

p-n-p transistors for RF, IF, AF, and switching service in industrial,

 electronic computer, and entertainment applications.2N217
For large-signal af amplifier service. In class B push-pull, two 2N217's can deliver a maximum signal power output of approximately 160 milliwatts.

2N358
N.P.N. type medium speed, high current switching transistor with alpha cutoff 9 Mc / s.

2N410
For $455-\mathrm{Kc} / \mathrm{s}$ inferme-diate-frequency amplifier service in bat-tery-operated portable radio receivers.

2N218
For $455-\mathrm{Kc} / \mathrm{s}$ intermediate - frequency amplifier applications in transistorized portable radios and automobile radios operating from either a 6.3- or 12.6 -volt supply.

2N370

Drift type. For use as rf amplifier in shortwave receivers. Controlled for input and output impedance values, and for power gain, to insure unit to unit interchangeability. Has 4 leads-4th lead connected to case internally for shielding.

2N412

For converter (mixeroscillator) service in battery-operated portable radio receivers operating in the standard AM broadcast band.

2N219

For converter and mixer-oscillator applications in standard AM broadcast - band transistorized portable radios and automobile $\mathbf{r a d i o s}$ operating from either a 6.3. or 12.6 -volt supply.

2N371
Drift type. For rf oscillator service in all-wave portable receivers. Used with 2N370 and 2N372, it provides complete complement for highgain rf tuners. Has 4 flexible leads - 4th lead connected to case internally for shielding.

2N544

Drift transistor for amplifier service. In a neutralized amplifier circuit the power gain can be 30.4 dB at $1.5 \mathrm{Mc} / \mathrm{s}$.

2N578

Designed for high current switching circuits in industrial computers. Collector current -400 mA , alpha cutoff $5 \mathrm{Mc} / \mathrm{s}$.

2N220
Extremely low - noise type for use in preamplifier or input stages of transistorized audio amplifiers operating from extremely small input signals.

2N372

Drift type. For rf mixer service in allwave portable receivers. Intended for use with 2 N 370 and 2N371 in rf tuner complement. Has 4 flexible leads - 4th lead connected to case internally for shielding.

2N247
Drift type. For radiofrequency amplifier use in the AM broadcast band and up into the short-wave bands. Has 4 flexible leads4th lead connected to case internally for shielding.

2N373

Drift fransistor of PNP type for 455 Kc / s amplifier service. Power gain 34 dB without neutralizing.

2N374

Drift transistor for mixer-oscillator service conversion power gain is 40 dB at a frequency of $1 \mathrm{Mc} / \mathrm{s}$.

2N579

Designed for highcurrent switching circuits in industrial computers. Collector current -400 mA , alpha cutof $8 \mathrm{Mc} / \mathrm{s}$.

2N580

Designed for highcurrent switching circuits in industrial computers. Collector current - 400 mA , alpha cutoff $15 \mathrm{Mc} / \mathrm{s}$.

2N77
For audio-frequency amplifier service such as hearing-aid applications.

2N270

For large-signal af amplifier service. In class A, the 2 N 270 can deliver a max. signal power output of approx. 60 milliwatts. In class B pushpull, two $2 \mathrm{~N} 270^{\prime}$ s can deliver 500 mil liwatts.

2N376

For audio frequency amplifiers particularly in automobile receivers. In class A service at a mounting flange temperature of $80^{\circ} \mathrm{C}$ the transistor will, with a power gain of 35 dB , develop an output power of 4 watts.

2N581

PNP medium speed switching transistor. Director current transfer ratio is 30 .

2N301-2N301-A
For audio-power stages requiring high output with low distortion at high power gain. In class A, using one 2 N 301 , max. output approx. 5 watts; a pair can deliver 12 watts in class B push-pull.

2N384
VHF Driff type. For use as an oscillator up to $250 \mathrm{Mc} / \mathrm{s}$ in an rf amplifier in communications equipment or as pulse amplifier and high-speed switching device in computers. $100-\mathrm{Mc} / \mathrm{s}$ alpha cutoff frequency.

2N582

PNP high speed switching transistor. Alpha cutoff frequency $18 \mathrm{Mc} / \mathrm{s}$.

2N105

For audio - frequency amplifier service such as hearing-aid applications. It is very small in size - only $0.135^{\prime \prime}$ in diameter with a maximum length (excluding flexible leads) of $0.255^{\prime \prime}$.

2N398
105 -volt switching transistor for direct high - voltage control of "on-off" devices such as neon indicators, relays, incandescent lamp indicators, and indicating counter circuits.
dentical to 2N58 except for the size of the casing.

