

## RADIOTRONICS




Vol. 27, No. 5
May, 1962
IN THIS ISSUE
TRANSISTORIZED VOLTAGE REGULATORS 82 Transistors used in voltage regulator circuits offer important advantages. This feature article discusses the design problems involved.

THE TR24
How to construct a 24 -watt transistorized high fidelity amplifier, with a performance comparable with valve circuits.

NEW RELEASES
A regular feature to keep readers informed on new devices as they are released.

## TRANSISTORIZED

## VOLTAGE REGULATORS

Transistorized voltage regulators offer a number of advantages over other types because of their small size, low cost, reliability, accuracy and range of control.

There are three basic types of regulating systems: series regulators in which a voltagecontrolled element is placed in series with the load, shunt regulators in which a currentcontrolled element is placed in shunt with the load, and series-shunt regulators in which both series and shunt elements are used. Regulators employing any of these three types of system can provide constant voltage, constant current, or constant impedance across the load.

This article discusses transistorized voltage regulators of both the series and shunt types. Included are design considerations, step-by-step design procedures, and the solutions to sample design problems. An appendix contains the derivation of design equations. Whilst a few silicon transistors are used in the examples, the information is of course applicable to any suitable types, either silicon or germanium.

## (With acknowledgements to RCA)

## SERIES-TYPE VOLTAGE REGULATORS

In series-type voltage regulators, a cascaded de amplifier amplifies an error or difference signal obtained from a comparison between a portion of the output voltage and a reference voltage. This amplified error signal forms the input to a regulating element in series with the load across which a controlling voltage is developed. The amplifier and series elements, which are treated here as generalized elements, may include any number of individual transistor stages necessary to fulfill design requirements.

A typical transistorized series voltage regulator is shown in Fig.1. In this circuit,


Fig. 1 - Typical transistorized series
voltage regulator.
$R_{L}$ is the load resistance, $R_{S}$ is the resistance of the regulator input voltage or source (i.e., transformer resistance, rectifier resistance,
or the like), $V_{S}$ is the open-circuit input voltage to the regulator, $\Delta V_{S}$ is the inputvoltage variation, $V_{R}$ is a reference voltage, $V_{0}$ is the output voltage, and $V_{2}$ is the error signal detected by the dc amplifier element.

The series regulating element consists of one or more transistors connected in a commoncollector configuration, as shown in Fig. 2.


Fig. 2-Series regulating element consisting of two or more transistors in common-collector configuration.

The number ( $\ln$ ) of additional transistor stages connected in a Darlington connection is determined by the current requirement $I_{1 n}$. The
maximum voltage $V_{i n}$ appearing across the series elements is equal to or greater than the maximum change in voltage at the regulator input ( $\Delta V_{S}$ ) due to changes in either the open-circuit input voltage ( $\mathrm{V}_{\mathrm{S}}$ ) or the load current ( $\mathrm{I}_{\mathrm{L}}$ ). The transistors chosen for a series element must have a minimum forward-bias collector-toemitter voltage rating greater than this maximum voltage.

Typical dc amplifier elements such as those shown in Fig. 3 include an output stage working


Fig. 3 - Three typical dc amplifier elements.
into a load resistor $R$ and the necessary number ( $2 n$ ) of dc cascaded stages to provide the required amount of gain for a given condition of line-voltage or load-current regulation. The reference-voltage source ( $V_{R}$ ) is placed in one of the cascaded stages in a manner such that an error or difference signal between VR and some portion of $V_{0}$ is developed and amplified. Some form of temperature compensation must be included to insure stability of the dc amplifier.

Frequency stability is especially important in the design of transistorized series regulators. Because negative feedback is used in the amplifier element, a total phase shift of 180 degrees around the entire loop (amplifier and series element) at high frequency results in oscillations unless the closed loop gain is less than unity. Therefore, at the frequency where total phase shift is 180 degrees, provision should be made to reduce closed loop gain to less than unity. The use of shunt capacitance in the output or elsewhere in the amplifier section produces the necessary gain "roll-off" with frequency.

## Design Procedure

The following step-by-step procedure is recommended for the design of transistorized series-type voltage regulators. The equations used in the procedure are derived in the Appendix.

1. List input requirements, load conditions, and output-voltage requirements in terms of the following parameters:
input voltage ( $\mathrm{V}_{\mathrm{S}}$ ),
input-voltage variation ( $\Delta V_{S}$ ),
source resistance (RS),
output load resistor ( $\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}$ ),
output-load-resistance variation ( $\Delta R_{L}$ ),
output voltage ( $\mathrm{V}_{\mathrm{o}}$ ),
output-voltage variation ( $\Delta \mathrm{V}_{\mathrm{o}}$ ), and
load current ( $\mathrm{I}_{\mathrm{L}_{0}}$ ).
The terms $V_{S}$ and $R_{L_{o}}$ are design-center values: $\Delta V_{S}$ and $\Delta R_{L}$ are maximum deviations from these values:
2. Select an appropriate value and source of reference voltage $V_{R}$ (e.g., battery, voltagereference diode, bleeder-resistance network, etc.). The value of $V_{\mathrm{R}}$ should be chosen somewhere between 0.2 and 0.9 times the value of $\mathrm{V}_{\mathrm{o}}$, and preferably as high as practical. A typical value for $V_{R}$ is $0.5 \mathrm{~V}_{\mathrm{o}}$.
3. Select values for $V_{2}$ and $I_{2}$ based on the following considerations:
(a) For a single dc stage, $V_{2}=V_{R}$. If additional stages are used, $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{R}}+1 / 2\left(\mathrm{~V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{R}}\right)$.
(b) The value of $\mathrm{I}_{2}$ should be less than the maximum current rating ( $\mathrm{IVR}_{\text {max }}$ ) of the reference source. The following relation may be used as a guide to selecting the value of $\mathrm{I}_{2}$ :

$$
\mathrm{I}_{2}<\frac{\mathrm{I}_{1}}{20}, \text { where } \mathrm{I}_{1}=\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{o}}}{R_{\mathrm{L}_{\mathrm{o}}}}
$$

4. Select the series transistor $\mathrm{Q}_{11}$. The maximum collector-to-emitter voltage ( $\mathrm{V}_{\mathrm{CE}_{\text {max }}}$ ) rating and the maximum collector-to-emitter saturation voltage ( $\mathrm{V}_{\text {CEsat }} \mathrm{max}$ ) rating* of this transistor must satisfy the following conditions: ${ }^{1}$

$$
\begin{equation*}
V_{C E_{\max }}=V_{S}+\Delta V_{S}-V_{\sigma}\left(1+\frac{R_{S}}{R_{L_{o}}+\Delta R_{L}}\right) \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{gathered}
\mathrm{V}_{C E_{s a t_{\max }}}=\mathrm{V}_{\mathrm{S}}-\Delta V_{S}-V_{o}\left(1+\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{S}}-\Delta R_{\mathrm{L}}}\right) \\
\text { at } I_{c}=\frac{\mathrm{V}_{o}}{\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}-\Delta R_{\mathrm{L}}}
\end{gathered}
$$
\]

The maximum collector-current rating $\mathrm{I}_{\mathrm{C}_{\text {max }}}$ of transistor $\mathrm{Q}_{11}$ must be greater than $\mathrm{I}_{1_{\text {max }}}: 2$

$$
\begin{equation*}
I_{C_{\max }} \geqq \frac{V_{o}}{R_{L_{0}}-\Delta R_{L}} \tag{3}
\end{equation*}
$$

In addition, the transistor must be capable of dissipating the maximum power required by the regulator at a given operating temperature. Maximum power dissipation $\mathrm{PD}_{\max }$ is given by the following equations: ${ }^{3}$

$$
\begin{gather*}
\text { If } \mathrm{I}_{\mathrm{m}_{\max }}>\frac{\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}}{2 \mathrm{R}_{\mathrm{S}}}, \\
\text { then } \mathrm{PD}_{\max }=\frac{\left(\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}\right)^{2}}{4 \mathrm{R}_{\mathrm{S}}} \\
\text { If } \mathrm{I}_{\mathrm{l}_{\max }}<\frac{\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{0}}{2 \mathrm{R}_{\mathrm{S}}}, \tag{5}
\end{gather*}
$$

then $\mathrm{PD}_{\text {max }}=\left(\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}\right)\left(\mathrm{I}_{1_{\text {max }}}\right)$
$-I_{1_{\text {max }}}{ }^{2} R_{S}$
5. Let $I_{1 n}=I_{2} / 10$, and select the number $\mathrm{n}-1$ of additional series-regulator stages to satisfy the following condition for $I_{1 n}$ :

$$
\mathrm{I}_{\mathrm{ln}}=\frac{\mathrm{I}_{1}}{\mathrm{~h}_{\mathrm{FE}_{11}} \cdot \mathrm{~h}_{\mathrm{FE}_{12}} \cdot \mathrm{~h}_{\mathrm{FE}_{13}} \cdot \cdot \mathrm{~h}_{\mathrm{FE}_{1 \mathrm{n}}}}
$$

where $h \mathrm{hFE}_{1_{n}}$ is the dc forward-current transfer ratio of the $Q_{1 n}$ stage when $I_{C}=I_{1}(n-1)$.

