COLOR TELEVISION--NTSC STANDARDS - V

In the last issue the development of chrominance signals was described and will be continued in this issue.

DEVELOPMENT OF SUBCARRIER

There still remains two color difference signals which must be placed somewhere within the six megacycle band already occupied by the brightness signal and the audio signal.

One approach would be to minimize the bandwidth of the " Y " signal and place the 600 KC color signals at the high end of the band. The reason this cannot be done is shown in Figure 11A. The "Y" signal must be cut to about 2.1 mc in order to fit the two signals in, which is not enough bandwidth for satisfactory definition.

Fig. 11B indicates another possible approach to the transmission method.

$$
\begin{aligned}
& \text { PICTURE } \\
& \text { CARRIER }
\end{aligned}
$$

SOUND
CARRIER

Fig. 11 -Two methods of sharing 6 mc band. This would mean that some portion of the 6 megacycle band must be shared by both the high definition brightness signal and the low definition color information. The next step is to determine how this could be accomplished.

INTERLEAVING PRINCIPLE

An interesting phenomenon was observed in 1934 by two men connected with Bell Laboratories. They saw, while observing a television signal, that the video spectrum was not completely filled with information. In fact, they saw that the entire information was carried by means of energy at discrete frequency intervals, and the remainder of the spectrum was empty and unused. Upon closer examination, it was seen that the dis-

Fig. 12-Sideband spacing in monochrome channel.
crete frequency intervals had a definite relationship to the synchronizing frequencies used in the television signal. Figure 12 shows what would be seen if a monochrome signal were spread out. Notice that the predominant frequency interval is $\mathbf{1 5 , 7 5 0}$ cycles per second, which is, of course, the horizontal scanning frequency. Surrounding these energy points are smaller amounts of energy separated by 60 cycles per second. There are actually energy points at 30 cps intervals. The energy in this case, however, is very low and need not be considered at this time. This will vary with the particular scene being scanned. The average result, how ever, is as seen in Figure 12.

The previous fact makes one inquire into the possibility of making use of the gaps in between the energy points. If a subcarrier were to be built up whose frequency was a multiple of one half the line frequency, it would lie in one of the empty spaces. An important point to bring out immediately is the effect of modulat ing this subcarrier with color information. The sidebands set up would have the same sideband spacing and would, therefore, fit between energy points of the "Y" signal, as seen in lower half of Figure 13.

HORIZONTAL FREQUENCY $=15,750$ CYCLES/SEC.
Fig. 13-Interleaving of brightness signal and chroma signal using sideband spacing effect.

Having decided that such a subcarrier is possible, the next point is to choose the frequency of the subcarrier.

There is, as might be expected, some interaction between the two signals being interleaved. This must be considered when choosing the frequency of the subcarrier. The first step in minimizing the interaction is to understand how interleaving occurs and, therefore, why there is some interaction.

Energy bunching depends upon the modulation signal being repetitious. A good example of such a repetitious signal is the square wave shown in Figure 14. This illustrates a step-bystep development (or harmonic-byharmonic development) of the square wave. A square wave is made up of a fundamental frequency (fundamental A) and harmonics of that fundamental. The first wave form in Figure 14

Fig. 14—Development of square wave.
shows the fundamental frequency "A" plus the third harmonic "B." The resultant waveform, even with only one harmonic, is begimning to take the form of a square wave. The second series of waveforms indicates the result of adding another harmonic (harmonic " C "). The resultant waveform approaches even more the desired square wave. The third series is, of course, still another harmonic (harmonic " D ") and a resultant which is still closer to the square wave. It can be shown mathematically that the previous explanation holds for any wave form which is repetitious. Any wave which repeats itself periodically is made up of the fundamental freçuency and harmonics of that fundamental.
(Continued next issue)

Each GE tube must satisfy this tough customer 14 different ways before it gets to you!

"What else needs tixing?"

Each General Electric tube you buy gets the OK from John Snyder, our quality control chief. He's a real tough customer who puts GE tubes through the industry's roughest testing routine. He tests 100% for plate current, grid and heater voltage, seal and many other critical factors. Samples of every lot undergo life tests, some up to 2000 hours for lifespan performance evaluation. Actual TV set usage is simulated in a unique heater cycling test which imitates the on-off-on-off punishment tubes must take on the job. If a tube flunks just one test, it's fed to the grinder! No wonder you can stake your reputation on every GE tube from the "service designed" line for all your replacement needs. Stock up at your GE distributor today.

