling Switch

Used with surveillance radar

This rotary switch has such applications as from surveillance type radars, sonars, and magnetometers. This unit has 3 poles, 16 non-shorting contacts per pole, operating at 30 rps . Of the 16 positions, one carries a reference frame voltage, and each of the other fifteen samples the returned response of a 25 deg cone. Noise levels considerably less than 0.1 mv are available for 1 mv signal levels in a 50 ohm circuit. The unit is hermetically sealed and withstands MIL-E-8189 environmental conditions.

Instrument Development Labs., Inc., Dept. ED, 67 Mechanic St., Attleboro, Mass.
IRE Booth No. 3925
CIRCLE 283 ON READER-SERVICE CARD

Matched Thermistors

For gas analysis

Voltages are matched at four points to within 0.03 v in these thermistors. Matching measurements are made while the unit is suspended in helium at 25 C . The thermistor beads used are also matched to within 5 per cent resistance at 25 C . Matched assemblies of this type are useful in gas chromotography where the thermistor assemblies are used in a balanced bridge circuit. The thermistors, self-heated by the passage of current, will dissipate that heat according to the thermal conductivity of the surrounding medium.

Fenwal Electronics, Inc., Dept. ED, Mellen St., Framingham, Mass.
IRE Booth No. 3001
CIRCLE 284 ON READER-SERVICE CARD

VECO the BIG name in

 THERMISTORS • VARISTORSFor reliability, stability, dependable delivery and experienced ongineering know-how, consult VECO, the most progressive manufacturer of thermistors and varistors. Through constant research. development and precision control, VECO's products are guaranteed for peak performance and long

MANUFACTURERS OF
 VECO

Thermistors and varistors Compactrol (electronic controls) (Pat. Applied for) Tap-A-Therm (Multi-tapped thermistors) (Pat. Applied for) Gas Analysis and chromatography cells Combustion Analyzers Temperature Sensing Devices Constant Temperature Baths and Controls

Descriptive literature covering each ifem available on request life. At all times, VECO strives to improve its product for the benefit of its customers

NEW TECHNICAL CATALOG AVAILABLE
8th edition - containing pertinent data and condensed engineering specifications covering over 250 VFCO stock items.

Send for the interesting, informative series entitled, "MEET THE VECO THERMISTOR"

Victory

ENGINEERING CORPORATION

104 Springfield Road, Union, N. J. Tolephone: MUrdock B.7150

See us at the IRE Show BOOTM 2230
New York Coliseum
March 24th thru 27th

CIRCLE 285 ON READER-SERVICE CARD

Precision in miniature

SINE-WAVE GENERATOR

$$
91 / 2^{\prime \prime} \times 7^{\prime \prime} \times 101 / 2^{\prime \prime}
$$

Wrife for full cafalog. DELIVERY FROM STOCK

MODEL 512

A rugged, compact and accurate source of sinusoidal signals weighing less than 18 lbs. with HIGH OUTPUT POWER and LOW DISTORTION.

- $0.9 \mathrm{cps}-510 \mathrm{kc}$ in 5 decade ranges plus additional band-spread high frequency range . . . vernier tuning
- 12% calibration accuracy ($\pm 1 \%$ on special order)
- 2 Watts into 600 Ohm load
- 50 v output - $\pm 1 / 2 \mathrm{db}$ frequency response
- Less than $1 / 10 \%$ distortion
- Hum and noise down 70 db

Uniquely qualified for a great number of exacting applications.
at the IRE Show . . . Booth 3220

?
 Precision in miniature' ELECTRONIC INSTRUMENTS
 335 Sixth Avenue, New York 14 WAfkins 9-2795
 CIRCLE 286 ON READER-SERVICE CARD

victoreen Announces

This reliable, rugged, micro-miniature tube has an extremely high input resistance before a critical voltage is reached, at which time the tube breaks down and becomes a very low resistance.

MODEL. TAA-113	
Nominal Firing Voltage	113 V
Leakage Resistance (95V)	5×10^{10} ohms
Acceleration	$20,000 \mathrm{G}$
Vibration	10.55 cycles at .06 D.A.
Operating Temperature	$-65^{\circ} \mathrm{Fo} 160^{\circ} \mathrm{F}$
Energy Transfer	3000 ergs

Victoreen's new cold cathode gas trigger diode is ideal for use where weight, space and high G considerations are involved. It can be used for isolation purposes, electronic switching, RC timing circuits, or relaxation
oscillators.
Victoreen micro-miniature diodes are available now and can be supplied with a variety of different characteristics. Full details are available on request.

See Victoreen's new micro-miniature cold cathode gas trigger diode
on display for the first time at the
IRE SHOW BOOTH 2232
The Victoreen Instrument Company
Components Division
5806 Hough Avenue - Cloveland 3, Ohio
CIRCLE 287 ON READER-SERVICE CARD

NEW PRODUCTS
 at the IRE Show

Pulse Code Generators

Ten bit codes provided at 1 mc rates

Designed for study and test of memory components, the 5100 A series of pulse code generators provide high speed pulse programs at high impedance and high power output. Single and multiple channel 10 bit pulse codes are provided at clock rates to mc , with controllable repeat of selected intervals. Output from each channel is variable from 50 ma to 5 amp peak current, with rise and fall time control provided. Multiple channel outputs, positive and negative around ground, may be paralleled for high pulse current or the formation of complex codes.

Instruments are comprised of various combinations of coding units and output amplifiers. Amplifiers are self-contained, with integral power supply, and may be driven by any general purpose pulse generator.

Electro-Pulse, Inc., Dept. ED, 11861 Teale St., Culver City, Calif.
IRE Booth No. 3611, 3613
CIRCLE 288 ON READER-SERVICE CARD

Klystron Test Facility

Produces up to 50 bv pulses

Model 42M modulator is a complete laboratory test facility for high-power pulsed klystrons. The modulator produces 0 to 50 kv pulses at currents from 0 to 15 amps with repetition rates from 10 cps to 10 kc .

With an external pulse-group generator, the 50 kv pulser will recover and respond to pulses of varying widths occurring less than $1 \mu \mathrm{sec}$ apart, producing pulses with rise and fall times of approximately 0.25 and $0.5 \mu \mathrm{sec}$ respectively.

with the NEW QUAN-TECH AC MICROAMMETER MODEL 301

Saves you time and headaches in making measurements that previously were slow, inaccurate, cumbersome . . . Mcasures currents in transistors, magnetic amplifers, resonant circuits, filters, servo systems, recording heads, etc. Using an oscilloscope, observe current waveforms and transient currents.
CLAMP-ON PROBE gives you fasl, one-hand operation. Speeds laboratory and production testing.
INSERTION PROBE gives you greater ac. curacy, increased sensitivity and wider frequency range.

SPECIFICATIONS

SENSITIVITY: 3 上a to 100 ma full scale with Insertion Probe (300 wa to 100 ma with Clamp.On-Probe).
ACCURACY: $\pm 2 \%$ of full scale at 1 KC $1 \pm 5 \%$ clamp.on).
FREQUENCY: Flat within $\pm 2 \%$ 100~ to $100 \mathrm{KC},-3 \mathrm{db}$ at 10 and 1 MC , (clamp-on $\pm 5 \% 200 \sim 10100 \mathrm{KC},-3 \mathrm{db}$ at 50 and 1 MC.)
INPUT IMPEDANCE: 2 ohms plus $8 \mathrm{wh}, 60$ mmf to ground from 3 上a to 1 MA . Negligible impedance and capacitance 300 va to 100 MA.
OSCILLOSCOPE CONNECTION: 0.1 volf into 10 K ohms.
PRICE: $\$ 290.00$ including both probes. OTHER INSTRUMENTS AVAILABLE: Miniature DC Coupled Decade Amplifier Isolation Amplifier
Regulated Power Supplies
Write for complefe Information Visif us, BOOTH \#3015, I.R.E. SHOW

Quantitalive Technolog

QUAN-TECH

LABORATORIES MORRISTOWN. NEW JERSEY

"'PIG-TAILORING' a revolutionary new mechanical process for higher production at lower costs. Fastest PREPARATION and ASSEMBLY of Resistors, Capacifors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.

PIG-TAILORING eliminates: - Diagonal cutters - Long nose pliers. Operafor judgment . 90\% operator training time . Broken components . Broken leads. Short circuits from clippings . 65% chassis handling. Excessive lead fautness Haphazard assembly methods.

PIG-TAllORING provides: - Uniform component position - Uniform marking exposure . Miniapurization spacing control - "S" leads for torminals . "U"" leads for printed circuits. Individual cut and bend lengths . Beftor time/rate analysis - Closer cosi control. Invaluable labor saving - Immediafe cost recovery.

Pays for ifself in 2 weeks

Write for illustrated book to Dept.ED 3

Arbitrary arrangements of pulses can be achieved with the following limitations. The maximum allowable pps under pulse-group operation is 15,000 and the effective duty cycle must be less than 0.01 . An internal trigger generator is provided for single-pulse operation with pulse widths of either 0.5 or $5 \mu \mathrm{sec}$ and repetition rates from 10-5000 pps.

Levinthal Electronic Products, Inc., Dept. ED, Stanford Industrial Park, Palo Alto, Calif. IRE Booth No. 1205

CIRCIE 291 ON READER-SERVICE CARD

Clutch-Brakes
Miniature 4 oz-in. units

These units are available in a number of configurations, consisting of clutches, brakes, clutchbrakes, and a special dual clutch-brake. Other models are available for fail-safe or reverse energization applications. The method of mounting is with a standard $1 / 2 \mathrm{in}$. diameter servo mount, on either or both ends, with concentric output and input members. Shown is the model FB-59 Microbrake.

All units feature fast response time with low coil wattage. A typical clutch will reach the first time constant of maximum torque in less than $2.5 \mu \mathrm{sec}$, using a $1.6 \mathrm{w}, 25 \mathrm{v}$ coil. The coil wattage is low enough that extreme reduction in performance is not encountered under conditions of continuous energization. A non-rotating coil is used, which eliminates the drag and objectionable limitations of slip-rings.

The minimum torque of standard clutches and brakes is 4 oz-in., while the de-clutched drag will be less than 0.06 oz-in. Class 5 instrument bearings are used throughout. The rotor design features no radial or axial displacement when engaging or dis-engaging, and gives zero backlash when engaged.

Magtrol, Inc., Dept. ED, 240 Seneca St., Buffalo, N.Y.
IRE Booth No. 1230, 1232
CIRC:LE 292 ON READER-SERVICE CARD

you can wind your filter coils

WITHOUT CORE ADJUSTMENTS

pre-adjusted filter cores

- guaranteed effective permeabilities within $\pm 3 \%, \pm 2 \%$ or $\pm 1 \%$ of specifications, instead of the usual 10% to 50\% spread
- measured, adjusted and grouped for magnetic charac. teristics at the factory
- a complete line of pot-type ferrite cores from $5 / 8^{\prime \prime}$ to $13 / 4^{\prime \prime}$ diameter, with bobbins and hardware for each size
- available in quantity to manufacturers of communications, telemetering and computer equipment

Write for literature describing standard sizes available from sfock, exacl permeabifity values, and number of furns required for any given inductance.

FERROXCUBE CORPORATION OF AMERICA
50 East Bridge Street, Saugerties, New York

Manufacturers of ferrite cores for recording heads, magnetic memories, TV Ayback transformers. pulse transformers, filters, inductors, high frequency shields and power transformers.

CIRCLE 293 ON READER-SERVICE CARD

NAVCOR completely transistorized pulse programming equipment is being utilized to do many military and industrial jobs, and do them well! The original concept of functional units pioneered by NAVCOR, and already proven in thousands of hours of use-test, feature quickly interchangeable modular blocks creatively engineered for multi-purpose operations. Write for data and specifications that will show how NAVCOR transistorized pulse programming equipment can be effectively used in your current computer project.

IRE SHOW - BOOTH \#1311

NAVIGATION COMPUTER CORPORATION
 1621 SNYDER AVE., PHILADELPHIA 45, PENNA. / HOword 5-7700

CIRCLE 294 ON READER-SERVICE CARD

CIRCLE 295 ON READER-SERVICE CARD

Stainless steel 300 \& 400 Series - An prilled Fillisters
Bolts
Cay Serom
Cap, seckiot hear
Coter Pins
Cotiter Pins
Dowrel Pins

- Hinges
- Muenine
- Mrts
- Sot Solket
- Shoot metal
- Shoot metal

Serows
Stod Bolts

- Stude Boits
-Washors
Wood serems
STAR'S CATALOG OF
Right-off-the-Shelf ${ }^{-}$ STAINLESS STEEL FASTENERS
Save time . . . save money. This book lists Save time. . . save money. This book lists over 7,000 stainess steel fastenings avail-
able for immediate delivery RIGHT OFF THE SHEL immediate delivery RIGHT OFF
Write for your catalog TODAY. STAR STAINLESS SCREW CO.
CORROSLON Ean 663 Union Blyd., Poterson 2, N. J. CORROSION
RESISTAMT Telophonei CLifford $\begin{gathered}\text { Tole } \\ \text { Direct NYC 'phone: Wisconsin 7-9041 }\end{gathered}$ Diret NrC 'phone: WIseonsin 7-9041
Dillo. ©hone: WAlnut 5-3660 CIRCLE 296 ON READER-SERVICE CARD

DC Motor

Multiple output provided by 3 shofts

Three output shafts are provided on this permanent magnet de motor to satisfy multiple use applications. The motor, used with this gearhead, incorporates the manufacturer's symmetrical, progressive lap type armature winding to provide electrical balance, superior commutation, and low radio noise output. Magnets are stabilized to eliminate demagnetizing effects due to sudden reversals. Elementary control circuits provide dynamic braking.
Barber-Colman Co., Electrical Components Div., Dept. ED, 1800 Rock St., Rockford, Ill. IRE Booth No. 3833

CIRCLE 297 ON READER-SERVICE CARD

Shielded Wire Ferrule
Permite automated pigtailing

Designed expressly for grounding the shield braid of coaxial conductors, a machine is featured which feeds and attaches these ferrules and pigtails simultaneously to shielded wire leads. The machine's dual applicator permits attachment of ferrule and pigtail wire to a double ended shielded wire jumper or to two shielded wire leads at the same time, with pigtail wire whose length can be adjusted in the applicator. The firm reports that the process can reduce the cost of pigtailing by 75 per cent by eliminating the wire preparations formerly required.

AMP Incorporated, Dept. ED, Harrisburg, Pa. IRE Booth No. 2427, 2429

CIRCLE 298 ON READER-SERVICE CARD

This $115 \mathrm{v}, 400 \mathrm{cps}$ servo motor can operate in air at 600 deg F or in a stream of 550 F jet fuel. It weighs only $2-1 / 2 \mathrm{lb}$ and can withstand vibration of 15 g's to 2000 cps . At 600 deg F it can accelerate at 4500 radians per second from stall, and maintain a positional accuracy of $1 / 2$ degree.
Electronics Division, Thompson Products, Inc., Dept. ED, 2196 Clarkwood Road, Cleveland, Ohio
IRE Booth No. 2527, 2529, 2531
CIRCLE 299 ON READER-SERVICE CARD

The model 600 is a super video wide band amplifier which can be used singly or as a component unit in an electronic system. The specifications include: bandpass of 200 cps to 50 mc ; gain of $40 \mathrm{db}+1-1 / 2 \mathrm{db}$ (into matched load); input impedance of 90 ohms, vswr less than 1.5:1; and an output impedance of 90 ohms, vswr less than 2.1. Pulse rise time is $10 \mathrm{~m} \mu \mathrm{sec}$, and noise figure is approximately 9 db . The unit may be used as an external preamplifier; a post amplifier in noise figure measurement and a pulse amplifier in nuclear work. The M-600 is a metal unit 12 in . long x $2-1 / 2 \mathrm{in}$. wide $\times 4 \mathrm{in}$. high including the tubes. The tube complement consists of one 6 CB 4 , two 6 AK 5 , one 6 CY 5 , one $6 C C 6$, and one 12A4.

Instruments for Industry, Inc., Dept. ED, 150 Glen Cove Rd., Mineola, N.Y.
IRE Booth No. 2830
CIRCLE 300 ON READER-SERVICE CARD

'MYLAR' offers a unique combination of properties valuable for electrical design

High tensile strength. "Mylar" is the atrongeat plast ic film. Instron teater
shows an average strength of 20,000 lbe. pai,

HIGH DIELECTRICSTRENGTH. Aver. age of $4,0(0)$ volts per mil ... average powe factor of 0.003 at 60 cycles . . dielectric
constant above 3.0 at $72^{\circ} \mathrm{F}$. , 1,000 cycles.

THERMAL STABILITY. Tests prove "Mylar" has an effective operating range,

TESTS BY REMINGTON RAND PROVE.

Du Pont MYLAR ${ }^{\text {® }}$ provides greater reliability, Ionger life for capacitors used in Univac ${ }^{\text {® }}$

PROBLEM: The Remington Rand Division of the Sperry Rand Corp. had to find a capacitor of high reliability that could meet the requirements of extra-sensitive circuits found in UNIVAC* Data Automation Systems.
SOLUTION: In a series of accelerated tests by Remington Rand, various types of capacitors were exposed to conditions more exacting than those found in normal operation of UNIVAC

better things for better living through chemistry

DU PONT
 MYLAR
 POLYESTER FILM

Systems. These tests proved that capacitors made with "Mylar" \dagger polyester film offered greater reliability and longer life, with an extra margin of safety in moisture resistance. The tests documented the fact that "Mylar" provides excellent insulation resistance at high temperatures "Mylar" does not deteriorate with age or voltage stresses within normal operating ranges.
RESULTS: By using capacitors made with "Mylar", Remington Rand has
improved the performance of another component in UNIVAC Systems has helped improve the performance of UNIVAC Systems themselves. HOW CAN "MYLAR" HELP YOU? Whether you make guided missiles or tiny components, it will pay you to investigate the unique advantages of using "Mylar" film. . . or products made with "Mylar". Send for a copy of our new booklet containing detailed information on properties and applications.
-UNIVAC is a repistered trademark of Sperry Rand Corporation.
'"MYLAR" is Du Pont's registered trademark for its brand of polyester film.
E. I. du Pont de Nemours \& Co. (Inc.) Eilm Dept., Room E-11, Wilmington 98, Del.
Please send your booklet listing properties, applications and types of "Mylar" polyester film available (MB-11).
Application
Name Title
Company
Address
Ciry

CIRCLE 458 ON READER-SERVICE CARD

Delivers the Balanced Design EVERYTIME!

Custom cables are made, not "born". There is a certain elusive "balance" in the design of every custom cable which makes it perfect for the requirement . . . or which, when it's missing, can prove expensive. Phalo engineers have the "cableability" needed to strike the exact combination you call for.

Find out why more and more custom cables come from Phalo. Start by asking for the Phalo catalog

PLASTICE CORPORATION $25-4$ Fostor Stron, Worceller, Massachurotrs
 CIRCLE 459 ON READER-SERVICE CARD

Telemetering System
Operates over single pair of wires

Multiplexed transmission permits incoming data signals and outgoing supervisory commands to be carried over a single pair of wires by synchronous time-division sampling devices. This telemetering station has a capacity of 165 onoff type supervisory controls or 17 telemetered analog signals, or a combination of both The system checks itself once each second and, if necessary, makes automatic calibration and synchronization adjustments. It is compatible with available dc transducers at input and with all types of dc meters and recorders at output.
Applied Science Corp. of Princeton, Dept. ED, Post Office Box 44, Princeton, N. J.

CIRCLE 460 ON READER-SERVICE CARD

Decade Amplifier High sensitivity at low frequencies

A low noise, general purpose instrument, model 40-A transistorized decade amplifier has selectable bandwidth for improved sensitivity during measurements at the lower frequencies. The amplifier noise figure is made independent of the magnitude of the driving impedance through the use of a vacuum tube at the input stage. The input impedance is in excess of 10 meg. A constant 600 ohm output impedance is useful for driving passive networks. A gain of 10 or 100 is available over the frequency range of 2 cps to 1 mc with an accuracy of $\pm 0.2 \mathrm{db}$ from 10 cps to 300 kc and $\pm 1 \mathrm{db}$ from 5 cps to 500 kc . Gain is down 3 db at 2 cps and 1 mc . Noise with shorted input terminals is 4 to $7 \mu \mathrm{v}$. Maximum output is 3 v rms or 1 mw .

Zacharias Electronics Corp., Dept. ED, P.O. Box 172, Livingston, N.J.

CIRCLE 461 ON READER-SERVICE CARD

Manual-Feed - Manual-Sort AUTO-BRIDGE

The newest addition to Industrial Instruments Auto-Bridge line of automatic and semi-automatic test equipment is the Model AB-3×2. manual-feed, manual-sort bridge. Fully auto-
matic hopper or tape-fed equipments have a matic hopper or tape-fed equipments have a
definite place in component testing, but they are definite place in component testing, but they are
not the most efficient system whereby a large not the most efficient system whereby a large
variety of small and medium \mathbf{s} size lots of com. ponents can be tested.
The Model AB-3×2 is manually loaded and unThe Model AB.3X2 is manually loaded and un-
loaded. One of the two colored lights indicates whether the component under test is "in" or "out" of preset tolerance. Plug-ins are used to set the "high" and the "low" limits and the standard jig supplied with the equipment accepts most wire lead components. There are no
meters to read... the only interpretation required by the operator is to determine which of the two colored lights is lit. A true limit bridge principle is used. There is no drift in the operating point and daily calibrations are not necessary.

	RANGE	accuracy	$\underset{\text { RATE }}{\text { PRODUCTION }}$
Capacity	100 uuf to 15 ut lower at reduced accuracy	$\pm 0.3 \%$	
Resistance	$\begin{array}{\|l\|} \hline 10 \text { ohms } 10 \\ \text { meghms. high. } \\ \text { ef at reduce } \\ \text { accuracy } \end{array}$	$=0.3 \%$	
Impedance	$\begin{aligned} & 10 \text { ohms } 105 \\ & \text { megohms, high } \\ & \text { eat at reduced } \\ & \text { accuracy } \end{aligned}$	=0 3\%	

CIRCLE 463 ON READER-SERVICE CARD

TEN-TO-ONETHE Copper Clad Laminate YOU WANT IS HERE!

From these ten basic Phenolite ${ }^{\circledR}$ Grades, you can select the base material, resin, properties and price to fit your present printed circuit need.
If your problem is finding a suitable cold-punch material, try samples of XXXP-470-1. It's designed for use in automated production equipment. If you are looking for higher heat resistance, check Grades G-10 and G-11.

Out of National's research laboratories come new advances every day. See your National Representative about new products and applications. He can keep you posted on the full line of Phenolite Laminated Plastic, Vulcanized Fibre and National Nylon for electronic applications across-the-board. In the meantime, write for our new "Phenolite Copper Clad Data" folder. Address Dept. F-3.

MATIONAL vulcanized fibre co.

 WIIMINGTON 99, DELAWARE in Canode matiomal fibre company of camada, lte., Toranto 3. ontariaSEE THESE PRODUCTS ON DISPLAY AT THE I.R.E. SHOW, BOOTH 4419-21.

	TYPICAL		TEST	VALUES ON		COPPER		CLAD PHENOLITE		
grade	properties of base material					copper clad properties				relative cost
	Dielectric Constant	$\begin{aligned} & \text { Dissipation } \\ & \text { \& actor } \end{aligned}$	Moisture Abserption	Flexural Strenglt	$\begin{gathered} \text { Maximum } \\ \text { Mopraing } \\ \text { Temperature } \end{gathered}$			Hol Solder Resistance	Surtaee Resistance	
	100 Cycles	100 Cyc es	$1 / 40^{*} .824 \mathrm{Hrs}$	Psi	Degree F	Pounds to Pu III" Strip				
						102	202			
P-214-8-1	5.3	. 040	2.20	18.000	250	8	11	>10 (a.475 ${ }^{\circ} \mathrm{F}$	100,000	. 81
XXP-209-G-1	4.6	. 037	1.30	17.000	250	8	11	>10 @ 474 $47{ }^{\circ} \mathrm{F}$	200,000	. 92
XXP-239-1 PHENOCIAD	4.2	. 035	0.67	15,500	250	8	11	>10 (i 475 ${ }^{\circ} \mathrm{F}$	200,000	. 92
XXXP-219-C-1	4.5	. 030	0.70	15.500	250	8	11	>10 (a.475 ${ }^{\circ} \mathrm{F}$	500,000.1.000,000	1.00
XXXP-455-1	4.0	. 026	0.55	23,500	250	8	11	>10 (a)475 ${ }^{\circ} \mathrm{F}$	1.000,000-1,500,000	1.00
XXXP-470-1	3.7	. 027	0.48	14,000	250	8	11	>10 (a 475 ${ }^{\circ} \mathrm{F}$	300,000-500,000	1.00
N-1-852-1	3.3	. 030	0.20	16,000	165	8	11	>10 (a, 450 ${ }^{\circ} \mathrm{F}$	2,000,000	2.69
G-5.813-1	6.8	. 018	1.00	55.000	300	8	11	-	-	2.98
G-10-865-1	5.2	. 012	0.13	60.000	250	10	15	>30 (a.500 ${ }^{\circ} \mathrm{F}$	$1,500,000 \cdot 2,000.000$	3.43
G-11-861-1	4.9	. 015	0.17	60,000	300	10	15	>30 (13) $500^{\circ} \mathrm{F}$	2,000,000	3.55

fic

MPONENT TESTER

cards program tests for...
ansformers transistors
chokes relays
resistors diodes
capacitors plug-in networks
on is performed automatically! Virfually no set-up ort or long runs are made with equal officiency. sipment of transformers, for example, the operator The tester a card punched for that particular type of ach transformer is put in a test connection jig, the he specified tests of primary impedance, excitation atio, winding polarity, leakage current to the core.

II PRODUCTS ON DISPLAY

EFlight and Altitude Simulators
Boresight-Error Measuring Systems
ader, Punch, and Duplicator
Measuring and Recording Systems
ave Sources
-Pattern Recording Equipment
e-Polarization Antennas
pment being introduced for the first time.
w or write to Department 9-35

TECHNICAL INDUSTRIES
sion of textron, inc.
ELMONT, CALIFORNIA

PHALO

Delivers the Balanced Design EVERYTIME!

Custom cables are made, not "born". There is a certain elusive "balance" in the design of every custom cable which makes it perfect for the requirement . . . or which, when it's missing, can prove expensive. Phalo engineers have the "cableability" needed to strike the exact combination you call for.

Find out why more and more custom cables come from Phalo. Start by asking for the Phalo catalog

NEW PRODUCTS

Telemetering System

Operates over single pair of wires

Multiplexed transmission permits incoming data signals and outgoing supervisory commands to be carried over a single pair of wires by synchronous time-division sampling devices. This telemetering station has a capacity of 165 onoff type supervisory controls or 17 telemetered analog signals, or a combination of both The system checks itself once each second and, if necessary, makes automatic calibration and synchronization adjustments. It is compatible with available dc transducers at input and with all types of dc meters and recorders at output.

