JUNE—JULY 1956

Vol. 8, No. 3

NEW

300 AND 450 MA SERIES-STRING TUBES

Many of the latest model TV receivers will use series-string tubes. Some of these receivers will use 300-ma type tubes, some will use 450 ma type tubes and others will use 600-ma type tubes. Regardless of the current required by the tube heaters they will all have controlled warm-up time if used in a seriesstring circuit.

Receivers with their heaters connected in series have been manufactured for quite a few years and most service technicians are familiar with this type circuit. Prior to 1954 some tubes designed for parallel connected heaters were used in series-string circuits. When used in series-string circuits, some of these tubes did not perform as well as when used in parallel heater circuits. In 1954 it was decided that in view of the trend to lower price receivers a line of tubes should be developed specifically for series-string operation.

It was found that tubes had to be improved in two ways for series-string operation. First, the heater-cathode voltage rating had to be increased because the full a-e line voltage in addition to any applied d-c voltage might be present between these two tube elements. Second, each tube in a series-string circuit had to warm-up at practically the same time. This was necessary in order to prevent any high voltage surges across any particular tube heater.

Both of these improvements were made in a line of tubes first introduced by General Electric and known as the "600 Series" receiving tubes. The heaters used in these tubes as well as all General Electric picture tubes are so

designed that all tubes warm-up within a certain specified time interval. High voltage surges across any tube heater are eliminated and voltage limiting devices are not required.

The development of the "600 Series" receiving tube made possible lower cost TV receivers and initiated the "swing" to portable receivers by a number of TV manufacturers. The service technician has benefited from this in two ways. First, due to lower priced receivers, more people have purchased a second set. Since two receivers require more service than one, more potential service business is now and will continue to be available. Second, portable TV receivers can be brought into the service shop. This type of business should be encouraged since many more receivers can be serviced in a day if travel time can be eliminated. There will also be more profit in this type of service because all of the expenses necessary for home servicing will be reduced. These expenses include gas, oil, depreciation on vehicle, insurance, repairs, etc. The service technician should, therefore, welcome these latest advances made by the tube industry.

The "600 Series" tubes have been used in many series-string type receivers with excellent results. It has been found, however, that since the voltage across all of the tube heaters used in seriesstring receivers seldom equaled the line voltage, some additional component was required to provide proper heater voltages. One method was a tapped transformer such as used on the General Electric "N" line of receivers shown in Fig. 1. This tap provides about 90 volts at 600 ma.

Another method commonly used is a wire wound resistor such as used in the

Fig. 1. Transformer-type supply for series-heater circuit used in General Electric "N" line of receivers.

General Electric "M" chassis shown in Fig. 2. Notice that R-40F is a 40-watt

Fig. 2. Series-heater circuit with resistor used in General Electric "M" line of receivers.

resistor which dissipates a considerable amount of heat. This heat presents a problem to both the manufacturer and the purchaser. The manufacturer must make provision for proper ventilation and the purchaser must pay for the unwanted heat. Since the cathode in each tube requires a specific amount of heat (supplied by the heater) for proper operation, the only significant heat reduction would be to either eliminate the voltage dropping resistor or reduce the current flow through this resistor. This is precisely what was accomplished by the development of the "300 Series" and '150 Series' tubes with controlled warm-up time.

An up-to-date list of all tubes with controlled warm-up time and their prototypes is shown in the chart on pages 2 and 5. It will be noted that some types such as the 6AU6-A and 6CB6A are listed as "300 Series" tubes. Since their prototypes, the 6AU6 and 6CB6, are also 300-ma type, the only difference between the "300 Series" and their prototypes is in the controlled warm-up time characteristic of the heater.

It will also be noticed that there are several versions of a single tube type such as the 7AU7. 9AU7 and the 12AU7. with the 7AU7 listed in both the "300 Series" and "600 Series" columns. The only difference between the 7AU7. 9AU7 and the 12AU7 is the heater voltage and current. Since the 7AU7 has a center-tapped controlled warm-up time heater, it can be used as either a "300 Series" or a "600 Series," depending on the way the heater is connected.

