

Why EPON ${ }^{\circledR}$ RESINS for potting?

4 Good Reasons I

1. Outstanding adhesion to metal, glass, plastics
2. Excellent dimensional stability
3. High mechanical strength
4. Excellent dielectric properties

Epon resins are preferred for potting, laminating, sealing and encapsulating because they offer an almost ideal combination of electrical and physical properties.

Potting and encapsulating. Epon resins have outstanding adhesive properties. They form strong bonds to metal and glass, provide airtight enclosure of delicate components and vacuum tubes They also have excellent dimensional stability and can withstand solder bath temperatures.
Sealing. Enamels and varnishes based on Epon resins provide excellent moisture sealing plus outstanding resistance to sol-
vents and chemicals, even at elevated temperatures.
Laminating. Epon resins, laid up with inert fibrous fillers, produce base laminates of superior dielectric properties which can be sheared, punched, drilled and bath soldered.
Adhesives. Solvent-free Epon resin formulations cure at room temperature, with contact pressure alone; form power ful bonds between glass, metal, wood or plastic.
Write for complete information on the use of Epon resins in protective enamels, too and die materials, etched circuit laminates, transformer and motor sealing compounds.

Section of magnetic amplifier coils em bedded in Epon resin by Westinghouse Electric Corporation, Pittsburgh, Pa.

Potting transformer with Epon resin a PCA Electronics, Inc.,Santa Monica, Calif,

SHELL CHEMICAL CORPORATION CHEMICAL SALES DIVISION 380 Madison Avenue, New York 17, New York
 in Canada: Chomical Dlvision, Shell Oll Company of Canada, Limitod. Montroal . Iorania. Vancouver

CIRCLE I ON reader-Service card for more information

Contents

Vol. 5, No. 15
Augusî 1, 1957
Decade Counter (Cover) 26
Editorial 4
Engineering Review 5
Washington Report 16
Features
Encapsulation of Electronic Circuits, R. Calicchia 22
Decade Counter 26
RC.Transistor Network Design, -I, I. M. Horowitz 28
Direct Coupled Transistor Logic Complementing Flip-Flop Circuits-II, E. S. Clark 34
4 Millimeter Klystron 38
Voltage Stress Effects on Capacitors, C. H. Bridenbaker 40
Nuclear Powered Timer 42
Design Forum
Common Component Receiver 32
Meeting Report
Reliability 44
Ideas for Design
Wrong Pulse Polarity Acceptance Circuit 106
Variometer Pi-Network 108
Capacitor Testing in the Circuit 108
Economizing the Hybrid 109
Russian Translations
What the Russians Are Writing 118
Abstracts
Temperature Compensation of Oscillators 122
Thermistor Termination 124
Artificial Dielectrics at 3 cm 125
Cylindrical Reflex Klystron 126
Frequency Control of Synchronous Converters 127
Standardization of Mu-Min Relays 128
Test System for Memory Stores 132
Departments
Meetings 18
New Products 46
Production Products 96
New Literature 98
Patents 110
Books 116
Report Bkjefs 134
Standards \& Specs 138
Careérs Section 141
Advertisers' Index 145

FOR DATA PROCESSING COMPONENTS AND SYSTEMS

SPECIFY POTTER

Potter instruments and systems are unexcelled in reliability, accuracy and flexibility. The equipment shown is typical of many more available as individual components or in integrated systems to meet specific requirements.

Write for brochure describing these and other Potter units, including special products. For detailed technical specifications on any of the Potter Products listed above, contact your Potter Representative or the factory.

DATA-HANDLING EQUIPMENT
 PRESET INTERVAL GENERATORS

Preset Interval and Delay Generators HIGH SPEED ACCESS REGISTERS

Ten-Bit Parallel
Output (Serial Input) Using Magnistors

Ten-Bit Serial Output Ten-Bit Serial Output
(Parallel Input) Using Magnistors
 Comparator Using Magnistors

GERMANIUM TRANSISTORS

$0.200^{\prime \prime}$ pin circle diameter
Designed for printed circuits and automation
$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ junction operating range
Extreme reliability due to Raytheon's fusion-alloy process

NEW RAYTHEON TRANSISTORS FOR COMPUTER SERVICE

Type	$\begin{aligned} & v_{\text {ce }} \\ & \text { max. } \\ & v_{\text {oltis }} \end{aligned}$	$\begin{aligned} & \text { laco } \\ & \text { Mc } \end{aligned}$			Grourded Emitter Swith ing Data at $\mathfrak{I}_{\mathrm{c}}=50 \mathrm{~mA}$			
					Ib_{b} "on" and "off" mA	$\begin{aligned} & \begin{array}{l} \text { Rise } \\ \text { Time } \\ \mu \mathrm{S} \end{array} \end{aligned}$	$\begin{gathered} \text { Storage } \\ \text { Time } \\ \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & \text { Fill } \\ & \text { Time } \\ & \text { Ms } \end{aligned}$
2N428	-20	4	30	18	5.0	0.5	0.25	0.3
2N426	-18	6	40	24	3.3	0.5	0.25	0.3
20427	-15	11	55	30	2.5	0.4	0.25	0.3
2N428	-12	17	80	40	1.7	0.1	0.25	0.3

RAYTHEON TRANSISTORS FOR SPECIAL PURPOSE RF SERVICE

Type	Replaces	$V_{c e}$max.Volts	$\underset{\text { max. }}{\substack{\mathbf{I}_{\mathbf{c}}}}$	laco		Beta		$\begin{aligned} & \text { Power } \\ & \text { Gowin } \\ & \text { Gat } 2 \mathrm{ZMc} \end{aligned}$	$\begin{array}{c\|} \hline \text { Extrinsic } \\ \text { Base } \\ \text { Resistance } \\ \text { ohms } \end{array}$
					$\begin{aligned} & \mathbf{c}_{\mathbf{c}} \\ & { }_{\mu \mathrm{i}} \end{aligned}$	IKc	${ }^{1 M c}$		
2N416	2N133/CK761	-10	-200	10	12	45	10	18	60
2 N 417	2N114/CK762	-10	-200	20	12	75	20	25	75

RAYTHEON TRANSISTORS FOR PORTABLE RADIOS

Type	Replaces	Circuit Usage	Vce max and max. Volls	$\begin{aligned} & \text { laco } \\ & \text { Mc } \end{aligned}$	$\begin{gathered} \text { CC } \\ \mu \mathrm{Ll} \end{gathered}$	$\begin{aligned} & \text { Power } \\ & \text { Gain at } \\ & 455 \mathrm{kc} \\ & \mathrm{db} \end{aligned}$	$\begin{aligned} & \text { Cony. } \\ & \text { Gain } \\ & \text { db } \end{aligned}$
2N413	2N111/CK75	Oscillator	-15	3	12 av .	-	-
2N413A	2W1114/CK7sen	If Ampl.	-15	3	12 \#2	32	-
2N414	2W112/CK760	Converter	-15	5	12 av .	-	26
2N414A	2N112a/CK160A	If Ampl.	-15	5	12 -2	35	-
2 N 418	2N271/CK768	Converter	-10	10	12 av .	-	30
2N418A	2N27M/CK776A	If Ampl.	-10	10	12 - 2	39	

For all types on this page $\left\{\begin{array}{l}\text { Dissipation Coefficient }=0.4^{\circ} \mathrm{C} / \mathrm{mw} \text { (free air) } \\ \text { Coll }\end{array}\right.$ For all types on this page $\left\{\begin{array}{l}\text { Collector Cut-off Current } \cong 1.0 \mu \mathrm{~A} \text { at }-20 \mathrm{~V} .\end{array}\right.$

SEMICONDUCTOR DIVISION

Silicon and Germanium Diodes and Transisfors - Silicon Rectifiers

Editorial

Something for Everyone

Among the 225 technical papers being read at WESCON, Aug. 20-23, there are many that will ap. peal to every professional group in IRE. Many papers are contributed by engineers from abroad, thus giving the engineers in this country an insight into the scope of electronics internationally. There are 765 exhibit booths. Over 200 new devices will be unveiled for the first time at the Show. Future engineers will be inspired to approach matriculation day with eagerness as they take in the displays and films planned for 12 -to 18 -year-olds. There will be something cultural and something entertaining for wives.
Not the least attraction is the location-San Francisco. Cable cars and Nob Hill, the Golden Gate Bridge, Fisherman's Wharf, a more-cosmopolitan-than-New York night life, and the surrounding distinctively Californian Bay area beckon all but the most blase. The locale is certainly a reason for the large number of prospective authors (552) submitting papers to the Program Committee!
Probably the hardest part for an engineer to take will be obeying the dictates of his conscience and forcing himself to take in all of the technical sessions that are relevant to his job. It is not a paradox that a subject can be extremely interesting in content, but agonizingly dull because of its construction into a convention paper. What makes both possible is the paper reader. His electronics may be perfect, but his elocution is too often abominable. What with the generous supply of authors wishing to read, one of the criteria of the papers committee might be an audition rather than the usual abstract. A brief record on tape could be required to prove that the paper reader can enunciate and pronounce well enough to assure that his message is not unintelligible "noise." It probably wouldn't be necessary for the auditionee to even send his record if he would but listen to one playback. This act alone surely would cause him to scurry to the library for a book on speech.

By next year, the new Professional Group on Engineering Writing and Speech may be able to aid convention authors materially. Part of their purpose is to disseminate knowledge on techniques of good oral communication.
Despite this to-be-expected weakness, WESCON figures to be unsurpassable in offering something of value for everyone. The number of electronics industries backing WESCON equals the support for the N.Y. Radio Engineering Show. WESCON has a block of industries, the West Coast Manufacturers' Association, trying to make it a huge success. Furthermore, the zeal of the San Francisco and Los Angeles IRE Sections, co-sponsors with WCEMA, to excel the Eastern attraction assure the visitor that many things for his benefit have been planned in detail. SEE YOU THERE.

Engineering Review

For more information on developments described in "Engineering Review," write directly to the address given in the individual item.

Ferromagnetic Amplifier

A new solid-state microwave amplifier has been successfully operated using a ferrite material as the active element. Although still in the laboratory stage, the amplifier has several promising qualities. It operates at room temperature, and is expected to have a much lower noise level than conventional microwave amplifiers. Thus it has excellent potential as a pre-amplifier for very weak microwave signals, such as encountered in the fields of radio astronomy, microwave relaying and radar. The ferromagnetic amplifier was predicted on theoretical grounds by Dr. H. Suhl, and the experimental program was carried out by Dr. M. T. Weiss, both of Bell Telephone Labs., N.Y.

The amplifier has certain superficial similarities to a solid-state spin oscillator announced in Jan., 1957. Both types must be supplied power from an oscillator operating at a higher frequency than the signal to be amplified, but the principles of operation of the two devices are quite different. In principle, the present device requires that a ferrite sample be placed in a microwave cavity which is simultaneously resonant at two signal frequencies. Microwave power at a frequency equal to the sum of the
two signal frequencies is then pumped into the cavity. A dc magnetic field, properly oriented and of sufficient intensity to cause gyromagnetic resonance at this sum frequency, must also be applied. Through nonlinear coupling in the ferrite, amplification or oscillation will be exhibited at either of the lower frequencies, or frequency conversion of a microwave signal can take place between these two frequencies.
In the experimental setup, a dc magnetic field of about 2500 gauss was provided by an electro-magnet, but a permanent magnet could be employed if desired. The field is parallel to the plane of the strip-line cavity and oriented at an angle of about 45 deg with the cavity. Pumping power, equal to the sum of the two resonant frequencies, was fed into the cavity, and the signal power taken in and out by means of coaxial cable. With sufficient pumping power, oscillations took place at both the lower frequencies. When the pumping power was reduced somewhat, amplification was observed at either of the signal frequencies. Preliminary results indicated that the amplifiers would be designed for operation in practically any portion of the microwave spectrum.

One experiment done with the ferromagnetic amplifier is described in the above diagram. To simplify the circuitry, the two signal frequencies were each made approximately 4500 mc , although they do not necessarily have to be equal. When sufficient power of 9000 mc -equal to the sum of the signal frequencies-was fed into the resonant cavity, oscillation occured at 4500 mc and ampliiication was observed when the power was slightly reduced.

At the Vanguard Computing Center: As the satellite swings through its orbit, information of its position transmitted from Minitrack stations around the world will be fed into an IBM 704 in Washington, D.C. An output display, equipped with map overlays as shown above, will show the predicted course of the satellite above the various portions of the globe. The 704 was chosen for the complex task of prediction primarily because it is the most powerful computer existent that has a duplicate-a definite necessity should one computer be temporarily out for maintenance reasons.

The satellite's orbit wil be computed about 30 min utes after launching. The third stage release occurs after about 12 minutes, and it takes an additional 15 minutes for information from Minitrack stations to be relayed to the computing center. The first solution will be in terms of distance from the earth, period of revolution, and orbit path.
Schedules of the satellite's position, speed and angle of approach will be compiled and signaled to optical tracking stations around the world, allowing watchers to direct their instruments at the right place and at the right time for precise observation.
As more information of the satellite's behavior is observed, this information will be fed into the computer as additional data to enable increasingly precise predictions.

New Raytheon CERAMIC SEALING PROCESS gives you 7 major advantages

The unique Raytheon sealing process applied to Raytheon R-95 High-Alumina Ceramic makes possible these 7 advances:

1. Reliable vacuum tight ceramic-to-metal seals
2. Ceramic output windows transparent to microwave energy and capable of passing high peak power
3. Close tolerance assemblies
4. Oxide-free metal components
5. High temperature processing
6. High temperature processing in reducing atmosphere
7. Multiple simultaneous braze joints; subsequent braze
joints closely adjacent joints closely adjacent
8. $700^{\circ} \mathrm{C}$. exhaust temperatures

Raytheon will supply ceramic parts manufactured from R-95 High Alumina either alone or as hermetic ceramic-to-metal assemblies in accordance with your specifications. The assemblies can subsequently be soft or hard soldered into your production in your own plant.
We will be pleased to supply information and help on any of your needs. Simply provide us with sketches or drawings showing dimensions and tolerances, together with operational conditions. Write for complete specification sheet-there's no cost or obligation.

Engineering Review

Indicators for Refinery Use

An electronic level indicator is being used to measure levels in sulphu: dichloride tanks at Esso Standard Oil Co., Linden, N.J. Sulphur dichloride, used in producing additives for motor oil, is a noxious toxic material that gives off chlorine gas at atmospheric temperature and pressure. Cleaning these 30 ft long sulphur dichloride tanks was a difficult and time consuming job and was done usually with gas masks. Conventional gage glass indicators used for measuring level in the chemical tanks prior to the installation of electronic devices became caked and coated with sulphur dichloride deposits after a few week's use. When the glass indicators needed cleaning, two or three men were required, and the job scheduled only at times the tanks were empty.

Solar Cells for Satellite

The possibility that solar batteries may provide the ideal power source for satellite instrumentation is under investigation by the Army Signal Engineering Labs., Fort Monmouth, N.J. To prove their theory, glass-protected clusters of solar cells were attached to the skin of an Aerobee- Hi rocket. When the rocket was fired to an altitude of 190 miles, the silicon cells functioned perfectly. Interpretation of telemetered data indicated that the cells provided continuous electrical output from the time of the firing until the rocket's radio ceased functioning on re-entering dense atmosphere.

The cells were not affected by skin friction as the rocket passed through the atmosphere. Some apprehension had been expressed that the heat might cause failure, but neither heat nor the rocket's rotation caused major voltage fluctuations. As visualized by the Army Signal Corps scientists, the solar cells attached to the skin of the satellite would theoretically supply instrument power during approximately 60 of each 100 min while the vehicle is in the sun during each circuit of the earth. They could be used to charge nickel-cadmium batteries during the 40 min that the satellite would be travelling in the earth's shadow.

Drilling Spacers Ultrasonically: Ceramic tube spacers are being drilled by an ultrasonic process employing an electro-mechanical transducer that converts alternating current into mechanical force to vibrate the impact tool at $25,000 \mathrm{cps}$. Particles of abrasive introduced as a slurry between work and tool face are driven with tremendous impact to reproduce an exact counterpart of the tool face in the workpiece. As a result, intricate orifices, multiple arrangements of holes and slots, and other complex configurations are cut into the workpiece in a single operation. Because the work is not chipped, spun, stressed or distorted, parts can be shaped to close tolerance with high piece-to-piece reproducibility.
The technique was developed by C-Mar Corp., Manasquan, N. J. in order to make feasible the use of alundum (aluminum oxide) in place of mica spacers since alundum has a much higher melting point (3750 to 1757 F). Accuracy of the holes and slots are within 0.001 and 0.0005 in .

Thirty-Four Manufacturers Fail

Thirty-four manufacturers of electronic equipment encountered financial difficulties during the eleven months ending March 31 , according to T. B. Judge, International Resistance Co., Philadelphia.
The thirty-four failures compares with twentynine and twenty-five equipment manufacturers who experienced financial difficulty in the twelve months ending April 30, 1956 and April 30, 1955, respectively. The average age of the companies involved was thirteen \backslash years and their difficulties were attributed to unぬsually keen competition, inadequate capital, poor engineering, and lack of management.

The following is a breakdown of the types of manufacturers involved: component parts, 14; phonograph and high fidelity equipment, 6; radio and television receivers, 5; test equipment, 3; Geiger counters, 2; communications equipment, 2; cathode ray tubes, $1 ;$ recording equipment, 1.

NOW...200, 300,400 \& 500 AMPERE

 DC POWER SUPPLIES with wide continuously adjustable 24 TO 32 VOLT RANGE ${ }^{\text {by }}$ PERKIN!
APPLICATIONS:

- Centralized Laboratory or Plant DC Power. - Missile Check-Out and Launching
- Aircraft Engine "Soft" Starting and Testing. - Battery Charging \& Standby Service . . and other heavy duty 28 volt DC Power applications.
immediate delivery!
 All units available with dollies for mobility.
AVAILABLE MODELS:
MR2432-200A, 200 amps • MR2432-300A, $300 \mathrm{amps} \cdot$ MR2432-400A, 400 amps MR2432-500A, 500 amps

When you require a power supply, SPECIFY PERKIN, for a wider range of standard models and immediate delivery from stock. Wire factory collect for prices. For a prompt reply on your application, write factory on your letterhead.

PERKINENGINEERING CORPORATION

345 KANSAS STREET, EL SEGUNDO, CALIFORNIA - OREGON 8.7215 Leader in Tubeless Magnetic Amplifier Regulation
Immediate Delivery on stendard models available from factory and:
New York area office: Sales and Warehousing: 1060 Broad St., Newark 2, N.J., Market 3-1454 Chicago area: Loren F. Green \& Associates, 5218 W. Diversey Ave., Chicago 39, III., PAlisade 5-6824 CIRCLE 5 ON READER-SERVICE CARD FOR MORE INFORMATION

Engineering Review

Automatic Failure Predictor: The automatic failure predictor detects probable failures in a radar system before they occur and alerts the operator to take preventative action by replacing or repairing an assembly or components as indicated by the device. Use of the automatic failure predictor will not only eliminate radar failure at a critical moment, but also will reduce maintenance costs for America's far-flung radar picket lines. Rather than several skilled maintenance technicians at each radar location, a single operator at central locations now can monitor the performance of many radars at remote areas. Upon receipt of a failure warning, a maintenance crew can be dispatched to the offending radar and repairs made before actual breakdown occurs. Techniques for automatic prediction of radar failure were revealed by F. R. Scripture of AMF's Electroincs Division, Boston, Mass., at the RETMA Reliability Symposium in Syracuse.

State-Sponsored Educational TV System

The nation's first state-sponsored educational closed-circuit television system will be installed this summer in The Conley Hills Elementary School, Fulton County, Georgia, for classroom operation in September. It will serve primarily as a laboratory installation for educators who are studying the practicability of state-wide teaching-by-television. The project was authorized by the State Board of Education.

Installed by RCA, the Conley Hills TV system will be a multi-channel installation, embracing four TV camera chains linked by closed-circuit with twenty-six TV receivers installed in classrooms throughout the school. Film and live educa-
tional TV programs will be originated from a centralized TV studio now under construction within the school. Two TV Eye cameras will be used with individual 16 mm sound-film projectors for school-wide transmission of educational motion jicture films. Two ITV-6 TV camera chains also will be installed in the TV studio for direct pickup of lectures, demonstrations, and other live programs. Signals from the four camera chains will be fed to miniature transmitter, for amplification and distribution throughout the school. The multichannel installation will enable each classroom to tune in any one of the four school-originated film or studio programs, or any program broadcast by local or network TV stations in the area.

New Method for Defecting Corona Discharges

The electrometer method was announced at an AIEE meeting on June 28, as a new technique for the detection and estimation of magnitudes of corona discharges in electrical devices during high voltage testing. J. G. Anderson and J. S. Kresge of the General Electric Co., Pittsfield, Mass. stated that for impulse tests, the new method is equally effective for steep-front, chopped waves and full waves and is not restricted by voltage magnitudes.

The paper points out that a major objective of the engineer is to obtain a clear and reliable picture of the behavior of electrical apparatus during overvoltage testing. A factor of great importance which should be determined as accurately as possible is the onset level of corona in any particular device. An estimate of the relative corona magnitudes at various high voltage levels is also of value in predicting the ultimate failure of the apparatus, and in estimating the degree of insulation damage caused by the corona discharges. The new method is applicable in the testing of high voltage structures involving at least some solid insulation, and has been used with significant success in laboratory testing of high voltage coil stacks permitting the prediction of permanent damage and breakdown.
The method uses the memory principle, and is based on the measurement of residual charge left in a high voltage structure by previous corona discharges. From this residual charge the corona onset voltage can be determined, and measurements of order of magnitudes of the original corona discharges are possible in many cases.
It was cautioned that the new method requires considerable skill in application, and in elimination of stray charges and spurious effects. Therefore, in its present state of development, the method is not recommended for factory testing of commercial apparatus, but only for laboratory testing under carefully controlled conditions.
Correction: On page 5 of the July 15 issue, Intercontinental Electronics Corp. was referred to as "International" in the article on the French portable microwave system.

hidden treasurei
. the engineering skill in every component by Burnell. Burnell files contain thousands oy Burnell. Burneil fires contain thousania.
of special designs in regular and subminia of special d.
ture filters.

(1)

TOP OF THE LADDE
Burnell products incorporate the highest standards of engineering know-how and precision manufacturing in toroids, filters and related networks.

CROSS-SECTION OF A hUGE SELECTION: Burnell has over 8.000 filter designs in stock, including subminiature filters for aircraft and guided missiles, communications filters for receivers, and side band filters for carriers ... in addition to an array of other new, specialized comporents.

WHICH AD DO YOU LIKE BEST?

WANT JAM ON It?
Burnell supplies the extias in service, courtesy and sheer engineering value. Your inquiries on toroids, filters and related networks will be handled promptly.

berore your wires get crossed
consult Burnell about your networks problems. Or write for technical information and catalog, without cost or obligation, with details on our toroidal components in reg. ular down to subminiature sizes.

CREAM COSTS NO EXTRA
Depend on Burnell for toroids, filters and related networks whether you require standard components, or special, customdesigned equipment.

LIKE THE GRAVY TOOP
Burnell success depends on meeting your exact needs. If the toroidal component you require is not already on our files, we will make it to your exact specifications.

how asout some icing?
Burnell provides the "top layer" that makes all the difference. Your toroid and filter problems are solved by the most advanced engineering in the field - by Burnell.

A MINIATURIZED

NIXIE READOUT TUBE

Burroughs' popular, all-electronic readout tube "NIXIE" is now available in miniaturized size, $0.75^{\prime \prime}$ height $\times 0.6$ dia. If occupies 1, the volume and uses 15 watt ('z less). Numerical digits 0 to 9 , can be simply selected and displayed in a common, wide-angle viewing area, clearty readable at 10 feet. All numerals are perfectly formed, precisely

The ideal method of converting electro-mechanical or electronic signals directly to readable characters.
For miniaturized instrumentation in AIRCRAFT PANELS COMPUTERS, COUNTERS, CONTROL SYSTEMS, INDUSTRIAL CONTROL, INSTRUMENTATION, MILITARY ELECTRONIC IN. DICATORS, and dozens of applications aligned, and are illuminated with controllable brilliance

DESIGN ADVANTAGES INCLUDE

- Smallest valume indicator for number size
- Unlimited care of change
- Lawest cost in-line indicator
- Lowest power in-line indicator
- Unaffected by temperature changes
- Rugged construction, long life
\square
\qquad

Engineering Review

Computer Studies English Syntax

With the aid of an automatic digital computer, a brief exploratory study to obtain information needed on the sta. tistical frequencies with which dif. ferent English sentence structures occur was recently completed.
The project was undertaken by the National Bureau of Standards upon the request of the U.S. Patent Office.

In an effort to keep the problem tractable, a scheme was devised which consisted of dividing the features of a sentence into six major categories, with code numbers from 1 to 6: (1) Subject (2) Object (3) Predicate Nominative (4) Adjectivial Modifier (5) Adverbial Modifier (6) Verb.

Only independent clauses were analyzed and coded in terms of their elements. Other structures were coded by one notation each to represent the function of the entire structure. Connectives, absolutes, and appositives not affecting the basic structures of the independent clause were not coded.

Coding of the sample sentences was done by hand. The sentences analyzed, totaling 550, were chosen with a rough attempt at randomization from scientific journals and books. The function of the computer was three fold: accurate high speed tabulation, precise comparison of data, and compression of coded data in terms of syntactical-equivalence relationships.

The computer program called for the first incoming sentence-code (containing letters and numbers) to be reduced to its numerical pattern, which was then stored. Since the computer could handle numbers up to 11 hexa decimal digits in length, a sentence with the primary pattern, 1665 for instance, would be stored in the form 16650000000. Each subsequent pattern was reduced in the same way and its pattern was compared with all the stored patterns. If a candidate pattern was identical with a stored pattern, a recurrence tally of 1 was added into the last place of the stored pattern
\& CIRCLE 8 ON READER-SERVICE CARD
and the candidate pattern was rejorted. In the example, the stored inmber becomes 16650000001 . If the ..ndidate pattern was new it was tored with the others.
Among the 550 sentences thus far studied, 335 unique patterns were found. The maximum recurrence of any primary pattern was 12 in two cases (41665 and 414665). The most common primary pattern represented only 2.2 per cent of the entire sample and the rest of the patterns showed a roughly even distribution of nonsig nificant recurrence.

A study was also made of the effect of compressing the primary patterns, wherein the computer rejected all but one of any digit, that is continuously repeated within a pattern. Thus, for example, "The little hen clucks," represented by 44416, was considered syntactically equivalent to "The hen clucks," 416.
The compressed patterns showed the expected high degree of identity. There were 189 unique compressed patterns, the most common being 4165 (i.e. The man ran across the street) comprising 12.5 per cent of the sample. The first three most common compressed patterns made up thirty per cent of the sample.

Variable Speed Turntable Motor

A phonograph turntable has been developed which utilizes a variablespeed hysteresis motor. The turntable's four speeds are the result of a power source delivering the four frequencies necessary to drive the hysteresis motor. The advantages of a hysteresis motor are retained, yet moving parts have been reduced to a minimum since turntable speed no longer depends on rubber idler wheels or slippage. The unit will function on either 50 or 60 cps.

The unit, being produced by Fairchild Recording Equipment Co. of Long Island City, N.Y., can be purchased withqut the special drive for those who require one speed, 33-1/3 rpm , operation. The variable-speed model is constructed on a single chassis that slips into the same housing, and, therefore, no additional space is required when the four-speed conversion is made.

CIRCLE 9 ON READER-SERVICE CARD \rightarrow

PHILCO SBT*2 N240

HIGH SPEED SWITCHING TRANSISTOR with response time in millimicrosecond range

FEATURES

- Low saturation resistance
- Low saturation voltage
- Ideal electrical characteristics for direct coupled circuitry
- Extremely fast rise and fall time
- Absolute hermetic seal
- Available now in production quantities

All major computer manufacturers are using Philco Surface Barrier Transistors where highest reliability for both military and commercial electronic data processing is required. The Philco 2N240 has established outstanding performance and reliability records in high-speed switching circuitry ... over millions of transistor hours . under a variety of environmental conditions.

Make Philco your prime source of information for bigh speed computer transistor applications.
Writo to Dept. ED, Lonsdale Tube Company Division, Lansdale, Pa.

PHILCO CORPORATION

LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

Looking for reliability?

Where there must be no slipups, there will be no slipups, if you depend on CTC.

These components are guaranteed unconditionally in quantities from one to millions. For samples, prices, write CAMBRIDGE thermionic corporation, 457 Concord Ave., Cambridge 38, Mass. West Coast stocks maintained by E. V. Roberts \& Associates, 5068 West Washington Blvd., Los Angeles 16 and 988 Market St., San Francisco, California.

CTC QUALITY SHIELDED COIL FORMS
 Miniaturized. Highly shock resistant. Me chanically enclosed, completely shielded

 for maximum reliability.

CTC QUALITY DIODE CLIPS

Seven different types, including springloaded units primarily for holding fragile diode pigtail leads from $.005^{\prime \prime}$ to $.085^{\prime \prime}$ in diameter. CTC also offers lines of yuality battery clips and miniature plugs and jacks.

CTC QUALITY CAPACITORS

Miniaturized Variable Ceramic Capacitors that outperform much bigger capacitors. (Extreme right): Stand-Off Capacitors with ceramic dielectric. Rugged R-F by-pass capacitors for high quality equipment Shock-, vibration-, humidity-resistant

CTC QUALITY TERMINAL BOARDS

Custom-made, standard all-sets, standard ceramics. Variety of materials available paper, cloth, nylon, glass laminates phenolic, melamine, epoxy, silicone resins. Moisture - and fungus-proofed.

CTC QUALITY PERMA-TORG COIL FORMS

Constant-tensioning devices for tuning cores of standard CTC ceramic coil forms. Keeps coils tuned as set despite shock, vibration.

CTC QUALITY INSULATED TERMINALS

Wide variety of stand-off and feedthrough models in Tefion and ceramic. Ex tremely resistant to shock, vibration, moisture and temperature. Solder terminals hold even after prolonged soldering operations.

CTC QUALITY PRINTED CIRCUIT

COIL FORMS
Phenolic and ceramic types. Can be soldered after mounting. Available as forms alone or wound as specified. Twoto six-terminal models.

CTC QUALITY

 KNOBS AND PANEL HARDWARE Selected materials carefully processed and finished. Meta parts polished before plating. Hard-wearing surfaces, lasting lusters.

See ctc's guaranteed components on display at booth 1820, 1957 wescon show, san francisco cow palace, August 20th io 23 rd. CIRCLE 18 ON READER-SERVICE CARD FOR MORE INFORMATION

Engineering Review

Increased Computer Storage Capacity

A high speed memory storage unit which can contain up to 32,768 words of stored information and with access to the stored work in $12 \mu \mathrm{sec}$ has been developed by IBM, Poughkeepsie, N.Y. Designated 738, the unit has four times the maximum storage of the IBM 704. It has been installed at RAND Corp., Santa Monica, Calif.

Facsimile Set Speeds Pictures

A new portable radio facsimile sys. tem can put a high-quality photo in the hands of a person miles away five minutes after the photographer clicks the shutter. The facsimile equipment fits easily into the back of a radioequipped jeep or car and can send a picture to its companion receiver 40 miles away. The set can also send a photo thousands of miles, over telephone lines, or around the world, by long-range radio circuits.
The facsimile, claimed to be the fastest in the world by its innovator, U.S. Army Signal Engineering Labs., uses Polaroid film that produces a fin ished $3-1 / 4 \times 4-1 / 4 \mathrm{in}$. print one minute after exposure. The print fits right into the transmitter in the jeep. The set automatically sends the picture in three minutes. The picture is received on another sheet of Polaroid film, and is ready for use one minute later.

Poisonous Vapor Defection

Medical detection of carbon-tetrachloride poisoning, potentially four times as dangerous as carbon-monoxide, is being accomplished through the use of the Halogen leak detector which can detect carbon-tetrachloride in the human system more than an hour after exposure to relatively small amounts of vapor. Both qualitative and quantitative measurements of the gas present may be made. Developed by General Electric, the detector can find a leak so small that only one ounce of gas would leak through the opening in 100 years.

A super-refrigerator, known as a cryostat, will be used to produce lisuid helium and to study the effect of temperatures near absolute zero. The interest in liquid helium is due to its possible use as a low-temperature buth for electronic and other devices, as well as the unusual properties of liquid helium itself. The cryostat, which will have a monthly capacity of about 1000 liters, is scheduled for installation in mid-August at the Lockheed Missile Division's research center at Stanford University, Calif. The liquid helium will be used by Lockheed in the search for improved computing machine elements, rocket fuels, energy detectors, and several other similar objectives.

Of particular interest is the superconductivity of certain metals at very low temperatures. A low-temperature electric motor, with an efficiency of nearly 100 per cent, is one of the possible applications. Another would be the development of sensitized instruments to detect the heat of a candle at a theoretical distance of 25 miles.

Correction of Inertia

Guidance Systems
Detection of angular displacements in the azimuth alignment of monitored inertial guidance equipment is made possible with Theodolite. The unit incorporates two modulated glow lamps which direct light to the mirror in the monitored unit. If the gyroscope of the guidance system is perfectly squared with the optical axis of the Theodolite, the reflected light from the mirror will re-enter the Theodolite and be lost back in the light source. But if the mirror on the monitored unit is rotated slightly in azimuth, the returning light beams will not be centered on the optical axis and some energy will enter a light responsive device through a slit. This energy is transduced to an electrical signal which indicates an error in alignment, and a corrective signal can then be applied manually or automatically to the drive elements of the monitored equipment. The unit was developed by Perkin-Elmer Corp., Norwalk, Conn.

CIRCLE 11 ON READER-SERVICE CARD \geqslant

PUSEPPUSH PULLPUSE One push on One push off

Two new switchcontrols

 Volume setting unaltered by ON-OFF operationJust switch on and walk away. No coming back or waiting for further adjustment after warm-up.

Volume can be changed instantly as desired by rotating sinaft . . . or can remain indefinitely at any selected setting regardless of on-off switch operations.

Push-push switch available with either 3 amp 125 V rating (Type J) or 6 amp 125 V rating (Type TJ). Pull-push switch available with 3 amp 125 V rating (Type K). Both switches available in many special terminal and control combinations.

Write today for Data Sheets containing dimensional drawings and complete technical details.

```
WEST COAST SUBSIDIARY
    Chicago, Teleonhony of
    M,
        M,
```

EAST COAST OFFICE SHaddon Avene
Hondontiedd. Nen Jerser
Phone: Haddontield $9 .-5512$

SOUTHWESTERN U.S.A. 137 Parkncuse
Dallas 7 . Texas

CANADIAN SUESIDIARY
C. C. Meredith \& Co.. Lld.

The most complete line of variable resistors and associated switches available is manufactured by CTS. Consult CTS Specialists on all your control problems.

WEST COAST MANUFACTURERS: Many types of variable resistors now in production at our South Pasadena plant. Your coit, transformer and compression molding business also invited. Prompt delivery. Modern versatile equipment. L. A. phone CLinton 5-7186.

CHIGAGO TELEPHONE SUPPLY
Cowporation

ELKHART • INDIANA
The Exxdrusive Shecialiss in PRecision Allass PPreduction of Yariculle PResiolurs

Engineering Review

aNACONDA WIRE \& CABLE COMPANY
c $400 \wedge$

DATE July 1, 1957
Fred Luna
W. E. Sprackling
office Hastings

Fred, we've been telling our customers about our methods Inspection, our Quality Control, and other manufacturing safeguards. But perhaps were missing a bet. I think does for us .is what the Electrical Testing Laboratories, is what the fact that they calibrate all of than ky go through our test (that's quite common), but that they actually testing system is reports at all mills annuagement planned it.
functioning the way management planned it.
I don't think any other outfit goes so far as to have such a mplete independent audit. To me -- that's newsworthy -- our completers should know that we have an outside agency -- fully customers should know after their interest. competent -- to wo r bell our story broadly -- after all to the chsWhy not tell our story broadly -- after all, it's to the curroomers there
S. And another important thing -- the inspection department
P. S. And another important independent of production -reporting turing. yong this as is.

Quality Control
Inspection - ETL

Radar; New Headache for Burglars
A motion detection instrument capable of sensing any movement within a radius of 25 ft purports to be the most sophisticated anti-burglar device on the market. Called Radar-Eye, the instrument employs the basic primcopals of radar in sensing movement within its area of operation. Once triggered, it turns on floodlights and sets off sirens. Intruders cannot crawl over it, slide under it, cut through it or in any way tamper with either the unit or wiring system without setting off the alarm. A portable unit, the Radar-Eye may be installed anywhere desired even behind non-metallic walls. The instrument is being produce by Radar-Eye Corp., North St., Natick, Mass.

Cable Repairs for Damage From '29 Quake

A submarine earthquake in Nov. 1929 that did great damage to transatlantic cables is believed to be the culprit that forced extensive repairs on a Western Union Telegraph Co. cable between Long Island and Newfoundland last year. The cable was so badly damaged that 23 miles of cable, at a depth of 200 fathoms, had to be replaced with 30 miles of cable of a different type. The original cable laid in 1926 was loaded cable. The conductor was wound with magnetic tape or wire to increase its efficiency, but by 1956 a sufficient supply of this type did not exist because it had been used for previous repairs following the 1929 quake. The damaged cable, from Hammer near Rockaway on Long Island, to Bay Roberts, Newfoundland, was replaced with non-loaded cable, with loading coils inserted at five-mile intervals. The loading coils, complete with armour, cost about $\$ 2,000$ each. The unloaded cable cost $\$ 1,000$ less per mile than fully loaded cable.

The Cable System also includes a transoceanic link from Bay Roberts to Penzance, England, and one from Long Island to Horta in the Azores.
< CIRCLE 12 ON READER-SERVICE CARD
rarallel Paths for Reliability
Seven months of continuous operaon without a single moment of lost ime due to radio equipment failure is the record of a microwave radio syst'm designed by Federal Telecommunication Labs., Nutley, N.J. The istem, installed by an oil pipeline company, utilizes standard commer cial PTM radio receivers and trans mitters in a system orginally conceived for tactical communication between the Navy's shore bases. The system's reliability is the result of the parallel path technique, which allows two signals on the same frequency to be transmitted in synchronization from two separate transmitters to separate receivers.

More than duplication of equipment is involved, however. Although the frequencies of the two transmissions are made identical, the phase of the signals cannot conveniently be controlled. In order to avoid signal cancellation, which would occur if out-of-phase signals were received on a common antenna, one signal is transmitted and received on horizontal polarization, and the other on vertical polarization. The dual polarization was made possible by the development of a feed-horn that could handle the required radiation. The horn, in addition to its usefulness in signal diplexing, simplified the problem of space diversity in similar line-of-sight microwave systems, since only three instead of four horns are needed

Doppler Navigation for Jets

A self-contained airborne Doppler Navigator System for jet fighter planes is under construction. The Doppler system sends out radio waves to the ground from various fixed positions in the plane. The waves after hitting the ground bounce back to the plane at varying frequencies depending on the motion of the plane. These changes in frequency are fed into a computer, which in turn translates this data into ground speed, drift, exact position according to longitude and latitude, course to destination and distance to destination. The system was designed by Laboratory for Electronics, Inc., Boston, Mass.

Specifically designed to meet critical military and industrial computer applications

RCA-2N404, RCA-2N269-feature a maximum collector-to-emitter saturation "bottoming" voltage of only 150 millivolts with a current gain of 30 . This feature makes possible the design of stable "on" circuits and allows highly flexible design of digital equipment. Specification of Ico at $80^{\circ} \mathrm{C}$ as well as at $25^{\circ} \mathrm{C}$ permits the design of "off" circuits which are stable (absolute) for wide variations in temperature. A new method of controlling switching-time is achieved by controlling the maximum stored charge in the base region. Circuits using RCA-2N404 and -2N269 can thus be designed to have predictable switching speed and complete unit-to-unit interchangeability.
RCA-2N398-features an exceptionally high collector voltage rating which now permits the design of neon-indicator circuits where the transistor is capable of directly switching the total firing voltage of the indicator lamp. This simple circuit design provides for improved system reliability. The high collector voltage rating is also useful in the design of other high-voltage "on-off" control circuits such as relay pullers, incandescent lamp drivers, and direct indicating counters

For information on how to apply COMPUTER TRANSISTORS in your designs, contact the RCA Field Representative at the RCA Field Office nearest you. For technical bulletins, write RCA, Commercial Engineering, Section H-18-Q-2 Somerville, N.J.

RC(SEMICONDUCTOR DIVISION

Washington Report

Herbert H. Rosen

Aviation Expenditures Cut, Electronics Increased
Leaders from both the aviation and electronics industries were called to Air Secretary James Douglas' Pentagon office recently and told flatly that the Air Force is spending too much money on airplanes. As a result, there will be a shift to electronicsdominated weapons and more responsibility for electronic subsystem contractors.
Immediate reaction of those attending seemed to be a stunned silence. As far as the electronics industry is concerned, the move bodes both trouble and prosperity. Prosperity, because a $\$ 1.3$ billion bill for electronics will fill plants to the bursting point. Trouble, because the airframe manufacturers will be looking for ways to make up their loss in defense dollars. And electronics looks like a healthy field in which to spread. As one observer put it: "I won't be surprised to see a Lockheed or North American TV set appear on the market one of these days."

At the meeting, Douglas said the Air Force is spending money it does not have in the bank. The reasons listed were: price increases; failure to adjust estimates when long lead time programs are compressed and a rapid, expensive, growth of the ballistics missile program during the Fiscal Year 1957. Payments so far for some programs this year are double original estimates. And it looks like 60 per cent to 70 per cent of all funds allotted to the overall ballistics missile program may be expended in the first year. The solution according to Mr. Douglas is that "we are going to have to be quite ingenious.

Scarce Defense Money-No Overtime

Now that the Government is well into its new Fiscal year, the effect of a recent Department of Defense directive is probably beginning to be felt. DOD Instruction 4105.48 specifically outlines what classes of overtime are allowable on all contracts. It clarifies some of the vagaries of ASPR 12-102 and a series of memoranda issued last May by the service Secretaries. The new instruction makes it extra difficult to authorize overtime, except under certain circumstances. These are: (1) when the military objective will not be met; (2) when a lower cost will accrue to the Government, and (3) when natural and technical causes make it mandatory. Under the third class are the following enlargements: (a) to

CIRCLE 14 ON READER-SERVICE CARD FOR MORE INFORMATION

MULTI-PURPOSE VACUUM-TUBE VOLTMETER

High precision measurements on both $A \cdot C$ and $D \cdot C$ are now possible with a single meter. May be used for off ground operation measures up to 1000 volts D.C off ground. 121 megohm D-C input resistance. Useful for A-C voltage measurements from 20 cps to 700 megacycles. Measurements on either A-C or D-C can be made down to 0.1 volt, full scale. Meter includes seven continuously calibrated resistance ranges, an illuminated mirror-backed scale, dual input, and has very low drift (plus/minus 3 mv max. on any rangel. Amplifier output available with gain over 60
db. D.C and filament
supplies are regulated.

Price $\$ 265^{00}$

TRANSISTORIZED

PRE-
AMPLIFIERS
The perfect accessory for any scope. It provides common mode rejection up to 106:1. Differential gain of 10 . Frequency response is 0.15 cps to 10 kc. Completely selfcontained and extremely compact - powered by battery with life of 1000 hours. Negligible internal noise and drift is
featured. Circuitry is temperature compensated

Price $\$ 12500$

HIGH FREQUENCY OSCILLOSCOPE

For complete quantitative investigations from D-C to beyond 50 megacycles. Building block design permits selection or physical interchange of desired units. High sweep rate up to 250 kc . Y-amplifier rise time is less than 7
millimicroseconds. Calibrated sweeps from $0.02 \mathrm{sec} / \mathrm{cm}$ to 0.01 usec/cm are provided. Sensitivity is from 0.2 to 200 volts full scale. A-C or
D-C sync is available with level selection. Type K-1546 cathode-ray tube is operated at 24,000 volts. Unit sections ready for immediate insertion in standard relay racks.
climinate specific bottlenecks which cannot be eliminated in any other way; (b) to cope with emergencies resulting from accidents or natural disasters; (c) to make up for delays beyond the control and without the fault or negligence of the contractor, and (d) to perform tests, industrial processes, and laboratory procedures which are continuous in nature and cannot reasonably be interrupted or otherwise completed.
But the company manager who thinks he can meet any of these will have to write a thorough and detailed justification for the overtime he needs. He will have to prove that other sources cannot do the job as well and as cheaply. Also, "the use of overtime premium pay (is not) a regular part of employee compensation.

And no longer can the mere contracting officer give this authority to work overtime. It must come from "a designee of the Secretary (of a service) occupying a position comparable to or higher than a Head of a Procuring Activity." The Navy Chief of the Bureau of Ships would be an example. In some instances, the Assistant Chief may be allowed to give an authorization. In most cases, however, approval authority may be delegated to others as long as that authority is limited to "not more than 2 per cent of total anticipated labor-hours under contract."

What Impresses the Japanese Most?
A team of 12 Japanese visited U.S. electronics manufacturers recently. Three characteristics of the industry impressed them more than anything else: our high productivity, safety consciousness, and small business originality. The team came to the U.S. under the sponsorship of the International Cooperation Administration. Collectively, they represent most of the electronic trade associations in Japan. Individually, they are presidents or directors of small manufacturing companies averaging about 250 employees.
Although they learned much from our production techniques, few can be applied to their organizations. First and foremost, the buyer market could not support such production levels. Secondly, the labor market is not that well trained. Japanese industry has only just started to train its employees.
Safety consciousness has been largely a Govern-ment-sponsored effort, with industry lending token support. However, the team was so impressed, they plan to preach the philosophy to industrial leaders in the homeland when they return.

Electronics is now among the top ten of Japan's big industries-valued at nearly $\$ 200$ million a year. As here, there are abundant signs of greater growth in a few years. The key is electrical power. Within a few years the number of kilowatt hours generated is expected to jump, and so will electronics, TV, radio, communications, and the rest.

Completely Electronic Generation of Frequencies from Subsonic to Supersonic

The Behlman INVERTRON achieves high accuracy and exreptional stability through simplicity of design simpliciy that is the end product of intense research, wide knowledge. and superb workmanship. Standard vacuum tubes are used throughout and function within their rated capacity for long service life Construction is compact and sturdy All of our engineering ability has been directed toward the creation of a power source that, once installed, can be practically taken for granted. If you must have unfailing dependability, you will wánt to investigate the Behlman INVERTRON

MODEL 751-E-1
POWER OUTPUT 750 VA single phase FREQUENCY ${ }^{\prime}$: 300 to soo cps variable FREQUENCY ACCURACY:
(0.2 $\%$, available), INPUT: 230v $60{ }^{\circ} \mathrm{cps}$ single phase,
overall size $22^{\prime \prime}$ uide x $28^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep

SEE US IN BOOTH 4141957 WESCON SHOW August 20, 21, 22,23

MODEL 161-D-1
POWER OUTPUT. 160 VA single phase, FREQUENCY 350 to 450 (p P variable, FREQUENCY' ACCURACY 0.5% (0.2% and 0.1% available), INPUT - 115 v 60 cps single phase, OVFRALL SIZE. $22^{\prime \prime}$ wide $\times 10^{\prime \prime}$ high x
$15^{\prime \prime}$ deep. $15^{\prime \prime}$ deep.

The Silent, Dependable INVERTRON Features:

- power output ratingis from milliwatts to kilowatts
- OUTPUT FREQUENCIES - fixed or variable - from subsonic to) supersonic
- ACCURACY to 001% for fixed frequencies - to 1% for variable frequencies
- SINE WVAVE distortion never greater than 2%, with $.5 \%$ or less a vailable
- REGULATION from no load to full load .. standard 1% - with $.5 \%$ or better available
- Negligible Interaction between output frequency, volt age and load

WRITE us your Problem Now - for consultation without obligation.

Meetings

Aug. 20-23: Wescon (Western Electronic Show and Convention)
Cow Palace, San Francisco, Calif. Sponsored by the San Francisco and Los Angeles Sections representing the Seventh Region IRE and West Coast Electronic Manufacturers Association. There will bs upwards of 700 exhibits and 48 technical sessio:ls under the following titles:

Tuesday a.m., Aug. 20

1 Transistor Circuits; 2 Microwave Components; 3 Nonlinear Automatic Control Systems; 4 Component Part Design and Performance; 5 Electronics Research Abroad; 6 Information Theory.

Tuesday p.m., Aug. 20

7 Models for Systems-Symposium; 8 Microwave Ferrite Devices; 9 Computer Systems; 10 Component Part Design, Control, and Assembly; 11 Engineering Management; 12 Antennas and Propagation.

Wednesday a.m., Aug. 21

1.3 Semiconductor Devices-I; 14 Electronics in High Speed Flight; 15 Sampled Data Control Systems; 16 Communications Systems Engineering; 17 Military Research Requirements in Electronics; 18 Microwave Antennas.

Wednesday p.m., Aug. 21
19 Semiconductor Devices-II; 20 Microwave Instrumentation; 21 Statistical Methods in Feedback Control; 22 Crystal Filters Symposium; 23 TV and Radio Broadcasting; 24 Data Handling Devices.

Wednesday Eve, Aug. 21

25 Symposium on Controlled Nuclear Fusion.

Thursday a.m., Aug. 22

26 Computers in Network Synthesis: 27 Microwave Tubes-I; 28 Computer Circuit and Logical Design; 29 Automatic Instrumentation; 30 Reliability Programs; 31 Antennas.

Thursday p.m., Aug. 22

32 Passive and Active Circuits; 33 Microwave Tubes -II; 34 A Symposium on the Medical Applications of Super Voltage Radiation; 35 Instrumentation; 36 Vehicular Communications-I; 37 Production Techniques.

Friday a.m., Aug. 23
38 Audio; 39 Advances in Microwave Solid State Devices; 40 Analog and Digital Computer Devices 41 Telemetry-I; 42 Vehicular Communications-II 43 Symposium on New Electronic Techniques for Industry.

Friday p.m., Aug. 23
4 Ultrasonic Engineering; 45 Television Receivers and Televisual Devices; 46 Ionospheric Propagation; 47 Telemetry-II; 48 Nuclear Science Session.

Aug. 19: Symposium on Automatic Control

Mark Hopkins Hotel, San Francisco, Calif. Sponsored by the IRE Professional Group on Automatic Control, with participation by the ASME and AIEE. The program will consist of a morning technical session on "Practical Applications in Nonlinear Control," and an afternoon panel discussion on "Obstacles to Progress in Nonlinear Control." For information write to J. Melvin Jones, Hughes Aircraft Co., Bldg. 6, Mail Sta. 2344, Culver City, Calif.

Aug. 20-21: Third Biennial Electron Beam Symposium

General Electric Co. X-Ray Dept., Milwaukee, Wis. There will be reports on radiation equipment, applications of radiations, and economic evaluation of processes and methods. Chemical, plastic and petroleum applications are to be stressed. A conducted tour of GE facilities for fabricating electron beam generators and linear accelerators will be offered. More information may be obtained from J. J. Ludwig, General Electric Co., X-Ray Dept., 4855 Electric Ave., Milwaukee 1, Wis.

Aug. 29-30: Fourth Annual Symposium on Computers and Data Processing
Albany Hotel, Denver, Colo. Sponsored by the Denver Research Institute. Technical papers on components, devices, systems organization, analysis techniques, and design techniques will be presented. For further information write to J. Marshall Cavenah, Electronics Div., Denver Research Institute, University of Denver 10, Colo.

> Sept. 4-6: Special Technical Conference on Magnetic Amplifiers
> Penn Sheraton Hotel, Pittsburgh, Pa. Sponsored by the AIEE and the IRE. The program's four sessions will deal with New Circuits and Techniques, Analysis and Design, and Applications. For more information, write to D. Feldman, Bell Telephone Labs.

Sept. 17-18: RETMA Symposium on Numerical Control Systems for Machine Tools
Ambassador Hotel, Los Angeles, Calif. For details write to RETMA, Room 650, 11W. 42nd St., New York 36, N.Y.

Trimup with the new PADOHM ${ }^{-1}$

 Precision Potentiometer
$F O R$

1. Welded single-turn end connections
2. Extreme ambient conditions: Temperature. Moisture. Shock. Vibration. etc.
3. High-Insulation body material
4. High-temperature-operation molded base
5. Precious-metal contacts
6. Positive clutching and de-clutching mechanism (insuring release of wiper at end of travel and. engaging again upon reversal of rotation)
7. Low-temperature-coefficient wire winding.
8. Ceramic winding form.
9. High winding resolution.
10. Damped contact structure. Two-point mounting of contact ends, to reduce effects of vibration and shock
11. High stability,
12. Avallability in production quantities Send requirements.

SPECIFICATIONS
Available in two types: Type L rated at 025 watt, derated to 0
power at $105^{\circ} \mathrm{C}$. Type H rated at 040
watt. derated to 0 power at $135^{\circ} \mathrm{C}$

Complete detailed electrical and
mechanical specifications on request

CLAROSTAT MFG. CO. INC., DOVER, NEW HAMPSHIRE

Sept. 8-13: Second Annual Course on Investment Castings
MIT, Cambridge, Mass. Sponsored by the Investment Casting Institute. Lectures, laboratory exercises and demonstrations will be offered on investment materials; melting; gating, risering, solidification and heat transfer; metal and alloy systems; defects in castings; and consideration of new investment and allied processes. For further information, write Harry P. Dolan, Investment Casting Institute, 27 E. Monroe St., Chicago 3, Ill.

Sept. 9-13: Twelfth Annual Instrument-Automation Conference and Exhibit
Cleveland Auditorium, Cleveland, Ohio. Sponsored by the ISA. Organized under the unifying theme, "Instrumentation for Systems Control," the conference will open with formal sessions devoted to data handling and instrument terminology. Following these there will be individual workshop sessions in limited discussion groups covering such topics as aircraft and missiles (excluding propulsion), wind tunnels, flight propulsion systems, process industries, power generation and distribution, meteorological, nuclear, medical, geophysical exploration and general industrial laboratories. Some 100 papers will be presented at the technical sessions. There will be about 500 exhibits. For details of the technical program write to Herbert S. Kindler, Director of Technical Programs, ISA, 313 Sixth Ave., Pittsburgh, Pa.

Sept. 24-25: Sixth PGIE Symposium on Industrial Electronics
Morrison Hotel, Chicago, Ill. Sponsored by the IRE Professional Group on Industrial Electronics and AIEE. The main theme for the conference will be the characteristics, use and integration of transducers into complete systems to measure and control complete processes. For further details, write to J. N. Banky, 628 West 18th Street, Chicago, Ill.

Oct. 16-18: 1957 IRE Canadian Convention

 and ExpositionAutomotive Building, Exhibition Park, Toronto, Canada. Sponsored by the Canadian Sections of the IRE. For information write to Grant Smedmor, IRE Canadian Convention, 745 Mt. Pleasant Rd., Toronto 7, Canada.

Oct. 31-Nov. 1: Third Annual Technical Conference of the Professional Group on Electron Devices, IRE.
Shoreham Hotel, Washington, D.C. For more information, write W. M. Webster, RCA Semiconductor Div., Somerville, N.J.