Select the transistor type for each stage, based on the collector-current requirement for that stage.
6. Determine the voltage drop between the output and the control input of the series regulating element. This voltage drop $\left(V_{1}\right)$ is the sum of the base-to-emitter voltages of the $n$ stages of the series element at their respective collector currents.
7. Determine the design-center value for the collector-to-emitter voltage $V_{11}$ across the transistor $\mathrm{Q}_{11}$ by means of equations (1) and (2):

$$
\mathrm{V}_{11}=\frac{\mathrm{V}_{\mathrm{CE}_{\max }}+\mathrm{V}_{\mathrm{CE}} \mathrm{sat}_{\max }}{\mathrm{I}_{2}}
$$

2 See Appendix, equation (A-14).
3 See Appendix, equation (A-17) and (A-18).
8. Select the value for $R$ to satisfy the following condition:

$$
\mathrm{R}=\frac{\mathrm{V}_{11}-\mathrm{V}_{1}}{\mathrm{I}_{2}}
$$

9. The following equation for the outputvoltage variation $\Delta V_{0}$ includes the equivalent transconductances $g_{m l}$ of the series element and $g_{m_{2}}$ of the amplifier element: 4

$$
\begin{equation*}
\Delta V_{o}=\frac{\Delta V_{S}+\frac{V_{o}}{R_{L_{o}}^{2}}\left(R_{S}+\frac{1}{g_{m_{1}}}\right) \Delta R_{L}}{1+g_{m_{2}} R \frac{V_{2}}{V_{o}}+\frac{R_{S}}{R_{L_{o}}}+\frac{1}{R_{L_{o}} g_{m_{1}}}} \tag{6}
\end{equation*}
$$

Because the number of stages in the series element is fixed, the value of $\mathrm{gm}_{\mathrm{m}}$ can be determined from the following equation: 5

$$
\begin{align*}
& \mathrm{g}_{\mathrm{m}_{1}}=1 \div\left(\frac{1}{\mathrm{~g}_{11}}+\frac{1}{\mathrm{~g}_{\mathrm{m}_{12} h_{f e_{11}}}}+\ldots\right. \\
& \left.+\frac{1}{\mathrm{~g}_{\mathrm{m}_{1 \mathrm{n}}} \mathrm{~h}_{\mathrm{fe}_{11} \mathrm{hfe}_{12}} \cdots \mathrm{~h}_{\mathrm{fe}_{1(\mathrm{n}-1)}}}\right) \tag{7}
\end{align*}
$$

where $g_{m_{1 n}}$ is the small-signal transconductance of the $Q_{1_{n}}$ stage and $h_{f e l_{n}}$ is the small-signal current gain of the $Q_{1 n}$ stage. Both parameters are measured at the rated collector current for stage $Q_{1_{n}}$.

A value of equivalent transconductance ( $g_{\mathrm{m}}{ }_{2}$ ) for the entire dc amplifier element can then be found by substitution of fixed values for all other parameters in equation (6). This value of $g_{m}$ governs the number of stages required to provide the desired outputvoltage control.
10. Select the transistor for the first stage in the amplifier $Q_{21}$. The forwardbias common-emitter breakdown-voltage rating of the transistor should not be exceeded in the type of amplifier configuration chosen (see Fig.3). $Q_{21}$ is designed to operate at a collector current $I_{2}$ into a load R. The overall small-signal voltage gain of the amplifier must be at least $g_{m_{2}} \times R$. Because the bleeder current $I_{o}$ through $R_{1}$ and $R_{2}$ is of the same order of magnitude as $I_{2}$ (usually $I_{2}>I_{o}$ ), and $I_{2 n}$ is required to be much smaller than $I_{o}$, $\mathrm{I}_{2 \mathrm{n}}$ is also much smaller than $\mathrm{I}_{2}$. Besides providing a vol tage gain of $g_{m_{2}} \times R$, therefore, the amplifier element must also provide a current gain.

4 See Appendix, equation (A-5).
5 See Appendix, equation (A-9).
11. Choose the amplifier type and number of stages. If temperature stability is required, a differential amplifier should be used at the input. When the maximum amount of gain per stage is desired, a reference diode should be used in the emitter circuit of each transistor rather than an emitter resistance.
12. For protection against overload, the following arrangements $c$ an be used:
(a) protection by limiting resistance. A resistance $R_{x}$ placed in series with the source resistance $\mathrm{R}_{\mathrm{S}}$ limits the current to a safe maximum value; the short-circuit current $I_{S C}=\frac{V_{S}}{R_{S}+R_{x}}$
(b) protection by current limiting. A reference diode $V_{D}$ used in series with a resistance $R_{A}$ (as shown in Fig.4) supplies a


Fig. 4 - Circuit using current limiting to provide protection against overload.
constant current to the control input of the series element if the output voltage falls to some predetermined level. The output current is limited to the control current times the current gain of the series element.

## Sample Design Problem

1. Conditions and Requirements:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=28 \text { volts } \\
& \mathrm{V}_{\mathrm{S}}=45 \text { volts } \\
& \mathrm{R}_{\mathrm{S}}=8 \text { ohms } \\
& \mathrm{R}_{\mathrm{L}_{\mathrm{o}}}=42 \text { ohms } \\
& \mathrm{I}_{\mathrm{L}_{\mathrm{o}}}=0.67 \text { ampere } \\
& \text { Chassis Temperature }=55^{\circ} \mathrm{C} \\
& \text { Circuit }- \text { shown in Fig. } 1 \\
& \Delta \mathrm{~V}_{\mathrm{o}}= \pm 0.1 \text { volt (requirement) } \\
& \Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \text { volts } \\
& \Delta \mathrm{R}_{\mathrm{L}}= \pm 14 \text { ohms } \\
& \mathrm{I}_{\mathrm{L}_{\mathrm{min}}}=0.5 \text { ampere; } \mathrm{I}_{\mathrm{L}_{\max }}=1 \text { ampere }
\end{aligned}
$$

2. Select a silicon reference diode which will supply a voltage $V_{R}$ approximately equal to $0.5 \mathrm{~V}_{0}$ (in this case, use 12 volts) and have a power-dissipation capability of 400 milliwatts at 25 degrees centigrade or 300 milliwatts at 55 degrees centigrade. The maximum diode current $I_{V R_{\text {max }}}$ will then be $400 / 12$, or 33 milliamperes, at 25 degrees centigrade, and $300 / 12$, or 25 milliamperes, at 55 degrees centigrade.
3. Select $V_{2}$ and $I_{2}$.
(a) $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{R}}+\frac{1}{2}\left(\mathrm{~V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{R}}\right)=12+1 / 2(28-12)=20$ volts.
(b) $\mathrm{I}_{2}<\mathrm{I}_{1} / 20=0.75 / 20=37.5 \mathrm{milliamperes}$

$$
\text { Select } I_{2}=10 \text { milliamperes }
$$

4. Select a series transistor $\mathrm{Q}_{11}$ having the following voltage ratings:

$$
\begin{aligned}
& \mathrm{V}_{C E_{\text {max }}} \geqq \mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}\left(1+\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{L}_{0}}+\Delta \mathrm{R}_{\mathrm{L}}}\right) \\
& =45+5-28(1+8 / 56) \\
& =50-1.14(28)=50-32 \\
& =18 \text { volts } \\
& \mathrm{V}_{\mathrm{CE}_{\text {sat }}} \leqq \mathrm{V}_{\mathrm{max}}-\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}\left(1+\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}-\Delta R_{\mathrm{L}}}\right) \\
& =45-5-28(1+8 / 28) \\
& =40-1.29(28)=40-36.2 \\
& =3.8 \text { volts } \\
& \text { at } \mathrm{I}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{o}}\right) /\left(\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}-\Delta \mathrm{R}_{\mathrm{L}}\right)=1 \text { ampere } \\
& \mathrm{I}_{\mathrm{m}_{\text {max }}}>\left(\mathrm{V}_{\mathrm{o}}\right) /\left(\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}-\Delta \mathrm{R}_{\mathrm{L}}\right)=28 / 28=1 \text { ampere } \\
& \text { Therefore, } \mathrm{I}_{\mathrm{C}_{\text {max }}} \approx \mathrm{I}_{1_{\text {max }}} \\
& \text { Because } \frac{V_{S}+\Delta V_{S}-V_{o}}{2 R_{S}}=\frac{45+5-28}{2(8)}=22 / 16 \\
& =1.37 \text { amperes }>\mathrm{I}_{1_{\text {max }}} \text {, then } \\
& P D_{\text {max }}=\left(V_{S}+\Delta V_{S}-V_{o}\right)\left(I_{1_{\text {max }}}\right)-\left(I_{1_{\text {max }}}\right)^{2} R_{S} \\
& =(50-28)-(1.0)^{2}(8)=22-8 \\
& =14 \text { watts at a case temperature of } 55 \\
& \text { degrees centigrade }
\end{aligned}
$$

The RCA-2N1489 silicon power transistor meets these requirements. The following design-center values can be obtained from the published data for the 2N1489:
$\mathrm{I}_{\mathrm{C}}=0.67$ ampere $\mathrm{hFE}=50$
$\mathrm{V}_{\mathrm{BE}}=0.8$ volt
$h_{f e}=30 \quad g_{m}=5$ mhos
5. Let $\mathrm{I}_{1 \mathrm{n}}=\mathrm{I}_{2} / 10=10 / 10=1$ milliampere. $\mathrm{h}_{\mathrm{FE}_{11}} \cdot \mathrm{~h}_{\mathrm{FE}_{12}} \ldots \mathrm{~h}_{\mathrm{FE}_{1 \mathrm{n}}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{1 \mathrm{n}}}=\frac{0.67}{1.0 \times 10^{-3}}=670$

$$
\frac{I_{1}}{I_{\mathrm{ln}_{\mathrm{n}}}} \cdot \frac{1}{\mathrm{hFE}_{11}}=\frac{670}{50}=13.4
$$