Applied Science Corp. of Princeton, Dept. ED, Post Office Box 44, Princeton, N. J.

CIRCIE 460 ON reader-SERVICE CARD

Decade Amplifier
High sensitivity at low
frequencies

A low noise, general purpose instrument, model 40-A transistorized decade amplifier has selectable bandwidth for improved sensitivity during measurements at the lower frequencies. The amplifier noise figure is made independent of the magnitude of the driving impedance through the use of a vacuum tube at the input stage. The input impedance is in excess of 10 meg. A constant 600 ohm output impedance is useful for driving passive networks. A gain of 10 or 100 is available over the frequency range of 2 cps to 1 mc with an accuracy of $\pm 0.2 \mathrm{db}$ from 10 cps to 300 kc and $\pm 1 \mathrm{db}$ from 5 cps to 500 kc . Gain is down 3 db at 2 cps and 1 mc . Noise with shorted input terminals is 4 to $7 \mu \mathrm{v}$. Maximum output is 3 v rms or 1 mw .
Zacharias Electronics Corp., Dept. ED, P.O. Box 172, Livingston, N.J.

CIRCLE 461 ON READER-SERVICE CARD

HIGH SPEED
TESTING

Manual-Feed - Manual-Sort AUTO-BRIDGE

The newest addition to Industrial Instruments Auto-Bridge line of automatic and semi-auto-
matic test equipment is the Model AB-3X2. manual-feed, maniral-sort bridge. Fully auto. matic hopper or tape-fed equipments have a definite place in component testing, but they are not the most efficient system whereby a large
variaty of small and medium size lots of com. ponents can be tested.
The Model AB-3X2 is manually loaded and unloaded. One of the two colored lights indicates whether the component under test is "in" or
"out" of preset tolerance. Plug.ins are used to set the "high" and the "low" limits and the standard jig supplied with the equipment accepts most wire lead components. There are no meters to read... the only interpretation required by the operator is to determine which of the two colored lights is lit. A rue limit bridge
principle is used. There is no drift in the operating point and daily calibrations are not necessary.

CIRCLE 463 ON READER-SERVICE CARD

Thr

TEN-TO-ONETHE Copper Clad Laminate YOU WANT IS HERE!

From these ten basic Phenolite ${ }^{\oplus}$ Grades, you can select the base material, resin, properties and price to fit your present printed circuit need.
If your problem is finding a suitable cold-punch material, try samples of XXXP-470-1. It's designed for use in automated production equipment. If you are looking for higher heat resistance, check Grades G-10 and G-11.

Out of National's research laboratories come new advances every day. See your National Representative about new products and applications. He can keep you posted on the full line of Phenolite Laminated Plastic, Vulcanized Fibre and National Nylon for electronic applications across-the-board. In the meantime, write for our new "Phenolite Copper Clad Data" folder. Address Dept. F-3.

MERTEONET VUICANIZED FIBRECO. WIIMINGTON 99, DEIAWARE In Canada:
mational fibre company of camada, lto., Teranto 3, ontario

SEE THESE PRODUCTS ON DISPLAY AT THE I.R.E. SHOW, BOOTH 4419-21.

TYPICAL TEST VALUES ON COPPER CLAD PHENOLITE

	properties of base material					COPPER CLAD Properties				$\begin{aligned} & \text { RELATIVE COST } \\ & \hline \text { Bared on XXXP } \\ & \text { on Artirary } \\ & \text { Scale of I } \end{aligned}$
GRADE	Dielectric Constant	$\begin{gathered} \text { Dissipation } \\ \text { Factor } \end{gathered}$	Moisture Absorption	Flexural Strengith	Maximum Temperature	Copper Bond Strength		Hol Solder Resistance	Surlace Resistance	
	100 Cycles	$10^{\circ} \mathrm{Cy}$ cles	1/4". ${ }^{\text {g }} 24$ Hrs	Psi	Degree I	Pounds to Pull I" Strip		$\begin{aligned} & \text { Secs to Blister } \\ & \text { I" Square } \\ & >\text { Greater Than } \end{aligned}$	Megohms, Etched Retma Comb Pattern, $36 \mathrm{Hrs} / 35^{\circ} \mathrm{C} / 90 \%$ RH	
						102	202			
P-214-B-1	5.3	. 040	2.20	18,000	250	8	11	$>10\left(a, 475^{\circ} \mathrm{F}\right.$	100,000	. 81
XXP-209-G-1	4.6	. 037	1.30	17.000	250	8	11	>10 @ ${ }^{\text {a }} 475^{\circ} \mathrm{F}$	200,000	. 92
$\begin{aligned} & \text { XXP-239-1 } \\ & \text { PHENOCLAD } \end{aligned}$	4.2	. 035	0.67	15,509	250	8	11	>10 (a) $4775^{\circ} \mathrm{F}$	200,000	. 92
XXXP-219-C-1	4.5	. 030	0.70	15,500	250	8	11	>10 (a $475^{\circ} \mathrm{F}$	500,000-1,000,000	1.00
XXXP-455-1	4.0	. 026	0.55	23,500	250	8	11	>10 @ $475^{\circ} \mathrm{F}$	1,000,000-1,500,000	1.00
XXXP-470-1	3.7	. 027	0.48	14,000	250	8	11	>10 (a) $475{ }^{\circ} \mathrm{F}$	300,000-500,000	1.00
N-1-852-1	3.3	. 030	0.20	16,000	165	8	11	>10 a $450^{\circ} \mathrm{F}$	2,000,000	2.69
G-5-813-1	6.8	. 018	1.00	55,000	300	8	11	-	-	2.98
G-10-865-1	5.2	. 012	0.13	60,000	250	10	15	>30 (a) $500^{\circ} \mathrm{F}$	1,500,000-2,000.000	3.49
G-11-861-1	4.9	. 015	0.17	60,000	300	10	15	>30 @ $500^{\circ} \mathrm{F}$	2,000,000	3.55

Als

Twist-fab capacifors in $\mathbf{1 "}^{\prime \prime}$ and 1.375 diamefer sizes feafure G-E efched foil fo increase effective anode area. They come supplied with printed circuil board mountings or regular solder eyelet terminals and iwist-lab lugs. (Unit at left is actual size. Units above are shown $1 / 2$ actual size.)

* ALUMALYTIC

Alumalytic is General Electric's trademark for its electrolytic capacitors made with 99.99% pure aluminum foil.
Alumalytic capacitors give you:

- Longer shelf life because of less oxide deterioration
- Longer operating life because of lower leakage currents
- Higher reliability because the foil contains fewer impurities

Alumalytic capacifors for very high microfarad applications, such as found in compuler power supplies, come in $1^{3 / 3}, 2^{\prime \prime}, 2 \frac{1}{2 \prime \prime}$ and 3^{*} case diamefers. Rafings up to $35,000 \mathrm{mfd} ; 350$ vde are available. Units are made to exacting specifications under closely controlled conditions. (Capacilor above is shown $1 / 2$ acfual size.)

Insulated mefal rubular capacitors are available in all popular ratings, with choice of insulated or uninsulated wire leads or solder eyelef ferminals af either or both ends. Uninsulated mefal rubular unifs are also available. (Unif above is shown acfual size.)

acitors

ectrolytic field

Competitively priced units made

with $\mathbf{9 9 . 9 9 \%}$ pure aluminum foil

Now you can get electrolytic capacitors that are backed by General Electric's long experience in making capacitors for the most critical electronic applications. New DC Alumalytic capacitors are especially designed to meet the growing need for higher quality and more reliable electrolytic capacitors.

Production quantities of Alumalytic capacitors are now available for immediate shipment. They are offered in a broad range of popular types and ratings for radio and television applications. as well as for phonographs, tape recorders, sound systems, computers and similar equipment.

Although the recently developed Alumalytic capacitors are competitively priced, they are made with extremely high quality (99.99% pure) aluminum foil. a feature normally found only in more expensive, specialized types. This high purity foil makes possible a superior dielectric film. With it, units operate at lower leakage currents, and offer superior shelf life at both normal and elevated temperatures. Other materials used in the G-E Alumalytic capacitors are of similar high quality.

Alumalytic capacitors are manufactured by scientifically controlled methods at General Electric's new Irmo, South Carolina plant. Laboratory tests, built right into the production lines, constantly check quality. Millions of capacitors already delivered have passed the most exacting specifications.

For more information and for complete service assistance on your specific problems, contact your nearest General Electric Apparatus Sales Office. Or write to General Electric Company, Section 449-2. Schenectady, N. Y.

Pogress 1 S Our Most Imporrant Product GENERAL ELECTRIC

For complete technical information on Donner's rugged new line of test equipment, please address Dept. 193

See the whole Donner line at the IRE, Booth \#3616. Console styled analog computers, transistorized accelerometers and rugged new test instruments

Transducer

Provides precise voltages and frequencies

Designed for flight test instrumentation where 115 v 400 cps power is available, the Gepod provides controlled excitation of information transducers. The unit will energize three transducers and demodulate their output signals to a form suitable for in-flight recording and/or energizing an air-toground telemetering link. When gyros are used Gepod will supply adequate power of precisely controlled frequency to operate 3 gyro spin motors. Measuring $6 \times 7 \times 13$ in. (including shock mount), the instrument weighs 15 lb .

Bloc Corp., Dept. ED, Maple Ave., Atkinson, N.H.
CIRCLE 464 ON READER-SERVICE CARD

32-V Power Supply

0.03 per cent regulation

Model SC-32-1 power supply delivers 0-32 v, 0-1 amp. Regulation for line or load is less than 0.03 per cent or 0.003 v , whichever is greater. Ripple is 3 mv rms . Recovery time is $50 \mu \mathrm{sec}$. Stability for cight hours is 0.03 per cent or 0.003 v . Output impedance is 0.01 ohms. Additional features include 0.005 per cent resolution by means of a 10 -turn voltage control.

Kepco Labs., Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55. N.Y.

CIRCLE 465 ON READER-SERVICE CARD < CIRCLE 507 FOR G.E. SPREAD

NEW! See these at the IRE Show

Tape-Programmed Supertēster

 speeds production testingComplete testing of wiring, components, voltages, and dynamic characteristics is performed on electronic and electrical equipment by the CII Supertester. The new Model 180 automatically selects circuits, values, and tolerance limits according to the specifications dictated by a punched tape. High-accuracy bridges are used to make measure ments which include the following:

```
Impedance A.C Voliage
Resistance D-C Voltage
Continuity Leakage
```


CABLE TESTER

Checks complex cables, branch circuits Hi-pot and leakage tests - each conductor checked against all others

Performing simultaneous continuity, leakage, and hi-pot tests, the CTI Cable Tester is ideal for both simple cables and complex, branching cables and wiring harnesses. Front-panel controls give independent selection of test conditions: continuity limits from 0.1 to 10 ohms, curents up to 2 amps , high-potting to 1500 volts $\mathrm{d}-\mathrm{c}$, and leakage limits from 1 to 500 megohms.

Automatic

COMPONENT TESTER

Punched cards program fests for . . . transformers transistors
chokes relays
resistors diodes
capacitors plug-in networks
Incoming inspection is performed automatically! Virtually no set-up time required. Short or long runs are made with equal efficiency. On receiving a shipment of transformers, for example, the operator merely places in the tester a card punched for that particular type of transformer. As each transformer is put in a test connection iig, the tester sequences the specified tests of primary impedance, excitation current, winding ratio, winding polarity, leakage current to the core.
chokes relays

OTHER CTI PRODUCTS ON DISPLAY

Dynamic Flight and Altitude Simulators
Radome Boresight-Error Measuring Systems
*Pape Reader, Punch, and Duplicator
VSWR Measuring and Recording Systoms
"Microwave Sources
Antenna-Pattorn Recording Equipment
-Variable-Polarization Antennas
*Indicates equipment being introduced for the first time

For more information, see these instruments at the I.R.E. Show or write to Department 9-35

BOOTHS 1111 and 1112
IRE Convention and Radio Engineering Show New York City March 24-27, 1958

DIVISION OF TEXTRON, INC. BELMONT, CALIFORNIA

Engineers: Career opportunities are currently available at CTI.
CIRCLE 467 ON READER-SERVICE CARD

CIRCLE 468 ON READER-SERVICE CARD

CIRCLE 469 ON READER-SERVICE CARD

NEW PRODUCTS

Electrolytic Capacitors

Miniature sizes for low voltage use

Type EC electrolytic capacitors are available in ratings from 3 to 75 v dc working, and in capacitances from 1 to $250 \mu \mathrm{f}$, depending on voltage ratings. Operating temperature range is -20 to +65 C. The smallest case size is 0.187 in . diam and $1 / 2 \mathrm{in}$. long, and the largest is 0.375 in . by $1-1 / 2 \mathrm{in}$. The capacitors are housed in tubular ceramic cases. Capacitor sections are sealed with cast resin making them moisturetight and heat resistant.
Cornell-Dubilier Electric Corp., Dept. ED, S. Plainfield, N.J.

CIRCLE 480 ON READER-SERVICE CARD

Transformers and Chokes
Can design provides good thermal quality

This line of standard 400 cps transformers and chokes features a can design only slightly larger than the actual magnetic core. Power range up to 200 w at 400 cps is available in case sizes ranging from $1-1 / 4 \times 1 \times 1$ up to $2-1 / 2 \times 2 \times 2-1 / 8$ in. The proximity of the double-ended can to the coil and core provides minimum thermal distances, while contact with the core allows the base to dissipate heat in a heat-sink mounting. Reduction of case size also decreases the weight and volume of epoxy required for potting.

Magnetic Circuit Elements, Inc., Dept. ED, 3722 Park Pl., Montrose, Calif.

CIRCLE 481 ON READER-SERVICE CARD

How To Get Things Done

BOARDMASTER VISUAL CONTROL

Gives you a Grophic Picture of your operations, spot-lighted in color. You See what is happening at a glance. Facts at eye levelsoves you time, prevents errors.
Simple, flexible-easily adapted to your needs. Easy to operate. Type or write on interchangeable cards, snap in grooves. Ideal for production, scheduling, soles, troffic, inventory, etc. Made of metal. Compact, attractive.

Complete Price $\$ 49^{50}$ Including Cards

FREE
 24-Page Illustrated Booklet N-50 Mailed Without Obligation

GRAPHIC SYSTEMS ${ }^{55}$ WEST 42 2ND STREET NEW YORK 36, N. Y.
circle 482 ON reader-service card

FLEXIBLE SHAFTS

Handle wide variety of control applications.

The Flexible Shaft today, although not complicated. is a specific component designed for specific applications. Industry in many fields, i.e., automotive, automation, aircraft, electronics, radio and television, machinery, and marine (to name but a few) have found flexible shafting to be more economical and yet more productive than whatever means they were employing to control motion from one unit to another where obstacles in the path of installation were impossible to do away with.
There are two types of flexible shafts. One is the power drive flexible shaft which utilizes a cable wound to rotate in one direction only. The outer layer of wire of the cable determines the direction rotation, and is wound so that the slack is taken up when the shaft is in operation, making it practically impossible for the cable to spring from its original shape. The other type is the remote control flexible shaft in which the cable is wound so that the slack is taken up no matter which direction the shaft is turned. The remote control shaft provides for both rotation and reciprocation, such as the opening and closing of a valve.

- - For complete information as to how flexible shafting may help you solve your specific control problem, write F. W. Stewart Corporation, 43̈11-13 Ravenswood Ave., Chicago 13, Illinois.

CIRCLE 483 ON READER-SERVICE CARD

designed especially for original equipment manufacturers by America's Footswitch Leader
Hili-treadlite

Just $31 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 11 /^{\prime \prime}$ in size with strong gray hammertone finished steel housing, skidproof rubber base pad this $91 / 202$. switch has long service life, high electrical rating
Available in SPDT, 4 ferminal, and simulated DPDT circuits. Combine ony two to form a Hi-treadlite twin switch. Special cordsets, nameplates and colors available.
Write for prices, bulletin and complete catalog of
LINEMASTER SWITCH CORP. 130 Putnam Road, Woodstock, Connecticut CIRCLE 484 ON READER-SERVICE CARD

Fiery prrformance

Faced with the problem of high temperature? Deutsch Miniature Electrical Connectors thrive on a caloric diet ...operate at $250^{\circ} \mathrm{F}$. without damage. Among these torrid performers are Deutsch 9600 Series push-pull receptacles and 9700 Serie push-pull plugs, perfectly matched for use in ballistic missiles, Despite vibration, altitude and shock
Despite vibration, altitude and shock, hey make all ted right connections ballistic installations Prototypes and modifications of these and other miniatures are availabl for quick delivery Deutsch miniatures are as easy to operate as striking a match. Simply push in for positive lock and seal; pull back for instant disconnect Hot and bothered for more facts on the construction and operational features of Deutsch miniatures? Write for Data File 332

The Deutsch Company 7000 Avalon Blud. - Los Angeles 3, Cali)

CIRCLE 485 ON READER-SERVICE CARD

Teflon Hook-Up Wire

For aircraft and missiles

Teflon insulated hook-up wire was developed for use in aircraft, rocket and missile wiring, distribution and power transformers, integral and traction motors. Extruded Teflon coating on the silver-plated copper wire conductor makes the wire capable of continuous service over a temperature range of -90 to +260 C . It is easily stripped.

Haveg Industries, Inc., Halocarbon Div., Dept. ED, 900 Greenbank Rd., Wilmington 8, Del.
IRE Booth No. 4216
CIRCLE 486 ON READER-SERVICE CARD

Clutch-Brake Assembly

Operates on less than 5 w

Model FD electromagnetic clutch-brake is designed to couple and uncouple a mechanical load upon receipt of a signal. A braking torque is automatically applied to the load shaft when decoupled. The operating coil requires less than 5 w power and may be wound for any specified dc voltage rating. Hermetically sealed power units packs measuring $2 \times 2 \times 1 / 2 \mathrm{in}$. are available for operation from $115 v 60 \mathrm{cps}$.

General Technology Corp., Dept. ED, 44 N. Dean St., Englewood, N.J.

CIRCLE 487 ON reader-service card

Radar Pulse Systems

Packaged units save space
Savings in space and weight are made possible by the incorporation of several matched radar transmitter components in one package, called a Pulsepak. For instance, a typical space-saving situation occurs when high voltage components are at virtually the same potential. If packaged separately, each would need insulation from its own enclosure, but they may all be placed close together in the same container. The units furnish outputs meeting reasonable performance requirements of any specific radar system employing a hydrogen thyratron tube.
Filtron Co., Inc., Dept. ED, Flushing, N.Y. IRE Booth No. 1502, 1504

CIRCLE 488 ON READER-SERVICE CARD

Fafnir presents a

NEW

MINIATURE BALL BEARINGS

featuring

COMMUNICATIONS EQUIPMENT Specialists

Custom -

- Engineering
- Design

- Production

Complete Laboratory and Model Shop Facilities

- Inquiries Imuited.
 RIXON ELECTRONICS, INC.

2414 REEDIE DRIVE SILVER SPRING, MARYLAND

CIRCLE 490 ON READER-SERVICE CARD
 (F A A) FARLEY \& LOETSCHER MFG. Co. DUBUQUE, IOWA

NEW PRODUCTS

Cables and Connectors
50 and 160 ohm low capacitance types

Tivo miniature cable and connctor assemblies have been developed. The Twinax component is a 160 ohm, low capacitance connector with two shielded and jacketed conductors. This connector is a slide-on type, keyed for polarity. The Triax is a screw-type, 50 ohm connector with double shielded coax insulated between the shields.

Microdot, Inc., Dept. ED, 220 Pasadena Ave., South Pasadena, Calif.

CIRCLE 492 ON READER-SERVICE CARD

Audio Voltage Standard

Stable supply with 30 cps to 20 kc range

The model AVS-320 audio voltage standard has output voltages of $1,10,100$, and 300 rms . Frequency range is 30 cps to 20 kc ; input voltage 1 v rms ; output regulation of plus 0.1 per cent for a period of 30 days, with distortion of less than 0.025 per cent. Power source is 105 to 125 v ac $60 \mathrm{cps}, 150 \mathrm{w}$.

Holt Instrument Labs., Dept. ED, Oconto, Wis.

CIRCLE 493 ON READER-SERVICE CARD

High Temperature Connector

A push-pull type for 500 F operation
A 500 F push-pull connector will be featured in this company's display of miniature connectors. Included in the exhibit will be miniature electrical connector applications for black box packag-

STILL GOING STRONGI

The new Pioneer high vacuum switch may be your answer for a compact, rugged. long lasting, single pole double throw high voltage relay. Ideally suited for switching purposes in DC pulse systems and in many circuits where a fast-acting relay is required in a high voltage circuit, or under varying atmosphere conditions.

Leader in For application in Mining. Chemica Aircraft and Petroleum Industries.
Write for descriptive literature and Special Purpose Tubes specifications. Dept. ED-3.
 CIRCLE 495 ON READER-SERVICE CARD

Sectional shielded room of metal-faced Weldwood Plywood gives positive RF seal, needs no maintenance
"Our Annorply shielded room, manufactured by Shielding, Inc., does a first-class job of isolating electrical elpuipment undergoing radio interference tests," reports Jack Ford, Magnavox standards engineer. "The $3 / 4$-inch plywood core separating the zinc-coated steel faces eliminates any possibility of short circuits. Also neither periodic repair nor painting is needed."
An Armorply room can be installed, expanded, altered, or dismantled and moved easily because special compression joints eliminate any need for soldering the modular panels. "We intend to order another Armorply enclosure shortly," says Mr. Ford. "We're perfectly satisfied with Armorply's performance." Armorply panels can be specified in a variety of faces and cores. For full details and a free Armorply sample, write: United States Plywood Co., Dept. ED 3-5-58, 55 W. 44th St., N. Y. 36, N. Y.
※ Weldwood ARMORPLY ${ }^{\circ}$

See Us in Booth No. 2317 at the I.R.E. Show
ing and special rack and panel installation. In addition to rack and panel units, the line is made up of edgelite panel, hermetic and miniature connectors of all types, including push-pull, positive locking and sealing units.

The Deutsch Co., Dept. ED, 7000 Avalon Blvd., Los Angeles 3, Calif.
IRE Booth No. 3921
CIRCLE 498 ON READER-SERVICE CARD

Digital Test Equipment

A transistorized building block line

Designed for use by engineers involved in the development and production of computer systems, this equipment features ease of application, high speed, and compactness. The transistors used make possible pulse speeds of 5 mc .

Counters, shift registers, and pattern generators as well as other test set ups can be assembled from the units. Only three voltages are used, $+10,-3$, and -15 .

Digital Equipment Corp., Dept. ED, Maynard, Mass.

CIRCLE 499 ON READER-SERVICE CARD

Frequency Meter and Counter
10 cps to 100 kc range with high stability

Model WE-120 five-decade frequency or events per unit of time meter and counter uses decade glow transfer tubes for both digital presentation and digital division of the time base frequency. Frequency range is 10 to $100,000 \mathrm{cps}$, and stability is 0.001 per cent ± 1 count. Sensitivity is 75 mw to 120 v rms , with $105-125 \mathrm{v}$,

75 w power input.

Westport Electric, Dept. ED, 149 Lomita St., El Segundo, Calif.
circle 500 on reader-service card

SPIROL - the spring pin made with Low-Cost Non-Heat-Treated Metals

Nickel stainless steel SPIROL pins are
used as corrosion-proof fastenings on "Moen" one-handle mixing faucets. SPIROL pins can be made with lower. cost, non-heat-treated metals - stainless steel, brass, and ordinary copper - because stress is evenly distributed throughout the spiral coils, giving full radial spring action, with no flexing concentrated along a "hinge" line.

SHOCK RESISTANCE

High resistance to shock and vibration permits use of "medium duty" Spirol pins in the majority of applications. Heavy and light duty
Spinol pins also available in stock.

WIDER HOLE TOLERANCES

Both plus and minus hole tolerances are allowed because spiral construction permits greater flexibility in expansion and compression. The wider hole tolerances eliminate precision reaming requirements, reduce drill-
ing rejects, cut costs. ing rejects, cut costs.

PERFECT CHAMFER

A. Smoothly rounded radius where chamfer meets shank eases insertion into hole. No sharp break to "bite" and resist insertion. B. Chamfer angle is precisely designed to offer mimum compression leverage.

MINIATURE PINS

- Spirol is the only spring type pin available in these miniature diameters: $1 / 32^{\prime \prime}-.039^{\prime \prime}-3 / 8_{4^{\prime \prime}}-.052^{\prime \prime}$. Unique spiral cross-section retains flexibility and strength in smallest sizes. Other standard sizes up to $1 / 2^{\prime \prime}$ diameter.
FRIE! Write for literature on Spirol Pins.

©SPIROL 緰PIN

C. E. M. COMPANY - SCHOOL ST. - DANIELSON, CONN. CIRCLE 510 ON READER-SERVICE CARD

NEW

NYLON PARTS merc

Economically mass produced on fully
nutomatte. ${ }^{\text {patented }}$
machine
GRC nylon parts are GRC nblo parts ire
avallable in manyrc
anee and type. GRC usen single cavity
techniues. mold in
one nutomatic
 reta accurate un
part read for

These advantages, these economles
apply too on part
made to exact made to exact
specication
ountitles or
or
50,000 oo many millions. Write for bulletinn
describing GRC's inloue methods for send prints for parts or and
quotation Al Alor abe about alloy die

Nain uom iof ini
At the IRE
Booth 8024

World's Forcmoss Produce of Smer Cor
40 Second St., Now Rocheile, N. Y. - NEw Rochelle 3-860 CIRCLE 511 ON READER-SERVICE CARD

TRANSISTOR TECHNOLOGY

New books, edited by members of the Technical Staff of the Bell Tolephone Laboratories, discussing the fundamental concepts, early techniques and processes, and most recent moterial on developments in design and fabrication.
VOLUME I Edited by H. E. Bridgers, J. H. Scaff and J. N. Shive. A unique exposition of the principles of germanium transistor fabrication, with specific information in each step leading to production on a commercial scale. An invaluable aid to present-day understanding of transistors, their capabilities and potentialities.

700 pages, lllustrated, about $\$ 17.50$
VOLUME II Edited by F. J. Biondi. Discusses the technology of materials, with special emphasis on silicon. Treats the principles of materials, with special emphasis on silicon. Treats the principles of ing devices, tetrodes, radiation sensitive devices, and more.

600 pages, illustrated, about $\$ 15.00$ VOLUME III Edited by F. J. Biondi. This volume deals with the preparation of junction structure; fabrication technology; the measurements and characterizations; and the reliability of transistors. An appendix of terms and symbols and an index aid in ready reference.