2N176

For audio frequency amplifiers particu. larly in aufomobile receivers. In class A service at a mounting flange temperature of $80^{\circ} \mathrm{C}$ an output power of 2 watts can be developed with a power gain of 35.5 dB .

2N35!

For audio frequency power amplifiers particularly in automobile receivers. Similar to 2 N 376 except that power gain is 35.5 dB ; class A power output 4 watts.

2N206

For moderate-power audio-frequency amplifier service. Max. collector dissipation 75 milliwatts.

2N356

NPN type medium speed, high current switching transistor with alpha cutoff 3 Mc / s.

2N404

Specifically designed for use in switching circuits of compact, medium-speed industrial electronic computers.

2N58

Identical to 2N582 except for the size of the casing.

For low-power audio applications. Only $0.240^{\prime \prime}$ in diameter with a maximum length (excluding flexible leads) of $0.455^{\prime \prime}$.

2N357

NPN type medium speed, high current switching transistor with alpha cutoff 6 Mc / s.

2N408
for class B push-pull power output stages of battery - operated portable radio receivers and audio amplifiers operating at power output levels of approximately 160 milliwatts.

2N586

Low speed switching transistor for relayactuating, voltage multi-vibrator ac-dc and power supply circuits. This transistor may also be used in large signal Class A, B push-pull audio frequency circuits.