This requirement can be met by use of a single additional series-regulator stage having a minimum dc current gain $\mathrm{hFE}_{12}$ of 13.4. The current in transistor $Q_{11}$ is then given by

$$
\mathrm{I}_{11}=\frac{\mathrm{I}_{1}}{\mathrm{hFE}_{11}}=\frac{0.67}{50}=
$$

0.0134 ampere or 13.4 milliamperes

An RCA-2N1481 satisfies this current requirement. The following design-center values can be obtained from the published data for the 2N1481 for a collector current of 13.4 milliamperes:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{BE}}=0.7 \text { volt } & \mathrm{h}_{\mathrm{FE}}=40 \\
\mathrm{~g}_{\mathrm{m}}=0.75 \mathrm{mho} & \mathrm{~h}_{\mathrm{fe}}=50
\end{array}
$$

6. Solve for $\mathrm{V}_{1}$ as follows:

$$
\mathrm{V}_{1}=\mathrm{V}_{\mathrm{BE}_{1}}+\mathrm{V}_{\mathrm{BE}_{2}}=0.8+0.7=1.5 \text { volts. }
$$

7. The design-center value for $\mathrm{V}_{11}$ is given by

$$
\begin{gathered}
\mathrm{V}_{11}=\frac{\mathrm{V}_{11_{\text {min }}}+\mathrm{V}_{11_{\max }}}{2} \\
\mathrm{~V}_{11}=\mathrm{V}_{\mathrm{S}_{\mathrm{o}}}-\mathrm{V}_{\mathrm{o}}-\frac{\mathrm{V}_{\mathrm{o}} \mathrm{R}_{\mathrm{S}} \mathrm{R}_{\mathrm{L}_{\mathrm{o}}}}{\mathrm{R}_{\mathrm{L}_{\mathrm{o}}{ }^{2}-\Delta \mathrm{R}_{\mathrm{L}}{ }^{2}}=} \\
45-28-\frac{(28)(8)(42)}{(42)^{2}-(14)^{2}} \\
=17-\frac{9400}{1760-195}=11 \text { volts }
\end{gathered}
$$

8. Solve for $R$ using the following relation: $R=\frac{\mathrm{V}_{11}-\mathrm{Vi}_{1}}{\mathrm{I}_{2}}=\frac{11-1.5}{10 \mathrm{ma}}=\frac{9.5}{10 \times 10-3}=950 \mathrm{ohms}$ (Use a 1000 -ohm resistor.)
9. Solve for $\mathrm{g}_{\mathrm{m}}$ as follows:

$$
\Delta \mathrm{V}_{\mathrm{o}}=\frac{\Delta \mathrm{V}_{\mathrm{S}}+\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{L}_{0}}{ }^{2}}\left(\mathrm{RS}_{\mathrm{S}}+\frac{1}{\mathrm{~g}_{\mathrm{m}_{1}}}\right) \Delta \mathrm{R}_{\mathrm{L}}}{1+\mathrm{g}_{\mathrm{m}_{2}} \mathrm{R} \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{\mathrm{o}}}+\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{L_{0}}}+\frac{1}{\mathrm{R}_{\mathrm{L}_{0} g_{\mathrm{m}_{1}}}}}
$$

where

$$
\begin{gathered}
g_{m_{1}}=\frac{1}{\frac{1}{g_{m_{11}}}+\frac{1}{g_{m_{12}} h_{\mathrm{fe}_{11}}}}=\frac{1}{\frac{1}{5}+\frac{1}{0.75 \times 30}}= \\
\frac{1}{244}=4.1 \text { mhos }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S}} & =5 \text { volts } & \mathrm{R}_{\mathrm{S}}=8 \text { ohms } \\
\Delta \mathrm{V}_{0} & =0.1 \text { volt } & \mathrm{V}_{\mathrm{B}}=14 \text { volts } \\
\mathrm{V}_{\mathrm{o}} & =28 \text { volts } & \Delta \mathrm{R}_{\mathrm{L}}=14 \text { ohms } \\
\mathrm{R}_{\mathrm{L}_{0}} & =42 \text { ohms } &
\end{aligned}
$$

Substitution of these values in the above equation produces the following result:

$$
\begin{gathered}
0.1=\frac{5+\frac{28}{1769}(8+0.24) 14}{1+g_{\mathrm{m}_{2}} \frac{(1000)(14)}{28}+\frac{8}{42}+\frac{1}{(42)(4.1)}} \\
=\frac{5+1.87}{1+500 \mathrm{~g}_{\mathrm{m}_{2}}+0.19+0.06} \\
=\frac{6.87}{1.25+500 \mathrm{~g}_{\mathrm{m}_{2}}}=0.1
\end{gathered}
$$

$50 \mathrm{~g}_{\mathrm{m} 2}=6.65, \mathrm{~g}_{\mathrm{m}_{2}}=0.132$ mho (minimum)
10. An RCA-2N1481 transistor should provide the collector current of 10 milliamperes for $\mathrm{Q}_{21}$. The following design-center values can be obtained from the published data for the 2N1481 for this 10 -milliampere current:

$$
\mathrm{g}_{\mathrm{m}}=0.4 \mathrm{mho} \quad \mathrm{hFE}_{\text {min }}=20
$$

Because this value of $g_{m}$ is greater than the calculated $\mathrm{g}_{\mathrm{m}_{2}}$, only one stage of amplification is required.

The circuit for the amplifier element is shown in Fig. 5. The values of resistors $\mathrm{R}_{1}$ and


Fig. 5 -Amplifier element for series voltage regulator.
$\mathrm{R}_{2}$ are determined as follows:

$$
\begin{aligned}
& \mathrm{I}_{21} \frac{\mathrm{I}_{2}}{\mathrm{~h}_{\mathrm{FE}}^{21}} \\
& \frac{10 \times 10^{-3}}{20}=0.5 \text { milliampere }= \\
& 500 \text { microamperes }
\end{aligned}
$$

Because $I_{0} \gg I_{21}$, select $I_{0}=10$ milliamperes.

$$
\begin{gathered}
\mathrm{V}_{2} \approx \mathrm{~V}_{\mathrm{R}}=12 \text { volts } \\
\mathrm{R}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{\mathrm{o}}}=\frac{12}{10}=1200 \text { ohms } \\
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{2}}{\mathrm{I}_{\mathrm{o}}}=\frac{28-12}{10}=\frac{16}{10}=1600 \text { ohms }
\end{gathered}
$$

(Use 1500 ohms.)
The complete regulator circuit is shown in Fig. 6.


Fig. 6 - Complete circuit for transistorized series voltage regulator.

## SHUNT VOLTAGE REGULATORS

Although shunt regulators are not as efficient as series regulators for most applications, they have the advantage of greater simplicity. The shunt regulator includes a shunt element and a reference-voltage element. The output voltage remains constant because the shunt-element current changes as the load current or input voltage changes. This current change is reflected in a change of voltage across the resistance $R_{1}$ in series with the load. A typical shunt regulator is shown in Fig. 7.


Fig. 7-Typical transistorized shunt voltage regulator.

The shunt element contains one or more transistors connected in the common-emitter configuration in parallel with the load. A typical transistor shunt element is shown in Fig. 8.


Fig. 8 - Typical transistor shunt element.

## Design Procedure

The following step-by-step procedure is recommended for the design of transistorized shunt-type voltage regulators. Equations used in this procedure are derived in the Appendix.

1. List input requirements, load conditions, and output-voltage requirements in terms of the following parameters:
input voltage ( $\mathrm{V}_{\mathrm{S}}$ ),
input-voltage variation ( $\Delta \mathrm{V}_{\mathrm{S}}$ ),
source resistance (RS),
output load resistor ( $\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}$ ),
output voltage ( $V_{0}$ ), and
output-voltage variation $\left(\Delta \mathrm{V}_{\mathrm{o}}\right)$.
The terms $V_{S}$ and $R_{L_{o}}$ are design-center values; $\Delta V_{S}$ and $\Delta R_{L}$ are maximum deviations from these values.
2. Select a transistor type which will be within ratings for the following values of
$\mathrm{V}_{1_{\text {max }}}, \mathrm{I}_{1_{\text {max }}}$, and maximum dissipation $\mathrm{PD}_{1_{\text {max }}}$ across the shunt element when both line and load regulation are required:

$$
I_{1_{\text {max }}}=I_{L_{\text {max }}}=\frac{V_{o}}{R_{L_{o}}-\Delta R_{L}}
$$

$$
\mathrm{V}_{1_{\max }}=\mathrm{V}_{0} \text { (under forward-bias conditions) }
$$

$$
\mathrm{PD}_{1_{\max }}=\mathrm{I}_{1_{\max }} \mathrm{V}_{1_{\max }}
$$

3. Select a value for resistance $R_{2}$ to provide a current $I_{o}$ greater than the minimum value required to maintain the value of the reference voltage (i.e., to break down a voltagereference diode, for example). The following relation may be used as a guide:

$$
\mathrm{R}_{2}=\frac{\mathrm{n}}{\mathrm{I}_{0}}
$$

where n is the number of stages in the shunt element.
4. The output resistance $R_{o}$ of the regulator is given by

$$
\mathrm{R}_{\mathrm{o}}=\frac{2 \Delta \mathrm{~V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{o}}} \cdot \mathrm{R}_{\mathrm{L}_{\mathrm{o}}}
$$