From one source.
SEIENIUMI GERMANIUN: for all dc needs from microwatts to megawatts

SUR-MINIATURE SELENIUM DIODES ent temperatures ranging from $-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Encapsulated to resist adverse environmental conditions. Output voltage
from 20 to 160 volts; 100 microamperes to 11 MA Bullotin SD-18

selenium contact protectors
Designed to eliminate arcing and erosion across the contacts of relays and switches. A complete series in each of three basic types: Diode type, Cartridge type and Hermetically sealed type for industrial appli

SILICOM MEDIUM POWER RECTIFIERS
Specifically engineered for industrial applications - the most conservatively rated silicon rectifers in the industryl mean greater reliability-longer life. Types available in 3 series. Request Bullotin SR-1438.

selemium hien voltage cartridee rectifiens Designed for long life and reliability in HalfWave, Voltage Doubler, Bridge, Center-Tap Circuits, and 3-Phase Circuit Types. Phenolic Cartridge and Hermetically Sealed types vailable. Operating temperature range:
$-6.5^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Specify Bullotin H-2

STYLE S SILICON POWER DIODES
A complete series of hermetically sealed diodes for operating in temperatures from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Power supply and magnetic amplifier types. PIV range: 50 to 600 v . For 100 ma DC output request Bullotin SR-136e

10 AMP SILICON POWER DIODES
Conservatively rated to provide a substantial safety factor in industrial appli-
cations. Hermetically sealed, all-welded cations. Hermetically sealed, all-welded case construction provides reliability over a
long life. Types available in a wide voltage range. Write for Bullotin SR-151

SELEmium TV and Radio rectifiers
The widest range in the industry! Designed for Radio, Television, TV booster, UHF converter and experimental applications. Input ratings from 25 to 156 volts AC and up. DC utput current 50 to $1,200 \mathrm{MA}$. Write for

STYLE T SILICON POWER DIODES
Stud mounted-hermetically sealed types for power supply and magnetic amplifier applications. PIV ratings from 50 to 600 volts at 800 ma rectified DC output current.
All welded construction. For operation at All welded construction. For operation at
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Ask for Bullotin SR - 135 C

150 AMP GERMANIUM JUNCTIONS
Designed for high velocity, forced air cooling, the finned copper heat exchanger of these junctions feature 56 sq . inches of cooling area in 5.7. cubic inches of volume. rns. Lug or stud terminals. Bullotin GPR-2

For complete data on the products listed write on your letterhead to International Rectifier INTIRIINATIOINAI representatives throughout the worlo

THE WORLD'S LARGEST SUPPLIER OF
\qquad CIRCLE 17 ON READER-SERVICE CARD FOR MORE INFORMATION
．．．the complete line of

SIエICON RECTIFIERS

．．．the widest range in the industry！

selemium industrial power rectifiers
For all DC power needs from microwatts
to kilowatts．Features：long life：compact， to kilowatts．Features：long life；compact，
light weight and low initial cost．Ratings： light weight and low initial cost．Ratings：
to $250 \mathrm{KW}, 50 \mathrm{ma}$ to 2,300 amperes and to $250 \mathrm{KW}, 50 \mathrm{ma}$ to 2,300 amperes and
up． 6 volts to 30,000 volts and up．Efficiency
to 87% ．Power factor to 95% ．Bulletin C 349

mien voltace silicon power diodes
Two styles available．Hermetically sealed， pigtail construction．Style J features PIV
ratings from 600 to 1000 volts at 125 ma ． ratings from 600 to 1000 volts at 125 ma ．
DC output current．Ask for Bullotin SR－1 38 E DC output current．Ask for Bullotin
Style K：
PIV from
600
to
1200
volts at 100 ma DC output current．Bullotin SR－144A

330 Amp germanium junctions
Low current density germanium junctions of high capacity for heavy duty applications．
Corrosion resistant，cast aluminum cooling fins dissipate heat at high rate．Efficiency： 98．5．Six types．Input voltage ratings from 20 to 66 volts rms．Request Bullotin GPR－2

migh current density selemium rectifiens
A complete line for natural convection cool－ ing in industrial applications．Inverse volt－ age ratings up to 36 volts per cell．Rect－
ified DC output approximately twice that of ified DC output approximately twice that of
standard selenium stacks in approximately standard selenium stacks in approximately
50% less volume．Write for Bullotin SR－152

SILICON RECTIFIER STACKS
These units consist of hermetically sealed junction diodes mounted on copper cooling
fins，stacked to include the interconnections required for specific circuits．Junction AC input 1.25 amps．DC output； 70 to 350

500 AMP GERMANIUM JUNCTIONS
Six high capacity junction types espec－ ially suited for extra－heavy duty such a cooling is desirable．Cast aluminum airfoil housings．Input voltage ratings from 20 to 66 volts rms．Efficiency 98．5．Bulletin GPR－2

selemium photocells－sun batteries
Self－generating photocells available in standard or custom sizes，mounted or un－ mounted．Optimum load resistance range： 10 to 10,000 ohms．Output from 2 MA to 60 MA in ave．sunlight．Ambient tempera－

sillicom cartride rectifiens
The answer to tough miniaturization problems！Ratings for high temperature applications：from 1000 volts PIV at 100 ma half－wave DC output to 16,000 volts PIV at 45 ma ．Hermetically sealed，metallized eramic housing．Request Bullotin SR－139B

LlauId COOLEO GERMANIUM JUNCTIONS
Liquid cooled for maximum power in mini－ mum space．Junction rating： 670 amps at tivity copper cast around special steel coils． tivity copper cast around special steel coils．
Water，oil or other accepted coolants may be used．For complete data．Bullotin GPR－2．

Corporation or contact the International Rectifier branch office or representative nearest you．
尺曰CTエヨエヨ尺 COR卫。
INDUSTRIAL METALLIC RECTIFIERS

CIRCLE 17 ON READER SERVICE CARD FOR MORE INFORMATION

Encapsulation of Electronic Circuits

Richard Calicchia
Rome Air Development Center
Griffiss Air Force Base
Rome，N．Y．

Comparison of a Vacuum Tube Remote Control Unit and a Transistorized Ver sion Employing Encapsula－ tion Techniques，Printed Cir－ cuitry，and Miniaturized Parts

VALUATION of casting resins for electronic equipment at frequencies up to 240 mc is cov－ ered in this report．This frequency was selected as the upper limit because above this frequency en－ capsulation ceases to be practical．This upper limit of frequency will define Type A insulating com－ pounds or encapsulents（per Military Specification MIL－I－16923）which are intended for high fre－ quency application．A comprehensive investigation of encapsulating resins and their effects was spon sored by Rome Air Development Center at Battelle Memorial Institute and is being continued at RADC．

Epoxy Resins

Epoxy resins are presently accepted as the most suitable for encapsulation．These are generally fa－ vored because of the inherent properties possessed in them such as ease of handling，excellent chemi－ cal resistance，low moisture absorption，superior adhesive quality，low shrinkage during cure，excep－ tional mechanical properties and satisfactory elec－ trical characteristics．It appears further that the epoxy resin is the only type that will best satisfy the requirements for an insulating materials as out－ lined in MIL－I－16923．However，only a select few epoxy resins possess the necessary physical and electrical properties for application to electronic equipment up to 30 mc （Type B）and none meet the ultimate in physical and electrical requirements for frequencies up to 240 mc ．
Some attempts were made to modify and blend epoxy resins for the purpose of improving specific desirable properties．The results were found favor－ able in some instances．Attempts were also made to introduce foam materials which would be most ap－ plicable where an encapsulent possessing optimum dielectric properties is desired．It is noted that the initial efforts were encouraging and the results in－ dicate that further development would contribute markedly to the progress in this field．

Epoxy Modifications
The modification of epoxies involved the com－ pounding of inorganic or organic fillers，the use of anhydride hardeners，the addition of plasticizers， the blending with polyamide and the inclusion of plastic microballoons．The investigation was also extended to the foam materials which are most promising and merit further consideration because of their dielectric quality．Although the work and evaluation was directed towards producing an en－ capsulent with all－embracing properties，the be－ havior of some of these insulating materials was
markedly improved．Greater emphasis was placed on the thermal shock requirements，the mechanical resistance and the dielectric quality．The results of this research reflected some very interesting infor－ mation particularly applicable to this work
－The anhydride－hardened epoxies possess better resiliency than the conventional amine－hardened epoxies．This is advantageous in as much as resil－ iency improves the thermal shock resistance．
－Moderate temperature cures are essential in developing optimum properties．Obviously a room temperature cure would be preferable．

- On account of their high-polarity, plasticizers and inorganic fillers tend to degrade the electrical properties. However, inorganic fillers are regarded useful because they improve the thermal shock resistance of the body by increasing the coefficient of thermal expansion of the embedding material.
- Polyamide blend epoxies possess exceptionally good physical and electrical properties at room temperature, but are undesirable at elevated temperatures.

Foam Resins

The study of foam resins was initiated because their exceptional dielectric quality makes them the most likely to satisfy the requirements of Type A encapsulent (MIL-I-16923.) These may include either the fragile foam-in-place plastic or the microballoon loaded epoxy material. The foams are of particular interest because they exhibit low dielectric constant and low dissipation factor combined with light weight. On the other hand, caution should be taken against their poor dielectric strength, poor resistance to heat distortion and poor mechanical shock.

An encapsulent having all the properties intended for application to electronic circuits at all frequencies and under all conditions is not available. Therefore, it is necessary that specific encasing resins, exhibiting specific characteristics, be utilized for specific applications.

Chemical and Physical Behavior

Chemical and physical behaviors of some of the more commonly known epoxy casting resins are listed in Table I. The conventional amine-setting epoxies may be cured at room temperature dissipating the heat over an extended period. The resulting exothermic heat will be generally lowered. It is noticed that the resistance to thermal and mechanical shocks is extremely poor, making them unsatisfactory in this regard. The number tabulated
under thermal shock indicates the number of cycles that the test specimens were subjected to without yielding to thermal fracture. Each cycle consists of exposing the sample to ten minutes at -65 F followed by thirty minutes at approximately 200 F . The mechanical resistance was measured as the weight in pounds, of a steel ball, dropped at a height of three feet, required before the sample breaks. However, there same resins are highly useful in the embedment of electronic parts which are delicate or sensitive to high temperatures. Among these will be transistors, diodes, and permalloy cores. Furthermore, in some applications, the inherent characteristics of the amine-setting epoxies could be improved markedly by compounding them with inorganic fillers such as alumina or silica.

The adhydride-hardened epoxy resins generally possess a superior combination of mechanical and electrical properties as compared with the conventional amine-hardened epoxies. The maximum exothermic temperature is reasonably low although it is necessary to cure at above room temperature. Some examples of encapsulents of this type which are classified as Type B per MIL-I-16923 are Hysol 6800, Epocast 3 and Scotchcast 235 and 241. These plastics satisfy the minimum electrical requirements, yet have excellent thermal and mechanical resistance.

The polyamide-epoxy blends possess some distinct advantages in exhibiting exceptionally good physical and electrical properties for encapsulation at moderate curing temperatures. However, they are regarded inferior to the anhydride-catalyzed resins because at elevated temperatures both the physical and electrical characteristics are degenerated. Further work with polyamides and epoxies with or without the inclusion of microballoons may result in a profitable development in achieving an encapsulent with all-embracing properties.

Also listed in Table I are three resins; namely Eccofoam FP, Epocast 3 and Castiplast 11 which are categorized in descending merits of dielectric constant and dissipation factor. Respectively, these materials satisfy the electrical requirements referenced for Type A, B and C encapsulents specified per MIL-I-16923 and were selected to represent encasing media suitably applicable for high frequency (up to 240 mc) for general electrical purpose (frequencies up to 30 mc) and for mechanical resistance. The encapsulation of various resistors, capacitors and inductors was tested and evaluated at various frequencies in order to note the relative effect of the several encapsulents on the electrical charactristics of these unit parts.

Effects of Encapsulation

Measurements were taken on $1 / 2$ w boron-carbon resistors ranging in value from 4.7 K to 100 K before and after encapsulation and at frequencies from

SAVE MONEY Switch to STAMPINGS

ENGINEER IN STAMPINGS-INCREASE PROFITS. A good solution to
designing and cost problems is through the use of Advance metal stampings which cut material costs, labor costs and assembly costs.

STAMP CRITICAL METAL PARTS TO IMPROVE YOUR COMPETITIVE POSITION

These are actual size
Advance stampings which Advance stampings which
saved production costs.

Another Stamping

- maximum 4" blanks
- MAXIMUM 23/4" DRAW
- CAPACITY TO 65 TONS

Since 1922 many and varied metal working industries have used Advance services for "clicking" out metal stampings in high and medium production volume. Small stampings of all materials are fabricated to meet tolerance specifications, delivery and price.

> Sond us your blue prints or samples for quotations. Advance Engineers are available to be of holp with your cosss, design modifcation and gonoral improvement of your competitive position.

Writo for Small Stamping Specialists Brochure
ADVANCE STAMPING CO.
12023 Dixie Ave., Detroit 39, Michigan
CIRCLE 10 ON READER-SERVICE CARD FOR MORE INFORMATION

3 mc to 240 mc . An approximate empirical relationship for predicting the effect of encapsulation on resistors at various friquencies involved a simple equivalent circuit; the direct current resistance, the alternating current resist.,nce and the dielectric constant of the encasing mertium. Reactance measurements were made with a l:oonton " $\mathrm{R}-\mathrm{X}$ " meter and a Boonton " Q " meter. By this method a close correlation was obtained between the calculated and measured values.

Fig. 1 shows a graph whereby the ratio of ac to dc resistance of 4.7 K boron-carbon resistors is plotted as a function of frequency. With increasing frequencies an increasing drop in the ratio of Rac/ Rdc is noted with encapsulents having increasing dielectric constants. Therefore, the effect of the embedment of a 4.7 K resistor with a Type A encapsulent (Eccofoam FP) would be negligible at frequencies up to about 60 mc , whereas a Type C encapsulent (Castiplast 11) would satisfy the electrical requirements at frequencies up to approximately 10 mc . However, the same embedment of a 47 K resistor with Eccofoam FP would give no variation in performance at frequencies up to 10 mc (Fig. 2) and Castiplast 11 shows a distinct deviation within the range of this investigation. The effect of Epocast 3 on 47 K resistor is also shown.
Factors influencing the electrical performance of a resistor are the frequency, the value of the resistor and the dielectric constant of the encasing

Fig. 3. Capacitive Effect of Encapsulation on 1 $\mu \mu \mathrm{f}$ Ceramic Capacitor

Fig. 1. Ratio of Ac to De Resistance of 4.7 K Resistor

Fig. 2. Ratio of Ac to Dc Resistance of 47 K Resistor

medium. Since there is an increase in the dielectric constant of an insulating material with temperature, consideration should be given to temperature as another important factor influencing the resistance.

Reliability Investigation

Further investigation is continuing at RADC on the effect of temperature on the reliability of the encapsulated resistor. This work was prompted by the fact that since reliability is known to decrease with increasing temperature, the value of the embedded resistor will be depreciated. Experimental data involve tests on resistors having a power rating up to 2 w since it is established that resistors of greater power rating are not embedded. The method of approach for this work is based on the "de-rating" factor whereby the ratio of power is determined by the heat dissipation between resistors embedded with air and other dielectrics. For example, if the surface temperature of a 2 w resistor dissipating 2 w of electrical power is 190 F , and dissipating, after encapsulation, 1.5 w at this same temperature, the "de-rating" factor would be 1.5/2.0 or 0.75 . This means that the resistor can safely use only $3 / 4$ as much electrical power as it could in air for identical reliability. The investigation is not complete, but it is anticipated that the data will be helpful in determining the effect of temperature on reliability and may provide a method of verifying the "de-rating" factor without life testing. Another interesting observation is that encapsulents, particu-
larly when filled with an inorganic material tends to provide a coolant effect upon the embedment thus indicating more stable operation.

Capacitive Effects

Representative types of capacitors commonly used in electronic equipment were selected for test and study of capacitance change with various encapsulating media. These included the ceramicand mica body units ranging in value from 1 to $10 \mu u f$. Capacitors above $10 \mu \mu$ f would have no significance inasmuch as the added capacitance due to the distributed constant of the dielectric would be negligible relative to the value of the unit. This deduction was anticipated and conclusive evidence was shown by the experimental data recorded in Figs. 3 and 4. Note the variation in capacitance in a $1 \mu \mu \mathrm{f}$ component embedded in different dielectrics. It is obvious that the per cent deviation is dependent primarily on the electrical value of the encasing dielectric, therefore the effects in the variation should be determined in the calculation, design and function of the circuit. The effect of encapsulation is again demonstrated with a $10 \mu \mu \mathrm{f}$ mica capacitor. It is immediately noted that the per cent deviation (roughly 2 per cent to 10 per cent) is reduced such that the added capacitance would be either neglible or calculated in the design of the equipment in those cases where a close tolerance is critical.
Inductors of the type generally used for peaking and tuning purposes in wideband video amplifiers
ere tested. The values selected for embedment inged from 6.8 to $68 \mu \mathrm{~h}$ at test frequencies for each ductor in excess of the resonant frequency of the nit and normal stray capacitance combined. It was oted that within experimental errors encapsulation has no significant effect on inductors.

Conclusion

The data obtained on various resistors, capacitors ind inductors give indication that reasonable predictions regarding the high frequency performance of these units comprising part of the circuit can be made after encapsulation. In addition certain fundamental principles can be established whereby the performance of an encapsulated circuit could be related to the behavior of the individually embedded parts. Of the information and conclusions deducted from the work outlined above, it is safe to assume that changes in the resonance of capacitive-inductive circuits would be a function only of the factors influencing the capacitor. Since the encasing medium has no significant effect on capacitance of values above $10 \mu \mu \mathrm{f}$ and since the variation due to the distributed constant amounts to approximately $1 \mu \mu \mathrm{f}$ most conventional resonant circuits could be embedded without giving serious consideration to the electrical performance. However, in the encapsulation of a highly critical, narrow band resonant circuit, wherein the capacitor is designed for low tolerance, discretion should be taken in the selection of a proper dielectric.

Fig. 4. Capacitive Effect of Encapsulation on 10 بиf Mica Capacitor

For quick bonding, turn to turn, with a single application of heat or solvent...

Specify

MAGNET WIRE

Random-wound, layer, paper-section and solenoid cous coils for brakes and clutches, instruments, television, radio and other applications.
Paper-section, random-wound, oil-filled, air-cooled and THANSFORMERS high voltage for distribution, current, X-ray, television, radio and other applications.
Windings for shaded pole, series fields, instruments, induction and others.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

FIRST FOR LASTING QUALITVFROM MINE TO MARKETJ

PHELPS DODEE COPPER PROOUCTS

 CORPORATION
INCA MANUFACTURING DIVISION

FORT WAYNE. INDIANA
Visif our Booth No. 1111 at WESCON Show, August 20-23, 1957

DOUGLAS ROESCH

Custom ELECTRONIC CABLES

extend your design possibilities

 Roesch-developed, exclusive equipment allow D-R to fabricate cable 10 your individual needs.

ROUND OR FLAT, lozenge, eliptical shape or any combination in a single length of cable available at D-R.

CABLES CAN BE CUSTOMI2EO with electronic conductors, steel, nylon or tefion for strength; elastic shock cord, pneumatic or hydraulic hoses.
Engineers, investigate your future with:

A D-R Custom Cable can meet your most critical missile, airframe or automation electronic system requirements.

CABLE DIVISION OF

Decade Counter

C HARP, bright, easily read numbers are displayed in a horizontal row by the decade counter. Most visual errors result from staggered vertical displays and hazy, poorly formed numerals. Lucid "in-line" numbers will decrease reading errors. Simplicity of the counting circuitry and the elimination of electro-mechanical components greatly increases the electronic reliability. Errors which occur in converting a binary count to a decimal count are effectively elminated.
The terms "accuracy" and "reliability" are almost synonymous when used in reference to the circuitry associated with counting. If a counter is in proper working order and used within its operating limits, it should be 100 per cent accurate. Counting
compr manu

A tured Corp. Selec done nels and i unit. lated relial

tion

the
prob
coun
or ϵ
tivel
redu

Fig. 1. Decade counter plug-in unit features high reliability and clear presentation.

component failure or "decay" below the manufacturer's specified limits.
A schematic of the counter, manufactured by Electronic Tube Div., Burroughs Corp., Plainfield, N.J., is shown in Fig. 1. Selection of the number to be illuminated is done with a beam switching tube. It channels the current directly to each number and isolates the other nine numbers in the unit. Components associated with the "isolated" numbers have no effect on the "countreliability."

Only one resistor is used-for each position of the beam switching tube-to supply the voltage for each number. When the probability of component failure in this counter is compared with other electronic or electro-mechanical counters, the relatively few components used substantially reduces the possibility of error. An expected
operating life of 50,000 hours is claimed by Burroughs for the beam switching tube.

Any desired count capacity can be had by cascading the individual plug-in units. Provisions are made for both manual and electronic zero setting. Two models are avail-able-the DC-101 with a maximum frequency of 10 kc and DC-102 with 100 kc .

With the 100 kc and 1 mc units, a dualtriode (6201) flip-flop stage is added. Even with the addition of this tube, the probability of error-free operation is much better than other electronic counting methods which require a minimum of 4 dual triodes. Outside dimensions are $3-1 / 16 \times 2-1 / 2 \times$ $6-7 / 8 \mathrm{in}$. Power requirements are $300 \mathrm{v}, 18$ ma, dc and $6.3 \mathrm{v}, 3 \mathrm{a}$, ac filament supply. Resolution of paired pulses is less than $10 \mu \mathrm{sec}$. For further information turn to the Reader's Service card and circle 21.

Fig. 2. A single resistor is used to supply the voltage for each number.

Potter

Model 905

Digital Magnetic Tape Handler
(75 inches per second with 3 msec starts and stops)

Meets all requirements for speed and convenience in processing large quantities of digital data

The Potter Model 905 is the result of the most extensive study of data-processing requirements. It combines high speed with complete reliability and easy accessibility to all wiring and parts. The Potter machined bronze head with precisely aligned gaps provides dimensional stability and minimizes digital drop-outs caused by oxide pickup.

Tape widths:
A - $1 / 1^{\prime \prime \prime}$ (2 or 3 channels)
B - $1 / 2^{\prime \prime}$ (6 or 7 channels)
C - $\%$ " (up to 8 channels)
D - $3 / \mu^{\prime \prime}$ (up to 10 channels)
$\mathrm{E}-1^{\prime \prime}$ (up to 13 channels)
F - $11 / 8^{\prime \prime}$ (up to 15 channels)

Speed combinations:
$\mathrm{J}-30$ and 7.5 inches per second
K - 60 and 15 inches per second
$\mathrm{L}-75$ and 18.75 inches per second
X - Special (speeds up to 75 inches per second in ratios of 2 to 1 , 3 to 1 and 6 to 1 are available on special order. Other speed combinations can be accommodated.)

Start time:
Stop time: Reel sizes:

Control:
Weight:
Dimensions:

3 milliseconds 3 milliseconds
$8^{\prime \prime}$ or $10^{1} 1^{\prime \prime}$ standard NAB reels. Adaptors for other types can be provided. Front panel pushbuttons or remote control contact closure and pulses.
100 pounds
Panel, width . . . 19"; height . . . 241/2"
Depth behind panel... $131 / 2^{\prime \prime}$
Depth in front of panel .. $3^{1 / 2 \prime \prime}$
Power Requirements: 110 to 120 volts, $60 \mathrm{cps}, 400$ watts.
For more information, write, wire or phone your Potter representative or the factory.

POTTER INSTRUMENT COMPANY, INC.
115 Cuiter Mill Rood
Greal Neck LIN Y

Wescon Booth 1003; ISA Booth 1266
CIRCLE 22 ON READER-SERVICE CARD FOR MORE INFORMATION

Background in Modern Notwork Synthosis

Network synthesis is the science of building networks to desired specifications. It can be extended to transducer design and has been extended to servo design. ${ }^{1}$ The specifications may be in the form of a desired frequency response-filters and compensating networks-or a desired transient-response -delay lines and control systems. The classical methods of filter design ${ }^{2,3.4}$ are based completely on the frequency characteristics of the amplitude response of the network and only three classes exist -low, high and band-pass filters. Developments in the field of network synthesis in the past 25 years have led to a much more general and sophisticated approach.

The fundamental relationships between the variables in a linear system are expressed in the form of integro-differential equations. Thus in Fig. 1, the fundamental relationship between e and i, is

$$
\begin{equation*}
e=R i+L \frac{d i}{d t}+\frac{1}{C} \int_{-\infty}^{t} i d t \tag{1}
\end{equation*}
$$

It is extremely inconvenient to work with equations containing integrals and derivatives and so by a clever artifice such equations are transformed into algebraic equations. The artifice consists of examining the equations for the steady-state response only, for the very special case when the driving functions is of a sinusoidal nature (e^{ω}). Because of the unique property of exponentials that their derivatives and integrals are also exponentials, the awkward integro-differential equations are transformed into more convenient complex algebraic equations. One is thereafter led to the concepts of complex impedance, transfer ratio, which are all functions of $j \omega$. In effect, this amounts to describing the system by its steady state response to a special type of input. If a more general and universal description of the system is sought, one that contains within it both the transient and the steady state responses and which is amenable to almost any arbitrary input, the Laplace Transform technique is used. The exceedingly simple result is that this more general description of the system can be got very easily from the previous special sinusoidal response description. The rule is to replace the variable $j \omega$ in the first description by the complex variable s. $S=\sigma+j \omega$, has both real and imaginary parts. The input impedance of the circuit of Fig. 1,

$$
Z(j \omega)=R+j \omega L+\frac{1}{j \omega C}
$$

becomes

$$
Z(s)=R+s L+1 / s C .
$$

So long as we are dealing with lumped parameter systems (transmission lines, antennas etc. are being excluded), all system functions, such as impedances,

RC-Transistor Network Design-I

Isaac M. Horowitz

Polytechnic Institute of Brooklyn
transfer ratios, will consist of a finite numerator polynomial in s divided by a finite denominator polynomial in s, i.e.

$$
\begin{equation*}
F(s)=K \frac{s^{m}+a_{1} s^{m-1}+a_{2} s^{m-2}+\ldots a_{m}}{s^{n}+b_{1} s^{n-1}+b_{2} s^{n-2}+\ldots b_{n}} \tag{2}
\end{equation*}
$$

For example, in the circuit of Fig. 1 ,

$$
Z(s)=L\left(s^{2}+s R / L+1 / L C\right) / s
$$

with $\mathrm{K}=L, m=2, n=1, a_{1}=R / L, a_{2}=1 / L C$. These polynomials may be factored, leading to
$F(s)=K \frac{\left(s+0_{1}\right)\left(s+0_{2}\right)\left(s+0_{3}\right) \ldots\left(s+0_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right) \ldots\left(s+p_{n}\right)}$
The values of s at which $F(s)=O$, are called the "zeros" of $F(s)$; those values of s at which $F(s)$ is infinite, are called the "poles" of $F(s)$. Thus $-0_{1},-0_{2}$, $\ldots \ldots,-0_{m}$ are the zeros of (3) and $-p_{1},-p_{2}$, $\ldots \ldots,-p_{\mathrm{n}}$ are the poles of (3). In Fig. 1, if $L=1$, $R=2, C=0.2$, the zeros are at $s=-1+i 2,-1$ $-i 2$; the poles are at $s=0$ and at s infinite. There are as many zeros as poles if those at infinity are counted too. The zeros and poles of a function describe it completely except for the scale factor K. The zeros and poles of a function constitute therefore a very powerful and compact description of the function. There is direct correlation between the pole-zero pattern of a function and its other properties such as frequency response and transient response. ${ }^{5}$ It is very convenient to make a map of the pole-zero pattern of a function. Thus the polezero pattern of $Z(s)$ of Fig. 1 for the values $L=1$, $R=2, C=0.2$, is plotted in Fig. 2 with the circles indicating zeros, the crosses indicating poles. The transfer ratio, E_{0} / E_{1} in Fig. 1 has the pole-zero

pattern plotted in Fig. 3

There is a large body of information available on the pole-zero patterns that are permissible under various constraints. LC networks have their poles and zeros on the imaginary axis only, for example. Driving point impedances of RC-or RL-networks have their poles and zeros on the negative real axis only and they must alternate. Transfer functions of RC-or RL-networks have their poles on the negative real axis but the zeros may be anywhere. Transfer functions of RC-or RL-networks with a common ground between input and output (unbalanced networks) cannot have zeros on the positive real axis. Poles on the imaginary axis indicate networks oscillating at constant amplitude; poles in the right half plane indicate networks with exponentially increasing amplitudes of oscillation.

The Approximation Problem

Network synthesis is divided into two parts-the Approximation problem and the Realization problem.

The Approximation problem is concerned with the study of the specifications and their reduction to an equivalent standard form independent of the original form of the specifications. This standard form consists of the pole-zero pattern of the desired function plus a statement of tolerances on the polezero positions, such tolerances depending of course on the tolerances in the original specifications.

The function of the Approximation problem is to translate the specifications for any function into a pole-zero pattern that will meet the specs. Bandpass filters have pole-zero patterns of the form shown in Fig. 4(a); low-pass filters have pole-zero patterns of the form shown in Fig. 4(b), while the

Fig. I. RLC circuit.

Fig. 2. Pole-zero pattern of Fig. 1 , for $L=1, R=$ $2, C=0.2$.

Fig. 3. Pole-zero pattern of the rransfer ratio E_{0} / E_{1} of Fig. 1 .
form of the pole-zero patterns for high-pass filters is shown in 4 (c).

The Realization Problem

The second part of the synthesis is the Realization problem. It can be simply stated as follows: given a function with any pole-zero pattern, find a network whose appropriate function has this desired pole-zero pattern. The realization scheme must include a systematic, direct method for finding the network and its element values.
We are finally in a position to consider the primary purpose of this article and that is the descrip. tion of realization schemes applicable to transfer functions of networks whose elements are restricted to resistors, capacitors and transistors. The elimination of inductors is justified in low-frequency applications where large values of inductance must involve bulky inductors if losses are not to be too large. This, in fact, is the classical application ${ }^{8}$ of RC-vacuum-tube synthesis. However, because of the various unattractive features of tubes, such applications have been restricted pretty well to situations where vacuum tubes and their attendant nuisances were anyhow present. The transistor has revived interest in this field and has made it worthwhile to use RC-Transistor synthesis in higher frequency ranges than formerly used. The synthesis procedures described hereafter are valid only in those frequency ranges for which the low-frequency model of the transistor-3 resistors and one controlled source which are all independent of fre-quency-is accurate. Accordingly, the frequency range for which the synthesis procedures are accurate may be up to 1 kc for one transistor type and possibly up to 50 kc for others.

Fig. 4. Pole-zero patterns of filter methods: (a) represents a band-pass filter, (b) low-pass, (c) high pass.

(b)

Practical design methods for transistor-resistor-capacitor filter networks are presented in this series of two articles. These design procedures are particularly useful in low frequency applications-where high- Q inductors are bulky and expensive. To enable the reader to appreciate the scope and generality of the method a certain background in pole-zero concepts and in modern network synthesis is necessary. A review of elementary network theory is included in the appendix.
Part I of this series presents theory background and the Negative Impedance Converter method of design. Part II, in the next issue of ELECTRONIC DESIGN, will present the RL-RC Synthesis method, and will give a design example to show the immediate application of modern synthesis to transistor-restistor-capacitor network design. Enough detail is given to permit its immediate exploitation by the engineer.

FOR ALMOST every type of realization problem there is a variety of procedures and networks available to do the job. An important practical and theoretical problem is that of selecting the best. There is no unique answer to this question until one decides what he wants to optimize. If the minimum number of elements is the most important factor, method A may be the best. If the maximum gain is what is wanted, B or C may be the best. Nevertheless it is probably correct to say that in network synthesis in general, too little has been done in this matter of classification of optimum realization methods.

In active synthesis a reasonable figure of merit for comparing methods of realization is the gain/ sensitivity ratio for a given number of active elements. In any method of realization one should try to obtain the maximum gain to sensitivity. The designer should also have the freedom to trade gain for sensitivity or vice versa, as in amplifier design, where gain may be traded for bandwidth.

Sensitivity

If any particular realization scheme requires very precise element values the technique is probably impractical. This matter of tolerances on element values and alignment difficulties comes under the heading of sensitivity, a quantitative measure of how sensitive the desired function is to variations in element values. In active network synthesis the sensitivity function is of even greater importance because of actual variations in the parameters of the active element with operating point, dynamic level and temperature. One sensitivity function that is popular is the inverse of the one defined by Bode ${ }^{7}$,

$$
S_{k}^{P}=\frac{d F / F}{d k / k}(4)
$$

i.e., the sensitivity of F to k is the percentage change in F divided by the percentage change in k, for small changes only. Equation (4) is itself a function of fequency and some care must be taken in
its interpretation. Another sensitivity function which is perhaps more easily interpreted and practical in realization problems is

$$
S_{k}^{p_{0}}=d p_{0} \frac{d k}{k}(5),
$$

where $d p_{0}$ is the actual shift in the pole-or zeroat p_{0} (due to the change in k) divided by the relative change in k. Equation (5) gives the sensitivity of the pole positions-or zero positions-to the element k. Thus in Fig. 5 , if a pole originally at A shifts to B when k changes to $k+d k, S_{k}^{p_{o}}=\frac{\overline{A B}}{d k / k}$, where $\overline{A B}$ is a phasor (has magnitude and angle). The angles of $s_{k}^{p_{o}}$ may be more important than its magnitude. For example in a band-pass filter -Fig. $4(\mathrm{a})$ - with poles close to the ω axis, if $S_{k}^{p_{\nu}}$ has zero angle, a positive change in k drives the pole towards the imaginary axis and if sufficiently large, may cause instability.

Transfer Function Methods

Networks consisting of resistors and capacitors only have their transfer function poles restricted to the negative real axis. Most interesting transfer functions have complex poles (Fig. 4 in appendix). Therefore the basic problem in Transistor-R-C synthesis is that of realizing complex transmission poles that are unrealizeable with R's and C's alone.

Negative Impedance Method

A method involving realization of the negative of an RC impedance was first suggested by Linvill. In Fig. 6,

$$
\begin{equation*}
F(s)=\frac{I_{c}}{\boldsymbol{E}_{i}}=\frac{y_{21 a} y_{21 b}}{y_{22 a}+y_{11 b}} \tag{6}
\end{equation*}
$$

where y_{210} is the short circuit transfer admittance of A defined in Fig. 7(a),$y_{28 a}$ is the short circuit output admittance of A defined in Fig. 7(b), $y_{11 b}$ is the short circuit input admittance of B defined in
$7(\mathrm{c})$. Now the zeros of $F(\mathrm{~s})$ in equation (6) are given by the zeros of $y_{21 a} y_{21 b}$ and the poles of $F(s)$ are given by those values of s for which $y_{2 \Omega a}+y_{11 b}$ is zero. Suppose the desired

$$
\begin{equation*}
F(s)=\frac{K N(s)}{s^{2}+\xi \omega_{n} s+\omega_{n}^{2}} \tag{7a}
\end{equation*}
$$

We write

$$
\begin{equation*}
F(s)=\frac{K N(s) /(s+\sigma)}{\left(s^{2}+2 \xi \omega_{n} s+\omega_{n}{ }^{2}\right) /(s+\sigma)} \tag{7b}
\end{equation*}
$$

The number σ may be any positive number but for maximum efficiency $\sigma=\omega_{\mathrm{n}}$, and this value is used in the following. The breakdown is now made:

$$
\begin{gathered}
y_{22 a}+y_{11 b}=\frac{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}{s+\omega_{n}} \\
=s+\omega_{n}-\frac{2 \omega_{n} s(1-\xi)}{s+\omega_{n}}
\end{gathered}
$$

Fig. 8. Property of Negative Impedance Converter. A negative impedance appears at input when it is terminated by a positive impedance.

Fig. 5. A change in k to $k+d k$ will shift a pole along a phasor as from A to B, with a resultant change in sensitivity inversely proportional to the fractional change in k.

Fig. 9. The block diagram of Fig. 6 becomes this network when an NIC is used.
 network of Fig. 9 may be replaced by R_{1} and C_{1}. Fig. 7. Short cirevit transfer admittonce
of A and B of Fig. 6. (a) $Y_{010}=1 / E_{\text {; }}$ (b) $Y_{\text {ses }}=1 / E_{F}$ (c) $Y_{\text {Lib }}-1 / E$.

Fig. 6. Block diagram of circuit to be analyzed by negative impedance method.

Fig. 10. A passive network is added to the NIC of Fig. 9.

Fig. 11. 1f $\mathrm{N}(\mathrm{S})=5$ the A .

Fig. 12. An ideal Negative Impedance Converter. Ideal current sources are required.

Fig. 13. The approximate transistor realization of the NIC.

Fig. 14. Possive poles at $-\omega_{n}$ are moved along the circle in the directions shown. If the action is stopped at $A A^{\prime}$ sensitivity is fair and stability reasonably good. At $B B^{\prime}$, however, sensitivity and stability are poor.

We pick,

$$
\begin{equation*}
y_{22 a}=s+\omega_{n}, \quad y_{11 b}=\frac{-2 \omega_{n} s(1-\xi)}{s+\omega_{n}} \tag{9}
\end{equation*}
$$

If $\xi<1$ (corresponding to $Q>0.5$), $y_{11 b}$ represents the short circuit input admittance of the negative of an RC network. Linvill uses a negative impedance converter (NIC) ${ }^{8.9 \cdot 10.11}$ to do this. The NIC has the property shown in Fig. 8. Its input impedance is $-Z$ when it is terminated by the impedance Z. Accordingly, the block diagram of Fig. 6 becomes the network of Fig. 9. The same method may be used for any number of poles. For example, if the denominator of the transfer function is $\left(s^{2}+2 s+2\right)\left(s^{2}+4 s+8\right)$, on may write

$$
\begin{gather*}
y_{22 a}+y_{11 b}=\frac{\left(s^{2}+2 s+2\right)\left(s^{2}+4 s+8\right)}{(s+1)(s+2)(s+3)} \tag{10}\\
=s+\frac{4 s}{s+2}-\left[\frac{2.5 s}{s+1}+\frac{(25 / 6) s}{s+3}\right] \\
y_{22 a}=s+\frac{4 s}{s+2} \tag{11}
\end{gather*}
$$

(representing a passive RC
admittance), and

$$
\begin{equation*}
y_{11 b}=-\left[\frac{2.5 s}{s+1}+\frac{(25 / 6) s}{s+3}\right] \tag{12}
\end{equation*}
$$

may be realized by means of an NIC followed by a passive network as shown in Fig. 10. In general, if the transfer function denominator is $\mathrm{D}(\mathrm{s})$ of degree n, one writes

$$
\begin{equation*}
y_{22 a}+y_{11 b}=\frac{D(s)}{\left(s+a_{1}\right)\left(s+a_{2}\right) \ldots\left(s+a_{n-1}\right)} \tag{13}
\end{equation*}
$$

and makes a partial fraction expansion of eq (13) leading to
$y_{22 a}+y_{11 b}=s+\sum^{i} \frac{A_{i} s}{s+a_{i}}-\dot{\sum} \frac{B_{j} s}{s+a_{j}}(i \neq i)$
and apportions:

$$
\begin{equation*}
y_{22 a}=s+\Sigma \frac{A_{i} s}{s+a_{i}}, y_{11 b}=-\Sigma \frac{B_{j} s}{s+a_{j}} \tag{15}
\end{equation*}
$$

In order to realize the transmission zeros as demanded by $N(s)$ in eq (7), $y_{z 民 n}$ and $y_{11^{h}}$ must each be developed in such a manner as simultaneously to obtain the desired zeros. For example if $N(s)=s$, then in place of the A network of Fig. 9, the one shown in Fig. 11 may be used. More information may be found in the literature ${ }^{12}$ on the art of realizing driving point admittances (or impedances) so as to simultaneously obtain desired transmission zeros. In concluding this section the design values for realizing equation (7) with $N(s)=s$, are given below. The appropriate network is drawn in Fig. 11.

$$
\begin{aligned}
C_{1}=\frac{I}{m} \text { farads, } R_{1} & =\frac{m}{\omega_{n}} \text { ohms }, R_{2}=\frac{m}{2 \omega_{n}(1-\xi)} \text { ohms }, \\
C_{2} & =\frac{2(1-\xi)}{m} \text { farads }
\end{aligned}
$$

In the above m may be any positive number and can be chosen for convenience. For example if ω_{n} $=5000$ radians per sec and $\xi=0.25$, a convenient value for m might be 10^{7}, leading to $C_{1}=0.1 \mu \mathrm{~F}$.

The Negative Impedance Converter

Various negative impedance converter circuits have been described. The reader who is interested in building an NIC may consult the references for details. The circuit of Fig. 12 represents an ideal NIC and requires ideal current sources. Fig. 13 represents the approximate transistor realization of Fig. 12. Various compensation schemes may be used to compensate for the non-ideal nature of the transistor. These are described in the references. Should there be any patent difficulties in connection with the transistor NIC circuits, one may use circuits ${ }^{13.14}$ other than the NIC method for the realization of negative RC impedances.

Whenever a negative impedance is realized, positive feedback must be used. The dangers of positive feedback are well known. When poles close to the imaginary axis are obtained by the above methods, large numbers are being subtracted from each other, with resultant poor sensitivity. The pole sensitivity, $S_{k^{o}}^{p^{o}}$ discussed previously, is convenient as a quantitative measure of the sensitivity. For the single complex pole-pair case, under the best of circumstances the pole sensitivity to the negative impedance conversion factor is approximately $\omega_{n} \underline{0}$. This means for example that if the design Q is 10 , a 5 per cent drift in the conversion factor leads to an unstable system. In general, for small changes if the conversion factor changes by x per cent, the Q changes by 2Qx per cent. When two pole pairs are attempted by this method, a change in the conversion factor by x per cent changes the Q by $4 Q^{2} x$ per cent. This poor sensitivity for poles close to the imaginary axis may also be seen by referring to Fig. 14. The passive poles at $-\omega_{n}$ are moved-by the negative impedance conversion factor-along the circle in the directions $A B, A^{\prime} B^{\prime}$. If poles far from the imaginary axis are being realized (e.g. low or high pass filters), the action is stopped in the neighborhood of $A A^{\prime}$ and the sensitivity is not bad-there is little risk that drift in the conversion factor will cause the network to become unstable. However if the action is stopped at $B B^{\prime}$, corresponding to a band-pass filter, the sensitivity is poor, and there is much greater danger of instability. The conclusion therefore is that this particular method involving the realization of negative impedances is useful providing no high Q poles are involved. The NIC scheme is very attractive because it can be used for any number of complex poles without too much algebraic effort, and because the active and passive portions of the network are isolated.

References will be found in Part II of this series.
circle 400 ON READER-SERVICE CARD FOR MORE INFORMATION

Since the choppers must fail, install a MAGNETIC MODULATOR for life

A Converper With Hiah Shock and Vibration Resistance and Practically Unlmited Lite. Opeerciton in Ambient Temperciture:s From- $70{ }^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$ $\left.\begin{array}{l}\text { LOW IEVEL DUAL } \\ \text { POIARITY OC SIGNALS }\end{array}\right\}$ CONYERTED $10 \rightarrow\left\{\begin{array}{r}\text { PHASE REVERSING } \\ \text { SUPPRESSED CARRIER } \\ \text { MODULATED ENVFIOPE }\end{array}\right.$

INPUT
INFORMATION
PHOIO CELL
thermocouple
analog data
STRAIN GAUGI MAGNEIROMEIER

MICROSIN LOW IEVEL DC
voliagt

The meagine:ic Modulator is desigmed to convint low level dual polarisy DC signals into AC signals of cirreisponding amplifude and phase sense.
We spucialize in control syssoms and MA GNETIC AMPLIFIER components for automaitic fightr. Fire contres, analog computers, eguided missiles, nuckear applicalions, anfemmes and qual furrats, commercial power amplifiers, and contiol systam:.

PARAMETER		:RPIIT MMDULAYORS
Type Nr	10\% - - -	199M 3111030
Frevation firguenty		$361,-410$, PS
Sipmal is maing ti: $\mathrm{he}^{\text {e }}$	*	1000 ohms
AC [ocilation vulls	1519	50 valts RMS
Input Sirnal Hanp:	$\cdots \underline{\mu}$	$\underline{E}=200 \mathrm{\mu a}$
ai Ontput	-r, RMS Pt, et Re, : \sim	-IV RHLS AOX CPS Phas: Rev
civeril inmoming	1+816milis	1×1116.11
Nuill Amplitut.	Sal RMS Msamum	jRMV RMS Masumumi
riulpu' Impediner	20 men uhme	20000 olinis
Rerpons: Cuive		

PARAMEIER		THERMOCGUPLE CGNVERTERS
Type No	1548.369 ${ }^{\text {d }}$	MTC-536-10
	60 CPS	込-493 CPS
Sipral Windin? DC Res	800 ohmes ± 1,	i) ohms $=10$
AC Ercitation Volls	3V RMS	6 volls RMS @ 100 CPS
Imin : Sigen Furs	$- \pm 50042$	$0- \pm 20$ millivolts
AC Gulput	$0 \rightarrow$? SV RMS Phase Rev	-1 SV RMS Prase Rev
Overall Dimierions		1 $+1116 \times 118$
Prula is intior	2siti, RMS Maxmuin	20 Millivolts
Dituut ligoptance	5K ohms	20000 ohms
Respunse Curve		

Common Component Receiver

Table 1. Parts list of the common component receiver

VI, V2, V3, V4	12BE6
R1A, R1B, R6	$47 \mathrm{~K} 1 / 2$ watt
R2, R4, R8A,	

$\mathrm{ClA}, \mathrm{ClB}, \mathrm{C} 2 \mathrm{~A}, \mathrm{C} 2 \mathrm{~B}$ Variable capacitor C3, C5, C7, C9 $220 \mu \mu \mathrm{f}$ discap C4A, C4B, C6, $\mathrm{C}, \mathrm{Cl2A}, \mathrm{Cl} 2 \mathrm{~B} \quad 0.02 \mu \mathrm{fd}$ discap $\mathrm{Cl} 3 \quad 0.15 \mu \mathrm{fd} 200 \mathrm{v}$ $\mathrm{ClO}, \mathrm{Cll} \quad 20-40 \mu \mathrm{fd} 150 \mathrm{v}$ electrolytic

L1	Loop antenna
L2	Oscillator coil
L3, L4	455 kc i-f transformer
T1	Output transformer

CRI Selenium rectifier Speaker 4 in.

Table 2. Comparison of recommended spare parts for conventional and common component receiver

	Conventional (P-B5R1)	Common Component
Tubes	$\begin{aligned} & 1-12 B E 6 \\ & 1-122 A 6 \\ & 1-12 A V 6 \\ & 1-5055 \\ & 1-35 W 4 \end{aligned}$	1-12BE6
Resistors	$\begin{aligned} & 1-22 \mathrm{~K} \\ & 11-220 \Omega \\ & 1-2.2 \mathrm{meg} \\ & 1-4.7 \mathrm{meg} \\ & 1-220 \mathrm{~K} \\ & 1-.47 \mathrm{meg} \\ & 1-150 \Omega \\ & 1-68 \Omega \\ & 1-1000 \Omega \end{aligned}$	$\begin{aligned} & 1-47 \mathrm{~K} \\ & 1-330 \Omega \\ & 1-1 \mathrm{meg} \end{aligned}$
Capacitors	$\begin{aligned} & 1-.047 \mu \mathrm{f} 200 \mathrm{~V} \\ & 1-220 \mu \mu \mathrm{f} \\ & \text { discop } \\ & 1-5000 \mu \mu \mathrm{f} \\ & \text { discap } \\ & 1-470 \mu \mu \mathrm{f} \\ & \text { discap } \\ & 1-40-20.150 \mathrm{v} \end{aligned}$	$\begin{aligned} & 1-.02 \mu \mathrm{f} \\ & \text { disisco } \\ & 1-220 \mu \mu \mathrm{f} \\ & \text { discap } \end{aligned}$

Schematic diagram of the common component receiver. All tubes are 12BE6 pentagrid converters and only 3 valoes of resistance and capacitance are used.

N LINE with the common component philosopny of design being advocated by the military, a conventional 5 -tube ac-dc receiver was modified, reducing the spare parts inventory from 19 to six parts. The receiver originally contained nine values of resistors, five values of capacitors and five different tubes. It now contains three values each of resistance and capacitance and 1 tube-type.
The major design problem was the selection of a tube suitable for use in all stages. In this case a 12BE6 pentagrid converter was used. B+ requirements were met by utilizing a selenium rectifier since it was considered impractical to parallel several low-current tubes for this function. These rectifiers when operated at suitable ratings are reliable enough to be considered permanent parts, and are left out of the spare parts inventory.
The schematic shows the design of the PackardBell unit. Parts cost for production is somewhat greater than for the original 5 -tube receiver, because of the increased amount of parts that were necessary to reduce the number of part-values. The parts list is shown in Table 1.
The audio output requirement of most military and similar equipment is small and can be met easily by many conventional tubes which were not designed for this function. Dual purpose tubes such as pentode-triode combinations offer great design flexibility for more complex pieces of equipment. Additional power, when necessary, can be had by push-pull operation.
Selection of the number and values of resistors and capacitors to be used is dependent on the space available and the extent to which spare parts reduction is required. Some optimum compromise must be made since it is normally undesirable to use more than two components in series or parallel to give a required value. The additional space requirement may not be warranted.
A comparison of spare parts inventory for the original 5R1 and the new receiver is made in Table 2 , and it is here that the advantage of the Common Component Concept is manifest. The servicing of the equipment is substantially simplified, and in the event of tube failure non-skilled personnel can make tube replacements, since there is no chance of putting the wrong tube in a socket.
Designed by Packard-Bell Technical Products Division, 12333 W. Olympic Blvd., Los Angeles, as a demonstration of the CCC-Common Component Concept-the receiver was commended by Major Gen. Corderman, Deputy Chief Signal Officer.

first $_{\text {in Autio }}$

 first in Video
and first in Instrumentation

Write for complete specifications

MINNESOTA MINING \& MANUFACTURING COMPANY DIVISION
2049 South Barrington Ave., Los Angeles 25, California
80 Washington Stroet, Hempstoad, Now York
CIRCLE 24 ON READER-SERVICE CARD FOR MORE INFORMATION

Abstract

This article is an investigation into the family of transistor building－block circuits using direct－ coupled transistor logic．It is based on the de－ velopmont of complementing flip－fiop circuits having no requirements on input pulse duration， and the design of a stooring mochanism to com－ plement the basic direct coupled saturation if p－ flop．Part I of this article dealt with basic steer－ ing concepts and the principles of conditional steoring circuits，culminating in a sof of design rules（ELECTRONIC DESIGN，June 15，1956）．

Conditional Steering with Magnetic Cores

Of the wide variety of circuits which can be de－ signed in accordance with the above rules，one of the most interesting is given in Fig．1．This circuit illustrates the application of conditional steering to magnetic cores and has several unique characteris－ tics．The method of utilization of cores makes is possible to achieve higher apparent squareness ratios or higher speeds than the core characteristics would indicate．
The following description of the complementing flip－flop action will serve to illustrate the mechan－ ism by which these properties are achieved．Refer－ ring to Fig．1，assume the initial condition to be TR－2＂off＂and TR－3＂on＂．By virtue of the direct coupling，TR－1 must be＂on＂and TR－4＂off＂．TR－1 collector current will flow in windings $N 1_{b}$ and $N 2_{d}$ on the two cores．These windings are of sufficient turns and of such polirity to hold the left core in the ＂ 1 ＂state and right core in the＂ 0 ＂state．（the mag－ netomotive force contributed by base current to TR－3 through N_{c} is negligible in comparison）．Trig－ ger current in $N 1_{a}$ and $N 2_{a}$ applies mmfs to switch both cores to the＂l＂state，thereby producing out－ put only from the switched core．The induced volt－ age pulse in N 2 c will be negative at the dot（base） end，turning on TR－2 and reversing the state of the flip－flop．
Because the triggering mmf is by necessity of sufficient magnitude to overcome the opposite mmf produced by the flip－flop，the triggering current pulse holds the cores unconditionally in the＂ 0 ＂ state for the duration of the pulse．Upon conclusion of the trigger，the cores are released to the control of the flip－flop．The half cycle is completed when the mmf applied as the result of the new flip－flop state switches the right core to the＂ 0 ＂state．As before，the spurious pulse generated by this core switching is in the direction to maintain the new state of the flip－flop and has no effect on the circuit．

Direct Coupled Transistor Logic Complementing Flip－Flop Circuits－II

E．G．Clark
Burroughs Corp．Research Center Paoli，Pa．

A number of features result from this simple mode of operation．To appreciate these，it must be recognized that：
－The internal saturation flip－flop has a definite trigger threshold．
－At rest，the state of buth cores is controlled by the flip－flop．
－The dc mmf applied to the core controls its opera－ tion，giving，in effect，a biased core whose natural remanence point is relatively unimportant．
－The steering action of the cores does not require them to switch completely．
The performance of the complete circuit is related to the above characteristics as follows：
Core Squareness Not Critical．The trigger thresh－ old gives the internal flip－flop sufficient noise im－ munity to permit reliable operation on relatively low signal to noise ratios．The application of a dc
mmf makes it possible to accurately establish a pseudo－remanence，or dc operation point，by choice of turns and steady－state transistor collector current．Since the core－controlling transistors are either cut－off or bottomed，collector current will be determined only by the collector supply voltage and series resistance， $\mathrm{R}_{\mathrm{L} 1}$ ．This pseudo－remanence can be exploited to provide either large signal－to－noise ratio or to make possible operation with non－square cores such as the ferrites．The degree of nonlinearity required of the core is determined by the available mmf and the minimum signal－to－noise ratio re quired for reliable flip－flop triggering．
High Speed Operation．The same factors which make core squareness noncritical make it possible to operate the flip－flop with pulse repetition fre－ quencies considerably in excess of those predicted on the basis of complete core switching．Once the

Fig．1．Circuit illustrating the applica－ tion of conditional steering to magnetic cores．Higher speeds can be achieved than core characteristics would indicate．

Fig．2．RC coupled
circuit with NOR
circuit substifuted
for the DCTL gates．
ange of flux in the core is sufficient to trigger the f ,-flop, completion of core switching is not essen1 I to flip-flop action, provided that by the time of the next pulse the core is sufficiently close to its 1. posite remanence (or "pseudo-remanence") state to initiate the next cycle. Accordingly, a high pulse wetition frequency can coerce the cores into altimate states in a much shorter period than refuired for complete switching without prejudicing rcliable flip-flop triggering. Operation of the cores will then be around a family of minor loops determined by operating speed.

Increasing the frequency will require higher switching mmf's and reduce the signal-to-noise ratio. Results with a typical square tape core indicate that operation is possible at a signal-to-noise ratio of $2: 1$ at a frequency up to $10: 1$ higher than that corresponding to a complete core switching period. In addition to the above-mentioned features, this circuit also provides de level indication of the core state and could be employed for nondestructive read-out. The amplifying transistors on the outside of the figure serve to isolate the switching waveform appearing across the $\mathrm{R}_{\mathrm{L} 1}{ }^{\prime}{ }_{\mathrm{B}}$ from the internal flip-flops and can be probably eliminated for many applications.
Still another permutation is illustrated in Fig. 2. This differs from the previous RC coupled circuit by departing from DCTL gates. In their place is substituted the logically equivalent resistive OR with transistor inverter, or as it is sometimes called, the NOR circuit.

The circuit of Fig. 3 is one of many possible variations on the basic RC coupled theme. It evolved as a configurational modification of the basic circuit (Part I, Fig. 4, ED, June 15. 1956) and has unique properties.

Fig. 3. Variation on the basic RC coupled circuit. The coupling capacitor has been moved to the input in order to follow it with current gain.

Fig．4．Two stages of conditional steering shift register，utilizing the parallel OR，RC coupled gate．

Note that the coupling capacitor has been moved to the input in order to follow it with current gain． This makes it possible to reduce the stored charge and hence the size of capacitor and the recovery time constant．In addition，a new form of gate is employed．

The gate transistors steer by inhibiting base cur－ rent in the set and reset transistors．The gate is en－ abled when the steering transistor is off，making it possible for a negative－going input to be differen－ tiated into the base resistance．Base conduction in the disabled gate is prevented by the collector clamping action of the ON steering transistor．
An important speed－up action occurs in the dis－ abled gate once the flip－flop is triggered．As soon as the flip－flop changes state，the enabled gate is disabled by conduction in the steering transistor．

Conduction in this transistor serves the two impor tant speed－up functions of pulling a reverse base current in the triggering transistor and discharging the input capacitor．In other words，as soon as the flip－flop has accepted enough charge to trigger，the excess charge on the input capacitor is quickly re－ moved by collector clamping．

The previously disabled gate is likewise enabled and time race is theoretically possible if the input trigger continues to fall at the initial rate．In prac－ tice，the margins are sufficient to permit quite con－ servative design．This is due in part to the fact that a slower trigger fall time which might be expected to cause time race will also delay the initial trigger． As a result，the volts per micro－second remaining after trigger to produce time race is negligible． especially with an exponential fall time．In practice，

ADVANCE（TRIGGER）LINE （PRESET OMITTED FOR CLARITY）
circuit has been demonstrated to operate satist. torily with more than a ten to one difference inpit fall time

「his circuit operates in excess of 10 mc with surface barrier transistors, with a maximum frequency oscillation of 30 mc . It is even simpler than the wrallel OR circuit but is slightly more susceptible to thermal effects due to the cascaded direct-coupled stages. For high-speed counter work, the stcering-transistor collector provides a convenient fast-propagate output since it is not necessary to wait for the basic flip-flop to trigger.

Shift Register Application So far this article has covered only the application of conditional steering to complementing flipflops and binary counters. Perhaps an even more important application is in the design of shift registers. The circuit of Fig. 4 utilizes the parallel OR, RC coupled gate (from the complementing flip-flop of Fig. 4, Part I, ED, June 15, 1956). The only difference from the counter application is that the gate outputs are connected to the stage adjacent instead of back on itself. This is possible since connected to the stage adjacent instead of back on itself. This is possible since the steering required for unconditional transfer is basically the same as that required to complement a flip-flop. Because unconditional transfer is an important logical operation, a means for accomplishing it without time race is of general value. Parallel read-out, for example, can be performed with identical circuitry.
The performance of this register is essentially the same as that already given for the equivalent complementing flip-flop. In this particular circuit, recharging of the capacitor generates a negative noise pulse following the turn-off pulse.
The effect is negligible, however, since the noise pulse is driving against a bottomed collector junction condition.

Shift Register Circuits

An interesting application of conditional steering to a special-purpose shift register is the counter circuit illustrated in Fig. 5. This circuit employs an end-around carry and a preset which set all stages except one in the zero state. The single one is advanced around the ring, one stage per input pulse. This is the form of counter sometimes employed as a cycle distributor. It is interesting here because conditional steering provides a convenient gating system to provide counting from near-static to mul-ti-megacycle rates. Only one-half the normal register gate is required. The output of this gate simultaneously resets the stage carrying the ONE as it advances the ONE to the adjacent stage. (Based on a paper presented at the joint IRE-AIEE-U. of Pa. 19.57 Transistor and Solid State Circuits Conference, Philadelphia, Feb. 1957).

plunger adjustment optimizes tube performance. Resonator voltage is 2200 to 2400 v . The focus voltage is -30 to -60 v . Repeller voltage is -100 to -400 v . Great care is necessary in manufacturing this tube to obtain extremely precise tolerances and desirable electrical characteristics.