288-26
GENERAL ELECTRIC

RECEIVING TUBE POPULARITY LISTING

Listed below are over 600 receiving tubes in alpha-numerical order. The figure, multiplied by 10,000 represents the estimated usage during 1969

17 CT 3
$17 \mathrm{CU} / 17 \mathrm{C}$ 1704 / 170M4
17DE4 $17 \mathrm{DQ6B}$
$17 \mathrm{GJ5}$
17GT5A
17GV5
$17 J B 6 A$
$17 J M 6$
$17 \mathrm{JN6}$
$17 \mathrm{JT6A}$
$17 J$ T6A
$17 J Z 8$
18 FW
$18 \mathrm{FX6}$
$18 F \times 6$
$18 F Y 6$
19AU4GIA
19 CG 3
19 HV 8
19JN8/19CL8A
19T8
20AQ3/LY
$21 G Y 5$
21 HB 5 A
21JS6A/23JS6A
21126
$21 K A 6$
$211 G 6$
21 LR8
21 LU8
22 BH 3 A
22BW3
22DE4
22JF6
22JG6A
22JR6
22JR6
22JU6
2329
24 BF 11
24 J 28
24LQ6/24JE6C
25AV5GA
25 C 5
25CD6GB
$25 \mathrm{DN6}$
25 EH 5
25L6GT/25WSGT
$27 \mathrm{~GB} 5 / \mathrm{PL} 500$
31 AL 10
31 AS6A
32ET5A
32 ET a
$32 \mathrm{HQ7}$
33GT7
33GY7A
34CE3
35 C 5
35EH5
$35 L 6 G$
$35 W 4$
$35 Y 4$
35 Y 4
35 Z
3
3525GT
38 AM
38
38 HK 7
$38 \mathrm{HK7}$
40 KDO
40 KD 6
42 KN 6
5085
50 C 5
50DC4
50 EH 5
50 HK
50 L 6 GT
$53 \mathrm{HK7}$
60 FX 5
5879
5879
6931
7027
7027A
7199
7355
7355
7408
7408
7543
7591
7591 A
7868
7868
8426A / 12AU6

complete line of GENERAL ELECTRIC SERVICE CASES

MATCHED ARMORED VINYL
 LUGGAGE-TYPE SERVICE CASES

These three luggage-type service cases have the same features as ETR-2701, 2702 and 2704 except they are covered with a heavy laminated vinyl covering that resists scrapes, scratches and stains. They are almost impossible to wear out. All cases have nickel plated hardware and snap locks. Handles are bakelite and guaranteed against breakage.

Holds over one hundred and sixty tubes. Has egg-crate separators to keep miniatures, GT's and compactrons in place. Size-18 x $87 / 16^{\prime \prime} \times 121 /{ }^{\prime \prime}$.
ETRS-4395, ARMORED VINYL SPECIAL "160" SERVICE CASE
Cost \qquad $\$ 14.90$

ARMORED VINYL LUGGAGETYPE GIANT " 365 "

Holds over three hundred and sixty five tubes. Egg-crate separators keep miniatures, GT's and compactrons in position. Separate tool compartment is large enough to hold soldering gun, tools and parts.-Size — $221 / 8^{\prime \prime} \times 10{ }^{2} / 8^{\prime \prime} \times 163 \%^{\prime \prime}$.
ETRS-3915 ARMORED VINYL
GIANT "365" SERVICE CASE
Cost \qquad

ARMORED VINYL LUGGAGE-TYPE SERVICE MASTER "240"

Holds over two hundred and fourty tubes. Egg-crate separators hold miniatures, GT's and compactrons in position. Size-221/8" x $87 / 8^{\prime \prime} \times 133 / 4$ ". ETRS-3750 ARMORED VINYL SERVICE
master "240" service case
Cost

MATCHED PLASTIC TOOL CASES

Here is an assortment of plastic tool cases that will fulfill your complete requirements. Top section is orange-red and bottom grey as shown.
All three cases are made of high-impact polystyrene and are practically indestructible under normal usage. These cases are warp-free, impervious to grease, oil, salt water and even battery acid. The top cover has overlapping edges which prevents water from dripping into case. ETR-3517 and ETR-3280 have two cantilever trays which open automatically as the cover is opened.