550 pages, illustrated, about $\$ 1500$
CLIP AND MAIL THIS COUPON TODAYI
D. Van Nostrand Company, Inc., Dept. ED 38

120 Alexander Street, Princeton, N. J.
Please send me book(s) checked on 10 days free trial.
\square TRANSISTOR TECHNOLOGY, Volume I -about \square TRANSISTOR TECHNOLOGY, Volume II -about
$\$ 17.50$ \square TRANSISTOR TECHNOLOGY, Volume III-about $\$ 15.00$
$\$ 15.00$ Within 10 days I will remit purchase price plus small delivery

Name

Address

city.
Savel Remit with order and wo pay delivery costst CIRCLE 512 ON READER-SEVVICE CARO

NEW PRODUCTS

Magnetic Amplifier

Linear dc output controlled by dc signal

Model 420 magnetic amplifier has a transimpedance of $50,000 \mathrm{ohms}$ and delivers a linear dc output from 10μ w of de control signal. Frequency response extends from dc to 25 cps , depending on circuits used. Model 420 contains a push-pull, full-wave, reversible-polarity magnetic amplifier, and uses negative feedback for stabilization and linearity. Performance is not impaired by distorted supply waveforms, 10 per cent voltage and frequency variations, or temperatures from -55 to +85 C . Unit measures $1-1 / 2 \mathrm{in}$. diam by 3 in . high.
Acromag, Inc., Dept. ED, 22519 Telegraph Rd., Detroit 41, Mich.

CIRCLE 513 ON READER-SERVICE CARD

Memory Cores

Less than $1 \mu \mathrm{sec}$ switching time
One of four products being announced are these memory cores, available in S-4 material, with switching time of less than one $\mu \mathrm{sec}$ with 550 ma full drive. At recommended operating conditions the "one" output voltage is greater than 60 mv and "zero" output voltage less than 6 mv .
A zinc ferrite material is also available. Expected to gain wide acceptance in transformer applications, this material has a loss of less than 85 mw per cubic centimeter at 15 kc . Initial permeability is rated at 2000 and maximum at 3600. Ballast for high frequency lighting systems is another application presently being explored.
Two other products consist of a line of high temperature solid pin headers for use in tubes where uniformity and ability to withstand severe environmental conditions are required, and a line of vacuum tight high-temperature ceramic-tometal cable end seals designed for use as terminations with mineral insulated cable.

General Ceramics Corp., Dept. ED, Crows Mill Rd., Keasbey, N.J.

CIRCLE 514 ON READER-SERVICE CARD

GERMANIIIM RECTIFIER POWER SUPPLY

0 - 110 V.D.C. 20 Amps 1\% Ripple
 - Vacuum Varnish Impregnated Magnetic Components - Short

 Circuit and Overload Protection - Non-Ageing Germanium Rectifiers • Natural Draft Cooling • $41 / 2^{\prime \prime}$ Rectangular 2% Accuracy DC Panel Meters - BUDGET PRICED
Polarity: Positive and negative terminals are above ground and isolated $\begin{array}{ll}\text { Input: } & \text { from the AC input. Either terminal may be grounded. } \\ \text { I20 volts AC } 60 \text { cycles single phase } \\ \text { Controls: } & \text { Power switch, voltage control, input circuit break }\end{array}$
Controis:
Terminals: in indicating type fuse holder and pilot light. Innut - Barrier type terminal board at rear
Output - Insulated
Output - Insulated panel mounted binding posts and barrie
Dimensions: $22^{\prime \prime} \mathrm{L} \times 19^{\prime \prime} \mathrm{H} \times 15^{\prime \prime} \mathrm{D}$.
$\begin{array}{ll}\text { Dimensions: } & 22^{\prime \prime}(x X \\ \text { Weight: } & 160 \mathrm{lbs}\end{array}$

Bulletin No. 204 On Request 69-16 MURRAY STREES
CIRCLE 515 ON READER-SERVICE CARD

SPEED

HARNESS

ASSEMBLY

with HASSALL HARNESS BOARD POSTS

These new harness posts speed multi-circuit wiring harness assembly. Posts may be nailed into the board with no pre-drilling. Hassall posts are tempered and hardened, nickel plated, and tops are milled round to ease wire placement and removal. Lengths available: $1^{\prime \prime}, 11 / 2^{\prime \prime}, 2^{\prime \prime}, 21 / 2^{\prime \prime}, 3^{\prime \prime}$ and $4^{\prime \prime}$. Write today for prices.

John Hassall, Inc., P.O. Box 2202 Westbury, Long Island, N.Y.

H
 Hassail

MANUFACTURERS
SINCE 1850

Hassall

NAILS, RIVETS, SCREWS AND OTHER COID HEADED FASTENERS AND SPECIALTIES

CIRCLE 516 ON READER-SERVICE CARD

CIRCLE 517 ON READER-SERVICE CARD

NOW! MAGNESIUM
 AND ALUMINUM when Anchor plated, provides increased conductivity AND SOLDERABILITY

Anchor's new process for successfully electro plating Gold, Silver or Rhodium on Magnesium and Aluminum provides maximum conductivity and other desirable electrical choracteristics.
Anchor fused Tin or AF-14 finishes on Magnesium*, Aluminum or other base metals provide excellent solderability and shelf life. - Affractive, high luster finish. *LIcensed by Dow Chemical Co. Samples to your specifications will be plated at no charge. Write, wire or phone TODAY for informa tive brochure.

ANCHOR PLATING

 \& TINNING CO., INC. 9538 Rush Street, El Monto, California Gllbert 8-6853 - Cumberland 3-8281 CIRCLE 518 ON READER-SERVICE CARD
Digital Clock

Output accurate to nearest second

Suitable for providing time data to logging systems or data handling systems, model 2600 digital clock produces multiple digital representations of time to the nearest second. Up to three independent, parallel, decimal outputs are available in one unit, with time resolutions of seconds or minutes.
Chrono-log Corp., Dept. ED, Box 4587, Philadelphia 31, Pa.

CIRCLE 519 ON READER-SERVICE CARD

Magnetostrictive Storage Unit
Making possible a $3 \mu \mathrm{sec}$ access rate

Having a rate of access of $3 \mu \mathrm{sec}$ as against $10 \mu \mathrm{sec}$ or more for usual delay lines this mag. netostrictive storage unit consists of eleven 120$\mu \mathrm{sec}$ delay lines. Ten of these lines are storage units capable of storing 60 bits of information at a 1 mc prf for a total of 600 for the 10 lines. The eleventh line is intended as a clock and/or synchronization line for purposes of controlling the time slots in a computer.

Read coils can be installed every $3 \mu \mathrm{sec}$ along the length of the line. Using the write coil and the first read coil of the clock line as the basic timing unit, maximum timing stability is achieved while temperature changes are immaterial and will not cause the storage lines to drift. Each line may be driven by a single tube or transistor.

The storage unit is constructed around a central supporting rod or shaft for purposes of ready accessibility and servicing. Input and output coils of the delay lines can be wound for any desired impedance, tube, or transistor. The inherent temperature coefficient of the line is 0.005 per cent per deg C, but may be improved by temperature-compensating techniques.

The unit measures 40 in . long and 7 in . diameter. Weight is $25-1 / 2 \mathrm{lb}$.

Deltime, Inc., Dept. ED, 608 Fayette Ave., Mamaroneck, N.Y.

CIRCLE 520 On reader-Service card

Thishandy Selector FREE

Saves hours of time if you order or specify sheetmetal cabinets, racks, panels or chassis. With the handy BUD Selector you don't need to go through a catalog or study a lot of details and specifications.
If you're selecting Cabinet Racks, Relay Racks or Cabinets and you know what panel space is required you can quickly determine the correct size and catalog number of the rack or cabinet. Or you can choose the cabinet and rack you desire and easily discover the size and catalog number of panels you need.
When you specify or order standard or special chassis the Bud Selector again quickly gives you the correct catalog number for the exact size and type required.
High quality and prompt service assures you satisfaction when you order Bud Products. See them at your nearest Bud Distributor.

Write us on your lefterhead
for your handy Bud Selector.

BUDRADIO, INC.
2118 East 55th Street Clevoland 3, Ohio
Dopt. ECD
CIRCLE 521 ON READER-SERVICE CARD

new Microsecond Indicator

TYPE 206

Specificatlonsz Channel 1-Time Delay: 0.5
Us total deloy in step of 0.05
Channel 2-Time Deloy: Port
Channel 2-Time Delay: Prort
1- Continuously voriobe from
to 0.1 o to o.l us. witn resolution
time less than 8×10-11 second. time less than 8×10^{-11} second;
Part $2-S$ tee variable from 0 to 6 us in step of 0.1 us. Maximum Sweep Rate: The
maximum moximum repetition rote of
the oscillossope 5 Weep should
be less than he less than 100 Kc .
Maximum
Meximum Output: 6 volts
peok to peak.

$\mathbf{D - Y U}$ alectroncs lab, nc. formerly
ADVANCE 2 g g Igylum ne
PASSAIC, N. I.
CIRCLE 522 ON READER-SERVICE CARD
 AND

LACING CORDS and FLAT BRAIDED TAPES

- FUNGUS-PROOF - tIES EASY, FAST AND TIGHT
- STRONGER - KNOTS WON'T SLIP

MEET NEW GOVT. SPEC. Mil-T-713A
Tapes are available in beth Nylon and Dacron and in wax, waxfree and resin-coated finishes. FREEI Write today for free samples.

New!' teflon coated fiberglass tapes WITHSTAND TEMPERATURES UP TO 600°

SEE US AT THE I.R.E. SHOW - BOOTH \#4105 CIRCLE 523 ON READER-SERVICE CARD

NEW PRODUCTS

Preset Counters

Feature reliability, count rate above 5000 cps

Since cold cathode glow counters and transistors are the only critical components, this counter provides substantial reliability. Available with single and dual presets, 2 to 6 digits, and optional Nixie-in-line readout, tentative specifications include a count rate above 5000 cps , sensitivity of 50 mv at $20,000 \mathrm{ohms}$, and a pulse output of 30 v . Output relay is mercury wetted, hermetically sealed, spdt.

Dynapar Corp., Dept. ED, 5150 Church St., Skokie, Ill.

CIRCLE 524 ON READER-SERVICE CARD

Temperature Measuring System An adiabatic type for remote indication

Application of this system can be made to any situation requiring direct reading remote temperature indication. System accuracy and range are essentially that of the total temperature probe, and can be supplied for any span from -60 to +1000 F. A typical system, the FT-104, consists of a resistance thermometer, control unit with a temperature-controlled silicon diode reference bridge circuits, and a chopper type servo millivoltmeter for display purposes.

North Atlantic Industries, Inc., Dept. ED, 603 Main St., Westbury, N.Y.

CIRCLE 525 ON READER-SERVICE CARD

Glass-Base Epoxy Laminates

Easily machinable

An epoxy-impregnated plastic laminate, designated as Grade G-11, with a continuous-filament woven glass fabric base has been developed. It is anticipated that Grade G-11 will be eventually

Lepel

HIGH FREQUENCY

LEPEL Electronic Tube
GENERATORS - $\mathbf{1} \quad \mathbf{K W}$; $21 / 2 \mathrm{KW}$,
5 KW ; 10 KW ; 20 kW ; 30 kW ; 50 kW ; 75 KW ; 100 KW .
LEPEL Spark Gap Converters
2 KW ; 4 KW ; $71 / 2 \mathrm{KW}$; 15 KW ; 30 KW .
WRITE FOR THE NEW LEPEL CATALOG . . 36 illustrated page
packed with valuable information.
All lepel equipment is cer rified to comply with the

LEPEL HIGH FREQUENCY LABORATORIES, INC. SSin street ond 37th avenue, woodide in. new rork cilv, n r.

CIRCLE 526 ON READER-SERVICE CARD

attention authors

Because an electronic design engineer must have hundreds of ideas to draw upon for each individual design decision, the editorial staff of ELECTRONIC DESIGN is continually trying to add to this storehouse of ideas. We are, therefore always interested in material based on your own experience which would be of immediate practical use to electronic design, development and research engineers. It is not difficult to write an article for ELECTRONIC DESIGN if you know what to write about and how we like to have our stories written. To simplify the preparation of an article, we have drawn up a brief guide for authors. Send for your
 copy today.

Edward E. Grazda, Editor.

ELECTRONIC DESIGN

19 East 62nd Street
New York 21, New York

PHAZ
NULL METER

A PHASE SENSITIVE NULL METER Wherein noise AND HARMONIC voltages are EFFECTIVELY ELIMINATED

- Allows separate balance of in phase or quadrature in null circuits.
- Eliminates the necessity for filters.
- High sensitivity.
- Direction of null clearly shown on zero centered meter.
- Synchro zeroing without recourse to coarse and fine switching.

For further information contact your nearest
INDUSTRIAL TEST EQUIPMENT CO. 55 E. 11 th ST. . NEW YORK 3 - GR. 3-4684 CIRCLE 528 ON READER-SERVICE CARD

The illustration shows how the opecating time of various sections of
console can be monitored.
The dial type units read up to 2,500 hours in one hour increments, while the digital type units read up to 9999.9 hours in one-tenth hour increments. Designed for military applications, these $41 / 2$ ounce units can save valuable panel space in industrial and electronic applications.

CIRCLE 529 ON READER-SERVICE CARD
covered by a future military specification of its own; it does conform to Military Specifications MIL-P-18177 at present. Grade G-11 possesses low moisture absorption, and low dissipation factor properties, maintaining these characteristics over a wide range of humidities and temperatures. It can be easily machined because of its high bond strength, and is fungi-resistant.

Synthane Corp., Dept. ED, 12 River Rd., Oaks, Pa.

CIRCLE 530 ON READER-SERVICE CARD
Transformer Kit
For blocking oscillator design

The Pulsite transformers in this kit are specifically designed for use in preferred blocking oscillator circuits. For example, in NBS preferred circuit no. 46 , cathode output is 60 to 85 peak volts with pulse durations of 0.1 to $10 \mu \mathrm{sec}$, depending on transformer used. The kit consists of eight oscillator units with turns ratios of 1:1:1 and open-circuit primary inductances from 0.08 to 150 mh and two interstage units with turns ratios of 5:1:1.

Airpax Products Co., Transformer Div., Dept. ED, Middle River, Baltimore 20, Md.

CIRCLE 531 ON READER-SERVICE CARD

300 Deg Panel Meter

Available in sensitivities to $100 \mu \mathrm{mp}$

Featuring 8-1/2 in. of useable linear scale in a $4-1 / 2 \mathrm{in}$. diam meter, these units cover 15 per cent more scale than the 250 deg instruments previously manufactured by this company. Response time and dampening of these meters surpass MIL 10304A. The instruments are hermetically sealed and ruggedized. Meters can be furnished in standard ranges from 100 ramp and up, with accuracies from 0.5 to 2 per cent. They are available in 2-1/2, 3-1/2, and 4-1/2 in. sizes, round or square. Other sizes and meters more sensitive than $100 \mu \mathrm{mp}$ can be built.
Miller Instrument Co., Dept. ED, 165 E. Lincoln St., Escondido, Calif.

CIRCLE 532 ON READER-SERVICE CARD

THIRTEEN BRISTOL HIGH-SPEED RELAYS IN THIS CONVERTER!

Twelve-and-a-half microvolt resolution at 20 readings per second! That's the outstanding feature of the analogue-todigital converter, developed by Non-Linear Systems, Inc., Del Mar, California, to "digitalize" the output of low-volt age transducers in either ground or airborne service.
It's significant that Non-Linear Systems engineers selected thirteen miniature Bristol Syncroverter ${ }^{\text {th }}$ high-speed relays (inset, top) for use in the converter scanning circuits. This versatile, high-speed, polarized relay has earned an enviable reputation for reliability, long life and immunity to shock and vibration in just such critical low-level, dry-circuit applications.

Are dry circuits your problem?

If so, we believe we have the answer. Dry-circuit reliability and long life are outstanding features of the Syncroverter high-speed relay. It's unaffected during severe shock and vibration. It has fast pull-in and drop-out and negligible contact resistance, and it operates reliably over a wide temperature range.

More than $\mathbf{2 0}$ models available

You can specify Bristol Syncroverter high-speed relays in an extremely wide variety of operating characteristics and in various case and mounting arrangements. Ask us for complete details. Write: The Bristol Company, 151 Bristol Road, Waterbury 20, Conn.
${ }^{\text {Tr. M. Reg. U. S. Pat. Off. }}$
BRISTOL
FINE PRECISION INSTRUMENTS FOR OVER 68 YEARS
our oxhibis in Booth 3932 of the IRE Show CIRCLE 533 ON READER-SERVICE CARD

APPLICATIONS

Electrical and Acoustical Measurements
Electrical Communication Systems (Selective Calling)
Remote Operation and Supervisory Control of Machinery and Apparafus
Electrical Compufers and Telemefering Sysfems Electro-Mechanical Bandpass Filters

Frahm Oscillator Controls, Type ROC, make possible the design and construction of inexpensive, precision tone generators that are small and light weight. These generators will have accurate output frequency and output voltage with very nearly sinusoidal wave shape.

They can be made with any one nominal control frequency between 20 and 1100 cps. They will control the output frequency of circuits, under specified conditions, constant within $\pm 0.15 \%$ of the nominal control frequency.

We particularly encourage your inquiries and correspondence on special applications and problems. If you haven't explored these Frahm Oscillator Controls we'll be glad to send you complete specifications, characteristics, etc. Write for Bulletin 34-N.

NEW LITERATURE

Silicone Sponge Sheets

The properties of Cohrlastic R-104070 silicone sponge rubber sheets for -100 to 480 F applications are detailed in this 2 page data sheet. These silicone sponge rubber sheets meet AMS 3195 and 3196 and many commercial specifications. Data sheet, as well as a sample of the silicone sponge rubber are available. Connecticut Hard Rubber Co., 407 East St., New Haven 9, Conn.

Visual Analysis Techniques

A bulletin series covering technical notes on applications of panoramic techniques in the solution of measurement problems has been released. The series covers actual case histories, the function and use of various types of instruments, results achieved with combination instrumentation systems, technical explanations and solutions of both common and unusual problems. Panoramic Radio Products, Inc., Mount Vernon, N.Y.

Reflex Klystron

Describing a low voltage, reflex klystron for the frequency range of 8.5 to 10.5 kmc , the bulletin includes special features and applications. The oscillator produces a minimum output power of 20 mw at a beam potential of 300 v when operating into a load having a measured vswr of less than 1.1.

The oscillator features broad band; low cost; small size; waveguide output; base shield flange; integral cavity and tuner with a single-screw tuning covering the full frequency range; free convection cooling; compensated for ambient temperature changes; all electrical connections through standard small-wafer octal base. Sperry Gyroscope, Electronic Tube Div., Great Neck, New York.

Metal Film Resistors

This four page brochure describes and gives specifications of metal film resistors especially designed for use from dc to

Aircraft fuels demand lacing tapes that can "take it". Ben Har Lacing Tapes can! Especially formulated of two highly inert materials - Teflon* and Fiberglas**. In Ben Har Tapes the Fiberglas is Teflon coated to give the braid a "tooth". Will not slip after knotting. Ben Har Tapes will not shrink, never cut through insulations. Pliable from $-100^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. Wax-free, will not support fungus. Non-absorbent. Four sizes and nine colors - write for prices and samples.

> BENTLEY, HARRIS MANUFACTURING COMPANY 300 Barclay Street
> Conshohocken 3, Pa.
> ${ }^{\text {TTeflon - DuPont T.M. **Fiberglas - Owens-Corning T.m. }}$

BENTLEY, HARRIS
$90,000 \mathrm{mc}$. Described are waveguide metallized glass attenuator elements, coaxial load resistors, metal film resistance card, metallized mica elements 0.001 in. thick and miniature metal film rod and disc type resistors. Applications of the resistors are microwave attenuators, coaxial low and high power loads, Tee pads, precision low vswr terminations, strip line resistors, directional couplers, and coaxial attenuators. Filmohm Corp., 48 W. 25th St., New York 10, N.Y.

Special Cams

307
This illustrated booklet, No. SC-1, describes a service for providing industry with special cams of every type, whether the need is for a single piece or for production lots. Many of the modern manufacturing and testing facilities utilized in the precision operations are illustrated. Included among the facilities described in detail are cam millers, cam grinders, turret lathes, visual comparators, air gages and an optical rotary table reengineered to the comany's specifications. The American Cam Co., Inc., P. O. Box 2106, Hartford, Conn.

Pulse Transformers

A 12-page catalog, C 201, describes pulse transformers, toroids, and filters. With schematics showing typical uses, it provides detailed circuit applications and design hints. Pulse Engineering, 2657 Spring St., Redwood City, Calif.

Facilifies Brochure

309
Facilities which span the full spectrum of engineering and design services are described in a 6-page folder. A data processing and electronic digital computer service are among those mentioned. Photographs illustrate the text. Allstates Design \& Development Co., Inc., 25-27 N. Warren St., Trenton, N.J.

Relays

A 20-page catalog shows a full line of relays for electronic, electrical, and industrial use. It contains technical data on relays of all types. Kurman Electric Co., Div. of Norbute Corp., 191 Newel St., Brooklyn, N.Y. a design engineer who plans to incorporate the spring in his own machinery.

- When you require springs, consult the spring engineers at John Chatillon and Sons. They have over 120 years of experience in designing and manufacturing all types of springs and they can solve all your spring problems.
Send specifications and blueprints to Department D-1.

JOHN CHATILLON \& SONS
BE CLIFF BTREET, NEW VORK, N. \mathbf{V}.

Manufacturers of Precision Springs and Force Measuring Instruments Since 1835.

CIRCLE 311 ON READER-SERVICE CARD

99\% magnetic stepping motor1\% moving part (touches only ball bearings)

... B000 STEPS PER MINUTE
...INSTANT START, NO SLIP, NO CLATTED
... It works
THE SIGMA CYCLONOME ${ }^{*}$ STEPPING MOTOR* behaves like a 10 -pole synchronous motor, but because of small inertia and high torque it comes to a dead stop between each balf cycle up
 to rated maximum of 130 cps . It continues to run synchronously at frequencies well above this maximum, but eventually fails to stop on command on a selected pole.

Since stopping and starting torques are roughly equal, it makes a good counter of cycles or pulses. It accepts sine waves or square pulses, but requires reversals. These reversals may be provided by straight AC signals, DC pulses supplied alternately to separate windings, or DC pulses to one winding with a reference or bias DC in the other.

As proof that this dandy little motor works and can do some useful jobs, three "for instances" that we've built are shown. In (1), some rather elaborate switching is done by a commutating switch driven by the motor. At (2), it functions as a self-checking digital readout switch. In the third example (3), the motor is housed with and drives a 6 -digit Veeder-Root register at rates up to 8000 CPM (sold for some time as the Sigma Cyclonome Counter).
*Pat. app for

TYPE 12D CYCLONOME STEPPING MOTOR SPECS INCIUDE:

TORQUE OUTPUT: approximately 100 gram-cm. for every 18° of rotation
(optimum input signal)
INERTIA: 0.6 gram-cm². 2.
INPUT POWER: $1 / 2$ to 12 watts
depending on speed requirements
SIZE: $23 / 8^{\prime \prime} \times 2 \% / s^{\prime \prime} \times 1 \%{ }^{\prime \prime}$

- Why you would want to get shaft : positions out of electrical cycles is, of : course, your business, but there is a : thinly disguised feeling around here : that (maybe?) one of these gadgets - might be just what you've been looking : for. If you can withstand the Tumult : and get past the Lions, you can see a Cyclonome Motor stepping at BOOTH 2628-2630, at the athletic contest in - March. If not, write for Bulletin.

ACTUAL SIZE

Overall dimensions: $4^{\prime \prime} \times 8^{\prime \prime} \times 71 / 2^{\prime \prime}$ deep, wt. 14 lbs .

ADJUSTABLE POWER SUPPLY 0-300 V, 200 ma

\$89.50
f.o.b. factory

Immediate delivery

NEW LITERATURE

Economical Packaging

Packaging cost reduction from original package design to final product shipment is the subject of this pocket-size booklet, titled "How to Ship More Economically in Corrugated Boxes." The 24page publication includes information on the designing, testing and storing of product packages. Illustrated with photographs and drawings, the booklet also offers information on the planning of the shipping department and on economy considerations in the packing, sealing, warehousing and shipment of corrugated boxes. Hinde \& Dauch, Sandusky, Ohio.

Transisfor Manufacture

A brochure to show the reader exactly how the germanium alloyed junction transistor is manufactured is now available. Included in this eight-page brochure are photographs and a flow chart which shows the step-by-step operations in the production of the transistor from raw material to finished product. General Transistor Corp., 91-27 138th Place, Jamaica. New York.

Potted RF Chokes

Potted Chokes are fully described in a four page, two color bulletin, number 125. These units, available from stock, are epoxy encapsulated and meet performance requirements of MIL-C15305 A, Grade 1, Class B. The bulletin includes a section covering theory of typical application in rf circuits. NYT Electronics, Inc., 2979 Ontario St., Burbank, Calif.

Panel Lamp Chart

A chart on panel and flashlight lamps has been compiled, and is now available. The chart is a composite listing, arranged numerically, of all panel and flashlight lamps manufactured by Chicago Miniature, General Electric, National Carbon (Eveready), Radio Corporation of America, Raytheon, Tung-Sol and Westinghouse. Simply by checking the lamp number the user can determine at a glance the respective manufacturers, bulb type, base, volts, amps and bead color. All bulb types are illustrated with physical dimensions. The Radio-Electronic Master, 60 Madison Ave., Hempstead. N.Y.

Complete line composition and wirewound military variable resistors now in production \Dependable, exceptionally good delivery cycle. Tested ańd certified to meet latest specs of MIL-R-94B characteristics X and Y, and MIL-R-19A.
Composition controls Styles RV2 (1 watt), RV4 (2 watts) and RV5 ($1 / 2$ watt miniaturized) meet latest MIL-R-94B specs. Wirewound controls Styles RA20 (2 watts) and RA30 (4 watts) meet latest MIL-R-19A specs. All are available in a variety of shafts, bushings and resistances. All except Type 65 are available in 2 or 3 section concentric shaft and straight shaft tandem constructions.

Powdered Metal Processes

This 16-page, pocket-size booklet, in color, shows how to cut precision parts costs with a powdered metal process. The booklet tells what the powdered metal process is and does. It states advantages and limitations, illustrates good and bad parts-design factors, and charts material specifications. Reese Metal Products Corp., Lancaster, Pa.