An adapter will connect the output to an RG-99/v waveguide. Maximum dimensions are $5-5 / 8 \times 4-9 / 16 \times 4-1 / 8 \mathrm{in}$. For more data turn to the Reader's Service card and circle 30.

Planar-type impregnated cathode used in 4 mm reflex klystron. Tungsten body a is impregnated. Molybdenum body b encircles heater c.
"Is you nood flexible connections...
why waste time with

or this!

Interlock PLUGS

Provide Automatic Locking Quick Disconnect, Vibration Proof Terminals for Connecting

Wire to Wire
Wires to Panels

Wires to Terminal Strips

The automatic locking - quick disconnect feature, exclusive with all Interlock Plugs, makes them ideal for use wherever frequent rearrangement of circuitry is necessary. Designed to stay locked, even when subjected to tremendous vibration and temperature changes, Interlock Plugs disconnect quickly and easily from their jacks or eyelets when intended. Interlock has been specified by manufacturers of aircraft, computers, machine control devices, printed circuits and other electronic equipment. Write for complete information.

CIRCLE 31 ON READER-SERVICE CARO FOR MORE INFORMATION

ELECTRONIC WEEK

combines with

Electronic Daily

1957

Be sure to get your copy of Electronic Week -
published daily during WESCON. All the last minute developments, program changes, events,
meetings - PLUS - the added value of Electronic Week's regular news section. Look for your
familiar Daily, now bigger and better than ever before, free at Hayden's booth at WESCON.
a HAYDEN publication
NEW YORK • CHICAGO • LOS ANGELES

Voltage Stress Effects on

Charles H. Bridenbaker
Capacitor Dept.,
General Electric Co.

N THE design of many electronic circuits, the insulation resistance of capacitors is an important consideration. It is therefore important that the design engineer know the factors which affect insulation resistance, particularly in paper dielectric capacitors, the most common type.

It is generally understood how insulation resistance varies with temperature; resistance limits at room temperature and a maximum rated temperature have been established in MIL-C-25A specifications. But very little has been published about how insulation resistance changes with voltage stress. Since the variation between 100 and 500 v dc is far greater than might be expected, a series of tests to demonstrate this variation with voltage were made in our laboratories at five different voltages on paper dielectric capacitors. Three different impregnants were used-mineral oil, G. E. permafil 2860 and polyisobutylene. Since the electronic designer is primarily interested in insulation resistance at the maximum operating temperature, an ambient of 125 C was selected for this investigation.

Fig. 1. Megohms \times microfarads vs. voltage stress on permafil-impregnated paper dielectric capacitors. Ambient temperature was 125 C .

The test units were placed in a preheated, forced circulation oven set at 125 C . The insulation resistance readings were started after units had been in the oven for one hour. Electrification time was one minute and readings were first made at the low potential. The applied voltages were $100,200,300$, 400 , and 500 vdc. All units were read at one potential before going to the next higher, and the units were shorted after each reading.
For subminiature metal-clad tubular capacitors the typical minimum thicknesses of the dielectric are as follows:

Rating	Total Dielectric Thickness	Stress in Rated Volts per Mil	Stress in Volts per Mi at 100 Vdc
100	0.4 mil	250	250
200	0.5 mil	400	200
300	0.6 mil	500	167
400	0.7 mil	571	143
600	0.9 mil	667	111

From these statistics it is evident that insulation resistance readings should be made at rated voltage.

Fig. 2. Megohms \times microfarads vs, voltage stress on mineral oil impregnated paper dielectric capacitors. Temperature 125 C .

Capacitors

MIL-C-25A specifications permit voltages to be between 100 and 500 v dc but no greater than rated voltage of the unit. They do not specify that each unit must be tested at rated voltage. This means that a 500 v dc unit could be tested at 100 v dc and still meet MIL-C-25A specifications.
Consider a paper dielectric capacitor with a 600 v dc rating, treated with permafil. Typical thickness of the dielectric is 0.9 mils, as in the Table. Insulation resistance at 100 v dc, 125 C , is $140 \mathrm{meg}-\mu \mathrm{f}$, minimum (Fig. 1). The insulation resistance at 500 v dc, 125 C , is $34 \mathrm{meg}-\mu \mathrm{f}$, minimum. There is approximately a 410 per cent difference between the 100 v dc and 500 v dc values.
In the case of another 600 v dc rated capacitor, this time treated with polyisobutylene, the typical thickness of the dielectric is again 0.9 mil. Insulation resistance at $100 \mathrm{vdc}, 125 \mathrm{C}$, is 33 meg - $\mu \mathrm{f}$, minimum (Fig. 3). The insulation resistance at 500 v dc is 10 meg- $\mu \mathrm{f}$ minimum. Here there is approximately a 330 per cent difference between 100 and 500 v dc insulation resistance values.

Fig. 3. Megohms x microfarads vs. voltage stress on polyisobutylene-impregnated paper dielectric capacitors. Temperature 125 C .

NEW HIGH TEMPERATURE POTENTIOMETERS AND TRANSDUCERS

Fairchild announces five new lines of high temperature components. Five general categories are available: single-and multi-turn wire-wound potentiometers, FilmPot® potentiometers and trimmers, and precision pressure transducers.

High temperature lubricants, insulations, solders, rhodium-plated parts, and the elimination of pressure contacts - all these have been designed, tested and incorporated into a complete line of high temperature units to give you precision potentiometers that will function accurately and reliably under high temperafunction accuratestions-to $150^{\circ}, 175^{\circ}$, or $225^{\circ} \mathrm{C}$.
Rotational life for FilmPot and wire-wound single turn potentiometers is 500,000 cycles; for multi-turn units-up to $1,000,000$ shaft revolutions. Load life is rated in excess of 500 hours exposure to hot spot temperatures.
Fairchild components research, implemented by critical production techniques and severe testing programs, is continuing to develop units for even higher
temperatures, and can offer constructive cooperation in guided missile and aircraft control programs.
For data sheets, or for assistance on specific problems, write to Fairchild Controls Corporation, Components Division, Department $140-81$ NI.

East Coast
 225 Park Avenue
 Hicksville, L. I., N. Y.

Wost Coast
6111 E. Washington Blvd. Los Angeles, Calif.

CIRCLE 33 ON READER-SERVICE CARD FOR MORE INFORMATION

YOUR

Coin test equals years of normal wear

Scrape a coin briskly over four product's name plate or decal. Chances are it will scratch the name plate or tear the decal right off. Not su with Metal-Cal.

Even under extreme conditions of temperature and abrasion, Metal-Cals remain bright and easy to read tor years. Metal-Cal, the original aluminum foil applique, is made of .003 inch aluminum, backed with an amazing adhesive requiring no screws, pins, rivets or heat for normal application.

And the eye appeal of Metal-Cal's shiny or matte aluminum finish plus a chorice of deep, rich colors... anodized, dyed and etched right into the metal, is a real sales tool in itself.

CIRCLE 34 ON READRR-SERVICE CARD FOR MORE INFORMATION

TIME delays from milliseconds to forty hurs with an accuracy of ± 3 per cent from -6.5 to 165 F are obtained by combining a nuclear battery (25 year shelf and use life) with gas dinde

Nuclear

Powered

Timer

 circuitry in one miniature unit. The timer weighs about six oz and is able to withstand extremes in pressure, vibration, jolt, jumble and brutal ac. celeration.

A nice thing about the Betachron, manufac. tured by Patterson, Moos Research Div. of Universal Winding Co., 90-28 Van Wyck Express. way, Jamaica 18, N.Y., is that it can be tested vir. tually ad infinitum to assure its reliability and timing accuracy. Even continuous short circuiting of the battery will not affect its life. The Betachron is used in pilot ejection systems, mis. sile arming and safety systems, missile self-destructors, missile parachute recovery, warheads, satellite timers and remote shut-off actuators. There is no radiation hazard: the AEC declares the nuclear battery may be treated as a conven. tional sealed source.
Settable Betachron units can be purchased with a 10 position selector switch to cover the time range from msec to 10 min . The standard Betachrons with time ranges from 1 msec to 60 $\mathrm{sec}, 1 \mathrm{~min}$ to 60 min , and 1 hr to 40 hr will give an output energy of 10,000 ergs; non-standard units with energy outputs up to 200,000 ergs can be furnished.
The Betachron consists of a nuclear battery (Fig. 1) and two cold-cathode gas diode-resistor circuits shown in Fig. 2. The battery is simply

al electrically insulated electrode in contact with a β-emitting radioisotope which comprises one plate of a capacitor. A brass case acts as the collactor and the other plate of the capacitor. β particles emitted by the radioisotope are collected, causing a potential difference to exist across the (apacitor.
When the battery is connected to C_{1}, D_{1} and R_{2} of Fig. 2, a pulse source of energy with essentially zero impedance is obtained. Patterson, Moos calls this the Raypak and markets it separately as well as part of the Betachron. The battery maintains C_{1} under charge at a voltage close to and determined by the breakdown voltage of the cold-cathode gas diode. If the Raypak is connected to the circuit consisting of R_{1}, C_{8} and D_{8} as shown, a time delay can be achieved when S closes. Capacitor C_{1}, which is charged to a regulated voltage close to the breakdown voltage of D_{1}, discharges through resistor R_{1} into capacitor C_{2}. When the voltage on C_{2} reaches the breakdown voltage of cold-cathode diode D_{z}, the diode conducts and discharges the energy available on C_{2} into the load. The time delay of such a circuit is dependent, of course, on the rating of C_{1}, R_{1} and C_{2} and the breakdown voltages of diodes D_{1} and D_{2}. The mathematical analysis of this circuit is as follows:

Initially:

$$
\begin{gathered}
Q_{1}=C_{1} V_{1} \\
Q_{2}=0 \\
\frac{1}{C_{1}} \int i_{1} d t+\frac{1}{C_{2}} \int i_{1} d t+i_{1} R_{1}=0
\end{gathered}
$$

Since

$$
\begin{aligned}
& i_{1}=A e^{k t}, \text { at } t=0 \\
& A\left(\frac{1}{C_{1} k}+\frac{1}{C_{2} k}+R_{1}\right)=0
\end{aligned}
$$

and

$$
V_{2}=V_{1} \frac{C_{1}}{C_{1}+C_{2}}\left[1-\exp \left(-\frac{C_{1}+C_{2}}{C_{1} C_{2} R_{1}} t\right)\right]
$$

From this expression and working from the energy content desired in the output pulse $\left(C_{8} V_{2}\right)$, it is possible to calculate values for the components necessary to provide a given time delay. The Betachron is small-2-1/2 in. diam x 1-1/4 in. long-rugged, light weight, encapsulated and hermetically sealed in a brass case. The switch for initiating the time delay is included in the timer and can be of the snap action, pull wire, or electrical signal type. The timer can be repeatedly tested before use to assure proper time delay and energy transfer.

For further information on this battery, turn to the Reader's Service Card and circle 35.

INDUSTRIAL OR MULTIPLE USE-Two horizontal DC amplifiers in standard 19-inch rolay rack with DUAL "reeti/ riter." Seven vertical amplifiers may be mounted actoss the rack in a similar manner.

PORTABLE USE - Amplifier firs rack attached to SINGLE "recti/ritor" to form infegral easy-to-sarry unit.

Meeting Report

Reliability

2nd RETMA Symposium on Applied Reliability Syracuse, N. Y., June 10-11

THE TENOR of the RETMA symposium was a quiet unanimous determination to realize future high numerical reliabilities in components and equipment. The problem in the past has been 1. to develop adequate techniques, 2 . to create departments whose responsibility is reliability, and 3 . to make engineers aware of the importance and necessity for being reliability-conscious. The latter two are principally the concern of management.

But they are expensive. A reliability department requires manpower, scheduling, departmental shifting and the establishing of standards for production. Management has needed to be convinced that the inevitably higher priced end-product would be paid for.

At this last RETMA symposium it looked very much as if management was being convinced. The attendance was pretty well split between members of the "management team" of companies and the design engineers. In papers presented engineers talked about the technical side of reliability, meth ods, procedures, and gave empirical data and statistics. Management talked about the need for reliability and expressed a determination to have it It is not desirable, they said, it is vital. All realized that a product with a high reliability coefficientor a manufacturing setup designed to produce reliable components and equipment, which is practically the same thing-will cost more initially
but they also realized that in the long run it will be cheaper. Reduced maintenance and less waste and less "shrinkage" at the end of a production run were given as the reasons for this long-term reduction in cost.

Cheaper or not, it looks as if an extensive reliability program throughout industry is getting under way. Of particular significance was the fact
that when Julian Sprague said, "Military contracts must be taken of the auction block," nobody disagreed, noloody objected. Mr. Sprague, of Sprague Electric Co., was speaking at a panel meeting at the symposium and was reminding his audience that the manufacturer who maintains a full reliability program cannot enter a competitive bid against a company that has no such profit restrictions. Military representatives on the panel, Captain Bull, USN, Col. Sladek, Army, and Col. Reiser, USAF, listened impassively, nodding agreement now and then as Sprague elaborated on this point.
Sprague went on to say that committees set up to investigate just what changes in regulations would be required to make it legal discovered that no changes are necessary. The contracting officers technically have the power to select bidders without being subject to regulations regarding price or bids. Of course, he added, contracting officers are pretty much subject to pressure and when a higher bid is accepted, must explain it. It is sometimes easier to accept the lower bid than go through the virtually inevitable investigations and questions.
For once we heard no one define reliability which we take as a healthy sign that work is going ahead reasonably smoothly. In the past every time somebody started to talk about reliability, he gave a definition. We recall one meeting where three hours were spent on trying to agree on what the word meant, with nobody aware of Hayakawa's principle of reducing an idea to its least abstract state. Nobody said, "When a piece of equipment works satisfactorily for as long as it is needed-that's reliability."
But this time the monkey wrench was not thrown in the works and information was communicated steadily. We were impressed with R. B. Bonney's
anosition of standard plug-in units as an aid to ruliability, more for the aid to reliable maintenance it suggested than for a high reliability coefficient. Engineering design and mechanical layout is simplified; drafting time is shortened by the use of standard symbols denoting the units; model shop assembly is made easier; and debugging can be done more quickly.
This is nothing new or radical. But we think it represents the kind of thinking that is going into maintainability today. It is apparent that the soldiers, sailors and Air Force technicians who will be operating the equipment may be relatively untrained. Extensive programs of training wont be necessary if operation and maintenance of the equipment is simplified.
Col. Sladek, Head of the Communications and Electronics Division, USAF, complained about the bill the Air Force was getting annually for contractor services. It costs them $\$ 6$ million a year to hire industry's servicemen to maintain equipment that Air Force technicians should be able to handle themselves. The Rand Corporation says the annual cost of electronic maintenance is twice the original cost of the equipment. Sladek cautioned later, however, that care must be taken in designing "throwaway" units. Be sure the module is small enough so it costs less to dispose of it than to repair it.
It should be pretty clear that the military is prepared to spend more money on the original cost of equipment . . . if it means that maintenance costs will be cut substantially.

We talked with R. E. Clark, of Britain's Admiralty. He said the most pressing problem at present was the mechanical design of electronic equipment. Later in his paper, Mr. Clark described procedures for achieving mature design. These are mainly matters of philosophy. Engineers, he maintains, must be educated carefully in reliable design procedures, and ought to have substantial experience with field equipment. He gives an example of a mature design: the soldered connection is always found high on the list of causes of equipment failure. Solderless joints proved out very well in extremely severe environmental tests. Much work has gone into making wire-wrapping tools. Mr. Clark concludes that as the process stands it is fairly mature.

We might cite Sprague Electric again to give an idea of the extent to which industry is planning to go. Sprague has spent four years and $\$ 1.5$ million in establishing a reliability department and a line of high reliability components. Six million component hours were spent in life testing. Later in the week at New York and Washington, Sprague resealed that it was producing a line of capacitors of such high numerical reliability that one would have (1) have 6,000 computers, each containing 60,000 (apacitors and run them steadily for six months before one capacitor failure would be noted.-TM

ENGINEER'S HANDBOOK

Two new CBS handbooks

The new CBS Technician's Handbook and Engineer's Handbook are complete. They contain data for receiving, special and picture tubes as well as crystal diodes and transistors. Designed for on-the-job use, they are single, compact, handy volumes that lie flat. They feature modern styling for quick, easy reference. Supplementary services are avail. able. Ask to see these Handbooks at your CBS Tube distributor's. You will want them both.

Reliable products
through Advanced-Engineering

CHECK THESE FEATURES

Technician's Handbook

- Comprehensive data for all popu. lar types
- Reference data for seldom-used types, grouped by application
- All popular special-purpose tubes and semiconductors
- 450 pages
- Handy $51 / 4$ by 9 inches
- Rugged plastic binder
- Appendix especially prepared for service technicians

Engineer's Handbook

- Complete RETMA engineering design data
- Seldom-used types tabulated for quick reference
- 300 two-color design curves
- 650 pages. Iwo colors
- Handy $81 / 4$ by $91 / 8$ inches 16 -ring metal binder Appendix includes description of terms, symbols, characteristics ratings, etc.

New Products

\triangle Products marked with a triangle (\triangle) are being exhibited this month at the WESCON Show. The company's booth number is included at the bottom of each product.

\triangle Compact Selenium Rectifiers 36 V Per Plate

Individual rectifier plates are capable of handling twice the current of conventional plates of the same dimensions, and feature input voltages up to $36 \mathbf{v}$ per plate. The low forward drop and high voltage capacity resulting from the Dualtron process reduces the number of plates required to provide the same output as other selenium rectifiers. Rectifiers of all circuit types will be available in plate sizes ranging from 1 in . to $6-1 / 4 \times 7-1 / 4 \mathrm{in}$.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Wescon Booth No. 1501-02.
CIRCLE 38 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Kilovolimeter 100,000 V Range

This high voltage vacuum tube voltmeter, model $\mathrm{J}-1003$, with a maximum range of $100,000 \mathrm{v}$ can measure voltages of various waveforms including pulses at frequencies from 10 cps to 20 mc with an accuracy of ± 3 per cent. Higher frequencies can be measured with slight loss in accuracy. The linear meter scale provides full scale readings of $2.5,5,10,25,50$, and 100 kv . Two inputs are provided, each equipped with a vacuum capacitor divider, arranged to permit measurement of balanced
or unbalanced circuits with either or neither side grounded. The range can be doubled by installation of accessory vacuum capacitors on the high voltage probes. Ordinarily the probe assembly is attached to the main instrument. The probe assembly may be removed to permit installation of the probes in close proximity to the high voltage circuits to be measured but with the meter at a safe distance. A jack is provided on the front panel to permit use of an oscilloscope for visual observation of wave forms being measured.

Jennings Radio Mfg. Corp., Dept. ED, P.O. Box 1278, San Jose, Calif.
Wescon Booth No. 1516-1517.
circle 39 on reader-service card for more information

\triangle Silicon Rectifiers
Mounted on Tube Base

Tube base mounted silicon replacements for vacuum tube rectifiers provide savings on filament power supply, cooler operation, and longer life and resistance to vibration and shock. The S6X4, a direct replacement for the 6X4 full-wave high vacuum rectifier tube, features an output of 85 ma dc max, an input voltage of 400 v rms , and a maximum peak current of 225 ma . Maximum piv is 1250 v ; the voltage drop, 6 v at 70 ma . The physical dimensions approximate the same over-all dimensions as those of the standard 6 X 4 tube, and will plug directly into the same tube socket. Testing over a range of temperature and environmental conditions indicates extreme reliability for the design characteristics, and maximum stability is realized under all mounting positions.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Wescon Booth No. 1501-02.
Circie 40 on reader-service card for more information

\triangle Rotary Joints

Operate at High Speeds

The high power rotary joints are capable of pressurization and operate at high speeds. The coupling is normally choke type, but in cases of large bandwidth or smaller sizes, contact finger type couplings can be incorporated for slower speeds. Coaxial joints can be furnished in $7 / 8,1-5 / 8$, 3-1/8, 6-1/8 and other line sizes and can be either 50 ohms, 75 ohms or other characteristics impedances. Wave-guide rotary joints are of the in-line type and feature broad band operation at high speeds. These cover complete frequency bands from 2.6 to 40 kmc and are capable of pressurization.

Diamond Antenna \& Microwave Corp., Dept. ED, 7 North Ave., Wakefield, Mass.

Wescon Booth No. 1814.
CIRCLE 41 ON READER-SERVICE CARD FOR MORE INFORMATION

Eccosorb CHW is a series of absorbers which reflect less than 2 per cent of incident energy at all frequencies above 50 mc . Eccosorb CHW is used in free space rooms where extremely broad frequency coverage is required. It is easily installed and has a smooth white surface for good light reflection. Outdoor exposure is also possible.

Emerson \& Cuming, Inc., Dept. ED, 869 Washington St., Canton, Mass.

Wescon Booth 1518-19.
CIRCLE 42 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Display Storage Tube High Writing and Erasure Speed

The 3 in . VTP 6992 is a storage type cathode-ray tube designed to present bright visual displays of television, radar or other types of electronically written information. Features of this tube are its ability to display tones and to write, hold and erase at the operator's option. Brightness is sufficiently high for easy viewing in bright daylight, and writing and erasure speeds are fast enough to present excellent displays of high speed data with good contrast. The VTP 6992 contains a storage structure mounted internally near the panel, and both a flood gun and an electrostatically deflected and focused writing gun supported in a single neck axially aligned at the rear of the tube. All gun connections are terminated in a diheptal base attached to the tube neck.
Vacuum Tube Products Co., Inc., Dept. ED, 2020 Short St., Oceanside, Calif.

Wescon Booths No. 2403, 2404.
CIRCLE 43 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Teflon-Insulated Taper-Pin

Solderless Press-Fit stand-offs are available for taper-pin connections. A turret lug may be provided if extra and soldered connections are required in addition to the taper-pin. Feed-thrus are available with taper-pin or soldered connections at either or both ends. Completely-insulated types, with metal insert entirely imbedded except for the flush end that takes the taper-pin connection, provide exceptionally long leakage path for elevated voltages. Since Press-Fit Terminals are Tefoninsulated, they mount directly on metal, thereby climinating uspal phenolic board with its troublesome and costly breakage. Patch-cord boards, utilizing taper pin connections, can be made with metal panels at considerable saving.

Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, New York.
Wescon Booth No. 2619.
circle 44 on reader-service card for more information

1 dc null detector

2 micro-microammeter

3 microvolt level de amplifier

4 microvoltmeter

\ldots and can
really take
a beating

KIN TEL'S ELECTRO-GALVO SOLVES ALL YOUR LOW-LEVEL DC MEASUREMENT PROBLEMS

Sensitive

Functionally equivalent to suspension galvanometers, but with far greater versatility, the Model 204A is the ultimate for DC null detection in low level bridge and potentiometer circuits. KIN TEL's chopper stabilized, all transistor design provides extreme sensitivity and rugged durability superior to conventional moving coil or electronic galvanometers.

Rugged

Immune to overload and shock, the current sensitivity of the Model 204A is 20 times greater than the sensitivity of high quality, mechanical current galvanometers. As a voltage galvanometer, the extremely high power sensitivity of the Model 204A makes it superior to low impedance moving coil instruments.

Versatile

This reliable, general purpose unit is ideal for use as a direct reading indicator for strain gage thermocouple and other current or voltage measurements in industry or laboratory. The 204A's simplicity of operation makes it the key to efficient production line testing. Its unequalled stability makes it ideal for low level DC amplification to extend the range of recording and other measurement instruments.

Representatives in all major cities.
WESCON BOOTHS 1603-1604

KINTER

(kay Lab)

Check these outstanding specifications

- 20 Micro Microamps Per Division Sensitivity
- ± 10 Microvolts to 10 Volts or \pm 0.001 Microamp to 1 Milliamp Full Scale Sensitivity
- Withstands Extreme Overload with No Zero Offset
- Transistorized-Rugged-Insensitive to Shock, Microphonics, Position
- Floating Input
- 7 Voltage or Current Ranges
- 10,000 Ohm Input Resistance
- 10^{-14} Watts Full Scale Power Sensitivity
- Equivalent Built-in Ayrton ShuntNo Accessories to Buy
- Use as Stable DC Amplifier with 1 Volt at 1 ma Output
- Less than 2 Microvolts Drift
- Less than 1 Microvolt P-P Noise

Model 204A Price $\$ 325.00$

For general high frequency applications, and for high speed computer switching circuits, design around Sprague surface barrier transistors. They are available now in production quantities from a completely new, scrupulously clean plant, built from the ground up especially to make high quality semi-conductor products.

TRANSISTORS • RESISTORS • MAGNETIC COMPONENTS CAPACITORS. INTERFERENCE FILTERS. PULSE NETWORKS HIGH TEMPERATURE MAGNET WIRE - PRINTED CIRCUITS

The four transistor types shown are the most popular. Orders for these units are shipped promptly. What's more, surface barrier transistors are reasonably priced. High quality and excellent electrical characteristics make them an economical solution to many difficult circuit requirements.

Sprague surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type number are manufactured to the same specifications and are fully interchangeable. You have two sources of supply when you use surface barrier transistors!

WRITE FOR COMPLETE ENGINEERING DATA SHEETS ON THE TYPES IN WHICH YOU ARE INTERESTED. ADDRESS REQUEST TO THE TECHNICAL LITERATURE SECTION, SPRAGUE ELECTRIC CO.. 347 MARSHALL ST., NORTH ADAMS, MASS.

CIRCLE 46 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

\triangle See at WESCON

This blower's recess in the base of the company's modular frames provides the maximum delivery of filtered air while utilizing a minimum of panel height. Two models available are the B350 and B800, delivering 350 and 800 cu ft of air per min respectively. Each blower is adequately filtered and fused. An example of the space saving feature of the blower is shown. The Model B350 blower absorbs 3-1/2 in. of vertical panel space in a standard modular frame.
Amco Engineering Co., Dept. ED, 7333 W. Ainslie St., Chicago 31, Ill.

Wescon Booth No. 3217-18.
CIRCLE 47 ON READER-SERVICE CARD FOR MORE INFORMATION

Trimming potentiometers called Acetrims, have been designed especially for printed circuit applications, and have round or flat tabs in place of terminals to facilitate and speed up assembly with other circuit elements. Assembly is simple: plug into printed circuit board, secure, and dip solder. Standard specifications of printed circuit Acetrims include: $1 / 2 \mathrm{in}$. size; wt $1 / 4 \mathrm{oz}$; 10 ohms to 150 K resistance; power 2 w at 60 C max; temp -55 to 125 C; sealed moisture-proofed, anti-fungus treated; withstands severe shock, vibration, acceleration, and meets applicable military specifications.

Ace Electronics Associates, Inc., Dept. EI), Somerville, Mass.
Wescon Booth No. 2720.
circle 48 on reader-service card for more information

\triangle Taper Pins

Quick-Disconnect

The A-MP miniature taper pin receptacle eliminates tedious operations of soldering leads to miniature connectors. This quick-disconnect terminal is applied to the lead by means of A-MP automachine and A-MP certi-crimp tooling, and then capped over other type connectors, modified to receive the A-MP 37 series miniature taper pin receptacle. Other A-MP taper pins are available, series 53 and 88 , for wire sizes 2-12 AWG and a wide range of insulation sizes. Insulation piercing taper pins are available for small stranded wires and popular size tinsel cords.

Amphenol, Inc., Dept. ED, 1030 S. 54 St., Chicago 50, [11.

Wescon Booth No. 2319-20.
CIRCLE 49 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Function Programmer

Sixteen Circuir Functions

The Function Programmer provides switching as well as potentiometer control of electrical and electronic circuitry in relation to time. Up to 16 separate circuit functions can be accommodated with 8 detachable function switch strips. In addition, a pulsing switch is provided for deriving pulses in one-half sec increments or any multiple or one-half sec. A speed-regulated dc motor with reduction gears causes the moving contracts to travel along the switch or potentiometer strips at constant speed. The travel time is 50 sec \pm one-tenth sec. The direction of travel is reversed by inversion of the dc input to the motor. The motor normally requires 350 ma . Input voltage may vary between 22 to 36 v . The timer may be stopped or reversed at any point. Individual circuit function strips or potentiometer strips already in place. The Function Programmer has been approved for a missile application.
Hubbard Scientific Labs. Inc., Dept. ED, 1292
E. Third St., Pomona, Calif.

Wescon Booth No. 2130.
CIRCLE 50 ON READER-SERVICE CARD FOR MORE INFORMATION

(Advertisement)

Unique Sales
 Promotion Planned

A unique sales campaign, coupled with demonstration, is being planned for this year's WESCON Show. In order to impress electronic engineers and purchasing agents with the practical economy of using general purpose oscilloscopes, "Kit" Kittleson, LFE's West Coast representative and Joe Worth, Special Products Division Sales Manager of Laboratory For Electronics, have announced that LFE's new 411A oscilloscope will be sold from San Francisco at WESCON. According to the company, this is probably the first time from-the-convention sales have been conducted at an electronics show. Using this method, LFE will offer immediate delivery either for final sales or trial and evaluation by users.

Automatic Triggering Beyond 10mc

Model 411A, a wide-band oscilloscope featuring diversification of the horizontal deflection system through plug-in units, now also offers positive triggering beyond 10 mc on any signal above 20 mv . No touchy control manipulation is required; triggering is unaffected by positioning or amplitude changes. The 411 A is a general purpose scope with direct-reading, calibrated delay in microseconds, functionally grouped controls, bandwidth from D-C to 10 mc and $20 \mathrm{mv} / \mathrm{cm}$ sensitivity without using additional plug-ins. The scope features reliability and accuracy plus time measurements within 1% accuracy with amplitude, blanking or intensity markers. Laboratory For Electronics has competitively priced the instrument, offers immediate delivery and on-thespot servicing. At the WESCON Show, LFE will deliver 411As from San Francisco and guarantee 24 hour delivery from the convention to the buyer's factory.

Attention: knob twirlers, CRT scanners, hard-working R and D engineers, money-saving buyers, project schedulers . . .

For a more detailed view of an easterner's view of a westerner's view of the U.S.A., get your oun full-color, full-size map at Wescon, booths 2806-7. FREE 111

Straight from WESCONScope Delivery

in 24 Hours Guaranteed!

WHO EVER HEARD of scopes being delivered from San Francisco at the convention - delivered anywhere in the country - within 24 hours! Nobody! But you can get them - now, for the first time - at WESCON! "Kit" Kittleson and Joe (LFE) Worth are the boys to see. They'll have a scope in your lab or plant for trial by "users" or tinal sale within 24 hours or else. What's the scope? New 411 A - with quick, clean, positive, automatic triggering beyond 10 mc at any signal level above $20 \mathrm{mv}, 1 \%$ time measurements through amplitude, intensity or blanking markers, $20 \mathrm{mv} / \mathrm{cm}$ sensitivity without additional plug-ins and many more features. Get a reliable, competi-tively-priced, wide-band scope . . . get on-the-spot servicing . . get immediate delivery NOWI AT WESCON, BOOTHS 2806, 2807.

Laboratory For Electronics, Inc.

51 ON READER-SERVICE CARD FOR MORE INFORMATION

In our first presentation, October 1952, Electronic Design stated this publishing policy:
"To promote the progress of the electronic manufacturing industry by serving the key technical function-design.
"To make the electronic designers' task easier, more efficient, and more productive.
${ }^{\text {co To provide a central source of electrical information pre- }}$ selected and concisely presented for convenient readership and use.
"To encourage two-way communication between electronic designer and manufacturer."
Now, almost five years later, Electronic Design, alone among all other electronic publications, remains unchanged in policy, in concept, and in its pledge to both reader and advertiser.
T. Richard Gascoigne

James S. Mulholland, Jr.
-co-publishers

a HAYDEN publication
New York - Chicago • Los Angeles

New Products

\triangle See at WESCON

\triangle Modular Oscilloscope

Miniature

The Model 200 modular oscilloscope features interchangeable amplifier and sweep generator units. The design is available in standard rack mount or a portable case measuring $9-1 / 2$ wide $\times 11-1 / 2$ high $\times 12-1 / 16$ in. deep. It is furnished completely assembled as a standard low or high freq unit, or in other combinations to fit specific applications.
Advanced Electronics Mfg. Corp., Dept. ED, 2025 Pontius Ave., Los Angeles, Calif.

Wescon Beoths No. 1001, 1002.
CIRCLE 52 ON READER-SËRVICE CARD

\triangle Vibration Shaker 1500 lb Force

The Model 174 Shaker is designed for high frequency operations and low input requirements and is featured in a system for random vibration testing of components and assemblies up to approximately 30 lb in wt. The armature behaves as a simple single-de-gree-of-freedom system over an extended frequency range. The inherent rigidity of the armature maintains a high first resonance under loaded conditions. The Model 174 Shaker features an armature having its longitudinal resonance at approximately 4000 cps , bare table. Additional features of this new Model 1741500 lb force output shaker include: collinear table motion, table diam of 9 in., 130 lb load for 10 g vector and 55 lb load for 20 g vector, maximum stroke of $\pm 0.5 \mathrm{in}$. with recommended stroke of $\pm 0.25 \mathrm{in}$. for continuous duty. Field supply requirements are 3 kw at 125 v dc. When used with amplifiers, a separate rotary $\mathrm{m}-\mathrm{g}$ set is supplied. Weight of this new shaker is 2000 lb .
The Calidyne Co., Dept. ED, 120 Cross St., Winchester, Mass.
Wescon Booth No. 710-711.
CIRCLE 53 ON READER-SERVICE CARD

Isomica and Samica Sheets

Fur Rolled and Stacked Capacifors
Capacitor Grade Isomica and Samica are two grades of continuous mica sheet designed for use in stacked and rolled capacitors, especially those intended for operation at elevated temperatures or under high corona bombardment. Samica sheet is made in continuous form from either domestic or foreign mica especially refined to eliminate all impurities. Size and thickness of the mica particles are controlled to insure uniformity of physical and electrical properties. The Samica sheet contains no resin impregnant. It is supplied as pure mica sheet which can be impregnated by the user. In pressed units, the temperature limitation of Samica sheet is determined by the impregnant used. In rolled units, the pure sheet will maintain its characteristic in excess of 550 C . The Isomica sheet is impregnated with a high temperature, silicone resin. This provides optimum dielectric characteristics at continuous operating temperatures as high as 550 F . It also provides intermittent operation up to 750 F .
Mica Insulator Co., Dept. ED, Schenectady 1, N.Y.

Wescon Booth No. 921-22.
CIRCLE 56 ON READER-SERVICE CARD

\triangle Expandable Cabinet System

For Small Instruments
A line of cabinets is available with either a bolt-on or hinged top Through the utilization of louvered or plain side spacers, a basic 7 in . panel height cabinet may be expanded up to 21 in . in panel height. Nine different panel heights ranging from 7 to 21 in . are available. Some of the features are the minimization of stacking and stocking problems, the ease of access for servicing equipment, and the variety of assemblies that can be achieved from standard stock parts. The cabinets are 18-1/2 in. deep overall and they conform to RETMA mounting specifications.
Amco Engineering Co., Dept. ED, 333 W. Ainslie St., Chicago 31, Ill. Wescon Booth No. 3217-18.
CIRCLE 57 ON READER-SERVICE CARD
burroughs corporation ... IS ANOTHER OF THE HUNDREDS OF IMPORTANL COMPANIES
WHO DEPEND UPON PYRAMID FOR MANY of thelr capacitor and rectifier components.
 Coxporation

150 West Cypress Avenue, Burbank, California PIONEERS IN CUSTOM CAPACITOR ENGINEERING

See us at Booth 1315, Wescon Show CIRCLE 60 ON READER-SERVICE CARD FOR MORE information

New Products

\triangle See at WESCON

This refrigerator-appliance automatic marine converter runs house freezers, refrigerators, tools and appliances from dc or battery power. It meas. ures $6-3 / 4 \times 14 \times 11 \mathrm{in}$. high and weighs 65 lb . The converter output is 750 w . Seven models are avail. able. They are able to operate on $24,28,32,46$. 64,115 or 230 v dc input.

Carter Motor Co., Dept. ED, 2764 W. George St. Chicago, Ill.

Wescon Booth No. 2616.
CIRCLE 61 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Tab Mounted Clips
For Prinfed Circuits

A line of component clips for mounting on printed circuit boards use mounting tabs spaced for 0.1 in . grids instead of riveting. The tabs, capable of taking five 90 deg bends without fracturing, are inserted either manually or by automatic machine into $3 / 64 \mathrm{in}$. diam. holes in a printed board and bent over underneath clinching the clip in place. Clips and tabs are of one-piece construction made of beryllium copper and finished by electro-tinning over copper flash. Clips maintain a tight grip on components over a wide vibration range loaded from 5 to 50 g . Available in following component diam: $0.17,0.235,0.312,0.408,0.508,0.625,0.758$, 0.875 and 1 in .

Atlas E-E Corp., Dept. ED, 47 Prospect St., Woburn, Mass.

Wescon Booth No. 404.
circle 62 on reader-service card for more information

\triangle Recording Oscillograph

Eliminates Dark Room Processing

The 24 -channel Electrograph embodies all the features necessary to produce continuous permanent recordings on a light-sensitive emulsion. The direct writing feature eliminates the need for a dark room processing of the record as required with standard photographic recording oscillographs. Intelligence is transferred to the recording medium through the use of pencil type light beam galvanometers. Input connection to each of the 24 galvar.mmeters is accomplished through the use of individual mating electrical connectors. The photographic process is completely dry and employs the techniques of electrophotography. The recording emulsion becomes photoconductive once it is electrostatically charged within the machine. Exposure of the emulsion to a focused beam of light reflected from the galvanometers reduces the charge level in the areas exposed. The image becomes visible as a result of attracting a finely ground thermoplastic black powder to the discharged portions of the emulsion. The record thus produced is made permanent by passing it over a heated surface which fuses the powder to the surface of the emulsion. The record may be reproduced by Ozalid or other similar processes without loss of definition.
Century Electronics \& Instruments, Inc., Dept. ED, Tulsa, Oklahoma.
Wescon Booth No. 614-15.
circle 63 on reader-service card for more information
\triangle Plug-in Modules
29 Positions

Each of the T line series of universal, transistori\%ed, 1 mc logical plug-in modules for digital control and data handling systems has twenty-nine flug-in positions to accommodate a fully transistorized power supply, gating modules, unit delays and clock packages.
Computer Control Co., Inc., Dept. ED, 92 Broad it., Wellesley 57, Mass.
Wescon Booths Nos. 117, 118.
rrcle 64 on reader-service card for more information

This is the relay you've asked us to build. Now Automatic Electric is happy to present its latest achievement-the miniature Class "E". We're proud because this husky baby brother of the Class " B " condenses all of its famous features in a minimum of space and weight . . . with no sacrifice of quality! Many Class " E " features appear for the first time in a relay of such compact size. Here's a relay which is indispensable where small size and weight (coupled with reliable performance) are of prime importance.
This new miniature relay comes to you with a solid reputation, backed by 65 years of leadership in automatic dial telephone equipment for America's Independent telephone companies and leadership in industrial controls for industry.
Check these features of the new Class "E"-

- miniaturized, telephone-style, base mounting for rear-connected wiring.
- heavy thickness armature arms (previously available only in larger relays).

CIRCLE 65 ON READER-SERYICE CARD FOR MORE INFORMATION

- heavy-duty backstop that won't wear out.
- adequate terminal clearances for easy wiring.
- long-life, lubricant-retaining bearing also allows for an easy check of the heelpiece airline setting, without disturbing the adjustment.
- fully independent twin contact springs.
- sturdy, strain-relieved heelpiece insures stability of adjustment.
For more information, call or write Automatic Electric Sales Corporation, Northlake, Illinois. In Canada: Automatic Electric Sales (Canada) Ltd., Toronto. Offices in principal cities.

AUTOMATIC $\frac{A \Delta}{\nabla}$ ELECTRIC

A member of the General Telephone SystemOne of America's great communications systems.
 APPLICABLETO PRINTED CIRCUITS

Write for catalog theet giving complete information

New Products

\triangle See af WESCON

\triangle Cycling Oscillator

One Cycle every $\mathbf{3 0} \mathbf{~ S e c}$ to $\mathbf{1} \mathbf{~ H r}$
A new concept in automatic frequency scanning has been introduced by Ling Electronics, Inc. (formerly L. M. Electronics), that provides limitless variations due to its time cycling range and scanning selectivity.

The CO-10 cycling oscillator permits scanning an entire range or any portion thereof at a rate of once every 30 sec to 1 hr . Upper and lower frequency limits can be pre-set for cycling any portion of the frequency range or, if desired, manual tuning may be employed. The pre-set rate covers any requirement from 2.3 to 600 dial per min. Calibrated frequency range of 20 to $20,000 \mathrm{cps}$ is also available on special order. The CO-10 has an accuracy factor of ± 4 per cent overall and a frequency response of $\pm \mathrm{l} \mathrm{db}$. Hum and noise are at a mini-mum-at least 60 db below rated output. Stability of at least ± 1 per cent and amplitude stability of $\pm 0.25 \mathrm{db}$ after warmup are some of the other salient features.

Ling Electronics, Inc., Dept. ED, 5120 W. Jefferson Blvd., Los Angeles, Calif.

Wescon Booth No. 2208-09.
CIRCLE 66 ON READER-SERVICE CARD

\triangle Molded Insulated Terminals

Standoff and Feedthrough
An expanded line of molded insulated standoff and feedthrough terminals will be featured in addition to the standard line of Snap-Lock Tefloninsulated terminals. The 14 standoffs, insulated with molded melamine or alkyd, give a broad line to cover every terminal need.

Lerco Electronics Inc., Dept. ED, 501 Varney St., Burbank, Calif.
Wescon Booth No. 1507.
circle 67 on reader-service card
< CIRCLE 68 ON READER-SERVICE CARD CIRCLE 551 ON READER-SERVICE CARD $>$

consistent uniformity...

The engineering staff of G-L Electronics completely reengineered the tape wound core and its manufacturing process to assure the production of consistently uniform, high quality cores. Now, through new, exclusive, G-L production and advanced test procedures, you can be sure of getting "Precision Made" tape wound cores with the greatest uniformity ever achieved in commercial quantities. Proof comes not only from our own exhaustive tests but also from customers who report unbelievable uniformity with every core.

- prompt deliveries...

Production line techniques have been worked out to make sure that every order is completed in time to meet delivery dates. You can depend upon a delivery date quoted by G-L Electronics so that you can schedule your own operations with confidence.
Proof of our claims will come when your order for G-L cores is filled. Write, wire, call or teletype us about your requirements.

DEPT. ED-8, 2921 ADMIRAL WILSON BOULEVARD CAMDEN 5, NEW JERSEY WOodlawn 6-2780 TWX-761 Camdon, N.J.

New Products

The variable rate sweep generator, with sweep rate continuously variable from 0.01 to 60 cps , features a 1 v rms output into 50 ohms (or 75 ohms), zero base line, horizontal drive voltage, crystal and variable markers, and toggle switch attenuator. Available in models generating output frequencies from audio to 200 mc , the units are furnished in portable cabinets or for rack mounting.

Telonic Ind., Inc., Dept. ED, 73 N. Second Ave., Beech Grove, Ind.
Wescon Booth No. 2317.
CIRCLE 71 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Miniature Airborne Amplifier

Model F-418

Glennite miniature airborne low microphonic voltage amplifier, Model F-418, is designed specifically for use in missiles, aircraft and other structures where size, weight, power consumption and vibration are prime considerations. Employed in the units are ruggedized subminiature tubes, individually selected for low microphonics. Ungrounded filaments also assist in minimizing noise. The Glennite miniature amplifier has provision for both fixed and variable gains from 10.2 to 99.5 for variable and 10 to 100 for fixed gains. The gain is constant over a wide range of plate voltage. The amplifier is designed to permit adjustment of system gain of accelerometer, amplifier and filter so that full scale gain of the system can be adjusted within the necessary tolerances. For special applications, where extreme environmental conditions warrant, the amplifier can be potted.

Gulton Industries, Inc., Dept. ED, 212 Durham Ave., Metuchen, N.J.

Wescon Booth No. 1412-13.
CIRCLE 72 ON READER-SERVICE CARD FOR MORE INFORMATION

up to $20.0 \mu \mathrm{sec}$.

ever made!

series 500

ter
ha
ba
in
in
fe
of
in
in
su
ha
is
lo
le
m
is
w
fo
co
534 bergen boulevard, Palisades park, N. J.

CIRCLE 73 ON READER-SERVICE CARD

Miniafure Waveguide Swifch
 \section*{8500 to 9600 mc}

This miniature waveguide switch ,ovides rapid switching of signals Irom any one of three positions to "ither of the remaining two and will not change to another position upon failure of its power supply. Characteristics of the $1.00 \times 0.500 \mathrm{in}$. OD size switch include: a frequency range of 8500 to 9600 mc with a maximum VSWR of 1.10 , and a minimum isolation of 40 db . The maximum switching time is 0.25 sec . for 240 deg operation and 0.15 sec for 120 deg operation. The switch operates at 3.0 amp maximum at 28 vdc nominal and employs rf and pressurized fittings built into the switch, giving up to 20 lb of pressurization throughout. Available in Xs and X_{L} band series, the switches, are of the rotary channel type using a circular bend in the rotor and a broadband internal choke design. Precision casting insures a low VSWR and top electrical performance.

Airtron, Inc. Dept. ED, Linden, N.J. Wescon Booth No. 2822.
CIRCLE 74 ON READER-SERVICE CARD

\triangle Broadband 10 DB Antenna

Omidirectional

The fiberglass radome high gain antennas, type 212, for the 450-470 band have gains of 10 db across this entire band and can be used at any frequency in the band with no troublesome tuning adjustments. A suppressor-type feed incorporates the desirable feature of a single-point feed, while maintaining high aperture efficiency, eliminating wasted radiation and producing superior mast isolation. To facilitate handling and installation, the antenna is supplied in three sections, the longest of which is 12 ft . Over-all length is 23 ft ., with the lower 3 ft . for mounting. This lightweight antenna is enclosed in a fiberglass radome which assures dependable systems performance under unfavorable weather conditions. Windload rating is 30 psi , with $1 / 2 \mathrm{in}$. of radial ice.

Andrew Corp., Dept. ED, 363 E. 75th St., Chicago 19, Ill.

Wescon Booth No. 1609.
CIRCLE 75 ON READER-SERVICE CARD CIRCLE 76 ON READER-SERVICE CARD $>$

New Products
\triangle See at WESCON

\triangle Dynasert

For Component Assembly

The Number 3 Component Inserting Machinc is capable of inserting many different types of components into printed wiring boards. The machine is similar to those being used in fully automatic conveyorized installations.

United Shoe Machinery Corp., Dept. ED, 140 Federal St., Boston, Mass.

Wescon Booth No. 1219-20.
CIRCLE 79 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Frequency Indicator \& Counter
Model 7340C

The Model 7340C frequency indicator and counter features printed wiring and modular construction, with snap-off top and bottom plates allowing full access for ease of maintenance. The unit occupies a minimum of bench space and may be adapted to a relay rack with standard mounting brackets. The input signal (photocell, tachometer generator, flowmeter, etc.) is counted during a known time base ($0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec}$) and displayed, with automatic decimal point location, in cycles, kilocycles, or in rpm (with proper transducer). Time bases are established by electronic countdown from the line frequency. Indication may be held manually or the instrument may be set to automatically recycle, after a controllable display time. A self-test switch position, for check of time bases and counters, is provided and the instrument may be used with an external time base.

Electro-Pulse, Inc., Dept. ED, 11861 Teale St., Culver City, Calif.

Wescon Booth No. 2613-14.
circle 80 on reader-service card for more information

The Model 251-A time interval meter is designed for precise measurement of elapsed time between two events occurring in the range of $3 \mu \mathrm{sec}$ to 1 sec . Optional features permit extension to 10 or 100,000 sec. The accuracy is $\pm 1 \mu \mathrm{sec}$. The measurement interval may be started and stopped by independent or common voltages representing optical, mechanical or electrical events. Typical applications are: ballistics measurements, relay timing, photographic timing, testing of mechanical and electro-mechanical timing devices, etc. Among the features of this instrument are: two independent, continuously adjustable trigger level controls permitting full rated sensitivity, 0.2 v rms , at any voltage level between -300 and +300 v . Small increments of voltage ordinarily masked by attenuators are easily selected even though high voltage bias levels, voltage steps, sq waves, etc., are present.

Computer-Measurements Corp., Dept. ED, 5528 Vineland Ave., N. Hollywood, Calif.

Wescon Booth No. 910-11.
CIRCIE 8I ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Delay Line

Improves Pulse Shape

 FidelityThe Signal Enhanced Delay Line, consists of several sections, each composed of a delay line, an amplifier, a video transformer, a clipping diode and a cathode follower. Improvement in the fidelity of pulse shape resulting from use of Signal Enhanced Delay Lines indicates, among many potentialities, an application in a demodulator for pulse code trains such as are used in air traffic control systems. Use of a more faithfully reproduced delayed pulse will result in the possibility of greater interleaving of replies and operational improvement. Another possible application is the use of the delay line in computer operation where narrow pulses will permit an increase in the rapidity of calculation.
Packard Bell Electronics, Dept. Ed, 12333 W
Olympic Blvd., Los Angeles 64, Calif.
Wescon Booth No. 609-610.
circle 82 on reader-service card for more information

Genisco G-Accelerators play vital role in ICBM development

Threading the needle half-way round the world leaves no room for error.
Inertial guidance-self-contained guidance systems used to direct huge ICBM's to the target-depends for its accuracy upon the degree of internal instrumentation perfection. Switches, relays, delicate instruments, and hydraulic and electrical systems must operate perfectly even while subjected to tremendous acceleration forces.
Testing components and complete asssemblies to simulated operational G-forces, as required by MIL-E-5272A, before relying pon their operation in actual flight is easily accomplished with Genisco's G-Accelerators.
Genisco's precision centrifuges are available in five standard sizes from high-speed machines capable of high G-loadings, to large 12-foot diameter machines capable of accommodating complete electronic or electromechanical systems.
All models incorporate features necessary for critical laboratory testing, as well as the ruggedness and simplicity of operation required for production-line test programs.
Many automatic features minimize operator responsibility and chance for error. Built-in safety features and integrity of construction provide maximum protection to both personnel and machine.
Complete specifications on all machines and accessories are available. Write, outlining your specific requirements.

Genisco

MODEL B7E
Accommodates test obiects up to 25 pounds; 1200
G-pounds max.

MODEL Cise
Accommodates 100 -pound test object on each end of boom 2000 G-pounds max.

MODEL DISA Range of 1 to 800 G Range of $180800 \mathrm{Gr}_{3}$
1000 G -pounde max.

MODEL E185 Subjects two 300 -pound assemblies to 100 G 's. 30,000 G-pounds max.

reliability first
2233 Federal Avenue.
Los Angeles 64, California

CIRCLE 83 ON READER-SERVICE CARD FOR MORE INFORMATION

UNI-RING offers a tremendous saving in installation time over any previous method of tapping or terminating shielded or coaxial cable. As the inner ring slides under the shielded braid, the tap wire is held between the braid and the outer ring. Single or multiple taps, from either the front or back of the connector, can be accommodated... A single crimp, using the same basic hytools used for installing hyrings, completes the uniform, secure, and insulated assembly.
The protecting nylon insulation extends beyond both ends of the UNI-RING, eliminating metal-to-metal contact and preventing harmful wire-chafing in tight locations. The UNI-RING is color-coded to indicate conductor sizes.

UNI-RING's one-piece design insures electrical integrity, prevents heating, and eliminates noises caused by isolated metal parts.

For samples and complete detalle, write: OMATON DIVISION
Nonwalk, Connect - Toronto, Canada • Othor Paotorios: Now York, Calle. Toronto - Export: Phillpe Export Co.
CIRCLE 84 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

\triangle See at WESCON

This switch is $1 / 4 \mathrm{in}$. thick and $25 / 32 \mathrm{in}$. long and gives a life cycle consistently over 5 million. It is rated $10 \mathrm{amps}, 30 \mathrm{v}$ dc inductive at a time constant of 0.026 sec which is four times greater than other switches can handle. Movement differential is 0.010 to 0.020 in . A wide range of forces is available, with a nominal of 6 oz .
Illinois Tool Works, Dept. ED, 2501 North Keeler Ave., Chicago 39, Ill.

Wescon Booth No. 716.
circle 85 on reader-service card for more information

Either one of the two dc Switch Modules combines with the Power Module to provide a precision, digital voltmeter for automatically digitizing input data to 0.01 per cent accuracy. Measurements on both models are displayed digitally with easy-to-read 1 in . high, edge-lighted numerals. Contact closures are also provided for operating machine output equipment. The Switch Modules (4 digits: Model DVX-400 and 5 digits: Model DVX-500) incorporate a new logic which speeds balance time, preventing the loss of significant digits on down ranging under all conditions; and a controlled stepper drive which increases switch life by a factor of three. With the appropriate Power Module, a 0.1 mv to 1000 v range is possible with the use of a single instrument.
Electro Instruments, Inc., Dept. ED, 3794 Rosecrans Ave., San Diego, Calif.
Wescon Booth No. 1001-02.
CIRCLE 86 ON READER-SERVICE CARD fOR MORE INFORMATION
\triangle Magnetic Amplifier
For Temperature Control

The type PA3C-1 magnetic amplifier is designed specifically to provide proportional temperature control of a heating element in response to a change in resistance of a temperature sensor. Power output is proportional from 0 to $100 \mathrm{w}, 400$ cps , as the temperature sensing element resistance changes by approximately 1 ohm . Nominal output load is 130 ohms.
The two-stage amplifier combines a high degree of sensitivity and reliability. It is designed to operate in ambient temperatures of -55 to 100 C and to exceed all other environmental conditions of MIL-E-5272. Internal circuitry design is such that open or short circuit sensing elements will cause the output voltage to automatically reduce to zero. The amplifier may be mounted directly to the airframe in any position.
Magnetic Controls Co., ED, 6325 Cambridge St., Minneapolis 16, Minn.
Wescon Booth No. 707.
CIRCLE 87 ON READER-SERVICE CARD FOR MORE informatio:y

\triangle Transistorized Power Converter
$150 \mathrm{v}, 400 \mathrm{ma}$, or 300 v , 200 ma, Output

This transistorized power converter, TPC-2, is designed for 12 v input and 150 v 400 ma or 300 v 200 ma output. The unit has an efficiency of better than 75 per cent and is expected to bc invaluable iil replacing dynamotors and vibrator type power supplies. It will operate at ambient temperatures (ij) to 150 deg \hbar under continuous full load conditions. The TPC-2 is housed in a black-aluminum hoat dissipating case with an anodized aluminum "nver.
Southwestern Ind. Elect. Co., Dept. ED, 2831 lest Oak Rd, P.O. Box 13508, Houston 19, Texas. Wescon Booth No. 1812-13.
acle 88 on reader-service card for more information

7-inch Waldes Truarc retaining rings cut costs, speed assembly-disassembly of 2 -high/4-high mill

Whatever you make, there's a Waldes Truarc Retaining Ring designed to improve your product . . . to save you material, machining and labor costs. Quick and easy to assemble and disassemble, they do a better iob of holding parts together. Truarc rings are precision-engineered and precision-made, quality controlled from raw material to finished ring.
36 functionally different types... as many as 97 differ.

For precision Internal grooving and undercutting...Waldes Truare Grooving Tooll

© 1956 Waldes Kohinoor, Inc., 47-16 Austel Place, L. I. C.1, N.Y.
Waldes Kohinoor, Inc. 47-16 Austel Place, L.I.C. I, M. Y. Please send the new supplement No. 1 which brings Truare Catalog RR 9.52 up to date. (Please print)
Name
Title.
Company
Business Address

CIRCLE 89 ON READER-SERVICE CARD FOR MORE INFORMATION
(Please print
$-\frac{1}{-2}$
ent sizes within a type ... 5 metal specifications and 14 different finishes. Truarc rings are available from 90 stocking points throughout the U.S.A. and Canada.
More than 30 engineering-minded factory representatives and 700 field men are available to you on call. Send us your blueprints today... let our Truarc engineers help you solve design, assembly and production problems... without obligation.

UNION

NEW SERVO-RATIO MULTIMETER

Combines all the functions of an AC-DC voltmeter, ohmmeter and AC-DC ratiometer in one compact portable unit

Here is a new, highly accurate test instrument designed to make life easier for those who work with computers and other electronic and electrical devices. It measures AC-DC ratios, absolute AC-DC voltages and resistance. You can also measure the gain of operational amplifiers using the 0° phase output provided.

The Servo-Ratio Multimeter computes voltage ratios by dividing the voltage to be measured by the reference voltage obtained from the computer. It is a high-impedance instrument and utilizes a motor-driven, position-type servo mechanism. Average time to obtain a reading is three seconds. Simplification and reliability are obtained through the use of printed circuits.

