OPERATING HAZARDS

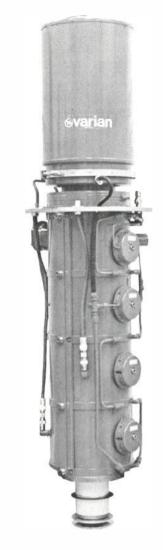
Read the following and take all necessary precautions to protect personnel. Safe operating conditions are the responsibility of the equipment designer and the user.

<u>High Voltage</u>. This tube operates at voltages which can be deadly. Equipment must be designed so personnel cannot come in contact with operating voltages. Enclose high-voltage circuits and terminals and provide fail-safe interlocking switch circuits to open the primary circuits of the power supply and to discharge high-voltage capacitors whenever access is required.

<u>Microwave Radiation</u>. Exposure of the human body to microwave radiation in excess of 1 milliwatt per square centimeter is unsafe and can result in blindness or other injury. Personnel must be fully protected from the microwave energy which radiates from this device. All input and output r-f connections, waveguide flanges, and gaskets must be r-f leakproof and properly engaged. Never operate this device without a microwave-energy-absorbing load attached. Personnel must be prevented from looking into open waveguides or antennas while such a device is energized. (Ref. Proc. IRE, Vol. 49, No. 2, pp. 427-447, Feb. 1961).

<u>X Rays.</u> This device may produce X-ray radiation when energized. Operating personnel must be protected by appropriate shielding. Provide adequate X-ray shielding on all sides of this device, as well as the modulator and pulse transformer tanks. X-ray caution signs or labels must be permanently attached to equipment directing operating personnel never to operate this device without X-ray shielding in place.

Equipment must be designed to fully safeguard all personnel from these hazards. Labels and caution notices must be provided on equipment and in manuals clearly warning of those hazards which cannot be avoided.



TECHNICAL DATA

CW KLYSTRON AMPLIFIER

DESCRIPTION

VA-890H and VA-891H are four-cavity, vaporcooled klystrons for use as final amplifier tubes in both visual and aural sections of UHF-TV transmitters. These klystrons cover the frequency range of 470 to 698 megahertz in two consecutive segments. They are directly interchangeable with the earlier VA-890A and VA-891A versions, respectively. They offer the user a choice of improved linearity or higher operating efficiency either by providing higher transmitter output power or lower d-c input power for the same transmitter power rating. The special design of these tubes permits multiplexing both visual and aural signals at 50 to 75 percent of the visual-only rating, depending upon the means of signal generation and linearity correction employed.

FEATURES

- High Gain -- Gain of at least 35 dB produces a 32 kW peak-of-sync output with less than 10 W of rf drive.
- High Efficiency -- Up to 40% efficiency at peakof-sync output (older tubes operate at 29-35%) for reliable, long-life performance.
- Ample Bandwidth One-dB bandwidth is at least 7 MHz over the tuning range. Output power will not vary more than \pm 1.0 dB over the range of -1.5 MHz to +5.5 MHz from the visual carrier frequency and over the power levels from white to black.

Vapor Cooling — Reduces equipment size, noise, and cost: only 2 gal/min water flow required.

- Modulating Anode Provides means for aural power control using the visual beam power supply.
- Multiplex Operation Operation at 15 kW or more in full multiplex.
- Simple Installation and Operation Each tube is factory tuned to a specified frequency but is tunable over its entire frequency range. The electromagnet operates from a single power supply. Installing the tube is made easy by rollers on the tube which mate with channels in the electromagnet.

Pub. No. 3688 4/81

Printed in U.S.A.

R

÷

-

GENERAL CHARACTERISTICS

Dimensions,

170 / 200 MIT.

PHYSICAL

ELECTRICAL	
------------	--

Frequency Range 470 to 698 MHz
VA-890H, Channels 14-29 470 to 566 MHz
VA-891H, Channels 30-51 566 to 698 MHz
Heater Voltage 6.3 ± 0.5 Vac
Heater Current, at 6.0 V typ 16.4 Aac
Heater Surge Current, max 30 Aac
Heater Warm-up Time, min 5 min
Focusing Electromagnet
Electromagnet Voltage, max 145 Vdc
Electromagnet Current, max 30 Adc

tube and magnet See Outline Drawings
Weight, approx
VA-890H 270 lb
VA-1590B Electromagnet 350 lb
VA-891H 240 lb
VA-1591B Electromagnet 315 lb
Mounting Position Cathode Down
Cooling ²
Tube Water Vapor and Forced Air
ElectromagnetWater
Water Inlet Temperature, max $\ldots 60$ $^{\circ}$ C

OPERATING CONDITIONS AND RATINGS

Typical Maximum Operation ³ Ratings ⁶ Frequency, visual, VA-890H 519 --- MHz ---- kW 32--- kW Output, peak-of-sync Drive Power, peak-of-sync 10 --- W Gain, peak-of-sync 35 ---- dB 43 --- % Efficiency, saturated Bandwidth, 1-dB 7.5 --- MHz 20.0 kVdc Beam Voltage 18.5 6.1 Adc 100 mAdc Modulating Anode Voltage 16.2 20.0 kVdc Modulating Anode Current 0.5 5 mAdc 30 Adc 1.5:1 Collector Temperature⁴ 105 245 °C

COOLING

Distilled water is the preferred coolant. Water purity should be maintained in accordance with the information contained in the Varian Application Engineering Bulletin AEB-31. In ad-

Tube, body and collector in series 2 gal/min

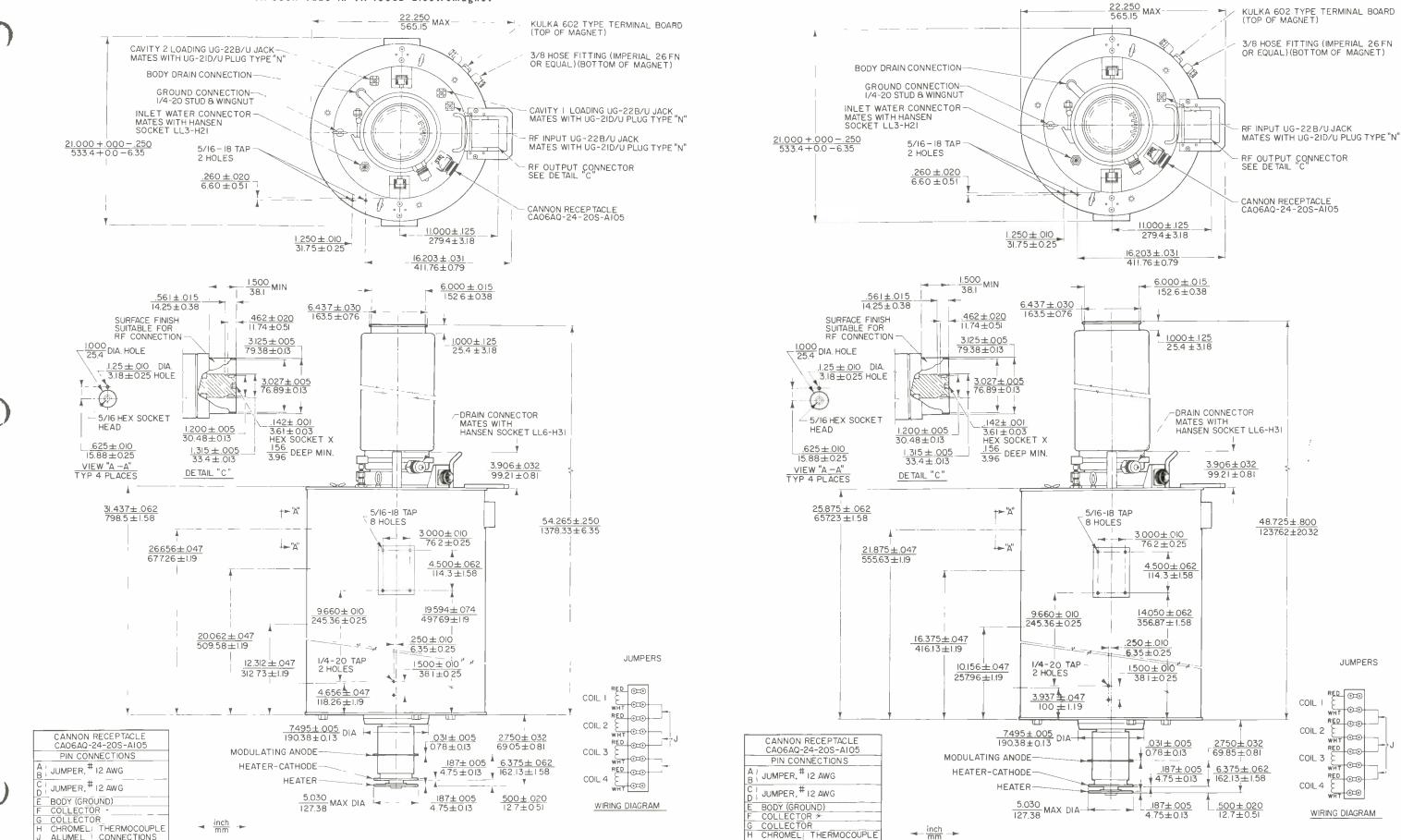
Electromagnet 2 gal/min

-	Office, or the Palo Alto Microwave Tube Divi-
	sion, Palo Alto, California.
	Pressure Drop, at minimum flow, maximum

Tube	 										lbf/in ²
${\tt Electrom} agnet$										35	lbf/in ²

dition, at least 200 lb/h of clean dry air should

be directed at the cathode. For additional information, contact the nearest Varian Sales



Water Flow, minimum

- 1. Characteristic and operating values are based on performance tests. These figures may be changed without notice as a result of additional data or product refinement. Consult Varian before using this information for final equipment design.
- 2. For optimum performance, the water inlet temperature should be kept within 5°C of the coolest practical value.
- 3. Typical operation assumes a 91% peak-of-sync power

ratio. Other ratios can be used depending upon the degree of linearity required.

- 4. The collector temperature is monitored by a chromelalumel thermocouple attached to each tube.
- 5. Ratings should not be exceeded under continuous or transient conditions. A single rating may be the limitation and simultaneous operation at more than one rating may not be possible. Equipment design should limit voltage and environmental variations so that the ratings will never be exceeded.

- ALWAYS USE PINS F AND G IN PARALLEL

CHROMEL THERMOCOUPLE

ALUMEL CONNECTIONS

ORANGE - SPARE

- inch

OUTLINE DRAWING

VA-890H. VA-891H

OUTLINE DRAWING

VA-890H. VA-891H

BLACK - SPARE ORANGE - SPARE * ALWAYS USE PINS F AND G IN PARALLEL

ALUMEL | CONNECTIONS

48.725±.800 1237.62±20.32

COIL

COIL 3

JUMPERS

WIRING DIAGRAM

OPERATING HAZARDS

Proper use and safe operating practices with respect to microwave tubes are the responsibility of equipment manufacturers and users of such tubes. Varian provides information on its products and associated hazards, but it assumes no responsibility for after-sale operating and safety practices. Limited life and random failures are inherent characteristics of electron tubes. Take appropriate action through redundancy or safeguards to protect personnel and property from tube failure.

All persons who work with or are exposed to microwave tubes or equipment which utilizes such tubes must take precautions to protect themselves against possible serious bodily injury. Do not be careless around such products.

WARNING — SERIOUS HAZARDS EXIST IN THE OPERATION OF MICROWAVE TUBES

The operation of microwave tubes involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- b. RF RADIATION Exposure to rf radiation may cause serious bodily injury possibly resulting in blindness or death. Cardiac pacemakers may be affected.

- c. X-RAY RADIATION High voltage tubes produce dangerous, possibly fatal, x-rays.
- d. BERYLLIUM OXIDE POISONING The dust or fumes from beryllium oxide (BeO₂) ceramics used in microwave tubes are highly toxic and can cause serious injury or death.
- e CORROSIVE AND POISONOUS COMPOUNDS Upon microwave or high voltage breakdown in the external waveguide portion of microwave tubes, a dielectric gas which is sometimes used may combine with impurities to torm highly toxic and corrosive compounds.
- f IMPLOSION HAZARD Ceramic windows in microwave tubes can shatter on impact or crack in use, possibly resulting in injury from flying particles or from beryllium oxide (BeO₂) dust or fumes.
- g. HOT WATER The electron collector and water used to cool it reach scalding temperatures. Touching or rupture of the cooling system can cause serious burns.
- h HOT SURFACES Surfaces of air-cooled collectors and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched.

Please see the Palo Alto Microwave Tube Division Operating Hazard sheet (Publication No. 3386) for more details on operating hazards.

TECHNICAL DATA

VA-953H VA-954H CW KLYSTRON AMPLIFIER 470-698 MHz 57 kW

DESCRIPTION

VA-953H and VA-954H are five-cavity, vaporcooled klystrons for use as final amplifier tubes in both visual and aural sections of UHF-TV transmitters. These klystrons cover the frequency range of 470 to 698 megahertz. They offer the user improved linearity and higher operating efficiency by providing either lower d-c input power or higher transmitter output power for the same transmitter power rating. The special design of these tubes permits multiplexing both visual and aural signals at 50 to 75 percent of the visual-only rating, depending upon the means of signal generation and linearity correction employed.

FEATURES

- High Gain Gain of at least 47 dB produces a 55 kW peak-of-sync output with less than 0.7 W of r-f drive.
- High Efficiency Up to 42% efficiency at peakof-sync output for reliable, long-life performance (standard tubes operate at 29-32%).
- Ample Bandwidth One-dB is at least 7 MHz over the tuning range. Output power will not vary more than ± 1.0 dB over the range of -1.5 MHz to +5.5 MHz from the visual carrier frequency and over the power levels from white to black.
- Vapor Cooling Reduces equipment size, noise, and cost: only 2 gal/min (0.12 l/s) water flow required.
- Modulating Anode Provides means for aural power control using the visual beam power supply.
- Multiplex Operation Operation at 25 kW or more in full multiplex.

Simple Installation and Operation — Each tube is factory tuned to a specified frequency but is tunable over its entire frequency range. The electromagnet operates from a single power supply. Installing the tube is made easy by rollers on the tube which mate with channels in the electromagnet.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Frequency Range 470 to 698 MHz VA-953H 470 to 566 MHz

VA-954H 566 to 698 MHz
Heater Voltage 7.0 to 7.7 Vac
Heater Current, typ 17 Aac
Heater Surge Current, max 30 Aac
Heater Warm-up Time, max 5 min
Focusing Electromagnet
Electromagnet Voltage, max 145 Vdc
Electromagnet Current, max 30 Adc

Dimensions See Outline Drawing
Weight, approx
VA-953H 430 lb/195.2 kg
VA-1950 & VA-1953 Series
Electromagnets 650 lb/295 kg
VA-954H 390 lb/177 kg
VA-1951 & VA-1954 Series
Electromagnets

PHYSICAL

Mounting Position Cathode down Cooling

Tube Water Vapor and Forced Air Electromagnet Water Water Inlet Temperature,² max 60 °C

 $\left(\right)$

OPERATING CONDITIONS AND RATINGS ¹	Typical	Maximum
	Operation ³	Ratings ⁵
Frequency, visual, VA-953H	519	MHz
Output, saturated	65	kW
Output, peak-of-sync	57	kW
Drive Power, peak-of-sync	0.7	W
Gain, peak-of-sync	49	dB
Efficiency, saturated	42	%
Bandwidth, 1-dB	8	MHz
Beam Voltage	24	26 kVdc
Beam Current	6.8	8 Adc
Body Current	15	100 mAdc
Modulating Anode Voltage	24	26 kVdc
Modulating Anode Current	0.5	5 mAdc
Focusing Current	30	32 Adc
Load VSWR	< 1.1:1	1.5:1
Collector Temperature ⁴	130	145 °C

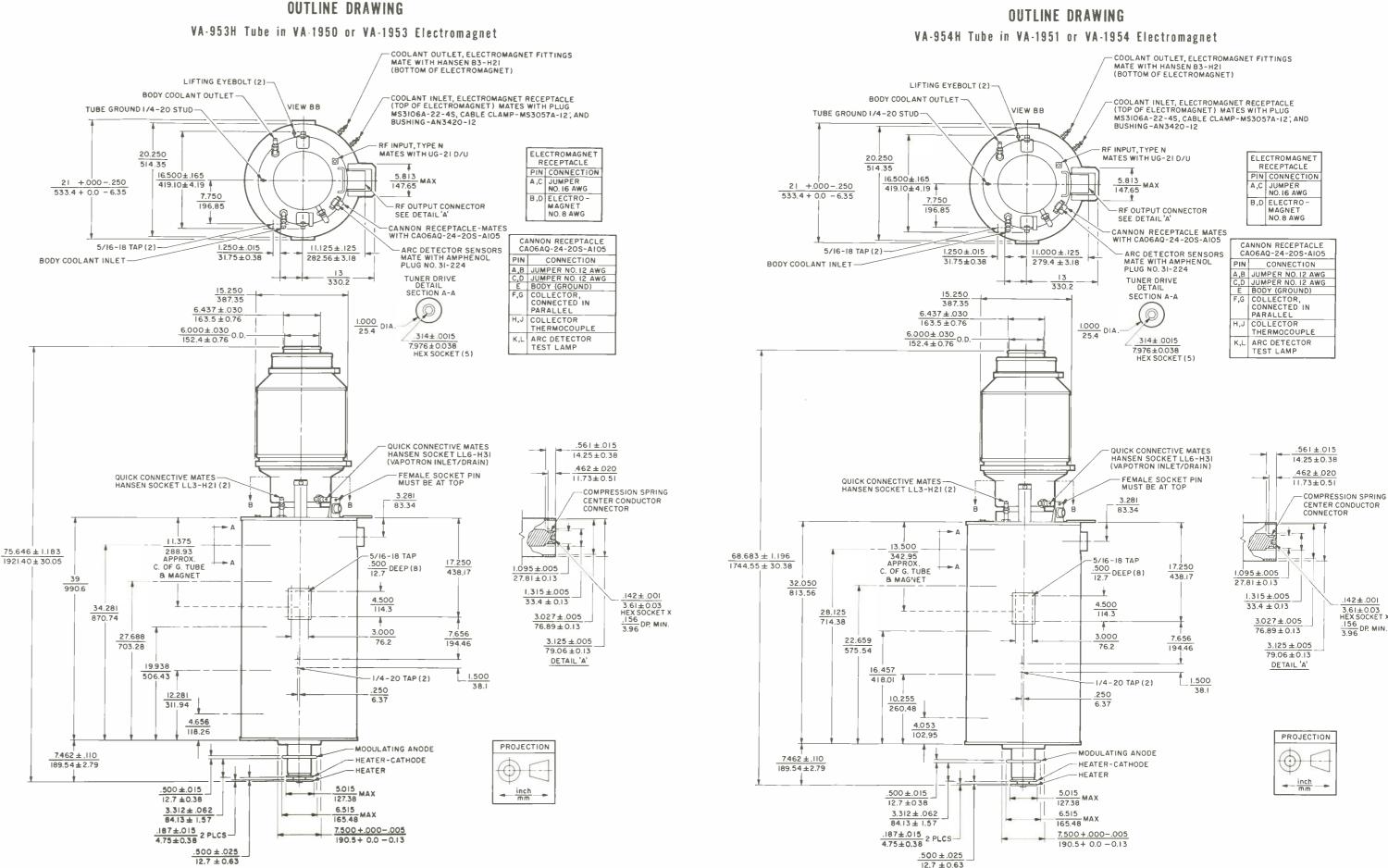
COOLING

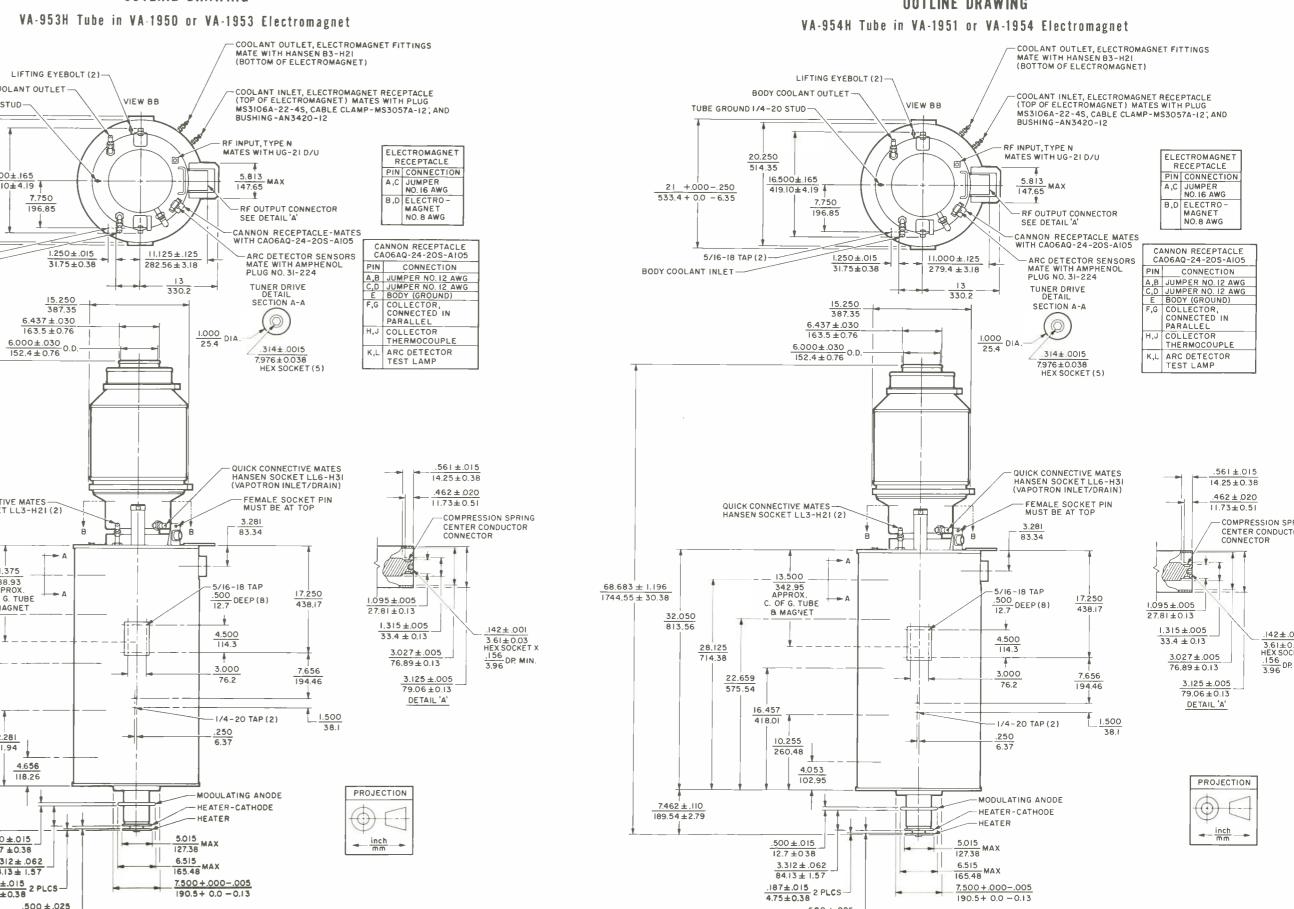
Distilled water is the preferred coolant. Water purity should be maintained in accordance with the information contained in the Varian Application Engineering Bulletin AEB-31. In addition, at least 200 lb/h (90.8 kg/h) of clean dry air

Water	Flow,	minimum
-------	-------	---------

Tube Body	2.5	gal/min(0.15)	1/s)
Tube Collector	2.0	gal/min(0.12	1/s)
Electromagnet	2	gal/min(0.12)	1/s)

NOTES:


- 1. Characteristics and operating values are based on performance tests. These figures may change without notice as a result of additional data or product refinement. Varian should be consulted before using this information for equipment design.
- 2. For optimum performance, the water inlet temperature should be kept within $5^{\circ}C$ of the coolest practical value.
- 3. Typical operation assumes a 91% peak-of-sync power to


should be directed at the cathode. For additional information, contact the nearest Varian Sales Office, or the Palo Alto Microwave Tube Division, Palo Alto, California.

Pressure Drop, at minimum flow, maximum Tube 50 lbf/in² (3.5 kgf/cm²) Electromagnet 35 lbf/in² (2.5 kgf/cm²)

saturated power ratio. Other ratios can be used depending upon the degree of linearity required.

- 4. The collector temperature should be monitored using the thermocouple attached to each tube.
- 5. Ratings should not be exceeded under continuous or transient conditions. A single rating may be the limitation and simultaneous operation at more than one rating may not be possible. Equipment design should limit voltage and environmental variations so that the ratings will never be exceeded.