ETR-3516 also has two cantilever trays which are easily opened manually. Each individual tray has various size compartments to keep tools, parts, fuses, etc. separated and easy to locate and remove.

ETRS-3517 TOOL CASE
$181 / 4^{\prime \prime}$ long, $91 / 2^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ high
Cost \$10.75

ETRS-3280 TOOL CASE
$153 / 4^{\prime \prime}$ long, $8^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ high
Cost
$\$ 7.75$
ETRS-3516 TOOL CASE
$14^{\prime \prime}$ long, $6^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high
Cost
$\$ 4.40$
 separators. Size — $18^{\prime \prime} \times 83 / 8^{\prime \prime} \times 11 / 11^{\prime \prime}{ }^{\prime \prime} .8$ lbs.
ETRS-2702, "160' SERVICE CASE
Cos! ... 12.50
THE GIANT "365"
Combination tube and tool case . . . holds 365 tubes plus tools to get the job done. Egg-crate separators keep tubes in position. $221 / 8^{\prime \prime} \times 105 / 8^{\prime \prime} \times 151: 3 / 19^{\prime \prime}$. ETRS-2704, GIANT " 365 " Cost

APPLICATION AND TECHNICAL DATA CHART FOR UNIVERSAL TRANSISTORS

		Applications	Power Dissipation (Watts)	Max. Collector Current (IC)	Breakdown Voltage		Freq. (Band Width Prod.)		Typical Current Gain	Case Package	Terminal Drawing	$\begin{gathered} \text { GE } \\ \text { Type } \end{gathered}$
$\underset{\text { TYpe }}{\text { GE }}$	Description				$\begin{gathered} \text { Colliector } \\ \text { To } \\ \text { Base } \\ \text { (BVCBO) } \end{gathered}$	$\begin{gathered} \text { Colisctor } \\ \text { To } \\ \text { Emitter } \\ \text { (BVCEO) } \end{gathered}$						
GE. 1	$\begin{gathered} \text { PNP } \\ \text { Germanium } \end{gathered}$	Mixer/Oscitlator Convertor, RF \& IF Amplifier (AM Radio)	150 MW	100 MA	20	$\begin{aligned} & \text { (CER) } \\ & \text { Min. } \\ & \text { in } \end{aligned}$	5 MH	Iz Min.	70	TO-5	H	GE. 1
GE-2	PNP Germanium	AF Amplifier	200 MW	200 MA	20	20	3 MH	z Typ.	60	TO-5	H	GE-2
GE-3	PNP Germanium	AF Power Amplifier	25	3 A	50	40	400 KH	z Typ.	60	TO-3	c	GE. 3
GE. 4	PNP Germanium	AF High Power Amplifier	50	12 A	50	30	10 KH	\% Min.	55	TO-36	D	GE-4
GE. 5	NPN Germanium	Mixer/Oscillator Converter, RF \& IF Amplifier (AM Radio)	150 MW	100 MA	25	12	5 MH	z Min.	165	TO-5	H	GE-5
GE.6	NPN Germanium	Mixer/Oscillator Convertor, RF Amplifier (AM Radio)	65 MW	20 MA	20	9 (CER)	9 MH	$z \mathrm{Min}$.	110	OV-5	A	GE-6
GE-7	NPN Germanium	IF Amplifier (AM Radio)	65 MW	20 MA	15	15 (CER)	8 MH	z Min.	35	OV-5	A	GE-7
GE-8	NPN Germanium	AF Amplifier	150 MW	200 MA	25	20 (CER)	5 MH	z Min.	130	TO. 5	H	GE-8
GE-9	PNP Germanium	Mixer/Oscillator Convertor, RF \& IF Amplifier (AM-FM Radio)	70 MW	10 MA	30	20 (CER)	108 MH	z Typ.	140	TO-72	F	GE-9
GE. 10	NPN Silicon	Mixer/Oscillator Converter, RF \& IF Amplifier (AM Radio), AF Amplifier	200 MW	100 MA	25	25	200 MH	z Typ.	150	T0.98	E	GE-10
GE-11	NPN Silicon	Mixer/Oscillator Converter, RF \& IF Amplifier (FM Radio), VHF Tuner, UHF Oscillator	200 MW	25 MA	30	12	700 MH	\% Min.	75	T0.98	E	GE-11
GE. 12	NPN Silicon	AF Power Amplifier For 120V Line Operated Stereo Phonographs, Television, Etc. - High Voltage	10	400 MA	300	300	30 MH	$z \mathrm{Min}$.	140	T0.66	c	GE-12