Since the only difference between the new tubes and their prototypes is in the heater, many of these tubes can be tested if the proper heater voltage tap is available. All *other* tube tester settings for the prototype can then be used.

★300 Series		★450 Series		★ 600 Series		PROTOTYPE			
HEATER			HEATER		HEATER		HEA	TER	
TYPE	VOLTS	TYPE	VOLTS	TYPE	VOLTS	TYPE	VOLTS	AMPS.	DESCRIPTION
6AU6-A	6.3	3AF4-A 3BN4	3.2 2.8	2AF4 and A 2BN4 3AL5 3AU6	2.35 2.1 3.15 3.15	6AF4 and A 6BN4 6AL5 12AL5 6AU6 12AU6	6.3 6.3 12.6 6.3 12.6	.225 .2 .3 .15 .3 .15	Triode-UHF Oscillator Triode-RF Amplifier Twin Diode Twin Diode Pentode Pentode
		4BC5	4.2	3AV6 3BA6 3BC5	3.15 3.15 3.15	6AV6 12AV6 6BA6 12BA6 6BC5	6.3 12.6 6.3 12.6 6.3	.3 .15 .3 .15 .3	Duplex-Diode Triode Duplex-Diode Triode Pentode Pentode Pentode
		4BN6 4BU8	4.2 4.2	3BE6 3BN6 3BU8 3BY6	3.15 3.15 3.15 3.15 3.15	6BE6 12BE6 6BN6 6BU8 6BY6	6.3 12.6 6.3 6.3 6.3	.3 .15 .3 .3 .3	Heptode Heptode Gated-Beam Discriminator Twin Pentode Heptode
6CB6-A 6CE5	6.3 6.3	4CB6	4.2	3BZ6 3CB6 3CE5 3CF6 3CS6	3.15 3.15 3.15 3.15 3.15 3.15	6BZ6 6CB6 None 6CF6 6CS6	6.3 6.3 6.3 6.3	.3 .3 .3 .3	Pentode Pentode Improved (High Gm) version of 6BC5 Pentode Heptode
		5BQ7-A 5BZ7	5.6 5.6	3DT6 4BC8 4BQ7-A 4BZ7 5AM8	3.15 4.2 4.2 4.2 4.2 4.7	6DT6 6BC8 6BQ7-A 6BZ7 6AM8	6.3 6.3 6.3 6.3 6.3	.3 .4 .4 .4 .45	Pentode Twin Triode Twin Triode Twin Triode Diode-Pentode
		6AQ5-A	6,3	5AN8 5AQ5 5AT8 5AV8 5B8	4.7 4.7 4.7 4.7 4.7	6AN8 6AQ5 6AT8 None None	6.3 6.3 6.3	.45 .45 .45	Triode-Pentode Beam Pentode Triode-Pentode Triode-Pentode Triode-Pentode
		6BK7-B 6BR8-A 6CG8-A 6CL8	6.3 6.3 6.3 6.3	5BE8 5BK7-A 5BR8 5CG8 5CL8	4.7 4.7 4.7 4.7 4.7 4.7	None 6BK7-A 6BR8 None None	6.3 6,3	.45 .45	Triode-Pentode Twin Triode Triode Pentode Triode Pentode Triode-Tetrode
		6CM8 6J6-A 6T8-A	6.3 6.3 6.3	5CM8 5J6 5T8	4.7 4.7 4.7	None 6J6 19J6 6T8 19T8	6.3 18.9 6.3 18.9	.45 .15 .45	Triode-Pentode Twin Triode Twin Triode Triple Diode-Triode Triple Diode-Triode
9U8-A	9.45	6U8-A	6.3	5U8	4.7	508	6.3	.45	Triode-Pentode