Electronic Master Catalog

The 1958 Radio-Electronic Master Catalog is ready. The largest yet, it has 1584 pages, 11,500 pictures, and over 150,000 items from 350 manufacturers. It gives detailed descriptions, specifications, and prices for standard stock items. An index pinpoints all products. Some of those listed are: tubes, test equipment, capacitors, resistors, relays, coils, antennas and accessories, transformers, recording and public address systems, high fidelity equipment, hardware, tools, transmitters, communications receivers, wire and cable, speakers, microphones, rectifiers, converters, amateur gear, switches, and volume controls. The cata-
log may be olbtained from electronic parts distributors. Names will be furnished on request by Unitcd Catalog Publishers, Inc., 60 Madison Ave., Hempstead, N.Y.

Crystal Diodes

320
A crystal diode replacement guide is now available. The guide contains special data on miniature diodes plus complete listings for all general purpose diodes. Sylvania Electric Products, Inc., 100 Sylvan Road, Woburn, Mass.

Chassis Latches

Bulletin 27 L introduces two electronic chassis latches with interchangeable handles and forks. The 4 -page folder lists specifications and tells, step by step, how to install and remove the latches. Labeled dimensional drawings show handle and fork assemblies. Weight, material, and finish are given for all catalog part numbers; and panel thickness and adjustment ranges are given for fork assemblies. Camloc Fastener Corp., 22 Spring Valley Rd., Paramus, N.J.

BIRTCHER CRYSTAL CLIPS

MATERIAL
 Type 302
 stainless steel
 SIZES
 Available in heights and modifications to fit nearly all crystals.

Crystals and similarly shaped miniature components can be held securely in place even under severe conditions of vibration and shock with Birtcher CRYSTAL CLIPS. The unique design of the clip permits easy access for service even in crowded chassis.

THE BIRTCHER CORPORATION

INDUSTRIAL	4371 Valley BIvd.,
DIVISION	Los Angeles 32, Callf.

CIRCLE 322 ON READER-SERVICE CARD

STATIE /NVERTER SUPPLY

$$
\text { INPUT } 28 V \text { D.C. } \pm 10 \%
$$

OUTPUT NOm. $115 \mathrm{Y} \pm 2 \% 400 \mathrm{CPS} \pm \underline{0.01 \%}$

1. (2. ar 3-phase output available)

RATINGS: 30YA SOVA lo0VA Higher ratings available.

APPLICATION:

For gyre wheel supplies and where precise 400 cycle volfages are required in aircraff, radar and missile computers.
FEATURES:
PRECISION OUTPUT FREQUENCY
RUGGED
EXCELLENT WAVEFORM
SIMPLICITY OF CIRCUITRY
FAST STARTING TIME
GOOD VOLTAGE REGULATION
throughout an adjustable range ISOLATED CASE DESIGN
HIGH RELIABILITY
VIBRATION ISOLATED
COMPACT
LIGHTWEIGHT
MILITARY SPECIFICATIONS
(Send for Bullotin 5-864)

performance specifications

MODEL NUMBERS	$\pm .01 \%$ CPS	SIS 40311	SIS 40511	SIS 410011
	$\pm .05 \%$ CPS	SIS 40315	SIS 40515	SIS 410015
InPuT VOLTAGE		28V OC $\pm 10 \%$		
max. OUTPUT POWER		30VA	SOVA	100VA
OUTPUT VOLTAGE		IISV AC (Adjustable $\pm 10 \%$)		
OUTPUT FREQUENCY		$\begin{aligned} & 400 \text { CPS } \pm .01 \% \\ & 400 \text { CPS } \pm .05 \% \end{aligned}$		
VOLTAGE REGULATION		$\pm 1 \%$ Fer Line Variations $\pm \mathbf{2 \%}$ Fer Lood\|Voriations		
FREOUENCY DISTORTION		3\% Maximum At Full lood		
LOAD POWER PACYOR		± 0.5 to - 0.5 Maximum		
MILITARY SPECS.		MIL-E-5400A 8 MIL-E-5272A		
AMBIENT TEMPERATURE		$-55^{\circ} \mathrm{C} 10+71^{\circ} \mathrm{C}$ when mounted to heat sink		
VIERATION		20610102000 CPS		
UNIT OIMENSIONS		$\begin{array}{lllll} \hline 15^{\prime \prime} & 0 & 2 & 7 & / 8^{\prime \prime} \\ & 1 & 2 & 13 & / 16^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{llll} \hline 18^{\prime \prime} & 0 & 2 & 7 \end{array} 8^{\prime \prime \prime} 10$	$\begin{array}{\|r\|l\|l\|l\|} \hline 10^{\prime \prime} & 0 & 4 & 1 / 2^{\prime \prime} \\ & N & 2 & 13 / 16^{\prime \prime} \\ \hline \end{array}$
WEIGMT (Approx.)		2 lbs.	3.5 lbs .	5 lbs .

MACNETIC AMPLIFIERS INC.
632 TIWTOM AVENUE - NEW YORK 55, M. Y. - CYPRESS 2.6610
West Coost Division
136 WASHINGTON ST. • EL SEGUNDO, CAL. • OREGON 8-2665

Kearfott's creative engineering and production experience assures the precision and reliability of their inertial guidance systems for the successful performance of all airborne equipment
destination predetermined by inertial guidance

KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.
Sales and Englmeering Officess 1378 Main Ave., Clifton, N. d. Midwest Office: 23 W. Calondar Ave.o, La Grango, Illinols South Contral Office: 6211 Denton Drive, Dalles, Teres West Const Offioe: 283 M . Vinodo Avenue, Pasadona, Calif.

NEW LITERATURE

Germanium Rectifiers

325Bulletin GEA-5773C is a 6-page writeup on germanium component rectifiers. It describes fan and blower cooled types, telling when and how each is best used. It also discusses series and parallel operation, and voltage and current ratings. A brief section tells how to order by model number. The folder has graphs, tables, dimensional drawings, and cutaways. General Electric Co., Schenectady, N.Y.

Conversion Factors

A wall chart of conversion factors may be had free. On it are common conversions, and many not so common. The usual changes include: inches to centimeters, watts to horsepower, and cubic feet to liters. Among the rare ones are: atmospheres to kilograms per square centimeter, centimeters per second to miles per hour, microns to meters, and quintal to pounds. Precision equipment Co., 4401 N. Ravenswood Ave., Chicago 40, Ill.

Magnetic Flowmeter

This catalog discusses principle and operation of magnetic flowmeters. It gives advantages and specifications of the units. Fischer \& Porter Co., 461 Jacksonville Rd., Hatboro, Pa.

Copper Foil

Publication D-8 is an 8-page booklet about copper foil and its uses. The text covers three grades of electro-deposited sheet copper. One is for printed circuits, another is for insulating and electrostatic shielding, and the third is for metal laminating. Properties and thicknesses are given for each grade. Photographs illustrate the booklet. The American Brass Co., Copper Foil Dept., Waterbury, Conn.

Potentiometer Catalog

 329This 26-page booklet describes ten potentiometers, both single and multiturn, with various linearities and dissipations. Specifications and sizes of potentiometers are given. Hardwick, Hindle, Inc., George Rattray \& Co. Div., 116-08 Myrtle Ave., Richmond Hill, N.Y.

TYPE "S" AXIAL LEAD RESISTORS				
	Length	Diam.	Resistance	
SS2W	$1 / 2^{\prime \prime}$	X $1 / 4{ }^{\prime \prime}$	to 1300 ol	hms.
S2W	$5 / 8^{\prime \prime}$	X 1/4"	to 5000	
S3W	$3 / 4^{\prime \prime}$	X $1 / 4^{\prime \prime}$	to 8500	"
SS5W	7/8"	$\times 5 / 16^{\prime \prime}$	to 12000	
SR5W	$1^{\prime \prime}$	$\times 5 / 16^{\prime \prime}$	to 16000	"
SL5W	11/8"	$\times 5 / 16^{\prime \prime}$	to 22500	
SS7W	$11 / 4^{\prime \prime}$	X 5/16"	to 28000	
S7W	13/8"	X 5/16"	to 32000	,
SS10W	$13 / 16^{\prime \prime}$	X $3 / 8{ }^{\prime \prime}$	to 53000	"
siow	$115 / 16^{\prime \prime}$	X $3 / 8{ }^{\prime \prime}$	to 60000	+

Add these features at moderate cost:

PRECISION (to .05\% tolerance)
LOW TEMPERATURE COEFFICIENT ($20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
When you buy from .. .
to meet your ever more critical space, resistance, or power requirements. SAGE "Silicohm" Type "S" Resistors are designed to meet the electrical and environmental requirements of MIL-R-26C, Characteristic G, including Styles RW57, RW58 and RW59 (INSULATED).

Strain Gage Calibrator

A 4-page folder describes a universal calibrator for wire strain gages, their transducers and thermocouples. The text covers the features, uses, operation, and specifications of the instrument. Prices are also given. A keyed drawing locates the unit's controls, and captions tell what they are for. Photographs and a schematic provide further illustration. Allegany Instrument Co., Inc., 1091 Wills Mountain, Cumberland, Md.

Technology of Maferials

 332Technical information on materials to meet unusual conditions in processing or operation is featured in an 8 -page booklet "Advanced Materials Technology." The first issue gives data on a selfbonded KT silicon carbide which provides "high strength" and other outstanding properties up to 4000 F . Thermal shock problems are treated; an improved heating element is discussed and some uses of zirconium are explained. Another feature is a question and answer treatment on ceramic to metal bonds. Carborundum Co., Research \& Development Div., Niagara Falls, N.Y.

NPNP Silicon Diode

A 4-layer npnp silicon diode is discussed in this four-page folder which is now available. Including a brief discussion of the theory and function of the device, the publication shows a series of application diagrams described as indicative of a few of the immediately apparent potentialities. Also included is the characteristic curve of the device in its standard test circuit used at the laboratory, as well as a tabulation of the characteristics displayed under these conditions. Beckman Instruments, Inc., Shockley Semiconductor Lab., Mountain View, Calif.

FHP Geared Motors

 334Form 6 announces ready-made fractional gear reducer motors which rotate clockwise and come in 16 output speeds. The 2-page sheet explains the unit's make-up and features and outlines its specifications. A table lists idling speeds and starting torques next to catalog numbers. Photographs illustrate the motor and drawings show its dimensions Merkle-Korff Gear Co.. 213 N. Morgan St., Chicago 7, Ill.

ONE FLICK RESETS this COUNTER HIGH SPED

Offered in TWO STYLES: 1. Quick PUSh-button reset 2. Electric REMOTE RESET

This typical application of the Hupp "Data-Tab". lighted by 2,300 G-E 2-pin lamps, posts wheat prices. It can easily be adapted to deliver practically any message-instantly.

WHEAT PRICES, TEAM SCORES OR TRAIN SCHEDULES, G-E 2-PIN LAMPS CAN ANNOUNCE THEM ALL!

(1-1)
By arranging more than 2,300 tiny G-E 2-pin lamps in rectangular patterns, or modules, and then flashing combinations of the lamps, Hupp Electronics Company's* new data tabulator can spell out any message-instantly! Designed for push-pull sockets, G-E 2-pin lamps are used because they're so easy to install and maintain. Simplified construction of lamps and socket takes less space.
For many applications, the G-E 2-pin lamp offers special advantages. It weighs about half as much as conventional lamps with the metal base. You get positive electrical contact, and because there's no solder to soften, G-E 2-pin lamps give good performance up to $600^{\circ} \mathrm{F}$.

Two-pin lamps "live" longer because there's no glass bead needed to hold the heavy-duty lead-in wires. (This means no resonant frequency differential that helps break filaments in other lamps.) Discover how they can give your products improved design and operation - and more sales appeal. For further information on G-E 2-pin lamps write: General Electric Co., Miniature Lamp Dept. ED-38, Nela Park, Cleveland 12, Ohio.

* 1.3 Circle Avenue, Forest Park, Illinois.

Progress Is Our Most Important Product

EQUIPMENT MANUFACTURERS -

Switchcraft Engineers will help you design an assembly to harmonize and complement the styling of your equipment at possibly a lower cost.

Write for bulletin $5-582$ or furnish us complete specifications with your inquiry.

1312 N. Halsted St.

Ask to see these assemblies and other new components at the
RADIO ENGINEERING SHOW
N. Y. Coliseum

Mar. 24 to 27
BOOTH 2228

Canadian Rep: Allas Radio Corp., Ltd., 50 Wingold Ave., Toronto, Canoda. CIRCLE 338 ON READER-SERVICE CARD

NEW LITERATURE

Instrumentation Cables

Multiconductor instrumentation cables are the topic of Bulletin RCD-400. Described with pictures are cables for telemetcring, data recording, circuit control testing, and electronic computers. The 8 -page booklet discusses insulating and jacketing materials, color coding, and military specifications. Data on stock types are listed in tables. The pamphlet is punched to fit a notebook. Rome Cable Corp., Rome, N.Y.

Spring Materials

This 8 -page bulletin explains the mechanical and metallurgical changes which take place in materials at elevated temperatures, the setting or relaxation of the spring, and loss of spring rate. The bulletin also presents some available solutions to these problems by proper selection of materials, choice of design stresses, and the use of certain manufacturing processes. Associated Spring Corp., Bristol, Conn.

Detailed specifications for a time interval and frequency meter are compiled in a 1-page leaflet. Performance and construction data are also given. A photograph illustrates the unit. Electro-Pulse, Inc., 11861 Teale St., Culver City, Calif.

Mobile Radio Equipment

Catalog 457 covers two-way mobile radio antennas, accessories, and towers. It gives a full page to the description, specifications, and illustration of each unit. Both base station and vehicular antennas are shown. Among other accessories, the 40 -page booklet lists clamps, cable connectors, and sundry mounts. Communication Products Co., Inc., 2-Way Mobile Radio Div., Marlboro, N.J.

Transducer Calibrating

343
A unitized sub-miniature system is illustrated and described in Bulletin BBU. Complete specifications and additional information are given on both Models 6-104 and 50-B. B \& F Instruments, Inc., 4732 North Broad St., Philadelphia 41, Pa.

Machlett ML-6908

A New High Power Rectifier Tube
 For Radar Installations

Machlett Laboratories, Inc., offers the designer a new high power rectifier tube, ML-6908. An oil-immersed high-vacuum rectifier tube capable of passing 10 amperes peak anode current, the ML6908 is particularly suitable for high power radar installations. The tube is adaptable to certain pulsing circuits as a hold-off diode and to power supplies where insensitivity to low ambient temperatures as well as high current at high power are necessities. The ML-6908 incorporates a thoriatedtungsten filament of catenary design which permits both high peak inverse voltage and low internal voltage drop. A heavy wall copper anode protects the tube against overload.

General Specifications: Filament: 12v, 23a; Max. Voltage Drop 2400v at 10 amps. peak; Peak Inverse Anode Voltage, $150,000 \mathrm{v}$; Peak Anode Current, 10a; Anode Dissipation, 200w.

Average D-C Load Current: 3-phase double-Y parallel, filtered, choke input: 9.0 amps . 3 -phase, full-wave, choke input; 4.5 amps .

Machleft Laboratories, Inc., 1063 Hope Street, Springdale, Connecticut CIRCLE 344 ON READER-SERVICE CARD

Footswitch

The "Nautilus" waterproof footswitch is described in a 2-page bulletin. The bulletin indicates it has a rugged aluminum casting for long life and a piston type actuator sealed with an " O " ring. Linemaster Switch Corp., 130 Putnam Rd., Woodstock, Conn.

Precision Gears

A 64 -page supplement lists over 2,000 additional precision instrument components. It includes such items as 24 to 200 pitch spur gears, Precision II stock gears, anti-backlash gears and couplings. PIC Design Corp., Sub. Benrus Watch Co., Inc., 477 Atlantic Ave., E. Rockaway, N.Y.

Transistor Data Chart

Complete, up-to-date technical information is included in the four-page transistor data chart, just released. The brochure features specifications and application data for almost 500 transistors and shows over 170 types introduced during recent months. Kahle Engineering Co., 1313 Seventh St., N. Bergen, N.J.

Mobile Radio

Two-way mobile radio equipment is described in a 38 -page brochure. The booklet shows the wide range of equipment designed to fit individual needs based on present FCC rulings. It also tells how today's units are being engineered, taking into consideration such factors as FCC policies.
Included in the booklet are sections on "What's inside the case," frequency, bandwidth, voltage, and descriptions of cases, cabinets and mountings. General Electric Co., Communications Products Dept., Electronics Park, Syracuse, N.Y.

Etched Parts

Photo-formed parts and two ways to etch them are the topics of Bulletin 90 . Step by step, the 8 -page booklet explains chemical and electrolytic etching, and cites the advantages of each process. It tells what materials can be etched, and to what extent the etching process limits raw material, pattern, and tolerance. The booklet also lists diverse uses for etched parts. Superior Tube Co., Photo-Forming Dent., Norristown, Pa.

CIRCLE 350 ON READER-SERVICE CARD

PROVIDED BY

POWER SPECTRAL DENSITY ANALYSIS

 OF RANDOM WAVEStp- 625 WAVE ANALYZER SYSTEM WITH POWER INTEGRATOR

Integrity in instruments for over a quarter-century assures reliability of the TP-625 Wave Analyzer System. It provides accurate, practical, economical solutions to problems in a wide range of applications. It determines frequency and amplitude of components in a complex wave ranging from 2 to 25,000 cycles. And, with the TP- 633 Power Integrator, it produces a direct current analog output proportional to power spectral density. Analog can be made proportional to peak level, average value, mean square value, as well as continuous time integral -
linear or square - of the voltages in
a narrow frequency band.
TRACKS AU:OMATICALLY: Other auxiliary equipment includes Servo Drive that allows automatic tracking to frequency set by speed of equipment being analyzed.

Get full details. Write for new bulletin on the TP-625 Wave Analyzer System.
Developed, improved and manufactured by

Technical Products Company

6670 Lexington Ave., Los Angeles, 38 INTEGRITY IN INSTRUMENTS SINCE 1932

-a new high in frequency from a high force vibration exciter system

 livers 1750 pounds force for sinusoidal testing with an MB Model T666 15 KVA amplifier (36,000 watt plate dissipation).

This is versatile equipment. With an MB T666 amplifier and TEMC control cabinet, it has the "muscle" to subject electronic products and other critical components to accelerations up to 58 " g ". Adding an MB T88 Complex Motion Console equips it for duplicating the actual "noise" or random motion of the environment. This system is designed with an eye to future needs.

What's more, the exciter works in environmental test chambers,
so that vibration can be combined with heat, cold, altitude. This not only saves test time, but gives more realistic data on performance as well.

MB C10VB Exciters have UNIMODE rocker suspension (pat. pend.) which assures linear motion and a uniform spring rate over the total stroke of 1 -inch (double amplitude).

Users of MB test equipment have at their call a nationwide field service organization of vibration specialists to help on application problems. Send for full data on the complete line MB Shakers.

MB manufacturing company

A DIVISION OF TEXTRON INC.

1058 State Street, New Haven 11, Connecticus
headquarters for products to isolate ... excite . . And measure vibration

NEW LITERATURE

Terms for Switches

Standard definitions for snap-acting switches are fully-illustrated in a folder now available. An exploded view of a typical switch on the cover clearly identifies the basic parts and general construction of snap-action switches. The inside pages show the snap-action mechanism to illustrate definitions. Four carefullyexecuted drawings, show an entire operating cycle and visually point-up the definitions given in the text. Hetherington, Inc., Delmar Drive, Folcroft, Pa.

High Temperature Switch

354
This data sheet describes a switch which has a very high electrical rating for its size and is designed for use at 600 F. The case, cover, and plunger are molded of a special type of glass-bonded synthetic mica. A photograph and dimension drawing of the switch are included and operating characteristics, electrical data, and prices are covered. Minneapo-lis-Honeywell Regulator Co., MicroSwitch Div., Freeport, Ill.

P C Design Guide

Technical Bulletin P-9b on standard printed circuit tolerances is now available. The Bulletin contains clearly defined guides for design engineers and layout draftsmen in the preparation of original circuit designs. Photocircuits Corp., Glen Cove, N.Y.

Laminated Plastics

A 20 -page bulletin provides a full description of the manufacture, application, and various forms of Lamicoid laminated plastics. Fold-outs list the various grades of the material and include specifications, physical and electrical characteristics, and sizes. Mica Insulator Co.. Schenectady 1, N.Y.

Wire Processing

A four-page bulletin is available describing this company's facilities for wire processing. The processed wires described include plated, etched, or enameled types, as well as anodized aluminum. Sigmund Cohn Corp., 121 S. Columbus Ave., Mt. Vernon, N. Y.

Where You Use "TEFLON"* WIRE \& CABLE

Hook-Up Wire (Type E and EE)-AWG 10 through 32 per MIL-W-16878B. Extruded or fused wrapped. Striped and solid colors.
Lead Wire-AWG 32 and larger. "Teflon" insula. tion, outer jacket glass fiber braid w/"Teflon'" impregnate.
Miniature Cable-AWG 10 through 32. Extruded or fused wrapped primary insulation. "Teflon", Nylon, Glass or Vinyl jacket.
Multi-Conductor Cable-AWG 10 through 32. "Teflon", Nylon, Glass, or Vinyl jacket, optional. Air Frame Wire-AWG 10 through 32 per MIL. W-7139A. Striped and solid colors.
MIniature Coaxlal Cable-AWG 22 through 32. Insulation thickness .004" to .007" for 300V service. Striped and solid colors.

SPECIFY HAVEG "TEFLON" WIRE \& CABLE

Synchronous Motors

Complete technical, operational, and design data on the permanent magnet synchronous motor are given in Bulletin No. PB117. Detailed specifications on all five types are included in addition to material and construction information. Cramer Controls Corp., Centerbrook, Conn.

1958 TV Manual

360
A four-page brochure describing and explaining the advantages of using manuals in service work is now available. Description is also given of earlier television volumes as well as seventeen radio service manuals. Supreme Publications, 1760 Balsam Rd., Highland Park, Ill.

Relays and Contactors

361
DC contactors and relays are described in a 32 page catalog, GEA-6621. Extensive selection and application data are provided, including ordering instructions, full product descriptions, photographs of representative units, and pertinent technical data. General Electric Co., Schenectady 5, N.Y.

Microwave Components

Available is a catalog of waveguide and coaxial components. Featured are wideband coaxial terminations for all standard lines in current use. Radar Design Corp., 2360 James St., Syracuse, N.Y.

Color-Matching Plastics

363
A 20 -page brochure tells about a service for color-matching plastics to other materials. Liberally illustrated with 4 -color photographs, the text shows how matches are made from existing samples or new formulations. It discusses research work being done to improve the life and weather resistance of color in plastics. Concentrates for coloring polyethylene are described. Eastman Chemical Products, Inc., Kingsport, Tenn.

How to Ruin Transistors

364
Information on how NOT to use transistors is contained in a new type of "how to do it" booklet. A dozen ridiculous cartoons can help rush you through the coffee break. General Transistor Corp., 91-27 138th Place, Jamaica, N.Y.

Ultra-Miniature

 Liow Cost Capacitors for Transistor Cireuits
Centralab.

 ULTRA-EAP*

[^1]
IERC
 HEAT-DISSIPATING ELECTRON TUBE SHELDS

PREVENT dOSTLY "BIG TUBE" FAILURES

- AND EQUIPMENT "DOWA TIME" LOSSES CAUSED BY HEAT, SHOCK AND VIBRATION:

Investigate the extraordinary tube-saving, cost-saving potentials of IERC Heat-dissipating Tube Shields - the only complete, commercially-available line of effective heat-dissipating electron tube shields for miniature, subminiature and octal/power size tubes. IERC's expanded line of heat-dissipating tube shields for the larger size power tubes offer, for the first time, a practical method to retain these tubes in severe shock and vibration environments!
The most complete electron tube heat-dissipation information is yours for the asking! Technical data comprised of IERC and independent laboratory test reports will be sent upon request on your company letterhead.

electronlc research corporation 145 West Magnolia Ēoulevard, IUrbank, California

[^2]Heat-dissipating electron tube shields for miniature, subminiature octal and power tubes CIRCLE 367 ON READER-SERVICE CARD

NEW LITERATURE

Glass-Supported Resin

An 8-page brochure GST-58, describes the mechanical, electrical, and chemical properties of glass-supported Teflon in various forms. The process of integrating a glass-fabric base with an outer layer of Teflon is briefly outlined, with reference to the impregnation process in which the Teflon resin completely surrounds the threads and fills all openings in the weave of the glass fabric. ContinentalDiamond Fibre Corp., Newark 107, Del.

Fiberglas Laminates

 372A selection guide to Fiberglas reinforced laminates is offered. Briefly, the 8 -page pamphlet tells what can be expected of laminates prepared from different resins. It also tells where the laminates are used, and what tools are best for fabricating them. A chart shows comparative properties and prices. Owens-Corning Fiberglas Corp., Electrical Div., 598 Madison Ave., New York 22, N.Y.

Variable Transformers

Bulletin 151 describes in detail the VT1R5 variable transformer (1.5 amp), which features a new design in the industry. Pertinent performance data is presented such as voltage regulation and derating curves. Ohmite Mfg. Co., 3668 Howard St., Skokie, Ill.

Silicone Reference Guide

A 16-page, 1958 catalog describing over 150 commercially available silicone products is now available. The catalog contains detailed charts, graphs and data on properties and performance, along with illustrated examples on how silicones can cut costs, simplify design and add new sales appeal to products in every field of application. Dow Corning Corp., Midland, Mich.

400 CPS Frequency Meters 375
An entire line of precision 400 cps frequency measuring devices is described in a 10 -page booklet. The booklet contains specifications, photos and different features of these devices. Varo Mfg. Co., Inc., 2201 Walnut St., Garland, Texas.

MINIATURE AND SUB-MINIATURE

Rugged and reliable relays are manufactured at $\mathrm{Hi}-\mathrm{G}$ in a wide range of standard units... and to customer order with special designs to meet your particular requirements.
Complete experimental and prototype facilities permir $\mathrm{Hi}-\mathrm{G}$ engineering personnel to sfudy and evaluate your relay needs.

New, complete illustrated specification sheet available. Write for your free copy today.
And for information on special relay units, send your specifications to $\mathrm{Hi}-\mathrm{G}$ for study and recommendations at no obligation.

rugged/reliable/shock and vibration resistant
 A FEW OF THE WIDE RANGE OF HI-G STANDARD RELAYS

In N.Y. visit Booth No. 2114 I.R.E. show. Represented by Podeyn 8 Schmidi Inc. 207 Hackensack, Woodridge, N.J. and 263 Great Neck Road, Great Meck, Long Island. CIRCLE 376 ON READER-SERVICE CARD

Infrared Reconnaissance

A 12-page brochure on infrared aerial reconnaissance has been published. The brochure briefly traces aerial reconnaissance through World War II, and then discusses infrared. It describes what infrared is, its role in aerial reconnaissance, its applications, its advantages and how it can be used in conjunction with radar. Also incorporated in the brochure is a chart comparing the characteristics of infrared to those of photography and radar. Perkin-Elmer Corp., Engineering \& Optical Div., Main Ave., Norwalk, Conn.