GE-13MP	PNP Germanium	Matched Pairs of GE-3, AF Power Amplifier	25	3 A	50	40	400 KH	z Typ.	60	TO. 3	c	GE-13MP
GE-14	NPN Silicon Silicon	AF Power Amplifier - High Power	115	15 A	100	60	800 KH	z Typ.	45	TO-3	c	GE-14
GE.15MP	NPN Silicon	Matched Pairs of GE-14 for AF Power Amplifier	115	15 A	100	60	800 KH	z Min.	45	TO-3	C	GE-15MP
GE-16	PNP Germanium	AF High Power Amplifiers, Switching	90	10 A	60	45	500 MH	z Min.	60	TO-3	c	GE-16
GE-17	NPN Silicon	FM RF \& Oscillator, TV and Other Low Noise Circuits	500 MW	100 MA	60	30	250 MH	z Min.	80	RO-97A	B	GE-17
GE-18	NPN Silicon	AF Amplifier, Output or Oscillator	800 MW	500 MA	120	80	50 MH	z Min.	80	TO-5	H	GE-18
GE-19	NPN Silicon	High Power AF Amplifier, Output Oscillator, Medium Current	90	4 A	50	50	800 KH	z Min.	40	TO-3	c	GE-19
GE-20	NPN Silicon	Medium AF Amplifier, RF \& IF Amplifier, Oscillator	500 MW	500 MA	25	25	100 MH	z Min.	100	TO-18	H	GE-20
GE-21	$\begin{aligned} & \text { PNP } \\ & \text { Silicon } \end{aligned}$	AF Amplifier, RF \& IF Amplifier, Oscillator	500 MW	500 MA	25	25	100 MH	2 Min .	65	TO-5	H	GE-21
GE-22	PNP Silicon Silicon	AF Amplifier, RF \& IF Amplifier, Oscillator (AM \& FM)	500 MW	500 MA	25	25	100 MH	2 Min .	50	RO-110	8	GE-22
GE-23	NPN Silicon	AF Power Amplifier for use in class A and $B A F$ Power Amplifiers, Communications, Hi -Fi	15	2 A	60	40	50 MH	2 Min .	125	TO-66	C	GE-23
GE-24MP	NPN Silicon	Matched Pairs of GE 23	15	2 A	60	40	50 MH	2 Min .	125	TO-66	c	GE-24MP
GE-25	PNP Germanium	Horizontal and Vertical TV Sweep Circuits and Other High Voltage, High Current Amplifier Application	56	10 A	320	320	1 MH	z Min.	60	TO-3	c	GE-25
GE-26	$\begin{aligned} & \text { PNP } \\ & \text { Silicon } \end{aligned}$	AF Power Amplifier Stereo Tape Players, Communications and $\mathrm{Hi}-\mathrm{Fi}$	20	2 A	60	50	10 MH	z Min.	100	T0.66	C	GE. 26
Field Effec	Transistor		Common Source Forward Transfer Admittance (MNHOS)	Power Dissipation @ $25^{\circ} \mathrm{C}$ Free Air	Gate Current (IG) (MADC)	Zero Gate Voltage Drain Current (1DSS)	Drain Gate Voltaga	Drain Source Voltage VDS (VDC)	Gate Source Breakdown Voltage \checkmark (BR) GSS			
GE-FET-1	Silicon	N Channel Field Effect Transistor	6500 Max .	200 MW	10 MA	$\begin{aligned} & 2 \text { to } 20 \\ & \text { MA } \end{aligned}$	25	25	-25	TO-92	G	GE-FET-1

* Pulse Test: Pulse Width $=100$ MSEC, Duty Cycle $\leq 10 \%$

B

$c^{\text {COLLECTOR }} \quad D$

6

HIGH VOLTAGE

TRANSFORMER SQUEAL

14 INCH COLOR G-1 CHASSIS

There have been some complaints of High Voltage Transformer fundamental frequency squeal in G-1 Chassis Receivers. Current production receivers (EN433 and higher) are being manufactured with an increased HVT core air gap.
The air gap is controlled by special paper tape between the core halves. Originally, one thickness of tape was used to create this air gap. Now, two thicknesses of tape are used to create a 15 mil gap. The proper tape is Scotch Brand No. 280 , which is available from your General Electric Parts Distributor under Catalog Number EP60X9.