Series-String Receiving Tube Wall Chart

		6X8-A 8AU8	6.3 8.4	5V6-GT 5X8 6AU8 6AW8 and A	4.7 4.7 6.3 6.3 *2.15	6V6-GT 6X8 None 12AY7	6.3 6.3	.45 .45	Beam Pentode Triode-Pentode Triode-Pentode Triode-Pentode Twin Triode
6AX/	6.3			6BA8 and A	6.3	None	12.0	.10	Triode-Pentode
		8BH8 8CG7 8CM7	8.4 8.4 8.4	68H8 68V8 6CG7 6CM7	6.3 6.3 6.3 6.3	None None None None			Triode-Pentode Duplex-Diode-Triode Twin Triode Dissimilar Double Triode
		8CN7	*4.2	6CN7 6S4-A	6.3 6.3	None 6S4	6.3	.6	Duplex-Diode Triode Triode
				6SN7-GTB	6.3	65N7-GT 65N7-GTA	6.3 6.3	6. 6.	Twin Triode Twin Triode
7AU7	7.0	9AU7	*4.7	7AU7	*3.5	12AU7	~6.3	.3	Triode-Pentode
1008	10.5	17AV5-GA 17AX4-GT	16.8 16.8	12AV5-GA 12AX4-GTA	12.6 12.6	6AV5-GA 25AV5-GA 6AX4-GT	6.3 25.0 6.3	1.2 .3 1.2	Beam Pentode Beam Pentode Diode (Damper) Diode (Damper)
				12B4-A	*6.3	1284	*6.3	.6	Triode
				128H7-A 128K5	*6.3 12.6	12BH7 6BK5 25BK5	*6.3 6.3 25.0	.6 1.2 .3	Twin Triode Beam Pentode Beam Pentode
				12BQ6-GA and GTA 12BY7-A	12.6 #6.3	6BQ6-GT 6BQ6-GA 25BQ6-GT 25BQ6-GA 12BY7	6.3 6.3 25.0 25.0 *6.3	1.2 1.2 .3 .3 .6	Pentode Pentode Pentode Pentode Pentode
the state		17C5	168	12C5	12.6	25C5	25.0	.3	Beam Pentode Beam Pentode
12СТ8	12.6			12CA5 12CU6 12D4	12.6 12.6 12.6	6CA5 25CA5 None 6CU6 25CU6 None	6.3 25.0 6.3 25.0	1.2 .3 1.2 .3	Beam Pentode Beam Pentode Triode-Pentode Pentode Pentode Diode (Damper)
College of		170Q6	16.8	12DQ6	12.6	6DQ6	6.3 25.0	1.2	Pentode
				12L6-GT 12W6-GT	12.6 12.6	25L6-GT 50L6-GT 6W6-GT	25.0 50.0 6.3	.3 .15 1.2	Beam Pentode Beam Pentode Beam Pentode
17H3 18A5 ¶	17.5 18.5			19AU4-GTA 25CD6-GA and GB	18.9 25.0	None None 6AU4-GTA 6CD6-G 6CD6-GA	6.3 6.3 6.3	1.8 2.5 2.5	Diode (Damper) Beam Pentode Diode (Damper) Beam Pentode Beam Pentode

Contributions to this column are solicited. For each question, short-cut or chronic-trouble note selected for publication, you will receive \$10.00 worth of electronic tubes. In the event of duplicate or similar items, selection will be made by the editor and his decision will be final. The Company shall have the right without obligation beyond the above to publish and use any suggestion submitted to this column. Send contributions to The Editor, Techni-talk, Tube Department, General Electric Company, Schenectady 5, New York.

USE FOR SPRAY BOTTLES

Most servicemen will agree, a dirty picture tube face can obscure the elarity of an otherwise electrically perfect set. So rather than bother the customer for rags and cleaning agents, I pack along a small quantity of facial tissue, and glass cleaner. A handy non-spill container for the glass cleaner is the new squeeze type bottle with a spray spout. The one I use once contained a well known brand of deoderant. Luckily most of these containers are reusable because the tops can be pryed up for refilling.