Data Printers

378
Literature describing new stock models of parallel entry numerical data printers for computers, production testing, data-reduction systems, weighing applications, laboratory instrumentation and process control logging systems is now available.
The eight-page illustrated brochure, designated S-101, gives complete technical information on three read-out machines. Clary Corp., 408 Jumipero St., San Gabriel, Calif.

Solderless Connector

A solderless multi-lead plug-and-receptacle is described in a technical bulletin released recently. A feature of this bulletin is a discussion of the new principle that gains the vital element of time in wiring. Burndy Corp., Omaton Div., Norwalk, Conn.

Epoxy Casting Material

A technical bulletin summarizing the properties of a company's lead-filled epoxy casting material has been issued. The bulletin includes features, applications and general working instruction, plus a summary of the properties of the material. Marblette Corp., 37-31 Thirtieth St., Long Island City 1, N.Y.

Specialized Fasteners

Engineering data on a line of special fasteners is provided in this condensed 8 -page catalog. Dimensional drawings, specifications and important features are shown for the Link-Lock, Hinge-Lock, Spring-Lock, Quick-Lock, Roto-Lock and Dual-Lcek. Simmons Fastener Corp., N. Broadway, Albany 1, N.Y.

NEW INSTRUMENTS by Technitrol

THE DYNAMIC DIODE TESTER

An invalualile means for the rapid, accurate checking of semiconductor diodes for irregularities. The dynamic eurve, more revealing than static testing, is quickly apparent on the screen, and is readily adapted to volume testing. And the easy portability of this 16 -pound instrument makes it ideal for field work as well as for bench or rack installation.

Designed for use with the Cathode Ray Indicator, this moderate-price instrument provides for a variety of hack and forward voltages, as well as independently-rontrolled ranges for back and fonward currents.

THE CATHODE RAY INDICATOR

Send for Bulletin 1002

Provides a visual indirating device for the dynamic di-play of electrical signals and is intended primarily as an output indicating device for such instruments as the Dynamic Diode Tester and transistor curve tracers.
Also makes an ideal display unit for analogu tomputer and other applications where the repetitive cycle rate of display is consistent with screen persistences of available five-inch cathode ray tubes.

High-quality components assure a stable instrument which provides a very sharp focused beam on the face of the tube.

Designed for standard $19^{\prime \prime}$ relay rack mounting or with separate mounting legs at ardditional cost.

DESIGNED AND

IERC
 HEAT-DISSIPATING ELECTRON TUBE SHIELDS

PREVENT tOSTLY "BIG THE" FAILURES

- and equirment "down time" Losses CAUSED BY HEAT, SHOCK AND VIBRATION!

Investigate the extraordinary tube-saving, cost-saving potentials of IERC Heat-dissipating Tube Shields - the only complete, commercially-available line of effective heat-dissipating electron tube shields for miniature. subminiature and octal/power size tubes. IERC's expanded line of heat-dissipating tube shields for the larger size power tubes offer, for the first time, a practical method to retain these tubes in severe shock and vibration environments!
The most complete electron tube heat-dissipation information is yours for the asking! Technical data comprised of IERC and independent laboratory test reports will be sent upon request on your company letterhead.
cross-licensed with north american aviation, ine.
patented or pats peno.

electronic research corporation 145 West Magnolia Boulevard, Burbank, California

[^3] Bulletin PP112 is included with general IERC information sent on request.

NEW LITERATURE

Glass-Supported Resin

An 8-page brochure GST-58, describes the mechanical, electrical, and chemical properties of glass-supported Teflon in various forms. The process of integrating a glass-fabric base with an outer layer of Teflon is briefly outlined, with reference to the impregnation process in which the Teflon resin completely surrounds the threads and fills all openings in the weave of the glass fabric. ContinentalDiamond Fibre Corp., Newark 107, Del.

Fiberglas Laminates

 372A selection guide to Fiberglas reinforced laminates is offered. Briefly, the 8 -page pamphlet tells what can be expected of laminates prepared from different resins. It also tells where the laminates are used, and what tools are best for fabricating them. A chart shows comparative properties and prices. Owens-Corning Fiberglas Corp., Electrical Div., 598 Madison Ave., New York 22, N.Y.

Bulletin 151 describes in detail the VTIR5 variable transformer (1.5 amp), which features a new design in the industry. Pertinent performance data is presented such as voltage regulation and derating curves. Ohmite Mfg. Co., 3668 Howard St., Skokie, Ill.

Silicone Reference Guide

A 16-page, 1958 catalog describing over 150 commercially available silicone products is now available. The catalog contains detailed charts, graphs and data on properties and performance, along with illustrated examples on how silicones can cut costs, simplify design and add new sales appeal to products in every field of application. Dow Corning Corp., Midland, Mich.
400 CPS Frequency Meters 375
An entire line of precision 400 cps frequency measuring devices is described in a 10 -page booklet. The booklet contains specifications, photos and different features of these devices. Varo Mfg. Co., Inc., 2201 Walnut St., Garland, Texas.

MINIATURE AND SUB-MINIATURE relays by raicra

Rugged and reliable relays are manufactured at $\mathrm{Hi}-\mathrm{G}$ in a wide range of standard units... and to customer order with special designs to meet your particular requirements.
Complete experimental and prototype
facilities permit Hi-G engineering personnel
to study and evaluate your relay needs.
New, complete illustrated specification sheef available. Write for your free copy today.
And for information on special relay units, send your specifications to Hi -G for study and recommendations at no obligation.

In N.Y. visif Booth No. 2114 I.R.E. show, Represented by Podeyn \& Schmidi Inc. 207 Hackensack, Woodridge, N.J. and 263 Great Nesk Road, Great Neck, Long Island. CIRCLE 376 ON READER-SERVICE CARD

Infrared Reconnaissance

377
A 12-page brochure on infrared aerial reconnaissance has been published. The brochure briefly traces aerial reconnaissance through World War II, and then discusses infrared. It describes what infrared is, its role in aerial reconnaissance, its applications, its advantages and how it can be used in conjunction with radar. Also incorporated in the brochure is a chart comparing the characteristics of infrared to those of photography and radar. Perkin-Elmer Corp., Engineering \& Optical Div., Main Ave., Norwalk, Conn.

Data Printers

378
Literature describing new stock models of parallel entry numerical data printers for computers, production testing, data-reduction systems, weighing applications, laboratory instrumentation and process control logging systems is now available.

The eight-page illustrated brochure, designated S-101, gives complete technical information on three read-out machines. Clary Corp., 408 Jumipero St., San Gabriel, Calif.

Solderless Connecior

 379A solderless multi-lead plug-and-receptacle is described in a technical bulletin released recently. A feature of this bulletin is a discussion of the new principle that gains the vital element of time in wiring. Burndy Corp., Omaton Div., Norwalk, Conn.

Epoxy Casting Material

380
A technical bulletin summarizing the properties of a company's lead-filled epoxy casting material has been issued. The bulletin includes features, applications and general working instruction, plus a summary of the properties of the material. Marblette Corp., 37-31 Thirtieth St., Long Island City 1, N.Y.

Specialized Fasteners

Engineering data on a line of special fasteners is provided in this condensed 8 -page catalog. Dimensional drawings, specifications and important features are shown for the Link-Lock, Hinge-Lock, Spring-Lock, Quick-Lock, Roto-Lock and Dual-Lnck. Simmons Fastener Corp., N. Broadway, Albany 1, N.Y.

need metal components of ...with accuracies to 0.0005 in.? Let BART LECTROFORM them for you
 When shapes are too complex to machine or cast . . . when thin walls and super-fine internal finishes are vital . . . Bart Lectroforming is often the answer. And no other process approaches it for maintaining identical dimensions throughout mass production runs.
 In Bart Lectroforming, your products or parts are built up electrolytically on removable matrices. There are no secondary operations to alter tolerances.
 Products successfully Lectroformed include many of "difficult" form for electrical, electronic, and other precision applications, in many metals and metallic combinations.
 Explore the vast new designing possibilities of Lectroforming when your product is at drawing-board stage. Bant's research and development facilitics and experience are at your call.
 Precision Mechanical Tube-Forming, Too
 The F. C. Kent Company, a division of Bart Manufacturing Corporation, offers 44 years' experience in the production of precision-formed tubular parts for the aircraft and electronic industries. Inquiries are invited and catalog is available on requeat.

NEW INSTRUMENTS by Technitrol

THE DYNAMIC DIODE TESTER

An invaluable means for the rapid, acrurate checking of semiconductor diodes for irregularitirs. The dynamic rurve, more revealing than static testing, is quickly apparent on the screen, and is readily adapted to volume testing. And the easy portability of this 16 -pound instrument makes it ideal for field work as well as for bench or rack installation.

Designed for use with the Cathode Ray Indicator, this moderate-price instrument provides for a varifty of back and forward voltages, as well as independently.controlled ranges for laark and forward currents.

THE CATHODE RAY INDICATOR

Send for Bulletin 1002

Provides a visual indicating device for the dynamic display of electrical signals and is intended primarily as an output indicating device for such instruments as the Dynamic Diode Trester and transistor curve tracers.
Also makes an ideal display unit for analogu A -omputer and other applications where the repetitive cycle rate of display is consistent with screen persistences of available five-inch cathode ray tubes.
High-quality components assure a stable instrument which provides a very sharp focused beam on the face of the tube.

Designed for standard $19^{\prime \prime}$ relay rack mounting or with separate mounting legs at additional cost.

DESIGNED AND
BUILT BY

ECHNITROL
 engineering company

Manufacturers of Pulse Transformers, Delay Lines and Electronic Test Equipment.

TUBE LEAD INSULATORS

COMPRESSION MOUNTED SOCKETS FOR TRANSISTORS \& SUBMINIATURE TUBES

TEFLON SPAGHETTI TUBING

MINIATURE TUBE SOCKETS

CHEMELEC...

THE QUALITY LINE OF

TEFLON* INSULATED COMPONENTS

High reliability factorwithstand extreme shock, vibration, high temperature. Have low loss insulating qualities, zero moisture absorption.

See them at the

I.R.E. SHOW

Booth Nos. 4036.4037
*du Pont Trademark

STAND.OFF \& FEED-THRU INSULATORS COMPRESSION MOUNTED \& METAL BASE

∇
 SEPARATORS

Crystal sockets TRIMMERS

Write for Catalog No. EC-757 Fluorocarbon Products, Inc.

> Division of United States Gasket Company, Camden 1, N. J.

COPPER CLAD TEFLON

NEW LITERATURE

Circuit Analyzer

385
This 22 page，two color catalog de－ scribes，in detail，the operation of circuit analyzers，designed to expedite the test－ ing of complex，multiple circuitry in the aircraft，missile，electronic and related fields．The text includes instructions，ap－ plications and specifications for each cir－ cuit analyzer．Comprehensive illustra－ tions，diagrams and charts highlight im－ portant operational features．One section is devoted to a description of test con－ sulting services．Dit－Mco，Inc．， 911 Broadway，Kansas City，Mo．

RF Suppression Filters

Specifically designed for shielded en－ closures and individual applications，this catalog presents a listing of the rf sup－ pression filters．It includes both high power and low power suppression filters for use in single，dual and 3 wire circuits． The catalog gives the complete physical and electrical characteristics．Axel Bros．， Inc．，Electronics Div．，134－20 Jamaica Ave．，Jamaica 18，N．Y．

Electric Brakes

387
A technical report of over 40 pages with numerous illustrations describes the advantages and construction of the com－ pany＇s power－safe electric brakes．The brakes have replaceable facings and are of the released－when－energized type． Warner Electric Brake \＆Clutch Co．， Beloit，Wisconsin．

Compressed Air Dryers

The 12－page bulletin describes models of heatless，self－activating，zero－dew－ point dryers designed to prevent mois－ ture fouling．Containing graphs and drawings，the bulletin gives operating capacities，dimensional data，standard specifications and installation informa－ tion on the dryers．Van Products Co．， 5825 Swanville Rd．，Erie，Pa．

Facilities Brochure

Detailed facts and figures on＂Engi－ neering and Production Capabilities＂ are provided in this 12 －page， 40 photo－ graph brochure．Lear Inc．， 3171 So． Bundy，Santa Monica，Calif．

Unique tripping

 characteristic assures full －．positive protection！－Flexible in application．De－ pendable performance．
－Available in current ratings of $50 \mathrm{ma} .-80 \mathrm{ma}$ ．-100 ma ．up to 25 ampere
Calibrated in steps of 100 milli ampere
－Sturdy，compact design
－Available with separate alarm circuits

ASK FOR CATALOG NUMBER 38

Titanium Strip

The physical and chemical characteristics of Titanium strip are covered in a data sheet, now available. It was prepared to meet the increasing demand for information on this subject. The data sheet gives details on ultra-thin and the extremely close tolerance Titanium in the aircraft, instrumentation, and chemical industries. American Silver Co., 36-07 Prince St., Flushing 54, N.Y.

Modular Enclosure System

A line of vertical cabinets which provide up to 200 per cent more load carrying capacity, is featured in this 36 -page catalog. Also included are a number of other basic products and component parts produced by the company. Elgin Metalformers Corp., 630 Congdon Ave., Elgin, Ill.

Copper Plating Process

 393An acid copper plating process is described in a 3 -page technical paper. In addition to the various features and advantages of the process, the literature
also covers such topics as preparation and maintenance of copper sulphate and copper fluoroborate baths, recommended temperatures, current densities and agitation. Sel-Rex Corp., Nutley, N.J.

Current Governors

Current governors for constant current from 1 ma to 30 amps are described in Bulletin No. 957. It indicates that each of them is a two terminal current stabilizer, modulator and dynamic electronic load. The bulletin shows primary uses in production testing and laboratory operation of various current sensitive devices. North Hills Electric Co., Inc., 402 Sagamore Ave., Mineola, N.Y.

Project Summaries

An 8-page booklet, entitled "Technical Project Summaries" describes twentyfour military and industrial electronics projects. The booklet is intended to highlight the development capabilities of Pickard and Burns, Inc., 240 Highland Ave., Needham 94, Mass.

New Dressen-Barnes quality units designed for the numerous applications requiring tight regulation and low ripple. These low voltage, high-current models require NO DERATING of output current, or regulation and ripple specifications, from 1 to 60 VDC. Bench or Rack mounting. Meters accurate to $\mathbf{1 \%}$.

FOUR MODELS - FQUR DUTPUTS
Write for
specific Bulletins

Model .6-3MB: 0-60 V.D.C. @ 3 amps. Bulletin 1031 Model .6-1MB: 0-60 V.D.C. @ 1 amp. Bulletin 1024 Model D.6-300B: dual 0-60 V.D.C. @ 300 MA. Bulletin 1030 Model .6-300B: 0-60 V.D.C. @ 300 MA. Bulletin 1029.
cressen-barines
DRESSEN-BARNES CORP. - 250 North Vinedo Avenue, Pasadena, Calif. CIRCLE 396 ON READER-SERVICE CARD

THis is'sx FAN

IT IS USED FOR VENTILATION . . . de-fogging . . . de-icing . . . cooling electronics . . . it is used on aircraft, in electronic equipment and on missiles.
IP is LGHT. . . fans weigh from 10 ounces to 50 pounds . . . made of magnesium and aluminum alloys.
IT IS CAMPACT. . . three major parts make up simple design . . . mounts inside the duct . . . as part of the duct. No frills.
IT IS EFRICIENT. . . careful design exceeds Army-Navy specs . . . efficiency ratings up to 86%. . . pressures as high as $70^{\prime \prime}$ WG.
IT IS "STANDARD"... 250 models and 1300 designs ready. Ratings from 20 CFM to 6000 CFM.
IT 15 USED BY TAESE COMPANIES . . . Boeing, Douglas, Fairchild, GE, Grumman, Hallicrafters, Lear, Lockheed, Martin, Motorola, North American, RCA, Raytheon, Sylvania, Vertol, Western Electric, Westinghouse.

'DIAMOND H’

 SERIES W

General

 Purpose RelaysMEASURE ONLY: $11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 17 / 8^{\prime \prime}$
BUT CARRY: to 25 A. resistive at $115-230$ V., A. C.; 1 h.p., 125 V., 2 h.p., 250 V., A.C.;D. C. and other higher ratings on request.

CONTACTS: DPDT, Double Break-Double Make (Form Z). Special arrangements and sequence on request.

MOUNTINGS: Socket, panel and sidewall arrangements standard; others to meet special needs.
"Diamond H " engineers are prepared to work out variations of these rugged, dependable relays to meet your specific requirements in such applications as automation controls, appliances and air conditioning equipment, or what you will. Just ask.

THE

TA BAN MANUFACTURING

210 Bartholomew Ave., Hartford, Conn.

Phone Jackson 5-3491 CIRCLE 369 ON READER-SERVICE CARD

Square-Wave Adapter for

Sine-Wave Oscillator

Input shown above, output below.

ASQUARE wave with a sharp rise time and a somewhat greater voltage output than obtainable with standard laboratory oscillators (such as the H.P. 200 C), is often needed to drive a low impedance load.

A transistor emitter follower of the design shown can be used after the standard oscillator. It has the characteristics of high input impedance and is capable of driving a low output impedance. Since a low input signal will drive it from cut-off to saturation, this device makes an excellent clipper. By using a pnp and a npn transistor, either positive or negative square waves of amplitude equal to the supply voltage may be obtained. Transistors with high alpha cutoffs should be used. A GE 2 N 167 npn and an RCA 2N247 pnp drift transistor work very well. The photographs show the 100 kc 6 v pp sine wave into the clipper and the 20 v output negative-going square wave. The rise time of the square wave is about 0.5 msec . The fall time is about 1 msec at 100 kc .

The circuit was built in a small box, and batteries were used to power the transistor. The box was plugged onto the oscillator output terminals, and the circuit was energized when square waves were needed.

Thomas F. Prosser, Senior Electronics Engineer, Marchant Calculators, Inc., Dept. ED, Oakland, Calif.

CIRCLE 502 ON READER-SERVICE CARD >

BACKGROUND OF QUALITY

. and the quality starts in the foreground! For when it comes to Roebling Magnet Wire, quality means-unsurpassed ingredients of consistent excellence...wire-making skill based on decades of experience ...and exacting testing and inspection.
You pay no more for Roebling Magnet Wire-you get more in terms of satisfying performance. And you choose the packaging that will give you utmost efficiency and
economy. Write today to Electrical Wire Division, John A. Roebling's Sons Corporation, Trenton 2 , New Jersey, for information about types and sizes of Roebling Magnet Wire exactly suited to your applications.

Branch Offices in Principal Cities
PR Corporation [f]

Immediate Delivery on STANDARD FERRITE CORES FOR DEVELOPMENT

HUNDREDS OF STANDARD PARTS
 plus CUSTOM DESIGNING TO SPECIFICATIONS

STANDARD ANTENNA RODS

THREADED TUNING CORES

STANDARD
EI CORES

TOROID CORES

TELEVISION COMPONENTS

RECORDING HEADS

Performance proven magnetic ferrites avallable for every electronic application

Compuler and Aulomation Sysfems Designers!
Ferramic memories provide a new design concept in the area of computers and automation. Magnetic memories combine increased speed, accuracy and reliability with light weight, compact size. Write for bulletins on cores or completememory planes.

General Ceramics ferrites for television, radio and instrumentation offer designers and engineers a wide range of economical standard components. All are application tested for highest efficiency electrically and mechanically. The fact that leading electronic manufacturers specify Ferramics is due to the program of continuing research and equipment modernization by which General Ceramics keeps pace with the industry's needs as to quality and coses! Bulletins are available; write to General Ceramics Corporation, Keasbey, New Jersey, Iept. ED.

New Terminal Strip Design for

Toroids Reduces Scrap

Abstract

N WINDING magnetic cores for servo systems it becomes necessary to wrap many thousands of turns of small mil wire around small cores. This increases the possibility of breaking leads when soldering and unsoldering connections. The wire is very brittle from \#AWG 30 on up and is apt to waste manufacturing time spent in the winding of a core.

The solution to the problem is to use a simple type of terminal strip which is held on by the wire wrapped around the core itself. All connections made within the core are made at this terminal strip; and all connections made outside of the core are made on this strip also. Thus, once a core has been wound, there is no stress or strain on the internal wiring with subsequent broken leads.

Ralph S. Gootner, System Field Engineer, International Business Machines, Lexington, Mass.

A. This part of the terminal strip is fitted over the core prior to the winding. The windings will act as mechanical security for the strip.
B. When a core is completed, the fold is made at this point leaving the darkened portion for the thickness of the windings. The lugs are folded back over the windings, with the overall result of permanent terminals for use and very little additional space required. The fold can be held down by a strip of tape running across the board and then through the core center.
C. As many lugs as needed to accommodate the core.

SIGNALS CRYSTAL CASE RELAYS resist

high temperatures . . . up to $125^{\circ} \mathrm{C}$ and excessive vibrations . . . 2000 cps at 20 g

These new Wheelock Crystal Case relays will solve all your space problems! Wheelock engineers designed these precision-made relays smaller than small about the size of a quarter . . . lighter than light. weight . . . approximately .35 oz and sensitive enough for milli-second operation, yet so rugged to withstand rigid military environmental specifications.

For consistent reliability, extended life and neverfailing performance, specify Wheelock Crystal Case relays for your electronic applications. Wheelock will help you solve your relay problems . . . they will gladly recommend the relay to suit your needs.

Wrife for additional details and literature.
consistently high reliability inherent in design and performance

```
TEmperature .....SPECIFICAOTONS
... }1000\mathrm{ VRMS; }750\mathrm{ VRMS across contact gaps
INSULATION RESISTANCE .... 10,000 megohms at 25 ' C; }100\mathrm{ megohms at 125 C
CONTACT ARRANGEMENT ...SPDT-2PDT
CONTACT RATING .......... }2\mathrm{ amps resistive of 28 VDC or 115 VAC
CONTACT LIFE ............ 100,000 operations
CONTACT RESISTANCE ...... . .5 ohms
SHOCK ................... JAN-S.44 Test in excess of 100 g all planes
    -no opening
VIBRATION ................. . 10-55 cps at 1/6" excursion and 0.2000 cps
    at 20 g acceleration
    Hermetically sealed dry nitrogen filled
    TERMINAL & MOUNTING .....Mounting arrangements to your specs
    PICKUP TIME ................ . }5\mathrm{ milliseconds approx.
    DROP-OUT TIME . . . . . . . . . . . . . }45\mathrm{ milliseconds approx.
    WEIGHT . . . . . . . . . . . . . . . . . . }35\mathrm{ oz.
    COIL POWER ................. . }350\mathrm{ milliwatts
    COIL RESISTANCE . . . . . . . . . . up to 6000 ohms
    SIZE . . . . . . . . . . . . . . . . . . . . . . }359\mathrm{ in. x . }797\mathrm{ in. x . }875\mathrm{ in.
```


UNIVERSAL CERAMIC COIL FORMS FOR MILITARY AND COMMERCIAL APPLICATIONS

National Company, one of the nation's oldest suppliers of quality coils and coil forms, now introduces, for immediate delivery, a new line of ceramic coil forms, engineered to meet the most rigid military and commercial applications.

Available in 5 standard sizes, with or without terminal collars. Terminal collars accept up to four terminals per collar.

Internal, pre-set torque spring provides smooth, vibration-proof means of positioning and locking the adjusting cores. Keep coils tuned as set, even under severe vibration and shock.

Powdered iron cores available in choices of standard and long-core lengths. Color-coded to indicate optimum frequency ranges.

All material used are in accordance with applicable MIL-Specs.
Coil forms, collars, and terminals available at your National Parts Distributor. Coil forms supplied with spring washer, rubber gasket, coil base, external tooth, lock washer and brass nut. Cores may be ordered from National Company. Pre-assembled forms to your prints quoted by National Company upon request.

FOR SPECIFICATIONS, PRICES, DELIVERY - WRITE, PHONE, WIRE, Since 1914 COMPANY, INC., MALDEN 48, MASS. CIRCLE 22 ON READER-SERVICE CARD

IDEAS FOR DESIGN

These Parts Were Cold Headed

These cold-headed members of the nail family include items having both "heads" and "collars." Among the items having heads are standard nails, identification nails having letters formed in their heads, hobby-size railroad spike (top left), nails made from square and rectangular wire stock, nails having special points (needle point, top right for example), and nails having special purpose heads (cupped head, for example). Among the items having collars is a studgun nail (center-flat piece above collar bends over), electronic wiring post which is driven into harness board up to collar (long item near bottom), peg for toy top (top left), and nails to which components are secured by riveting the section of shank above the collar. Also included are several items made on nail machines and given secondary operations. Threaded nails and ski-pole point (right) are in this category. Parts shown are made from steel, copper and copper alloys, and aluminum. Note also the wide range of sizes represented.

Process Described

In making parts on nail machines, reelmounted wire stock feeds into a cylindrical opening formed by semi-cylindrical grooves in mating die blocks. The wire comes to rest with the leading end projecting beyond the ends of these gripping dies. The dies close, clamping the wire, and a heading punch strikes the protruding end, forcing the metal into the desired head shape. The punch retracks, the gripping dies open, and the wire moves forward and is pinched off. The dies close again, the forming punch strikes, and the cycle repeats. The point of the nail is formed in the cut-off operation. The
process takes place very rapidly and hundreds of parts can be produced per minute.

In this manner heads and collars of thousands of sizes and shapes can be formed on a wide variety of metals to close commercial tolerances. Secondary operations, such as roll threading, machining and plating can adapt the nail-machine product for many made-to-order applications.

The ingenuity of the designer is required in recognizing parts which should be specified for cold heading. The manufacturer will work out the details of production and will often make helpful suggestions which will lower costs and/ or improve the product.

John Hassall, Inc., Westbury, N.Y.

Simplified Public Address System

During the course of designing a portable public address system various circuits were tried and discarded because of relative complexity. What was needed was a battery operated, transistorized, 3 to 5 w unit. The circuit shown indicates how this unit was simplified without sacrificing performance.
A single 2 N 277 pnp power transistor is driven directly by a single-button carbon microphone which has a nominal dc resistance of 100 ohms. The microphone is used as a part of the base bias voltage divider as well as the source of audio voltage to drive the power transistor. A small resistor is used in series with the emitter to prevent runaway. The output transformer is wound on $3 / 8 \times 3 / 8$ stack, 20 ohms Z to 8 ohms Z, with a primary dc resistance of approximately 1 ohm. Were a speaker available with an impedance of 16 ohms and a dc resistance of less than 1-1/2 ohms, the output transformer would not be needed. The circuit is self-contained and is powered by a pair of 6 v lantern batteries in series, but could easily be used in an automobile with the storage battery as a source of power. Power output is 5 w maximum with dry battery power supply.
J. Frank Brumbaugh, Marine Project Engineer, Heath Co., Benton Harbor, Mich.