To modify an early production receiver, dismantle the HVT and remove the original air gap tape from the core halves. There may be some versions with black plastic electrical tape used as pads between the core and high Voltage Cage. Remove these pieces of tape also. Use four pieces of new tape approximately $11 / 2$ inches long. Attach tape to both ends of both core halves as shown in the drawing. Be careful that the tape does not wrinkle or have foreign material stuck to it, as this air gap dimension is critical.

The second part of the modification is the elimination of the pincushion correction circuit. Remove the brass screws securing the pincushion transformer assembly to the HVT cage and clip the transformer winding leads

close to the terminal board. Discard the pincushion transformer, but salvage the terminal board and insulating strip. Securely mount the terminal hoard and the fish paper insulator in the space formerly occupied by the transformer, using the same brass screws, Cut off any excess length of the screws. To restore continuity in the vertical yoke circuit, the green lead on the pincushion transformer terminal strip has to be moved one terminal to the rear which is a common ground point. This procedure leaves C275 (3 uf) and R275 ($2 \because \Omega$) out of the circuit on the power supply board. They can be left on the board or removed at your discretion.
To insure proper performance of the set, it is essential that both steps of this procedure are performed. Eliminating the pincushion transformer will not adversely affect receiver performance, but will decrease the load on the horizontal output tube resulting in cooler operation and increased reliability.

USE ORDER COUPON BELOW

ORDER COUPON

Order from your local GE electronic components distributor or mail this form to:

General Electric Company
Department " B "
3800 N. Milwaukee Ave.
Chicago, III. 60641

Enclosed is money order or check payable to General Electric Company for:

Quantity

SERVICE CASES

ETRS-2700 Lightweight Plastic
$\$ 26.95$,
ETRS-2701 Service Master " 240 " 17.20 .

ETRS-2702 Special "160"
12.50

ETRS-2704 Giant " 365 "
22.85.

ETRS 3750 Luggage Type-250 tube size.
ETRS 3750 Luggage Type- 250 tube size. 20.95.

ETRS-4395 Luggage Type-160 tube size. 26.70

TOOL CASES
ETRS-2703 Home Service
ETRS-3280 Medium Plastic
14.90
14.88.

ETRS-3516 Small Plastic
ETRS-3517 Large Plastic 14.88.
4.40

TECHNI-TALK PUBLICATIONS
ETR-1095A Three-ring binder with tabbed dividers
and all Tele-Clues and Tele-Clue Schematics published to date
ETR-2000 Three-ring binder with tabbed dividers
for Tele-Clues and Tele-Clue Schematics. 2.25

ETR-2579 Complete set of TECHNI-TALK back issues Vol. 1, No. 1 thru latest issue (with binder) (includes all Tele-Clues and Tele-Clue Schematics) SERVICE AIDS
ETRM-15N-1 Supplement to Essential Characteristics booklet
$\$.50$
ETRO-2162F Order Guide
ETRS... 592
ETRS-4902 7" pegboard tray
(Include applicable state and local tax) $\$$.
.39 .

TOTAL $\$$
NAME
STREET ADDRESS
CITY, STATE and ZIP CODE

Apply power to the receiver and reset the High Voltage to 21 KV at Zero beam current (minimum brightness) with a line voltage of 120 V AC.

Be sure to perform the Safety Check as specified in your G CHASSIS Service Manual after reassembling the receiver.

C-1 CHASSIS - 18 INCH COLOR IMPROVED DEGAUSSING ACTION

Some early production C-1 Chassis receivers were subject to complaints of repeated purity problems. Manual degaussing would correct the impurity but the problem recurred after a short period of time. This has been attributed to the charge remaining in electrolytic capacitor 2C405 after the receiver is turned off.

Degaussing action has been improved in current production receivers by the addition of a $100 \mathrm{~K}, 1 / 2$ watt resistor connected in parallel with 2 C 405 . The resistor is physically located adjacent to 404 .on the power supply board. Receivers bearing serial numbers 5D4and higher are equipped with this resistor. To improve performance, we recommend that the resistor be added to any early production C-1 Chassis which comes in for service.