The front panel contains a fourdigit illuminated drum counter for readout, phase or polarity indicating lights, function switch, ON-OFF
switch, range switch, 0° phase ratio selector, input terminals and 0° phase output terminals.
The Servo-Ratio Multimeter is compact and easy to handle. It has an aluminum case and weighs only 10 pounds. The instrument can be operated in a horizontal or vertical position and has a unique carrying handle that serves as a tilt-stand when the unit is used horizontally. Write for Product Description 2005.

SPECIFICATIONS

Power Consumption: 50 Watts, 111 Volts, 60 cps.
 Functions

Range
Ratio, $A C$ Ratio, AC 0.001 to $1.000 \pm 0.1 \%$ in 1 range 60 cps AC DC Voltage

Ohms
Gain

PORTABLE AND COMPACT-Weighs only 10 pounds. Size: $71 / 8^{\prime \prime} \times 51 / 2^{\prime \prime} \times 11 \cdot 13 / 16^{\prime \prime}$.
SIMPLIFIES TESTING-Eliminates need for many other instruments. Has digital readout counter

New Products

\triangle See at WESCON
\triangle Waveguide Pressure Window

For 35 Kmc Range

A high power flange-mounted waveguide pressure window for use in radars operating in the 35 kmc freq range requires pressure seals to pre vent waveguide or magnetron in breakdown. Designated MA-1334, the window is claimed to handle peak powers of 40 kw at atmospheric pres sure. Higher power levels can be used with this window by increasing the pressure within the RG-96/U wave guide. The window is mounted di rectly between UG-600/U choke flanges in RG-96/U waveguide. The MA-1334, now available in production quantities, is resonant at 34.86 kmc . Maximum vswr at the band extremes of 33.25 and 36.5 kmc is 1.1 ; the vswr gradually increases outside this range. Maximum pressure rating is $45 / 30 \mathrm{lb}$ per sq in. Higher pressure can be sus. tained on the side of the window to which the glass is bonded. Construction is of kovar and glass. The metal surfaces are silver plated.

Microwave Associates, Inc., Dept ED, Burlington, Mass.

Wescon Booth No. 1307.
CIRCLE 90 ON READER-SERVICE CARD

Outer Race Bearings

 Non-MetallicStud, bore, flange and special bearings can be supplied with nylon, rub. ber or laminated phenolic tires, each of which serve to considerably reduce noise factors during operation. Outer race materials can be molded or pressed fit to the basic steel outer race and the resultant combination affords the wear-ability of steel plus the silent operation of rubber, nylon or phenolic. The manufacturer slates that the application of non-metallic outer races to ball bearings will appreciably lessen the wear on contacted surfaces.

General Bearing Co., Inc., Dept ED, 47 Roselle St., Mineola, N.Y.

CIRCLE 91 ON READER-SERVICE CARD
< CIRCLE 92 ON READER-SERVICE CARD

Cleaning Compound For Glass and Plastic

GTC-59 is a liquid preparation hich contains no caustics or abrasives id therefore can be used on the most licate equipment. This product is 1 proved and used on electron-optical sistems by the Air Force where the (n)mbination of glass, plastic and static fivlds present complex cleaning problems. GTC-59 provides the following: cleaning and removal of oil film, cancellation of static fields which attract dust, deposit of a smooth hard coating which repels dirt and dust formations and has smear resistant and water repellent properties.
Beaver Labs., Dept. ED, 187-61 Hollis Ave., Hollis 23, N.Y.

CIRCLE 93 ON READER-SERVICE CARD

Striped Teflon Tubing

Easy Identification
The Teflon tubing with axial stripes of any color, including combinations is available. There is no danger of wearing away the stripes since they penetrate the full depth of the tubing. The material has dielectric strength of 500 to $1,000 \mathrm{v}$ per mil., dielectric conpable of withstanding temperature cycles from -100 F to +500 F . Sealing techniques and added light thickness have increased the endurance and utility of the units. Multiple glass units are available me sizes ranging from 12 x 12 in . to $40 \times 40 \mathrm{in}$., and are constructed in thickness of 3 to 10 lights with $1 / 4$ and $1 / 2 \mathrm{in}$. air spaces. Indiidual lights have sizes of $1 / 4,5 / 16$, $3 / 8,1 / 2,3 / 4,1$, and $1-1 / 4 \mathrm{in}$.
Duo-Pane Corp., Dept. ED, 21-23 Srattan St., Brooklyn 6, N.Y.
circle 95 on reader-service card
CIRCLE 96 ON READER-SERVICE CARD $>$

PANORAMIIC
 introduces

Quick accurate visual analysis of measurement problems made possible by Panoramic instruments has speeded research and development projects . . . cleared production test bottlenecks. Their broad range panoramic displays eliminate tedious, complicated point by point measure ments ... present an easily read, graphic "picture," ments . . . present an easily read, graphic "picture
simple to analyze. Panoramic's wide variety of spectrum analyzers, unique response curve tracing systems and telemetering test instruments have systems and teemers and leaders in the field.
made them pioners Timesaving and precedent-setting, these new instruments open up completely new areas

new ways in new instruments that rapidly solve measurement and analysis problems

 This form of tundomentol component study with the sf-1 is on
invaluoble oid in dynamic boloncing ond in pinpointing resonont conditions.
A Amplitados of fandamontal wibrations at the frequeneles of rotation arto.

PANORAMIC RADIO PRODUCTS, Inc.

Now Address: 526 South Fulton Avenuo, Mount Vornon, N. Y
Phone: MOunt Vernon 4-3970. Cables: Panoromic, Mount Vernon, N. Y. Store
This is our new home.
Modern. Up-to-the-minute, it
will double engineering and
ppocuction ficilitites. . . provide
oreoter efficienc.

\section*{stant of 2.0 and dissipation factor of

\section*{\subsection*{0.0002 . The striped tubing is unaf

\section*{\subsection*{0.0002 . The striped tubing is unaf

\subsection*{0.0002 . The striped tubing is unaffected by moisture.fected by moisture.fected by moisture.

 Pennsylvania Fluorocarbon Co. Inc.,

 Pennsylvania Fluorocarbon Co. Inc.,

 Pennsylvania Fluorocarbon Co. Inc., Dept. ED, 1115 N. 38th St., Philadel Dept. ED, 1115 N. 38th St., Philadel Dept. ED, 1115 N. 38th St., Philadelphia 4, Pa.phia 4, Pa.phia 4, Pa.

 CIRCLE 94 ON READER-SERVICE CARD

 CIRCLE 94 ON READER-SERVICE CARD

 CIRCLE 94 ON READER-SERVICE CARD

 Model SF-1, Panoramic Synchronous Frequency Analyzer

 Multiple Glass Windows

 Multiple Glass Windows

 Multiple Glass Windows

 Withstand + 500 F

 Withstand + 500 F

 Withstand + 500 F

 A multiple dry-air insulating glass

 A multiple dry-air insulating glass

 A multiple dry-air insulating glass observation window assembly is ca- observation window assembly is ca- observation window assembly is ca-

 Model DD-1, Panoramic Ultrasonic Delay Distortion Indicator

 Model DD-1, Panoramic Ultrasonic Delay Distortion Indicator

 Model DD-1, Panoramic Ultrasonic Delay Distortion Indicator

 relotive unitormity of delay orer abond of interest is much more importont than tootal relotive unitormity of delay orer abond of interest is much more importont than tootal relotive unitormity of delay orer abond of interest is much more importont than tootal interest is is much more importont than total tronsmision time oetween inout ond output terminats interest is is much more importont than total tronsmision time oetween inout ond output terminats interest is is much more importont than total tronsmision time oetween inout ond output terminats gives an extremely sensitive measure th ince- gives an extremely sensitive measure th ince- gives an extremely sensitive measure th ince-

 tion in slope of the phase angle vs. frequency curve.

 tion in slope of the phase angle vs. frequency curve.

 tion in slope of the phase angle vs. frequency curve. curve side traces out o horizontal plot for networks with uniform deloy in a band. Fre- auency ranges from 8 to 300 kc curve side traces out o horizontal plot for networks with uniform deloy in a band. Fre- auency ranges from 8 to 300 kc curve side traces out o horizontal plot for networks with uniform deloy in a band. Fre- auency ranges from 8 to 300 kc

 Nomion

 Nomion}

 Nomion}

 Nomion}Model TDC-5, Panoramic Telemetering Simultaneous 5 -Point
Calibrator and Dynamic Checker A receiver which monitors the vibrations of mechanicol devices of the frequency equal to the

 Frequency rongose ore or brood bond scole en the colibroted H
oxis

Model PA-1, Panoramic Sonic Phase and Amplitude Response Analyzer

Specifically designed to provide an occurrote anolysis of the

 adequotely sampling non-discrete function. Used sith tre Anolyzer, if will cover microwve.
 ignal contributions astution copabilitites of the componion

 $1-30$ seconds.

see us at the Wescon Show Booth 814

If you can't be there, write. wire or
phone NOW for complete information phone Now in instruments.
on these new

New Products

\triangle See at WESCON

\triangle Panel Meters
Four Sizes

A new series of high-visibility pancl meters is available in all standard ac and de scales. These meters feature regular or custom matched colors on the lower frosted panel. The full assortment of sizes includes $2-1 / 2,3-1 / 2,4$, and $4-1 / 2 \mathrm{in}$. models, all with greatly increased dial areas for multi-band scales and individual imprinting.

Burton-Rogers Co., Dept. ED, 42 Carleton St., Cambridge 42, Mass.

Wescon Booth No. 2219.
circle 97 on reader-service card for more information

High Power Transformer
100 KVA Units

These high power transformers permit high fidelity performance plus savings in size and wt. The unit has application in radio broadcast modulation transformers, output transformers for vibration testing and other equipment utilizing Class B amplifiers over 250 w . One hundred kva units operating down to 15 cps have been designed.
A division of the transformer functions into two transformations, allowing interprimary coupling and primary-to-secondary coupling to be accomplished completely independently of each other. Thus, each may be designed to its optimum value. Conventional designs have a conflicting interdependence of these factors which does not permit optimum values to be used. The units are now available to equipment manufacturers custom-designed to each application.
Electro Engineering Works, Inc., Dept. ED, 401 Preda St., San Leandro, Calif.

Wescon Booth No. 1717.
Circle 98 on reader-service card for more information

Using the diffused-meltback process

G.E. gets the most from silicon...

Before going through the diffused-meltback operation, a crystal of silicon is sawed into wafer-form: wafers are then diced to produce 4000 to 5000 individual silicon bars. Photomicrograph at left shows size-comparison of a silicon NPN bar. or pellet. with human hair (Arrow 21. "Tear drop" at end of bar is formed during meltback process. Micro-thin base, or "P", region (Arrow 1) is created through G-E diffusion technique. Base regions of 2 -micron size are made with relative ease.

Curves illustrating impurity distribution after diffusion. P-type impurities in the high concentration side of the in the high concentration side of meltback junction diffuse, withil. solid semiconductor, into "plateau region of low impurity concentration.
High resistivity "plateau" contributes to elimination of punch-thru effects.

CIRCLE 99 ON READER-SERVICE CARD FOR MORE INFORMATION

to put the most into transistors

High degree of uniformity and control in junction formation. General Electric's diffused-meltback process was developed by Dr. I. A. Lesk of the G.E Advanced Semiconductor Laboratory. The de velopment came about as the result of Dr. Lesk's efforts to create a transistor manufacturing process that would yield high-quality results at reasonable cost.
Not only does the G-E diffused-meltback proces result in a maximum number of transistors from a ingle crystal (4000 to 5000 NPN transistors), but it offers an extremely high degree of uniformity and control in transistor junction formation.
Opens the door to high frequency performance. Diffusion of a melted-back silicon bar, or pellet, is the final step in the diffused-meltback process. Its the stage in which the microthin base, or "IP" region is formed, establishing the final NPN transistor structure. Because the actual diffusion is accomplished over a high temperature heating cycle lasting several hours, the need for split-second ac curacy is eliminated. The result is a high degree of process control.
By proper choice of the initial impurity concentrations and the time and temperature of the diffusion cycle, heavily-doped base regions as thin as 2 microns are easily obtained. These micro-thin, uniform base regions are the "open-sesame" to ex.

```
Ordering Data-G-E Silicon NPN Transistors
High Frequency Amplifier Type
High Frequency Amplifier Type
ask for: 2N429 (form
Computer DCTL Type
ask for: 2N430 (fdrmerly 4JD4A3)
General-Purpose Amplifier Type
ask for: 2N431 (formerly 4JD4A4) Beta 
    2N432 (formerly 4JD4A4) 9 to 30
    2N433 (formerly 4JD4AG) 45 to 100
```

tremely reliable high frequency transistor performance.
High current gain. Silicon NPN transistors feature inherent high current gains and high frequency cut-offs. The diffused meltback process permits mass production, since it combines the principles of impurity segregation and solid-state diffusion. C.E silicon NPN transistors are nominally rated for 25 megacycles, but with useful gain to 50 mega-cycles- the highest frequencies offered by any massproduced silicon NPN triode on the market today All production units are aged at extremely high temperatures for over 150 hours. This is to provide maximum stability of \mathbf{I}_{co} and current gain (beta) The header assemblies of G-E silicon NPN transistors are constructed of high-purity materials. A gold-silicon alloy is used for end connections: the base lead is pure aluminum. There are no solders or fluxes, eliminating any danger of transistor "sleeping sickness" caused by corrosion at soldered junction points.
Outstanding For Switching Applications and Linear Amplifier Use. The gold-alloy mountings, with a melting temperature of over $350^{\circ} \mathrm{C}$ repre sent the lowest melting point of the entire transistor assembly structure. The G-E Series 4JD1A silicon transistors provide reliable operation to $150^{\circ} \mathrm{C}$, with storage temperatures to $200^{\circ} \mathrm{C}$.
With well-controlled high frequency characteristics and a low saturation resistance of $20 \mathrm{ohms}, \mathrm{G}-\mathrm{E}$ silicon NPN transistors are "naturals" for switching applications and linear amplifier use.

Would you like complete specification information? Please contact your nearest G-E Semiconductor Products district office, or write to General Electric Company, Semiconductor Products, Section S2387, Electronics Park, Syracuse, N. Y.

Diffusion furnace. Operator places quartz vials, with large quantity of silicon bars, in furnace. Diffusion occurs through high-temperature heating cucle lasting several hours.

An aging oven in which G-E silicon NPN transistors are aged at extremely high temperatures for over 150 hours. Provides maximum stability of $I_{c o}$ and current gain (beta).

Progress Is Our Most Important Product GENERAL (36) ELECTRIC
CIRCLE 99 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Rate Gyro
Constant Damping

Designated the Type JRT, this rate gyro is a precision instrument for measurement of absolute rates of rotation in inertial space. Damping is electro-mechanically controlled to maintain a constant damping ratio over the entire operating temp range of -65 to +175 F . The JRT is designed expressly for flight control of long range missiles and for flight instrumentation in missiles and aircraft where ambient temperatures are not controlled. Ratings include: linearity of 0.25 per cent of full scale; hysteresis of less than 0.1 per cent of full scale; threshold of less than 0.01 deg per sec; microsyn pickoff-variable reluctance type providing infinite resolution and high signal-to-noise ratio; full scale rate of up to 1000 deg per sec; full scale output of up to 12 v ; withstands 100 g shock, and 15 g to 2000 cps ; measures $2-7 / 64 \mathrm{in}$. diam, 4-5/16 in. long, and weighs 2 lb .

Minneapolis-Honeywell, Dept. ED, Boston Div, 1400 Soldiers Field Rd, Boston 35, Mass.

Wescon Booth No. 202.
CIRCLE 100 ON READER-SERVICE CARD FOR MORE INFORMATION

AlSiMag Alumina shapes for use as supports in electron tube applications are available. Parts as thin as .0007 in . can be efficiently produced from these materials. Their use often extends the operating temperature range of the finished tube. Additional advantages include the ability to de-gas at higher temperatures, excellent strength characteristics, and resistance to heat deterioration and fatigue failure.

American Lava Corp., Dept. ED, Cherokee Blvd.
\& Mfgrs. Rd., Chattanooga 5, Tenn
Wescon Booths Nos. 921, 922.
CIRCLE 101 ON READER-SERVICE CARD FOR MORE INFORMATION

SANGAMO SILVERED MICA

high reliability manufacturing facilities
Sangamo's "controlled conditions" facilities for the exclusive manufacturing of high reliability capacitors assure really fine capacitors for your most critical military or industrial applications.

BUTTON CAPACITORS

Sangamo's design engineers have developed these hermetically sealed mica button capacitors especially for high frequency applications under severe humidity and temperature conditions.
The unique internal design results in low inherent inductance -ideal for application at frequencies up to 500 megacycles per second in tuning, coupling and by-pass circuits. The silver plated case serves as both the low potential terminal and as an electrostatic shield
These units meet all requirements for V.H.F. and U.H.F. applications and meet Joint Army-Navy specification MIL-C-10950B (proposed). Operating temperature range is from $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Specify these high reliability capacitors for your most critical applications. Write for new Catalog 2311 on Sangamo Silvered Mica Button type capacitors.
fiVE tYPES AVAILABLE-Stand-off with ground lug, Stand-off without ground lug. Feed-thru without mounting lugs, Stand-off without pedestal, and Feed-thru with mounting lugs.

SANGAMO ELECTRIC COMPANY
 Electronic Components Division

SPRINGFIELD. ILLINOIS

CIRCLE 102 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

\triangle See at WESCON
\triangle Inverters and Converters
Semiconductor Line

These units will convert low voltage de to ac or higher voltage dc. These models feature improved circuitry, which provides extended operating characteristics. Additions to the line include six inverter models, which convert 6,12 , or 24 v dc battery input to $115 \mathrm{v} \mathrm{ac}, 60$ or 400 cps . These new inverters are available in power ratings up to 150 va. Additional models include units for providing outputs of 150 and 300 v de at current ratings of 100 or 200 ma . These types are available in either regulated or unregulated designs. All models are potted in transformer housings, but transistors are located on an inner header, which makes them accessible for servicing or replacement purposes. A choice of octal plug-in type or solder loop terminal is available.

Electronic Research Associates, Inc., Dept. ED
67 East Centre St., Nutley 10, N.J.
Wescon Booth No. 3308.
circle 103 on reader-service card for more information
\triangle Digital Position Servo
Switch, Tape, or Card Programming

Discrete position control of machine tools, inspection devices, and optical tools is accomplished by Digital Position Servo CD-4. Programming input is either switch, tape or card systems. Standard CD-4 single axis control systems are in production. Century Engineers, Inc., Dept. ED, Burbank, Calif.

Wescon Booth No. 2717-18.
CIRCLE 104 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Counters

May Operate Above 500 RPM

Compact internal pinion type counters, capable of operating at speeds above 500 rpm , are available in two, three, four, five and more digit versions. The numeral size is $1 / 4 \mathrm{in}$., available with numerals of white on black and black on white, designed with precision machined parts for high performance instrument applications.
Bowmar Instrument Corp., Dept. ED, 2415 Pennsylvania St., Fort Wayne, Ind.
Wescon Booth No. 709.
CIRCLE 105 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Differential Data Amplifier
Zero Drift, 0.01 Per Cent Accuracy

Infinite common mode rejection, zero drift, 0.01 per cent accuracy and 0.05 per cent linearity are features of the Type 190 Data Amplifier. Designed for de amplification of thermocouple, strain gauge and similar signals, the Type 190 has a maximum voltage gain of 1200 , adjustable if required. Employing a new chopper circuit, the amplifier provides true differential amplification with complete rejection of dc common mode signals, and a rejection ratio of the order of a million for ac signals. Stability of the Type 190 is excellent, with no zeropoint drift and gain remaining constant within 0.01 per cent over 1000 hours of operation.

For strain gage use, the differential input of the Type 190 allows a single battery to be used to excite : number of Bridges, thus simplifying installation. With thermoeouples, differential input eliminates ewrors due to multiple grounds, particularly where the same thermocouple is used simultaneously in
veral circuits.
()ffner Electronics, Inc., Dept. ED, 5320 N. KedAve., Chicago, Ill.
Wescon Booth No. 510-11.
cle 106 ON reader-service card for more information

Westinghouse SILICON ${ }^{(s)}$ RECTIFIERS put more muscle in DC power converter!

Successfully proven in rigorous welding, aircraft and guided missile applications, Westinghouse Silicon Power Rectifiers offer many advantages for power supplies.
Used in the Westinghouse 50KW Power Converter to drive the boring mill above, the WN-5082 bridge assembly supplies greater power and higher efficiency in less space. The 3 -phase 60 -cycle 440 v . power supply operates with a full load efficiency of 90% and an even higher half load efficiency. Regulation is approximately 8% from no load to full load with a Power Factor of 96 to 97.
Especially rugged for varying duty cycles, the WN-5082 withstands heavy loads of constant on-off operation, highvoltage transients, alternate heating and cooling.

yOU CAN BE SURE...IF IT'S

Westinghouse

Westinghouse can supply single diodes or complete bridge assemblies built to your specifications. For full information on how Westinghouse Silicon Rectifiers can bring new efficiency and economy to your applications, mail the coupon today.

WESTINGHOUSE ELECTRIC CORPORATIO

P. O. Eoz ECE, Pitteburgh 30, P2

Please send me data on the new Westinghouse WN-5082 Silicon Rectifier.
Please send me data on other Westinghouse Silicon

CIRCLE 107 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

\triangle See of WESCON
\triangle Subminiature Power Supplies
Encapsulated

Transistorized dc converters, which have an operating temp range of -55 to +85 C and meet MILE5400 specifications, have been developed. Available in units up to 300 w output, a 75 w unit measures $4-1 / 4 \times 1-1 / 4 \times 2-3 / 4 \mathrm{in}$. and weighs approximately 11 oz , with slight increases for larger outputs. Designed to withstand heavy shock, vibration, and atmospheric pressures, the units feature high temp transistors, and incorporate parts made of epoxy resin. Metal construction is confined to the base plate, which is cadmium plated to resist corrosion. The design is also available in commercial versions for mobile radios and other battery-operated equipment, which offer an operating temp range of -30 to +71 C .

Rho Engineering Co., Dept. ED, 2242 Sepulveda Blvd., Los Angeles 64, Calif.
Wescon Booth No. 2407.
CIRCLE 108 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Volume Unit Meter
For Sound Equipment

The VU Meter is designed expressly for sound equipment and tape recorder applications to measure volume levels of sound or noise. A target pointer, sharply outlined against a contrasting face, deflects almost instantaneously over a two color scale. It features a clear polystyrene, anti-static treated case.
Burton-Rogers Co., Dept. ED, 42 Carleton St., Cambridge 42, Mass.
Wescon Booth No. 2219.
circle 109 on reader-service card for more information

H MICRO SWITCH Precision

Here are

Precision Switches by MICRO SWITCH...

Designed to meet modern electrical control requirements

MICRO SWITCH pioneered the development of precision switches... It has been first in precision switching for two decades... These new switches are typical of MICRO SWITCH's continuing leadership.

New!

MICRO SWITCH magnetic hold-in toggle switch-permits remote release of toggle lever to its unoperated position
This micro switch 2ET1 magnetic hold-in toggle switch is a momentary-action toggle switch which also functions as a maintained-contact switch by means of a solenoid incorporated into the design of the switch. When the toggle lever is operated and the solenoid is energized, the magnetic force of the solenoid holds the switch in the operated position. This magnetic hold-in feature permits remote electrical release of the lever.
The precision SPDT switch and a 28 vdc solenoid are contained in one compact unit. The small size makes it an ideal component for applications where space is a critical factor. (Send for Data Sheet 137)

SWITCH CHARACTERISTICS
Total travel 30°; Electrical data: 28 vdc rating: inductive 3 amps. at sea level and 2.5 amps . at 50,000 feet; reeistive, 4 amps at sea level and 50.000 feet; motor, 4 amps. at sea level and 50,000
feet; inrush, 24 amps at sea level and 50,000 feet; Holdin rating feet; inrush, 24 amps. at sea level and 50,000 feet; Hold-in rating
of solenoid in $18-30$ vdc.

Wen!

MICRO SWITCH completely sealed magnetic hold-in toggle switch
The micro switch 5et Series is a completely sealed momentary action toggle switch which also functions as a maintained contact switch. When the toggle lever is operated and a solenoid is energized, the magnetic force holds the lever operated. This hold-in feature permits remote electrical release of the lever.
Both switch and solenoid are sealed within the cylindrically shaped enclosure. This insures constant operating characteristics. An elastomer seal at the base of the toggle lever prevents entrance of dust or mpisture. (Send for Data Sheet 121)
SWITCH CHARACTERISTICS
Total travel 30°; Contact arrangement spot, may be wired either N. O. or N. C. Electrical rating at 28 vdc. inductive. 3 ampe. level and 50,000 feet; motor, 4 amps. at zea level and 50,000 feet: inrush, 24 ampe. at sea level and 50,000 feet; Hold-in rating of
solenoid is $18-30$ volts de.

New!
MICRO SWITCH three-position toggle switch-4 SPDT circuits with a single lever
micro switch 115at Series of toggle switches uses four SPDT switching units. Two units are actuated in each extreme toggle lever position. None are actuated when lever is in center position.
Many different combinations, however, may be obtained, including the make and break of circuits in all three lever positions.
Outstanding features of this series include the compact design, positively-driven switch actuators and sturdy construction. A safety catch guards against accidental movement of toggle lever. (Send for Deta Sheet 132) SWITCH CHARACTERISTICS
Electrical rating at 30 vdc: inductive- 10 amps. at aea leval, 6 amps.
 $125 \mathrm{vdc} ; \%$ amp. 250 vdc.

New!
MICRO SWITCH "typewriter" pushbutton switch for manual keyboard control
MICRO SWITCH 1PB81-T2 switch is ideal for one-finger rapid-repeat operation such as is required for the type of keyboard control found in required for the type of keyboard control found in electric typewriters, adding machines, etc. The repeat
action is as rapid as the fastest operator can push action is as
the button. switch for snap-action reliability. The contoured button and unique overtravel spring combine to reduce operator fatigue. Operating "feel," however, is sufficient to avoid mistakes and false actuations.
Removable $1 / 2 \mathrm{in}$. dia. plastic button is available in red, green, off-white or black. It is keyed to prevent rotation. (Send for Data Sheet 125)
SWITCH CHARACTERISTICS
Electrical rating at 30 vdc: inductive- 3 ampa. at sea level and is listed by Underwriters' Laboratories at 5 umps. 125 or 250 vac.

MICRO SWITCH

A DIVISOW OF MIWMEAPOLIS-HONEWWELL REGULATOR COMPAMY in Conodo, Leosido, Toranto 17. Ontorio - FREEPORT, ILLINOIS F

New Products

Transistorized Relay

Sensitive to $12 \mu \mathrm{ma}$

Model 30 relay is said to have switched a 4.5 a load on and off some 5 million times without signs of wear. Input of $12 \mu \mathrm{a}$ will actuate the relay. The Model 30 can be used with any combination of normally-open or nor-mally-closed input circuits and nor-mally-off or normally-on outputs. It will handle resistive loads of up to 10 a for short periods. The relay can always be set to fail safe. Switch prevents chatter; pilot light shows when the relay is energized, and the control circuit is completely isolated from the power line.

Fisher Scientific Co., Dept. ED, 717 Forbes St., Pittsburgh 19, Pa.
circle 113 on reader-Service card

90 Deg TV Tube

For Series Heater Operation

The 14ATP4 is a rectangular glass picture tube of the 14 in . type, designed especially for use in television receivers employing a single, seriesconnected heater string. It utilizes a $450 \mathrm{ma} / 8.4 \mathrm{v}$ heater having a controlled warm-up time to insure dependable performance. A feature of the 14ATP4 is its electron gun of the straight type designed to minimize deflection distortion. This gun permits a $5-1 / 2 \mathrm{in}$. long neck and eliminates the need for an ion-trap magnet. The overall length of the 14ATP4 is 13-3/16 in. and its weight is $8-1 / 2 \mathrm{lb}$. The 14ATP4 is of the low-voltage electro-static-focus and it is of the magneticdeflection type.

Radio Corporation of America, Dept. ED, Electron Tube Div., Harrison, N.J.

CIRCIE 472 ON READER-SERVICE CARD

P\&B PROGRESS

A REVOLUTIONARY, NEW HIGH SHOCK/VIBRATION RELAY

NOW!

A latch relay that withstands $\mathrm{NOO}_{\mathrm{g}}$ shock and $3 \mathrm{O}_{\mathrm{g}}$ vibration to 2000 cps .

*Kg reLar (Pot. Pending)
ONLY 2.0 WATTS AT NOMINAL VOLTAGE FOR 12 MILlISECONDS EFFECTS ARMATURE TRANSFER
The new KG magnetic latch relay was de- Armature transfer from one set of the signed by P\&B engineers at the insistence of leading aircraft and missile manufacturers and their suppliers of control systems. A permanent magnet which locks the armature into position is the secret of the KG's dramatically high resistance to shock and vibration.

In addition to withstanding 30 g vibration from 6 to 2000 cps , tests show the contacts will open for no more than 80 microseconds during 100 g shock

Armature transfer from one set of the
6PDT contacts to another can be made in approximately 12 milliseconds with only 2.0 watts at nominal voltage. The KG is rated for ambient temperatures from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The KG, together with other relays in the P\&BB "Star Series", has vastly increased the realm of relay reliability for critical applications demanding positive action of all components. Write or wire today for complete technical data.

DESIGNATION: : <G23DBH
GENERAL: Insulating Materialss Teflon, glass and ceramic Insulation Resistance: 100 megohms min
Breakdown Voleage: 500 V. RMS.
Shock: 100 g where contact openings less than 80 microseconds may be permitted.
Vibrations 30 g 5 to 2000 cycles
Ambiont Temperafures $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Weights 13 ozs.
Pull-in-Speeds 12 MS using 310 ohm coil at $24 \mathrm{~V} . \mathrm{DC} .\left(25^{\circ} \mathrm{C}\right)$. Terminalss Two 11 pin multiple solder headers with hook ends for 3 \#20/AWG wires.
Enclosures: Hermetically sealed only.
Dimensionss $1.11 / 32 \times 3.700 \times 1.13 / 16$ (See drawing for width, etc.)
CONTACTS: Arrangements: 6 pole double throw.
Loads Dry circuit to $3 \mathrm{amps}, 115 \mathrm{~V}$. AC, resistive. $5 \mathrm{amps}, 28 \mathrm{~V} . D C$, resistive
COILz Powers 2.0 watts at Nominal Voltage.
Dupy: Either coil may be left energized without damage to the relay. Insulations Teflon tape.
MOUNTINGS: Four $3 / 2$ inch $\# 8-32$ studs on $31 / 4 \times 3 / 4$ inch centers.
COIL DATA:(EACH COIL)

| Volrage: | $6 \mathrm{~V} . D C$ | $12 \mathrm{~V} . D C$ | $24 \mathrm{~V} . D C$ | $48 \mathrm{~V} . D C$ | $110 \mathrm{~V} . D C$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Resispances | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\pm 10 \%$ @ $25^{\circ} \mathrm{C}$ | 14 ohms | 55 chms | 310 ohms | 835 ohms | 5500 ohms | See What's New in P\&B Progress at Booth 603, 604 WESCON, San Francisco, August 20-23

Potter \& Brumfield, inc.
 PRINCETON, INDIANA

Subsidiary of AMERICAN MACHINE \& FOUNDRY COMPANY Manufacturing Divisions also in Franklin, Ky, and Laconia, N. H.

Mail the coupon below for further engineering date on P\&B's new Star Series relays.plus now compact gatalog of standard new Star Series relays plus new compact catalog of standard problem, write in detail.

Pomer 8 Brumfold, Inc., Princoton, Indiana
AMnz T. Bo White, Brig. Gon. M.C. (Ret.)
Spocial Pralocts Engineer
Please send me complote data on the new Star Series Please send me complore data on the now Star Series
relays, plus the new compact catalog of P\&B standard relays.
Nome
Compeny
Adiroen
Zone Store

The peak voltage comparator, Model 950, performs precision voltage ratio measurements of two signals, and is suitable for laboratory, or production test use. Its unique feature is the ability to perform ratio comparison of the peak magnitudes of any two signals up to 100 cycles, regardless of their phase frequency, or polarity relationship, with any accuracy of 01 ner cent. Typical measurement applica tions include amplifier gain, transformation ratio. power supply regulation, resistance ratio, and scale factor. Circuit features permit the accomplishment of these measurements with equal ease and accuracy under static or dynamic signal conditions. The comparator is available from stock in both rack mounted and portable models.
Cal-Tronics Corp., Dept. ED, 11307 Hindry Ave. Los Angeles 45, Calif.
Wescon Booth No. 2105
CIRCLE 116 ON READER-SERVICE CARD FOR MORE INFORMATION

Model 7351 Eput Meter with a variable time base for direct digital indications without conversion uses preset decimal counting units as the last four time base dividers to obtain highly flexible E/UT and period measurements. In addition, the instrument can be operated as a preset counter and time interval generator. Regardless of transducer conversion factors, indications of flow, speed, and pressure can be read directly by simply selecting the proper time base. It may be used as a totalizer for indicating the sum of groups which are preselected and counted by the instrument. Time intervals of any number of periods from 1 to 10,000 over the frequency range 0 to 10 kc may be measured.

Beckman/Berkeley Instruments, Dept. ED, 2200 Wright Ave., Richmond, Calif.

Wescon Booth No. 1406-07, 906-07.
CIzCLE 117 ON READER-SERVICE CARD FOR MORE INFORMATION

Inforolectronics Infore vorter solid-state thyra-tron-like elomenis and magnotic compononts ber of voliage regulated or controlled frequency AC or filterad DC outputs AC or filtorad DC outputs Light woight, compact, 9\% or better conversion officiency.
Uirraoroliablo in operavion, no moving parts, unharmed by shorting output or roversing inpur polarity. Complies with eoloration, vibration, ackporature, RF noiso.
Now in use in nissiles, poworing relemotering transmittors, radar beacons, electronic equipment. Single and polyphas. AC eutpur units now power eirberne and marine missile gyros, ynchros, sorvos, mag atic amplifiors.
Ind oroloetronies - Ars? and most exporionced in the DC input selidestate puces is own solid-stote gating oloments, all mag. netic components, hes the most complote facilitios and knowhow-has do signed and delivared more working KVA than any othor Arml
For complete ongincor ing date write Intorelos LUdlow 4-6200 in N. Y.

INTERELECTRONICS CORPORATION

2432 GR. CONCOURSE, N. Y. 58, N. Y.
Circie 118 ON READER-SERVICE CARD

Amold Nagnetic Materials

... the most complete line in the industry

PERMANENT MAGNET MATERIALS
 Cast Alnico Magnets
 Sintered Alnico
 Magnets
 Vicalloy
 Cunife Arnox III
 HIGH PERWEABILITY
 mATERLALS
 Tape Wound Cores
 of Deltamax,
 Supermalloy, Permalloy
 "C" and "E" Cores of Silectron
 Bobbin Wound Cores
 Molytadenum Permalloy
 Powder Cores
 Iron Powder Cores
 Sendust Powder Cores Special Magnetic Materials

PRECISION-TESTED TO YOUR SPECS ...

Arnold magnetic materials can answer all your requirements. It is the most complete line in the industry; and in addition, Arnold maintains complete control over every production step from raw materials to finished products.

Typical testing of Molybdenum Permalloy Powder Cores is illustrated above. Precision equipment and methods such as these accurately measure the properties of all magnetic materials before shipment, insuring ultimate performance in accordance with your specifications. Booth 1610-1611 Such a source can bring you advantages in long experience and undivided
at the Wescoll show

responsibility, and in unequalled facilities for quality control and production.

> - Let us supply your needs!

New Products

\triangle See at WESCON

\triangle Frequency Analyzer
TP-625

The TP-625 frequency analyzer determines the frequency and amplitude of the individual components of a complex wave within the frequency range of 2 to 25,000 cycles. When equipped with its auxiliary equipment, the TP-629 control panel and the TP-628 servo drive, the analyzer will automatically track to a frequency established by the speed of the equipment under analysis. Odd, even, or fractional ratios can be established by the control panel. The auxiliary equipment requires only one external signal, a function of the fundamental frequency of the equipment being analyzed.

Technical Products Co., Dept. ED, 6670 Lexing. ton Ave., Los Angeles 38, Calif.

Wescon Booth No. 209.
CIRCLE 121 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Strip Package
For Component Packaging

The 3976 strip package for packaging all types of completed electronic components, consists of two parallel rows of continuous metal terminals mounted on a phenolic base. The terminals are cut to produce the correct circuit, after which components are laid parallel to each other between these two rows of terminals. All joints are then automatically soldered. This concept in package design is produced at a quality level of one defective joint per 100,000 solder connections. Any standard component can be incorporated in the circuit design and in the one package.

Erie Resistor Corp., Dept. ED, Erie 6, Pa. Wescon Booth No. 1510.
CIRCLE 122 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Capacitor

Polystyrene

This dual adjustment hermetically sealed polyrene capacitor is encased in a heavy gage metal container to insure maximum rigidity. The dual arijustment feature permits a tolerance range of 2 per cent and can be set to ± 0.005 per cent. It will operate without voltage derating from -55 to -85 C . The insulation resistance will average 2 x $10^{16} \mathrm{meg} / \mathrm{ffd}$ when measured at 25 C . The dual adjustment capacitors possess all the characteristics of polystyrene capacitors and are adaptable to matching circuit standards, servo-mechanisms, and other extremely precise instrumentation.
Hopkins Engineering Co., Dept. ED, 12900 Foothill Blvd., San Fernando, Calif.
Wescon Booth No. 311.
CIRCLE 124 on reader-SERVICE CARD For more information

Toroidal Core Grader

Iron and Mo-Permalloy Cores

Model BPA Permeameter grades powdered iron and Mo-permalloy toroidal cores in percentage-of-nominal-turns deviation, plus or minus, from a standard coil. For example, a standard coil of correct inductance requires 1000 turns of wire on a core selected as nominal. A typical reading for another core might be plus 1.5 per cent. Therefore, this core requires 1015 turns to have the same inductance as the standard coil. Use of Model BPA, consequently, eliminates nearly all costly labor used in trimming coils to inductance, assures product uniformity, and simplifies engineering design. Two meter ranges provide reading plus or minus 10 per cent or plus or minus 5 per cent. In operation, the core under test becomes part of a tuned circuit and any deviation from the standard center frequency is detected by a linear frequency discriminator. This deviation is then read on the meter in percentalge of nominal turns as compared with a core selected as the standard. This new instrument handles cores ranging in permeability from 14 to 125 and sizes from 0.3 in ID to 5.28 in OD. Overall accuracy is 0.25 per cent. The large meter reads to 0.1 per cent.
Boesch Mfg. Co., Inc., Dept. ED, 233 Harvard St., Brookline, Mass.
Wescon Booth No. 418.
CIRCLE 125 on reader-service card for more information

"TRANSISTOR EVALUATION YOUR PROBLEM?"

Ian Hood, Project Engineer, Cubic Corporation

Designed to meet the requirements of the Military and Industry

In electronics research and development there is a definite need for a basic, compact, accurate instrument to test and evaluate transistors. Cubic Corporation meets this need with the Cubic " 504 " Curve Tracer, an instrument fully transistorized, battery powered and entirely self-contained in a single carrying-case.

The " 504 " is a basic instrument with high flexibility. It is used as easily for production-line quality control as it is for testing in the research laboratory

This instrument generates the electrode bias currents and voltages necessary for dynamic testing of NPN/PNP junction triode transistors in the common emitter configuration.

The " 504 " provides an eight-curve family, relating stepped values of base drive and linearly swept values of collector voltage. Base drive increments are continuously adjustable, and any of the eight curves may be selected for individual inspection.

Development people using this instrument consider it ideal for measuring the very useful low-frequency, small signal characteristics of transistors.
In industrial and military inspection areas, the " 504 " is widely used for acceptance tests of transistors and Zener diodes. In these areas, non-technical personnel using the " 504 " have been able to speed up quality control tests to rates in excess of 200 units per hour. The " 504 " makes it easy. A reference transistor is placed in one of the test sockets and the transistors being checked are placed in the other. They are then checked rapidly by means of switch-operated comparisons on a simple "go" "no-go" basis.
If you have problems with transistor evaluation and you need to streamline your operations without sacrificing quality or accuracy, Cubic's " 504 " is the answer. It will eliminate time-consuming set-up; it is a rugged, everyday, compact transistor evaluation tool.

We'll be glad to give you a fast. "prove-it-yourself" demonstration. Just call or write.

Armold Magnetic Materials

... the most complete line in the indusiry

PERMANENT MAGNET MATERIALS

Cast Alnico Magnets
Sintered Alnico
Magnets
Vicalloy
Cunife
Arnox III
AIGH PERMEABILITY
MATERIALS
Tape Wound Cores of Deltamax,
Supermalloy, Permalloy "C" and "E" Cores of Silectron
Bobbin Wound Cores
Molybdenum Permalloy Powder Cores Iron Powder Cores Sendust Powder Cores Special Magnetic

Materials

PRECISION-TESTED TO YOUR SPECS . . .

Arnold magnetic materials can answer all your requirements. It is the most complete line in the industry; and in addition, Arnold maintains complete control over every production step from raw materials to finished products.

Typical testing of Molybdenum Permalloy Powder Cores is illustrated above. Precision equipment and methods such as these accurately measure the properties of all magnetic materials before shipment, insuring ultimate performance in accordance with your specifications. Booth 1610-1611 Such a source can bring you advantages in long experience and undivided at the MECON SHOM responsibility, and in unequalled facilities for quality control and production.

- Let us supply your needs!

Circle 120 on reader-service card for more information

New Products

\triangle See of WESCON

\triangle Frequency Analyzer
TP-625

The TP-625 frequency analyzer determines the frequency and amplitude of the individual components of a complex wave within the frequency range of 2 to 25,000 cycles. When equipped with its auxiliary equipment, the TP-629 control panel and the TP-628 servo drive, the analyzer will automatically track to a frequency established by the speed of the equipment under analysis. Odd, even, or fractional ratios can be established by the control panel. The auxiliary equipment requires only one external signal, a function of the fundamental frequency of the equipment being analyzed.

Technical Products Co., Dept. ED, 6670 Lexing. ton Ave., Los Angeles 38, Calif.

Wescon Booth No. 209.
CIRCLE 121 ON READER-SERVICE CARD FOR MORE INFORMATION

The 3976 strip package for packaging all types of completed electronic components, consists of two parallel rows of continuous metal terminals mounted on a phenolic base. The terminals are cut to produce the correct circuit, after which components are laid parallel to each other between these two rows of terminals. All joints are then automatically soldered. This concept in package design is produced at a quality level of one defective joint per 100,000 solder connections. Any standard component can be incorporated in the circuit design and in the one package.

Erie Resistor Corp., Dept. ED, Erie 6, Pa.
Wescon Booth No. 1510.
circle 122 on reader-service card for more information
ELECTRONIC DESIGN • August 1, 1957

\triangle Capacitor

Polystyrene

"TRANSISTOR EVALUATION YOUR PROBLEM?"

Ian Hood,
Project Engineer, Cubic Corporation

In electronics research and development there is a definite need for a basic. compact, accurate instrument to test and evaluate transistors. Cubic Corporation meets this need with the Cubic " 504 " Curve Tracer, an instrument fully transistorized, battery powered and entirely self-contained in a single carrying-case.
The " 504 " is a basic instrument with high flexibility. It is used as easily for production-line quality control as it is for testing in the research laboratory.
This instrument generates the electrode bias currents and voltages necessary for dynamic testing of NPN/PNP junction triode transistors in the common emitter configuration.
The " 504 " provides an eight-curve family, relating stepped values of base drive and linearly swept values of collector voltage. Base drive increments are continuously adjustable, and any of the eight curves may be selected for individual inspection.

Development people using this instrument consider it ideal for measuring the very useful low-frequency, small signal characteristics of transistors.

In industrial and military inspection areas, the " 504 " is widely used for acceptance tests of transistors and Zener diodes. In these areas, non-technical personnel using the " 504 " have been able to speed up quality control tests to rates in excess of 200 units per hour. The " 504 " makes it easy. A reference transistor is placed in one of the test sockets and the transistors being checked are placed in the other. They are then checked rapidly by means of switch-operated comparisons on a simple "go" "no-go" basis.

If you have problems with transistor evaluation and you need to streamline your operations without sacrificing quality or accuracy, Cubics " 504 " is the answer. It will eliminate time-consuming set-up; it is a rugged, everyday, compact transistor evaluation tool.

We'll be glad to give you a fast, "prove-it-yourself" demonstration. Just call or write...

Nickelonic News

Developments in Nickel and Nickel Alloys and their applications

Sled trains snowhaul 34,000 tons of supplies to speed new Nickel mines into production

3 Nickels help Philco step up life of new HF transistors

These new Philco Surface Barrier Trase new Philco Surface Barrier bility, life and performance to 50 mc and above.
One reason is low power consumption under one milliwatt. Another is Philco's use of three Inco Nickels.
To insure a strong, contaminationfree support for the germanium, Philco makes the tabs of Electronic Grade " A " Nickel. Ductile "A" Nickel is used for the can, too . . . makes it rugged, corro-sion-resistant. And for tolerance stability, the whisker wires are made from spring-temper Permanickel* age-hardenable, electrically conductive nickel.

New Name for Old Alloy
Recently a wrought alloy, widely used in cable shielding and in CR and other special tubes, was renamed. Formerly 326 "Monel alloy, it is now " 403 " Monel* nickel-copper alloy. Above room temperature, this highly workable alloy stays sractically non-magnetic. Perme oersteds.)
"403" Monel alloy ...Nominal Composition \%

$\mathrm{Ni}(+\mathrm{Co})$	58.65	Cu	38.75	Mn	1.80 S
Fi	0.005				

POWER KLYSTRON FOR SCATTER TRANSMISSION Nickel in gun components steadies tube operating characteristics

Last winter Inco-Canada shuttled 24 diesel sled trains over a 35 -mile snow trail in northern Manitoba south west of Hudson Bay. Object was to get a flying start on the construction of two new Nickel mines . . . part of an Inco program for adding over 100 million pounds a year to Nickel output.

1000 trips

In this gigantic snowhaul, sled trains made 1000 trips laden with equipment to start work on the mines and the new townsite while a railroad spur line was being built.
In addition to new mines, the project includes new concentrating, smelting and refining facilities. The expected boost in Nickel availability is good news for many now working on designs calling for the special properties of Nickel and Nickel alloys.

This is a typical Eimac Klystron, employing an oxide coated Nickel cath ode. A similar Klystron has shown no drop in cathode emission or efficiency after more than a year of operation at 8000 volts and 550 milliamperes.
To help achieve this, Eimac uses Inco Electronic Grade "A" Nickel... in cathode button, as the oxide base; in shields, cylinders, supports. The Nickel boosts life, aids conductivity, retains dimensions despite bombardment at high temperatures.

THE INTERNATIONAL NICKEL COMPANY, INC. • 67 Wall Street • New York 5, N. Y. For more information on Ince products mentioned above, use reader sorvice number or write. CIRCLE 128 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

\triangle See at WESCON

Power Supply 300 v, 150 ma

Model 7P13 is a 300 v 1.50 mat voltage regulated laboratory-type power supply. Input voltage is 105 to 125 v at 50 to 60 cps . Three output voltages are available: continuously variable 0 to 300 v de at 150 ma ; continuously variable 0 to negative 150 v dc at 5 ma ; and 6.3 v ac at 8 mp . High voltage reg. ulation is plus or minus 5 per cent from 20 to 300 v at 0 to 150 ma , and line variations from 105 to 125 v oc. Metering is accomplished with separate voltmeter and milliameter. The power supply is available in either cabinet or rack type mounting. Cabinet mounting measures $121 / 2$ wide $\times 8$ high $\times 81 / 4$ in. deep. All adjustments and controls are brought to the front panel.
Western Gear Corp., Dept. ED, P.O. Box 182, Lynwood, Calif.

Wescon Booth No. 2401-2402.
CIRCLE 129 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Mechanical Filters
Collins Markets Miniaturized

Hermetically sealed in a metal tube 2-3/16 in. long and $7 / 16 \mathrm{in}$. in diam, this filter represents a substantial size reduction from older model mechanical filters. Termed the Y series, the new model offers identical response characteristics as older models and is ideally suited for transistorized printed circuit applications. Models are available from stock in center frequencies of 455 kc with 6 dh bandwidths of $2.1,3.1,4,6,8,12,16$, and 35 kc Other bandwidths will be made available in the immediate future.

Communication Accessories Co., Dept. ED, Lee's Summit, Mo.

Wescon Booth No. 1707-08.
CIRCLE 130 ON READER-SERVICE CARD FOR MORE INFORMATION CIRCLE 132 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 1, 1957

A ectron Nbe News -from SYLVANIA

Meeting Industry's New Chollenges-Everywhere in Electronics

IN COMPUTER TUBES...

Sylvania releases another

 new computer tube, the 7044, featuring high perveanceAdvanced duo triode computer tube released by Sylvania, type 7044, features high perveance and dissipation capabilities and for many applications is a replacement for type 5687. Optimized design featuring leakage slots and the best alloys to preclude interface resistance contribute to a long and stable life.
Type 7044 supplements Sylvania's extensive line of tubes for computer applications which includes types 5844, 5963, 5964, 5965, 6211, 6350, 6814, 7AK7, 6145, 6888 and 5915A.

IN RELIABLE TUBES...

Sylvania's Gold Brand means extra dependability and reliability

Now all Sylvania reliable receiving tubes are distinguished by the famous Gold Brand that already identifies the premium dependability of Sylvania subminiatures. The Gold Brand assures you of airborne and computer tubes with extra accuracy and dependability.
Sylvania Gold Brand tubes meet extra critical specifications throughout the entire tube-making operation. This extensive quality control is possible because Sylvania itself furnishes nearly every tube part. As a result, extra-critical specifications can be applied to the production of components throughout the manufacturing of tubes.

RATINGS:

TYPICAL CHARACTERISTICS:

IN TY PICTURE TUBES ...

Now Sylvania non-ion trap electron guns for 900 and 1100 deflection with oloctrostatic focus.

New non-ion trap electron guns reduce tube length, eliminate external ion trap magnet
Sylvania, trendsetter in electron tube design, offers two new improvements for television picture tubes:

- For 110° dofiection-a mall nock, non-ion trap gun with -loctrostafle focus
- For 90° dolioction-e standard mock non-ion trap gun whth olectrostatic focus.

Both new guns permit reductions in overall tube length of up to a full inch. They also make possible important cost savings by eliminating the need for external ion trap magnets.

The small neck gun for 110° deflection is available in the conventional base design with flexible stem leads or in the rigid pin base design with nylon cap.

Meeting Industry's New Challenges

IN DYNAMIC TESTING...

Sylvania expands its Dynamic Testing Program to include every key TV type

Sylvania's expanded dynamic testing program now covers every important family of tube types used in today's critical TV receiver circuits. Individual Sylvania receiving tube types are evaluated in actual circuit environments that simulate current TV set designs. This extra quality check substantially reduces line rejects for receiver manufacturers and gives greater reliability and improved TV set performance at lower cost.

Sylvania's Joint Engineering and Manufacturing Committee, JEMC, meets weekly to keep testing specs current. The group, made up of key engineering and manufacturing management personnel, establishes specifications that assure better performance levels under actual operating conditions.

JEMC group, comprised of top engineering and production personnel in Sylvania's receiving tube operations, sets standards for the Dynamic Testing Program.

Sylvania tubes undergo arc tests in TV receiver circuits as part of its extensive Dynamic Testing Program.

IN ADVANCED DESIGN . . . new filament designed for 1B3GT and its

 new short version, type 1G3GT

New heater design shown at right

0Sylvania introduces a new coil filament design that improves the performance and extends the life of the standard 1B3GT. This new development replaces the conventional filament shield with a hooked coil design that reduces shorts and arcing and increases emission.

Sylvania's new 1G3GT, a miniaturized version of the 1B3GT, incorporates the new filament coil design, is a full $1 / 2$ inch shorter in overall length, and exhibits the same characteristics as the 1B3GT.

IN 110° DEFLEGTION TUBES ... Now TV Deflection Pentode

Sylvania offers a new tube development, type 12DW5, to meet the requirements for large-screen 110° vertical deflection. It also has application in 110° off-the-line circuits.

This new beam power amplifier with a T $61 / 2$ bulb size, is an original Sylvania design. It is already creating interest in the TV industry
for many 1958 receiver designs by leading television manufacturers.

For series-string circuits, the new 12DW5 features high peak-positive plate voltage, high zero bias current and adequate plate and screen dissipation. To supplement the 12DW5, Sylvania offers the 6DW5 with a 6.3 -volt, 1.2 -ampere heater characteristic.

Vertical Defection Retinge (Pemedo Cemnectid)	
Plato Vohage	$230 \mathrm{Volf} \mathrm{Max}$.
Grid Me. 2 Voltaye	220 Volts Mex.
Peak-Positive Pulso	
Plato Voltage (absolure mox.)	2200 Volfe
Plapo Dissipation	11 Weits Max.
Sereen Dissipetion	2.5 Wints Max.
Zere Bias Characteristics (Instanteseess Values)	
Plato Veltage	60 Voles
Grid No. 2 Volrege	150 Volss
Grid Volreye	- Volt
Plato Currem	210 Ma
Orid No. 2 Current	20 Ma

Everywhere in Electronics

-IN GUIDED MISSILE TYPES

... Structural advantages earmark Sylvania fubes
 expressly designed
 for guided missile use

Possibly the biggest single factor behind the wide acceptance of Sylvania's Guided Missile subminiature tubes is the fact that each type was designed from start to finish under a new philosophy born of thorough investigation of Guided Missile requirements.
From closer control of raw materials to tighter parts tolerances and new manufacturing techniques, nothing was spared to design and produce the most missile-worthy tubes available.

Wider grid-to-cathode spacing

Consistent with tube functioning requirements optimum grid-to-cathode spacing provides greater protection against flicker shorts and minimizes vibrational noise.

Adequate mica bearing surfaces

Shortest mica-to-mica spacing
Shortened mount adds structural rigidity and relocates natural resonances beyond the frequency range encountered in missile operations.

Tight, solid fitting is achieved between mica and cathode and mica and grid side rods through close parts tolerances and optimized bearing surface between the parts and mica.

Plate tabs and bent stems

Whenever possible, plate labs are used and stem leads are bent, eliminating extra connectors and welds. A more rigid mount and improved reliability are achieved.

Special bulb glass

Special new glass is employed in the guided missile tubes. The new hard glass makes possible bulb temperatures of $250^{\circ} \mathrm{C}$. at a plate voltage of 250 volts.

"NEW CONCEPT" BULB

... a Sylvania refinement contributing to greater tube reliability

The new concept bulb is a typical Sylvania refinement which places greater controls over raw materials and physical tolerances.

From header to top seal, the new concept bulb is controlled for uniform wall thickness. The combination of more uniform bulb and closer mica spacing tolerances provides a tighter fitting, more rugged mount.

No
Postege Stamp
Necessary
H Moiled in the
United Sidetes

BUSINESS REPLY CARD
(First Class Permit No. 46687, Now York 19, N. Y.)

SYLVANIA ELECTRIC PRODUCTS INC.
1740 Broadway
New York 19, N. Y.

Meeting Industry's New challenges Everywhere in Electronics

IN 12-VOLT HYBRID TYPES ...

Sylvania's three new tubes, 12CX6, 12 AL8 and 12DL8, meet needs of 1958 auto radio designs

Three new 12 -volt hybrid receiving tubes from Sylvania are becoming the mainstays in 1958 auto radio designs. They are types 12CX6, 12AL8 and 12DL8.
Type 12CX6, a new rf-if pentode, is a Sylvania original design that is becoming one of the most popular auto tubes in 1958 lines. It has high transconductance of 3,100 micromhos and high plate resistance which is
relatively unaffected by variation in the automobile supply voltage.

The 12AL8 is a medium mu triode and space-charged tetrode. It can be used as an audio amplifier and a transistor driver, or a trigger tube in remote control sets.
The 12DL8 is a new duo diode and space charge tetrode for transistor driver service and other applications.

IN SPECIAL CRT'S

Expanding CRT program produces Type 5UP1more to come as development continues

Sylvania announces the availability of the Type 5UP1 general-purpose cathode-ray oscilloscope tube. It's among the first in Sylvania's plans to enter the special CRT program on a full-scale basis. Already in various stages of development and planned for early production are
such cathode-ray types as the 3JP7, 3RP1, 5AHP7A, 7ABP7A and 12ABP7A.

To meet its projected goals, completely separate development and production facilities have been established to meet industry's special needs.

- SYLVANIA

Please send additional information on the items checked below.