Assume a value of series resistance for the reference $R_{f}$; then the equation for output resistance can be solved for hfe: 6

$$
\begin{equation*}
R_{o}=\frac{R_{f}+\frac{h_{\text {ie }} R_{2}}{h_{\text {ie }}+R_{2}}}{1+h_{f e} \frac{R_{2}}{R_{2}+h_{\text {ie }}}} \tag{8}
\end{equation*}
$$

where $h_{f e}=h_{f e_{1}} \cdot h_{f_{e 2}} \cdot \cdots h_{f e} 1_{n}$, and $h_{f_{f}}$ and $h_{i e}$ are the ac current transfer ratio and the input impedance, respectively, of the $\mathrm{Q}_{\mathrm{n}}$ stage.
5. Determine $I_{n}$ and $V_{n}$ for the shunt element, as follows:

$$
I_{\mathrm{n}}=\frac{\mathrm{I}_{1}}{\mathrm{~h}_{\mathrm{FE}_{1}} \cdot \mathrm{~h}_{\mathrm{FE}_{2}} \cdot \cdots \mathrm{~h}_{\mathrm{FE}}^{\mathrm{n}-1}} \mathrm{I}
$$

where $\mathrm{h}_{\mathrm{FE}_{\mathrm{n}-1}}$ is the dc current gain of the $\mathrm{Q}_{\mathrm{n} \text {-1 }}$ stage of the shunt element measured at a collector current of $\mathrm{I}_{\mathrm{n}-1}$.

$$
V_{n}=V_{1}+V_{2}+\cdots V_{n-1}
$$

where $V_{n}$ is the base-to-emitter voltage of the $Q_{n-1}$ stage at a collector current of $I_{n-1}$.

[^1]6. Select a voltage reference source which has a resistance less than the value that had been assumed for $R_{f}$ (or recompute $h_{f e}$ using a new value of $R_{f}$ ), a voltage $V_{R}=V_{o}-V_{n}$, a maximum current greater than $I_{o}+I_{n}$, and a maximum dissipation rating greater than $\mathrm{V}_{\mathrm{R}}\left(\mathrm{I}_{\mathrm{o}}+\mathrm{I}_{\mathrm{n}}\right)$.
7. Determine the value of series resistance $R$, including both source resistance $R_{S}$ and external resistance $R_{1}$. $R$ is dependent on the value of the input voltage $V_{S}$ and its variation $\Delta V_{S} ; R$ may also be expressed in terms of $V_{S}$, as follows:
\[

$$
\begin{gathered}
V_{S}+\Delta V_{S}=V_{o}+R\left(I_{L_{\max }}+I_{1_{\max }}\right) \\
V_{S}-\Delta V_{S}=V_{0}+R I_{1_{\max }}
\end{gathered}
$$
\]

For the usual case, $I_{1_{\text {max }}}=I_{L_{\text {max }}}$.

## Sample Design Problem

1. Conditions and requirements:

Circuit - shown in Fig. 7
$\mathrm{R}_{\mathrm{S}}=10$ ohms
$\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}=110$ ohms
$\Delta R_{L}= \pm 55$ ohms
$\mathrm{V}_{\mathrm{S}}=49$ volts
$\Delta V_{S}= \pm 7$ volts
$\mathrm{V}_{\mathrm{o}}=28$ volts
$\Delta V_{o}= \pm 0.0125$ volt
Maximum transistor case temperature $=$ $55^{\circ} \mathrm{C}$
2. $I_{1_{\text {max }}}=I_{L_{\text {max }}}=\frac{V_{o}}{R_{L_{o}}-\Delta R_{L}}=0.5$ ampere $\mathrm{V}_{1_{\text {max }}}=\mathrm{V}_{\mathrm{o}}=28$ volts under forwardbias conditions

$$
\begin{aligned}
& \mathrm{PD}_{1_{\text {max }}}=\mathrm{V}_{1_{\text {max }}} \mathrm{I}_{1_{\text {max }}}=(28)(0.5)= \\
& 14 \text { watts }
\end{aligned}
$$

Select the RCA-2N1485 to meet all the above requirements.
3. Select a voltage reference diode for $V_{R}$, and let $I_{o}=2$ milliamperes. If two stages are used for the shunt element, the value of $\mathrm{R}_{2}$ is given by

$$
\mathrm{R}_{2}=2 / 2 \times 10^{-3}=1000 \text { ohms. }
$$

4. The output resistance $R_{o}$ is given by $\mathrm{R}_{\mathrm{o}}=\left(2 \Delta \mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{o}}\right) \quad\left(\mathrm{R}_{\mathrm{L}_{\mathrm{o}}}\right)=(0.025 / 28)(110)$ $=0.10 \mathrm{ohm}$

If $R_{f}$ has a maximum value of 5 ohms, and the input impedance $h_{i e}$ of the $Q_{n}$ stage has a typical value of 50 ohms, equation (8) may be solved for $\mathrm{h}_{\mathrm{fe}}$ as follows:

$$
\begin{gathered}
0.10=\frac{5+\frac{(50)(1000)}{50+1000}}{1+h_{f e} \frac{1000}{1000+50}} \\
0.1+0.095 h_{f e}=5+48=53 \\
h_{f e}=\frac{52.9}{0.095}=560
\end{gathered}
$$

Consequently, two stages are required for the shunt element, with a product $h_{f e_{1}} \mathrm{xhfe}_{2}=560$. The 2N1485 selected in step $2{ }^{\text {for }}$ the first stage $\mathrm{Q}_{1}$ has the following design-center values:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{1}=\mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}_{\mathrm{o}}}=250 \text { milliamperes } \\
\mathrm{h}_{\mathrm{fe}}^{1}
\end{gathered}=56 \mathrm{~h}=50 \mathrm{~h}_{\mathrm{FE}_{1}}=50 \mathrm{~V}_{\mathrm{BE}}=0.8 \text { volt }
$$

For the second stage $Q_{2}$, therefore, the following values are required:

$$
\begin{aligned}
& h_{f_{e}}=560 / 56=10 \\
& I_{c}=I_{1} / h_{\mathrm{FE}_{1}}=250 \mathrm{ma} / 50=5 \mathrm{milliamperes} .
\end{aligned}
$$

Select an RCA-2N1481 transistor to meet these requirements. The following design-center values can be obtained from published data for the 2N1481 for a collector current of 5 milliamperes:

$$
\begin{array}{ll}
\mathrm{h}_{\mathrm{fe}_{2}}=20 & \mathrm{~h}_{\mathrm{ie}}=50 \\
\mathrm{~h}_{\mathrm{FE}_{2}}=25 & \mathrm{~V}_{\mathrm{BE}}=0.7 \text { volt }
\end{array}
$$

This value of $\mathrm{h}_{\mathrm{ie}}=50$ was determined by taking the slope of the typical $V_{B E}$ vs $I_{B}$ curve at the 5 -milliampere collector-current operating point, where $I_{B}=I_{C} / h_{F E} 2=5 / 25=0.2$ milliampere. If actual measurements indicate a different value from that assumed above in step 4, the new value is used in equation (8) and $h_{f e}$ is recomputed.
5. The current $I_{2}$ and voltage $V_{2}$ are calculated as follows:

$$
\mathrm{I}_{2}=\frac{\mathrm{T}_{1}}{\mathrm{~h}_{\mathrm{FE}_{1}} \cdot \mathrm{~h}_{\mathrm{FE}_{2}}}=\frac{250}{50.25}=0.20 \text { milliampere }
$$

As listed in step 4, the base-to-emitter voltage of the 2N1485 for the design-center collector current of 250 milliamperes is 0.8 volt. For the 2N1481, the base-to-emitter voltage for the design-center collector current of 5 milliamperes is 0.7 volt. Therefore, $V_{2}$ is given by

$$
V_{2}=0.8+0.7=1.5 \text { volts. }
$$

6. Select the RCA-1N1781 silicon voltage reference diode to meet the following design conditions:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{f}}= & 5 \text { ohms } \\
\mathrm{V}_{\mathrm{R}}= & 28-1.5=26.5 \text { volts } \\
\mathrm{I}_{\max }= & \mathrm{I}_{\mathrm{o}}+\mathrm{I}_{2}=2+0.2=2.2 \\
& \text { milliamperes } \\
\mathrm{PD}_{1}= & 26.5(2.25)=60 \text { milliwatts }
\end{aligned}
$$

7. Let $I_{1_{\text {max }}}=I_{L_{\text {max }}}$, and solve for $R$ as follows:

$$
\begin{aligned}
& 49-7=28+R(0.5) \\
& 42=28+0.5 R \\
& 0.5 R=14 \\
& R=28 \text { ohms }
\end{aligned}
$$

Therefore,

$$
R_{1}=R-R_{S}=28-10=18 \text { ohms. }
$$

The complete circuit for the transistorized shunt voltage regulator is shown in Fig.9.