KE CHASSIS-SERVICE INFORMATION HIGH VOLTAGE ARCING

A few reports have been received concerning intermittent high voltage arcing in the KE Chassis. In some cases this did not occur when the service man was present, hence repeat calls were sometimes necessary to discover the defect.

If you should encounter such a condition, the receiver should be inspected for evidence of high voltage arcing in the most likely places such as defective spark gaps, spark gap capacitors C116 or C117 damaged, anode lead and connector, or arcing to the picture tube shield or neck. If no indication of a defect is found, the 6LJ 6 High Voltage Regulator Tube V17 should be replaced. Some cases of intermittent high voltage arcing have been traced to this tube.

After the problem has been rectified, it is very important that the high voltage be adjusted to the correct value for the particular receiver as described in the KE Chassis Service Manual, Page KES-14. If the high voltage can not be adjusted, it is probable that the arcing has opened cathode resistor R132, The spark-gap capacitors C116 and C117 should also be checked for damage.

MORE OBSCURE PROBLEMS
 ON "KE" CHASSIS

Problem

1. Grayish hum bar floating vertically at low brightness.
2. No Video, Vertical retrace lines, no audio. (Short surge of normal audio immediately after set is turned off.) 3. Horizontal bending or pulling, black floating hum bar.

Cure
Replace C201 and/or C202 (Either may be open)

Replace
 C202

(shorted)
Replace C152 ("B"Section Open)

LEADERSHIP IN ELECTRONICS! LEADERSHIP IN SERVICE AIDS

New Inventory and Order Guide, ETRO-2162F

This new 48-page book lists all receiving tubes, capacitors, and entertainment semiconductors. Each page has a normal stock column, an inventory column, 12 date columns (one for each month) and an average movement column.

This booklet will permit you to check turnover of each product type, keep up-to-date stock records and list stock records and list stock orders and shipments received.
Ask your distributor for ETRO-2162F or use the handy order coupon on page 7. The price is only $\$.25$.

Essential Characteristics Basing Diagrams, ETRM-15N-1

This 64-page booklet contains lasing diagrams for all receiving tubes, fivestar tubes, special purpose tubes, monochrome and color picture tubes.
The index lists each tube type in alpha-numerical order and the basing diagram number for that tube type. Each basing diagram has a list of every tube that uses the same basing diagram number.
This booklet is included as part of the Essential Characteristics hooklet, ETRM-15N. It is now available, however, as a separate publication. Ask your distributor for ETRM-15N-1, or use the handy order coupon on page 7 . The price is only $\$.50$.

7' PEGBOARD TRAY ETRS-4902

Here is a very useful yet inexpensive service aid. The $7^{\prime \prime}$ pegboard tray will helb to keep your workbench free of small parts, components and tools. They will, however, be readily available.

Made of tough Hi-Impact Styrene, they are durable and practically indestructible in general use.

Trays are $7^{\prime \prime} \times 3^{\prime \prime} \times 11 / 2^{\prime \prime}$ deep and will fit either $1 / s^{\prime \prime}$ or $1 / 4$ " pegboard. They are ready to install-no hardware or hooks required. They can be attached and removed without spilling contents.

The price for each 7 " tray, ETRS4902, is only $\$.39$. Ask your distributor for ETRS-4902. If he unable to supply you, use order coupon on page 7 .

-Technitalk

Vol. 21, 3 \& 4
Fall - Winter, 1969
Page
Color Television - NTSC Standards - V1
Each GE tube must satisfy this tough customer 14 different ways before it gets to you!2
Receiving Tube Popularity ratings 3
Complete line of General Electric Service Cases 4
Application and Technical Data Chart for Universal Transistors 6
Service Notes 7

Techni-talk on AM, FM, TV Servising, published quarterly by ELECTRONIC COMPONENTS SALES OPERATION, GENERAL ELECTRIC COMPANY, OAK BROOK EXECUTIVE PLAZA, OAK BROOK, ILLINOIS 60521. In Canada: Canadian General Electric Co., Ltd., 189 Dufferin St,, Toronto 3, Ontario. R. G. Kempton, Editor. Copyright 1969 by General Electric Company.

This sopy of Technii-talk comes to you through the courtesy of your General Electric tube distributor.