Readin',

Synthane plastic laminated bushings and breaker arms for automotive ignition.

'Ritin', and Reliability

Dependable operation of a school bus, a truck, or your own car involves the functioning of many parts. One breakdown can wipe out the memory of ten thousand trouble-free miles.

Some of these parts are made of laminated plastics. They're usually unseen, unsung, small in size yet efficiently performing their job.

Their cost is relatively insignificant when compared with the cost of equipment in which they work, but it should be sufficient to insure dependability.

Actually, what you pay for Synthane laminated plastics is little or no more than you'd pay for any
other plastic laminate. But the Synthane price includes top quality materials, product control, excellent facilities and workmanship, an assurance of continuous supply, and a long reputation for fair dealing.

If you are interested in a reliable source of laminated plastics-sheets, rods, tubes, or completely fabricated parts, write for an interesting catalog or call our representative nearest you.

SYNTHANE

SYNTHANE CORPORATION, 42 RIVER RD., OAKS, PA.

NO MORE EXTE BOOSTER AMPL

pecifications
Transformation ratio: $1.000 \pm .001$ Phase shift: $\mathbf{0}^{\circ} \pm \mathbf{3}^{\circ}$
Functional aceuracy: 0.1% Inpul impodane: ovor 8 megohm

Frequency: 400 c.p.s. $\pm 5 \%$
Max. amplifude: 14 V. r.m.s.
Temp. range: $-55^{\circ} \mathrm{C} .1080^{\circ} \mathrm{C}$. Power requirements:
30 V. d.c. @ 6 ma, per amplifier

REEVES CONTINUOUS RESOLVER CHECKER
with the new combination resolver=booster by 1 Demeds

An outstanding advance in MINIATURIZATION without sacrifice of pertormance or precision.

Shown FULL SIZE in the illustration above, this latest Reeves achievement in miniaturization for airborne applications takes up a fraction of the space occupied by a conventional resolver with external boosters. Yet performance, accuracy and dependability are in every way equivalent or better.
The new Reeves Combination Resolver-Booster consists of the time-proven R151 Precision Resolver with two PLUG-IN TRANSISTORIZED BOOSTER AMPLIFIERS built onto it as shown. The amplifiers provide standardization for transformation ratio and phase shift over a wide range of temperatures. Specifications given are maintained for production units without culling. Additional data on request.

REEVES INSTRUMENT CORPORATION
A SUBSIDIARY OF DYNAMICS CORP. OF AMERICA, 223 EAST 91st ST., NEW YORK 28, N. Y. CIRCLE 169 ON READER-SERVICE CARD

Plastic Microphone Diaphragm

Solves Moisture Problem

A new transistorized dynamic microphone, developed by Motorola, Inc., Communications \& Industrial Electronics Div., 4501 W. Augusta Blvd., Chicago 51, Ill., utilizes a plastic diaphragm in place of the usual paper cone. It is used to impart greater moisture resistant characteristics.
The enclosed transistor amplifier reduces noise pickup by boosting output to approximately carbon microphone level. This also eliminates need for a preamplifier at the transmitter. The transistor amplifier draws its power from the usual carbon microphone source.

Printed Wiring Technique

Makes Control Panel

We had the problem of a serviceable, yet inexpensive control panel for a single piece of test equipment. A panel with decals to designate the controls proved unsatisfactory because the decals were easily scratched off. An engraved panel was considered too expensive since there would be only one instrument of a kind.
The solution turned out as follows: A "positive" layout of the desired panel was made and

Test set using etched printed-wiring board, for panel. It is attractive, yet unexpensive.
then exposed on a piece of epoxy resin copper clad board with a black base color. The panel was then etched. The procedure for exposing and etching was the same as that used in making printed circuits except that the solder plating process was eliminated. The panel was sprayed with clear lacquer to preserve the copper luster and prevent tarnishing. The resulting panel was inexpensive and serviceable as well as attractive.

James E. Rogers, Electronic Technician, National Cash Register, Hawthorne, Calif.

Magnetic Parts Holder

Small permanent magnet is worn as a ring to simplify assembly of tiny parts in precision manufacturing at Owensboro, Ky. tube plant of General Electric Co. Motion studies reveal that U-shaped Alnico 5 magnets step up this "tweezer" operation by 12 per cent. Formerly, time was lost through extra motions in picking up tiny parts individually from bins.
General Electric Co., Metallurgical Products Dept., Detroit, Mich.

The Scoтct No. 6 Electrical Acetate Film BRAND

Tape in this relay costs $3 / 4$ of a penny.

The relay must last 25 years minimum.

Annual insulation cost: $3 / 100$ ¢!

Can you afford less than

SCOTTCH

Brand Electrical Tapes?

For complete information on the full line of "Sсотсн" Brand Acetate Film Tapes, just write on your letterhead to 3M Co., St. Paul 6, Minn., Dept. ON-38.

Tapes • ceramics - resins • plastics • fubings • varnishes • mica - varnished constructions • rigid and flexible laminates.

Minnesota Mining and Manufacturing company ... WHERE RESEARCM IS THE KEY TO TOMORROW

CIRCLE 170 ON READER-SERVICE CARD

"Special" Versions of Standard Switches HAYDON 6100 SERIES SWITCHES

Unusual switching problems do not always require expensive solutions. The "special" switch shown right, for example, is basically an "upgraded" version of a standard Haydon hermetically sealed miniature switch. In missiles and rockets, where subminiature switches must do a big job, the No. 61191 -rated at 10 amps -will function consistently under environmental extremes. Unlike unsealed switches, Haydon Hermetically Sealed Switches maintain their ratings at all altitudes.

Sperifications	Standard (6100)	"Special" (61191)
Contact Gap, min.	015	035
Operating Force, max.	9 oz . or 22 oz .	3202.
Release Force, min.	302.00602.	602.
Diflerential Travel, max.	. $0005-.005$	012
Overtravel, min.	. 007	007
Eleclrical Ratings, 30 Volts D.C.	$\begin{array}{\|l\|} 3 \text { amps, Inductive } \\ 5 \text { amps, Resistive } \end{array}$	10 amps, Inductive 10 amps , Resistive
$\begin{aligned} & \text { Life at Rated } \\ & \text { Load (actuations) } \end{aligned}$	100,000	$\begin{aligned} & \text { 10,000 (Inductive) } \\ & 25,000 \text { (Resistive) } \end{aligned}$

Haydon 6100 Series Switches are available with a wide range of characteristics and can be used with a variety of Haydon standard actuators, such as those shown at the Haydon standard actuators, such as those shown at the
left. Haydon also provides a complete design and development service to solve your problems in hermetically sealed ment service to solve your problems in hermetically sealed write for data on the Haydon No. 61191 Switch.

WATERBURY 20, CONNECTICUT
CIRCLE 171 ON READER-SERVICE CARD

Direct-Reading

 Output-Power Meter for Audio Frequencies
0.2 mw to 100 Watts

* Auxiliary db scale, with multiplier, * Indicated power is arcurate to reads -10 to +50 db above 1 mw within $\pm 0.25 \mathrm{db}$ at full scale reference level
\star Over-all frequency characteristic \star Forty discrete impedances over of power indication flat to $\pm 0.5 \mathrm{db}$ range of 2.5 to 20,000 ohms from 20 c to 10 kc ; within $\pm 0.75 \mathrm{db}$ \star Input impedance within $\pm 2 \%$ of to 15 kc indicated value over mosl of range Type 783-A Output-Power Meter: $\boldsymbol{\$ 3 7 0}$

Write for Complete Data

GENERAL RADIO Company

[^4]
IDEAS FOR DESIGN

Precision Electronic Temperature

ป
The precision electronic temperature controller shown in block diagram form, works on the principle of comparing two pulses. The first temperature pulse is generated by V_{2}. The width of this pulse is controlled by the resistance change of a temperature sensitive element-thermistor. The second reference pulse is generated by V_{3}, having the same phase and amplitude, but different polarity than the temperature pulse. The width of this pulse can be preset to any desired value, and its width is unaffected by temperature change. These two pulses are fed into a mixer stage, V_{t}, where they are compared algebraically.
Two possible conditions should be considered:
a. If the temperature is lower than desired, the temperature pulse will be wider than the reference pulse. A positive peaked voltage will result. This difference in positive voltage will fire a thyratron V_{6}, and energize a heating element;
b. If the temperature is higher than desired the temperature pulse will be narrower than the reference pulse. The resulting difference will be a negative peaked voltage. This voltage will not be able to keep thyratron V_{6} fired and it will recycle automatically. The relay contacts of the heating element will interrupt, which will cause lowering in temperature.
Gleb Denijanenko, Design Engineer, Bell Aircraft Corp., Buffalo, N.Y.

Silicone Sponge Rubber
for sealing, gasketing, pressure pads, vibration dampening - $100^{\circ} \mathrm{F}$ to $480^{\circ} \mathrm{F}$
Low density COHRlastic R-10470 silicone sponge rubber is completely flexible after 72 hrs . at $480^{\circ} \mathrm{F}$. shows no brittleness after 5 hrs. at $-100^{\circ} \mathrm{F}$. High tensile, tear and elongation aircraft and eonectronic drawings and specifications Avait on from stock in sheets $14 \mathrm{~s}^{\prime \prime}$ tru $11^{\prime \prime \prime}$ in rod $180^{\prime \prime}$ thru $585^{\prime \prime}$. Special extruded shapes made to order
FREE SAMPLES and folder-write. phone or use inquiry service
CONNECTICUT HARD RUBBER

CIRCLE 173 ON READER-SERVICE CARD

OF COURSE-ONE SOURCE

Manufacturers and fabricators of industrial laminates. 2nd and Market Streets, La Crosse 3, Wis.

CIRCLE 174 ON READER-SERVICE CARD

Series Regulator Warm-Up

In regulated-power supplies the tubes in the rectifier and amplifier circuits warm-up faster than the series regulator tube $\left(V_{3}\right)$. This causes the series tube to conduct high currents when the cathode is not up to proper operating temperature; thus, tube life is shortened. The usual, costly solution is to use a time-delay relay somewhere in the circuit.

An inexpensive, yet simple and effective answer to this problem is to use a diode as shown in the accompanying circuit. The dotted line indicates the connection used in most regulators.

In the modified circuit, regulating action cannot occur until diode V_{1} conducts, thereby connecting the plate load resistor of V_{2} (the last

Modified Voltage Regulator Circuit. Diode prevents V_{3} from being overloaded until heater reaches normal operating temperature.
amplifier tube) to $B+$. If warm-up of V_{1} is delayed by inserting a resistor (\mathbf{R}) in series with its filament, a large bias is maintained on the series regulator until its filament is at the proper operating temperature.
The value of R can be between 4.7 and 5.6 ohms or can be determined experimentally. R_{1} is added to insure that the circuit "fails safe" under all conditions.

With this circuit, not only are series regulator tubes protected, but the output voltage of the regulator rises smoothly to its pre-adjusted value without overshoots; thus is gives added protection to the load circuit.
S. Bernstein-Bervery, 205 So. Broadway, Tarrytown, N.Y.

Get $\$ 10.00$ plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication. Full information and an "entry blank" can be obtained by circling \#166 on the Reader's Service Card.

Accuracy measured in millionths of an inch, made Accuracy measured in milionts to the human eye. Steel balls, the heart of New Departure precision ball bearings, held to 5 millionths of an inch or less in sphericity. Graph at left shows sphericity variation of a ball on the order of one millionth of an inch (. $000001^{\prime \prime}$) measured by Talyrond Machine. Graph radial divisions are $.00001^{\prime \prime}$.

The extreme accuracy of New Departure ball bearing component parts is now playing a vital role in successful missiles for the Army, Novy and Air Force. Above -typical bearing parts, less separator
-unretouched photograph.

PORTRAIT of PRECISION !

A mechanism is only as accurate and reliable as the bearings supporting its moving parts. For the designer the problem is how to achieve the essential rigidity or accuracy of location, yet be assured of extreme freedom of rotation.
A "tip-off" to the solution lies in the chart above-super-precise steel balls, the heart of New Departure precision ball bearings. For, with balls held to 5 millionths of an inch or less out-of-roundness and other bearing parts finished with comparable care, such bearings can be mounted and preloaded to provide the hairsplitting exactness of location and ease of rotation required of the finest precision instruments.

The AChiever guidance system proved in tests of the Air Force's Thor ballistic missile demands tolerances often measured in millionths of an inch, as is the case with the New Departure ball bearings on which the AChiever's precision gyros turn.

DIVISION OF GENERAL/MOTORS, BRISTOL, CONN.
CIRCLE 175 ON READER-SERVICE CARD

- Fast Switching to Check Points (11/2 Power, etc.) at Any Pro-Set Reference Level High-Frequency Teflon Switches
- Long Term Stability-Carbon Film Resistors
- Choice of 50, 70, or 90 Ohm Impedance SPECIFICATIONS

Medel	20	21	22	20.0	21.0	22.0	$30-0$	31.0	32.0
Cat. Me.	430-A	440-A	450.A	431.A	441 A	$451 . \mathrm{A}$	432.8	442.8	452.8
2in Pout	50 ohms nom.	70 ohms nom.	90 ohms. nom.	50 ohms nom.	$\begin{gathered} 70 \text { ohms } \\ \text { nom. } \end{gathered}$	90 ohms. nom	50 ohms. nom	70 ohms nom.	90 ohms nom.
Max. Power	$1 / 2$ watt								
Insertion Loss	10 db			zero db at low freq. approx. 0.3 db at 200 mc			zero db at low fieq approx. 0.5 db at 200 mc		
78 Switched	4] db in 6 steps						101 db in 9 steps		
Steps	$20 \mathrm{db}, 10 \mathrm{db}, 5 \mathrm{db}, 3 \mathrm{db}, 2 \mathrm{db}, 1 \mathrm{db}$						$\begin{aligned} & 20 \mathrm{db} .20 \mathrm{db} .20 \mathrm{db} .20 \mathrm{db} \\ & 10 \mathrm{db}, 5 \mathrm{db}, 3 \mathrm{db}, 2 \mathrm{db}, 1 \mathrm{db} \end{aligned}$		
Frequency Ranga	DC to 500 mc								
Accuracy of Attenuation	Within 0.1 db db to 500 mc Bette: accuracy at lower frequencies								
Connectors	BNC type L'G-185/U								
Dimensions	$2 \% \%^{\prime \prime} \times \varepsilon \% \%^{\prime \prime} \times 2 \%{ }^{1}$						$21 / 4 \times 111 /{ }^{\prime \prime} \times 21 /{ }^{1 /}$		
Weight	$21 / 2 \mathrm{lb}$.						4 lb .		
Price	\$65			¢00			\$100		

All prices f.o.b. factory.
ON SPECIAL ORDER: Your choice of insertion loss, attenuation range, and Impedance rating.
 Depf. ED - MAPLE AVE. - PINE BROOK, N. J. - CAIdwell 6-4000 See us af the IRE Show-Booths 2608-09-10.

CIRCLE 176 ON READER-SERVICE CARD

design simplicity...

bobbin
structure
armature
base

Couch balanced-armature rotary relays withstand 20G vibration, 75G shock. Answers your dry-circuit switching problems too. Our bulletin ith2 tells sou more. Write to-day.

Couch ORDNANCEINC.

A Subsidiary of S. H. Couch Co., Inc.
3 Arlington Street North Quincy, Mass.

PATENTS

Radio Frequency Amplifier

Patent No. 2,799,736. R. J. Hannon. (Assigned to Standard Coil Products Co., Inc.)

Considerable research has been done seeking to extend the upper frequency range of tubes for use in amplifier circuits. This has been dictated by ultrahigh frequency TV broadcasting. One tube which has been developed has two terminal leads to the grid and plate and the electrodes are positioned in such manner that the capacity between electrodes is greatly reduced. Even with this improved construction the tubes could not operate in a range of frequency above the self-resonant frequency of itself.
The amplifier of the patent is designed to enable the type of tube described to operate above the resonant frequency of the tube One manner in which this is partly accomplished is by making the structure of the plate and the lead inductances a part of the output resonator. Another problem with these tubes has been the noise factor which was unsatisfactory. This is because the distributed inductance of the leads to the cathode and grid with the shunt capacitance and resistance from the control electrodes to ground, constitutes an L attenuator with the result that the input signal is decreased whereas the noise energy which is applied directly across the grid and cathode is unaffected and hence the noise factor is poor. This has been overcome in the amplifier herein by inserting the input signal directly at the point where the noise energy is applied to the amplifier as in a T network.

In the circuit illustrated, the grid of the tube is connected to ground through
two leads with the inductance of the leads represented by LG. and the inductance of the lead to the cathode is represented by L_{k}. The signal is applied to the input terminals 20 which are connected with the cathode through a coupling capacitor 51 and a T network consisting of inductors L_{t} and L_{k} and shunt capacitor C_{r}. The signal appears across the shunt network formed by an r.f. choke 48 which is in series with a bias resistor 49 and shunt capacitor 50 . The inductance of the two leads to the plate 17 are represented by L_{p} with the plate potential applied to one lead through a choke 22. This same lead is connected to ground through an inductor 24 and trimmer capacitor 25 . The other lead for the plate is connected with the load through a coupling capacitor 27 with an inductance 29 in parallel with the load. In the amplifier circuit shown, the input circuit provides an analog transformer in which the primary is the T network and the output termination is the capacity between cathode and grid and the input resistance so that a non-attenuated signal is applied across the inherent resistance and capacitance of the tube. The noise factor at uhf is substantially reduced. The noise factor has been reduced from 18 db to 10.5 db at 887 megacycles.
The self biasing resistor 49 and bypass condenser 50 determines the operating bias for the grid. The rf choke 48 isolates the high frequency from the bias elements. Examples of the values of the various circuit components is given in the patent. A variation in the plate circuit of the amplifier is also illustrated and described.

Receiver Circuit

Patent No. 2,808,507. Frank L. Pawlowski. (Assigned to Motorola, Inc.)

The frequency modulated radio receiving system of the patent includes carrier wave selecting and converting apparatus, amplitude limiting apparatus, frequency discriminating apparatus and signal reproducing apparatus which are serially connected to form a receiving channel. The system limits the amplitude of the received signal modulated carrier wave and detects and reproduces the modulation components of the signal. These circuit parts are operative to transmit noise which appears in the channel. A noise squelch system is provided which functions as will now be described. The higher frequencies are accentuated for applying modulation signals and noise from the frequency discriminating apparatus to a limiter. The limiter is coupled to a high pass filter which selects noise at frequencies above the modulation signal frequencies at the output of the limiter. Coupled to the amplitude limiting apparatus is means for deriving a first control voltage therefrom. A rectifier is coupled to this means and to the high pass filter which rectifies the noise selected by the filter and produces a second control voltage of opposite polarity to the first control voltage. The rectifier also differentially combines the first and second control voltage to produce a third control voltage. A squelch circuit controls the signal reproducing apparatus to prevent the latter from responding to noise or signals appearing in the channel so long as the third control voltage exceeds a predetermined value.

Efficient And Stabilized Semiconductor Amplifier Circuit

Patent No. 2,810,024. Thomas O. Stanley. (Assigned to Radio Corporation of America)

The circuit disclosed is a class B pushpull signal amplifying circuit using a first and a second semiconductor of opposite conductivity types. An input circuit applies signals to the base electrodes of the pair of devices which are in parallel. The input circuit includes a low impedance biasing network such as a third semiconductor and including a resistive
element between the base electrodes. The emitter electrode of the first device is connected with the emitter electrode of the second device. An output circuit is provided between the emitter electrodes of the devices and a point of fixed reference potential for deriving an output signal therefrom. A signal feedback circuit connects a point between the output circuit and the emitter electrode with the input circuit. This feedback circuit has a low impedance at signal frequencies to provide a relatively high dynamic input impedance for the semiconductor devices whereby efficient signal transfer is accomplished.

Electronic Relay Control

Patent No. 2,807,757. Robert W. Callinan. (Assigned to the United States of America)

A remotely-controlled relay system is described which is adapted to respond to signal-modulated radio carrier waves. A receiver receives the waves and detects the modulation component. A rectifier converts this modulation component to a direct-current potential. The output circuit of the rectifier comprises a resistor and capacitor in parallel whereby upon cessation of reception of the carrier waves, the direct-current potential is maintained for a time determined by the time constant of the resistor and condenser. A relaxation oscillator circuit comprises a thyratron tube and an electromagnetic relay having a coil and a movable armature. A battery applies a positive potential to the anode of the tube through the coil. A portion of the battery supplies the heater circuit and the negative terminal is connected to the grid in series with the resistor and an additional current limiting resistance. The potential of the cathode heating battery maintains the tube nonconducting. A condenser is provided between the anode and cathode of the tube. The tube coil, and the last mentioned condenser forms the relaxation oscillator so that when a direct-current potential appears across the output circuit of the rectifier, the tube is rendered conducting and the oscillator circuit begins oscillating. The resultant current in the coil actuates the armature of the relay and a circuit controlled by the armature.

Blocking-Oscillator Transformers
Set of Pulsite transformers gives pulse width from 0.1 to 10 microsec in NBS preferred circuit. Units meet MIL-T-27A, Grade 1, Class R Design your pulse circuits quickly by simply Airgax kit in unit with desired characteristic. Airpax kit of 8 oscillator units and 2 interstage units in handy plastic box from stock, Trans. former Division, Baltimore 20, Maryland.

Magnetic Power Amplifiers

Airpax magnetic power amplifiers control the current to both phases of split-phase motors. Standby power is thus greatly reduced and full torque is produced under load. Amplifiers are polarity sensitive. Airpax units for 6 or 10 watts per phase for 400 CPS motors are in stock at the Seminole Division, Fort Lauderdale, Florida.

1.02 to 1012 VOLT RANGE

 PRECISION D. C. POWER SUPPLY
CHOPPER STABILIZED

OUTPUT VOLTAER- 1.02 to 1012 volts DC.
OUTPUT CURRENT- 0 to 400 milliamperes.
OUTPUT POLARITY-Elther side may be grounded or both may be floated.
REGULATION VS. LINE-. 005% or 1 millivolf for 10% line volfage change.
REGULATION VS. LOAD- $.005 \%$ or 1 millivolf for 200 milliampere load change.
STABILITY-. 005% per hour, . 01% per day. REFERENCE ELEMENT-Epploy standard cell. RIPPLE-Less than 2 millivolts RMS.
VOLTAGE RESOLUTION- .5 millivolt for any oulput valfage.
CALIBRATION ACCURACY— $\pm .1 \%$ or 2 millivolts. SIZE AND WEIGHT-19"W $\times 17 \frac{1}{2 \prime} \mathrm{H} \times 15$ "D- 120 lbs. PRICE-\$995.00 f.o.b. Seatile.

OUTPUT VOLTAGE

OUTPUT CURRENT OUTPUT POLARITY

REGULATION VS. LINE

REGULATION VS. LOAD

STABILITY RESOLUTION

CALIBRATION ACCURACY
RIPPLE
SIZE AND WEIGHT

PRICE

600 to 3100 volts	0 to $555 V D C ; 0$
DC	to $250 V D D C ;$
	to $255 D C ; 2$
	$6.3 V A C O 5 A$

pos. or neg.
.01\% max. for 20\% line change
.01\% max. for 10ma change
$.005 \%$ per hour
10 mv at anv output voltage

Better than .5\%
Less thon 5mv RMS
$19^{\prime \prime} \mathrm{W} \times 101 / 2^{\prime \prime} \mathrm{H} \times$ $14^{\prime \prime} \mathrm{D}-46 \mathrm{lbs}$.
$\$ 595.00$

500 to 5100 volts DC	500 fo 1600 volts	500 to 2000 volts DC	500 to 1600 volts
0 to Ima	0 to 1ma	0 to 5 me at 500 to 1500 voliss: 0 to 2 ma at 1500 to 2000 volfs	0 to 1 ma
pos. of neg.	pos. or neg.	pos. or neg.	pos. or neg.
.01\% max. from 100 to 130 volts	.03\% max. from 100 to 130 volts	. 01% max from 100 to 130 volts	. 01% max. from 100 to 130 volts
$.01 \%$ max. no load to full load	$.03 \%$ no load to full load	$.03 \%$ no lood to full lood	$.01 \%$ max. no load to full load
.005\% per hour	. 01% per hour	.005\% per hour	. 005% per hour
100 mv of any output voltage	100 mv at anv output voliage	100 mv at any output voltage	100 mv at any output voltage
1\%	1\%	Better than 1\%	Better than 1\%
Smv max.	5 mv max.	Less than 5mv RMS	Less than 5 mv RMS
$\begin{aligned} & 19^{\prime \prime} W \times 101 / 2^{\prime \prime} \mathrm{H} \times \\ & 14^{\prime \prime} \mathrm{D}-42 \mathrm{lbs} . \end{aligned}$	$\begin{aligned} & 19 " \mathrm{~W} \times 7^{\prime \prime} \mathrm{H} x \\ & 13^{\prime \prime} \mathrm{D}-22 \text { Ibs. } \end{aligned}$	19"W Rack $\times 7^{\prime \prime \prime} \mathrm{H}$ $\times 13^{\prime \prime} \mathrm{D}-27 \mathrm{lbs}$.	19"W Rock x 7"H $\times 13^{\prime \prime} \mathrm{D}-27$ lbs.
\$595.00	\$265.00	\$435.00	\$395.00

PATENTS

Artificial Inductor

Patent No. 2,800,586. G. H. Towner. (Assigned to Northrop Aircraft, Inc.)

An inductor which has a large value of inductance but is of relatively small size has many advantages. The patentee has devised an artificial inductor which does not use coils and occupies relatively small space. This inductor also has application in an oscillator and in a resonance circuit having a high Q . Other applications of the inductor are for a remotely variable inductor using simple control means and a tone control circuit.

The artificial inductor is shown in the figure and comprises a resistor R_{3} which may be variable over a range from 0-10 kilohms. Across this resistor is connected an amplifier of three tubes in which the last tube T_{3} is a cathode follower tube with its cathode resistor R_{4} of say 27 kilohms in series with the resistor \boldsymbol{R}_{3}. The condenser C_{1} and resistor R_{7} form an R-C differentiator. The mathematical analysis of the circuit is given in the patent and the circuit has been tested for conformance with inductor characteristics. For example a square wave input applied to the terminals 6,7 produces an output of spiked or peaked wave form across the output resistor R_{4}. A triangular wave input will result in a square wave output and a sine wave input will result in a sine wave output which is 90° out of phase with the input wave. The value of inductance can be varied by varying the resistor R_{3} or R_{7}. The equivalent inductor resistance is essentially the value of resistor R_{3}.