$:$	\square Computer type 7044
\square	\square Type 12DW5-6DW5
$:$	Type 1G3GT
	Hybrid auto radio types
	12CX6, 12AL8, 12DL8
	Special purpose cathode-ray tubes
	Non-ion trap TV picture tubes

Name

Address \qquad
Company

Use this handy

 business reply card
to request

 additional information on these important new Sylvania developments
\triangle Klystron
69.5-77.5 Kmc/sec

The DX151 is a tunable, waveguide-output, reflex klystron oscillator operating in the 69.5-77.5 $\mathrm{kmc} / \mathrm{sec}$ freq range, which features high power output and low heater power. The high power output and long life of these klystrons are due to the use of a Philips dispenser type cathode, which is able to supply high current density thermionic emission continuously at emission levels in the order of 2 to $4 \mathrm{amps} / \mathrm{cm}^{2}$.
Amperex Electronic Corp., Dept. ED, 230 Duffy Ave., Kicksville, L.I., N.Y
Wescon Booth No. 3206.
CIRCLE 133 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Quadrature Rejector
Attenuates 100 to 1

Designed as an interstage element in 400 cps ac servo amplifiers, the QR-400 attenuates undesired quadrature signals by 100 to 1 . Quadrature rejection finds application wherever undesired quadrature voltage tends to cause saturation or excessive power dissipation, or when quadrature obscures desired in-phase servo error signals. The QR-400 is a small hermetically-sealed unit composed of high-temperature solid-state components.
The rejector is simply a sampling device. It may be represented schematically by a switch and capacitor. Keyed by a 400 cps reference signal, the switch, in effect, closes momentarily at the peak of each half-cycle of the reference signal. The QR-400 thus samples its input at the peak of each half-cycle of the in-phase component, and holds that value until the next sample is taken. Since sampling occuls at the peak of the in-phase component, which corresponds to zero-crossing of the quadrature compowent, the output is insenstive to quadraturs.
Feedback Controls, Inc., Dept. ED, 899 Main St., Willtham 54, Mass.
"escon Booth No. 1305.
Circie 134 ON reader-service card for more information * RCIE 132 ON R:AD_R-SERVICE CARD

El\&CTRONIC DESIGN • August 1, 1957

Norden-Ketay presents

a superior newo

synchro . . .

THE 3 FUNCTION, 3 MINUTE

 QUADRATURE BAR SYNCHRO
3SYN as a TORQUE TRANSMITTER

- Twice the torque gradient (0.25 oz-in) of standard mil synchros (0.13) drives a bigger load, or the same load more accurately.
- More than twice the electrical accuracy $\left(3^{\prime}\right)$ of mil synchros (8^{\prime}).

FUNCTION	UNITS	3SYN	STANDARD MIL SYNCHROS
NKC TYPE desigmation		113CF2A	113F28/113C2A
Number of Phases [\| STATOM		3 1	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
EXCITATION PHASE		Rotor	Rotor
FREQUENCY	cps	400*	400
VOLTAGE RATING	volts	115/90	115/90
$\begin{array}{ll} \text { Maximum Input } \mid \text { CURRENT } \\ \text { POWER } \end{array}$	amps watts	0.92	$\begin{aligned} & 1.21 \\ & 9.4 \end{aligned}$
INPUT IMPEDANCE	ohms	138/86.4 ${ }^{\circ}$	105/86.6 ${ }^{\circ}$
	$\mathrm{mv}_{\mathrm{mv}}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 75 \end{aligned}$
DC Resistance at $\left.20^{\circ} \mathrm{C}\right\}$	ohms ohms	3.93 3.04	5.86 2.59
MOMENT OF INERTIA	02-in ${ }^{2}$	0.45	0.43
FRICTION TORQUE AT $20^{\circ} \mathrm{C}$ MAXIMUM	02-in	0.1	0.1
ELECTRICAL ERROR, MAXIMUM	minutes	$\pm 3^{\prime}$	$\pm 8^{\prime}$
RECEIVER ERROR, MAXIMUM	degrees	0.5	1
TORQUE GRADIENT, MINIMUM	02--in/deg	0.25	0.13
DAMPING TIME, MAXIMUM	sec.	1	2
OPERATING TEMP. RANGE	${ }^{\circ} \mathrm{C}$	-55 to $+55 \dagger$	-55 to +55
WEIGHT	02.	21	21
military designation			23TR4a/23TX4a
- Although this synchro is rated at 400 cps . 3 SYNs are available to your order to operate at any frequency from 400 cycles to 10,000 cycles. \dagger The normal temperature range of $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ can be extended to $140^{\circ} \mathrm{C}$ on apecial order.			

3SYN as a CONTROL TRANSMHTIER

- Better regulation with less input current improves efficiency, drives more transformers.
- 3-minute accuracy surpasses mil synchro performance (8^{\prime}).

3SYN as a TORQUE RECEIVER

- Twice the receiver accuracy ($\pm 1 / 2^{0}$ error) compared with standard mil synchro ($\pm 1^{\circ}$ error).
- One-half the damping time (1 sec) compared with mil synchro (2 secs).

PIUS

3SYN minimizes problem of 'spares', since it is interchangeable with mil torque transmitters, control transmitters, and torque receivers. Moreover, 3SYN does not merely equal, but excels the critical ratings of standard mil synchros in each of those three functions.

For full data and appllcation engineering on the $3 S Y N$ synchro, write to Norden-Ketay Corporation, Western Division, 13210 Crenshaw Blvd., Gardena, Calif.

Sales Offices: Stamford Conn. I Chicago Washington, D.C. 1 Dayton, ohlo | Los Angeles CIRCLE 135 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

\triangle See at WESCON

\triangle Transistorized Switch

Starts and Stops Clock Pulses

This Switch Unit provides a means of starting and stopping clock pulses with manual or electrical impulses. Pulse standardization is accomplished and partial pulses are eliminated by a regenerative circuit. Amplified -20 v dc levels are available at the outputs, and will supply 1 ma to other transistor loads. In addition, positive and negative $1.5 \mu \mathrm{sec}$ standardized pulses are produced by the gating circuit output. These pulses are suitable for driving binary counters, shift registers, delays, and all other units in the integrated 100 series.
Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 45, Pa.

Wescon Booth 906-907.
circle ise on reader-service card for more information

\triangle Linear Accelerometer

 Damping without Warm-up

Designated the Type LA-500 Series, these accelerometers are true linear, non-pendulous type instruments, inherently insensitive to cross-coupling accelerations. These instruments are available in a variation of ranges from ± 1 to $\pm 60 \mathrm{~g}$ and can be provided with two potentiometer pickoffs. Essentiaily constant damping is maintained automatically throughout the entire operating range of -65 to +175 F. No warm-up time is required. Features include: damping ratio, 0.6 ± 0.2 (from -65 to +175 F); linearity, 1 per cent of full scale; size 1-7/16 in. diam, 3-1/4 in. long; weight, 1 lb .
Minneapolis-Honeywell, Dept. ED, Boston Div., 1400 Soldiers Field Rd, Boston 35, Mass.

Wescon Booth No. 202.
CIRCLE 139 ON READER-SERVICE CARD FOR MORE INFORMATION

Johnson pilof lights
 immediafely available for original equipment or in-the-field replacement!

Save valuable specification time by selecting your panel indicators from Johnson's "preferred" line. This group contains over 47 separate assemblies
carefully selected from Johnson's standard line by many of the nation's top design and development personnel. Available in a wide variety of types, these "preferred" units are immediately available at parts distributors throughout the country, for original equipment or in-the-field replacement. Write for your free copy of Johnson's newest pilot it is to select the right pilot light . . . fast!

x E. F. .John m warn Compary CIRCLE 140 ON REA.W. Woseco, Minneto

Any combination of precious metals over precious metals . . . precious metals over base metals . . . base metals over precious metals . . . base metal combinations . . . from commercial purity to thermocouple purity, in sizes down to $.001^{\prime \prime}$ diameter.
Before you order your next wire requirements consult BISHOP experts. Depend on BISHOP skills. BISHOP is now serving the aircraft, electronic. atomic and power industries . . . fulfilling their special wire needs.
BISHOP, pioneers in precious and base metal fabrications for over a century can serve you better and save you money.

manufacturens of

 Foils Electrodes Clad Metals Composite Wires Laboratory ApparatusPrecious Metal Salts and Solution;
Stain.ess Steel, Nickel and Nickel Alio/ Tubing

J. PISHOP \& CO. PLATINUM WORKS

Malvern, Pennsylvania
CIRCLE 142 ON READER-SERVICE CARD

\triangle Absorber Material Broadbanded, Permanent

A vhf-uhf microwave absorber material, for production and laboratory antenna, testing, TV antenna test rooms or aircraft ramp testing of highpower, low-frequency radar, is announced. Type BL-48 absorber is made of an inert plastic foam material and can be used for both indoor and outdoor applications. These absorbers maintain permanent attenuation characteristics with a frequency range from 40 mc to $35,000 \mathrm{mc}$. Supplied in wedge form, in blocks with a base of $1 \times 2 \mathrm{ft}$ and a ht of 4 ft , the individual wedge block weighs 5 lb per sq ft and has an average power reflection coefficient of 2-1/2 per cent at normal incidence. Each piece of vhf-uhf microwave absorber is tested in a parallel plate line to insure quality performance.

McMillan Industrial Corp., Dept. ED, Brownville Ave., Ipswich, Mass.

Wescon Booth No. 518.
CIRCLE 143 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle RFM Cooling Panel
4000 w Heat Dissipation

This packaged cooling panel may be installed in the bottom of a standard 19 in . relay rack. It will handle 4000 w heat dissipation with a 40 deg temp rise and moves within the neighborhood of 300 cfm . It includes the fan filter box and a 2 in. thick metallic, oil-wetted, washable filter. Mounted on the front of the grill is a filter pilot which indicates when the filter should be cleaned. Models are available which will operate on $50-60$ or $400 \mathrm{cps}, 1$ or 3 phase, $110 / 220$ vac. This unit will meet existing military environmental and shock and vibration specifications for this type of equipment.

Rotron Mfg. Co., Dept. ED. Schoonmaker Lane, Woodstock, N.Y.

Wescon Booths No. 2813, 2814.

[^0]

One of the objectives in the design of the Canoga Wobbulator 7200 is to obtain high sensitivity without the "hum" problems normally experienced with other swept frequency generators. The swept frequency output voltage of the Wobbulator 7200 is modulated at approximately 50 Kc ; the probes, with their internal diodes, detect this modulation which is then amplified in the vertical CRT band-pass amplifier. This new principle allows the use of swept generator techniques for evaluation of low gain or lossy circuits where point by point frequency measurements were previously necessary.
Frequency Range:
Swept Frequency Band:
Output:
Sweep Circuit:
Swept Output:
2.0 to 1000 mc
2.0 to 55 mc , continuously variable

More than 0.03 volts, 50 ohms
Swept 0
Attenuator Dial:
Probe Detectors:

Attenuator Dial:
Probe Detectors:

1) Constant within $\pm 1 \mathrm{db}$ over 40 mc
2) Constant within fractions of db over 30 mc
ated in 1 db increments
3) Low impedance 50 ohms
4) High impedance

High Sensitivity Vertical Amplifier: $\quad 50$ microvolts input gives at least $2^{\prime \prime}$ deflection
Cathode Ray Tube: 5UP1, with camera mounting bezel
Calibrated Panel Controls: Center frequency
Outpui Attenuator
Panel Controls:
Vertical Amplifier Gain Control
Vertical Amplifier Gain Switch, high-low
CRT intensity, focus
CRT Vertical \& Horizontal Centering On-off switch
Power: $115 \mathrm{~V}, 60 \mathrm{cps}, 175$ Watts
Output Impedance: $\quad 50$ ohms, BNC connector
WRITE TODAY FOR COMPLETE DETAILED INFORMATION
Radar Systems
Antennas
Receivers
Test Equipment
Microwave Components

CANOCA
CORPORATION
5955 Sepulveda Boulevard
Van Nuys, California

LIFE IS NO PROBLEM

WITH

\square PRECISION

arons

Take for instance a recent test report on the TIC Type ST20, a 2-inch, low-torque, ballbearing precision potentiometer. The life test was conducted on a standard 6500 ohm
 unt. At 30 RM the 520 was subjected 30 700,000 cycles, reversing direction every 30 minutes. The linearity graphs shown above show the before and after of the ST20's independent linearity. As can be seen, the linearity change is imperceptible.

Some of the change in linearity after the life cycling can be attributed to change in effective resolution due to contact wear. Other results from the life test indicate less than 100 ohm equivalent noise resistance except for one spot, where it was less than 1000 ohms. The 1000 ohm spot was of such short duration that the linearity recording did not pick it up. Test Summary: The ST20 will perform with only infinitesimal degradation for over 700,000 cycles. If it's long life at full precision performance, that you want, specify precision potentiometers by TIC.

TECHNOLOGY INSTRUMEAI CORP.

New Products

\triangle See at WESCON

The TR-247 portable radiotelephone for geophysical applications may be used on any single frequency between 2000 and 8000 kc . Power output of the transmitter is from 25 to 30 w . The unit may be operated directly from a 6 or 12 v battery. Current drain is kept low by employing quick heating tubes. The entire unit including carrying case weighs 52 lb . less battery. A stripped chassis is provided on which users may add special equipment for time break circuits as employed in geophysical operations. Facilities for auxiliary inputs have also been provided.

Kaar Eng. Corp., Dept. ED, P.O. Box 1320, Palo Alto, Calif.

Wescon Booth No. 1915.
CIRCLE 148 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Metal Film Resistors
Low Noise Level

The Davohm Series 850 hermetically sealed metal film resistors are now available. The resistors offer low noise level; resistance values of 2 ohms in $1 / 2 \mathrm{w}$ size, 3 ohms in 1 w size, 4 ohms in 2 w size; very low reactive impedance component; no semiconductor effect; a temp range of from -65 to 150 C ; the same positive temperature coefficient for all resistors from 2 ohms to 4 megohms. In addition, the resistors are hermetically sealed in three sizes in ohmic ranges from 2 ohms to 4 megohms in accuracies of $\pm 1 / 2, \pm 1, \pm 2$ and ± 5 per cent. They will never short out or burn up since there are no organic compounds which might carbonize.

The Daven Co., Dept. ED, Livingston, N.J.
Wescon Booth No. 721.
CIRCLE 149 ON READER-SERVICE CARD FOR MORE INFORMATION

EXTREMELY COMPACT!

Based on a group of interchangeable components, the Beattie Oscillotron Model K-5 Recorder provides with one basic component, a foundation for a complete recording system from Single Frame to Continuous Motion, plus Polaroid-Land.

OUTSTANDING FEATURES

- Extremely compact - body extends only approx. 6 in. Especially desirable for rack mounted oscilloscope and radar scope displays
- Fast, easy interchangeability from one camera to another
- Instantly changeable film magazines ($35 \mathrm{~mm}, 70 \mathrm{~mm}$, or Polaroid Land).
- No special tools required for attaching or removing unit
- Oscilloscope controls remain unobstructed
- Mounts directly to standard 5.6" Oscilloscope bezels

- Oscilloscope
display may b display may b both eyes while recording Complete remote automatic operation
One periscope for all types of recording. Polaroid Land Camera

Wrife foday for complefe defailed specifications and prices.
Photographic Products Inc.

```
000 ngrth olive strett. anaheim calif
```

CIRCLE 150 ON READER-SERVICE CARJ

*PURE TIN plated on Somers Thin Strip.

Somers engineers have developed a special hot tin plate process which now will provide the smooth surface, solderability, adherence and complete absence of slag so essential to manufacturers of:

PRINTED CIRCUITS CAPACITORS

CABLE WRAPPING

Tin coatings of .00002 to .00008 and .0002 to .0003 are available on brass, copper, bronze and other Thin Strip metals in gauges from .012 down to .002 , widths from $1 / 8^{\prime \prime}$ to $6^{\prime \prime}$ and wider.

And, of course, Somers exacting standards for tolerance, tensile strength and other physical properties are rigidly maintained.

Whatever your requirements for tin plated thin strip, you can depend on Somers long experience and modern equipment for a quality product.

Write for further information and confidential data blank. Somers will gladly analyze your problem without obligation.

omers Brass Company, Inc., lig balowin ave., waterbury, conn. CIRCIE 152 ON READER-SERVICE CARD

Automatic Wire Marker 1000 Wires Per Hr

The automatic wire marking machine, MarkMatic, permits the use of self-sticking, Perma-Code wire markers; one operator can mark as many as 1000 wires per hr. Markers are stripped from a dispenser card and applied automatically. Complete around the wire identification may be obtained in 2 sec . Seven different wire marker materials can be used in the Mark-Matic. Wires may be coded by number, letter, or symbol-consecutively, or in series of consecutive groups-without changing the speed or feed of the machine. Three stock lengths, $1-1 / 2,3 / 4$ and $1 / 2 \mathrm{in}$. long wire markers are handled interchangeably. Mark-Matic dimensions are 19 in . long, 18 in. wide, and 15 in . high and it weighs 100 lb . It operates on $115 \mathrm{v} \mathrm{ac}, 60$ cyc.
W. H. Brady Co.. Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis.

Wescon Booth No 1113.
CIRCLE 153 ON READER-SERVICE CARD FOR MORE INFORMATION

Multi-contact
 Relay

Type 9

This miniature telephone-type multi-contact type 9 relay, especially suited for aircraft, guided missiles, data processing equipment, and two-way mobile radio unit, is available with a wide choice of contact materials, and with a maximum of 18 springs (9 per pile-up). The unit has a maximum 3 w dissipation and a resistance up to 14,000 ohms with two $4-40$ tapped holes on $3 / 8 \mathrm{in}$. centers. It measures 1-5/32 in. long x 23/32 in. wide. Height depends on the number of springs. It is also available as a hermetically sealed unit, measuring 2-1/8 x 1-5/8 x 1 in . overall. Springs are phosphor bronze for long life .

Phillips Control Corp., Dept. ED, 59 W. Washington St., Joliet, Ill.

Wescon Booth No. 419.
CIRCLE 154 ON READER-SERVICE CARD FOR MORE INFORMATION

Build into your transmitter

this handful of assurance

MicroMatch Directional Couplers* measure RF Power and VSWR-giving you, the designer, positive confirmation of your transmitter's performance and providing your customer with a monitor that constantly watches his transmission line and antenna.

Built into major military communications and ballistic missile programs, these compact, rugged-and low costcouplers produce an output essentially independent of frequency over the range of 3 to 4000 megacycles. They are adjusted for full scale meter deflection at power levels of 1.2 watts to 120 KW . Accuracy of power measurement is plus or minus 5% of full scale.

WRITE FOR OUR 50-PAGE CATALOG $\begin{gathered}\text { or sem page mu or electronics } \\ \text { buyers guioe for more information }\end{gathered}$

CIRCLE 155 ON READER-SERVICE CARD FOR MORE INFORMATION

REL-09 R.F POWER AMPLIFIER . . . provides power amplification over the 215.235 mc telemetering band. With 1.4 watts input drive, will deliver an 11 watt output to a 52 -ohm load.

REL-11 VOLTAGE REGULATOR...a ruggedized unit for use in airborne systems. When used with an unregulated dc power supply, it will deliver an output voltage regulated to within plus or minus $.1 \%$.

REL-16 AIRBORNE POWER SUPPLY . . . used where a compact, rugged and completely reliable regulated power supply is mandatory. Operates at altitudes up to 65,000 feet and will withstand shock up to 30 g 's.

REL-102 INSTRUMENTATION AMPLIFIER... embodies a vacuum tube-transistor configuration... is capable of accepting low level signals from various transducers; i.e.: strain gage, potentiometer and bridge types, and accelerometers.

REL-103 GALVANOMETER AMPLIFIER... performs the functions of amplifying and impedance transforming low level signals from Barium Titanate transducers to a level and impedance suitable to drive fluid damped optical galvanometers and similar devices.

REL-104 ACCELEROMETER AMPLIFIER...used for amplifying piezo-electric accelerometer signals to modulate a sub-carrier oscillator in telemetering systems.

REL- 106 TRANSISTORIZED SERVO AMPLIFIER ... Amplifier Input: $\mathbf{1 0 0}$ MV RMS @ 400 cycles and 20,000 ohms input impedance. Amplifier Output: approximately $9 / 10$ watt; Output impedance can be matched to customer requirements over applicable range. Phase shift and distortion a minimum.

REL-203 TRANSISTORIZED STATIC INVERTER POWER SUPPLY. . . used in aircraft and missile guidance systems and other applications where portability is a prime requirement.

REL-251 TELEMETERING POWER SUPPLY... for missile, aircraft, laboratory and ground support applications. It provides one regulated and one unregulated high voltage output and a 6.3 volt heater supply.

REL-10 120 WATT R-F AMPLIFIER ...available September 1st.
REL-120 TRANSISTORIZED DC AMPLIFIER ... available September lst.
For further information contact:

> EIECTRONICS DIVISION RHEEM MANUFACTURING COMPANY

New Products

The Hi-Pot Impedance and Continuity Test System verifies wiring and workmanship of all types of electrical and electronic assemblies. Five modules are available: master unit, hi-pot and continuity tester, impedance tester and two types of slaves (scanning units). A minimum system consists of a master unit, tester and slave. Additional testers and slaves can be added as needed, determined by the type and number of circuits and tests to be performed. The system can be quickly changed to a different test set-up by disconnecting one adapter harness and plugging in another. It is designed for mounting in a standard 19 in . cabinet.

Cal-Tronics Corp., Dept. ED, 11307 Hindry Ave., Los Angeles 45, Calif.

Wescon Booth No. 210.5.

CIRCLE 158 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Dual Frequency
Fan
Cools Electronic Equipment

This fan, which must operate from either a ground $50-60$ cps power supply or the 320 to 1000 cps supplies encountered on aircraft, will cool instrument cabinets and electronic test equipment. It will operate on either single phase or 3 phase power, and specified voltage, and in accordance with military specifications for this type of equipment. Fans 4 in . and $4-1 / 2 \mathrm{in}$. in diam are presently contemplated, which will deliver from 75 to 115 cfm at 60 cps .

Rotron Mfg. Co., Dept. ED, Schoonmaker Lane, Woodstock, N.Y.

Wescon Booths No. 2813, 2814.

Where you need accurate and positive remote control of variable voltage. you'll get the results you want from one of the twenty-two basic motor driven models available in the Adjust-A-Volt series.

Single units or up to 6-gang assemblies, with load ratings from .35 to 28 KVA- 115 V or 230 V input-will help you solve many application problems where "long distance" push-button or switch operation is required.

Typical in the series is the M3012 shown above. This is a compact, rugged transformer with high performance value. Maximum load rating is 6.0 KVA; output $0-135 \mathrm{~V}$ or $0-115 \mathrm{~V}$; maximum current output, 30.A.

All models equipped with standard $115 \mathrm{~V}, 60$ cycle motors, or lower voltage motors if specified. Travel speeds of $6,13,26$ or 45 seconds are available. Clockwise and counterclockwise limit switches are standard features. Units are enclosed in a well ventilated case. protected with a grey wrinkle finish. Militarized 60 cycle or 400 cycle units available.

Send for the catalog describing the complete Adjust-A-Volt line.

STANDARD

ELECTRICAL PRODUCTS CO.
2240 E. THIRD ST., DAYTON, OHIO

CIRCLE 160 ON READER-SERVICE CARD

AC AMPLIFIER

has selectable bandwidths and a 400 megohm, 3 mmf input

VERSATILITY teams up with high input impedance in this new, improved broadband amplifier. Used as a general purpose preamplifier or as an isolation amplifier, it fits neatly in scores of tests at both audio and ultrasonic frequencies.

TYPICAL applications are: vibration and noise studies, work with accelerometers and hearing aids, and pulse amplification. A 5 -volt 50 -ohm output is provided for driving oscilloscopes, sound level meters, and pen recorder power amplifiers.
features of the Model 102B are: accurate decade gains of 0.1 to 1000 ; selectable bandwidths of 2 cps to 150 kc or to 1.7 mc ; noise below 10 microvolts with 150 kc response, and below 20 microvolts with 1.7 mc response.

Two very low capacitance input probes are available: $5 \mathrm{mmf}, 2 \mathrm{cps}$ to 150 kc response; and $20 \mathrm{mmf}, 2 \mathrm{cps}$ to 1.7 mc response.

NEW CATALOG B gives detailed data on the Model 102B and all other Keithley Instruments and accessories. Your copy will be sent promptly upon request on your company letterhead.

KEITHLEY

INSTRUMENTS. INC. 12415 Euclid Ave., Cleveland 6, Ohio

Sub-Miniature Relay Type 506

This sub-miniature relay, Type 506 , is operated from a standard de voltage of 26.5 v dc with dc coil resistance of 400 ohms ± 10 per cent at 25 C . Contract arrangement is DPDT. Standard contacts are suitable for low level circuits or general purpose use. Normal rating is 2 amp non-inductive at 26.5 v dc. It has a mechanical life in excess of $20,000,000$ cycles, and exceeds 750,000 cycles at 2 amp noninductive. It is especially designed for critical application in low level circuits and meets the requirements of MIL-R-25018 for a general-purpose relay for aircraft and missile use.

Price Electric Corp., Dept. ED, E. Church \& Second St., Frederick, Md.

Wescon Booth No. 3310.
CIRCLE 163 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Noise Figure Meter
5 to 60 db

The Model NFT-2 climinates the time consuming manual procedure for determining transistor noise characteristics. The model measures transistor noise figure automatically and provides a continuous direct reading on the basis of a simplified meter reading. The unit, in addition, checks noise figures of transistor amplifiers and similar devices. Applications include selection of transistors for low noise circuits, determination of noise figure as a function of environmental and circuit conditions, reliability and life expectancy evaluation, and general production testing and quality control. The Model NFT-2 operates from a 115 v ac, 60 cycle source. Noise figure range is 5 to 60 db with a 1 db accuracy. Noise figure reading is on the basis of 1 cycle equivalent band width at 1000 cps center freq. This model also includes provision for supplying emitter bias and collector voltage.

Electronic Research Associates, Inc., Dept. ED, 67 East Centre St., Nutley 10, N.J.

Wescon Booth No. 3308.
CIRCLE 164 ON READER-SERVICE CARD FOR MORE INFORMATION

Unparalleled sawingos for pamallel
 resistor-capacitor
 apolications

Centralab TUBF-R-Cap*

Saves Space!
 \qquad

Combines a high-quality ceramic capacitor

ACTUAL SIZE
Write us for further information. Or have the nearby Centralab representative tell you more. If you don't know who he is, ask us for his name.

TYPICAL EXAMPLES
DA620
Max. length, . $530^{\prime \prime}$ - max. diam.,. $260^{\prime \prime}$
$470 \mathrm{mmf} ., \pm 20 \%, 500 \mathrm{~V}$
470 K ohms, $\pm 20 \%$
DA625
Max. length, $.810^{\prime \prime}$ - max. diam.,. $260^{\prime \prime}$
$1000 \mathrm{mmf} ., \pm 20 \%, 500 \mathrm{~V}$
330 K ohms, $\pm 20 \%$
DA632
Max. length, $900^{\prime \prime}$ - max. diam.,. $280^{\prime \prime}$
470 mmf ., GMV, 1500 VAC (UL rated) .3 to 1 megohm

Available with crimped leads, for printed wiring board insertion

SEE US AT ThE WESCON SHOW
Augus: 20-23
San Francisco
BOOTH 2701
CIRCLE 165 ON READER-SERVICE CARD FOR MORE INFORMATION

A New Broad Band Cearfott

 W177-2C-1

for Laboratory Test Bench Use

Use this Ferrite Isolator in your microwave setup for maximum frequency stability.
Typical Performance Curres

FREQUENCY IK.M.C.)

For detailed information, ask for bulletins on new Ferrite Isolators and Radar Test sets.

fice:
Eastern Office: Midwest Office:
1378 Main Ave. 188 W. Randolph St. Clifton, N.J. Chicago, III.

CHECK THESE FEATURES:

Broad Band—Usable from 8.2 to 10.2 KMC
High Isolation-A minimum of 25 db over the band
Insertion Loss - Less than 1 db
Small \& Compact - Only $21 / 2$ inches long - weighs only $11 / 2 \mathrm{lbs}$.
Flanges - Cover type. Mates with UG39/U flanges. Will absorb up to 10 watts reflected power
Price - $\$ 135.00$ each f.o.b., Van Nuys, Calif.
Delivery-From stock
Order — Model W177-2C-1
For custom-made isolators for specific radar \& microwave application, you can depend on the skill of the Kearfott organization.
Kearfott, Western Division, 'has complete facilities for waveguide production, with qualified experts to assist in solving your problems. Let us help you.

New Products

\triangle See at WESCON

Vitrohm stack mounting type resistors in characteristic V for styles RW20 to 24 are recommended for electronic and other applications where space for components is limited. Stack mounting power resistors feature strong oval-shaped ceramic cores, low mounting brackets and Vitrohm (R) construction. Power ratings in Characteristic V range is from 21 to 91 w , while resistance values are available from 0.8 to 71,000 ohms.

Ward Leonard Electric Co., Dept. ED, Mount Vernon, N.Y.

Wescon Booth No. 2609.
CIRCLE 168 ON READER-SERVICE CARD FOR MORE INFORMATION

Designated the RL-270B, this line of unlimited phasing potentiometers includes these specifications: a $3 / 8 \mathrm{in}$. depth per section; continuous service up to 150 C ; stainless steel clamps with unlimited phasing range; large number of taps, limited only by physical spacing; reliable performance under high g or vibration conditions; three styles of mounting-servo, bushing and 3 -hole bushing, available in ball or sleeve bearings, shafts as specified. High unit pressure contacts give low resistance tap connections and eliminate linearity distortion.

The Gamewell Co., Dept. ED, Precision Potentiometer Div., Newton Upper Falls 64, Mass.

Wescon Booth No. 1304.
CIRCLE 169 ON READER-SERVICE CARD FOR MORE INFORMATION

GUDEBROD

GUDEBROD
LACING
tapes are
USED IN
COMMUNICATION, UTILITIES
\& MILITARY
AS WELL AS
RESEARCH PROJECTS.
CAN WE HELP YOU?

Gudebrod flat braided lacing tapes hold harness securelyno bite-through or slip, yet are easy on the hands. Some resist high temperature, some are color-coded . . . and they come wax-coated or wax-free . . . rubber-coated. . . or with special coating. Gudebrod makes many tapes for many purposes, including defense work. Send us your lacing problems or your specifications . . . we can supply the answer to both.

GUDELACE - GUDE-NYLACE GUDELACE H • TEFLACE

GUDEBROD BROS. SLLK CO., INC. ELECTRONICS DIVISION
225 W. 34th St., New York 1, N. Y.
EXECUTIVE OFFICES
12 South 12th St., Philadelphia 7, Pa. CIRCLE 170 ON READER-SERVICE CARD

> interchangeable with many other makes

Stromberg-Carlson's new type "E" relay combines the time-proven characteristics of the type " A " relay with a mounting arrangement common to many other makes.

As the sketch above shows, our new frame mounting holes and coil terminal spacing allow you to specify these relays-of "telephone qual-ity"-interchangeably with brands you have been using. Costs are competitive and expanded production means prompt delivery.

Welcome engineering features of the new "E" relay are-

* Contact spring assembly: maximum of 20 Form A, 18 B, 10 C per relay.
\star Coil: single or double wound, with taper tab or solder type terminals at back of relay.
\star Operating voltage: 200 volts DC maximum.
You may order individual can covers in a choice of 3 sizes for the new relay, as well as for our type " A " and " C " relays.

For complete details and specifications on the " E " relay and other Stromberg-Carlson relays, send for your free copy of Catalog T-5000R.

STROMBERG-CARLSON
 a division or eemeral ormamics corporatiom

 telecommunication industrial sales 116 CARLSON ROAD, ROCHESTER $3, \mathrm{~N} . \mathrm{Y}$.CIRLL- 172 ON READER-SERVICE CARD

The Model 1221 magnet charger is a condenser discharge unit developed to saturate two-pole permanent magnets up to $1-1 / 2 \mathrm{in}$. in length, depending upon the magnetic material. This portable charger employs plug-in, wire-wound type charging fixtures and is rated at capacity of 10,000 ampereturns operating from a line source of $115 \mathrm{v}, 60 \mathrm{cps}$. Charging of a magnet is accomplished by placing it within the fixture and pushing the charge button, or a conveyor belt can be run through the fixture to charge one or more magnets every 4 sec . The unit measures $7 \times 8 \times 10 \mathrm{in}$. and weighs 14 lb .

Radio Freq. Lab., Dept. ED, Powerville Rd., Boonton, N.J.

Wescon Booth No. 3321.
CIRCLE 173 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Accelerometers
1.5 Per Cent Accuracy

Accelerometers for a toss bombing control are designed to cover a wide range of static or uniformly varying type of accelerations. A potentiometer pick off is used for the electrical output of this unit. Inductive types can be supplied with modifications. Variations of conformation, G-ranges, natural frequency and damping will be developed to meet special customer requirements. The natural frequency of the unit varies from 5 to 30 cps for the measurement of accelerations in the range from 0 to 1 g to 0 to 30 g . Damping is accomplished by the viscous shear action of the mass moving in an oil medium. The seismic mass system provides a linearity of 1 per cent, while hysteresis is 1 per cent. Overall accuracy including linearity, hysteresis and repeatability is better than 1.5 per cent. The Type 940 will operate under ambient temperature of -55 to 100 C and will withstand vibrations of $10-55 \mathrm{cps}$ 0.030 in . double amplitude and $55-500 \mathrm{cps} 5 \mathrm{~g}$ in each of the three perpendicular axes.

Fairchild Controls Corp., Dept. ED, Components Div., 6111 E. Washington Blvd., Los Angeles, Calif.

Wescon Booth No. 3021-22.
CIRCLE 174 ON READER-SERVICE CARD FOR MORE INFORMATION

RECOGNIZED Uil LEADERSSHIP SIDE INDICATOR PANEL METERS

MODEL 1145

APPROX. 1/2 ACTUAL SIZE

- THREE SIZES—Models 1145, 1135, 1120
- Horizontal or Vertical Mounting
- Maximum Accuracy and Readability

Save space on crowded, complex electronic controls and other panels without sacrificing accuracy or readability. These instruments provide same scale length as comparable conventional round meters. but occupy only $1 / 3$ the panel area and are ideal for the redesigning and streamlining of panels. The wide range of standard and special ranges includes Expanded Scale Voltmeters, VU and DB meters.

Our Complete Line of Miniature Components Will Be On Display at the
WESCON Show, August 20, 21, 22, 23 Plan to Visif Us af Booth No. 2821

MINIATURIZATION HEADQUARTERS intermational

GROWING BIGGER making things smaller

sub-miniature ROTARY SWITCH

- Up to 12 Positions per Deck
- Up to 3 Decks

A low-consact-resistance switch ideal for use in all electronic and test equipment applications where small size plus peak performance are essential. Available with 1. 2, 3 or 4 poles
on each deck and with either shorting or non-shorting contacts; or rotor contacts shorting out any variations from 2 to 11 positions. Features include: specially impregnated glass melamine wafer, solder type lugs. and positive indexing.

$1^{\prime \prime}$ ROUND and $11 / 2^{\prime \prime}$ ROUND and SQUARE METERS

$1^{\prime \prime}$ Meters have full 90° scale arc, scale length $760^{\prime \prime}$ $11 / 2^{\prime \prime}$ meters to Military Specifications MIL-M-3823 and MIL-M-10304 (Sig. C.) Also self-contained VU and DB meters, and illuminated models with lamp housing attached.

WRITE FOR ENGINEERING DATA ShEETS COMPLETELY DESCRIBING THESE MINIATURE COMPONENTS

$1^{11 / 2^{\prime \prime}}$ Ruggedized Meters • $1^{\prime \prime}$ and $1^{11 / 2^{\prime \prime}}$ Panel Meters - $1^{11 / 2^{\prime \prime}}$ VU, DB and Illuminated Meters - Miniature Multitesters - Side Indicators P.O. BOX 2954, NEW HAVEN 15, CONNECTICUT

there are many ways you can use a GIANNINI RECTIPOT

Reliable enough for the most severe airborne environments, sensitive enough for precision laboratory work! There is a RECTIPOT rectilinear potentiometer for any application where control or measurement of linear motion is required.
Standard RECTIPOTS are available with shaft displacements from $0.1^{\prime \prime}$ to $5.0^{\prime \prime}$. Resolution ranges from $0.001^{\prime \prime}$ to $0.003^{\prime \prime}$, and linearity of better than $\pm 0.5 \%$ is typical for all models. The stainless steel shafts can be straight, threaded, keyed, or spring-loaded for automatic return to zero position.

New Products

\triangle See at WESCON

\triangle DC Power Supplies Adiustable

These Transpac units are designed for either 60 or 400 cps operation, $105-125 \mathrm{v}$ ac input and are available for output ranges of $5-10,10-20,20-30$, $30-40,40-50,50-55 \mathrm{v}$ dc in current ratings up to 200 ma . These adjustable models are also available for $100,150,200$, and 300 v outputs at 100 ma ratings. Line regulation is better than 0.5 per cent; load regulation is better than 0.5 per cent. Ripple is less than 0.05 per cent. Units are potted in transformer type housing but transistors are available for servicing and replacement. Voltage variation is made via screwdriver adjustment. Size of a typical 60 cps unit is $2-1 / 2 \times 3 \times 4 \mathrm{in}$. and the 400 cps equivalent is correspondingly smaller.

Electronic Research Associates, Inc., Dept. ED, 67 East Centre St., Nutley 10, N.J.

Wescon Booth No. 3308.
CIRCLE 178 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Storage Tube Offers Tone Display

The VTP 6992 is a storage type cathode ray tule designed to present bright visual displays of television, radar or other types of electronically written information. The tube features an ability to display tones and to write, hold and erase at the operator's option. Brightness is sufficiently high for easy viewing in bright daylight and writing and erasure speeds are fast enough to present displays of high speed data with good contrast. The VTP 6992 contains a storage structure mounted internally near the panel, and both a flood gun and an electrostatically deflected and focused writing gun supported in a single neck axially aligned at the rear of the tube. All gun connections are terminated in a diheptal base attached to the tube neck.

Vacuum Tube Products Co., Inc., Dept. ED, 2020 Short St., Oceanside, Calif.

Wescon Booth No. 2403-2404.
CIRCLE 179 ON READER-SERVICE CARD FOR MORE INFORMATION

ITwo of the series of interchangeable lenses for distant objects available for Servotherm Industrial Pyrometers.

Our Servotherm Industrial Pyrometer Systems have taken on a new look. The amplifier and power units have been combined into one convenient, compact cabinet to give the system greater mobility. We've also included a : 2 le-tion of interchangeable accessor: lenses as well as aperture plate; to meet the growing diversity of applications throughout industry.

These changes have been made to enable our standard Servotherm Industrial Pyrometer System to provide better automatic temperature measurement and control of industrial processes where direct contact is not possible. Servotherm Systems detect and control temperature remotely, with a response time of just .250 milliseconds. They are critically accurate - temperature is measured within $\pm 1 \%$ and variations as small as $1.0^{\circ} \mathrm{F}$ are detected and controlled.

Today. our Servotherm Industrial Pyrometer Systems are solving many critical processing problems for the following industries:

- Ceramic \& Glass Products
- Primary Metal Industries
- Fabricated Metal Products
- Textile Mill Products
- Poper \& Allied Industries
- Chemical \& Plastics
- Rubber Products

Our Applications Engineering Department is ready to help you with any remote temperature measurement and control problem you

$5=$

You

 at the
Show

Booth 2811

WESCON

An all time high, both in papers picsented, and in number of exhibits, has been reported by the management of this year's WESCON.
If you would like an opportunity to publish your own practical design ideas, achievements, etc. not to a few, but to all of your 26,000 fellow engineer subscribers, be sure to look for us at the show. Editorial, advertising, and circulation representatives will be on hand at Hayden Bфoth No. 2811 to meet and talk to you.

ELECTRONIC DESIGN

a HAYDEN publication
NEW YORK • CHICAGO - LOS ANGELES

\triangle CRAM
 Combines Four Test Functions

The Model 1051 C-R-A-M Unit combines four separate test functions in one unit for laboratory, communications or production line use. This unit is designed for use as: a secondary frequency standard of 0.0005 per cent accuracy; a receiver of standard time and frequency broadcasts from WWV; a moderate gain audio amplifier for general use; and a mixer to compare two external signals to each other or to compare one external signal to one of the harmonics or sub-harmonics of its 10 mc crystal oscillator. The unit has a self-contained, regulated power supply. Over-all size of cabinet is $11-1 / 4 \mathrm{x}$ $21-9 / 16 \times 14-7 / 8 \mathrm{in}$. Weight of unit is 49 lb . Chassis is mounted on standard $8-3 / 4 \times 19 \mathrm{in}$. relay rack panel and may be removed from cabinet for relay rack mounting. Depth of chassis behind panel is 11 in. Chassis, less cabinet, weighs approximately 25 lb .

Radio Frequency Lab., Inc., Dept. ED, Powerville Rd., Boonton, N.J.

Wescon Booth No. 3321.
CIRCLE 183 ON READER-SERVICE CARD FOR MORE INFORMATION

The design of this breakout for cables having multiple branch construction permits the cable entering and leaving the junction point to be mechanically clamped preventing the tearing of the breakout and rupture of conductors. This is accomplished by utilizing split and bored metal plates, which will accommodate the branch cables such that when the plates are secured together, a clamping action takes place on the cable jacket. Tension members between the clamping plates transmit any strain around the breakout junction so as to prevent undue stress on the wires within the junction. The entire mechanical structure is potted, preventing moisture and dirt from reaching the enclosed wires. The characteristics of this construction are strength, light weight, and maximum economy of space.

Pacific Automation Products, Inc., Dept. ED, 1000 Air Way, Glendale 1, Calif.

Wescon Booth No. 2412.
CIRCLE 184 ON READER-SERVICE CARD FOR MORE INFORMATION

Now COPPER CLAD TEFLON

Chemelec Copper Clad Teflon* inherits all of the fine qualities and characteristics of Teflon among which are a low Dielectric Constant (2.05), Dissipation Factor (. 002 max. at 1 Mc under condition $\mathrm{D} / 48 / 50$), and Water Absorption ($.02 \%$ per MIL-E-5272-A). Under duress, a uniform dielectric constant over a given area is assured and no delamination of insulating material is possible. In addition, this material has a bond strength of greater than 7 lbs ./in. peel back and is unaffected by $500^{\circ} \mathrm{F}$. solder.
SIzes available: Copper Clad Sheet is available 18" wide by $36^{\prime \prime}$ long, in Teflon thicknesses of $1 / 16^{\prime \prime}, 1 / 8^{\prime \prime}$, and $3 / 6^{\prime \prime}$, with 1 or 2 oz . copper on both sides.
Copper Clad Tape $12^{\prime \prime}$ wide by $36^{\prime \prime}$ long, is available in thicknesses of $.005^{\prime \prime}, .010^{\prime \prime}, .015^{\prime \prime}, .020^{\prime \prime}, .030^{\prime \prime}$, $.045^{\prime \prime}$, and $.060^{\prime \prime}$, with 1,2 , or 3 oz . copper on 1 or 2 sides (or with copper on one side and cementable surface on reverse side, upon request). The above Copper Clad Tapes are also offered $12^{\prime \prime}$ wide by $150^{\prime \prime}$ long. Heavier copper available upon request.
Write for Catalog EC-757 which describes this and other new Chemelec developments. Fluorocarbon Products, Inc., Division of United States Gasket Company, Camden 1, N. J.

Sold through leading electronic parts distributors by Erie Resistor Corp.

New Products
\triangle See at WESCON

\triangle Panelscope
For Phase Measurements

The model P1A5X5 Panelscope has been designed for oscilloscope type phase measurements and the observation of other Lissajous patterns．The vertical and horizontal amplifiers are identical．They differ only in their basic sensitivity which is due to the difference in deflection sensitivity within the cath－ ode－ray tube itself．The vertical amplifier maximum sensitivity is 7 mv rms per in．，while the horizontal amplifier maximum sensitivity is 10 mv rms per in． In all other respects the amplifiers are identical． Each amplifier has a 7 position attenuator switch with attenuation ratios of 1－1，3－1，10－1，30－1，100－1， $300-1,1000-1$ ．Thus，the minimum sensitivies are 7 and 10 v rms per in．，respectively．The phase shift is 0 for any attenuator position between 40 cycles and 2 kc ．The frequency response of the amplifiers is held within $-1 / 2 \mathrm{db}$ from 20 cps to 8 kc ．The static controls such as beam，focus，vertical posi－ tioning，horizontal positioning and graph screen illumination are all mounted within the cathode－ray tube escutcheon．
Waterman Prod．Co．，Dept．ED，2445－63 Emerald St．，Philadelphia 25，Pa．

Wescon Booth No． 911.
CIRCLE 188 ON READER－SERVICE CARD FOR MORE INFORMATION

Variable Delay Line
Attenuation of 0.5 Db

The entire delay range of the Model 501，from zero to maximum delay，is covered by a single control shaft in ten turns．The unit may be locked at the desired delay by a locking device．Attenua－ tion in the unit is 0.5 db ．Resolution is better than $1 / 1000$ of maximum delay．Termination is external． Maximum delay is $0.9 \mu \mathrm{sec}$ ．Maximum rise time is $0.18 \mu \mathrm{sec}$ ．Impedance is 1000 ohms ．Outside dimen－ sions are $7-1 / 4 \times 1 \times 1-5 / 8 \mathrm{in}$ ．

ESC Corp．，Dept．ED， 534 Bergen Blvd．，Pali－ sades Park，N．J．

CIRCLE 189 ON READER－SERVICE CARD FOR MORE INFORMATION

Production Problems－New facilities for injection mold－ ing and extrusion are now available at Minnesota Sili－ cone．You can have the same precision，close－tolerance production that has charac－ terized 6 years of silicone fabrication experience ．．． in less time，at lower cost than ever before．

Design Problems－To assist you in applying the unique properties of silicone rub－ ber to your needs，we now offer the facilities of our newly expanded labora． tories．Compound selection and molding to your most exacting requirements are just part of the complete product development and production service．

We＇d be happy to make a thorough and prompt anal－ ysis of your problem or sup． ply a quotation from your print or sample．No obli－ gation of course．Just write：

Depi． 311
MINNESOTA SILICONE RUBBER，INC．
5728 West 36 th St．，Minneapolis 16，Minn． Affliated with Minn．Rubber \＆Gasket Co． Offices in principal cities

CIRCLE 190 ON READER－SERVICE CARD

Using Thermistors

Edited by FENWAL ELECTRONICS

This is the third in a series of news columns devoted to thermistors - a device that is super-sensitive to temperature change.

The example in point: power measurement and voltage control.

A bead thermistor can be used to balance a bridge circuit, allowing the thermistor current to be measured and its DC power calculated. This is done with a 2000Ω bead thermistor in a 200Ω bridge circuit with a variable resistor in series with the bridge. This will heat the thermistor enough to lower the resistance to $200 \Omega 8$ and balance the circuit to determine the H.F. power. By applying a source of high frequency power to the thermistor through capacitors this will further heat the thermistor and the bridge will be unbalanced. Then reduce the DC power until the bridge balances again. Calculate the new DC power, and the difference between the two calculations is the H.F. power.

To maintain constant voltage a thermistor with a suitable series resistor "A" can be placed in parallel with a load in a circuit. As the load resistance increases there is a reduced drop across resistor "B." This tends to raise the voltage across the load. Tho thermistor heats up, reduces its resistance, and more current passes through it and through resistor "B." This brings the voltage across the load back to its original state. Controls like this can maintain as close as 1% voltage regulation over a broad range of load resistance, or any voltage from $1 / 2$ volt to 100 volts can be regulated in this way with suitable circuitry.

Engineers: these and other thermistor applications are discussed in 12-page catalog EMC+1. Write for your copy to Fenwal Electronics, Inc., 37 Mellen St., Framinghan, Massachusetts.

Makers of Precision Thermistors CIRCLE 192 ON READER-SERVICE CARD

\triangle Servoscope
 Low End Coverage

The Model 1100 F Servoscope is a sweep generator, a multiple signal generator and phase angle indicator. It accurately measures frequencies as high as 100 cps , and still affords low end coverage at 0.005 cps . The Model \mathbf{F} provides a direct method for measuring gain and phase shifts of any component or system in the subsonic freq ranges. By turning the big phase dial, phase lead or lag is shown within an accuracy of 1 deg . The Model F provides sine, modulated sine and square wave signals as well as the linear sweep on four ranges from 0.005 to 100 cps .

Servo Corp. of America, Dept. ED, New Hyde Park, N.Y.

Wescon Booths No. 2819, 2820.
CIRCLE 193 ON READER-SERVICE CARD FOR MORE INFORMATION

Mutliple Tape Handler

 Stores $\mathbf{1 6 0}$ Million BitsDigital magnetic tape multiple bin handler, Model 3219, stores over 160 million bits and can be employed for sequential sorting or as a random access memory of high capacity. The tape handler consists of ten separate identical units or bins each with a storage capacity of over 8 million bits, a bin normally containing 500 ft of 1 in . wide magnetic recording tape for 14 channel recording with 200 ppi density. Each bin is equipped with its own record-playback head, which may be relay switched to a common output. Employing the digit-by-digit method with a simple counter and matrix, decimal sorting rates up to 100 information blocks per sec are achieved.

Potter Instrument Co., Inc., Dept. ED, 115 Cutter Mill Rd., Great Neck, N.Y.

Wescon Booth No. 1003.
CIRCLE 194 ON READER-SERVICE CARD FOR MORE INFORMATION

If it's capacitors for automation

C-D makes them...
makes them better
and packs them better, too!

A perfect parade of many styles of automation capacitors (paper, mica, electrolytic and ceramic) packaged to match your automation equipment. C-D's automation packaging keeps leads straight, lead tolerances close, and your handling time to a minimum. While you have your eye on budget and time-and-motion studies, we keep our eye on your automation capacitor problems. C-D engineers will be happy to show you how you can save time and money by C-D's specialized pre-packaging. Let us help you with your automatic feeding problems. Write to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

CORNELL"DUZBLILIER CAPACITORS
SOUTH PLAINFIELD. N, J.: NEW BEDFORD. WORCESTER A CAMBRIDGE, MASS.: PROVIDENCE A HOPE VALLEY, R. I.: INDIANAPOLIS. IND.: SANFORD. FUOUAY SPRINGS A VANINA. N. C. VENICE, CALIF.I G SUBSIDIARY. THE RADIART CORPORA.
TION, CLEVELAND. OHIO; CORNELL-DUBILIER ELECTRIC INTERNATIONAL. N. Y.

CIRCLE 552 ON READER-SERVICE CARD FOR MORE INF

RELIABILITY ANALYSIS.
MAINTAINABILITY. HEAT TRANSFER.
COMPONENT APPLICATION,
MINIATURIZATION
ECONOMY

Electronic Product Design at Hughes is the optimum of many and varied specialties. This expert coordination of specialists has resulted in the solution of complex packaging problems, including the airborne Electronic Armament System and the Falcon guided missilc.
New projects soon to be underway concern developing practical solutions to the theoretical and actual problems associated with Electronic Product Design.
These Hughes projects have both military and commercial application, assuring you of an unlimited future. Engineering positions to be filled include the following: Reliability, Component Application, Electromechanical Development, Miniaturization and Packaging, Chemical and Metallurgical, Applications and Precision Electronics Test-Supervisor.
Investigate this opportunity to combine challenging work with the ideal living conditions in suburban Los Angeles. Send your resume to the address below.

REBEARCH AND

 DEVELOPMENT LABORATORIESSCIENTIFIC BTAFF RELATIONS HUGHES AIRCRAFT CO.. ROOM 2040.0 culver city, california

New Products

See at WESCON

\triangle High Current Power Supplies
Transistorized

With ratings up to 12 amp , these units have fast transient response, small size and light weight, close regulation, low ripple content, and independence from line response change. Units are shock and vibration proof. Stock models include units with a voltage range of 6 to 32 v dc and in current ranges of 4, 8, and 12 amp . High voltage models are also available for outputs up to 150 v dc at 1 amp and 300 v dc at 1 amp . Models are designed for 105 to 125 v ac input, 60 to 400 cps . Line and load regulation is within 0.5 per cent, ripple, less than 1 mv . Size of a typical unit is $5-1 / 4 \times 19 \times 7 \mathrm{in}$.

Electronic Research Associates, Inc., Dept. ED, 67 East Centre St., Nutley 10, N.J.

Wescon Booth No. 3308.
CIRCLE 197 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle T-Switch
Two Frame Designs

Series 11000 push button switch is available in momentary action and in push-to-lock, pull-to-release action or locking type. Series 11200 two position turn button switch is available in non-locking and locking action. Design features include relatively long springs without any forms at point of flexing for longer spring life; required minimum of panel space; welded cross-bar palladium contacts standard, rated at 3 amp ac non-inductive load, 300 w max. Fine silver contacts accommodate heavier current circuits on special order.

Switcheraft, Inc., Dept. ED, 1328 Halstead St., Chicago 22, 111 .

Wescon Booth No. 1508.
CIRCLE 198 ON READER-SERVICE CARD FOR MORE INFORMATION

Miniature Capacitors
Ito $110 \mu \mathrm{~F}$ Range

Known as the TT line, these aluminum cased electrolytic capacitors are available in 30 capacity and voltage ratings from 1 to $110 \mu \mathrm{f}$, and from 1 to 50 v working. The smallest unit is $3 / 16 \mathrm{in}$. diam x $1 / 2 \mathrm{in}$. long. The aluminum case uses silicone rubber hermetic seals. The No. 22 wire leads are 1-3/4 in. long, and can be had with insulating sleeves if desired. The TT line has an operating temperature ange of from -20 to +65 C .
P. R. Mallory \& Co., Inc., Dept. ED, 3029 E. Washington St., Indianapolis 6, Ind.

CIRCLE 200 ON READER-SERVICE CARD FOR MORE INFORMATION

The low power four-layer switching diode is a two-terminal silicon device which can exist in either of two states: an open or high-impedance state (1 to 100 megohms) and a closed or low-impedance state (1 to 10 ohms). It is switched from one state to the other through control of the voltage and current values. It is driven to its closed state by application of a voltage greater than the critical breakdown point, and it will continue to be conductive as long as a current greater than a critical holding current is maintained. When the current is reduced below the holding value, the device regains its open state. While the parameters are controllable over some breadth in manufacture, typical ranges of values are as folows: firing voltages range from 20 to 60 v ; holding currents are 25 ma or somewhat less at about one v; the switched-current capacity is in the order of 100 ma ; and maximum power dissipation is on the order of 100 mw . Switching rates are on the order of 1 mc though theory indicates that rates to 10 mc can be reached.
Beckman Instruments, Inc., Dept. ED, Shockley Semiconductor Lab., Mountain View, Calif.
II escon Booth No. 1406.
CIRCIE 201 ON READER-SERVICE CARD FOR MORE INFORMATION

DIRECT DISPLAY CATHODE RAY

STORAGE TUBES BY HUGHES

TONOTRON*

Halftone Storage Tune tor Radar PPI Display ur Closed-Circuit TV
 radar read "like a map."

Resolution of 80 lines pe inch in narrow-band TV.

Action can be frozen fo subjective examination

MEMOTRON
Oscillograph Sinrage Tube .. for Retaining Displays of Electrical Phenomena. Traces and transients may be visibly retained on the face of the Hughes memotron direct display storage tube as long as desired-and successive waveforms can be displayed and retained for analysis and comparison without needless photography.
When permanent records are required, photographs may be taken with a single camera exposure setting, since all displays differences in writing speeds.

A technique for plotting a family of curves, repre senting a coupled circuit with varied parameters.

TYPOTRON

Character-Writing Storage Tube ...for Use as a Read-Out Device for Computers. When used in such digital computer applications as programming aid, solution read-out and trouble-shooting, the Hughes typotron direct display storage tube effectively monitors a problem as it goes through various phases toward a solution.
A choice of 63 characters is available for presentation of data in words numbers symbols at speeds of at least 25,000 characsymbols ar second. Written information remains visible indefinitely without fading or blooming until intentionally erased.

Presentation of printed data is displayed with $1 / 8-$ inch characters.

You are invited to see demonstrations of Hughes direct display storage tubes at Booths 2910-11-12-13, Western Electronics Convention, San Francisco, August 20 through 23. For additional information, write to: HUGHES PRODUCTS - Electron
Tubes, International Airport Station, Los Angeles 45, California.
Creating a
new world
with
ELECTRONICS
HUGHES PRODUCTS

- Trademark of Hughes Aircraft Company - 1057. hughes aimcraft company

CIRCLE 202 ON READER SERVICE CARD FOR MORE INFORMATION

RACK-MOUNTING OSCILLOSGOPE TYPE RM15 ...DC to 15 MC

VERIICAL CHARACTERISTICS
 Passband-de to 15 mc .
 Risetime- $0.023 \mu \mathrm{sec}$

Signal Delay- $0.25 \mu \mathrm{sec}$ Deficction Factor- $0.1 \mathrm{v} / \mathrm{cm}$. Calibrated altenuator, 9 steps from 0.1 ble from 0.1 . Continuously adjustaORIZONTAL $10125 \mathrm{v} / \mathrm{cm}$.
ORIZONTAL CHARACTERISTICS
Swoep Range- $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to 6
Callbrated Sweep Rates-0.2 $\mu \mathrm{sec} / \mathrm{cm}$ to $2 \mathrm{sec} / \mathrm{cm}$ in 22 steps. Magnifier- $5 x$ magnifier increases calibrated
Four-Way Triggering
Amplitude-Leval Selection-ad. iustable amplifude-level and sla. bility controls for triggering at a selected level on external, internal and line signals-either polarityac or de-coupled.
2. Preset Stability-same as above, except slability is presel at the

TYPE RM15 (50 to 60 cycle supply)
TYPE RM15 (50 (50 to 800 cycle supp
Prices f.o.b. Portlond, Oregon
Tektronix, Inc.
P. O. Box 831 - Portland 7, Oregon

Phone CYpress 2-2611 • rWX-PD 265 - Cable: TEKTRONIX

See the Type RMI 5 and other new Tektronix Instruments at WESCON, booths 1701, 1702.
optimum triggering quires no readjustment.
3. Automatic Triggering - Automatic level-seeking trigger circuir provides dependable triggering for most applications, even on very small signals, through wide changes in amplitude, frequency. and shape of the triggering signal. Provides a reference trace on the screen when no trigger signal is
4. High-Fre

High-Frequency Sync-Assures o sleady display of sine-wave sigOTHER FEATURES

4-KV Accelerating Potential DC-Coupled Unblanking Square-Wave Amplifude Calibrafor Electronically-Regulated Electronically-Regula
Power Supplies
Dimensions- $83 / /^{1 / \mathrm{hig}}$
19" wide, $23^{\prime \prime}$ rack depih. $25^{\prime \prime}$ overall depth.