Fig. 9 - Complete circuit for transistorized shunt voltage regulator.

## APPENDIX

## Series Regulator Design Equations

Derivation of $\Delta V_{o}$ in terms of $\Delta V_{S}$ and $\Delta R_{L}$
From the circuit of Fig. 1, the following assumptions can be made:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{In} \ll \mathrm{I}_{2} \ll \mathrm{I}_{1}} \\
& \mathrm{I}_{1 \mathrm{n}} \ll \mathrm{I}_{\mathrm{o}} \ll \mathrm{I}_{1} \\
& \mathrm{I}_{1} \approx \mathrm{I}_{\mathrm{L}}
\end{aligned}
$$

and the following parameters can be defined:
Total Series Element:

$$
\mathrm{g}_{\mathrm{M}_{1}}=\mathrm{I}_{1} / \mathrm{V}_{1} ; \mathrm{g}_{\mathrm{m}_{1}}=\Delta \mathrm{I}_{1} / \Delta \mathrm{V}_{1}
$$

Total Amplifier Element:

$$
\mathrm{g}_{2}=\mathrm{I}_{2} / \mathrm{V}_{2} ; \mathrm{g}_{\mathrm{m}_{2}}=\Delta \mathrm{I}_{2} / \Delta \mathrm{V}_{2}
$$

The equation for $V_{0}$ may be expressed as follows:

$$
V_{o}=V_{S}-g M_{2} R\left(V_{2}-V_{R}\right)-I_{1}\left(R_{S}+1 / g M_{1}\right) \quad(A-I)
$$

As assumed above,

$$
\mathrm{I}_{1} \approx \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{0} / \mathrm{R}_{\mathrm{L}}
$$

Therefore,

$$
\begin{gather*}
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{S_{2}}-\mathrm{g}_{M_{2}} \mathrm{R}\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{R}}\right)-\left(\mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}}\right)  \tag{A-2}\\
\left(\mathrm{R}_{\mathrm{S}}+1 / \mathrm{g}_{M_{1}}\right)
\end{gather*}
$$

This equation can be modified as follows to include incremental changes in $V_{2}$ :

$$
\begin{align*}
& V_{o}+\Delta V_{o}=V_{S}+\Delta V_{S}-g_{M_{2}} R\left(V_{2}-V_{R}\right) \\
& \quad-g_{m_{2}} R\left(V_{2} / V_{o}\right) \Delta V_{o}  \tag{A-3}\\
& -\left(\frac{V_{o}}{R_{L}+\Delta R_{L}}+\frac{V_{o}}{R_{L}+\Delta R_{L}}\right)\left(R_{S}+\frac{1}{g_{M_{1}}}+\frac{1}{g_{m_{1}}}\right)
\end{align*}
$$

If synthetic division is used and higher-order terms are neglected, equation (A-3) can be rewritten as follows:

$$
\begin{align*}
\mathrm{V}_{\mathrm{o}} & +\Delta \mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{g}_{\mathrm{M}_{2}}\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{R}}\right) \\
& -\mathrm{g}_{\mathrm{m}_{2}} \mathrm{R}^{\left(\mathrm{V}_{2} / \mathrm{V}_{\mathrm{o}}\right) \Delta \mathrm{V}_{\mathrm{o}}-\left(\mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}}\right)}  \tag{A-4}\\
\left(\mathrm{R}_{\mathrm{S}}\right. & \left.+1 / \mathrm{g}_{\mathrm{M}_{1}}\right)-\left(\Delta \mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}}\right)\left(\mathrm{R}_{\mathrm{S}}+1 / \mathrm{g}_{\mathrm{m}_{1}}\right) \\
& +\left(\mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}}{ }^{2}\right)\left(\mathrm{R}_{\mathrm{S}}+1 / \mathrm{g}_{\mathrm{m}_{1}}\right) \Delta R_{\mathrm{L}}
\end{align*}
$$

All the non-constant terms in this equation can then be combined and the equation solved for $\Delta V_{0}$ :

$$
\begin{equation*}
\Delta V_{o}=\frac{\Delta V_{\mathrm{S}}+\left(\mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}}^{2}\right)\left(\mathrm{R}_{\mathrm{S}}+1 / \mathrm{g}_{\mathrm{m}_{1}}\right) \mathrm{R}_{\mathrm{L}}}{1+\mathrm{g}_{\mathrm{m}_{2}} \mathrm{R}\left(\mathrm{~V}_{2} / \mathrm{V}_{\mathrm{o}}\right)+\left(\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{L}}\right)+\left(1 / \mathrm{R}_{\mathrm{L}} \mathrm{~g}_{\mathrm{m}}\right)} \tag{A-5}
\end{equation*}
$$

## Equations for Series Regulator Elements

For the series element shown in Fig. 10, the voltage $V_{1}$ is given by
$V_{1}=V_{B E}\left(Q_{11}\right.$ at $\left.I_{c}=I_{1}\right)+V_{B E}\left(Q_{12}\right.$ at $\left.I_{c}=I_{11}\right)+$


Fig. 10- Typical series regulator element.

Incremental changes in $V_{1}$ and $I_{1}$ are expressed as follows:

$$
\begin{equation*}
\Delta \mathrm{V}_{1}=\frac{\Delta \mathrm{I}_{1}}{\mathrm{~g}_{\mathrm{m}_{11}}}+\frac{\Delta \mathrm{I}_{11}}{\mathrm{~g}_{\mathrm{m}_{12}}}+\ldots+\frac{\Delta \mathrm{I}_{1(\mathrm{n}-1)}}{\mathrm{g}_{\mathrm{m}_{1 \mathrm{n}}}} \tag{A-7}
\end{equation*}
$$

where $g_{m_{1 n}}$ is the ac transconductance of the $\mathrm{Q}_{1 \text { n }}$ stage measured at a collector current of $\mathrm{I}_{1(\mathrm{n}-1)}$.

The current variations in the different stages are given by

$$
\Delta \mathrm{I}_{11}=\frac{\Delta \mathrm{I}_{\mathrm{L}}}{\mathrm{~h}_{\mathrm{fe}_{11}}}, \Delta \mathrm{I}_{\mathrm{ln}_{\mathrm{n}}}=\frac{\Delta \mathrm{I}_{\mathrm{l}(\mathrm{n}-1)}}{\mathrm{g}_{\mathrm{m}_{1 \mathrm{n}}}}, \text { etc. }
$$

where $h_{\text {fe }}$ is the ac current transfer ratio for the $\mathrm{Q}_{1 \mathrm{n}}$ stage at a collector current of $\mathrm{I}_{1(\mathrm{n}-1)}$.

The voltage $\mathrm{V}_{1}$ may then be expressed as follows:

$$
+\frac{\mathrm{V}_{1}=\frac{\Delta \mathrm{I}_{1}}{\mathrm{~g}_{\mathrm{m} 11}}+\frac{\Delta \mathrm{I}_{1}}{\mathrm{hfe}_{11} g_{\mathrm{m}_{12}}}+\ldots}{\Delta \mathrm{I}_{1}}+\frac{\left.\mathrm{h}_{\mathrm{fe}_{11}} \mathrm{~h}_{\mathrm{fe}_{12}} \cdots \mathrm{~h}_{\left.\mathrm{fe}_{1(\mathrm{n}-1)}\right]}\right] \mathrm{g}_{\mathrm{m}_{1 \mathrm{n}}}}{}
$$

Because $g_{m}=\Delta I_{1} / \Delta V_{1}$, the terms in equation (A-8) may be combined as follows to solve for $\mathrm{g}_{\mathrm{m}}$ :

$$
\begin{aligned}
& g_{m_{1}}=1 \div\left(\frac{1}{g_{m_{11}}}+\frac{1}{g_{m_{11}} h_{f e_{12}}}+\ldots\left(A_{-9}\right.\right. \\
& \left.+\frac{1}{\left[h_{f e_{11}} \cdot h_{f_{e} e_{12}}+\ldots+h_{f e_{1(n-1)}}\right] g_{m_{1 n}}}\right)
\end{aligned}
$$

The maximum and minimum input voltages to the series regulator are defined as follows:

$$
\begin{align*}
& V_{i_{\text {max }}}=V_{S_{o}}+\Delta V_{S}-\frac{V_{o}}{R_{L_{o}}+\Delta R_{L}} \cdot R_{S}  \tag{A-10}\\
& V_{i_{\text {min }}}=V_{S_{o}}-\Delta V_{S}-\frac{V_{o}}{R_{L_{o}}-\Delta R_{L}} \cdot R_{S} \tag{A-11}
\end{align*}
$$

The collector-to-emitter voltage ratings for all the transistor stages in the series element under forward-bias conditions must be greater than $V_{11_{\text {max }}}$, where

$$
\begin{gather*}
V_{11_{\text {max }}}=V_{i_{\text {max }}}-V_{o}=V_{S_{o}}+\Delta V_{S} \\
-V_{0}\left(1+\frac{R S}{R_{L_{o}}+\Delta R_{L}}\right) \tag{A-12}
\end{gather*}
$$