Needless to say, your customer will appreciate the sparkling appearance of a freshly cleaned screen, and will surely brand you a thorough workman.

Dan ₩. Damrone 5531 ₩. 79th Oak Lawn, III.

1956-1957

SLIPPING DIAL CORD

Here is an idea I thought might help some other service man. How much time has a busy service man spent trying to repair a radio dial cord that continues to slip at certain places? Dial cord dressing doesn't ordinarily cure this problem. I think I have found a simple cure that really works. Take a small three-cornered file and rough up the shaft and the cord won't slip any more.

NEW CATALOG

Bert Taylor, Jr. B&L Radio & Television Sales & Service 840 Ferris Street, N. W. Grand Rapids. Michigan

G-E PROMOTIONAL AND SERVICE AIDS

for TV and Radio Service Dealers

NEW USE FOR G-E TUBE PULLER

I would like to pass on two service hints which I use and find most practical.

I use a G-E rubber tube puller with the large end slipped over the suction tube of my vacuum cleaner and a 4-ft, length of small rubber tubing inserted into the small end and held with a rubber band. The small tube is used for chassis cleaning in relatively inaccessible spots and does a good job.

I have assembled a 5-ft. jumper cord with a male interlock plug on one end and a female receptacle on the other end. This is used to connect the back panel or the H.V. cage cover to the chassis of the set.

This device saves the search for the wall receptacle, the occasional need for an extension cord, the possibility of disconnecting a clock or floor lamp and of disturbing drapes, tables, etc.

A. J. Fister 8006 Washington St. St. Louis 14, Mo.

Editor's Note: The jumper cord described above is available as Catalog Number ETR-1090 from General Electric Tube Distributors.

HORIZONTAL TROUBLE

This information refers to all RCA sets using the Syncroguide system in the horizontal oscillator. Many cases of intermittent loss of horizontal oscillator frequency can be caused by trouble in the .01 mfd. condenser across the wave form coil of the horizontal oscillator transformer. Most of the troublesome condensers are those using the white casing.

The correct fix is to replace the condenser with a high-grade unit of .01 mfd. capacity at 600 volts and then adjust the wave form with an oscilloscope for proper wave shape as shown in the manufacturer's service notes.

Ralph Hunter Hunter's Radio Center 450 Main St. Catskill, N. Y.

6BV8 DUPLEX-DIODE TRIODE

The 6BV8 is a miniature duplex-diode mediummu triode in which separate cathode and plate connections are provided for each diode section. The tube is intended primarily for service as a combined synchronous detector and chrominance amplifier in color television receivers. The high perveance characteristic of the triode section adapts the tube particularly to this service. It is also suitable for use as a combined FM detector and audio-frequency voltage amplifier.

Heater	Voltage, AC or DC 6.3	Volts
Heater	Current	Amperes
Heater	Warm-up Time	Seconds

AVERAGE CHARACTERISTICS

Plate Voltage	75	200	Volts				
Grid Voltage	0		Volts				
Cathode-Bias Resistor		330	Ohms				
Amplification Factor		33					
Plate Resistance, approx-							
imate		5900	Ohms				
Transconductance		5600	Micromhos				
Plate Current	14	11	Milliamperes				
Grid Voltage, approximate							
lb = 100 Microamperes .		-11	Volts				
Average Diode Current, Each Diode							
With 5.0 Volts DC Applied .		23	Milliamperes				

Vol. 8

TECHNI-TALK on AM, FM, TV Servicing R. G. KEMPTON, Editor

Boyt's Radio Service 411 Fredericksburg Rd. San Antonio 1. Texas E-223/J-75

6-13-49

No. 3

MANY NEW ITEMS FOR SERVICE DEALERS! ASK YOUR G-E TUBE DISTRIBUTOR FOR A COPY.

TUBE DEPARTMENT GENERAL 🍪 ELECTRIC Schenectady 5, N.Y.

Form 3547 Requested

BULK RATE U. S. POSTAGE PAID Schenectady, N.Y. Permit No. 148