TYPE 515 CATHODE-RAY OSCILLOSCOPE
Same instrument electrically in the portable form preferred for most field and laboratory ap. plications. Weight, 40 pounds. TYPE 515 (50 to 60 cycle supply). . $\$ 750$ TYPE 515-S1
(50 to 800 cycle supply). $\$ 785$ Prices f.o.b. Portland, Oregon

CIRCLE 204 ON READER-SE
ENGINEERS - interested in furthering the advancement of the oscilloscope? We have openings for men with creative design ability. Please write Richard Ropiequel, Vice President, Engineering.

New Products

\triangle See at WESCON

\triangle Servo-Ratic Multimeter
Measures AC-DC Ratios

The Servo-Ratio Multimeter is designed to measure ac-dc ratios, absolute ac-dc voltages and resistance. The gain of operational amplifiers can also be measured using the 0 deg phase output pro. vided. The SRM computes voltage ratios by dividing the voltage to be measured by the reference voltage obtained from the computer. It utilizes a motor driven position-type servo mechanism. Sim. plification and reliability are incorporated through the use of printed circuits. SRM equipment is light, compact and designed for easy handling and main. tenance, The chassis and front panel of the mul. timeter slide into a compact aluminum case to form a unit which can be operated in a horizontal or vertical position. A carrying handle serves as a convenient tilt-stand when the unit is used in a horizontal position. The front panel provides a 4 . digit drum counter for readout. Phase or polarity of measured voltages is indicated by phase lights above the counter.

Union Switch \& Signal, Div. of Westinghouse Air Brake Co., Dept. ED, Swissvale, Pa.
Wescon Booth No. 810-811.
CIRCLE 205 on reader-service card for more information

Hot Wire Anemometer
Constant Temperature
Operation

This hot wire anemometer offers constant temperature operation making it available for industrial use. It has a frequency response of dc to 100 cps and a noise level of less than 1 per cent of the mean flow level. By constant temperature operation, the maximum sensitivity can be realized with minimum wire burnout. Operation is completely automatic in that no time constant testing or gain settings are required. This affords self-regulation over a wide range of flow. It requires no batteries and three can fit in a 19 in . panel rack. A larger wire is used to increase life. Output impedances are 10 K and 100 K ohms. Other systems for use to $60,000 \mathrm{cps}$ are also available.

Aero Research Instrument Co., Dept. ED, 315 N . Aberdeen St. Chicago 7, Ill.
CIRCLE 206 ON READER-SERVICE CARD FOR MORE INFORMATION
\triangle Rack-Mounted Oscilloscope
DC-fo-10 Mc

The Type RM16 is a 3 in. rack-mounted oscilloscope measuring 7 in . high, 19 wide, 16-3/4 in. rack depth, $19-1 / 4 \mathrm{in}$. overall depth. Vertical deflection is calibrated in 9 steps from 0.1 to $50 \mathrm{v} /$ div with dc-to- 10 mc passband, $0.035 \mu \mathrm{sec}$ risetime, with 3 additional ac-coupled steps from 0.01 to 0.1 $\mathrm{v} / \mathrm{div}$ with 2 cycles-to- 9 mc passband, $0.04 \mu \mathrm{sec}$ risetime. Signal delay is $0.25 \mu \mathrm{sec}$, input capacitance is $38 \mu \mu \mathrm{f}$ direct, $13 \mu \mu \mathrm{f}$ with probe furnished. A single knob is used to select any of 22 calibrated sweep rates from $0.2 \mu \mathrm{sec} / \mathrm{div}$ to $2 \mathrm{sec} / \mathrm{div} .5 \mathrm{x}$ magnifier is accurate at all sweep rates. Full sweep range is $0.04 \mu \mathrm{sec} / \mathrm{div}$ to $6 \mathrm{sec} /$ div. The unblanking waveform is dc-coupled to the CRT grid. Four-way triggering provides for amplitude-level selection with either preset or manual stability control, fully automatic triggering, and high-frequency sync. A 1 kc square-wave voltage calibrator has 11 fixed peak-to-peak outputs from 0.05 to 100 v .
Tektronix, Inc., Dept. ED, P.O. Box 831, Portland, Ore.
Wescon Booth No. 1701.
circle 207 On reader-Service card for more information
High Volume Capacitors
Rated to 30 V at $1000 \mu \mathrm{~F}$

These Tantalytic capacitors are for low voltage dc application where high $\mu \mathrm{f}$ values are required in a small space. The three styles all have the same base dimensions of $1.316 \times 0.75 \mathrm{in}$. The heights are 1.375 in ., 2 in ., and 2.5 in.

Voltage ratings for the 1.375 in . high case is 30 v at $1000 \mu \mathrm{f}$, polar construction, etched foil; for the 2 in . case, 50 y $200 \mu \mathrm{f}$, nonpolar, etched foil; and for the $25^{\circ} \mathrm{in}$. case, $20 \mathrm{v}, 100 \mu \mathrm{f}$, nonpolar, etched foil. Capacitors are rated for a minimum of 1000 hr operation at 125 C , with not more than 20 per cent loss of initial 25 C capacitance after 1000 hrs . General Electric Co., Dept. ED, Schenectady 5, CIRCLE 208 ON READER-SERVICE CARD FOR MORE INFORMATION ELECTRONIC DESIGN • August 1, 1957

Raybestos-Manhattan

 acquires California plant to provide West Coast users with R/M Teflon productsRaybestos-Manhattan has purchased the Graef Engineering Co., in Paramount, Calif., to serve Western and Southwestern manufacturers as a nearby source of R / M "Teflon," "Kel-F," Nylon and Raylon (a mechanical grade of "Teflon") products. Key personnel will be retained. The plant is fully equipped to extrude, mold and machine"Teflon," "Kel-F" and Nylon products and to spray-coat metal parts with "Teflon" and "Kel-F." It will also stock "Teflon" sheets, tubes, rods and tapes in standard, certified and stress-relieved grades; bondable sheets and tape, gaskets, mechanical packings, expansion joints, and flexible couplings.
Raybestos-Manhattan, a pioneer in fabricating these materials, is one of the largest producers of "Teflon" products for aircraft, electronic, electrical, chemical and various other industrial applications. Call on R/M's experience and skill to help you solve problems involving high temperatures and corrosive fluids and gases.

Typical R/M "Teflon". products manufactured at Raybestos-Man-
hattan's newly acquired plant at 15010 South Downey Ave., hatan's newly ac
Paramount, Calif.

R

RAYBESTOS-MANHATTAN, INC.

PLASTIC PRODUCTS DIVISION, MANHEIM, PA.

Factonles: Manheim, Pag; Bridgeport, Conn.; Paramount, Calif.; No. Charioston, s.c.; Passaic, N.J.; Neonah, Wis.; Crawtordsuillo, Ind.;
raybestos-manhattan, inc., Engineered Plastics - Asbestos Textiles - Mechanical Packings - Industrial Rubber - Sintered Metal Products - Rubber Covered Equipment Abrasive and Diamond Wheels - Brake Linings - Brake Blocks. Clutch Facings - Laundry Pads and Covers • Industrial Achesives - Bowling Balls

CIRCLE 209 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC COMPONENTS DIV.

New Products

\triangle See af WESCON

\triangle Tape Reader Reads 10 Transverse Rows

The Tape-ard Reader features the ability to simultaneously read 10 transverse rows of 8 holes each in a perforated tape. Providing the conveni ence in handling data in a fixed sequence afforded by tape, the unit can supply 80 bits of information for each event without the use of memory circuit required by single-line readers. The reader accom. modates standard 1 in . tapes with holes on $1 / 10 \mathrm{in}$ centers. A verifier panel of neon lamps duplicates the 8×10 hole pattern of an entire frame and is used to rapidly check newly punched tapes. Thirty-five msec is required to advance the tape to a new frame. Stepping can be controlled both automati cally by a simple circuit closure in the accompany ing equipment and manually with the step button on the front panel. The reader will operate in excess of fifteen 80 hole frames per sec; however, for con tinuous, high-speed operation a maximum rate of 6 frames per sec is recommended.

Calif. Technical Ind., Dept. ED, 1433 Old County Rd., Belmont, Calif.

Wescon Booth No. 412-13.
CIRCLE 220 ON READER-SERVICE CARD FOR MORE INFORMATION
High Purity Gallium
For Semiconductor Use

Gallium in two degrees of purity, 99.999 and 99.93 per cent, is being produced by Aluminum-Industrie A. G. of Switzerland. The purer ot the two can be used for such stringent applications as crystals of intermetallic compounds, such as those having semiconductive, photoconductive and luminescent properties. 99.95 per cent gallium is also commercially available for other similar applications.

United Mineral \& Chemical Corp., Dept. ED, 16 Hudson St., New York 13, N.Y.
CIRCLE 221 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Coaxial Connecfors

Plug In

A series of 4,6 and 8 contact plug in coaxial annectors are available for rack and panel application or hand engagement, with locking provided by a threaded sleeve. The coaxial contacts may be obtained with clamping parts for cables from $1 / 16$ to $1 / 4 \mathrm{in}$. OD, including the new miniature Teflon cables, or open solder type terminals. Full floating contacts insure low engagement force.
Danbury-Knudsen, Inc., Dept. ED, 15-25 Thorpe St., Danbury, Conn.
Wescon Booth No. 2312.
CIRCLE 224 ON READER-SERVICE CARD FOR MORE INFORMATION

\triangle Magnetic Tape
Transport
Ten-Speed Operation

The Model 546-53368 digital magnetic tape transport selects any one of the 10 closely regulated tape speeds by remote or local control. Tape speeds, in inches per sec, are $1.5,2.25,3,4.5,9,15$, $22.5,30,45$, and 90 . It has a speed ratio of $60: 1$. The unit contains vacuum column tape feed control for flandling of magnetic tape. Three-quarter in. tape is used, on twa 10-1/2 in. reels. Start-stop time is 6 msec . The oxide surface of the tape touches only three stationary members, one of which is the magnetic head. During the rewind operation, the tape is automatically removed from the magnetic head. Burroughs Corp., Dept. ED, ElectroData Div., 460 Sierra Madre Villa, Pasadena, Calif.
Wescon Booths No. 3107-08.
CIRCIE 225 ON READER-SERVICE CARD FOR MORE INFORMATION
engineering
by
BREEZE...

means utmost precision in slip ring assemblies

Engineered and built by an organization long known for its "perfectionist" standards, Breeze slip ring assemblies can be relied on for the utmost in electrical and mechanical qualities.

Each assembly is custom designed and built by specialists, thus permitting individual design and structural features best suited to the application.

We can supply units from 2-ring miniatures to 500 ring giants . . . currents as high as 350 amperes continuous at 220 volts and 700 amperes overload at 220 volts. Special designs for very high voltages . . . radio frequency assemblies . . . high speed rotation for strain gauge and thermocouple applications.

If you have an electro-mechanical problem that slip rings can solve, consult our engineers.

CORPORATIONS, INC.
700 Liberiy Avomec. Union, U. d.
CIRCLE 226 ON READER-SERVICE CARD FOR MORE INFORMATION

One of the remarkable achievements of the revolutionary GPL Doppler air navigation systems is that they reduce drift to zero. We believe that GPL can reduce your personal "career drift" to zero, too.

GPL was formed in 1945 with a nucleus of 25 engineers from MIT's famed wartime Radiation Laboratory. Today GPL employs 2,000 people, most of whom work at our beautiful 69 -acre estate at Pleasantville, just 35 miles north of New York City.

With two new engineering buildings under construction. a hefty backlog of orders. recognized leadership in several
fields of electronics and research going on into many new ones, the future of GPL is extremely bright.

Besides the top pay and beautiful suburban environment, GPL engineers enjoy many other benefits: a professional atmosphere, small working groups that ensure individual recognition, and the finest facilities that money can buy. They benefit, too, from GPL membership in the nationwide GPE Group.
If you are interested in a "drift-free" career - a career that keeps moving ahead along a straight line of accom-plishment-why not call or write to us today?

We have openings in the following categories:
re: DOPPLER \& INERTIAL Air Navigation and Guidance Systems

Radar:
Project Engineering,
Research, Design
Field Engineering
at Military Sites and
Airframe Mfrs' Plants

Research • Design • Development • Applications Systems Analysis - Systems Test Mechanical Design • Test Engineering Microwave Techniques • Servos
Magnetic Amplifiers - IF Amplifiers Pulse Circuitry - Transistorization

For interviews call Mr. Richard D. Hoffman,
ROgers 9-5000 (ext. 435) or write:

General Precision Laboratory Incorporated

63 Bedford Road, Pleasantville, New York

For Further Information, Please Contact Advertiser Directly

New Products

\triangle See at WESCON

\section*{\triangle Automatic Iris and Target Control}
For Television System

This Automatic Iris and Target Control Unit for industrial and institutional television systems automatically compensates for wide variations in light up to 16,000 to 1 and assures the lowest possible aperture to provide maximum resolution, depth of field and contrast. The use of automatic iris and target control eliminates the need for a variable density filter and resulting shading. Instead of being held at its maximum aperture, the iris moves freely within its stops. In addition, the coordination of iris change and target voltage results in optimum signal to noise ratio. Excessive wear on the lens aperture mechanism is eliminated by the adjustment of the video signal by the target voltage control. As long as this voltage is within optimum range, the iris does not change. However, the iris drive motor automatically corects the aperture setting to bring the target back within its optimum range if the target voltage moves to one of its limits. Only large changes in brightness conditions, therefore, affect the iris setting. To avoid forcing, the motor cuts off if extreme light conditions stop the iris.

General Precision Lab., Inc., Dept. ED, 63 Bedford Rd., Pleasantville, N.Y.

Wescon Booth No. 2810.
CIRCLE 211 ON READER-SERVICE CARD FOR MORE INFORMATION

Instrument Shunts

50 Mv Range

Light weight instrument shunts are available in the 50 mv operating range. The MS-91586 shunts are furnished in current ratings ranging from 30 to 150 amp and are designated as the MSA type. MS19587 units have current ratings ranging from 170 to 600 amp and are identified as MSB while the MSC type shunts are made to MS-19588 and are provided in ampere ranges from 800 to 1200 amperes.
Janco Corp., Dept. ED, Burbank, Calif.
CIRCLE 212 ON READER-SERVICE CARD FOR MORE INFORMATION

WHO Is BORC?

Borg is a highly respected nam in its field . . . the manufacture of components for systems. Borg has gained wide recognition as a sup. plier of electronic components for military and commercial uses.

BORG PLANTS

Borg manufacturing plants are centrally located about 90 miles from Chicago. Easily accessible by highway. rail and air.

WHAT BORG MAKES

Precision Is Our Business. For many years Borg has been prominent in the design and manufacture of precision components for systems.

- AIRCRAFT INSTRUMENTS

Aircraft components, instruments and electronic sub-assemblies.

- FREQUENCY STANDARDS

Crystal controlled oscillator type frequency standards.

- POTENTIOMETERS

Quantity production of Borg MICROPOTS (precision potentiometers) to meet your specifications.

- MICRODIALS

Precision MICRODIALS for single and multi-turn devices. Indexed accuracy of up to one part in 1,000 .

- INSTRUMENT MOTORS

Precision motors, synchronous and induction types. Gear trains.

BORG CAN HELP YOU
Borg can assist you in the design and construction of prototypes. Complete facilities for pilot runs and quantity production. Write for Bulletin BED-A50 or call us today.

BORG EQUIPMENT DIVISION

THE GEORGE W. BORG CORPORATION JANESVILLE, WISCONSIN

CIRCLE 213 ON READER-SERVICE CARD
CIRCLE 213 ON READER-SERVICE CARD

> PRODUCE YOUR PRECISION INSTRUMENTS AT LOWER COSTS With

CI CLE 215 ON READER-SERVICE CARD

Heat-Dissipating

 ShieldsFor Bendix 6094
Size Tubes

The NW type shield, NW6-6528, is designed especially for the Bendix 6094 tube and tubes of the same bulb size. These tubes are larger in diameter and length than the usual 9 pin Noval tube. The NW shield assembly consists of an aluminum shell, a phosphor bronze compression spring and an inner beryllium copper spring finger liner. The spring finger liner grasps the glass bulb and dissipates the heat by conduction, radiation, and convection. This shield will lower the bare bulb temperature of a 6094 tube operating at 16 w filament and plate dissipation by more than 60 C . The assembly and base retain the tube under extreme shock and vibration conditions. This type shield is also available to fit all standard sizes of 7 and 9 pin miniature tubes.

For retrofitting equipment having old style JAN bases, a TR shield is available to fit the 6094 tube. This shield asembly, TR6-6027-1, consists of an aluminum shell and an inner beryllium copper spring finger liner. Attachment to the base is accomplished by a snap-on type lock.

International Electronic Research Corp., Dept. ED, 145 West Magnolia Blvd., Burbank, Calif.

Wescon Booth No. 602.

CIRCLE 216 ON READER-SERVICE CARD FOR MORE INFORMATION

DC Transformer Package

Delivers 900 V

This transformer operates on 24 to 32 v input and delivers 900 v at $30 \mu \mathrm{a}$, regulated within 3 per cent. It operates over an ambient temperature range of -55 to +71 C , and is unaffected by extremes of shock and vibration. Output ripple is regulated within 3 v peak to peak. The unit-transistorized switching circuit, transformer, rectifier and regu-lator-is integrated in a $2 \times 2-1 / 4 \times 2-3 / 4 \mathrm{in}$. package. Other transistorized power supplies are available within ranges of input of 5 to 50 v and output of 3 to $10,000 \mathrm{v}$ with output power up to several hundred watts.

George W. Fenimore, Director, Dept. ED, Electronic Instruments Div., The Ramo-Wooldridge Corporation, P.O. Box 8405, Denver 10, Colo.
CIRCLE 217 ON READER-SERVICE CARD FOR MORE INFORMATION

LAPP

GAS-FILLED CONDENSERS

High Frequency

Lapp's experience of 18 years of design and manufacture of gas-filled condensers is back of this precision-made unit and its promise of years of trouble-free duty. It is small in size and low in loss, offers high voltage and current ratings, high frequency limits, safety, punc-ture-proof operation and constant capacitance under temperature variation.

The entire electrical and mechanical assembly of the Lapp gas-filled condenser is supported by a top aluminum ring, the steel tank serving only as a support for this ring and as a leak-proof gas container. High-potential plates are carried on a rigid center stud which is supported by a top ceramic bowl. Grounded rotor plates are carried on ball bearings nearly the full tank diameter. This construction provides a grounded tuning shaft on variable models and makes possible efficient and complete water cooling for high current operation.

Models in four tank diameters, $7^{\prime \prime}$ to $18^{\prime \prime}$, are available, in variable or fixed capacitances, for duty up to $30,000 \mathrm{mmf}$; in current ratings to 400 amps at 1 mc ; operating voltages to 80 Kv peak. Write for Bulletin 302, with complete description and characteristics data. Lapp Insulator Co., Inc., Radio Specialties Division, 101 Sumner Street, Le Roy, N. Y.
Lapp

NOW! B\&A OFFERS "ELECTRONIC GRADE"CHEMICALS ... with metallic and other impurities held to lower limits than ever before!

Typical of $\mathrm{B} \& \mathrm{~A}$'s special line of extremely pure "Electronic Grade" chemicals is its Hydrofluoric Acid. Note the specifications above . . . the carefully controlled assay, within plus or minus 0.25%. . . and the remarkably low limits on metallic and other undesirable impurities.
With products such as this, Baker \& Adamson serves the needs of the electronic industry for chemicals of a new order of purity. And as the country's leading producer of laboratory and scientific chemicals, it is geared to work closely with the industry's engineers and chemists in developing other
products to meet their most stringent requirements.
Now available are the following B \& A "Electronic Grade" chemicals:
For semiconductors (small packages): Acetone
Acid Hydrofluoric, 48\%
Alcohol Methyl. Absolute (Methanol)
Acetone Free
Alcohol Propyl, Iso
Carbon Tetrachloride Ether, Anhydrous
Hydrogen Peroxide, 3\%
Hydrogen Peroxide, 30%
Hydrogen Peroxide, 30% "Stabilized"
Sodium Carbonate, Monohydrate
Trichloroethylene

BAKER \& ADAMSON ${ }^{\ominus}$

"Electronic Grade" Chemicals

GENERAL CHEMICAL DIVISION

ALLIED CHEMICAL \& DYE CORPORATION

For radio receiving, black and white TV fubes (available in bulk):
Aluminum Nitrate, Crystal and Basic Barium Acetate
Barium Nitrate
Calcium Nitrate, Tetrahydrate Strontium Nitrate
Other special purity chemicals can be custom-made to meet your needs.
Write for free folderl Contains informa tion on electronic chemicals for semiconductors, tubes, printed circuits; sulfur hexafluoride for gaseous insulation; selenium metals and selenides; metallic compounds for ferrite production. Lists exact specifications for "Electronic Grade" small package chemicals. Write for your copy today!

Production Products

Printed Circuit Welder Uses Stored Energy

This new welding accessory enables storedenergy welding of components to printed and etched circuits, metal-coated ceramics and other extremely thin metal surfaces. Described as the Duo-Weld Electrode Accessory, the new unit employs two welding electrodes mounted adjacently over the work, which make two series type welds simultaneously. Electrode pressure is variable so that a variety of materials in a range of thicknesses may be joined. Weldmatic circuitry eliminates discoloration problems with low-voltage, high-current operation and extremely short discharge times. There is no metallurgical change in resulting joints, which are strong and uniform, and resistant to vibration and a wide range of temperatures.

The Duo-Weld accessory consists of a fixed and a movable electrode mounted on a $1 / 4 \mathrm{in}$. shank, which fits any Weldmatic head in place of the standard upper electrode. A flexible cable shunts power from the standard lower electrode to the movable electrode, making it easy to adapt Model 1015,1020 , or 1023 bench welders to the new com-ponent-printed circuit assembly technique.

Unitek Corp., Dept. ED, Weldmatic Div., 275 N. Halstead Ave., Pasadena, Calif.
Circle 230 on reader-service card for more information

Microtomatic Slicing Machine

 For Germanium, CeramicsThe Microtomatic, a precision production slicing and dicing machine, is an automatic machine designed specifically for the machining of brittle, shock-sensitive materials such as germanium, silicon, quartz, ceramics and carbides.

[^1]S ecifications are given to the three Microtomatic talachine sizes now available. The MTA-6, having " work area of 6-1/2 $\times 19 \mathrm{in}$., is for slicing and diciig of semiconductor materials and quartz. The s-1 $2 \times 24 \mathrm{in}$. work area of the MTA-8 is widely use for abrasive and diamond wheel cutting of ceranics, carbides, etc. The largest model, the VTA-10 has a work area of $10 \times 30 \mathrm{in}$. and the power needed for heavy duty work.
The Doall Co., Dept. ED, Des Plaines, Ill.
CIRCLE 233 ON READER-SERVICE CARD FOR MORE INFORMATION

Dip Soldering Machine For Printed Assemblies

This EPC dip soldering machine, is a production and laboratory tool to facilitate semi-automatic production of electrical and electronic assemblies and circuit boards utilizing printed and etched circuit techniques. The machine has a capacity of 120 units per hr. and requires only one operator.
Angle and depth of immersion of the work in the molten solder are adjustable. Dwell time may be set at any value from 0 to 57 sec in 0.5 sec increments. Solder temperature, after the adjustment has been made, is automatically maintained at the desired temperature.
The machine is equipped with an automatic dross skimmer and a vibrator unit which removes excess solder from the work. The progressive rolling action with which the work engages the solder ensures proper soldering action.
The machine is only 24 in . wide and $32-1 / 2 \mathrm{in}$. deep. The cabinet surface is 39 in . above the floor while overall height of the machine is 61 in . The machine which is mounted on sturdy casters, weighs 350 lb . \backslash Single phase electrical power at $220-240 \mathrm{v}, 60 \mathrm{cps}$ is required. Power consumption depends upon the size of solder pot used. A typical load is 2400 w .
Electronic Products Corp., Dept. ED, 322 State St., Santa Barbara, Calif.
CIRCI 234 on reader-service card for more information

a low-cost cure for high-voltage headaches!

MOTOROLA 60-VOLT POWER TRANSISTOR

High Junction Tion With
High Junction Temperatures

- More Stable With Heat Cycling
- Better Current-Handling Capacity
- Exceptional Gain
- Now Available in Quantity

SUGGESTED APPLICATIONS OF THE NEW MOTOROLA MN-21

- DC converters and
other switching service
- All audio amplifiers,
including push-pull
- Motor controls
- Power supply regulators
- Line voltage regulators
- Servo amplifiers
- Fuel injection systems

Wherever high-voltage power transistors are required!

"DEPENDABLE QUALITY-IN QUANTITY"
 MOTOROLA
 SEMICONDUCTORS SOOSE. MEDOWELL PHOENIX, ARIZONA

New Literature

Solenoids

238
"Solenoids for Industry" is a 4-page catalog of five basic solenoid types for industrial use. Tables provide ready references to the forces developed by the solenoids alone. Ac and dc readings for both continuous and intermittent duty are provided. These tables, the detailed dimensional drawings provided, and the designer's preliminary calculations or models will give an accurate approximation of the force required for a particular application, and also the installation requirements. Complete specifications covering frame construction, materials, plating and coil construction are listed for each solenoid. Examples of specially designed solenoids for specific applications are also presented. W. L. McMichael, Inc., 1428 W. Hillgrove Ave., Western Springs, Ill.

Epoxy Adhesives Chart
The properties of Epibond adhesives and Epocast pastes are listed in an $11 \times 15 \mathrm{in}$. chart. The chart also cites typical applications for each type, and gives code numbers of bulletins containing more complete information. Covered are seven Epibonds, three Epocasts, and two resins. Furane Plastics Inc., 4516 Brazil St., Los Angeles 39, Calif.

Relays
All-purpose relays are listed according to type in 32-page catalog now available. Among the relays described are mo. tor-control, coaxial and mercury wetted. Complete information is included on these and many others in the catalog. Relay Sales Inc., Box 186, W. Chicago, Ill.
a complefe line of instruments for precise measurements

Mi:a Bulletin

The unusual properties of natural mica, tips on part design for optimum utilization of properties, and a chart presenting the properties of mica (here reprinted) are presented in a new "Mica Bulletin." In additio: to highlighting the 1000 deg F thermal
resistance and extremely high dielectric strength of natural Muscovite, the pocketsize six-pager gives practical thicknesses of mica to use, tolerances possible on fabricated parts and other technical guides to the design engineer. Ford Radio and Mica Corp., 536 63rd St., Brooklyn 20, N.Y.

Properties of Mica

Specific Gravity	2.65-3.2
Specific Heal, $68{ }^{\circ}-212^{\circ} \mathrm{F}$	0.208
Hardness, Mohs Shore	$\begin{aligned} & 2.8-3.2 \\ & 70-150 \end{aligned}$
Compressive Strength, psi	32,000
Maximum Service Temperature	$1000^{\circ} \mathrm{F}$ ($1832{ }^{\circ} \mathrm{F}$ for Phlogopite)
Heat Conductivity	0.00014-0.0008
Thermal Expansion Coeff., Linear	$a=0.000003$
Elasticity Modulus, psi	25×10^{4}
Dielectric Strength, $68{ }^{\circ} \mathrm{F}, \mathrm{v} / \mathrm{mil}$	3250-6250
Dielectric Constant	5-9.3
Power Factor	0.01-0.02
Specific Resistivity, 68 ${ }^{\circ}$	$1-200 \times 10^{16}$
Volume Resistivity	$1-2 \times 10^{17}$
Puncture Voltage, 50 mm electrodes	$320,000 \mathrm{v} / \mathrm{mil}$
Chemical Resistance	Resistant to chemical attack. Muscovite affected by hydrofluoric acid. Phlogopite affected by hydrofluoric and sulfuric acids
Oprical	Optically negative and doubly refractive

Save Sensitive Components COOL THAT CABINET Wirh
McleAN
FANS \&
BLOWERS*
*Pap. Applied For

RACK MOUNTED FOR EASY ASSEMBLY - FIT STANDARD 19° RACKS
MODELS AVAILABLE FOR $51 / 4^{\prime \prime}, 7^{\prime \prime}$ and $10 \frac{1}{\prime^{\prime \prime}}$ PANEL HEICHTS - WIDE RANGE OF AIR DELIVERIES

GENERAL FEATURES

- Prossurdze Cobinet With Filipred Air
- Rubber Jsolated Motors For Quiofer Operafion
- Whdely Accepted for Use in Military Equipmont
- Maximum Alr Dollvary For Efinciont Filter Action
Send For Free Caralog and Data Sheets

ADDITIONAL FEATURES FOR BLOWER TYPE UWITS

- Blower Unifs Provide Better Air Delivery Against Pressure
- Blower Units Provide Quieter Operation Against Prossure
- Higher Alp Velocity For Faster Cooling
- Air Flow Maintained With Dinty Filter
- Duct Connections Can Bo Mado if Desired

Install McLean Fans and Blowers in Computers, Control Systems, etc. They're small, ready to nse, pack. aged units with imart stainless steel Srilas and REASMA replaceable fiters. mounting on rack without cutting or fitting.

Mclean enginering labs.

PRINCETON, N.J. - PRINCETON I-440
Reprosonfatives in All Principal
Electronics Manufacturing Areas

CIRCLE 248 ON READER-SERVICE CARD FOR MORE INFORMATION
El:CTRONIC DESIGN • August 1, 1957

1 P
 INSTRUMENTS

12 Channel Multi-Trace Large Screen Oscilloscope

MODEL 2400

Engineering techniques heretofore used only in large expensive test equipment have been incorporated into this new Model 2400 large screen oscilloscope which displays 12 complex wave-forms simultaneously. This instrument is currently being used in the following applications: Telemetering, Stress and Strain, Vibration, Analog Computors, Medical Wave-forms and Production Testing of Multiple Circuits of Complex Studies.

SENSITIVITY: $10 \mathrm{mv} / \mathrm{inch}$ deflection.
INPUT: Push-Pull direct coupled circuits for each channel.
FREQUENCY RESPONSE: de to

- 2500 cps.
-This is displayed as 10 dot resolu. fion, higher frequency is aftained with less dot resolution, i.e. 10 kc is 2 dots, fo form a sine wave.
SWEEP: 3 millimeter/second to 30 millimeters/millisecond

PARTIAL LIST OF USERS: General Motors Cord. General Electric Co. Glenn L. Martin Co. Lockheed Aircraft - Weltronics Company • Baylor University - University of California - Universily of Washington.

MODEL 2400 RM
(Basically same as Model 2400 excepl with Modified Time Base)

Rycom Model 2170 Selective Volimeter

RREQUENCY: I ke to 200 ke LEVEL: -70 dbm io +32 dbm (full scalo) ACCURACY: $\pm .5 \mathrm{db}$ from -80 dbm to $+32 \mathrm{dbm} / \mathrm{lke}$ to 200 kc SELECTIVITY: 6 db down at 75 cps off: 60 db down at 355 cps off
SPURIOUS RESPONSES: below 60 db

See us at the WESCON Show

For complete details write or phone:

9351 E. 59TH ST., Dept. E D, RAYTOWN, MO. PHONE KANSAS CITY, FLEMING 3.2100
*A division of Railway Communications, Inc.

You get the WHOLE story in one high-resolution display

WITH
 Federal LARGE-SCREEN

Oxcilloscopes

Excellent resolution for accurate visual reading of large quantities of data or complex signals is provided by Federal's $17^{\prime \prime}$ and $21^{\prime \prime}$ oscilloscopes. Quesswork, reading errors and eye strain are reduced to a minimum.

Almost perfect linearity and close control of orthogonality result from the magnetic deflection system used. Pin-point examination is permitted without sacrificing the total display.

Federal's $21^{\prime \prime}$ rectangular tube cabinet model is illustrated above. Standard $19^{\prime \prime}$ rack-mounting models are also available with $17^{\prime \prime}$ rectangular tube.

OUTSTANDING FEATURES:

- High Rosolution.
- 1\% Linearity.
- Calibrafed Time Base-10 micresec/in to I sec/in.
- Calibrafed Gain Conirols-i millivolt peak-fopeak/in to 100 volis/in.
- Frequency Response- $\pm 0.1 \mathrm{db}$ from DC to 50 kc 8 down 1 db at 100 kc .
- Long-ferm stability, accurafo volfage calibration, linearity and constant deffection sensisivity eliminafo the need for an infornal voltage calibrafor.

Typical

 Applications

Telemetering Illustrated is display of telemetered pulse width modulated signals, which appear clearly separated, permitting accurate observation.

Production Testing Speeds up tests and reduces errors and eye strain. Production tolerances can be marked on the tube face.

Waveform Analysis Permits observation of minute details, as in this display of reley contact chatter. Valuable for study of transient phenomena.

Computer "Read-ouf" Displays computer output signals with such true fidelity that ull use may be made of in herent accuracy of computer.
-

For complete

technical information, write to Dept. S-535

international telephone and telegraph corporation 100 Kingsland Road • Clifton, N. J.

New Literature

Miniature Self-Locking Nuts 258

Information on miniaturized self-locking nuts for electronic units and avionic equipment has been prepared in a 36 -page illustrated bulletin 5711 now available. Major sections of catalog cover size and weight reduction and fastener configuration and relative importance of each factor in choosing right fastener for particular job. Elastic Stop Nut Corp. of Amer., 2330 Vauxhall Rd., Union, N.J.

Magnetic Shield Designs

For convenience in specifying, data sheet 125 illustrates 14 basic designs and shapes for Fernetic Co-netic magnetic shields for cathode-ray tubes and photomultiplier tubes. These fit 99 per cent of the cathode ray and photomuliplier tubes available today. The shields are nonshock sensitive, non-retentive and effective indefinitely without periodic annealing. Perfection Mica Co., Magnetic Shield Div.; 1322 No. Elston Ave., Chicago 22, Ill.

Linear Accelerometers

In Bulletin L.F-MF-6-57, a 2 -page illustrated sheet, a redesigned line of linear accelerometers is covered. The instruments are suitable for direct recording of mancuvering or low frequency accelerations of aircraft, missiles and other moving vehicles. G ranges, natural frequency, resistance, and current and voltage sensitivities are provided along with general specifications covering the nine low frequency and seven medium frequency models. An over-all dimension chart accompanies the bulletin. B \& F Instruments, Inc., 4732 N. Broad St., Philadelphia 41, Pa.

Delay-Line Flats

Bulletin 9-56 is devoted to delay-line flats with an elliptical shape. The illustrated 2-page text cites advantages, salient features, and applications. It also offers pertinent technical data. Columbia Technical Corp., 61-02 31st Ave., Woodside, N.Y.

Specify SHAMBAN
 TEFLON*
 KEL-F, CALIFILM

Sheet...Tape... Film

The uses are limitless-in the chemical, electrical and mechanical fields-in industry, transportation, sanitation, sports, bakery, food, paper, pharmaceuticals and the home!
In temperatures from -320° up to $+500^{\circ}$ SHAMBAN Teflon and Kel-F, Califilm can serve you! Lowest coefficient of friction, chemically inert, high dielectric properties, odorless, tasteless, zero water absorption, non-stick but can be bondized for cementing to anything!
Specify thickness, width, length and size for SHAMBAN superior Sheet, Tape and Califilm. Write, wire or phone for full descriptive literature.
*du Pont Trademark

CIRCLE 262 ON READER-SERVICE CARD FOR MORE INFORMATION

Trunsistor Types

Wall chart showing, at a glance, applicatiens and maximum ratings and typical characteristics at 25 deg C of 56 types of gernanium junction alloyed transistors is now available. The chart contains a handy interchangeability table, outlines five different transistor cases, diagrams of various circuits and standard IRE symbols and definitions. General Transistor Corp., 91-27 138 Pl., Jamaica 35, N.Y.

Pulse Calibrator

268
A 4-page technical brochure has been issued to describe the Type 1810 pulse calibrator, an instrument designed for measuring current and voltage pulse amplitudes, pulse durations and rise time. The pamphlet shows how the calibrator operates, illustrating and explaining actual waveforms obtained from different applications of the unit. Specifications and a complete analysis of the operation theory of both calibrator and chopper sections of the instrument are offered. Burroughs Corp., Electronic Instruments Div., 1209 Vine St., Philadelphia, Pa.

Electron Tubes

"What's new with the electron . . . 1957," a 20 -page 2 -color brochure on recently developed products is now available. Basic electrical data is supplied on many tube types, with emphasis on developments in ceramic tube design. Information is included on klystrons, power tetrodes, triodes, ceramic receiving tubes, beam switch tubes and beam rectifiers. Eitel-McCullough Inc., San Bruno, Calif.

Soldering Booklet

270
Handy booklet written especially for production personnel involved in soft and hard soldering is now available. The 6 -page manual provides summary of origin and uses of soldering process; describes various types of solder and fluxes; basic characteristics of certain metals which give them "solderability" and "conductability" and three functions of fluxes. There is a section devoted to soldering aluminum including tips on most effective method. Anchor Metal Co. Inc., 966 Meeker Ave., Brooklyn 22,N.Y.

CIRCLE 271 ON READER-SERVICE CARD FOR MORE INFORMATION

PERSPICUOUS SWITCH

Is it enough that a malay works? Not since - spark gap reference scale for quick visual we discovered the omission of a singularly vital instituerre. To be a first-rate auccess today, a relay must reveal what it jo doing every minute. With this in mind Sigma has developed a Radically New type of fully enclosed relay (see above) in which all moving parts can be seen moving while it is in operation. Although unsuitable for military use, this relay has already attracted considerable interest in certain quarters.* Technical features include:
juice estimations; fail-safe alarm; Manuel reset; contact unwelding mechanism and pit remover; double-pole, doubtful-throw contacts; ampere turn-signals. Continued observation of the operation of this new Sigma relay will pave the way for even greater discoveries and developments in the field, and permit other things. Basically, that is why none are presently for sale; all are in use by NASAW members who work at Sigma.

In their off moments (coffee break, luncheon bridge game, etc.) sensible members of this group* worked on another relay which is not as spectacular, but is available. A close watch of the Series 42 has shown that this DPDT relay: operates on less than 0.2 watt (DC), less than 0.5 volt-ampere (AC$)_{\text {; }}$ doesn't chatter, buzz or snore; uses less power (AC version) than - and is interchangeable with - most competitive types; and is rated to switch 5 amperes. The DC version could be used as the output
 relay in such things as machinery control panels, automatic scales, circuits driven by Sigma Magnetic Amplifiers, and other domestic devices not requiring switching of the saludos amigos variety. It has no spark gap scale, but in normal use this relay will operate many millions of times. More information is contained in a bulletin, 7ailablemen rentryst.

* nortil american society of armature watchers

Sigma Type 42RO Relay; transparent plastic dust cover.

SIGMA INSTRUMENTS, INC.
91 Pearl Street, So. Braintree 85, Mass. CIRCLE 272 ON READER-SERVICE CARD FOR MORE INFORMATION

milifary test equipment

```
TS-505 B/U
MULTIMETER
```

AN UPM-33
SPECTRUM
ANALYZER
$847040-9836 \mathrm{mc}$

New Literature

Analyzers

278
Five models of analyzers including the Model F are described in data sheet No. TDS 1100 now available. It states the Model F was developed in response to requests for a model that would accurately measure frequencies as high as 100.0 cps , yet still afford low end coverage at .005 cps . Servo Corp. of America, 20-20 Jericho Turnpike, New Hyde Pk., N.Y.

Assembly Kits Instruction Book
 279

Tables of common gear ratios and moments of inertia are contained in an instruction book, SBI-1 Rev. 1, prepared for use with electro-mechanical assembly kits. The kits are used to test, correct, and p:ove systems and assemblies. The 8 -page booklet spells out instructions for installing components in hangers, installing hangers and gears, gear alignment and gear selection. Servo Corp. of America, 20-20 Jericho Turnpike, New Hyde Park, N.Y.

Magslips

A 60-page catalog No. E1000 entitled "Magslips-Applications and Methods of Use" has been released. It tells the desigıer all he needs to know and is illustrated throughout with photographs, graphs and circuit diagrams. Among varied aspects of Magslip usage are: systems and circuits; remote control and remote indication; tests and fault location. Muirhead Instruments Inc., 677 Fifth Ave., New York 22, N.Y.

Electric Clips

An eight-page catalog provides complete descriptions and illustrations for an entire line of clips. Emphasis is on alligatortype and miniature test clips. An easy to find, faster reading format provides a quick visual and factual index. Free sample 70 Series clips accompany the catalog. Mueller Electric Co., 1580H E. 31st St., Cleveland 14, Ohio.

FOR HIGH ACCURACY DISPLAY SYSTEMS

We specialize in the design and manufacfure of precision deflection Yokes for military and commercial opplications. Phone or write for immediate engineering evaluation of your critical display problems Phone DAvis 7-1123. MAHWAH, N. J.

Celco Constanture Engineering Laboratories Ca,

Phototubes

Yhototubes and semiconductor lead sulfide photoconductive cells are catalogued in an 8 -page illustrated booklet. Designated 257, the brochure provides full information, including charts and mechanical spccifications, on the Cetron-Taylor line. Continental Electric Co., 6 N. Michigan Ave., Chicago 2, Ill.

Synchros

Equipment for testing synchros to MIL specifications are discussed in 4 -page illustrated booklet now available. The various models described are provided with three clamps for securing the instrument to a panel. Muirhead Instruments Inc., 677 Fifth Ave., New York 22, N.Y.

Aceiate Film Tape

289
Colored and transparent acetate film tapes are featured in a 4 -page illustrated folder. The physical characteristics of the tape are given, and available colors and widths are listed with prices. A sample strip accompanies the folder. Labelon Tape Co., Inc., 450 Atlantic Ave., Rochester, N.Y.

Breadboard Parts

Catalog 575, "Standard Electromechanical Breadboard Parts," offers complete descriptions of all parts necessary for the assembly of complicated gear trains and servomechanisms. The 24 -page booklet also contains typical schematics which are representative of basic synchro transmitter and receiver systems, potentiometer transmitter and receiver systems, and a mechanical resolver system. All parts are indexed for quick reference, and components are described in the approximate order in which they would be used in setting up a typical system. Pictures, specifications, outline drawings and complete ordering instructions accompany all listings. Beckman/ Helipot Corp., Newport Beach, Calif.

Waveguide Components

Prices for waveguide components and test equipment are given in a 4 -page illustrated list. For convenience, items are tabulated in two ways: by function and waveguide size, and numerically by model designation. Microwave Associates, Inc., Burlington, Mass.

Dependable "SNAPPER" Thermal Relays by CurtissWright provide unfailing snap action in countless electrical circuit applications involving time delay. In every control phase, "Snapper" Relays eliminate chatter, have singie-pole double throw contact and a wide temperature range $\left(-65^{\circ} \mathrm{C}\right.$ $+100^{\circ} \mathrm{C}$). Preset time delays from 3 seconds to 3 minutes are now available in metal envelope and from 5 to 60 seconds in glass envelope. Write for our new detailed data sheet with complete application information.

Ace can meet your

 requirements in quality
and delivery of

NoNLINEAR

potentiometers

Nonlinear precision wire-wound potentiometers in standard and sub. miniature sizes are now available in prototype or production quantities from Ace Electronics Associates and you can be sure of delivery.

These new Ace nonlınear units incorporate the same advanced engineering, precision craftsmanship, and controlled quality which have made ACEPOT linear potentiometers stand. ards of excellence.

A new Division directed by highly qualified engineers, special prototype section, and mass production facilities are at your service to meet your requirements for quality and delivery of nonlinear precision potentiometers.

For complete information . . . Call or write William Lyon or Abrabam Osborn, Nonlinear Divi. sion, outlining your requirements. Your inquiry will receive prompt attention . . . and you will get delivery as specified.

Featuring!

Highly developed design techniques achieve bigh resolution and close conformity for your unique nonlinear require. ments.

CIRCLE 297 ON READER-SERVICE CARD FOR MORE INFORMATION

New Literature

Hermetic Seals

299
Catalog 657A offers comprehensive information on compression multi-headers and plugs selected to provide a condensation of 10,000 available types. In the 16 page booklet, parts are grouped to offer essential information, part numbers are simplified, and dimensioning is standardized for quick, easy reference. Drawings and illustrations are included. Hermetic Seal Corp., 29 S. 6th St., Newark 7, N.J.

Crystal Filter Technical Memo

300
"Reduction of Interference in the HF Range Through Use of Bandpass Crystal Filter" is a recent Rome Air Development Center technical memorandum which describes the results of improved rf selectivity. Of particular interest is the improvement in sensitivity from $100 \mu \mathrm{v}$ to $7 \mu \mathrm{v}$ by the insertion of a crystal filter between the antenna and the first rf amplifier. Hycon Eastern, Inc., 75 Cambridge Pkwy., Cambridge 42, Mass.

Corona Type Voltage Regulators 301
"Corona Type Voltage Regulators," by Donald O. Ward, is an 8 -page engineering paper which describes how corona reg. ulators can solve voltage regulation prob. lems without the use of multi-tube circuits, etc. It is illustrated with performance curves, a graphic analysis of corona regulator operation, and typical schematic diagrams for use in cascade regulators, circuits for increasing current rating, cathode follower regulator circuit and other applications. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.

Hybrid Duplexers. Flanges

Twelve-page catalog C457 illustrates and gives simplified ordering information on a full line of Hybrid junctions, flanges and adapters which, with appropriate TR tubes, will form microwave duplexers to meet a wide variety of requirements. Microwave Development Labs., Inc., 92 Broad St., Babson Pk., Wellesley 57, Mass.
7.m
anc: a
in a re
Each
scriber
ficalt io
list. R
blade
Micro
Met
ing m scribe leasec
100 n
curre
scale.
Diege
Pip P
Br
series
lease
ADI
tains
finish posit opm

Teflon connectors, hermetically sealed, for temperatures from - ivítyfice F
No other material, natural or synthetic, compares with DuPont Teflon for toughness, chemical inertness, high dielectric strength. It will not char or carbonize from arcing; stands thumping shocks and vibration; will not warp or loosen at jet engine heats or sub-zero climates. Made by a revolutionary new molding process. Every manufacturer of high frequency radio, radar and other electronic equipment should write for details.

Pulse Generators

Time delay generators, pulse generators, and a time measuring system are covered in a lecent short form catalog of four pages. Each model is illustrated, and each is described as to principal features and specifications. The catalog also contains a price list. Rutherford Electronics Co., 8944 Lindblade St., Culver City, Calif.

Microvolt ammeter

Meter capable of measuring and amplifying minute dc voltages and currents is described in Technical bulletin 16-3 just released. Fifteen voltage ranges cover from 100 mv to 1000 v full scale and nineteen current ranges from 1 mua to 1 a full scale. Kin Tel, 5725 Kearny Villa Red., San Diego 11, Calif.

Pip Pin Engineering Data

Brochure on complete line of the 5440 series of single-acting self-locking quick-release pins has been released. This bulletin ADI 1268-257 is well illustrated and contains complete information on materials and finishes. Diagrams included provide for positive callout procedures. Aviation Developments Inc., PO Box 391, Burbank, Calif.

Electronic Galvanometer

The electronic galvanometer which is a combination de null detector, linear deflection indicator microvoltmeter, micro-microammeter, and low level dc amplifier is described in bulletin 14-3 now available. This instrument is insensitive to vibration, shock, and stray pickup. Kin Tel, 5727 Kearny Villa Rd., San Diego, Calif.

Aluminum Electrolytic Capacitors 311

GEZ 1912 is a 4-page folder covering dc aluminum electrolytic capacitors for radio, television, and other communications equipment. The publication contains tables which enable the reader to calculate a capacitor's size from voltage and microfarad ratings. It also lists performance charracteristics. General Electric Co., Irmo, S.C.

Wire Wound Resistors
A 2-page sheet on axial-lead wire wound resistors is offered. Illustrated with a photograph and a dimensional diagram, the bulletin gives details on construction, coating, power ratings, tolerances, and stock sizes. Stock items and prices are listed in a table. Hardwick, Hindle, Inc., 40 Hermon St., Newark 5, N.J.

America's first supersonic bomber, the B-58 "Hustler", flies above 50,000 feet, with a crew of only three!

Hence a maze of electronic equipment for the many automatic functions. On such equipment rests the success of our defense program and the maintenance of peace.

The electronic gear, in turn, depends on its insulation barrier, even down to the tiniest Teflon-insulated terminal. There must be no fallure-electrical, mechanical, thermal or from any other cause.

That Sealectro's original and genuine "PRESS-FIT" terminals are used in the "'Hustler" program, speaks for itself. Available in hundreds of standard and stocked miniature and subminiature types . . . widest selection of lugs and platings . . . eight different code colors . . . backed by the pioneer's installation "know-how".

NEW MANLALL Write on business stationery for the big "PRESS.FIT" data book Also samples.
OF VISIT US AT WESCON SHOWI Booth 2619 for exhibits; Sheraton Plaze for consulations and entertainment.

```
TReg. Trodemark,
```

E. I. Du Pont de Nemours 8 Co

610 Fayette Avenue, Mamaroneck, N, Y.

ENGINEERS

Honeywell's "balanced" diversity

 brings you more opportunities

This Supervisory DataCenter, which enables one man in one location to control an entire air conditioning system for a large building, is just one of Honeywell's advanced automatic control products for civilian use. Honeywell also develops and produces advanced control devices and systems for the home, farm, industrial processing and factory automation.

Honeywell's Ordnance Division develops and produces such military products as: warheads; infrared systems and components; transistorized converters, inverters and rectifiers; test, checkout and training devices; thermal batteries; electronic fuzing; sonar systems; fire control systems and stabilized platforms.

HONEYWELL, world leader in automatic controls, is following a planned development program which is soundly balanced between civilian and government contracts. This program is giving Honeywell the fastest growth rate in its seventy year history. Earnings have more than doubled in the last five years. The engineering force has increased over 100%.

And Honeywell's exciting growth is continuing. To sustain it, we need skilled DEVELOPMENT, DESIGN, PRODUCTION AND ANALYSIS ENGINEERS to work on the types of products listed above.

You will receive the opportunity to grow with Honeywell, the fastest growing company in America's fastest growing major in-dustry-the Electrical-Electronics industry. You'll work in a small group, your accomplishments will be quickly recognized, rapidly rewarded. You start with a first-rate salary, advance quickly from there. Start today.

Honeywell

First in Controls

MAIL THIS COUPON NOW

```
Mr. W. D. Conloy, Depl. TM 20:
Minneapolis-Honeywall Regulator Cempany
2753 4th Avenue South, Minneapolis B, Minnesota
```


\square Rósumb afached

```
\(\square\) Sond me more Information about Honeywall's opportunitios
```

NAME
ADDRESS
diry
ZONE

Wrong Pulse Polarity

THE PROBLEM tackled was one of how to introduce pulses of wrong polarity into transistor circuits or systems without increasing size, cost or number of components. This problem arises when external devices not under one's control must drive transistor circuits using a particular type of transistor for its response time, economy, availability or other reasons.

Solution

A typical transistor circuit (flip-flop) is shown at A. This particular circuit uses direct coupling and requires negative input pulses to the isolation transistors on the output side.

In order to accept a foreign (i.e. positive) pulse

Typical transistorized "flip-flop." A positive pulse is unacceptable.

A revised circuit for accepting "foreign" pulse. This circuit unfortunately has a low input impedance to R_{s} since the emitter current must be great enough to saturate the collector.

\$ $\$ 10.00$ plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.
from an external source, the isolation stage with grounded base might be used (B). This has the disadvantage of lowering the input impedance or requiring a series resistance to limit emitter curent to whatever is required for proper triggering. A better solution is to use an emitter follower (common collector) connection with an n-p-n transistor. The input impedance will then be β times as large as the collector load. If the external driver is capacitively coupled, no further components are required. Care, however, must be taken not to bias the n-p-n transistor on through an external path.
D. P. Anderson, 1612 Wisconsin St., N.E., Albuquerque, N. Mex.

Better revised circuit for accepting "foreign" pulse. The input impedance is $\boldsymbol{\beta}$ times the collector load impedance.

the first really new paper fubular capacitor... AEROVOX "WHITECAP" "WAX-FREE"
 TYPE V84 TUBULAR CAPACITOR!

Aerovox announces the development of a WAX-FREE paper tubular capacitor with electrical characteristics surpassing all others . . . even the best molded units.

Aerovox "WHITECAP" capacitors offer a distinctive white case, completely free of wax. The absence of any wax facilitates handling and assembly procedures. No dripping and no gummed-up machines. Light in weight and clearly marked, these units will enhance the appearance of any assembly.

Aerovox "WHITECAP" capacitors are superior electrically over ALL other conventional paper tubulars including molded units. Outstanding humidity resistance
far greater than ever known before in units designed for radio-TV applications. Highest Insulation Resistance ever offered before in a paper tubular. Wide temperature range . . low-power-factor New standards of reliability backed by millions of hours of life and service tests.

Operating Temperatures $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ at full voltage rating and to $100^{\circ} \mathrm{C}$ with voltage rating of 75\%
Power-Factor - at room temperature will not exceed 1%
Humidity - will withstand 95% relative humidity at $40^{\circ} \mathrm{C}$ in accordance with RETMA Specification RS164 except that exposure will be increased to 500 hours instead of 100 .

Trpieal gapacimice ve. temp
Immediafte delivery on all production quantitios. For full dofails centad yoer local Aerovex Sales Represeatative or writo immediafoly to...

AEROVOX CORPORATION

NEW BEDFORD, MASSACHUSETTS
circle 318 on reader-service card for more information

DESCRIPTIVE DATA
RANGE: Up io ± 60 G full seale.

- DAMPING RATIO: 0.6 ± 0.2
(from - 65° F. $10+175^{\circ} \mathrm{F}$.)
- LINEARITY: 1% of full scale.
- PICKOFF: Can be provided with 2 potentiomptes pickons
(centor laps optional).
- SIZE: $17 / 16^{\prime \prime}$ dia., $31 / 4^{\prime \prime}$ long.

WEIGHT: 1 lb .

Ideas for Design

Variometer Pi-Network

Shown here is a circuit using an infinitely viriable inductor suitable for a Pi output rf amplifier. Variometers have been used heretofore but in ortier to get a large ratio of $L_{\max }$ to $L_{\min }$ coupling, the co. efficient must be high, making circuit "Q" low.
The turning range is extended with a coupling coefficient (K) of 0.6 , by switching from a series to a parallel coil arrangement. A ratio of $25: 1$ is practical with Q never lower than 125. Further, the rotation from Q to 180 deg from series aiding to series opposing, then switching to parallel aiding and continuing from 180-360 deg of rotation, enables the transit of $L_{\text {mas }}$ to $L_{\text {min }}$ in 360 deg. George B. Cottrell, Project Engincer, Robertshaw Fulton Controls, Anahcim, Calif.

Extended tuning range variometer circuit

Capacitor Testing in the Circuit

Consider the case of a capacitor shunted by a resistor. The resistor may have any value from 100 ohms to 10 megohms. The capacitor may have any value from $10 \mu \mu$ to $0.25 \mu \mathrm{f}$. The problem is to determine whether substantial leakage or possibility of breakdown exists in the capacitor, without disconnection of the capacitor from across the resistor.

A suitable pulse test will often detect a faulty capacitor in the foregoing situation. A pulse generator G applies its output through a bypassed microammeter to the shunted capacitor under test. The pulse has a peak voltage equal to or 50 per cent greater in some cases, than the rated working volt age of the capacitor. The pulses have a very fast

Test circuit for checking capacitor without disconnecting it from its circuit.
ris: time, are narrow, and have a high repetition rale. Pulse width and repetition rate are not critical factors, but rise time should be a fraction of a micrusecond, unless the generator has good regulation. A high repetition rate provides steady meter indication when H is small. Too great a pulse width provides excessive sensitivity, which will tend to cause R to produce some response on the meter. Small composition resistors impose the greatest limitation. Pulse generator G applies an ac voltage across RC, and the meter responds to a dc component which is usually developed by substantial pulse current through C, other than displacement current. C 1 must be quite large, in the order of 500 or $1000 \mu \mathrm{f}$. Meter sensitivity may be in the order of 50 microamps. The Simpson 383A utilizing this circuit provides this pulse test.
R. G. Middleton, Chief Field Engineer, Simpson Electric Co., 5200 W. Kinzie St., Chicago 44, Ill.