The saturation-voltage ratings for $\mathrm{Q}_{11}$ must be less than $V_{11_{\text {min }}}$ at a collector current of $\mathrm{I}_{1_{\text {max }}}$ :

$$
\begin{gather*}
V_{11_{\min }}=V_{i_{\min }}-V_{o}=V_{S_{o}}-\Delta V_{S} \\
-V_{o}\left(1-\frac{R_{S}}{R_{L_{o}}-\Delta R_{L}}\right) \tag{A-13}
\end{gather*}
$$

and

$$
\begin{equation*}
I_{1_{\max }}=\frac{V_{o}}{R_{L_{o}}-\Delta R_{L}} \tag{A-14}
\end{equation*}
$$

The power dissipation PD of $\mathrm{Q}_{11}$ is given by

$$
\mathrm{PD}_{11}=\mathrm{I}_{1} \cdot \mathrm{~V}_{11}=\mathrm{I}_{1}\left(\mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{0}-\mathrm{I}_{1}-\mathrm{R}_{\mathrm{S}}\right)
$$

$$
=\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{0}\right) \mathrm{I}_{1}=\mathrm{I}_{1}{ }^{2} \mathrm{R}_{\mathrm{S}}
$$

$\mathrm{PD}_{11_{\text {max }}}$ occurs when $\mathrm{dPD} / \mathrm{dI}_{1}=0$, and

$$
V_{S}=V_{S_{0}}+\Delta V_{S}
$$

$\mathrm{dPD} / \mathrm{dI}_{\mathrm{L}}=\mathrm{d} / \mathrm{dI}_{1}\left[\left(\mathrm{~V}_{\mathrm{S}_{\mathrm{o}}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}\right) \mathrm{I}_{1}-\mathrm{I}_{1}{ }^{2} \mathrm{R}_{\mathrm{S}}\right]$

$$
-\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{0}-2 \mathrm{I}_{1} \mathrm{R}_{\mathrm{S}}=0
$$

Therefore,

$$
\begin{gather*}
\mathrm{PD}_{11_{\text {max }}} \text { occurs at } I_{1}=\frac{V_{S}+\Delta V_{S}-V_{0}}{2 R_{S}}  \tag{A-15}\\
P D_{11_{\text {max }}}=\left(V_{S}+\Delta V_{S}-V_{0}\right) \frac{\left(V_{S}+\Delta V_{S}-V_{0}\right)}{2 R_{S}} \\
-\frac{R_{S}\left(V_{S}+\Delta V_{S}-V_{o}{ }^{2}\right)}{2 R_{S}} \tag{A-16}
\end{gather*}
$$

Equation ( $\mathrm{A}-16$ ) can be simplified as follows:

$$
\begin{gather*}
\text { If } \frac{\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}}{2 \mathrm{R}_{\mathrm{S}}} \leq \mathrm{I}_{1_{\max }} \\
\text { then } \mathrm{PD}_{11_{\max }}=\frac{\left(\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{o}-\mathrm{V}_{o}\right)^{2}}{4 \mathrm{R}_{\mathrm{S}}}  \tag{A-17}\\
\text { If } \frac{\mathrm{V}_{\mathrm{S}}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{o}}}{2 \mathrm{R}_{\mathrm{S}}} \geq \mathrm{I}_{1_{\max }},
\end{gather*}
$$

$$
\text { then } P D_{11_{\text {max }}}=\left(V_{S}+\Delta V_{S}-V_{o}\right)\left(I_{1_{\max }}\right)
$$

$$
\begin{equation*}
-\mathrm{I}_{1_{\max }}{ }^{2} \mathrm{R}_{\mathrm{S}} \tag{A-18}
\end{equation*}
$$

Derivation of Expressions for Cascaded DC Amplifier Elements

In the cascaded dc amplifier shown in Fig. 11, the current fluctuation $\Delta \mathrm{I}_{2}$ is given by

$$
\Delta \mathrm{I}_{2}=\Delta \mathrm{V}_{22} g_{\mathrm{m} 21}
$$

where
$\Delta V_{22}=\left(V_{2} / V_{22}\right) \cdot \Delta V_{2}\left(\mathrm{Av}_{22} \cdot \mathrm{Av}_{23} \cdot \cdot \mathrm{Av}_{2 \mathrm{n}}\right)$ $A_{V_{2 n}}$ is the voltage gain for the nth stage.


Fig.11-Typical cascaded dc amplifier element.

The ac transconductance $g_{m}$ for the entire amplifier element is given by

$$
\mathrm{g}_{\mathrm{m}_{2}}=\Delta \mathrm{I}_{2} / \Delta \mathrm{V}_{2}
$$

Therefore,

$$
\begin{gather*}
g_{m}=\left(g_{m_{21}} / \Delta V_{2}\right)\left(V_{2} / V_{22}\right)\left(\Delta V_{2}\right) \\
\left(A V_{22} \cdot A V_{23} \cdots A V_{2 n}\right) \quad(A-19) \\
g_{m_{2}}=\left(g_{m_{21}}\right)\left(V_{2} / V_{22}\right)\left(A V_{22} \cdot A V_{23} \cdots A V_{2 n}\right) \tag{A-19a}
\end{gather*}
$$

Both n-p-n and p-n-p types of transistors can also be connected in tandem to produce high gain and a high degree of temperature stability, as shown in Fig. 12. In this circuit,

$$
\begin{gather*}
\Delta I_{c_{2(n-1)}}=\Delta V_{2} \times g_{m_{2 n}}  \tag{A-20}\\
\Delta I_{2}=\Delta I_{c}(n-1) \\
\left.h_{f e_{23}} \cdot h_{f e_{22}} \cdot h_{\mathrm{fe}_{21}}\right) \tag{A-20a}
\end{gather*}
$$

Equations ( $\mathrm{A}-20$ ) and ( $\mathrm{A}-20 \mathrm{a}$ ) can be combined as follows:

$$
\begin{aligned}
& \Delta I_{2}= g_{\mathrm{m}_{2 \mathrm{n}}}\left(\mathrm{~h}_{\mathrm{fe}_{2 \mathrm{n}}} \cdots \mathrm{~h}_{\mathrm{f} \mathrm{e}_{23}}\right. \\
&\left.\mathrm{h}_{\mathrm{fe}_{22}} \cdot \mathrm{~h}_{\mathrm{fe}_{21}}\right) \Delta \mathrm{V}_{2}
\end{aligned}
$$

(A-20b)


Fig. 12 - Tandem connection of transistors used to produce high gain and a high degree of temperature stability.

This equation $c$ an then be solved for $g_{m_{2}}$, as follows:
$g_{m_{2}}=g_{m}{ }_{2 n}\left(h_{f e_{2 n}} \cdot \cdots h_{f e_{23}} \cdot h_{f e_{22}} \cdot h_{f e_{21}}\right)$

$$
(A-21)
$$

## Shunt Regulator Design Equations

Derivation of Output Resistance
The output resistance for a single-stage shunt regulator such as that shown in Fig. 13
is determined as follows: First, the voltage reference $V_{R}$ is replaced by a battery and internal resistance $R_{f}$. The current variations for the ac circuit are then given by

$$
\begin{gather*}
\Delta \mathrm{I}_{2}=\left(\mathrm{R}_{2} / \mathrm{R}_{2}+\mathrm{h}_{\mathrm{ie}}\right) \Delta \mathrm{I}_{\mathrm{o}} \\
\Delta \mathrm{I}_{1}=\left(\mathrm{R}_{2} / \mathrm{R}_{2}+\mathrm{h}_{\mathrm{ie}}\right) \Delta \mathrm{I}_{\mathrm{o}} \mathrm{~h}_{\mathrm{fe}} \tag{A-22}
\end{gather*}
$$



Fig. 13 - Typical single-stage shunt regulator.

The variation in $I_{o}$ is given by

$$
\begin{equation*}
\Delta I_{o}=\frac{\Delta V_{o}}{R_{f}+\frac{R_{2} h_{\text {ie }}}{R_{2}+h_{i e}}} \tag{A-23}
\end{equation*}
$$

Equations (A-22) and (A-23) can be combined as follows:

$$
\begin{equation*}
\Delta I_{1}=\frac{R_{2} h_{\text {ie }}}{R_{2}+h_{\text {ie }}} \times \frac{V_{o}}{R_{\mathrm{f}}+\frac{R_{2} h_{\text {ie }}}{R_{2}+h_{\text {ie }}}} \tag{A-24}
\end{equation*}
$$

The output resistance $R_{o}$ is then defined as follows:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{o}}=\Delta \mathrm{V}_{\mathrm{o}} /\left(\Delta \mathrm{I}_{1}+\Delta \mathrm{I}_{\mathrm{o}}\right) \tag{A-25}
\end{equation*}
$$

$R_{o}=\frac{V_{o}}{\frac{V_{o} R_{2} h_{f e}}{\left(R_{2}+h_{i e}\right) \frac{\left(R_{f}+R_{2} h_{i e}\right)}{\left(R_{2}+h_{i e}\right)}}+\frac{V_{o}}{R_{f}+\frac{R_{2} h_{i e}}{R_{2}+h_{i e}}}}$
(A-26)

$$
\begin{equation*}
R_{o}=\frac{R_{f}+\frac{R_{2} h_{i e}}{R_{2}+h_{i e}}}{\left(1+\frac{R_{2}}{R_{2}+h_{i e}}\right)\left(h_{f e}\right)} \tag{A-27}
\end{equation*}
$$

## THE TR24

## A 24-watt Transistorized High Fidelity Amplifier

## Introduction

This amplifier uses a new type of drift power transistor which is just becoming available in Australia, a type which to date offers the best answer to the audiophile seeking transistors for his equipment. The transistor is the 2 N 2147 , which is a p-n-p diffused collector graded base type, designed primarily for high power audio amplifier applications where wide frequency response and good linearity are required. The 2 N 2147 is particularly well suited for use in low distortion class $B$ amplifiers because of its excellent Beta linearity, low intrinsic base resistance and high cut-off frequency.