The artificial inductor may have a capacitor connected across the terminals 6 and 7 which results in a resonant circuit. As a consequence the inductor may also be modified to provide an oscillator. The oscillator circuit is the same as that
of the figure with the capacitor across terminals 6,7 and a feed-back loop consisting of a blocking capacitor and resistor between the plate of the tube T_{2} and the grid of the tube T_{1}. A blocking capacitor is also provided between the plate of the tube T_{2} and the grid of the tube T_{3}. In another modification the capacitor may be removed whereupon the circuit becomes essentially a "perfect" inductor with practically no resistance. A proper amount of feed-back voltage in effect cancels the applied voltage across the resistor R_{3}. In addition the circuit may be modified to provide a tone control which is also illustrated and described in the patent. The oscillator output is secured across the resistor R_{4}.

Grounded Grid Power Amplifier

Patent No. 2,810,793. Warren B. Bruene. (Assigned to Collins Radio Company)

The amplifier uses a tube having a first tuned impedance circuit between the cathode of the tube and ground. The signal source is applied across this impedance circuit. A signal current detector is in series with the signal source and has a direct voltage output which is proportional to the signal current. A voltage detector is in parallel with the first cathode impedance circuit and has a direct voltage output which is proportional to the signal voltage and further has a polarity which is opposite to that of the current detector output. A potentiometer consisting of resistor with a variable tap has one end of the resistor connected to the output of the signal current detector and the other end of the resistor connected to the output of the voltage detector. A grid current detector is in series with the grounded-grid of the tube and has a direct voltage output which is proportional to the grid current. A second tuned impedance circuit has a variable resistive component connected in series between the plate of the tube and the load. A servo system has its error input connected between the tap on the potentiometer and the output of the grid current detector. The output of the servo system is coupled to the second impedance circuit so that its resistive component is varied in a manner to equalize the voltage on the tap with the voltage output of the grid current detector.

Pulse Stretchers

Patent No. 2,802,101. C. F. West et al. (Assigned to Raytheon Manufacturing Company)
The pulse stretcher circuit finds particular application in computers for generating a gating pulse. This application requires a gating pulse which is precisely instituted and terminated. A control signal sets the beginning of the pulse and a second control signal resets the circuit or the ending of the pulse. For this service bistable multivibrators or socalled flip-flop circuits have been extensively used as well as a one pulse multivibrator having a circulating delay line or the so-called dynamic flip-flop circuit. Both of these types of circuit use dc coupling which requires components which are critical in nature and for this reason such circuits are generally unstable in operation.
The circuit shown in the figure initiates a gating pulse by a negative triangular control signal generated at the source 12. The leading edge of this negative control signal drives the cathode 21 of a diode more negative than the cathode 22 so that a current flows through this diode and resistor 20 to a source of negative potential B-. This flow of current charges the capacitor 11 so that the trailing edge of the control pulse raises the potential on the control grid 13 of the cathode follower amplifier tube 14 . As a consequence, the cathode follows the grid potential and produces an output pulse across the cathode resistor 19 or at the output terminal. The charge on the capacitor 11 leaks off slowly through the resistor 20 and therefore maintains the control grid 13 positive and maintains the potential of the pulse at the output terminal although at a somewhat decreasing level. The pulse is terminated by a negative reset control signal generated at the source 27 which is applied through the capacitor 26 to the cathode 24 of the second diode. This negative pulse renders this diode conducting and discharges the charge on the capacitor 11
which terminates the pulse. This circuit is not critical in operation so that changes in circuit values which may arise from aging of the tubes or variations in supply voltage does not affect operation of the circuit. In addition the switching time from pulse off to pulse may be less than one tenth of a microsecond.

There is also illustrated and described, a modification of the circuit of the figure whereby the input control signal may be a positive triangular pulse. This circuit requires relocation of the diode which charges the condenser into the connection from the control signal source 12 to the grid 13 of the amplifier tube and relocation of the capacitor 11 between this diode and the grid 13 with one plate being grounded. There is also shown three other cirsuits which develop regenerative pulses for extending the duration of the gating pulse or maintaining its potential amplitude over a long period.

Time Delay Control

Patent No. 2,809,297. Edward C. Hartwig and Francis T. Bailey. (Assigned to Westinghouse Electric Corporation)
The control circuit consists of an amplifier having a first input terminal, a second input terminal, a first output terminal and a second output terminal. A photo-sensitive device has a third output terminal and a fourth output terminal. The third output terminal is connected to the first input terminal and the fourth output terminal is connected to the second input terminal. Circuit means connects the first output terminal to the control grid of a discharge tube. Other circuit means connects the second output terminal to the cathode. A time constant network is provided in series with the anode and cathode of the tube. A second discharge tube has this network connected between its control electrode and cathode. A current responsive means is provided between the anode and cathode of the second tube.

More quality power

per dollar with SONOTONE

CERAMIC CARTRIDGES

That's why 50

manufacturers use
them in 417

phonograph models

Sonotone's high voltage output and constant amplitude characteristic mean pre-amp and equalizer circuitry can be eliminated. You cut costs and time-add better performance. Sonotone Ceramics actually outperform most magnetic types.

That's not all. Sonotone Ceramics give triple hum protection. High voltage output, no boost needed at hum frequencies and non-magnetic structure minimize hum pick-up.

50 companies now use Sonotone Ceramic Cartridges in 417 models. Proof that for sound and value you can't match them.

For list of Sonotone users, or for further information, write:

> Sonotone:

ELMEFORD, NEW YORK
CIRCLE 180 ON READER-SERVICE CARD

POSITIVELY SEAL OUT ALL... Dirt-Dust-Fumes-Moisture

 APM HEXSEALS for Switches and Shafts consist of a
 HIOHPRESBURE SWITCH and SHAFT SEALS, SELF-SEALING SCREWS

 grooved nut to whish is molded a rubber boot. High pressure sealing is mainfained by a gasket rib - an integral part of the boot - which seats Armly against any panal surface regardless of hnish.APM SEELSKREWS - Pro-assombled, vibration resistant fastenors, designed for panols and mofor housings. A rubber O-ring is pressed into a groove underneath the hoad of the scrow. They will soal in excess of 500 psi, internal and external pressure.

HEXSEALS and SEELSKREWS Meet Military Specs: MIL-B-005423A (ASG) MIL-B-19257 (Ships) SCL-6303 (Sig. Corps)

Visil our Booth 3824 af the IRE Show
-Trade mark SEELSKREWS*

Flip-Flop Circuit

Patent No. 2,795,696. D. C. Evans.
(Assigned to Bendix Aviation Corporation)

Many improvements have been made in flip-flop circuits seeking to improve their performance. Many of these circuits are of the Eccles-Jordan type which use a pair of tubes with interconnections between plate and grid of resistances and capacitances. By the application of a triggering pulse, one tube becomes conducting and the other becomes non-conducting. Such circuits, however, require resistances and capacitances of precise values for securing desirable operating characteristics and this necessarily results in increasing the cost of the circuit. Such circuits also require input and output stages requiring additional tubes which further increases the cost and complexity of the circuit. In the field of electronic computers large numbers of flip-llop circuits are used and for such uses a flip-flop circuit of lower cost and greater dependability is very desirable.

The circuit disclosed in the figure overcomes the disadvantages discussed above and makes use of an oscillator stage. This stage is normally nonoscillating but upon being triggered is set into oscillation. By the use of a pair of rectifier circuits, low and high voltages are produced in the outputs when the oscillation circuit is non-oscillating and produces high and low voltages when the oscillations begin. The circuit
components are well illustrated in the circuit diagram of the figure. The oscillator makes use of a tube 28 and the inductors 30 and 26. Assume that the oscillator is non-oscillating, a trigger pulse generated from the source 10 supplies a positive pulse through the diode 12 to the control grid of the tube 14. This tube becomes conducting and the potential increase across the cathode resistor 18 is applied to the control grid of the oscillator tube 28 through the winding 26 . Increasing conduction through the oscillator tube 28 is fed back to the control grid through the windings 30 and 26 which regenerative action sets the tube into oscillation.

When the oscillator is non-oscillating a potential of -20 volts appears at the output 42 from the negative power supply 20 , winding 32 and diode 36. During the non-oscillating condition of the oscillator, a zero potential appears at the output 50 because of the low potential drop through the diode 44 and winding even though this output terminal is connected with the power supply 16 through a resistor 46. When the triggering pulse from the source 10 sets the oscillator circuit into oscillation the potential at the output 42 becomes zero through the coupling between the winding 30 and 32. Similarly the potential on the output 50 becomes - 20 through the coupling between the windings 30 and 34. This potential relationship continues until a triggering signal is generated by the source 62 . This triggering
signal is inverted in 60 into a negative potential applied to the cathode of the diode 56 which appears on the anode as a result of current flow through a circuit from power supply 16 , resistor 54 diode 56 and inverter 60 . This negative signal appears also on the anode of diode 58 as well as the cathode resulting from current flow from supply 60 , through resistor 64 , diode 58 , resistor 64 and the negative power supply 20 . The negative potential on the cathode of diode 58 biases the grid of tube 14 to cut off. With cessation of conduction through the control tube, the grid of the oscillator tube 28 is biased below oscillating level and the oscillation cease to restore the initial potential on the outputs 42 and 50 .

In the Eccles-Jordan type of flip-flop circuit, one of the two tubes is always cut off with the result that the tubes of this circuit present different impedances at different times because of the "cathode interface impedance" which is relatively large at cut off. This fact tends to produce undesirable transients when a tube is triggered. In the circuit of the figure this difficulty is overcome by having some current at all times flowing through the oscillator tube 28 but it is at such a low level that it is below the condition of oscillation of the oscillator circuit. This flow of current avoids any "cathode interface impedance" and provides a flip-flop circuit of stability.

Color Television Image Reproducing System

Patent No. 2,806,899. Vladimir K. Zworykin. (Assigned to Radio Corporation of America)

The reproducing system of the patent uses a cathode-ray tube with a luminescent screen having a plurality of groups of subelemental size areas. Each area of of the groups has fluorescent material to produce light of a different color when it is excited by the beam of the cathode-ray tube. The primary electron beam is controlled to effect scanning of successive elemental areas of the screen and to determine intensity of the light produced in accordance with the received signals. The system provides means which is responsive to the primary electron beam
for developing at each of the elemental screen areas, a single secondary electron beam for each of the groups of subelemental screen areas. Each of the secondary electron beams are controlled to selectively excite any one of the color screen areas of its group of the screen.

Radio Receiver

Patent No. 2,810,071. Richard T. Race. (Assigned to Motorola, Inc.)
The radio receiver is of the superheterodyne type to be used in a vehicle so that it is energized from the battery of the vehicle which provides a direct current potential having a nominal value of 12 volts. The receiver includes a voltage amplifier for the received radio frequency signals which uses a first vacuum tube. The received radio frequency signals are converted to intermediate frequency signals which converter uses a second vacuum tube. The intermediate frequency signals are amplified which i-f amplifier includes a third vacuum tube. A deravdulator demodulates the intermediate frequency signals to provide audio frequency signals. A control voltage is derived representing the average value of the amplified intermediate frequency signals which applies the control voltage to the first and third vacuum tubes for controlling their gain. The audio signals are amplified by a fourth vacuum tube and at least one power transistor device which provides the audio output signals. A loudspeaker is coupled to the power transistor device for reproducing the audio output signals. The fourth vacuum tube and the power transistor device are coupled to means which produce audio frequency current sufficient to drive the loudspeaker so as to produce sound at a level which can be conveniently heard in the vehicle. A form of power supply provides operating potential for the receiver circuit from the battery power supply and includes a filter and direct current connections to each of the vacuum tubes and to the power transistor device. This power supply derives a single direct current voltage from the battery and applies only this single voltage to all of the circuits of the entire receiver so that all of such circuits are energized by a voltage no greater than that of the battery.

CIRCLE 183 ON READER-SERVICE CARD
GRC idea
another
GRC'S UNIQUE AUTOMATIC
METHODS INSERT THREADED
PIECES, WIRES, even CONTINUOUS ELEMENTS, RICHT IN THE MOLDING OR CASTING CYCLE
Fast . . . economical, GRC's exclusive automatic machines insert elements in zinc alloy die castings, in thermoplastic moldings . . . assure uniformity, eliminates assembly, make possible entirely new designs, cut labor and costs. Write for bulletins, send prints for quotation

For this 18 m Brash Assembly. the core is dy ana contioneanily onto 6 strande of musie wire ${ }^{3}$ on osen slete.

No size is too small Maximum: Zinc Alloy $11 / 2^{\prime \prime}, 1 / 202$.
Plastic 11/4", 03 oz.
Be sure to see GRC af the I.R.E.- Booth 4042

GRIES REPRODUCER CORP

1. To supervise test equipment assembly groups.
2. For design of production test equipment for electromechanical systems.

PROJECT AND FIELD ENGINEERS
 Mechanical, Electrical, Physicist

For engineering and development of advanced airborne navigation systems and related test equipment.

SYSTEMS FIELD ENGINEERS

To service electromechanical bomb-nav. systems. Must have EE (electronics) degree or equivalent. Prefer 2-3 years similar experience. Must be willing to relocate and travel when required.

Kollsman, designer of America's finest aircraft Instruments, is large enough to be stable; small enough to provide room for individual recognition and growth.

s0-0: asih avenue, elmhurst, new york - subsidiany of Standard coil products co. inc.

PATENTS

Processes For The Manufacture Of Multiple Strand Electrical
 Conductor Leads

Patent No. 2,810,670. Faust R. Gonsett. (Assigned to L. A. Young Spring d Wire Corporation (1/2) and Fretco, Inc. (1/2))

The patent is directed to a method of making that type of conductor commonly used as the leads between a television antenna and the receiving set. This type of conductor consists of spaced bars to which the two conductors are secured in spaced relation so that the conductor is air insulated.

In the broader aspect of the process the insulating cross bars are of plastic material. The ends of bars and the two conductor wires are heated in a suitable oven. Each conductor wire is pressed into the opposite ends of the plastic bars so that they are embedded in the plastic. Upon cooling, the conductors are securely fastened to each end of the bar. An automatic machine is used which feeds the spaced insulating bars into spaced clips on an endless chain and at the same time a conductor wire is fed to each side of the cross bars from spools. The bars and conductors are heated in an oven and each conductor wire is then pressed into the ends of the bar where they are secured upon cooling.
In the more detailed method of making this conductor, the plastic bars are loaded into spaced clips on the endless chain or conveyor. While the plastic bars are held on the conveyor they come into contact with a saw on each side which cuts a kerf into each end of the plastic bar. Wire is then fed from each side of the conveyor and into the kerf. The bars and conductors then pass through an oven and pressure is applied to the ends of the plastic bars to close the kerf onto the conductors. In this manner each wire
is firmly embedded and attached to an end of the plastic bar.

Magnetic Amplifier and Flip-Flop Circuit Embodying the Same

Patent No. 2,798,168. Theodore H. Bonn, John Presper Eckert, Jr., and Robert P. Talambiras. (Assigned to Sperry Rand Corporation)
The circuit uses a core having a substantially rectangular hysteresis loop on which core there are a plurality of windings. A first source of spaced power pulses feed current through a first winding, and output means receives this current. A second winding has a bias arrangement for normally applying magnetizing forces to the core during the spaces between power pulses. These magnetizing forces are in the opposite direction to the magnetizing forces set up by the power pulses. The power pulses and bias have such amplitudes that during the spaces between pulses the bias will drive the magnetization of the core so far in one direction that the next power pulse cannot saturate the core when it drives the magnetization of the core in the other direction. A second source of spaced input pulses is coupled to one of windings on the core which pulses have a polarity as to oppose the magnetizing effect of the bias so that during the presence of an input pulse, the power pulses will repeatedly drive the core to saturation. The duration of the input pulses are long enough so that a plurality of power pulses occur between the beginning and end of each input pulse. A filter between the second source and the windings blocks current at the frequency of the power pulses so that currents at the frequency of the power pulse will not flow through the second source.

Pulse Modulation Circuit

Patent No. 2,804,595. Robert O. Soffel.

 (Assigned to Bell Telephone Labs.)The circuit modulates a carrier wave under the control of direct current signal pulses. The circuit includes, therefore, a carrier source and a source of direct current signal pulses. One or more modulator output circuits are provided having a predetermined impedance. A dummy output circuit is also provided having substantially the same impedance as the modulator output circuit. A first diode is used between the carrier source and the modulator output circuit. A second diode is used between the carrier source and the dummy output circuit. The first diode is biased in the forward direction and the second diode is biased in the reverse direction in the presence of a signal pulse. This bias arrangement permits the carrier to pass through the first diode to the modulator output circuit. The first diode is biased in the reverse direction, the second, in the forward in the absence of a signal pulse thereby blocking the carrier from the modulator output circuit and presenting a terminating impedance to the carrier source which is much the same as presented thereto by the modulator output circuit.

Semi-Conductor Squelch Circuit

Patent No. 2,809,240. Larry A. Freedman. (Assigned to Radio Corp. of America)

The circuit is a semi-conductor signal amplifier device in which the signal input circuit is between the base and emitter electrodes and the signal output is from the collector electrode. A bias voltage is provided between the base and emitter electrodes in the forward direction. An energizing means is connected with the collector electrode through resistive means connected so as to establish a substantially zero potential between the base and collector electrodes at static operating conditions. A direct current automatic gain control is used with the input circuit which is responsive to an increase in signal strength to decrease the bias voltage between the base and emitter electrodes on signals exceeding a predetermined value and to increase the gain as the amplitude of the applied signals begins to exceed the predetermined value. The agc thereafter decreases the gain of the amplifier for further increase in the amplitude of the applied signal.

Differencer Circuit

Patent No. 2,807,7.30. Henry W. Kaufmann. (Assigned to Sperry Rand Corp.)

A signal generator is provided having an input and an output which generator produces regularly spaced output signals at the output during predetermined spaced output time periods. The generator also includes means which is responsive to an input signal occurring during one of the spaced output time periods for inhibiting an output signal during a next subsequent output time period. A gating device has first and second gating control inputs which device is responsive to coincident signals at the first and second gating control inputs for effecting a predetermined gating output state. The output of the pulse generator is coupled to one of the gating control inputs. A control signal is applied simultaneously to the generator input and to the other of the gating control inputs during a selected one of the output time periods.

Two Stage Magnetic Amplifier

 Patent No. 2,809,241. Seymour Weissman. (Assigned to The W. L. Maxson Corp.)The magnetic amplifier comprises several stages, the first stage including a magnetic core, a first output winding and a first control winding on the magnetic core. A control voltage is applied to the latter winding. The second stage includes a magnetic core having a second control winding and a second output winding on the core. A first rectifier and a load are in series with the second output winding. An interstage coupling circuit includes a second rectifier in series with the first output winding and the second control winding to which a voltage is applied of the same frequency as above. The rectifiers are poled to pass current during alternate half cycles of the alternating current. The cores and windings have dimensions and are so arranged that the first stage remains saturated and the second stage remains unsaturated throughout the entire ac cycle when no control voltage is applied. To the second stage there is connected means for altering its magnetization so as to substantially eliminate a dead space in the amplifier characteristic in which the amplifier produces no appreciable output in response to a control voltage.

CIRCLE 400 ON READER-SERVICE CARD

FOR SMALL PARTS AND ASSEMBLIES
Simplifies, improves and speeds up component production. Provides local heat to otherwise inaccessible spots. Safo and simple. Max. power input 775 watts, 100 watts standby: 115 volts, 60 cycles. $15 \frac{1}{4} \times 21^{1} \varepsilon^{\prime \prime} \times$ $15^{\prime \prime} .150$ lbs. Bulletin on request. Marion Electrical Instrument Co., Manchester, N. H., U. S. A.

Cupypight (1) 1958, Marion

Compact, highly efficient Universal Transistorized Static Converters outlast conventional non-transistorized vibrator power supplies and similar mechanical equipment by thousands of hours. They convert DC voltage to higher DC voltage more efficiently in minimum-sized, lightweight packages. These features are particularly important where space is at a premium, as in two way radios and public address amplifiers.
Universal DC-DC Converters are complete units, fully transistorized, rectified and filtered. They require lower maintenance because there are no moving parts, no wear, no tear, no arcing.

UNIVERSAI

ONE COMPLETE SOURCE FOR QUALITY POWER SUPPLIES:

- DC-AC Inverters - AC to DC - DC to DC
- High Voltage - Low Voltage
- High Power - Low Power
- Custom units operate over Wide Temperature Ranges and Rugged Shock conditions.
- For leaders such as Bendix Radio, Dumont, General Electric, RCA. Sperry Products and Western Electric, UAC power supplies high transistor reliability (1095% in
10.000 hrs usel. Low maintenance minimum size and weight long life $10,000 \mathrm{hrs}$. use). Low maintenance... minimum size and weight... long life and efficiency as high as 98%. . . are paying important dividends.
Whatever your power engineering problem. Universal has the unit to ouflast and outpower conventional supplies by far

UAC Electronics

A DIVISION OF

Dopt ED3 * 17 Brooliyn Ave., Worthury, 1. L, N. Y. \& EDgewood 33304 - Coble Univatoms
IN CAMADA - ELECTRONIC EMTERPRISES REGD. SSI OAKWOOD AVE., TOROMTO 10. OMT.

Books

Soviet Education for Science and Technology

Alexander G. Korol, The Technology Press of Massachusetts Institute of Technology and John Wiley \& Sons, Inc., New York, N.Y., 513 Pages, \$8.50.

Perhaps the most comprehensive study to date, this book examines the organization and effectiveness of Soviet formal training in science and technology in an effort to evaluate the overall quality of Soviet-trained scientists and engineers. It concentrates the investigation on the two representative fields of physics and mechanical engineering.

Though not intended as a comparative study, the book refers to American educational data as a frame of reference by which the scale of Soviet education could be concretely appreciated.

The book deals with education through the graduate level. The investigation probes organization, curricula, instruction, textbooks, student selection, any many other aspects of Soviet education. It is well documented with 56 tables. An extensive annotated bibliography and 15 appendices round out this excellently organized study.

Atomic Energy Facts

Prepared by the U.S. Atomic Energy Commission. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. 216 Pages, Paper bound, $\$ 2.00$.

This up-to-date compilation of information on atomic energy, though intended primarily for industrial management, is also of interest to the layman.

Well illustrated, with 86 drawings, photographs, and flow charts, it combines and organizes material from many Atomic Energy Commission sources.

Devoted entirely to peaceful uses of atomic energy, the volume describes the organization, functions, and technical in-
formation services of the AEC. Sources of technical information and services are presented in addition to information on how to obtain licenses and patents.

Five of the nine chapters are technical, dealing with the production of uranium and thorium, power reactors, fuel cycles, reactor materials, research reactors, and the characteristics and production of radioisotopes.

The volume does not report on weapons programs or basic research in universities.

Industrial Electronics Handbook

R. Kretzmann, Philosophical Library, 15 East 40th Street, New York 16, N.Y. 298 Pages, \$12.00.

This second edition is an enlarged version of an earlier work which was very valuable to those engaged in the supervision or maintenance of industrial equipment. The book was printed in the Netherlands. Perhaps its greatest weakness for American readers is that it was translated into English rather than American. Nevertheless, the American reader should not have too much trouble translating main voltage to line voltage and earth to ground. Most of the tubes referred to are Dutch types-a small inconvenience.

Perhaps most disappointing about this book and its sequel, "Industrial Electronics Circuits" is the absence of discussion of magnetic amplifiers and transistors, with their growing role in industrial electronics.

In spite of these shortcomings, the book is an excellent practical handbook on electronic relays, counters, timers, rectifiers, control, and other devices. It describes the principles and properties of the various classes of hard and soft electron tubes with typical applications and circuits.

Industrial Electronics Circuits

R. Kretzmann, Philosophical Library, 15 East 40th Street, New York 16, N.Y. 194 Pages, \$10.00.

A sequel to "Industrial Electronics Handbook," this book concentrates on the circuitry most often employed with industrial electronic applications. There are nearly 200 circuits together with parts lists and descriptions of the functions of component parts.

American readers will have to acclimatize to picafarads for micromicrofarads and to the use of Dutch tube types. A convenient adjunct to the book would have been a translation of Dutch tube types to American equivalents.

The circuitry is presented under six categories: photoelectrically controlled apparatus; counting circuits; stabilizing circuits; contact and control devices; oscillator- and amplifier circuits; and rectifier and motor control circuits.

Despite the shortcomings which this book shares with the "Industrial Electronics Handbook," both books can be invaluable to the designer of industrial electronic apparatus.

Closed Circuit TV System Planning

M. A. Mayers and R. D. Chipp, John F. Rider Publisher, Inc., 116 West 14th Street, New York 11, N.Y. 250 Pages, $\$ 10.00$

This book is not intended for the electronic design engineer. For those thinking of using closed circuit TV, it is a complete advisory source. An excellent guide for those who must plan and evaluate these systems, it answers questions related to the organization of such systems such as space requirements, cost of equipment and installation, types of equipment available and manpower required to operate and maintain the equipment.

Principles of Properties of Materials

Jacob Porter Frankel, McGraw-Hill

 Book Co., 330 West 42nd St., New York 36, N.Y. 228 pp, \$6.00.An outgrowth of a series of lectures delivered to an undergraduate class at Northwestern Technological Institute, this volume takes a new approach to the subject by emphasizing principles and properties of materials rather than the materials themselves. The author has explicitly written a very basic text and not a reference book. Since it is intended as an introduction to all fields of engineering, discussions of such matters as magnetic properties and some of the properties of liquids have been omitted.

Digital Computer Components and Circuits

R. K. Richards, Van Nostrand Co., Inc., 120 Alexander St., Princeton, N.J., 511 $p p, \$ 10.75$.

In this clear delineation, emphasis is laid on the presentation of information to reduce ideas about arithmetic and logic to a working machine. Many of the topics included represent components and circuits of an experimental nature which have never been utilized in working computers but which offer proven or potential advantages. Logical functions and digital storage, basic operations to be performed by a digital computer, are discussed at length. The various advantages and disadvantages of the several approaches to design are thoroughly explored. Intended as a companion book to the author's "Arithmetic Operations in Digital Computers," this present volume is nevertheless an entirely separate work intended as a reference source for the practicing engineer and as an aid in introducing the newcomer to the field. Brief discussions of Boolean notation, counters, and adders are repeated here.

$\frac{\frac{\pi}{1-25}}{\frac{11}{11}}$

NOWI PROVEN

REPLACES BULKY, INEFFICIENT DYNAMOTORS

UNIV PRTAI, transistarized DC TRANSFORMERS

Designers of much of today's important new electronic equipment for mobile, aircraft and marine applications specify Universal Transistorized DC Transformers because they are efficient, compact, rugged improvemenis on dynamotors. They reduce operating and maintenance costs because there are no moving parts, no wear, no tear, and no brush inferference.