Economizing the Hybrid

The May lst issue contained a description of a hybrid hi-fi amplifier and was concerned primarily with a feedback transistor equalizer. The equalizer described used voltage feedback from the second transistor collector to the emitter of the first transistor which is an excellent method when the second transistor is coupled to a high impedance load. With a slight rearrangement of the circuit, it is possible to eliminate two resistors and two expensive electrolytic capacitors. This modification is shown in the schematic.
The collector of the first transistor is directly connected to the base of the second transistor, and the bias current of the second transistor is determined by R4. Since resistor R2 is now connected directly to ground, it is no longer necessary to use capacitor C2 to effectively ground this point as in the proposed circuit. The feedback network remains unchanged.
The circuit described above is not suitable when used with supply voltage of 3 to 6 v , but is ideal for use with tube amplifiers where a high voltage is obtained. It would, of course, be necessary to adjust the value of R11 in the proposed circuit to provide a voltage compatible with the voltage ratings of the transistors. Hugh R. Lowry, Mgr., Application Engineering, Semiconductor Products Dept., General Electric Co., Schenectad!, N.Y.

Economy version of hybrid hi-fi amplifier circuit.

NEW POWERSTAT ${ }^{*}$
Variable Transformer

TYPE LW136

New Flexibility with Isolated Secondary Winding on Single Core

... a source of adjustable low voltage output . . a limited range line correction . . . a limited range of "buck boost" voltage

Horo's Your Roliable soureo for TELEPHONE QUALITY COMPONENTS

TELEPHONE JACKS-LEVER-KEY SWITCHES PUSH \& TURN BUTTON SWITCHES

"T-SWITCHES"

Especially designed for oxacting requirements. Long life springs. Require minimum of panel space. Push Button and Two Position Turn Bution designs.

Rugged but light-featuring "T-Beam" construction. Ideal for applications that require dependable switching.

Long frame fype-rugged steel frame. Springs of special alloy of nickel silver for maximum spring life-corrosion resisfant.

SEE US AT BOOTH 1508-1957 WESCON SHOW

SAN FRANCISCO COW PALACE—August 20-23

1312 N. HALSTED ST., CHICAGO 22, ILL.

CIRCLE 321 ON READER-SERVICE CARD FOR MORE INFORMATION

LABORATORY INSTRUMENTS

RF DISTORTION METER AND VOLTMETER

- Fundamental Freq. Range: 1 to 100 mc
- Harmonic Indication to 300 mc
- Sensitivity: 6008 below 1 volt
- Accuracy: $\pm 20 \mathrm{DB}$
- Input Impedance: approx. 50 ohms
- Voltmeter Range: . 001 to 3 volts
- Frequency Range: 0.2 to 500 mc
- High Impedance and 52 ohm probes provided

UHF GRID DIP METER

- Widest freq. range: 300 to 1000 mc
- Small, lightweight probe
- High sensitivity for both capacitive and inductive coupling
- Frequency accuracy: $\pm 2 \%$
- Very stable oscillator
- High Q absorption frequency meter

Boonton Hhtctiontcs Corp.
Morris Plains, N. J. - Phone: JEfferson 8-5110

CIRCLE 322 ON READER-SERVICE CARD FOR MORE INFORMATION

Patents

Arrangement for Producing Full-Wave Output From Half-Wave Magnetic Amplifiers

Patent No. 2,754,474. P. W. Barnhart. (Assigned to the United States of America)

The usual form of magnetic amplifier provides a half wave output. There are many applications of magnetic amplifiers where a full wave output could be used advantageously. Full wave magnetic amplifiers have been designed; however, they lack the speed of response and the inherent demodulation characteristic of the half wave amplifier. The circuit of the patent delivers a full wave output and yet has the speed of operation of the half wave amplifier and also has the inherent demodulation characteristic of the half wave type of amplifier. It has value in servo motor mechanisms.

The figure shows a magnetic amplifier circuit with the power supplied to the load through a half wave magnetic amplifier 20
consisting of a reactor core 21 havin! a winding 22 in series with a rectifier 23 . The reactance of the reactor core 21 is con. trolled by the current in a coil 11. A second half wave magnetic amplifier 30 is in parallel with the first amplifier and includes a rectifier 33 and winding 32 around a core 31. The rectifier 33 , however, is poled oppositely with respect to rectifier 23 . This second amplifier provides an output during the negative half cycle resulting in alternating current through the load 40 . The flux reset windings have not been shown in order to simplify the illustration.

In the circuit illustrated, the second mag. netic amplifier 30 delivers an output which is dependent upon the back impedance of the rectifier 33. If the back impedance is high, upon the positive half waves little potential appears across the winding 32. If on the other hand the back impedance of rectifier 33 is low, the voltage is divided be-

Note: for highly engineered applications-strips of TUNGSTEN and some other metals can be supplied

ROLLED DOWN TO . 0003 THICKNESS

- Finish: Roll Finish—Black or Cleaned
- Ribbons may be supplied in Mg. weights if required For highly encineered applications DEVELOPED AND MANUFACTURED BY
tw en the rectifier and the winding 32. Di ring the next half cycle therefore the output will be high and of opposite polarity to that of core 21 thereby producing the al rnating current across the load. Should the output be small the difference between the line voltage and the output voltage approaches line voltage with the result that the flux of the core 31 is well down on the hysteresis curve with the result that the next half cycle is nearly cut off. The rectifier of the amplifier 22 must have a high back impedance so that the output of the second amplifier will have no effect on the control of the first amplifier. This avoids a positive feedback which would affect the speed of respondance. Several other forms of circuits using the basic principle of the illustrated circuit are also shown.

Compression Amplifier

Patent No. 2,784,263 A. A. Curry \& P. S. Castro (Assigned to Motorola, Inc.)
The compression amplifier uses a signal translating circuit to which an attenuating network is coupled. The attenuating network includes a first discharge tube having
a reference potential applied to its anode. The attenuating network also includes a second discharge tube, the anode of which is connected to the cathode of the first tube. The junction of the cathode of the first tube and the anode of the second tube are connected to the signal translating circuit. The first and second discharge tubes have a relatively low alternating-current resistance when their respective anodes are biased positively with respect to their cathodes. In addition these tubes have an ac resistance that varies from a relatively low value to a relatively high value when each cathode is biased increasingly positively with respect to its anode. A third tube uses the same cathode connection with a second tube. An impedance connects the latter with the point of reference potential for the anode of the first tube. Finally a bias control network impresses a control signal on the control electrode of the third tube to establish across the impedance, a positive bias potential with respect to the reference potential. The bias potential varies between zero and a predetermined value. This bias potential controls the ac resistance of the first and second discharge tubes and the attenuation of the attenuating network.

EXCELLENT HIGH FREQUENCY CHARACTERISTICS

Davohm Series 850 Hermetically Sealed Metal Film Resistors....

Used wherever the

 high frequency characteristics of resistors are important because:- They have a very low reactive impedance component.
- There are no "insulating" plastics or varnishes on the film to add dielectric losses.
- The film is purely metallic without any "semi-conductor" effect.
- Values below 500 ohm can be furnished in unspiralled design as solid films or straight lines.
Send for our hi-frequency data on theseor test them in your circuit.

Now carried in stock by your iocal distributor.
".'DAVEN ${ }^{\circ}$
LIVINGSTON, NEW JERSEY
World's Largest Manufacturer of Attenuators

For exacting, high-temperature applications . . . CERAMASEAL LEAK-TIGHT TERMINALS

Assuring you savings in installation and operation, these Ceramaseal high-temperature terminals are 100% leak-tested and guaranteed leak-tight when shipped. High-alumina ceramic and metal parts of Ceramaseal terminals are joined by an exclusive process to form a high-strength, long-life molecular seal.
Brazing, welding or soldering techniques can be used for installation, without resulting damage to the seal, thus eliminating costly rework or replacement. For brochure and spec sheets, or complete information on special high-temperature terminals, write: Ceramaseal, Inc., Box 25, New Lebanon Center, New York.

Supplying High-temperature, Quality Terminals for Five Years

CIRCLE 327 ON RLEAULER-SERVICEE CARD FOR MORE INFOOMMAMON

Patents

Pulse System

Patent No. 2,776,375. F. P. Keiper, Jr. (Assigned to Philco Corporation)

Transistors or semiconductive devices can be used for the generation of pulses either in the form of a free-running multivibrator or one which is triggered by an input pulse. The duration of the pulse generated will vary considerably due to varying temperatures. These variations in the pulse can be as much as twice the desired pulse duration for a relatively small temperature increase of eight degrees. It is desirable, therefore, that such devices have a higher

Wide-Band, High-Frequency, Low-Level Vacuum Tube Voltmeter Employing a High Impedance Probe. A Unique Design Utilizes Extremely Wide-Band Amplifiers for Measurement at Higher Frequencies.

The Microlter is a non-feed-back type voltmeter. However, stabilization is provided for steady state changes and against line voltage variations.

The unit permits measurement of low level RF signals. A 7 position switch provides full scale steps of $1, .3, .1, .03$ $.01, .003$ and .001 volts, the lowest read ing being 250 microvolts. These ratios permit an easily read meter scale.
degree of accuracy in the duration of the pulse irrespective of temperature chan (es.

The device shown in the figure ust, a transistor or crystal N of any suitable ty pe, however, the junction type has its adiantages. The emitter 13 has an inductor 15 provided in series therewith and is supplied a proper potential from a suitable source of potential 17. The collector 12 has in its circuit an inductor 19 coupled with the inductor 15, a variable resistor 21 and resistor 22. The input pulse is applied across the resistor 22 at the input terminals 30,31 . The proper potentials are applied to the emitter

SPECIFICATIONS

Frequency Rango: Model 50: 100 cycles to 50 megocyles. Direct Reading in volloge or decibels.
Accuracy: $\pm 10 \%$ of full scale reading.
Frequency Response: Model 50: $\pm 1 \mathrm{db}$.
Voltage Range: 1 millivalt to 1 volt full scale in 7 ranges.
Sonsitivity: Will measure down to 250 microvalts.
Input Impedance: Capacitance 5 mmf , resistance loading dependent on frequency 11 megohm at 1 megacycle to 30,000 ohms of 50 megocycles)
No Tuning.
The Model 50 may be used as a wide-band video amplifier, maximum output approximately 25 volis at 75 ohms. Gains of up to 44 db .
Prices: Model $50 \$ 495.00$
FOB Plont
thi ugh the resistors 23 and 24.
Upon the application of an input trigger pl:se to the emitter, current flows in the collector circuit and a potential is generated in the secondary inductor 19 to increase the polential upon the emitter. Through regenerative action, the collector current constaitly increases to a saturation point at which time regeneration ceases and the enitter potential returns to its low value thereby terminating the pulse. With an adjustable resistor 21 of substantial value in series with the emitter and base of the transistor, the current through the emitter is substantially independent of the internal resistance between the emitter and base electrodes, which changes with changes in temperature of the transistor. A substantial variation in the internal resistance of the emitter, therefore, has but little effect on the emitter current. With a total resistance which is about 50 times the internal resistance of the emitter, the current change due to temperature change is reduced to approximately 2%.
With the resistor 21 having a maximum value of about 5000 ohms, the duration of the output pulse will be about 6000 msec with a high degree of temperature stability.

Upon decreasing the value of the resistance a pulse duration of 250 msec may be achieved but with some loss of temperature stability. The patent also shows a modification of the circuit illustrated.

Raster Centering Control

Patent No. 2,780,749. L. Dietch (Assigned to Radio Corporation of America)

A television deflection system uses a deflection winding connected to a winding of an output transformer. The raster centering circuit of the patent uses a potential dividing resistor having two terminals and an adjustable contact. An inductive choke connects one terminal of this resistor with the connection between the output transformer winding and one terminal of the deflection winding. The other terminal of the resistor connects with a second winding of the output transformer. The adjustable contact of the resistor is connected with the other terminal of the deflection winding. The potentiometer provided by the adjustable contact enable the direct current flow in the deflection yoke winding to be adjusted without affecting the flow of alternating current in this winding.

They call on ELECTRON PRODUCTS for extra-small size capacitors... unusual configurations, high IR, very flat temperature characteristics, and other special needs. E-P meets their quality requirements, and pertinent Mil. Specs. They applaud our fast sample service and efforts to insure prompt deliveries.
Why don't you try E-P? Write us your needs. Electron Products Co.
430 No. Halstead Ave., Pasadena, Calif.
Electrostatic capacitors - Vraft paper, Mylar, polystyrene, Teflon, metallized paper \& metallized Mylar dielectrics.

CIRCLE 329 ON READER-SERVICE CARD FOR MORE INFORMATION

GENERATES ENTHUSIASM

High Stability Wide Range Crystal Calibration
Marconi Precision

MARCONI SIGNAL GENERATOR FM-AM, 1.5-220 MC

Engineers will appreciate the calibrated incremental frequency control and oscillator temperature compensation which are the latest improvements in Marconi 995 Signal Generators. Built-in crystal calibrator, variable metered deviation from 0 to 600 kc, AM without $F M$ and precise output calibration are retained in Model 995A/2 AND - the price is right.

BRIEF SPECIFICATION: -

Frequency 1.5 to 220 Mc In 5 bands.
Output $.1 \mu \mathrm{~V}$ to 200 mV .
Aecuracy ± 1 do to 100 Hisc, ± 2 do to 220 Mc . Leakage Unmeasurable with $.1 \mu \mathrm{~V}$ receiver.

FM $0.25 \mathrm{kc}, 0.75 \mathrm{kc}$ and up to 600 kc .
AM 0.50\%.
Mod, Aceuracy AM or FM -5%.
Tubes 6AK5, 6AK6, 6AU6, 12A17, 0A2, $524 G$.

Wescon Show - Booth 908

MARCONI instruments

44 NEW STREET • NEW YORK 4, NEW YORK
CIRCLE 330 ON READER-SERVICE CARD FOR MORE INFORMATION

NEW...

New Ben-Har Braided Lacing and Winding Tape combines two superior insulation materials-DuPont Teflon and glass fibers. Fibers are Teflon coated before braiding to maintain rough texture and assure tight knots-and to eliminate abrasive action of the glass. Ben-Har Tapes will not shrink and cut through insulated wires. They are pliable from $-100^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. They are non-absorbent and inert to most known chemicals and oils . . . completely wax-free and fungus proof.
Available in $3 / 64,1 / 16,3 / 32$ and $1 / 4$ inch widths, in Offwhite. Also available in 8 colors and Black on special order. Write for prices and samples.
Bentrey, Harris Manufacturing Co. 17081 Barclay St. Conshohocken, Pa.

INSULATIONS

-T.M. Owens-Corning
CIRCLE 331 ON READER-SERVICE CARD FOR MORE INFORMATION

[^2]SOURCE IMPEDANCE
50 chms-VSWR less than 1.2.

OUTPUT VOLTAGE

0.3 rois RMS.

max. OUTPUT VOLTAGE VARIATION

AT MAX. SWEEP

VHF Range- $\pm 0.5 \mathrm{db}$.
UHF Range- $\pm 3.0 \mathrm{db}$.
FREQUENCY MODULATION 60 cycle sinusodial

```
JERROLD
ELECTRONICS CORP.
PHILADELPHIA 3, PA.
```


Patents

One Shot Multivibrator

Patent No. 2,778,936. R. B. Trousdale. (Assigned to General Dynamics Corp.)

There are electronic devices which have need for a multivibrator of the type which generates a potential pulse for a utilization circuit only upon the application of an input signal to the multivibrator. If there is no input signal supplied, the multivibrator remains inactive. Such multivibrators have applicability also in gating circuits. The multivibrator described uses gas tubes so that a very high power output is obtained.

The circuit components are clear from the figure so that the operation of the multivibrator only need be described. Normally the gas tube 10 is biased non-conducting by virtue of the application of a negative potential from a source 22 on the control grid 15 of the tube 10. The tube 25 is also rendered non-conducting by a negative biasing potential applied from the source 34 to the screen grid 29 of the gas tube 25. Any charge on the capacitor 39 is discharged through resistors 37 and 19. Any charge on the capacitor 40 is discharged through the
resistor 19 and any charge on the caparitor 33 is discharged through resistor 30 anc 19 .

If now a positive input trigger p alse from the source 20 is applied to the control grid 15 of the gas tube 10, it becomes onducting and current flows through this tube and the resistor 19. Since the potential (rop across the tube is low, practically the ertire potential of the power source is applied to the utilization circuit. Current flow through the tube 10 and resistor 19 establishes a potential across this resistor or at terminal 17. This potential is also applied across the capacitor 40 which is charged as well as the capacitor 33 which becomes charged. This same potential is applied to the capacitor 39 so that the potential on the capacitor builds up and hence raises the potential on the control grid 28 of the second gas tube 25 . When this potential has built up enough so that the potential on the control grid overcomes the negative potential on the screen grid 39, the tube 25 fires. The time interval between firing of the first tube 10 and the second tube 25 , and the duration of the pulse, is dependent primarily upon the time constant of resistor 37 and capacitor 39.

CIRCLE 333 ON READER-SERVICE CARD FOR MORE INFORMATION

I pon the firing of the second tube 25, the pot ntial of the cathode 14 of the first gas tub 10 is boosted to a value with respect to the anode 13 such that tube 10 becomes non-conducting. Upon tube 10 becoming non-conducting, the potential on the plate
of the tube 25 is removed with the result that this tube also becomes extinguished and the multivibrator is restored to its nonconducting condition. The multivibrator can be operated by a second input trigger signal from the source 20 .

1. 0-500 V.D.C. continuously variable without switching . . . current 300 MA. max.
2. $0-300$ V.D.C. continuously variable without switching . . . current 150 MA. max.
3. 4 to 8 V.A.C. unregulated @ 10 amps max. (varied by tapped switch).

Regulation

For output voltages: $500 \mathrm{~V} / 300 \mathrm{MA}=100 \mathrm{MV}$. change N.L. 10 F.L.; 300 V/i50 NÁ二 $60 \mathrm{M} Y$ change N.L. to F.L. For line voltage 115 V.A.C. $\pm 10 \%$, the vollage change is $.1 \%$ for 500 H output. 16% for 300 V .

- Ripple - both high voltage outputs less than 2 MV. R.M.S.
Grounding - either pos. or neg. of either high voltage outputs may be
grounded.
space-saving
D-B power supply
- has 2 independent outputs, each closely regulated, plus a variable filament supply

All 3 on a chassis only $83 / /^{\prime \prime} \times 19^{\prime \prime} \times 16^{\prime \prime}$, for rack or bench use. Here is a real workhorse for general laboratory use. You get this widely versatile, compact power supply at a saving over separately supplied units. Request literature on Model 5-300F.

maition

ELECTRICAL INDICATING INSTRUMENTS

The Technitrol Cathode Ray Tube indicator provides a visual indicating device for the dynamic display of electrical sig. nals. It is intended primarily as an output indicating device for such instruments as the Technitrol Dynamic Diode Tester and transistor curve tracers, no internal sweep circuits being provided.
This new indicator makes an excellent display unit for analogue computer and other applications where the repetitive
cycle rate of the display is consistent with screen persistences of available five-inch cathode ray tubes.
High-quality, conservatively-rated components assure a stable instrument which provides a very sharp focused beam on the face of the cathode ray tube.
Besigned for scansdurd 33^{n} relay ruck mounting, separate mounting legs are available at small additional cost.

- Equipped with Identical high-gain DCcouplod amplifiers on boph axes.
- Amplifer band widihss 3 db down af 110 kes 6db down at 200 kc.
- Sensifivify: 7 millivolis rms per cm on horizontel chamnol; 5 millivelis per em on horizont
- Amplifiers provided with oither single-
 onded or balanced inputs.
MANUFACTURERS OF PULSE TRANSFORMERS, DELAY LINES AND ELECTRONIC TEST EQUIPMENT CIRCLE 336 ON READER-SERVICE CARD FOR MORE INFORMATION

To its large family of Teflon* cables amphenol now adds high temperature Teflon Hook-Up Wire. Made to the same high standards of quality, amphenol Hook-Up Wire provides these reliability features:
concentricity of Teflon insulation over tightly stranded wire-wire won't be scraped or unstranded during processing

40 microinches silver plating minimum on all wires-free from dirt or oxide for easier tinning
100% InsPECTION of every foot produced-11 Major Quality checks during manufacture made to mil-w-16878B in types E and EEwide variety of colors and gauges

For the most reliable wire product available, specify amphenol's new Teflon Hook-Up Wire!
-E. I. DuPont Registered Trademark

Books

Electronic Components Handbook

Keith Henney and Craig Walsh, McGrawHill Book Co., 327 W. 41st St., New York 36, N.Y. 244 pages, \$9.00.

Resistors, capacitors, relays and switches -four principal components in all electronic circuitry-are analyzed with the intent of providing maximum reliability of the end product. All types of these four classes of components, for which a coordinated triservice military specification has been written, are covered. In general the pattern for each component part is the same-first a general treatment of the facts that apply to all components in the class; then highly specific information that applies to several individual types-facts, figures, concepts of usage, safety factors, and general knowhow on each.

The Electronic Musical Instrument Manual Alan Douglas. Pitman Publishing Corp., 2 West 45 St., New York 36, N.Y., 250 pages, $\$ 7.50$.

The relationship between electrical tone colors and their acoustic counterparts is treated from a theory and design point of view by Mr. Douglas.
Electronic circuits used in the reproduc. tion of musical tone are described in detail. The coverage is extensive and includes all circuits commonly employed in musical instruments.
Mr. Douglas fills a void left in previous books on this subject by including British, French and German as well as American musical instruments. With wise discretion, he avoids entering into discussion on the merits or demerits of electrical tone values

CIRCLE 337 ON READER-SERVICE CARD FOR MORE INFORMATION
as compared with "conventional" instrum nts. He leaves the artistic appraisal of m isical sound to the individual. Treatment of the subject should prove valuable to both elictronic engineers and musicians.

Principles of Engineering Heat Transfer

Wurren H. Giedt. D. Van Nostrand Co., Inc., 120 Alexander Street, Princeton, N.J., $38{ }^{5}$ pages, \$8.25.

The approach that Dr. Giedt uses in his new text emphasizes the basic fundamental principles of physics and thermodynamics which effect heat transfer. This treatment of the subject is by its nature rigorous but can be easily followed by the interested engineer. It gives a representative picture of the problem not often found in less detailed treatments. Special effort is made to provide a physical interpretation of the many quantities and processes involved. The three modes of heat transfer-conduction, convection and radiation-are studied separately. The treatment given to fluid flow should prove of special interest to the electrical engineer who would like to acquire a basic background in the field of fluid
mechanics. Throughout the book, important historical developments and the individuals associated with them are noted.

Frequency Modulation Receivers

J. D. Jones. Philosophical Library, 15 East 40 St., New York 16, N.Y., 114 pages, \$6.00.

Concentrating entirely on reception, this volume gives a stage-by-stage description of the principles and operations fm receivers. The calculation of various circuit elements is performed with basic mathematics. Only a general knowledge of the working of an ordinary broadcast receiver is assumed.

The first chapter outlines the reasons for using FM for high-quality broadcasting, together with the basic methods of frequency modulation. The second chapter gives the differences between fm and am receivers, a summary of the requirements of an FM receiver, and the considerations necessary for fm antenna. This is followed by a detailed discussion of the various sections of an fm receiver. In the final chapter the separate sections are assembled together into the complete receiver.

CIRCLE 339 ON READER-SERVICE CARD FOR MORE INFORMATION

DESIGNS RELAYS

TAILORED FOR AIRBORNE SYSTEMS

...relays featuring the unique capability that continuously solves environmental problems for customers such as: Boeing - Douglas Aircraft • Grumman Aircraft • Hughes Aircraft • Lockheed Aircraft - Minneapolis-Honeywell • North American Aviation.

Now ... Relays TAILORED for Flight Control • Automatic Approach - Engine Control • Missile Guidance • Missile Stabilization • Bomb-Navigation • Inertial Navigation - Fire Control - Automatic Flight.

Why not test Leach's ability to solve some of your toughest environmental problems? Please write Sales Manager, Relay Division or contact your nearby Leach representative. Send for your copy of the Leach Balanced-Armature Catalog.

Leach relay division

5915 Avalon Blvd., Los Angeles 3, California
District Offices and Representatives in Principal Cities of U. S. and Canades

What the Russians Are Writing

J. George Adashko

ELECTRICAL COMMUNICATIONS

(Contents of Elekrosvyaz' No. 12, 1956)

COUPLING NETWORKS

Coupling Devices for the Distribution and Combination of High and Low Frequency Power, A. A. L'vovich, (12 pp, 9 figs).
Coupling and decoupling (hybrid) networks must usually satisfy two requirements-minimum interaction between coupled circuits, and minimum power loss in the devices themselves. Coupling (or decoupling) is effected either by attenuator or by balanced networks; the latter are either of the resonant type and operate in a narrow frequency band or of the transformer type, with broadband charac-

Fig. 1. Balanced narrow. band coupling network

Fig. 2. Broadband coupling network with unbalance in one branch
teristics. Resonant decoupling networks were discussed by the author in the April issue of Radiotekhnika (See ED November 15, 1956). This article deals extensively with both common-core and sepa-rate-transformer circuits, and derives equations for the input impedances in terms of the transformer

Fig. 3. Com mon-core coupling network
and generator parameters. Equations are given for the ballast impedances needed to compensate for variations in the parameters or in the internal voltage of one of the coupled circuits, as well as equations for the attenuation in the various branches. The effect of non-linearities and the performance of combined hybrid devices are also discussed. See Figs. 1, 2 and 3.

FREQUENCY CONTROL

Stabilization of UHF Oscillator Frequency using Crystal Harmonics, M. M. Pruzhanski; 113 pp, 14 figs).

Frequency-stabilizing crystals for uhf oscillators must be so thin that their manufacture involves considerable difficulties. These difficulties can be overcome by using thicker crystals and operating them at harmonic frequencies. However, the static capacitance of the crystal, as well as the capacitance of the circuit elements, impose substantial limitations on the use of this method. The author tells how these capacitances can be compensated for, and
how to design simple yet stable bridge circuits in which the crystal can be excited with harmonics of high order. In addition, the article contains a discussion of harmonic quartz oscillators without compensation for the stray capacitances. A classification and comparative evaluation of various oscillators is also given.

Lock-In Band in Phase-Controlled AFC, V. M. Kapranov (14 pp, 18 figs).
Extensive theoretical analysis of the operation of a phase-controlled AFC system with two filter networks past the phase detector, and also with tuned circuits in the h-f portion. The lock-in band is derived analytically by piecewise linearization of the characteristic of the phase detector. Expressions are derived to relate the lock-in band with the filter parameter and with the time constant of the tuned networks. Refers to Preston-Tullier, "The Lock-In Performance of an AFC Circuit" (Proc IRE, Feb. 1953), Jelonek-Celinski-Syski, "Pulling Effect in Synchronizing Systems," (Proc. IEE, No. 6. Part IV, 1954), and Gruen, "Theory of AFC Synchronization" (Proc. IRE, Aug. 1953).

MODULATION

Effect of Electron Inertia on the Form of the Modulafion Characteristics of AM Transmitters, L. N. Kolesov, (9 pp, 6 figs).

This is claimed to be the first published analysis of this problem. By "modylation sharacteristic" is meant the plate-current vs. grid voltage or vs plate voltage curves (for the case of grid or anode modulation, respectively). The analysis is based on the power relationships in uhf vacuum-tube oscillators, discussed by the author in Radiotekh nika No. 6, 1956 (ED January 1, 1957). The analysis discloses that the non-linearity of the modulation characteristics can be rectified by using combined anode and grid modulation, the latter not to exceed 20%.

RADIO ENGINEERING AND ELECTRONICS

(Contents of Radiotekhnika i Electronika No. 12, 1956)

TRANSISTOR MULTI

 Point-Contact Transistor Multivibrator. K. S. Rzehvkin, M. A. Abdiukhanov, (7 pp, 6 figs, 1 table).A steady-state analysis of the multivibrator shown in Fig. 4 was given by McDuffie (Proc. IRE, 1952, 40, 1487), and other modifications of the circuit are given by Anderson (Proc. IRE, 1952, 40, 1541) and Kramer (Teletech. May 1954). This article deals with the transient behavior of the circuit and gives a design procedure based on the equivalent circuit of Fig. 5.

Fig. 4. Transistor multivibrator

Fig. 5. Equivalent circuit of transistor multivibrator

SHORT LENGTHSMALL NECK DIAMETERMINIATURE BASING-

SHORT LENGTH-
SMALL NECK DIAMETER -
MINIATURE BASING -

Off-center neck design for sectorscanning applications.
"Build in" performance monitoring with ROGER WHITE miniaturized gas tube noise sources

As radar targets become smaller and faster, microwave circuits need greater reliability than ever before.

That's why Roger White Miniaturized gas tube Noise Sources are today being "built in" systems ranging from Weather Radars to Missiles - enabling the operator to inject a precisely-known signal in the system, for instantaneous calibration.

These rugged, light weight Miniaturized Noise Sources can be designed to meet all MIL. Specs - and will permit "in the field" testing of Microwave circuits with the same dependability as Roger White Laboratory Noise Sources provide the Laboratory \& Production Line.

For additional information re: Miniaturized (system) or Laboratory Noise Sources, write for descriptive brochure and specifications.

96 Fourth Avenue, \qquad Haskell, New Jersey CIRCLE 343 ON READER-SERVICE CARD FOR MORE INFORMATION

Russian Translations

LINEAR PULSE SYSTEMS

Time and Frequency Behavior of Linear Pulse Systems with Variable Parameters, G. P. Tartakovski, (1) pp, 3 figs).

The concept of a time-dependent transfer function for pulse systems with variable parameters was introduced by the author in the November, 1956 issue of Elektrosvyaz' (See ED July 15, 1956). The time behavior is characterized by this transfer function and by another function, the pulse response of the system to a unit pulse. The timedependent frequency characteristic is also introduced. Relationships between the various functions are derived and their use to obtain the response to an arbitrary pulse sequent is illustrated in an example.

MEASUREMENT

Setup to Measure Attenuation of \mathbf{H}_{101} Wave in Short Waveguide Sections, Using the "Resonant-Cavity" Method. V. M. Vakhnin, T. F. Kolodina, (7 Pp, 6 figs).

In the "resonant-cavity" method one determines the Q of the cavity formed by the waveguide section. The method for determining Q is based on the same compensation principle as described by Le Caine (Proc. IRE, 1952, 40, 155), but the engineering formulation of the principle and the test installation are different. The setup described can measure the attenuation of H_{01} waves in specimens 50 mm in diameter at 3.2 cm wavelengths. The systematic error does not exceed 3.3%, and the random error is less than 1%. The Q of the cavities measured ranged from 500 to 50,000 . The method can be used for other ranges, for other modes, and for other specimen dimensions.

INSTRUMENTATION

Instrument Measuring Group Delay Time in RadioRelay Line Apparatus, I. S. Pecherski, $(7$ pp, 3 figs).
The group delay time is an important factor determining the non-linear distortion in the hf channel of a long-distance radio-relay line. The artic'e described a patented system.

OTHER ARTICLES IN THIS ISSUE

Non-Linear Properties of Bimetallic Communication Conductors Containing Ferromagnetic Materials, I. E. Efimov, (10 pp, 6 figs).

Copper-clad iron conductors are extensively used
in the Soviet Union. The author derives equations for the attenuation of various harmonic components and for the current distribution over the wire cross section. The calculated values are checked against experimental data.
"Comparison of Transmission Stability of Tonal. Telegraphy Channels with Frequency and Ampli tude Modulation," M. B. Rabinovich ($4 \mathrm{pp}, 2$ figs), "Multilayer and Combined Shields in Communica. tion Cables," I. I. Grodnev, K. A. Liubimov, E. F Ukstin ($9 \mathrm{pp}, 4$ figs.)
"Radio Static in the Eastern Hemisphere on February 23, 1956," K. M. Kosikov, (5 pp, 2 figs). "Pres. ent Status of the Techniques of Generating Milli meter Waves," G. I. Zhileiko, ($11 \mathrm{pp}, 8$ figs, 1 table) "New Investigation of Magnetic Disturbances in the Ionosphere," V. A. Baranul'ko ($4 \mathrm{pp}, 1$ table) "Comparison of Certain Noise-Rejecting Codes," E. S. Gorbunov ($6 \mathrm{pp}, 2$ figs). (Deals with applica. tions to telegraph codes.)

RADIO ENGINEERING

(Contents of Radiotekhnika No. 12, 1956)

ANTENNAS

Radiation Patterns of Surface-Wave Antennas, K. I, Grineva, 112 pp, 10 figs).
An approximate method, based on Huygens' principle, is used to calculate the radiation patterns o surface-wave antennas. The effect of attenuation on the directivity pattern of the antenna is analyzed Theoretical data are compared with the test results A procedure is proposed for the computation of the principal elements of surface wave antennas.

Received-to-Scattered Power Ratio in a Receiving Antenna, B. E. Kinber, (2 pp).

A brief analysis of antennas having dimensions considerably larger than a wavelengih. Derives the approximate equation

$$
\frac{P_{\text {scat }}}{P_{\text {rec }}}=\frac{2-\mu}{\mu}
$$

where $\mu=\frac{\lambda^{2} G f^{2}}{4 \pi S}$ is the coefficient of utilization of the aperture surface, G the power gain, f the directivity factor, and S the aperture area of the antenna, and λ the wavelength.

CIRCUIT ANALYSIS

Cal:ulation of the Duration of the Quasi-Equilibriuni State in the Phantastron Circuit, G. I. Perov, (14 pp, 13 figs).
A straightforward procedure, beginning with plotting the characteristics for the optimum cathode resistance, formulating the initial system of equations, plotting the phase curves to obtain the circuit parameters, and finally deriving the time curves. Refers to "The Miller Integrator" by Briggs (Electronic Engineering, 1948, vol. XX, Nos. 246, 247, 248), and to "The Phantastron" by Roberts (RadioElectronic Engineering, Nov. 1954, p. 12).

Analysis of Transients in "On-Off" Circuits, V. K. Levin, 16 pp, 3 figs, 1 table).
Circuits of this type employ as a rule a large number of tubes, and for high reliability it is essential that all stages operate without interruption for long periods of time regardless of possible changes in the parameters of the tubes, parts, or supply voltages. The customarily-employed transient analysis, based on piecewise-linear approximation of the characteristics of the non-linear elements, is too cumbersome. Since the reliability requirements thus call for a sharp emphasis on the shaping properties of the individual stages employed, it is simpler to compute the response of the individual stage to an ideal input, and to extend the analysis to a combination of such stages.

OTHER ARTICLES IN THIS ISSUE

"Concerning Excitation of Oscillations in SelfExcited Generator with a High-Q Cavity," A. P. Fedotov, B. K. Shembel' ($4 \mathrm{pp}, 2$ figs). (Calculation of anti-parasitic resistance for the line connecting the generator to the cavity.) "On the Diffusion of Chemical Admixtures in Cuprous Oxide and their Influence on its Rectifying Properties," A. V. Sandulova, A. I. Andreevski, ($11 \mathrm{pp}, 9$ figs, 3 tables). "Investigation of Noise of Lead-Sulfide Photoresistances," A. I. Goriachev, K. A. Iutanov, (12 pp, 14 figs, 2 tables). "Instrument for Relative Measurements of Constant Magnetic Fields," I. S. Shpigel․ M. D. Raizer, E. A. Miae ($5 \mathrm{pp}, 5 \mathrm{figs}$). (Nuclear magnetic resonance is used in an instrument to measure field-intensity deviations up to 5%, at values of H on the order of 150 oersted. The accuracy of the instruntrit is $0-\mathrm{f}^{m}$.)

ACOUSTIC JOURNAL

(Contents of No. 4, Oct.-Dec. 1956)

None of the articles in this issue contain material normally of interest to our readers. We wish to mention, however, that a complete translation of the Acoustic Journal is now being published by the American Institute of Physics, 57 East 55th Strict, New York 22, N.Y.

An all time high in papers presented, number of exhibits, and attendance is anticipated for this year's WESCONSan Francisco August $20-23$ rd. If you are among the 30,000 who will be on hand - be sure to get your copy of Electronic Daily - this year combined with Electronic Week. All the last minute developments, program changes, events, meetings, as usual - PLUS - the added value of Electronic Week's regular news section. Look for your Daily, bigger and better than ever before, free at Hayden's booth at WESCON.
a HAYDEN publication
19 East 62nd Street - New York 2I, N. Y.

STABILITY

$\pm .0035 \%$ FROM $-40^{\circ} \mathrm{C}$. то $+70^{\circ} \mathrm{C}$.

High Stability
Crystals at Low Frequencies ... Without Ovens

For high stability, without temperature control, the Bliley GT-cut crystal is first choice in the frequency range 200 kc . to 500 kc . Frequency stability is $\pm .0035 \%$ over the temperature range between $-40^{\circ} \mathrm{C}$. nd $+70^{\circ} \mathrm{C}$.
Consistent quality and reliability are assured "by secial attention to such fine points as precision align ment, controlled soldering, gold plating and inspection under binocular microscopes.
For frequency range 200 kc . to 324 kc ., specify type BH12 series holder; for range 324 kc . to 500 kc specify type BH6A series holder. Both are hermetically sealed.

FOR PRIMARY STANDARDS, THE GT-CUT CRYSTAL
IS SUPPLIED AT 100 Kc . AS BLILEY TYPE BGI2G-S.

Blify Bllley Electric company ERIE, PENNSYIVANIA

CIRCLE 346 ON READER-SERVICE CARD FOR MORE INFORMATION

German Abstract

Temperature Compensation of Oscillators

E. Brenner

SINCE inductors and capacitors have values which are temperature dependent, the frequency of tuned oscillators is also temperature dependent The use of a reactance tube circuit together with a temperature sensitive resistive element makes it possible to compensate this effect or to synthesize oscillators which have a desired relationship between temperature and frequency.
If the ratio of the relative variation of a quantity to the temperature change is called the temperature coefficient. denoted by K, then

$$
\begin{aligned}
& K_{L}=\underset{\text { inductance }}{(\Delta L / L)(1 / \Delta T)=\text { temp. coeff. of the }} \\
& K_{C}=(\Delta C / C)(1 / \Delta T)=\text { temp. coeff. of the } \\
& \text { capacitance }
\end{aligned}
$$

then the temperature coefficient of the frequency is, to a very good approximation given by

$$
\begin{equation*}
K_{f}=-\frac{K_{L}+K_{C}}{2} \tag{1}
\end{equation*}
$$

In order to compensate for the effect of temperature on the frequency it is therefore necessary to set $\mathrm{K}_{\mathrm{L}}=-\mathrm{K}_{\mathrm{C}}$. The use of several condensers to form the tank capacitance to accomplish this purpose limits this compensation to particular points. With a reactance tube great flexibility is possible. The basic circuit is shown in the figure.
The tube T_{1} together with the tank circuit consisting of C and L forms the oscillator. Tube T_{2} together with the phase shifting circuit $\mathrm{R}_{1}, \mathrm{C}_{1}$ is the reactance tube circuit (whose inductance is approximately $R_{1} C_{1} / g_{m}$) so that the grid voltage of tube 2 controls the frequency of the oscillator.

Basic temperature compensated circuif using a reactance fube.

The de component of the grid voltage v_{g} is derived in part from the bridge arrangement consisting of \mathbf{R}_{4} through \mathbf{R}_{8}. In this bridge one of the arms is a temperature dependent resistors (e.g. thermistor). This element is placed in the environment of the tank circuit LC so that it undergoes the same temperature changes as the tank. If the element R_{5} has a negative value of temperature coefficient then the compensation results from the following sequence. If the temperature increases then R_{5} decreases. Hence the grid of the reactance tube becomes more positive, its transconductance increases and the effective tank circuit inductance increases. The frequency therefore increases and this compensates for a negative value of K_{1}. If K_{t} is positive then the compensation can be achieved by reversing the bridge polarity V_{o} or by placing the temperature sensitive element in the R_{4} arm of the bridge. Note that in the case of an FM transmitter as pictured, the reactance tube serves the dual purpose of compensation for carrier drift and frequency modulation according to signal strength.

The choice of components in the bridge depends on the value of K_{f} and on the curvature of the fre-quency-temperature curve which most oscillators exhibit. The value of R_{10} controls the curvature of the compensation scheme. In addition R_{10} must be large enough and V_{0} must be small enough so that the working current of the thermistor does not produce appreciable heating within it.

Various modifications of the basic circuit are also possible and are discussed in the original paper. (Abstracted from an article by F. Mueller, Electronische Rundschau, Vol. 11, No. 3, March 19.57 pp68-73).

Individual Initiative in Research and Engineering

The Jet Propulsion Laboratory has brought together an outstanding staff of engineers of exceptional talent and ability. Working individually within the group these men now comprise a highly progressive and productive entity.
A recent survey of this staff indicated that the most important reason for their preference of JPL as a work center is the high degree of responsibility and freedom given the individual to pursue his own assignments. The intriguing nature of the work, challenging problems, professional association, fine residential location, pay scales and opportunities for
career development were also important considerations. This appreciation, from within, of the Laboratory's prin. ciple of recognizing ability and talent and allowing it to operate with freedom and confidence under its own initiative is a gratifying tribute in itself.
Working for the U.S. Army on a research and development contract with many ramifications, JPL has broad interests and constantly searches for new approaches to modern technical problems. This provides exceptional career opportunities for those qualified individuals who are interested.

New copper-clad MICARTA ${ }^{\circ}$ takes dip solder bath without blistering!

New H-3032 copper-clad Micarta ${ }^{\bullet}$ cuts costs and production time of printed circuits. Copperclad Micarta speeds up soldering, without the normal accompaniment of an increase in rejects and missed connections. It can be cold punched without cracking or chipping.

The laminate won't blister even when dip soldered for 10 seconds at $500^{\circ} \mathrm{F}$! Examine the two close-up photographs. One shows an ordinary laminate after a laboratory test. Note the blistering, then look at the Micarta dip soldered for the same length of time-and there is no blistering!

A special adhesive is used which has the same
high electrical properties, solvent resistance and low moisture absorption as the Micarta laminate itself. Actually, adhesive strength is increased during soldering.
Because of a new adhesive process, copperclad Micarta keeps its high bond strength from 10 to 13 pounds versus an industry standard of six pounds-even after heating and cooling is repeated many times. This is especially valuable for electronic circuits.
Copper-clad Mrcares may be the answer to your circuit assembly problem. Write for further information and technical data to Westinghouse Electric Corp., Micarta Div., Hampton, S. C.,

$$
\begin{aligned}
& \text { you cAN BE SURE...IF IT'S } \\
& \text { Westinghouse }
\end{aligned}
$$

CIRCLE 348 ON READER-SERVICE CARD FOR MORE INFORMATION

German Abstract cont.

Thermistor Termination

A termination which consists of a single thermistor and an adjustable transformer can be used for power measurements in the range of wavelength of $9-16 \mathrm{~cm}$ or $12-20 \mathrm{~cm}$, with a standing wave ratio (VSWR) of less than 1.1. The assembly contains an impedance transformer which needs little or no adjustment.

The termination is shown in the figure. The thermistor is placed in a capacitive short circuit. To avoid unnecessary series inductance the thermistor is placed in a narrow cavity whose length corresponds to the length of the thermistor, immediately before the short circuit. Using the Philips NTC Resistor type 83900 this cavity is about 12 mm long and has a diameter of about 2.5 mm . At the entrance of the cavity there is a 'jump' transition to a 70 ohm characteristic impedance (outside diameter 6.4 mm) and the transition to the conventional system (outside diameter 16 mm) is accomplished with a short bevel. To obtain a second dc path a simple, adjustable quarter wave stub is used. In order to achieve simple construction, the "jump' is overcompensated (capacitively) and the stub is placed close to it so that adjustment of the stub accomplishes simple adjustment of the compensating capacitance.

With selected thermistors a match giving VSWR values lower than 1.1 are reached in the region of wavelengths between 10 and 16 cm without adjustment of the stub while stub adjustments extend this

CAPACITIVE SHORT

QUARTER WAVE STUB

Thermistor termination used for power measurements in the $9-16$ or 12.20 cm range, with a VSWR of less than 1.1.
rainge from 9 to 17 cm with VSWR values as low as 105. Similar results are obtained with a second thicrmistor in the range $12-20 \mathrm{~cm}$.
The sensitivity of the thermistors which were uscd in the experimental work was 11.3 to 12.3 ohms per mw, the nominal resistance was 275 ohms. The matching bridge circuit was established experimentally. Moreover the maximum measurable high frequency power for a direct reading bridge is linited to 1.5 mw because of the matching problem as well as the linearity limitation of such bridge circuits. (Abstracted from an article by H. Rieck and F. Panniger, Nachrichtentechnik, Vol. 7 No. 3, March 1957, p101-104).

Artificial Dielectrics at 3 cm

The embedding of powdered iron and graphite in paraffin results in an artificial dielectric which has large attenuation in the centimeter waveband and appears to give reasonable broad-banding.
Precise measurements of the electric and magnetic loss tangent show that in general various powders in different concentrations added to pure paraffin result in an increased dielectric constant and corresponding decreased phase velocity. Electrical losses occur for substantially increased conductivity. The powders which are reported in this paper (all mixed in paraffin) are copper, zinc, iron, bismuth, silicon, graphite, and cupric sulphide.

Curves for obtaining a prescribed attenuation showing the percent (by volume) of graphite powder in paraffin as a function of wavelength.

The figure shows an application of a graphite powder-paraffin mixture for attenuators. The graphite: is 99.5 per cent carbon.
The paper reports in detail the results for the other mixtures. Theoretical justification and detailed measurements procedures are also included. (Absiracted from an article by E. Meyer, H. J. Schmitt and H. Severin, Zeitschrift für Angewadte Physik, I 1 l. 8, No. 6, June 1956, p 257-263).

"packaged precision" for prototype or production assemblies

Complementing and expanding Reeves' well-known line of STANDARD Servo-Mechanical Parts, a comprehensive new series of MINIATURIZED Components is now available. This new line will be of special interest to engineers working on 400 -cycle servo applications, and offers the following features:

- Low inertia for 400-cycle systems.
- Includes a very complete selection of components, slotted mounting plates, hangers, dial assemblies, couplings, differentials, and mechanical and electrical stop assemblies, produced to high precision standards.
- A wide range of Class II precision gears20° pressure angle; $64,96,120$ diametral pitches.
- Unique "T" nut assembly for ease in hanger mounting provides continuous adjustment parallel and perpendicular to mounting plate slots.
- Parts are designed for $1 / 8^{\prime \prime}$ shafting.

REEVES INSTRUMENT CORPORATION

A subsidiary of Dynamics Corporation of America 223 East 91st Streot, Now York 28, Now York

complete lines

 of precision servo-mechanical parts by
there are two

Reeves new completo Servo-Mechanical Parts Catolog illustrates and lists the new MINIATURE line, as well as the full line of STANDARD parts for use with $1 /{ }^{\prime \prime}$ shaffing.

Vibit our oxhibit
Booth Nos. 2421.2422 Booth Nos. 2421 -2422
Woicon Show
San Francisco, Aug. 20-23 REEVES INSTRUMEMT CORPORATIOM A subsidiary of Dynamics Corp. of America
223 East 91et St., Now York 28, N.Y.
fill in and mail the coupon now to recaive your copy o the new eatalog.

NAME
COMPANY
ADDRESS
ary
STATE

CIRCLE 349 ON READER-SERVICE CARD FOR MORE INFORMATION

Put your relay

problems 'on ice' Particularly suited for general control and timing circuits, the Type 33B power-type relay provides the long life and extreme reliability required for your most critical applications. For maximum efficiency, the frame, armature and core are manufactured from high grade magnetic iron and the armature operates on phosphor bronze bearing pins. Its stationary contacts are mounted on molded phenolic blocks while the movable contacts are carried on phosphor bronze blades. All contact blades may be individually set with adjusting screws. Coils are pre-cision-wound on non-corrosive bobbins. For A.C. operation, silicon iron parts and copper shading rings on the coils are standard features.
Whatever your relay stumper-multicontact, power or hermetically-sealed the man from PHILLIPS can help you.

HERMETIC SEALS, MULTI-CONTACT, POWER, HERMETICALLY SEALED RELAYS, ACTUATORS

Fig. 2. Side view of klystron. Cathode and control structure have been omitted.

THIS PAPER describes the development of a cylindrical reflex klystron. In this tube the oscillatory circuit is a (tubular) Lecher system which can be made accessible externally through a suitable glass-seal. Consequently the frequency can be controlled through external circuitry continuously over a wide range. With conventional klystrons, the frequency is controlled through mechanical deformation of the cavity within the tube and only a few per cent control is possible. A second advantage of the new configuration lies in the higher efficiency. This improvement can be ascribed to the fact that the field at the output coupling exceeds the fields in the control region.

The new tube, which is still in the experimental stage, consists essentially of a cathode concentric with a cylindrical tube in which an electron-optical (e.g. control or grid) system is inserted. A Lecher system is hollow, cylindrical and has slits behind which the reflectors are located. The control structure assures that a large percentage of the emitted electrons travel through the slits in the Lecher system and reach the reflector space. The electrons are reflected and return through the slits of the Lecher cylinder, ending up at the inner surface of that cylinder.

In the experimental model (built at the Institut fur Angewandte Physik, Hamburg University) the Lecher system has eight slits as shown in Fig. 1. Consequently eight control sections and eight reflectors are used. While fewer sections could be used this would result in lowering the ratio of electrons which pass into the reflected region to emitted electrons.

The control structure design was carried out by use of rubber models, electrolytic trough and other methods because of its critical nature. Details for all other tube dimensions and performance are also included. Experimental results cited appear in good agreement with calculations so that further developmental work is intended. (Abstracted from an article by J. Koch, Zeitschrift fur Angewandte Physik, Vol. 9, No. 1, Jan. 1957, pp 1-8).

Frequency

Control

THE schematic diagram shown in Fig. 1 stabilizes the frequency of a rotary converter although the same procedure can in principle be used for the control of small shunt motors. The circuit of Fig. 1 depends primarily on the transformer, T, together with the frequency dependent rectification.

synchronous

 The ac voltage is fed to the low pass filter formed by C_{1} and $R_{1}=R_{1}{ }^{\prime}+P_{1}$ and the high pass filter formed by \mathbf{R}_{2} and C_{2}. Both filter outputs are rectified and subtracted
Converters

 from each other; this differential output voltage (across R_{3} and R_{4}) controls the field current of the machine through a two-stage amplifier. The choice of the operating point determines the frequency for the control voltage null.In a typical application the field current had to be varied by 70 ma between no load and full load. The first stage of amplification (T_{1}) had a gain of 50 and the second stage $\left(\mathrm{T}_{2}\right)$ gave 7 ma of current change per input volt. Although the theoretical frequency deviation for these values can be shown to be 0.05 cps in 50 cps , the actual value was slightly higher but below 0.1 cps of deviation.

Because the frequency control is accomplished by field control, the output amplitude is affected and subsequent amplitude stabilization is indicated. (Abstracted from an article by H. Voelz, Elektronische Rundschau, Vol. 11, No. 2, Feb. 1957, p. 55.)

Fig. 1. Diagram of rotary converter stabilizer. P_{1} is used to adjust the nominal frequen$c y$, and P_{2} selects the operating point of T_{2}.

Instantaneous response and unvarying operational precision are all-important for proper functioning of gear trains in servo multipliers used in Electronic Associates Analog Computer. To assure flawless performance, Fafnir Extra-Small Special-Precision Bearings are specified.

Made to extremely precise tolerances, these superior bearings provide the hair-trigger sensitivity, rigid support, and running accuracy essential in this application. Prelubricated at the factory, they are equipped with shields for effective grease retention, protection against contaminants, and minimum maintenance.
Chances are, Fafnir can supply the bearings that are best for your precision mechanism. You can depend on highest quality, for Fafnir facilities for production, assembly, and inspection of precision bearings are recognized as the finest and most modern in the industry. Write for colorful brochure describing Fafnir's newly-expanded Instrument Bearing Division. The Fafnir Bearing Company, New Britain, Connecticut.

Fafnir Extra-Small Special-Precision Bearings - are used in servo multiplier gear trains in Electronic Associates' Analog Computer. The flanged type (at left) features shoulders integral with the bhrough boring for periecs alignment. The other bearing is same size but unflanged.

FAFNIR
BALL BEARINGS

CIRCLE 352 ON READER-SERVICE CARD FOR MORE INFORMATION

Abstracts

Standardization of Mu-Min Relays

NONSTANDARDIZATION of microminiature relays imposes on the user all the undesirable byproducts of a single source of supply. The electronic design engineer usually selects components on the basis of his background-he has had good results with one manufacturer's $\mu \mathrm{min}$ relays and specifies these relays on his engineering drawings. The trouble is that all too often these particular relays have unique mounting configurations or dimensions for a given set of electrical characteristics. When a large supply of the relays is necessary due to increased production, the purchasing department finds that no other company manufactures these relays with the same mounting styles, terminal arrangements, mounting dimensions or some other characteristic, which forbids their use without a major design change. The engineer has inadvertently esablished a single source of supply.
The physical size and electrical characteristics of umin relays make them very suitable for printed and transistorized circuit applications. This means that the demand for these relays is likely to increase far beyond that of subminiature types in the not-too-distant future. Some standardization of umin relay is obviously necessary.

Mechanical-Electrical Spec

Electrical and dimensional characteristics of five presently available $\mu \mathrm{min}$ relays are tabulated in Fig. 1. Corresponding values for the proposed standard are included. These are adjusted so that all manufacturers can comply without undue hardship.

The proposed electrical values of Table I are similarly compiled and adjusted from those of presently available types. The proposed standards are for general-purpose relays but dry-circuit and power sensitive applications should be provided for. A reasonable target for power sensitive types would be 25 to 50 mw using a 5 K coil. If this sensitivity is not compatible with the minimum vibration requirement of 30 g at 5 to $2,000 \mathrm{cps}$, the power consumption could be increased up to 200 mw . In any case the power requirement should not exceed the amount absolutely necessary to meet vibration resistance characteristics.
Note that a target life of 10° operations has been suggested. This figure is for dry circuit applications. It is this high because the $\mu \mathrm{min}$ relay will very likely perform other functions in addition to switching circuits. When used as a computing element any life limitation below one million operations would introduce scheduled maintenance problems.

Mounting Spec

Presently available mounting styles are shown in Fig. 2. Plug-in mountings, using a friction type receptacle, are strongly discouraged for airborne use. They are generally unsatisfactory for severe vibration environments, and the difficulty of maintaining a low contact resistance for low-current low-voltage switching is materially increased with the additional series resistance of the plug and receptable. The only disadvantage involved in stud mounting is that a damaged stud represents a non-

Manufacturer	Type	Contact Rating (Resistive)	Nom. Coil Resistance (Ohms)	Dimensions		
				A	B	C
A	SPDT	2A 28VDC	550	. 796	. 781	. 350
B	DPDT	2A 28VDC	600	. 875	. 790	. 350
C	DPDT	2A 28VDC	600	. 875	. 790	. 350
D	DPDT	1 A 28 VDC	750	. 875	. 750	. 350
E	DPDT	.5A 28VDC	800	. 888	. 800	. 396
Proposed Standard	DPDT	1 Amp 28 VDC	700 Min .	$.900$ Max.	$\begin{aligned} & .800 \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & .360 \\ & \text { Max. } \end{aligned}$

Fig. 1. Electrical and dimensional characieristics of five presently available umin relays. A proposed standard with values adjusted as a compromise between the current five values is included.
us tble relay. Side-mounting is useful where the rel.iy is mounted on the chassis side. But when the reliy is mounted on the base of the chassis, it is ust.ally wasteful of panel space.

The end-mounted screw-fastened relay mounting is used with solder-type terminals and plug-in terininals soldered to printed circuit boards. Fig. 2 shows top-of-panel mounting but the angle brackets may be inverted for mounting on the underside of the panel. The versatility, convenience and structural advantages of this mounting should encourage its acceptance as a standard.

Assembly and Board Design

The $\mu \mathrm{min}$ relay should be suitable for automatic assembly of printed circuits. The automatic process includes circuit printing, punching, shearing, component assembling and lead crimping, solder immersion and testing.
RETMA is proposing (RETMA Standard Proposal 459 October 1955) a standard dimensional system for automation requirements. This proposal ought to be considered in a $\mu \mathrm{min}$ relay standard. The RETMA proposal covers a systematic series of dimensions designed to coordinate equipment design, and the necessary assembling equipment. All dimensions must be controlled, to be in increments of 0.025 in ., with all spacing in multiples of four increments. This may be likened to a piece of paper ruled vertically and horizontally with the lines spaced at 0.1 in . Terminals of components and the

SGREW FASTENING
Fig. 2. Microminiature relay mounting styles offered by industry.