The 2N2147 uses the JEDEC TO-3 outline, which is mechanically very similar to the familiar outline of the 2 N 301 and similar types. With a maximum collector to emitter voltage rating of 40 volts with emitter conducting, and a maximum collector to base voltage rating of 50 volts with emitter cut off, the 2 N 2147 is rated for a maximum collector current of 10 amperes and a maximum collector dissipation of 12.5 watts at a mounting flange temperature of $80^{\circ} \mathrm{C}$. The dc forward current transfer ratio with a collector current of 1 ampere and a collector to emitter voltage of -2 volts, is 150 . The alpha cut-off frequency is 50 Kc .

This article describes the first of a series of amplifiers using these new transistors. This unit is a nominal 24 -watt stereo unit ( 12 watts per channel), mains driven, with preamplifier for ceramic or crystal pickup.

## Acknowledgment

This amplifier is based on one of a series developed by Messrs. H. Kleinman and C. Wheatley, of the RCA Semiconductors and Material Division at Somerville, N.J., using both the 2 N2147 and the 2N2148, a similar but lower dissipation type. These amplifiers were developed to exploit the possibilities of the new types, and the interest in them made us decide to develop Australian versions of them, using local parts. In this way the use of these amplifiers could be opened up for local enthusiasts. It is therefore with full acknowledgment to the work of Kleinman and Wheatley, and to RCA, that this material is presented here.

## The Amplifier

The development of the drift power transistor has made possible the construction of high performance audio amplifiers which can equal the performance of the best valve amplifiers. The advantages of transistorized equipment are by now so well known as hardly to need repetition. They include low overall dissipation in the equipment, largely due to the absence of heater requirements, instant play, freedom from microphonics and some types of hum, greater ruggedness and smaller size, among others. But until the introduction of these drift power transistors, the benefits enumerated have had to be obtained at the sacrifice of performance or at a significantly higher cost.

The drift-field power transistor, with a current gain flat to 50 Kc , has therefore opened the door to economical high performance audio amplifiers.


## View of the completed TR24.

The current gain of the transistor is linear to 5 amperes or more, permitting the achievement of low distortion figures. Further, with this linearity at high currents, it is possible to couple a low-impedance loudspeaker system directly to the amplifier without the need for an output transformer.

The output stage in each channel consists of two 2N2147's in a single-ended push-pull arrangement. These two transistors are transformer-driven by a 2 N 591 in each channel, preceded by a 2 N 408 . Negative feedback is provided over the complete main amplifier from the output or loudspeaker connection point to the base of the 2 N 408 predriver stage.

The load impedance of the amplifier is 16 ohms, and it should be noted that because there is no output transformer, one of the loudspeaker leads in each channel will be live. Caution must therefore be exercised to see that this lead is not shorted to ground.

## The Power Supply

The power supply in the original design was used at first, but although the hum level was low, it seemed that some improvement could be made. Here, of course, we are using 50 cps power supplies, which would slightly worsen the results compared with a 60 cps supply.

A completely new power supply was therefore evolved, using an electronic filter or "capacity multiplier." Before describing the arrangement, it may be appropriate here to state our standards of acceptability for hum level in an audio amplifier. There are, of course, measurements that can be made of the hum and noise output referred to the signal output under full gain conditions. These figures need to be treated rather critically, however, as they are usually taken into a resistive load.

Further, with amplifiers having a fairly high output level, even hum and noise figures which appear to be very good can still represent an appreciable, and audible, hum and noise output. A subjective test is therefore always made. This consists of setting up the amplifier with one or two vented enclosure loudspeakers, as the case may be, and running the amplifier with no input in completely silent surroundings. This test is usually applied late at night in a quiet suburban living room. Under these conditions it is expected that there will be no audible hum and noise at one foot or more from either speaker.

As readers will realise, this test, whilst perhaps not very scientific and entirely subjective, is in fact the acid test as far as hum and noise are concerned. It is surprising, reverting to the remarks above on measured hum and noise levels, how little hum and noise output will be audible under these conditions. To get back to the amplifier we are discussing in this article, the unit as now presented produced no audible hum under these conditions, and the barest perceptible background noise was detected with the ear pressed close to the front of the loudspeaker. This test was carried out under conditions in which the mains transformer lamination hum could be detected at the amplifier itself, i.e., under extremely quiet conditions. This test is mentioned here not as a substitute for normal testing, but because it tells the amplifier's story in a very simple way, requires no external equipment, and is therefore easily carried out by anyone.

Returning to the power supply, to provide the correct dc connection conditions for the loudspeakers, the power supply requirement is a 44 -volt collector supply voltage with the centre point ( +22 volts) grounded; i.e., voltages of +22 and -22 about ground are required.

The negative side of the power supply also feeds the driver and preamplifier stages through


Circuit diagram, TR24 main amplifier.
suitable voltage-dropping resistors. In the original design, a full-wave rectifier system was followed by an LC pi filter, the output of which fed the output channels and the driver stages. An electronic filter was then used to smooth the supply for the predriver and preamplifier stages. In the new design shown here, the entire output of the power supply is electronically filtered, and it is estimated that the cost of the power supply in each case would be about the same.

The capacitance multiplier or electronic filter is a very useful device to obtain efficient smoothing in cases such as this where the impedance of the power supply is so low. The problem of smoothing low impedance power
supplies is being met more frequently as the quantity of transistorized equipment increases, and is perhaps therefore worth a few words. As most readers will know, it is basically true to say that the lower the impedance of a power supply, the larger the values of capacitor required to provide a certain amount of smoothing. This follows from the fact that the impedance of the capacitor used must be appreciably lower than the impedance of the power supply to have any worthwhile effect. This raises the bogey of enormous values of smoothing capacitor, with attendant size and cost.

In many cases, and it applies here, the answer is the electronic filter, in which a conventionalsized capacitor can be used. In this system, the

## Parts List for Main Amplifier

## Semiconductors

| 4 | AWV transistors | 2N2147 |
| :--- | :--- | :--- |
| 2 | AWV transistors | 2N408 |
| 2 | AWV transistors | 2N591 |
| 1 | AWV transistor | 2N301 |
| 2 | AWV diodes | 1N2859 |

## Capacitors

C1, C2 $200 \mu \mathrm{f}, 3$ V.W. electrolytic ( $2 \times 100 \mu \mathrm{f}$ in parallel)
C3, C4 $0.005 \mu \mathrm{f}$, ceramic
C5, C6 $33 \rho \mathrm{f}$, ceramic
C7 $\quad 100 \mu \mathrm{f}, 12 \mathrm{~V} . \mathrm{W}$. electrolytic
C8 $\quad 500 \mu \mathrm{f}, 18 \mathrm{~V}$.W. electrolytic
C9, C10,
C11, C12,
C13, C14 $1000 \mu \mathrm{f}, 25$ V.W. electrolytic

## Transformers

T1, T2 Driver transformer. M.S.P. sample No. G1757
T3 Mains transformer. M.S.P. sample No. G1758-1
Primary 0-220-240 volts 50 cps . Secondary 75 volts C.T. at 1.5 amperes.

## Resistors

R1, R2 1800 ohms
R3, R4 2700 ohms
R5, R6 8200 ohms
R7, R8 47 K ohms
R9, R10 680 ohms
R11, R12 22 ohms
R13, R14 220 ohms, 5 watt, W.W.
R15, R16 2.7 ohms
R17, R18 220 ohms, 5 watt, W.W.
R19, R20 2.7 ohms
R21, R22,
R23, R24 0.68 ohm
R25, R26 390K ohms
R27 . 330 ohms, 1 watt
R28 330 ohms, 2 watt
R29, R30 820 ohms, 1 watt
R31 330 ohms, 2 watt
R32 47 K ohms, 1 watt
All resistors $\frac{1}{2}$ watt rating, $10 \%$ tolerance except where stated.

## Miscellaneous

Aluminium plate, matrix board and pins, type 7000 heat sinks, aluminium angle, hardware.


A


B


C

Component layouts in (A) driver and predriver section, (B) output stages, and (C) power supply components.


View of the TR24 main amplifier.
effective capacitance available is the physical value of the component used, multiplied by the current gain of the transistor. For example, in this case, a 2 N 301 is used as the capacity multiplier, and the physical capacitance provided is 500 microfarads. Across the output of the filter, that is, between the emitter and the positive bus of the power supply, the effective capacitance is 500 multiplied by the current gain of the 2N301. The current gain of the transistor here is of the order of 66 times, the effective capacitance across the output of the filter is of the order of 33,000 microfarads. The result speaks for itself.

In the circumstances, it may seem paradoxical to place another 500 microfarads across the output of the filter. There is a reason for this. The use of the electronic filter effectively increases the impedance of the power supply. The variation in current drawn from the power supply is from about 400 ma at no signal to about 1.5 amperes at maximum signal. This is a ratio of nearly $4: 1$, very high to those used to thermionic valve work, and too high in relation to the new value of power supply impedance. The addition of the extra 500 microfarads overcomes this difficulty.