- FULLY TRANSISTORIZED
- RECTIFIED
- FILTERED
- Protect against short circuits, input polarity reversal, line and load surges available.
I.R.E. SHOW BOOTH 3937

UAC Flectronice

a division of

Dept. ED3 - 17 Brooklyn Ave., Westbury, L. I., N. Y. - EDgewood 3-3304 - Cable: Univatoms IN CAMADA - ELECTRONIC EMTERPRISES REGD. SSI OAKWOOD AVE., TORONTO 1O. OMT. CIRCLE 405 ON READER-SERVICE CARD

What The Russians Are Writing

J. George Adashko

RADIO ENGINEERING AND ELECTRONICS

(Contents of Radiotekhnika i Elektronika No. 6, 1957)

TUBES AND THERMIONICS

Trends in the Development of Thermionic Cathodes, B. M. Tsarev (pp 675-687, 6 figs).

Modern types of thermionic cathodes are classified with respect to the principal requirements that they must satisfy in modern electron tubes, primarily those employed for the amplification and generation of uhf waves up to the millimeter range. Possible new types of cathodes of the future are described.

Electron Waves in Decelerating Systems. Nonlinear Equations of Traveling Wave Tubes, L. A. Vaynshteyn (pp 688-695, 1 fig).

The equations of the nonlinear theory of traveling wave tubes are derived, analyzed, and solved by successive approximation. The forces acting on the electron beam in the nonlinear operating mode and certain other problems in the nonlinear theory of traveling wave tubes are discussed. Reference is made to an article by A. Nordsieck in Proc. IRE, vol. 41, p. 630 (1953).

Theory of Electron Beam Shaping, V. T. Ovcharov (pp 696-704).

The author develops a method for finding the electrical field within an electron beam, when the trajectories and the magnetic field (if used) are given, with allowance for the intrinsic charge of the beam.

The method proposed and developed in this article can be used to solve many beam problems so far unsolved. It leads, for example, to a demon-
stration of the practical realizability of the socalled Brillouin beam-a cylindrical beam with constant axial velocity in the homogeneous magnetic field. Configurations such as a converging axially-symmetrical beam for a plane cathode, a ribbon-like beam for a cathode having an area greater than that of the ribbon in a homogeneous transverse magnetic field, and others, can also be treated.
> "Phasochron" Backward Wave Oscillator, S. I. Tetel'baum (pp 705-713, 6 figs).

This oscillator uses distributed interaction between the electron beam and the traveling wave field. The phase velocity of the electron bunches is opposed to their forward velocity, so that an internal feedback is produced if the waveguide system employed has a positive normal dispersion. The author develops an approximate theory for such a generator, constructed of a nonretarding two-conductor waveguide system, and gives test results.

Concerning the Electron Energy Distribution of Electrons From Antimony-Caesium Cathodes, A. I. Pyatnitsky (pp 714-725, 14 figs).

Discusses the experimentally established difference in the current-voltage characteristics of the photocurrent between a $\mathrm{Sb}-\mathrm{Cs}$ cathode and a Ag-Cs layer. Refers to work by Apker, Taft and Dickey (Physical Review, 1948, vol. 74, 1462), Bardeen (Physical Review, 1947, vol. 71, 717), Apker, Taft, and Dickey (Physical Review, 1949, vol. 76, 270), and Taft and Apker (Physical Rcciew, 1949, vol. 75, 1181).

Interdepartmental Seminar on Cathode Elec-
tronics, N. L. Yasnopol'skiy and A. E. Dyklop (pp 814-816).
This is the fifth session sponsored by the Institute of Radio Engineering and Electronics of the Academy of Sciences, U.S.S.R. It was held on April 8, 1957 and was devoted to secondary electron emission. The contents of about 15 papers are briefly reported.

Quantum Effects in the Interaction Between Electrons and High Frequency Fields in Resonators, V. L. Ginzburg and V. M. Fayn (pp 780-789).

In the analysis of the quantum effects that take place when electrons pass through a cavity resonator, it is shown that the only quantum effect is essentially the interaction between the electrons and the zero-order oscillations of the field in the resonator. Accordingly, the calculations do not require the use of quantum-mechanical methods and reduce to a simple utilization of the Nyquist quantum formula.

CIRCUITS

Operating Modes of a Symmetrical Multivibrafor, N. A. Zheleztsov, M. I. Feygin (pp 751-761, 12 figs).
An approximate method is used to break down the multi-dimensional phase space into the subspaces of the motions of the individual orders, in which the symmetrical multi-vibrator circuit is analyzed. The parasitic capacitances and grid currents are taken into account. The self-oscillation frequency is calculated for positive grid bias. Nonlinear theory of considerable complexity is used in the discussion. A brief reference is made to an experimental verification of the theoretical results, for which good agreement is claimed.

RECEPTION

Concerning an Optimum Defector for Weak Signals in the Presence of Noise, B. S. Fleyshman (pp 726-734, 1 fig).

The author proposes a more accurate analysis of the problem than Peterson, Birdshall, and Fox, "The Theory of Signal Detectability." Transactions IRE, Information Theory, 1954, vol. 4, 171212, or D. Middleton "Statistical Criteria for the Detection of Pulse Carriers in Noise," Journal of Applied Physics, 1953, vol. 24, 371-391, because the latter include only the quadratic term of the expansion of $\log \mathrm{I}_{0}(\mathrm{x})$. The results obtained are in agreement with those quoted by Bussgang and Middleton "Optimum Sequential Detection of Signals in Noise," Transactions IRE, Information Theory, 1955, vol. 1, 518, without employing so many simplifying assumptions.

Passage of Fluctuation Signals Through a Detector, with Account of the Effect of Bias and Limitation, E. G. Logachev (pp 735-750, 3 figs).

A general expression for the correlation function of the current at the detector output is used to derive an expression for the correlation function of the noise current at the output of a fluctuationsignal detector at low frequencies, making due allowances for bias and limiting. Cites articles by Middleton on the sub-
ject (Quarterly of Applied Mathematics, 1948, page 445, and Journal of Applied Physics, 1946, vol. 17, 778).

CIRCUIT ELEMENTS

Calculation of Toroidal Coils with Ferrite Cores, Operating at Audio Frequencies, L. I. Rabkin and Z. I. Novikova (pp 762-768, 3 figs).

The article contains a method for determining the optimum ratio of the dimensions of a toroidal magnetic core, so as to guarantee minimum coil volume for a specified Q or a maximum Q for a specified volume. The calculations are based on the assumption that the ratio of the outside diameter of the coil to its internal diameter is constant. See Figs. 1,2 , and 3.

PHYSICS

Grapho-Analytical Method of Plotting Trajectories of Charged Particles in Magnetic Fields, N. I. Shfepa, (pp 790-795, 4 figs, 1 table).

Unlike all other approaches to the problem, this article proposes methods with which it is possible to determine trajectories other than those in axiallysymmetrical fields (principally paraxial rays), and treating only nonrelativistic particles. This article treats relativistic particles in magnetic fields, provided that the field distribution is known.

FM Telemetering equipment is quickly and accurately checked with the unique instruments described below. All are immediately available against DX Priorities.

FM DEVIATION METER model $928 / 2$
Freen. Rance: 215 to 260 Mc , directly callibrated. Modulation Freqs: 50 cps to 120 kc . Deviation Ranzes:

0 to 100, 200 and 400 kc , or to order. Accuracy of measurement: 3%.
Built in crystal standardization, aural and visual monitoring, counter type discriminator. Instrument is ruggedized and waterproof.

FM DEVIATION METER model 928. similar to $928 / 2$, covers 20 to 500 Mc .

FM SIGNAL GENERATOR model 1066/1
Freq. Range: 10 to 470 Mc in 5 bands. FM, contiauously variable:

0 to 100 kc . Higher to order.
Δ frequency: 1 to 200 kc , calibrated.
stablility: . 0025% per 10 min .
AMPLITUDE MODULATOR medel 1102 for use with any Sig Gen. Gives monitored AM, 0 to 80% with zero FM. Handles any wave shape.

EDDYSTONE FM/AM RECEIVERS,

 models 770 R. 770 UModel 770 U covers 150 to 500 Mc , 770R covers 19 to 165 Mc . Both are sensitive, stable, directly calibrated and have excellent logging scales.

AS SUPPLIED TO: US Signal Corps, Wright Patterson AFB, Navy Electronics Lab, AEC, Convair, Martin, Douglas, McDonnell, GM, Chrysler, etc., etc.

IRE SHOW - BOOTHS 3315.17

MARCONI instruments
 111 Cedar Lane - Englewood, New Jersey

MEASUREMENTS

Calculation of Resolving Power of Automatic Frequency Analyzers, N. V. Terpugov (pp 796806, 10 figs).
A method is given for the calculation of the dynamic frequency characteristics of filtering systems. The results of an experimental test on several filtering systems are cited, and generalizations are made concerning their selection and concerning the procedure used to calculate such systems. See Fig. 4.

WAVE PROPAGATION

Allowance for Multiple Scattering in Diffusion UHF Propagation in the Troposphere, D. M. Vysokovskiy (pp 807-809, 2 figs).

Techniques usually employed in multiple Xray scattering are generalized to include the calculations of the effect mentioned in the title.

ELECTRICAL COMMUNICATIONS
 (Contents of Elektrosvyaz No. 7, 1957)
 TELEVISION

Power Spectrum and Correlation Function of Television Signal, N. G. Deriugin (pp 3-14, 10 figs).

It is shown that the best analytic representation of both the power spectrum and the correlation function of a television signal is in the form of a product of three simple functions, which are determined experimentally for the power spectrum and which can be approximated by experimental curves from which the correlation function of the television signal can be calculated.

CIRCUITS

Concerning the Design of Cathode Followers Operating in the Pulse-Amplification Mode, E. N. Mokhov (pp 15-25, 11 figs).

Analysis of the cathode follower circuit with allowance for the duration and character of the rise of the applied pulses applied to it. Design curves are plotted to facilitate the choice of optimum parameters of a stage so as to prevent tube overload by rapid pulse buildup. A method is given for calculating the influence of nonlinearity of the tube characteristics on the overload of the stage. An illustrative example is

Construction of Modulation-Signal Feedback Loops in Radio Transmitting Apparatus, V. A. Khatskelevich, L. M. Shur (pp 26-33, 6 figs).

Continuation of an article published by the authors in the November 1956 issue of Elektrosviaz' (ED July 15, 1957), attention being now

Fig. 4. Block diagram of frequency analyzer: 1-hf amplifier; 2-fm generator; 3-mixer; 4-if amplifier; 5-detector; 6-sweep generator; 7-CRT.
devoted to the choice of the feedback-loop elements. Some ideas are presented concerning a procedure for correcting the frequency characteristics of the loop so as to obtain effective mod-ulation-signal feedback.

Other Articles

Thyratron Circuit for Disconnecting High-Voltage DC Circuits, A. D. Artym (pp 34-41, 9 figs).

Induction Between All-Copper Lines and Steel Lines Through a Third Line, P. K. Akul'shin (pp 42-48, 4 figs).

Method for Calculating Losses in Circuits of Step-by-Step Automatic Telephone Stations with Single Step Preselection, R. A. Avakov (pp 49 56, 6 figs, 1 table).

Analysis of Five-Digit Codes for Letter-Printing Telegraph Apparatus, Yu. I. Savitski and V. M. Timofeev (pp 57-62, 2 tables).

Procedure for Measuring Telegraph Distortions, K. P. Lishai (pp 63-67, 5 figs).

Corrosive Action of Current in a DC Wire-toGround Loop of a Communication Cable, M. I. Mikhailov and K. K. Nikol'ski (pp 68-72, 4 figs).

ELECTRICAL COMMUNICATIONS

(Contents of Elektrosvyaz No. 6, 1957)

CIRCUITS

Production of High Harmonics with the Aid of a Magnetic Harmonic Generator, L. T. Kim (pp 5860, 5 figs).
Several circuits are given for obtaining high harmonics with the aid of a magnetic generator,
loaded by a complex load. The circuits make it possible to obtain readily one or two harmonics of the fundamental frequency with a considerable suppression of the remaining harmonics. Reference is made to an article by Peterson, Manley \& Wrathall "Magnetic Generation of a Group of Harmonics," Bell System Technical Journal, vol. 16, no. 4, 1937.

Analysis of the Operation of a Reactive Trigger Circuir and a Procedure for its Design, A. S. Vladimirov (pp 15-27, 5 figs).

Theoretical analysis of the reactive trigger circuit with anode coupling. Recommendations are made on the choice of parameters to insure the most stable operating condition for the circuit. Methods for engineering design are also given. An example of a circuit design based on the analysis is shown.

Contribution to the Design of Multistage Amplifiers with Junction Transistors, I. N. Migulin (pp 34-41, 8 figs).

The generalized theory of transistor and vacuum tube amplifiers, developed by Kulikovskii in the November 1955 issue of Radiotekhnika (ED, April 15, 1956) and by Migulin in the September 1956 issue of Elektrosviaz is used to present an analysis and a design procedure for junction transistor amplifiers.

Design of Spark Quenching Circuits, F. F. Zhdanov (pp 47-51, 1 fig, 1 table).

Equations are derived for a variety of spark quenching circuits to operate under various conditions. The results are tabulated, and the limits of the validity of all these equations are indicated in the table.

CIRCUIT ELEMENTS

On the Design of Broadband Grid Transformers for a Specified Inpu\& Impedance Characteristic, Y'a L. A'lterman (pp 42-46, 7 figs).
A method is given for the calculation of the optimum parameters of a broadband grid transformer based on the analysis of the specified input impedance characteristic. It is proposed that the required input impedance of the transformer be obtained by means of a shunt, consisting of an active resistance, connected in the secondary winding and equal to the internal impedance of the generator. Using the resultant simple equations, it is possible to determine the maximum transformation coefficient for a specified value of the reflection coefficient.

COMMUNICATIONS

Concerning Certain Geometric Properties of the

Optimum Code, N. K. Ignat'ev (pp 3-9, 1 fig)

Discussion of the choice of the best configuration of signal space to contain the dots of an op-timum-code signal (i.e., a code, insuring maximum signal entropy, other conditions being equal). Cases are investigated, in which the dots of the signal are placed in a volume of an n-dimensional sphere, on the surface of an n-dimensional sphere, and in the volume of an n-dimensional cube.

Electronic Telegraph Apparafus, B. P. Terent'yev (pp 52-57, 6 figs).

Description of a telegraphic letter-printing apparatus in which all the basic operations (formation of code transmission, synchronization, decoding at the receiver, etc.) are performed with the aid of vacuum tubes. The circuit of the electronic portion of the apparatus is given and the mechanical parts of a model of the apparatus are briefly described.

Loading of Channels by Service Conversations between Telephone Operators, V. M. Belous (pp 61-63, 5 figs).

It is indicated that the group systems are not satisfactorily operated from the point of view of protecting them against overloads. A method for protecting group channels against high voltages, occurring during service conversation between telephone operators, is given.

RECEPTION

Overshoots of Fluctuations and their Correlation Characteristics, B. I. Tikhonov (pp 10-14, 5 figs, 1 table).

The author reports on an experimental invèstigation of the distribution of overshoots of normal and Rayleigh fluctuations with respect to duration, and estimates their correlating ability.

WAVE PROPAGATION

Propagation of Meter and Decimeter Waves over the Earth's Uneven Surface, N. D. Dymovich (pp 28-33, 4 figs, 1 table).

The propagation of radio waves over an uneven surface (in particular, one varying sinusoidally in one plane) is examined from the point of view of the laws of geometric optics. A transcendental equation is derived, the graphical solution of which gives the coordinates of the reflection points. An equation is given for the difference in the paths of the direct and reflected rays. The validity limits of the proposed calculation meth ods are discussed. Comparison of the results of the method given here with a more rigorous diffraction method and with the experimental data shows good agreement with both.

UNI-RING offers a tremendous saving in installation time over any previous method of tapping or terminating shielded or coaxial cable. As the inner ring slides under the shielded braid, the tap wire is held between the braid and the outer ring. Single or multiple taps, from either the front or back of the connector, can be accommodated. . . A single crimp, using the same basic hytools used for installing hyrings, completes the uniform, secure, and insulated assembly.
The protecting nylon insulation extends beyond both ends of the UNI-RING, eliminating metal-to-metal contact and preventing harmful wire-chafing in tight locations. The UNI-RING is color-coded to indicate conductor sizes.

UNI-RING's one-piece design insures electrical integrity, prevents heating, and eliminates noises caused by isolated metal parts.
see more at
For samples and complete detalls, write: OMATON DIVISION I.R.E. BOOTH 1318

Norwalk, Connect. - Toronto, Canada - Other Factorles: New York, Callf., Toronto - Export: Philips Export Co. CIRCLE 426 ON READER-SERVICE CARD
Auxiliary scale 1 V

$\stackrel{8}{8}$ क

snouvisnval nvis

Nomogram 2. See next page.

THESE nomograms yield the amplitude and duration of pulses obtained by differentiation of rising and falling voltages. The differentiation is effected by the circuit shown in nomogram 2 . Here R is the differentiating resistance, C_{1} the differentiating capacitance, and C_{8} the parasitic capacitance parallel to resistance R. If the input signal is of the form. $r_{1}=E\left(1-e^{-t / \tau_{\phi}}\right)$
the equation for the output pulse is

$V_{2}=\frac{E C_{1}}{\tau_{\phi}\left(C_{1}+C_{2}\right)} \frac{\left[e^{-t / \tau_{\phi}}-e^{-t / R\left(C_{1}+C_{2}\right)}\right]}{\frac{1}{R\left(C_{1}+C_{2}\right)}-\frac{1}{\tau_{\phi}}}$

where τ_{0} is the time constant of the voltage drop. The maximum amplitude of the differentiated voltage is
$V_{2 \text { max }}=\frac{E C_{1}}{C_{1}+C_{2}}\left[\frac{1}{\beta}\right]^{\frac{\beta}{\beta-1}}=\frac{E C_{1}}{C_{1}+C_{2}} e^{\frac{-t_{3}}{R\left(C_{1}+C_{2}\right)}}$ where $\beta=\tau_{0} / R\left(C_{1}+C_{2}\right)$. By determining $V_{2 \text { max }}$, we find the delay of the peak of the differentiated pulse relative to the start of the voltage applied to the differentiator. This time is $t_{3}=1 / \beta-1 \tau_{\phi} \ln \beta$ In the same manner, it is possible to determine the time delay of any part of the differentiated pulse, expressed as a fraction of the maximum value, that is, the duration of the pulse at a given voltage level. If one defines $\gamma=C_{1} /\left(C_{1}\right.$ $+\left(\zeta_{2}\right)$ and $T=t^{\prime} \tau_{\phi}$ one may write $t_{V}=$ $\tau_{\phi} T_{n}$ where n is the percentage of $V_{2 \text { max }}$ at which the duration of the pulse is measured. From this one obtains
$V_{2 \text { max }}=E \gamma e^{-\beta T_{\max }}$ and $t_{3}=\tau_{\phi} T_{\max }$
(Continued on following page)
ELECTRONIC DESIGN • March 5, 1958

Waldes Truarc GRIP RINGS Replace Expensive Parts... Reduce Manufacturing Costs...Eliminate Rejects

WALDES TRUARC SERIES 5555 GRIP RING*

application: external for shafts range: . 077 in. - . 755

The Waldes Truarc Grip Ring requires no groove, holds fas by friction forces, can be used again and again. It provides a positioning shoulder secure against moderate thrusts or vibration. The ring's unusually large radial width exerts con siderable frictional hold against axial displacement.

> *U. S. Pat. No. 2,574,034

Rings cut costs 33\%, eliminate rejects
B \& J Tool uses series 5555 grip ring to secure parts of damper shaft formerly was mechined down to provide coil spring shoulder, often broke during banding operation. (Rejects ran as high as $\mathbf{8 0} \%$ 1) New design eliminated rejects and field failures, cut production costs 33%. and driver which required special groove and shoulder. Savings: $\$ 300$ oer die for each size manufactured, $\$.03$ per part.

Rings save $\$ 32.42 / \mathrm{M}$:
Swift Business Machine Co. replaced collars and set scrows in hollow shaft assembly of its adding machine with series 5555 grip units. Rings require no groove make possible positioning adjust ments without slippage encountered when set screws were used

Whatever you make, there's a Waldes Truarc Ring designed to save you material, machining and labor costs, and to improve the functioning of your product.

n Truarc, you get

Statistically Controlled Quality from engineering and raw materials to the finished product. Every step in manufacture watched and checked in Waldes' own modern plant.
Complete Selection: 36 functionally different types. As many as 97 standard sizes within a ring type. 5 metal specifications and 14 different finishes. All types available
quickly from leading OEM distributors in 90 stocking points throughout the U. S. and Canada.

Field Engineering Service: More than 30 engineering minded factory representatives and 700 field men are at your call.

Design and Engineering Service not only helps you select the proper type of ring for your purpose, but also helps you use it most efficiently. Send us your blueprints today.. let our Truarc engineers help you solve design, assembly and production problems ... without obligation.

WRIDES

 RETAINING RINGS

Waldes Kohinoor, Inc., 47-16 Austol Place, L.I.C. 1, N.Y. Please sond now, descriptive catalog showing all types of Truarc rings and representative case history pplications.
(Please print)
Name.
Title.
Company
Business Address
City.

WALDES KOHINOOR, INC., LONG ISLAND CITY 1, N. Y.
Consult the Yellow Pages of Your Telephone Directory for Name of Local Truarc Factory Representative and Authorized Distributor:

CIRCLE 427 ON READER-SERVICE CARD

Nomogram 1. See previous page.

Nomogram 2. Duration of differentiated pulse.

General Electric Improves TV Reception Through New, Close Controls of Tube AGC Performance!

How General Electric's close control of tube AGC characteristics stabilizes TV-sel performance! R. E. Moe, Manager of Engineering, General Electric Receiving Tube Department, shows the relationship that exists
between tightly-controlled characteristics of an IF-amplifier type, and television-receiver performance that is held to quality levels at important points such as the high-signal and low-signal reception areas.

More and tighter controls than the industry has used before, are being applied by General Electric to critical IF-amplifier tubes for sockets with AGC. Television manufacturers and owners benefit in improved reception. whether in low, intermediate, or strong-signal areas.

In the past, the practice has been to hold quality controls to the high and low ends of the AGC voltage range. which led to variations-often wide-in the shape of the actual tube performance curve. Now, by doubling the number of control points,

General Electric helps stabilize the performance of IF-amplifier types at all signal levels.

In addition: through median, or "lot-center" control methods, a heavy preponderance of General Electric tubes manufactured and shipped follow the center line of the optimum performance curve (see chart at left, above). The percentage of tubes which approach the outside control limits is exceedingly small.

Because tubes for fringe-area TV must amplify extremely weak signals. high tube gain is fundamental-and,
from the standpoint of a receiver manufacturer, must be uniform and predictable in every lot of tubes he installs. Strong-signal reception, on the other hand, calls for equally uniform and predictable grid cutoff characteristics.

By promoting consistent tube AGC: performance at all voltages, General Electric's new, close control methods help make it possible for television builders to offer the public sets that are economical in circuitry and transform signals of any strength into pictures with superior quality.

WITH TV SWEEP TUBES, INADEQUATE GRID DRIVE CAN CAUSE ...

> ...Loss of sweep width—giving a narrowed and distorted picture.

... Reduction in the picture-tube voltage -less brightness and contrast.

RIGHT: curve shows how sweep width and high voltage both are reduced by grid voltage that is insufficient. The shaded area indicates less-than-desired picture performance. Designers, by providing for ample grid drive in the sweep circuit, can contribute importantly to superiorTV.

Low Grid Drive Will Fail to Hold Tubes at Cut-Off. Circuit Energy Suffers.

In the center curve at right, " A " indicates the undesirable plate-current flow that can occur when grid drive is insufficient to hold a horizontal-amplifier tube at cut-off. This flow acts as a shunt on the stored energy of the circuit. The result is al loss of high voltage and sweep width of as high as 50%.

TV designers must guard against two contingencies. One is insufficient grid voltage provided for in the sweep circuit itself. After the circuit has been checked with this in mind, the designer should assure himself that the sweep tubes he selects will meet those standards of performance required for high picture-tube voltage and full sweep width at all times.
Here General Electric assists by carefully controlling, through high-voltage testing, the cut-off and other characteristics of 6DQ6-A's and other sweep tubes before they reach the set manufacturer's hands. More dependable TV quality results.

PICTURE-TUBE HIGH VOITAGE AND SWEEP WIDTH (VERTICAL) VS. PEAK GRID DRIVING VOLTAGE (ACROSS)

For further information, phone nearest office of the G-E Receiving Tube Department below:

EASTERN REGION

200 Main Avenue, Clifton, New Jersey
Phones: (Clifton) GRegory 3.6387
(N.Y.C.) Wlsconsin 7-4065, 6, 7, 8

CENTRAL REGION
3800 North Milwaukee Avenue
Chicago 41, Illinois
Phone: SPring 7-1600

WESTERN REGION
11840 West Olympic Boulevard
Los Angeles 64, California
Phones: GRanite 9-7765, BRadshaw 2-8566

Progress Is Our Most Important Product GENERAL (96) ELECTRIC

[^0]: WOodlawn 6-2780 TWX 761 Camden, N.J.

[^1]: Centralab,
 A DIVISION OF GLOBE-UNION, INC. 960C E. KEEFE AYE. - MILWAUKEE I, WIS. In Conoda: 804 Mt. Pleosant id. - Yaronio, Ontorio VARIABLE RESISTORS - PACKAGED ELECTRONIC CIRCUITS - ELECTRONIC SWITCHES CERAMIC CAPACITORS - ENGINEERED CERAMICS SEMI-CONDUCTOR PRODUCTS CIRCLE 366 ON READER-SERVICE CARD

[^2]: LATEST addition to IERC's product line is the IERC HEAT DISSIPATOR for POWER TRAN. SISTORS. Effective reduction of temperatures, elimination of heavy, large or finned surfaces plus adaptability for use in confined spaces are prime features. Technical Bulletin PP112 is included with general IERC information sent on request.

[^3]: LATEST addition to IERC's product line is the IERC HEAT DISSIPATOR for POWER TRAN. SISTORS. Effective reduction of temperatures, elimination of heavy, large or finned surfaces plus adaptability for use in confined spaces are prime features. Technical

[^4]: Broad Avenue al Linden, Ridigelield. N. I NEW YORK AREA 1000 N. Seward St. LOS ANGELES 3 B road Avenue al Linden, Riagelield. NI NEW YORK AREA 1000 N . Seward St. LOS ANGELES 3 8055 13th St. Silver Spring Md. WASHINGTOM, D. C. 1150 Yoth Road. Abinglon. Pa. PMILADELPHIA In Calt SAN FRANCISCO 6605 W Notth Ave.
 CIRCLE 172 ON READER-SERVICE CARD