Designing for low cost production is the theme of Electronic Design's 1 st annual production issue, November 15 th. If your equipment, components, or services can help the designer with producibility problems, or reduce the limitations imposed on the designer, this will be an issue you will not want to ignore. Packaging for production, production short-cuts, drafting techniques, automatic controls, and associated equipment will be heavily advertised. Plan now to be included in the PRODUCTION ISSUE . . . Closing October 20th.
Your electronics advertising will be read in Electronic Design

a HAYDEN publication

CIRCLE 354 ON READER-SERVICE CARD FOR MORE INFORMATION

(NEWII
 COPPER CLAD REXOLITE FOR PRINTED CIRCUITS
 COMBINES THE EXCELLENT ELECTRICAL AND CHEMICAL PROPERTIES OF REXOLITE 2200 IN AN EASILY ETCHED MATERIAL

Capper Clad Rexolite features--

- Easily efched using conventional methods
- Can be cold or hot punched
- Readily soldered with low melt alloys
- Offers high impact strength and good fensile strength
- Especially suifed for applications requiring strain and excessive abuse.
- Bonding of copper to Rexolite is strong to withstand mechanical obuse in fabrication and usage

Aucilability--

1 or 2 ounce copper on one or two sides
Standard Sheet: 34" $\times 34^{\prime \prime}$
Thickness: .031" to . $125^{\prime \prime}$

Write for Camplete Technical Data ELECTRONICS DIVISION
the Rex corporation
210 HAYWARD ROAD, WEST ACTON, MASS.
CIRCLE 355 ON READER-SERVICE CARD FOR MORE INFORMATION

Fig. 3. Two acceptable terminal and mounting hole arrangements.
center line of mounting holes are located at the in tersection of these lines. This pattern of imaginary lines is known as the "standard grid."
A grid master can be drawn, which when placed under tracing paper, establishes all possible connection points for the draftsman. Another advantage is that it permits the use of standard stops for positioning the drills for drilling the holes in the boards. Automatic programming of all drilling, punching, and crimping operations is made possible.

Terminal Spe

The tentative standard printed circuit hole diameter is 0.052 in ., while the minimum diameter of plated-through holes at the present time is 0.032 in. or one-half the board thickness, whichever is greater. Each terminal hole must be completely encircled by a printed conductor at least 0.018 in . wide. The terminal should be approximately 0.012 in. smaller than the terminal hole; the minimum spacing between conductors not electrically connected is 0.032 in . although 0.05 in . is actually more desirable.

Using opposing holes with the 0.1 in . grid, it is necessary to use the 0.32 in . hole diameter to obtain a 0.018 in . encircling conductor and maintain a 0.032 in . clearance. If the two holes are placed on
a bias they will have 0.141 in . centers and use of the standard 0.052 in . hole will result in a 0.53 in . Fig. 3 illustrates two acceptable terminal and mounting hole arrangements. For a hole diameter of 0.05 in . a terminal diameter of from 0.018 to 0.038 in . is required; while for a hole diameter of 0.1132 in . a terminal diameter of from 0.015 to 0.021 inl is required.

Abstracted from A Proposal for the Standardization of Micro-Miniature Relays, by A. H. Maschmeyer, a paper presented at the Fifth National Symposium on Electro-Magnetic Relays, Oklahoma 1957.

Proposed Relay Standards

Electrical Requirements-General Purpose

Nominal coil voltagel Max coil voltage ${ }^{1}$
26.5 vdc

Max coil voltage ${ }^{1} \quad 32.5 \mathrm{vdc}$
Max pull-in voltage ${ }^{3} 18$ vdc
Max drop-out voltage ${ }^{3}$ Min coil resistance ${ }^{1}$ 14 vdc 700 ohms
Max coil current (at nominal voltage)
Max coil power (at nomi-
nal voltage)'

$$
38 \mathrm{ma}
$$

1.1 watts

Contact rating (for general purpose types) Resistive

Max-la at 28 vdc or 115 vac
Min 0.05 a at 28 vdc
Inductive Max-0.25a at 28 vdc or 115 vac
Tungsten Lamp Max-0.25a at 28 vdc or 115 vac
Max operate time ($\mathrm{n} . \mathrm{o}$. contacts) ${ }^{2}$
Max Release time ($\mathrm{n} . \mathrm{c}$. contacts)
Max contaci bounce
Min dielectric strength
Min insulation resistance ${ }^{3}$
Max contact resistance ${ }^{2}$

4 msec
1 msec
400 v rms 60 cycle (sea level)
100 megohms
0.05 ohms (initial)
0.10 ohms (after life)

Mechanical and Environmental Requirements
Terminal strength 3 lbs (not appl. to plug-in type)
Temperature range -65 10 +325 C *
Oparating Shock 30 g for 11 msec
. Vibration per detail specification (Graded)
Target 30 g 5 to 2000 cps
Life Min- 100,000 operations Target $-1,000,000$ operations
Max weight 0.5 oz
Measured at 25 C
Measured at 25 C with 26.5 vdc applied to coll Measured at 125 C

Design Problem:
 226

Control, Power and Instrumentation CIRCUITS

SPECIFICATIONS

Electrical

Capacitance load within cable held to 40 uuf/ft Cross talk attenuated to a 40 db level • Voltage breakdown 3000V - Leakage resistance 75 megohms $/ 1000 \mathrm{ft}$. maximum - Conductor sizes and types: \#22; \#22-TPSJ - Floating shields.

PHYSICAL

Diameters: $3^{\prime \prime} 4^{\prime \prime}$ to $1^{19 / 32^{\prime \prime}}$ • Lengths: 2^{\prime} to 1000^{\prime} Cable Configuration: 6, 9, 10, 12, 24, 41, 61 and 63 conductors -
Connectors:
AN type A and B
Cannon DPD2

1) Molded 90° attachment Each with mechanical 2) Metal back shell (engaging mechanism

Bend radius: Four times cable diameter, retaining flexibility at -65° F.
Conductors: Number coded every $2^{\prime \prime}$ inside of cable.

environmental

Reliable operation from $-65^{\circ} \mathrm{F}$. to $+200^{\circ} \mathrm{F}$.
Neoprene jacketed to withstand severe abrasion: trucks running over cable; dragging along rough ground; burial.
Resistance to oils, fuels, acids, liquid oxygen, fungus, ozone and sunlight. Completely waterproof and submersible.

Solution: 8 RELIABLE, COMPACT, VERSATILE PACIFIC AUTOMATION PRODUCTS Engineered Electronic Cables

The eight electronic cables installed on the above junction box comprise the 226 vital control, power and instrumentation cirpower and instrumentation cir-
cuits for check-out of the Chancecuits for check-out of the Cha
Vought Regulus I Missile.
They were designed and manufactured by Pacific Automation Products who assisted development engineers in the design of this system - keeping the number of cables to a minimum, fulfilling the circuitry requirements, preserving functional versatility, and maintaining reliability under exacting operating conditions.
The criteria governing Pacific Automation Products' concept of a syitens design are as fallows:

1) proven reliability; 2) maximum versatility; 3) minimum number of cables; 4) mutual interchangeability. This concept guarantees optimum performance and maximum reliability

Pacific Automation Products' engineers give consideration to all contingencies in the design of the cable system; as an example, the electrical, physical and environmental conditions stipulated to the left, in the design of cables for. the Chance-Vought Regulus I Ground Support System.

Engineers and technicians are invited to investigate career oppor tunities with us. Submit resume for

Engineering representatives will be pleased to discuss your design problems, whon you visit them at Booth 159 - Air Power Panorama, Washington, D.C., July 31-Aug. 3; Booth 2412 - WESCON Show, San Francisco, Aug. 20-24.

For furthor information, write for Bullotin 156

PACIFIC AUTOMATION PRODUCTS, INC. 1000 Air Way, Glendale 1, Calif. • CHapman 5-6871-TWX: GLN7371 137 Walnut Hill Village, Dallas, Texas • FLeetwood 2-5806 420 Lexington Ave., New York 17, N.Y. • LExington 2-5193

NEW CIRCUITS include HIgh-Speed FlipFlops, Oscillators, etc in both Computer serves and standaro-berits Plugghs.. plus other systems building blocks: D.C Chopper Stabilized Amplifiers, Power Sup plies and Compatible Accessories, Systems Development Racks, Systems Components Detailed information available in Catalos No. 856 -A. See them all at WESCON.

ELECTRONIC ENGINEERS AND PHYSICISTS - EECO offers immediate opportunities for qualified engineers in the transistor, amplifier, data-handling, pulse, timing, and systems-design fields. Inquire a Booth 203 or 1707. If you prefer, send a resume of your qualifications to R. F. Lander, Dept. ST.

Abstract

Test System for

Memory Stores

DEVELOPED to test bistable memory capacitors, determine the best operating conditions and to select matched units, this apparatus is designed to produce pulses having variable amplitude, duration and repetition rate. Pulse patterns simulating conditions prevailing in a capacitor in a particular multi-capacitor structure and with a variable amplitude ratio are produced.

The fact that a full pulse V switches the bistable capacitor in a memory structure and that a fractional pulse V / K must leave it practically unaffected, imposes very special requirements on the capacitor. The memory feature requires high retentivity; selection calls for high nonlinearity. It is these properties that are to be tested.

The following limits of operation were set:

- Pulse amplitude. Variable from 0 to 40 v with a $0.15 \mu \mathrm{sec}$ rise time, and 100 ohm internal impedance pulse source
- Pulse duration. 0.6 to $5 \mu \mathrm{sec}$
- Repetition rate in the pulse pattern, from 1 kc to 100 kc
- Pulse pattern. Six different patterns can be produced. Two such patterns are shown in Fig. 1.

The block diagram of Fig 2 shows the three main sections of the test system. The driver units and gates produce the $\pm \mathrm{V}$ and $\pm V / K$ pulses for the test circuit. Each driver unit is triggered by a coipcidence gate. The gate inputs are fed by properly delayed clock pulses and the sequential gate pulses. A sequential gate pulse generator supplies the gate pulses in proper sequence to the gates. In Fig 2 this section consists of the variable trigger pulse gen-erator-phantastron-and the Burroughs beam switching tube from which the gate pulses are fed in the sequence shown. Targets 1 and 2 are not used. The test circuit
consists of the bistable capacitor under inspection and a resistance-capacitance load circuit; a read-out circuit is essentially an amplifier, a clipping and sampling circuit in series. The output of the read-out circuit is fed into an oscilloscope for viewing.

Operation

The pulse schedule shown in Fig. 3 shows the timing operation. Section II shows two actual test pulse patterns as they appear on the common output. Each driver unit produces a different type of pulse train such as $\pm V$ and $\pm V / K$, the amplitudes of which can be controlled individually or simultaneously with an attenuator in the common output. Minus pulses are derived from the plate loads, and positive pulses, from the cathode resistors. The " 0 " gate and " 1 " gates of the beam switching tube are driven by variable trig.

Fig. 3. Pulse schedule for the apparatus.

Fig. 1. Two typical pulse trains obtained from output of test apparatus.
ger pulses produced by the phantastron circuit shown in Fig. 4. With this circuit pulses may be produced with a duration of τ_{1}, separated from each other by a time τ_{2}; both times τ_{1} and τ_{2} are variable, as shown in Fig. 2, according to the specification set before. The phantastron pulses and the derived trigger pulses for the MO-10 tubes are shown in Fig. 3, Section III, while the MO-10 gate pulses, as they appear on the beams switching targets, are scheduled in the lower part of Section III. The input of the phantastron is driven by the undelayed clock pulses, shown in the first line of Section I, Fig. 3.
The test pulse pattern thus produced is used in the test circuit for the measurement of characteristic data of ferroelectric capac-
itors in general, and to storage capacitors in particular.

The study of switching transients-step function response of the ferroelectric storage capacitor-permits a determination of the most suitable load and the most useful signal, as well as measurement of switching time and current. The retentivity properties can also be examined, by determining the number of half-amplitude pulses necessary to change a given percentage of the remanent polarization caused by a fullamplitude pulse.

Abstracted from Test Apparatus for Ferroelectric Memory Condensers, Charles F. Pulvari, The Catholic University of America, PB 121204, Dept. of Commerce, Washington $25, D . C$.

Fig. 2. Block diagram of bistable ferroelectric capacitor tester.

Now we can take care of the

Types R, S and V Sarkes Tarzian SILICON RECTIFIERS

... have a voltage range from 50 to 300 volts peak inverse at current ratings of 20 amperes for the " R " series, 35 amperes for the " 5 " series and 100 amperes for the " V " series. Positive or negative base polarities are available. Complete data sheets are available on request. Please write for information.

DEPT. C. 4415 N. COLLEGE, BLOOMINGTON, IND.

Allison Laboratories, Inc.

14185 E, SKYIINE DRIVE - LA PUENTE, CALIFORNIA Write for Engineering Bulletin with complefe fechnical dafa.

a revolutionary new mechanical process for higher production at lower costs. Fastest PREPARATION and ASSEMBLY of Resistors, Capacitors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.

The "PIG-TAILOR" plus "SPIN-PIN" - Accurately Measures, Cuts, Bends, sjects and Assembles both leads simultaneousiy fo individual lengths and shopes - 3 minute sef-up - No accessories - Foot operafed - 1 hour training time.
 -PATENT PENding Wrife for illustrated, descripfive fext on "PIG-TAILORING" to Depf. ED-8P

BRUNO-NEW YORK INDUSTRIES CORPORATION
DESIGNERS AND MANUFAC
460 WEST 34 th STREET
CIRCLE 360 ON READER-SERVICE CARD FOR MORE INFORMATION

Report Briefs

Microwave Resonance

The object of this work was to investigate resonance phenomena at microwave frequencies in gyromag. netic gaseous discharge plasmas. In particular, de. caying rare-gas discharge plasmas in the presence of a magnetic field were studied at microwave frequencies of about $10,000 \mathrm{mc}$. Emphasis was placed upon the intrinsic properties of the medium which are associated with the cyclotron resonance of free electrons. PB 123412 Resonance Phenomena at Mi crowave Frequencies in Gyromagnetic Gaseous Dis. charge Plasmas, M. Gilden and I. Goldstein, Engineering Experiment Station, Urbana, Ill. Order from Library of Congress, Photoduplication Service, Publications Board Project, Washington 25, D. C. Feb. 1956, 107 pp. Microflm $\$ 5.70$, photocopy $\$ 16.80$.

Frequency Control No. 10

Contents: Piezoelectric survey of strain patterns in thickness shear quartz resonators, by K. S. Van Dyke.-Mathematical theory of vibrations of elastic plates, by R. D. Mindlin.-Structure sensitivity of quartz, by J. C. King-Frequency temperature behavior of AT-cut quartz resonators, by A. R. Chi.Defects in quartz crystals, by G. W. Arnold, Jr.Growth of quartz at high temperature and pressure in the United Kingdom, by L. A. Thomas.-Optimum methods for quartz synthesis, by Danforth R. Hale.-Physical chemistry of aqueous solutions, by James F. Corwin.-Aging study of quartz crystal resonators, by R. B. Belser and Walter H. Hicklin.Some phenomena in VHF crystal units, by E. Haf-ner.-Crystal unit design for use in a ground station frequency standard, by A. W. Warner.-Frequency standard at low temperature, by W. D. George.Comparison measurements on frequency standards, by J. A. Pierce.-Atomic and molecular frequency standards, by R. Dicke.-Evaluation of phascstable oscillators for coherent communication system, by Walter K. Victor.-VHF crystal measurements, by G. K. Guttwein and D. Pochmerski.New method for measuring the equivalent parameters of VHF quartz crystals, by Douglas W. Robertson.-High-frequency crystal filters, by D. I. Kosowsky.-Design data for crystal oscillators, by H. E. Gruen.-Long and short term frequency stability of UHF cavity-controlled oscillators, by R. E. Meek.-Precision crystal oven, by M. D. McFarlane
and Ramey B. Metz.-Crystal requirements for $\mathbf{f u}$ ture military equipment, by J. M. Havel.-Transis torized $1 \mathrm{Mc} /$ Sec frequency counter, by Nisson Sher and Ralph Goodwin.-Magnetron beam switching tube as a high speed frequency divider, by IIilary Moss.-Counter transfer oscillator system for microwave frequency measurements, by Alan Bagley and Dexter Hartke.-Change of state crystal ovens, by E. Snitzer and R. Strong.-Tests on hermetic enclosures of piezoelectric quartz crystals, by B. W. Schumacher.-Production procedures for VHF crystals, by R. D. Cortwright.-Manufacturing problems connected with high precision crystals, by J. M. Wolfskill.-Manufacturing problems connected with miniaturized crystals, by George K. Bistline, Jr.-Automatic X-ray sorter for crystal blanks, by Lester V. Wise. PB 125393 Proceedings of the Tenth Annual Symposium on Frequency Control, Asbury Park, N.J., 15-16-17 May 1956. U. S. Signal Corps Eng. Labs., Ft. Monmouth, N.J. Library of Congress, Washington 25, D. C., June 1956, 597 pp, microfilm \$11.10, photocopy $\$ 90.65$.

Subharmonics in Modular Supply

An analytic expression is derived for determining the amount of variation in the interpulse period when a pulse generator using saturable reactors as switching devices is being driven by an imperfect sine-wave source. This imperfect sine-wave source can very easily result from small mechanical imperfections in a multipole alternator. PB 123404 Partial Analysis of the Effects of Subharmonics in the AC Supply Voltage of a Magnetic Modulator, Roy W. Roberts, Jr., USAF, Air Research and Development Command, Order from Library of Congress, Photoduplication Service, Publications Board Project, Washington 25, D.C., Feb. 1956, 12 pp. Microfilm \$2.40, photocopy \$3.30.

Galvanic Anode Arrays

The current outputs of full-scale arrays of several anode sizes in use by the Navy for the cathodic protection of ship hulls were determined. Impresscurrent anodes formed from sheet steel were substituted for conventional galvanic anodes to reduce the weight and number of arrays necessary to obtain the desired information. A 1,500 ft steel sca wall located in water with a resistivity of 34 to 38 ohmcm acted as an unpolarizable cathode. The data can be used to estimate for any galvanic material both the initial current output of an anode array, and the continuing current output against a cathode polarized to a known potential. PB 121821 Current Voltage Relationship of Galvanic Anode Arrays in Cathorlic Protection, L. J. Wald'ron and M. H. Peterson, U. S. Naval Research Lab, OTS, Washington 25, .C. Feb 1957, 19 pp. \$.50.

ElECTRONIC DESIGN • August 1, 1957

HYCOR precision components

Low, high and band-pass types with high "Q" toroid elements. Ranges up to
100 kc , up to 10,000 ohms impedance. 100 kc , up to 10,000 ohms impedo
Stock types. Also designed for special circuitry or miniaturization send for bullotin F-P

TOROID COILS High "Q" factor, excellont
current and femperafure current and femperafure
stability. Encopsulated, fully protected from shock and environmental conditions. Also in
encapsulated and metal cased types. send for bullotin STP

WRITE TODAY FOR New Technical Data on MICROWAVE FERRITE MATERIALS \& DEVICES

Raytheon's completely new
line of microwave ferrite Excelience in Electronics materials and devices including the exclusive highpower L-band load isolator, miniaturized $\mathrm{X}, \mathrm{K}_{\mathrm{E}}$, and \mathbf{K}_{u} band isolators and others for \mathbf{C} and \mathbf{S} bands.
Write to W. C. Plouffe at the address below.
RAYTHEON MANUFACTURING COMPANY Special Microwave Device Group
Seyon St., Waltham 84, Mass.
See the Raytheon ferrite exhlbit af Wescon.

CIRCLE 362 ON READER-SERVICE CARD FOR MORE INFORMATION
UNUSUAL OPTICAL BUYS 25 4 AMERICAN MADE ... OVER 50% SAVING STEREO-MICROSCOPE [nn) 9995 Up fo 3^{30} Working Distonce Wide 3 Dimensional Field Used in production, in research, or at home; for inspec-
tions, examinations, counting checking, ossembling, dis. tions, examinations, counting, checking, assembling, dis-
secting speoding up and improving quality control. 2
sets of objectives on rotating furret. Standard pair of wide fold 10 X Kelliner Eyepieces give you 23 power and 40 power clear, wide folld $10 X$ Kellner Eyepieces give you 23 power and 40 power clear,
sharp, eroet image. Helical rack and pinion focusing Interppoillory distance
adiusiable. Storage Chest included. WE WIIL SHIP ON IODAY FREE TRIAL.
 SILICON POLISHING AND CLEANING CLOTHS Now! Saving industry thousands of dollars. Combines the miracle of Sili-
cones with a non-woven, all rayon cloth. Used to dust, polish, protect cones with a non-woven, all rayon cloon. ©sed to dust, polish, protect,
 sizeck No. 60.0 .59- DA - Sample Package, 3 cloths $\$ 1.00$ Postpaid
Slock
Stock No. 70,137 - DA Package of 100 cloths

Send Check or M.O.-or Storder on
SWIVEL-CLAMP MAGNIFIER This large $4^{\prime \prime}$ diameter magnifier will easily
clomp ont any regular or fuorescent lighting
fixlure. With iwo bail and socket ionts you con

 Stock No. $30,249-$ DA
Sta.......... $\$ 4.00$ Postpai
Send Check or M.O.-or order on open account.

[^3]
Report Briefs

Periodic Surface Distribution

A variational method is presented which is used to calculate the energy appearing in the various diffracted orders set up when a plane wave is incident upon a periodic reflecting surface. Either the first or the second boundary condition can be so treated. A sample problem is worked showing that if the average absolute slope of the reflecting surface is small (segments of surface with large slope may be included) and if the displacement of the surface is not large compared with the wave length of the incident rediation, the formulation gives results correct to within a few per cent.
The calculation shows clearly the existence of Wood anomalies; these are discussed in some detail. Method described in report was presented in a paper before the thirty-eighth annual meeting of the Optical Society of America. PB 124279 Variational Method for the Calculation of the Distribution of Energy Reflected from a Periodic Surface, William C. Meecham, Michigan University, Engineering Research Inst., Ann Arbor, Mich. Library of Congress, Washington 25, D. C., Nov. 1955, 29 $p p$, microfilm $\$ 2.70$, photocopy $\$ 4.80$.

HEAVY DUTY HIGH VOLTAGE TRANSFORMER WINDER

Handles Down to No. 4 A.W.G. Wire
Winds power, audio and similar heavy duty high voltage transformer coils up to $16^{\prime \prime}$ OD and $10^{\prime \prime} \mathrm{L}$ (may be converted to wind longer coils) uswire. Maximum loading distance for multiple winding is $16^{\prime \prime}$ to $21^{\prime \prime}$ but machine can be modified for

shorter mandrels. Winding range 4 to 40 turns-per-inch. - 1-1/4" diameter spindle withstands all impacts necessary to form insulation around heavy transformer windings. For free running and long life, spindle supported by tapered roller bearings. Winding head contains 6 months' supply of layers. Machine rigidly mounted. Supplied with instant relayers. Machine rigidly mounted. Supplied with instant re-
setting automatic counter, extra economy positive stopping setting automatic counter, extra economy positive stopping
magnetic brake, 32 pitch $3 / 16^{\prime \prime}$ face $3 / 8^{\prime \prime}$ bore gears, gear chart to aid in selecting proper gearing and new positive chart to aid in
locking tailstock
For dependable perfectly wound coils, specify Model 148-A M.

GEO. STEVENS MANUFACTURING CO., INC.
Pulaski Road at Peterson, Chicago 30, Ill.
The Most Complete Line of Coll wirding Equipment Made Circle 364 on reader-service card for more information

Cold-Heading is the most versatile, most economical method for producing your fasteners and small parts. This case history is typical of thousands of money saving iobs we've done for our customers. May we quote on your requirements? Write today for the Hassall Catalog John Hassall, Inc., P.O. Box 220s, Westbury, Long Island, N.Y.

目 Hassall
 NAILS, RIVETS, SCREWS AND OTHER COLD-HEADED FASTENERS AND SPECIALTIES

 CIRCLE 365 ON READER-SERVICE CARD FOR MORE INFORMATION
NEW-self-locking Unbrako button head cap screws

The Nylok selflocking feature locks these screws securely in place. They won't work loose. Can be used repeatedly Tough, resilient nylon locking pellet permanently installed. Successfully withstand temperatures ranging from -10 to $250^{\circ} \mathrm{F}$. Low, streamined heads with accurate hex sockets for positive nonslip drive and freedom rom marred or mutilated heads Heat treated alloy steel, continuous grain flow lines, fully formed Class A threads for maximum strengh and exact fit. Pellets act as liquid seals. Standard sizes \#6 to $5 / 8$ in Write for Bulletin 2193. Unbrak Socket Screw Division, Standard Pressed Steel Co., Jenkintown 12, Pa .

UNBRTRO socket screw division
STANDARD PRESSED STEEL CO

Unbrako Products are sold
through Industrial Distributors JENKINTOWN PENNSYLVANIA CIRCLE 366 ON READER-SERVICE CARD FOR MORE INFORMATION

*Measures above 500 Mc without accessories
-Sixa-c ranges 0.1 to 150 v and 0.01 to $150 \mathrm{vd}-\mathrm{c}$ with 0.5 v range for extra-accurate low-voltage use - accessory multiplier extends all ranges to 1500 volts
*Accuracy of $\pm 2 \%$ on all ranges
*Calibration essentially independent of tube changes *When zero is set on lowest range, no further zero adjustments needed on others
$\star 25$-megonm input impedance - open grid connection for d.c with input impedance in kilo-megohm range

GENERAL RADIO Company

Broad Avenue at Linden, Ridgetield, N. L. NEW YORK AREA 1000 N. Seward St. LOS ANGELES 38
 CIRCLE 367 ON READER-SERVICE CARD FOR MORE INFORMATION

Faster, Sufer Flux Removal

 ONCO
Flow Removers

ESPECIALLY DEVELOPED

 FOR PRINTED CIRCUITSWhatever your particular application or problem, there is a fast acting, completely safe Lonco Flux Remover to efficiently handle the job ONCO LN-10-especially efficient for hot or cold flux residue here fast removal by simple dip is essential . . . completely non-flammable.
LONCO MC-1136-designed for fast removal of residue on parts which contain decals, coding, silk screening, fungicidal acquers, etc.
IONCO HCR-for removal of hot residue by simple dip or cold residue by brush, yet harmless to most decals, finishes of all types and plastic parts.
CONCO 65-completely neutral, practically odorless remover for use on warm or hot residues immediately after soldering LONCO SPECIAL REMOVERS-engineered to any application o problem encountered with critical printed circuit boards and assemblies, components, inks, plastics, etc.

All Lonco Removers are either non-flammable or are
rated as safety solvents and are in the lowest toxicity range. Available in 1 or 5 -gallon cans or 55 -gallon drums. Request full information.

ONCO LONDON CHEMICALCO., INC.

CMEMICAL
SPECALTIES
I53i N. 31 st AVENUE - MELROSE PARK, ILLINOIS
Other lonco Products: SOLDER FLUXES - PROTECTIVE CTATINGS•CHEMICAL SOLDER MASKS - ChEmICAL WIRE STRIPPERS CIRCLE 368 ON READER-SERVICE CARD FOR MORE INFORMATION

Portable Distance Measuring

Tests showed this simple-23 tubes-lightweight-25 lb-compact interrogator to be particularly adaptable to small commercial and private aircraft. Satisfactory operation was achieved with the 100 -channel Model DIB distance-measuring equipment system to minimum accuracy requirements without the use of crystal-controlled rf oscillators, multistage intermediate-frequency amplifiers, magnetostrictive coders and decoders, mechanically driven ranging and indicating systems, and remote controls.

The Model DIC interrogator incorporates a number of design features not used in the Model DIB unit, yet was developed under the same specification. It contains 35 tubes and weighs 32.8 lb . The power requirement was reduced. The unit may be connected for either 13.5 - or $27-\mathrm{v}$ dc supplies; no additional inverter is required. An important advance in design is the introduction of direct crystal control to the interrogator. The unit exceeded specifications for accuracy of distance measurement and maximum range performance. PB121789 Development of a Lightweight Distancemeasuring Interrogator, Part 1: The Model DIB Interrogator, C. C. Trout and W. E. Haworth; PB 121787 Part 2: The Model DIC Interrogator, C. C. Trout, OTS, U. S. Dept. of Commerce, Washington 25, D.C. Dec. 1956, 34 pp. $\$ 1.00$ (Part 1); Jan. 1957, $38 p p . \$ 1.00$ (Part 2.).

WHY? Because at Aerotest you will find..

time delay relay

Allows operation of auxiliary protective devices* after operating cyclo is stopped. Easily installed in any electrical line. The AGASTAT is -

- light, versatile, dopendable.
- instantaneous recycling.
- unaffected by voltage variations.
- adjustable in timing from 0.1 second to more than 10 minutes.
- available in models that offer delays on energizing and deanargizing, two step delays, manually-actuated time delay push bution control
compeny solved its aftor-oporating problom. Address Dopt. A21-824

CIRCLE 370 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 371 ON READER-SERVICE CARD FOR MORE INFORMATION

SPELLMAN high voltage POWER SUPPLIES

Standards and Specs

Sherman H．Hubelbank

Component Parts Testing

RETMA RS－186，Standard Test Methods for Electronic Component Parts，April 1957

This standard establishes uniform methods for testing electronic component parts．The term＂com－ ponent part＂includes basic circuit elements such as capacitors，resistors，switches，relays，transform－ ers，and jacks．Specifically excluded are material and equipment test methods．These test methods pro－ vide a number of test conditions of varying degrees of severity so that appropriate test conditions may be selected for any component．Five test methods are specified in this standard．Method I covers hu－ midity（steady state）and is intended to evaluate the effect of absorption and diffusion of moisture and moisture vapor on materials and parts．The test is an artificial－environmental test，accelerated to shorten the testing time．Within its limits，this test is of value in determining the resistance of the mate－ rial or component parts to the inroads of moisture The test should not be considered as a tropical test for all types of materials or components．

Method 2 covers moisture resistance（cycling） and is intended to evaluate in an accelerated man． ner the resistance of component parts and constitu－ ent materials to the deterioration resulting from high humidity and heat conditions typical of tropi－ cal environments．This test differs from the steady． state humidity test and derives added effectiveness from temperature cycling．This provides alternate periods of condensation and drying which is essen－ tial to the development of the corrosion process and in addition produces a＂breathing＂of moisture vapor into partially－sealed containers．The test pro－ vides a time during which optional low temperature or vibration subcycles may be inserted for revealing the otherwise undiscernible evidences of deteriora tion．

Method 3 covers humidity（steady state）and is in tended to evaluate the effect of absorption and dif－ fusion of moisture and moisture vapor on materials or parts．The test is an artificial－environmental and is severely accelerated to shorten testing time．This test is more severe than the Method 1 test．This test is of value in determining the resistance of the ma－

SPELLMAN 3029 wester ave

 television co．，ninc

TWO NEW ELECTROCRAFI COMPONENTS

SHIELDED JACKS ．．．for effective shielding of high impedence circuils．Shield and cover cadmium plated steel．Made in open and closed circuits ．．．miniatures in 2 conductor ．．．standards in all circuits ver for 3 amp 115 v ．Write fo，Catalog．

 CIRCLE 373 ON READER－SERVICE CARD FOR MORE INFORMATION

PUSH BUITON SWITCHES ．．．for momentar contacts．Minialure for low level circuits only．Standard sizes in 2 ratings－integral contacts for low level circuits ．．fine sil－

CIRCLE 374 ON READER－SERVICE CARD FOR MORE INFORMATION
terial or component parts to the inroads of moisture however, it should not be considered as a tropical test for all types of materials or component parts.

Method 4 covers dielectric testing (withstanding voitage) and is intended to determine the ability of connonent parts or materials to withstand a potential at sea level or at a specified altitude. Although this test is often called a voltage breakdown test, or dielectric strength test, the intention is not to cause a breakdown of the insulation or to detect corona, but to determine whether insulation materials and spacings in the component part are adequate. If a specimen is faulty in these respects, application of the test voltage will result in either an air, surface, or puncture discharge.
Method 5 covers salt spray (corrosion) testing and is intended to determine the adequacy of protective coatings or finishes. It has been widely used to evaluate the resistance of metals to corrosion in marine service or in exposed shore locations. This test is useful as a practical qualitive check on the application of metallic and other finishes to metallic surfaces. The salt-spray test is an accelerated corrosion test and is a compromise since the test conditioning bears relation to the natural environment only to the extent possible within the defined test procedure.

Electronic tools for industry

model 405

NUCLEAR

 POWER SUPPLYHighor current capabililies
Excellent regulation
High resolution
Greater calibration accuracy

- input voltage

117 volis, 50/60 eycles, single phase

- output voltage

600 to 3110 volts de

- output Current

O to 15 milliampores de

- OUTPUT POLARITY

Positive or negative with rospoce to
chassis, solocled via front panal switch.

- monitoring output
1.02 voll sample for potentiomotric
- REGULATION VS LINE .01\% maximum for 20% change in line ,
- regulation vs load
005% for 10 ma load change
- STABILITY
$.005 \%$ per hour, $.05 \%$ per day aftor
- ripple a jitter

Less than 5 my RMS at ony nurput
voliage and current in oithor polarily.

- Voltage resolution

VOLTAGE RESOLUTION
10 millivolis at any output voltage

- calibration accuracy

Betler then . 5%

- MOUNTING
 101/2 high. Chasisis dimensions $17^{\prime \prime \prime}$ wide

- weight
ab pounds
- FINISH

Smineoth gray, baked onamol. Panel maSmooin gray, baked onamol. Panel ma-
chine ongravod. Panol can be furnished
in groy hammertone. in groy hammertone.

- PRICE
\$595.00 FOB Saatle, Washington

John Fluke Mfg. Co., Inc., 1111 West Nickerson St., Seattle 99, Washington CIRCLE 376 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 375 ON READER-SERVICE CARD FOR MORE INFORMATION

Tube Socket Test Adapters TEST CIRCUITS IN OPERATION

ROTOPROBE

 Switching type tube socket test adapter -with permanently attached test lead, and numbered stop positions for each pin.Measurements are made on each contact by turning the shell of the Rotoprobe to the corresponding number on the index.

SOCKET CHANGE SOCAPIEAS
ADAS Change tube types
without rewiring

Write for catalog-

VECTOR ELECTRONIC COMPANY 3352 SAN FERNANDO ROAD, LOS ANGELES 65, CALIFORNIA TELEPHONE CLinton 7-8237

CIRCLE 377 ON READER-SERVICE CARD FOR MORE INFORMATION

Fusible plastic dipping and enveloping compound. Preferred for cells, capacitors, junctions,
transformers, transistors, bases, coils. Easy to apply with simple economical equipment. Various Proxmelts are used as self-sufficient insulating compositions; as well as modifiers for waxes, resins, oils, etc. There is a Proxmelt for your product. Write or phone for details.
PYROXYLIN PRODUCTS, INC.
PAOLI, PENNA. CHICAGO 32
VIrginia 7-4800

CIRCLE 378 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONS. IN CORPORATED
127 SUSSEX AVENUE
Newark 3. N. J.
New" THYRA-LINE power amplifiers of Hanson-Gorrill Brian, dnc. specify EL thyratrons.

Power Transformers

RETMA RS-180, Power Transformers for Electronic Equipment
Iron core, power transformers up to 10kva for use in electronic equipment where long life, reliability, and continuity of operation is essential, are covered by this standard. Complete purchase specs have been established. Performance standards, performance tests, and moisture-resistance tests are specified. Minimum marking information has been established. Corona has been defined, and corona measurements have been specified. Standard dc supply voltages at the filter output are listed. This standard is a revision of TR-102-B and is available from the Engineering Department, Radio-Electronics-Television Manufacturers Association, 11 West 42nd Street, New York 36, N.Y. for 50 cents each.

Preferred Numbers

ISO Recommendation R17, Guide to the Use of Preferred Numbers and of Series of Preferred Numbers
Five series of numbers in geometrical pro-
gression, offering a logical increase in size, are provided in this guide. Explained in this guide are the basis on which tinese standard series have been developed, the characteristics of the geometrical prores. sion, how to put the preferred numbers into use, and how calculations should be made in using the preferred numbers, Copies are available from ASA, 70 Last 45 Street, New York 17, N.Y. for $\$ 1.20$ each.

Drive Pulleys

RETMA RS-184, Drive Pulleys, April 1957 Four styles of drive pulleys have been established by this standard. The maximum O.D. pulley, the groove diameter, the groove width, the pulley thickness, and the string travel are specified. The total weave of the pulleys, the concentricity of the pul. ley groove, the thickness of the cord opening, and the type of finish are also specified This standard revises REC-102-A, and is available from the Engineering Department, Radio-Electronics-Television Manufacturers Association, 11 West 42nd Street, New York 36, N.Y., for 25 cents per copy.

CIRCLE 380 ON READER-SERVICE CARD FOR MORE INFORMATION

career opportunities at Motorola

 in Phoenix are second to none!Pay is excellent, advancement is rapid, the attitude is friendly and helpful. Other advantages: no commuting problems; nearby colleges that offer advanced study; remarkably low home costs.
And think of the pure pleasure of living in a famed resort area with sunny, dry, shirtsleeve winters... year-round golfing. swimming, picnicking . . . and seashore and

Mexico within a day's drive!
Expanding Phoenix is a vitally-important electronics center.
Motorola is expanding, too. Grow with Motorola in Phoenix...
where it's fun to live!
Can you fill one of these openings? Write today!

WESTERN MILITARY

ELECTRONICS CENTER
Newest, most complete electronics de. velopment laboratories in the country. ELECTRONIC ENGINEERS, MECHANICAL ENGINEERS, PHYSICISTS

Transistor
Transistor
Applications
Microwave
Techniques
Pulse and Video Circuitry

Radar Systems Design
Systems Test and
Analysis
R-F and I.F
Servo Mechanisms
For above positions write
Mr. William Beardsley Motorola, Inc.-Dept. B-8 Western Military Electronics Center 8201 E. McDowell Road Phoenix, Arizona

SEMI-CONDUETOR DIVISION A separate division developing, produc. ing and selling semi-conductor devices: ELECTRONIC ENGINEERS, MECHANICAL ENGINEERS, CHEMICAL ENGINEERS, PHYSICISTS, METALLUREISTS

Transistor

Applications
Transistor Device
Development
Solid State
Physics
Physical
Chemistry
Metallurgical Engineering Production Engineering
SALES PERSONNEL
Field Sales Engineers Sales Administration
For above positions write:
Mr. Vernon Sorenson
Motorola, Inc.-Dept. F-8
5005 E. McDowell Road Phoenix. Arizon
Engineering posifions also available af Motorola, Inc. in Chicago, Illinois and Riverside, California. MOTOROLA, .ınc.

Bendix York needs Electronic \& Mechanical Eng.
This is your chance to get specific assignments at the peak of the art in
Electronic \& Microwave Development \& Design
WITH BENDIX YORK YOU GET

- Professional Achievement
- Rapid Advancement
- Security
- Responsibility

We need capable professional peroonnel at all levels lo fill responsible opening
at this steadily expanding young Division of this seadily expanding young Divigion
of the Bendix Aviation Corporation. With uo. you mill 6 nd the true opportunity to
move up in your chosen propesion move up in your chosen profession. You
will like the life in our beautiful oub. arban area.
Yes, whether you be a Department Chief
or
Eraduate Engineer of experience, we have the with minimum to you and to your hopes for the fulure.

CIRCLE 556 ON READER-SERVICE CARD

ENGINEERS

Be certain you
MAKE THE RIGHT CHOICE: HAVE THE RIGHT JOB!

ASK YOURSELF THESE QUESTIONS -IT WILL PAY YOU.

CHALLENGING OPPORTUNITIES IN

AVIONICS
INERTIAL SYSTEMS
COMPUTERS (Digital and Analog) MISSILE GUIDANCE

JET ENGINE FUEL CONTROLS
with

Whether a Recent Graduate making his first choice or a veteran Engineer seeking that permanently RIGHT position, ask yourself the following questions: MY TALENTS ARE BEST SUITED FOR?

Engineers come all sizes, shapes and potentials. G.M.'s policy of decentralization creates individual opportunity for development and advancement.
Starting wage? potential earnings?
At G.M. these two questions are best answered by another question-"How high is up?" Earnings both present and future are entirely dependent upon you. At AC you determine your earnings.
PERMANENCY OF POSITION WITH AC?
AC has been designated the official ELECTRONICS DIVISION
for all General Motors Divisions. We are permanently dedicated
to the research, development and manufacture of things
Electronic . . . making America so it's safer and better.
RESEARCH FACILITIES?
At AC you enjoy working with the latest and the finest of equipment and with the top men in the field.

LIVING CONDITIONS?

Are the finest possible in Milwaukee, America's most progressive town combining big town cultural and civic advantages with small town hospitality. "An ideal town for ideal family living."

WHAT CAN AC DO FOR ME?

Write us in strictest confidence . . . you will hear from us by return mail. Send us the coupon below . . . YOUR FUTURE DEPENDS UPON IT.

AC The Electronics Division
General Motors Corporation, Milwaukee 2, Wis.
Send me full particulars about AC ENGINEERING OPPORTUNITIES
\square So you can better "tailor make" your offer to me I have attached a 1esume of my education and/or work experience.
\square I will send it at a later date.

Name
Address
Ciry
City__ Zone_State__

CIRCLE 557 ON READER-SERVICE CARD FOR MORE INFORMATION

Cornell Aeronautical Laboratory... SEEKS THE ANSWERS
AMONG THE "ANGELS"

Through basic research in micro-wave optics Cornell Aeronautical I aboratory scientists and engineers seek the answer to presently unidentified radar echoes returned from the upper atmosphere. In probing for these "angels," C.A.L. is extending the scope of its micro-wave propagation studies by using microsecond pulses of 30 megawatts peak power.
C.A.L.'s research work in micro-wave optics employing one of the world's most powerful S-band radars is but one of 160 current Laboratory projects. With such diversity, the professional man can choose the significant and stimulating project most closely patterned to his particular interests and abilities.
If you are interested in becoming a member of one of our small, closelyknit research teams, write today for "A Decade of Research." This factual, well-illustrated, 68 page report will be mailed immediately. Mail the coupon now for your free copy.

TEST EQUIPMENT

The Test Equipment Engineer is engaged primarily in the design of specialized missile check-out equipment. As missiles push the state of the ont, test equipment must exceed the missiles in precision and reliability. Automatic programing, go-no-go evaluation, and automatic data processing add up to automation in missile testing.
This engineer is evaluating his design of a precision power supply-one of the building blocks that will be systom engineered ond sub-systom test equipmant. Engineers ork as individuals.

SYSTEMS ANALYSIS
A fundamental problem in the development of guided missiles is analytical dynamics. Engineers with backgrounds in the over-all systems, as well as airframe systems of a missile, work with analogue computers, diaital differantial analyzers, bread boards, prototypes of missiles and missile equipment, and special mechonical and electronic simulators. Familiarity with aerodynamics, servomechanisms, radar, ballistics, computing techniques, electronics, fluid mechanics, heat transfor, microwaves, stress analysis, shock thermodynamics and vibrations are also desirable.

STEERING INTELIIGENCE

Two Steering Intelligence Engineers discuss space allofment in a new avidance component. This close association of engineers with the "fyying" equipment is typical of the Steering Intelligence Section. Engineers in this section are primarily and directly concerned with refining the guidance equipment to steer the missile with greater accuracy, at greale electronic wuipment and consistently, with minimizing the cost. Work is actively in progress in every principal field from microwave equipment to inertial end instruments.

PRIME CONTRACTOR FOR TALOS MISSILE

Offers more interesting and challenging

job opportunities!

If you are interested in guided missiles, you will be especially interested in Bendix. As prime contractor for the important and successful Talos Missile, the job opportunities here cover the widest possible scope, and the opportunities for advancement are practically unlimited.
Here is a compact, hard-hitting organization backed by all the resources of the nation-wide Bendix Aviation Corporation-an organization dedicated to the design and production of the finest in guided missiles.

INTERVIEWS AT
 WESCON SHOW-SAN FRANCISCO
 AUGUST 20-23

Contact Clyde Galles, Bendix Missile Representative Sheraton-Palace Hotel. Phone: EXbrook 2-8699.

If you are not attending the Wescon show, you can still obtain the complete, detailed story of the function of Bendix Missile engineering groups and the many job opportunities available to you.
Just fill out the coupon and mail it today.

\%NGINEERS for GUIDANCE and NAVIGATION SYSTEMS

IMPETUS -
is the force that overcomes resistance to a solid body or, in the realm of thought, a new idea. At Sanders, it operates irresistibly whenever a new engineering concept encounters outmoded, textbook thinking.

Please address inquiries to D. H. Johnson.

CIRCLE 560 ON READER-SERVICE CARD FOR MORE INFORMATION

a POSITION TAILORED TO FIT THE CREATIVE MAN
Is this your idea of a creative assignment?
Solving complex circuit design problems in these fields: frequency division techniques, memory circuits, digital and analog devices, synchronous communications.

An engineer with the necessary intellectual curiosity and an inventive mind to carry such problems to a successful conclusion can go for at the G-E Light Military Electronic Equipment Department.
Fill out the coupon below for further information.

Richard C. Kimm, Light Military Electronic Equipment Dept.
General Electric Company, French Road, Utica, N. Y.
Name Degree \qquad
Address
Area of Specialization_
\square
LIGHT MILITARY ELECTRONIC EQUIPMENT DEPARTMENT general electric

Facts on Careers in Electronics with Otis Elevator Co.

1. The full resources of the $\mathbf{1 0 5}$-year-old Ot is Elevator Company are available for expansion of its new Electronic Division.
2. Current prime contracts are on basic development work in the most advanced areas of bombing navigation systems, radar systems and missile launching test equipment. And Otis expects to fully explore the potential for commercial developments as well.
3. This means, to the engineer, ground floor opportunity now with unlimited future in an interesting and rapidly broadening field.

> Electronic and Mechanical Engineoring Know-how is required in Sorvomechanisms, Analog Computers, Pulso \& Sweop Gonerators, Mierowoves

If you are interested in a high level career in electronics . . . with promotions waiting to be earned . . . send your resume now to William B. DeFrancis. All inquiries in strict confidence.

Electronic Division
OTIS ELEVATOR COMPANY
35 Ryerson St., Brooklyn 5, N. Y.

NEW APPROACH TO ELECTRONIC CIRCUIT DEVELOPMENT

Engineering application of newiy developed electro mechanical filters to transistorized I-F circuits for both commercial and military applications.

This opening is particularly attractive to a young engineer with vacuum tube or transistor experience because it offers rapid growth in a radically new approach to an established field.

Clevite Research Center develops new principles and new products for other units of Clevite Corporation. The Research Center provides the ideal environment for the engineer because it has been supplied with the facilities, equipment and library to provide new knowledge and new products for Clevite Corporotion, a company whose entire product line is in the growth fields of electronics, semiconductors and automotive and aircraft power plants.

WRITE E. A. GENTRY or CALL ULster 1-5500 COLLECT
CLEVITE RESEARCH CENTER

540 East 105 Stroat

Cloveland 8, Ohlo

CIRCLE 563 ON READER-SERVICE CARD FOR MORE INFORMATION

ADVERTISING INDEX

 August 1, 1957This special lest equipment a high-power simulator - con operale at peak powers as high as 10 megawatts, using a single 500 kw
magnetron as a power source. This equipment magnetron as a power source. This equipment
was iointly evolved by Bomac, Bendix Radio, and Rome Air Development Center

```
Advertiser, Elastic Stop Nut Corp
Ace Electronics Assoc
Aerotest Laboratories
Aerovox Corp. ©
Allison Laboratories.s`..
Amphenol Electronics Corp
Arnold Engineering Co
Behlman Engineering C
M,
Bendix Aviation Corp,, York Div.
Berkeley Div. Beckman Instruments, Inc
Bishop & Co., J. Platinum Works
Bliley Electric Co.i.....
Boonton Electronics, Corp.
Breeze Conp.Inc................
Burndy Corp......
Burndy & Co.. Inc. .............
Burroughs Corp., Research Center (iv
CBS-Hytron
C & H Supply Co.ooic Corp
Canoga Corp. Clog Eonstantine Enineering L
Celco Constantine Engineering L
Ceramaseal Co., The
Chicaso Telephone Supply Corp.
Circuit Instruments, Inc.
Clarostat Mfg. Co.. Inc.
Clovitere
Cohn, Sigmund Mfg. Co., Inc..
Comell-Dubilier Electric Corp.
Cornell- Aeronautical Laboratory, Inc,
Crosley Div. AVCO Mfg. Corp.
Cross Co., H.
Curtiss-Wright Corp
Daven Co., The
Dressen-Barmes Corp. Maborat........
M Industrial Tube Div.............
Du Mont. Allen B. Lahora
E S C Corp. .....
Electro-Instruments, Inc
```



```
Electro-Snap Switch & Mfg.
Electronic Engineering Co.
Electrons, Inc. © Div.
afnir Bearing Co.
Fairchild Controls Cor.., Component Div,
Fluke, John Mfg. Co., Inc
G-L Electronics Co.
General Chemical Div,
General Electric Co., Electronic
General Electric Co.. Light Military Div.
General Magnetics, Inc. A Spark Plug Div
General Motors Corp., A C Spark Plug Div
General Radio Co.
Gertsch Products, Inc.
Gertsch Products. Inc.
Gudebrod Bros.' Silk Co
Hartwell Co.
M
l}\begin{array}{l}{\mathrm{ Heinmemann Harectric Inc.}}\\{\mathrm{ Hubbell, Havey. Inc.}}\\{\mathrm{ Hughes Airraft Co.,}}\\{\mathrm{ Hughes Aircraft Co.,}}
Mughes Aircraft Co,0.
Hycor Co., Inc.
I T & T. Industrial Products Div.
Industrial Electronic Enginee
Interelectronics Corp.,.
International Instruments, Inc.
International Nickel Co.0 Inc.
Iron Fireman Mfg. Co., Electronics Div.
Jerrold Electronics Corp.
Jet Propulsion Laboratories
```

< CIRCLE 381 ON READER-SERVICE CARD

10,000,000 WATTS OF PACKAGED POWER!

This young Bomac engineer has $10,000,000$ watts of power at his fingertips.
Here is an immense new range of power, harnessed for testing Bomac products - power for measuring
the life of gas-switching tubes, for assessing tube leakage and temperature rise, for determining high power
characteristics of pressurizing windows - power with a vital purpose:
Better microwave tubes, higher power capacities today . . . still better tubes, still higher power capacities tomorrow.

Somare
IABORATORIES, INC.
Dept. ED-8 Beverly, Mass.
$\underset{\text { E. Clectronic Co. }}{\text { Co. }}$
Ce Kin Te

n Div.

Ph c

is-Honeywell Kegulator Co.,
tu Silicone Co. O Products Div
Hola, ITcs. Wenter.
Refronics Cente

- Clarkes. Inc. Engraving Machine Co.
J. Men Coi Co.
theastern Engineering, Inc
Elevator Co.

, ings onntrois Corp.

${ }^{2}$ et instrument Electric C 0
Tro Corp. of America
theon Mry, Co..
hicroware M Powe Tube Div.
theon Mif. Cow

17.

fon Mfg. Co

NOW! A REVOLUTIONARY NEW CONCEPT IN PRECISION DIGITAL MEASUREMENTS OF AC, DC, Ohms and RATIOS

New E-I transistorized plug-in modules give maximum

 flexibility for custom applications with standard off-the-shelf modules.
Abstract

This latest E-I development provides the maximum versatility in digital instrumentation. From a few basic modules a host of instruments can be constructed. Basic modules never become obsolete. To do new jobs, simply add new modules. Equipment can be easily kept current at minimum cost and engineering. But versatility is only part of the story. These new

modules also boast dramatically new engineering specifications, fully transistorized circuits and numerous other features which were incorporated as the result of our experience with more than 1,000 digital instruments in the field.
Your E-I representative has complete information on this latest E-I development. Ask him about it...today!

Any precision instrument for measuring DC, AC-DC, Ohms, DC and AC ratios can be constructed from these five basic units! whether it be a DCdigital voltmeter...
 or a complete.

BASIC MODULES

Supplies all power and roference voltages for other EF-1 modules. Power and voferonce supplies and stepper drive amplifiler are tran
sistorized. Powors ont or more modulos Automatic callibration; stability of 0.01% Automatic calibration; stabity of 0.01%
from to to 10 125 F.s input powor: 115 volts,
50 to 400 cycles.

DC Switch Modulos, 4 or 5 digits visual in - line read -out of diglts, polarity drearmal panol connector. Front accessible and pana input connectors. Power supplled by Ualversal Power Modulo.

DC Pro-Amp Module
Input: 1 range scale, zaln of 10. Output: 0.001 to .9999 volts.
Linearity, 0.01%. Gain Multiplication Accuracy: 0.01%. Input Power: 115 volt, 50 to 400 cycles.
Orift, 10 microvolts per hour. Drift 10 mierovolts per hour.

AC - DC Converter Module

 A fully transistorizod $A C-D C$ converter. Accuracy: 0.1% of reading, or 2 mv . Range: 0001 to 999.9 volts. 1 volt scalo, 10 mors $\mathrm{Zin}, \mathrm{AC}_{3} 1$ mes. on the 1 voit scale, 10 mozs. Ransing: Automatic Ranging: Automatic

Rosistance 8 witch Moduler 4 or 5 digist
Contains balance clrcult, bridge ratio arms. Provides visual la-line read-out diglts, range.
 noctor.
Modulo.

Wow short form eatalos mew mallatio.
Write for yours today!

I NSTRUMENTS

...most complete line fo

Important contributions to commercial and military television include such RCA firsts as the Iconoscope, Image Orthicon, Color Image Orthicon and Vidicon. Development work on camera tubes never stops at RCA. Recent RCA advances are the new low-light-level Image Orthiconespecially useful for "night" television, and the new developmental $1 / 2$-inch Vidicon-useful in compact, lightweight, military cameras. Whether you are working on surveillance equipment, missile guidance, air traffic control, telemetering, or any other military project where television can perform a vital service-call on RCA for the camera tubes you need. World's largest manufacturer of camera tubes today, RCA is "headquarters" for the most comprehensive line in television.
For more information $\leadsto \eta$ RCA camera tubes for military television, call the RCA Field Office nearest you.

Equipment Sales

744 Broad Street, Newark 2, N. J., HUmboldt 5-3900.
Suite 1181, Merchandise Mart Plaza, Chisago 54, Illinois, WHitehall 4-2900.
6355 E. Washington Blvd., Los Angeles 22, California, RAymond 3.8361.

RCA-5820-Image Orthicon for Black-and-White TV RCA-6474-Image Orthicon for Color TV $\left.\begin{array}{l}\text { RCA-6198 } \\ \text { RCA-6198-A }\end{array}\right\}$ Vidicons for Industrial TV $\left.\begin{array}{l}\text { RCA-6326 } \\ \text { RCA-6326-A }\end{array}\right\}$ Vidicons for Broadcast TV RCA-6849-Low-light-level Image Orthicon Dev. No. C-73456-1/2-inch Vidicon for Portable TV Cameras

RCA Progress Report on TV Camera Tube "FIRSTS"
1939 RCA announced commercial availability of the Iconoscope-the camera tube that made electronic television dossible.
1940 RCA announced the Amateur Iconoscope-opened the television field for experimenters.
1942 RCA introduced the first small Iconoscope-for aerial weapon guidance.
1944 RCA provided the military services with the first Image Orthicon-a supersensitive camera tube.
1946 RCA introduced the first Image Orthicon (the camera tube that revolutionized TV camera tech-niques)-for studio and outdoor pickup.
1952 RCA produced the first Color Image Orthiconfor use in compatible color television cameras.
1952 RCA announced the first commercial Vidicon-for industrial TV.
1955 RCA announced a developmental $1 / 2$-Inch Vidicon - for miniature portable TV cameras.

1956 RCA designed and built a low-light-level Image Orthicon-a new camera tube especially useful for "night" military operations.

[^0]: CIRCLE 144 ON READER-SERVICE CARD FOR MORE INFORMATION

[^1]: Offices: Albany • Atlanta • Baltimcre • Birmingham • Baston • Bridgeport • Buffalo • Charlotte Chicago • Cleveland (Miss.) •Cleveland (Ohio) • Denver Detroit•Houston•Jacksonville - Kalamazoo •Ios Angeles•Milwaukee - Minneapolis•New York• Philadelphia P Pittsburgh • Providence • San Francisco Seattle - St. Louis - Yakima (Wash.) In Canada: The Nichols Chemical Company, Limired - Montreal - Toronte - Vancouver

 CIRCLE 229 ON READER-SERVICE CARD FOR MORE INFORMATION

[^2]: VHF SWEEP RANGE
 Contor frequency continuously variable from 0.2 MC to 250 MC, Syeog Width continuqusly yorioble from a minimum of 0.1 MC , at any centor frequeney selting, to a maximum of 250 MC at a centor frequency solling of 125 MC.

 ## UHF SWEEP RANGE

 Cenfor frequency continuously variable from 275 MC to 900 MC. Sweep Width conlinuously variable from a minimum of 0.1 MC , at any center frequency sotting, to a maximum of 100 MC at a centor frequency of 275 MC , and to a maximum of $\mathbf{3 0 0}$ MC at a centor frequency of 850 MC

 See Jerrold Test Equipment Wescon Show-Booth \#1205

[^3]: CIRCLE 363 ON READER-SERVICE CARD FOR MORE INFORMATION 136