## Construction

This is an unusual amplifier, and an unusual method of construction was used. But although unusual, construction is very simple. Most of the general details can be seen from the accompanying photographs and diagrams.

The complete amplifier, with preamplifier, is constructed on a $6^{\prime \prime \prime} \times 12^{\prime \prime} 14$-gauge aluminium plate which forms the front of the amplifier proper. To the front of this plate is later fixed a front panel carrying the control labels and unit mounting holes. In this way a clean front appearance is presented, and the unit can be fitted in a modified rack fashion, either in an individual case or with other equipment.

The four 2 N 2147 transistors and the 2 N 301 are mounted on five type $70004^{\prime \prime} \times 2^{\prime \prime}$ finned aluminium heat sinks. Colour-coded leads are connected to each transistor and the five units are then stacked up as shown in the illustrations. The matrix board carrying components for the output stages is then mounted on top of the stack and the wiring completed. This method shows a great saving of space and is justified with the great reliability of transistors.

The matrix board assembly with the driver and predriver stages is completely assembled before being mounted on the main amplifier, interconnecting leads to the power transistors and driver transformers being left long enough to reach when the unit is finally mounted. A further section of matrix board carries the power components, filter capacitors and a few miscellaneous parts. This unit also can be assembled before mounting on the amplifier.

It will thus be seen that the method of assembling the main amplifier is very simple. In addition, it results in a great saving of space and provides maximum cooling potential for the power transistor heat sinks. It will not be denied that a little dexterity is needed in making the


A further view of the TR24 main amplifier.
interconnections between the driver assembly and the power transistors and driver transformers. These connections should be made before the preamplifier is mounted, so that the unit can be worked on from both sides. Given this, and the fact that a small pencil-type soldering iron is a "must" for this type of unit anyway, there will be no difficulty.

There will no doubt be some readers who would like to vary the mechanical arrangement of the amplifier. In general, the layout does not appear critical, always with the usual precautions, so that some latitude is available. Adequate heat sinks must be provided for the power transistors and the filter transistor, and reasonably good construction techniques will be required throughout. It is felt that this is not an amplifier for the beginner.

## Performance

Because we are dealing this month only with the main amplifier section of the unit, remarks on performance will in general be restricted to that section. The frequency response of the main amplifier is flat from 20 cps to 25 Kc within $\pm$ $1 \mathrm{db}, 2 \mathrm{db}$ down at 30 Kc and 8 db down at 40 Kc . The response in the supersonic region is quoted to show that there is no undesirable rise of response in that area.

The power output of the amplifier is 12 watts per channel, measured with sine wave input at 1 Kc . This output is obtained at better than $1 \%$ total harmonic distortion. In fact, on the model, the total harmonic distortion for full output was measured at $0.6 \%$. The noise figure is better than -60 db . Full output is obtained for a signal input of 750 millivolts.


Method of arranging the two silicon diodes with a common positive connection, and heat sinking them.

## Summary

It will be seen from the data so far presented that the promise of a transistorized high fidelity amplifier with characteristics comparable with some of the best valve amplifiers has been fulfilled. Because of the simple mains transformer used and the absence of two expensive output transformers, the cost of building this amplifier would bear favourable comparison with the cost of a similar valve amplifier, whilst the use of transistors gives a useful advantage in the matter of size and heat dissipation.

Next month we will deal with a suitable preamplifier to use with this amplifier, intended for use with a crystal or ceramic cartridge.

## NEW RELEASES

## 2N699

The 2N699 is a silicon n-p-n triple-diffused planar transistor, intended for a wide variety of small-signal applications in military and industrial equipment. The 2 N 699 has a minimum gainbandwidth product of 50 Mc ; low output capacitance, low saturation voltages, high breakdown voltage ( $\mathrm{BV} \mathrm{CBO}_{\mathrm{CBO}}$ ) of 120 minimum volts at $\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{ma}$, and utilizes the JEDEC TO-5 package.

## NEW GERMANIUM SWITCHING TRANSISTORS

RCA now brings the mechanical ruggedness of its four-poster, double-welded-base tab structure to twelve medium-speed germanium $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ switching transistors. This tough construction - introduced in the Premium 3907/2N404 Switching Transistor-has now been applied to these new types: 2N388, 2N388-A, 2N1605, 2N1605-A, 2N1302, 2N1303, 2N1304, 2N1305, 2N1306, 2N1307, 2N1308 and 2N1309. All twelve types utilize the JEDEC TO-5 package with base internally connected to case. The p-n-p types 2N1303, 2N1305, 2N1307, 2N1309 and their n-p-n complements types 2N1302, 2N1304, 2N1306, 2N1308 feature a high collectorcurrent rating of 300 milliamperes. The two n -p-n types 2 N 1605 and $2 \mathrm{~N} 1605-\mathrm{A}$ are complements to the industry preferred p-n-p types 2 N 404 and the $2 \mathrm{~N} 404-\mathrm{A}$. Two n-p-n types, 2N388 and 2N388-A, feature a high operating (junction) temperature of $100^{\circ} \mathrm{C}$ and a high typical alpha-cutoff frequency of 14 Mc .

These 12 types provide the equipment designer with a wide range of characteristics values for greater design flexibility, and are tested in strict accordance with military specification MIL-S-19500B.

## 2N2205, 2N2206

These types are two new very high-speed switching types, both silicon n-p-n doublediffused planar epitaxial transistors. The 2 N 2205 and the 2 N 2206 are especially suited for use in industrial and military equipment requiring high reliability and high packaging densities. The 2 N 2205 is electrically identical to the 2N1708, but utilizes the popular JEDEC TO-18 package. The 2 N 2206 is mechanically identical and electrically similar to the 2 N 1708 ,
but has a higher minimum beta ( $\mathrm{h}_{\mathrm{FE}}$ ) of 40 . It is intended for use in saturated-switching applications where a transistor having high minimum beta, short storage time, and extremely small size (JEDEC TO-46 package) are primary design requirements.

## 2N2270

The 2 N 2270 is a silicon triple-diffused planar transistor for small-signal and medium-power applications in industrial and military equipment.

The planar construction ensures exceptionally low noise and low leakage characteristics, whilst the triple-diffused junction design ensures high

## EEV FX294

EEV announce the introduction of a new triode hydrogen thyratron, the FX294, of extremely rugged construction. It has a short recovery time and is therefore suitable for pulse operation at repetition frequencies greater than $10,000 \mathrm{cps}$. The maximum anode current is 60 ma mean and 35 amps peak. The valve is capable of withstanding a shock of 40 g for 10 msec ., a sustained acceleration of 20 g for three minutes, and a vibration acceleration rising from 3 g at 20 cps to 11 g to 50 cps , then levelling to 20 g from 150 cps to 5 Kc . Of all glass construction, the valve is equipped with flying leads for direct connection to associated components; mounting is achieved by means of clamps round the bulb.

## 4037

The 4037 is a pencil-type high-mu, octal-based triode. This type features the coaxial pencil-type structure with an octal base and a large cathode cylinder. The 4037 replaces the 2 C40 in most applications. The 4037 has an amplification factor of 56 and is intended for use in cathodedrive or grid-drive service as a CW local oscillator up to 3500 Mc , an rf power amplifier or mixer up to 1500 Mc , or a frequency multiplier up voltage and dissipation ratings. The 2 N 2270 can operate at junction temperatures up to $200^{\circ} \mathrm{C}$. It has a minimum gain bandwidth product of 60 Mc , useful in applications from dc to 20 Mc .
to 2000 Mc . It can be operated at altitudes up to 100,000 feet without pressurization. The 4037 can deliver a useful power output of 0.1 watt as an unmodulated class C oscillator at 3000 Mc, and 5 watts as anmodulated class C power amplifier at 500 Mc .

## 6263A

The 6263 A is a pencil-type medium-mu triode for military and critical industrial applications. This A-version retains the desirable characteristics of its prototype and, in addition, is designed to meet special tests for low-pressure breakdown, low- and high-frequency vibration, and 1 -hour stability life performance. The 6263A has an amplification factor of 27 , and is intended for use particularly as an rf power amplifier and oscillator in mobile equipment and in aircraft transmitters. It can be operated at altitudes up to 60,000 feet without pressurization. The 6263 A can be operated with full ratings at frequencies up to 500 Mc , and with reduced ratings at frequencies as high as 1700 Mc .

## 7905

The 7905 is a quick-heating beam power valve of the 9 -pin miniature type, designed primarily for use in mobile and emergency-communications equipment. In such equipment, the 7905 is particularly useful in radio-frequency power amplifier, oscillator and frequency-multiplier service at frequencies up to 175 Mc . Features which contribute to the exceptional performance of this new beam power valve at very high frequencies are 18 watts CW input at 175 Mc , and 7 watts useful power output (ICAS) at 175 Mc .

## STOP PRESS

## Transistors type 2N2147, 2N2148 are now in local production. The local product uses the same case as the 2 N301 instead of the TO-3 case; mounting details are the same for both cases.

## (1410




[^0]:    * Maximum rated saturation voltage can be calculated from the rated collector-toemitter saturation resistance and the specified current.
    I See Appendix, equations ( $\mathrm{A}-12$ ) and ( $\mathrm{A}-13$ ).

[^1]:    6 See Appendix equation (A-27).