AWV TRANSISTOR DATA CHART GERMANIUM P-N-P ALLOY JUNCTION TYPES

TYPE	CLASS OF SERVICE	BASING OR LEAD ARRANGEMENT		MAXIMUM RATINGS						TYPICAL	CHARACTERISTICS 1		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	
				MAXIMUM CASE DIMENSIONS Inches		Collector to base Volts	$\begin{aligned} & \text { D.C. } \\ & \text { Emitter } \\ & \text { Current } \\ & \text { mA } \end{aligned}$	Dissipation at $25^{\circ} \mathrm{C}$ mW	Current Transfer Ratio at $1 \mathrm{kc} / \mathrm{s}$ hfe	Cut-off Freq. fab Mc / s	Power Gain dB	Noise Factor dB	Freq. for Unity Power Amplification Mc / s.	Power Output Watts
				LENGTH	DIAMETER									
2N77	Class A AF Amplifier		Flexible Leads	0.405	0.24	-4	-0.7	-	55	0.7	44.1	6.5	1.7	-
$2 \mathrm{N105}$	Class A AF Amplifier		Flexible Leads	0.255	0.135	-25	15	35	55	0.75	42	7.5	2.6	
2N176	AF Power Amplifier		s for 2N301	1.5311	1.12 !	-40	3000	10000i	63 \#	-	35.5	-	-	2%
2N206	Class A AF Amplifier	3	Flexible Leads	0.405	0.24	-30	50	75	47	0.78	43	9	1.6	-
2N215	Class A AF Amplifier	3	Flexible Leads	0.455	0.24	-30	50	150	44	0.7	41	6.5	1.6	-
2N217	Large-Signal AF Amplifieı	3	Flexible Leads	0.405	0.24	-25	70	150	65	-	$33 \S$	-	-	0.16
2N218	Class A $455 \mathrm{Kc} / \mathrm{s}$ Amplifier	3	Flexible Leads	0.405	0.24	-16	15	80	48	6.7	37.8:	4.5	14	-
2N219	$540.1640^{\circ} \mathrm{Kc} / \mathrm{s}$ Converter	3	Flexible Leads	0.405	0.24	-16	15	80	75	10	32	-	16.5	
2N220	Class A AF Amplifier	3	Flexible Leads	0.405	0.24	-10	2	50	65	0.85	43	6	2.05	-
2N247	Class A RF Amplifier		Flexible Leads ${ }^{\text {d }}$	0.375	0.36	-35	10	80	60	30	45.	8	132	-
2N269	Low-Level Switch		Flexible Leads	0.405	0.24	-25	100	120	35 \#	4	For "	" cont	applicati	
2N270	Large-Signal AF Amplifier	3	Flexible Leads	0.375	0.36	-25	i50	250	700	-	35 §	-	-	$0.5 \S$
2N274	Class A RF Amplifieı		Flexible Leads ${ }^{\text {d }}$	0.405	0.24	-35	10	80	60	30	45.	8	132	-
2N301	AF Power Amplifie,		Pin Base with	$1.53{ }^{1}$	1.01	-40	3000	11000%	70 -	-	$30 \S$	-	-	12%
2N301-A	AF Power Amplifie:		ounting Flange	1.531	1.01	-60	3000	11000 i	70	-	30 §	-	-	12 §
2N351	AF Power Amplifier		s for 2N301	1.5311	1.129	-40	3000	10000\%	65	-	33.5	-	-	$4 i$
2N356	Medium Speed Switch N.P.N	3	Flexible Leads	0.26	0.37	20	-500	100	30 -	3	-	-	-	-
2N357	Medium Speed Switch N.P.N		Flexible Leads	0.26	0.37	20	-500	100	30 -	6	-	-	-	-
2N358	Medium Speed Switch N.P.N	3	Flexible Leads	0.26	0.37	20	-500	100	30-	9	-	-	-	-
2N370	Class A RF Amplifier	4	Flexible Leads	0.375	0.36	-20	10	80	60	30	50.5:	-	132	-
2N371	RF Oscillator		Flexible Leads ${ }^{\text {a }}$	0.375	0.36	-20	10	80	60	30	-	-	132	-
2N372	RF Mixer	4	Flexible Leads ${ }^{\text {a }}$	0.375	0.36	-20	10	80	60	30	50.5	-	132	-
2N373	$455 \mathrm{Kc} / \mathrm{s}$ Class A Amplifier	4	Flexible Leads	0.375	0.360	-25	10	80	60	30	40	-	-	-
2N374	Converter-AM Broadcast		Flexible Leads ${ }^{\circ}$	0375	0.360	-25	10	80	60	30	40	-	-	-
2N376	AF Power Amplifier		s for 2N301	1.5311	1.127	-40	3000	10000 i	78 \%	-	35	-	-	$4 i$
2N384	VHF Amplifier	4	Flexible Leads ${ }^{\text {a }}$	0.405	0.24	-30	10	120	60	100	34	-	250	-
2N398	High.Voltage Switch		Flexible Leads	0.230	0.330	-105	100	50	60 m	-105.V	Collec	Breakd	Voltag	Rating.
2N404	Low-Level Switch	3	Flexible Leads	0.230	0.330	-25	100	120	Max. DC	Collector-t	mitter	uration	age $=$	5 Vo
2N406	Class A AF Driver Amplifier		Flexible Leads	0.405	0.24	-18	35	150	35	0.65	43	-	-	-
2N408	Large-Signal AF Amplifier	3	Flexible Leads	0.405	0.24	-20	70	150	65\%	-	$33 \S$	-	-	0.16
2N410	Class A $455 \mathrm{Kc} / \mathrm{s}$ Amplifier		Flexible Leads	0.405	0.24	-12	15	80	48	6.7	37.8:	4.5	14	-
2N412	$540.1640 \mathrm{Kc} / \mathrm{s}$ Converter	3	Flexible Leads	0.405	0.24	-12	15	80	75	10	32	-	16.5	-
2N544	RF Class A Amplifier		Flexible Leads ${ }^{\circ}$	0.375	0.36	-18	10	80	60	30	30.4	-	-	-
2N578	High Current Switching		Flexible leads	0.26	0.37	-20	400	120	15 -	5	Turn	$0.9 \mu \mathrm{sec}$	Turn off	$\mu \mathrm{sec}$.
2N579	High Current Switching	3	Flexible Leads	0.26	0.37	-20	400	120	$30 \pm$	8	Turn	0.4 usec	Turn off	$\mu \mathrm{sec}$.
2N580	High Current Switching	3	Flexible Leads	0.26	0.37	-20	400	120	45年	15	Turn	$0.2 \mu \mathrm{sec}$	Turn off	use
2N581	Medium Speed Switching	3	Flexible Leads	0.26	0.37	-18	100	80	30-	8	-	-	-	-
2N582	High Speed Switching	3	Flexible Leads	0.26	0.37	-25	100	120	60 -	18	-	-	-	-
2N583	Medium Speed Switching	3	Flexible Leads	0.405	0.24	-18	100	80	30*	8	-	-	-	-
2N584	High Speed Switching	3	Flexible Leads	0.405	0.24	-25	100	120	60 \#	18	-	-	-	-
2N585	Medium Speed Switching N.P.N	3	Flexible Leads	0.26	0.37	25	-200	120	401	5	-	-	-	-
2N586	Low Speed Switching		Flexible Leads	0.375	0.360	-45	250	250	55	-	-	-	-	-

*Mean dissipation if averaged for lime of 50 mSecs , otherwise to be considered as peak value. TOverall mounting flange dimensions. Useful gain-circuit neutralised. -D.C. transfer ratio (hFE). †At mounting flange temperature of $80^{\circ} \mathrm{C}$. One lead, connected internally to case, acts as a shield to minimize interlead capacitance and coupling to adjacent circuit components. §Two transistors. \ddagger Measured in a single-tuned unilateralized circuit matched to the generator and load impedances for maximum transfer of power (transformer insertion losses not included).

For Complete Technical Data Write:

