THE BELL SYSTEM
TECHNICAL JOURNAL

DEVQTED 10 THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 57 July-August 1978 Number 8, Part 1

Copyright © 1978 American Telephone and Telegraph Company. Printed in 1.5 A,

Atlanta Fiber System Experiment:

Overview

By IRA JACOBS
{Manuscript received December 29, 1977)

A complete 44.7-Mb/s lightwave digital transmission system was
evaluated at the joint Western Electric and Bell Laboratories facility
in Atlanta in 1976. An overview is provided to the papers describing
the technology employed and some of the principael results of the ex-
perimental evaluation. Two interrelated themes are emphasized: (1)
the importance of careful measurement and characterization, and (i)
the need for parameter control, Both the Atlanta Experiment and the
follow-on Chicago instatlation have given confidence in the feasibility
of lightwave technology to meet Bell System transmission needs.

On January 13, 1976 the Atlanta Fiber System Experiment was turned
up, and 44.7 Mb/s signals were successfully transmitted over the entire
system. The following papers in this issue describe the technology em-
ployed and some of the principal results of this experiment. Although
there have been a number of conferences! € and prior publications™!?
in which some aspects of this experiment have been discussed, the
present papers provide the first comprehensive report.

The purposes of the Atlanta Fiber System Experiment were:

{{) To evaluate lightwave technology in an environment approxi-
mating field conditions.

(i) To provide a focus for the exploratory development efforts on
fiber, cable, splicing and connectors, optical sources and detectors, and
system electronics.

1717

FIBERGU!DE

CABLE
Y MANHOLE
ATLANTA WESTERN ELECTRIC/ i \
BELL LABS FACILITY XY \
Wi
\\\
~
UNOERGROUND
oveTs T T

UNDERGROUND
oucTs MANHOLE
7 N
7y
¥ \
¥ T
g > FIBERGUIDE
- F caBLE
/ N
= g
i pmit)
£ 150 /
/ METERS e

Fig. 1—Atlanta Fiber System Experiment ducts.

(iit) To address interface problems that arise when a complete system
is being implemented (a system is more than the sum of its component
parts).

In short, the purpose was to assess the technical feasibility of lightwave
communications for Bell System application.

The locale of the experiment was the joint Western Electric and Bell
Laboratories facility in Atlanta, Georgia where the fiber and cable were
made, and where ducts, typical of those in metropolitan areas, were
available. These ducts, including two in which temperature and humidity
may be controlled, were installed when the Atlanta facility was con-
structed, and were intended as a test bed for new cables. The ducts ter-
minate in a Bell Laboratories basement room and extend 150 meters to
amanhole and then another 140 meters to a second manhole (Fig. 1). The
fiberguide cables* are looped in the second manhole so that both ends
terminate in the basement rocom. This room provides the office envi-

Table I—Atlanta System Experiment paramieters and results

Transmission rate 44.7 Mb/s {672 voice channels)

Cable 144 graded-index fibers (12 X 12 ribbon array)
Average loss 6.0 dB/km (0.82 micron wavelength)

Average transmitter power —3 dBm (0.5 mW)

Receiver sensitivity —54 dBm {4 nW)

Caleulated repeater spacing 7 km

Maximum repeater spacing 10.9 km

* Two cables, hoth made by Bell Lahoratories, were installed. The first; containing fibers
made solely by Western Electric, formed the principal cable for the experiments. The
seeond cable was made with Western Electric, Bell Laboratcries, and Corning Glass Works
fibers.

1718 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

ronment for the lightwave system; indeed, it simulates both end offices
and intermediate offices in an interoffice trunk system.

The principal parameters and results of the experiment are summa-
rized in Table I. The transmission was digital at a rate of 44.7 Mb/s
corresponding to the third level (DS3) of the North American digital
hierarchy. Lightwave systems tend to be power- rather than band-
width-limited, and digital transmission is particularly desirable in such
cases. The transmission speed of 44.7 Mb/s was chosen as that hierar-
chical level at which lightwave systems might initially be most economic
and practical.!!

A ribbon-structured cable was chosen to facilitate splicing. The large
number of fibers in the cable (144) was to gain experience in the making
of large fiber-count cables. Also, since the total length of the installed
cable was only 650 meters, many fibers were required so that long paths
could be obtained by looping through the cable many times. The ob-
jective was to achieve at least 100 good fibers in the cable with an average
loss of no more than 8 dB/km. The resulis achieved were 138 good fibers
with an average loss of 6 dB/km.

The operating wavelength of 0.82 microns was chosen to be helow the
water absorption peak. Average transmitter power into the fiber from
the GaAlAs laser was 0.6 mW, and the sensitivity of the APD receiver was
4 nW. A laser and-an APD were used to maximize repeater spacing. With
allowances for connector loss and system margin, a system repeater
spacing of 7 km was calculated. Utilizing some of the lower loss fibers
in the cable, error-free transmission was obtained with a repeater dis-
tance of 10.9 km.

The system in Atlanta contained all elements of an operational digital
transmission system, including the three major subsystems (Fig. 2):

(i} Cable.
(i/) Distribution system.

(fiit) Terminal electronics.

The first four papers in this issue relate to the cable, starting with the
characteristics and reproducibility of the graded-index germania bo-
rosilicate fibers (DiMarcello and Williams), then treating the preform
fabrication and fiber drawing (Myers and Partus), and the cable man-
ufacture and performance characterization (Santana, Buckler, and
Saunders), and concluding with optical crosstalk evaluations (Buckler
and Miller).

The key element in the interconnection system is the molded plug
single-fiber connector used both on the distributing frame and on the
optical regenerators. The structure and performance of these connectors
is described in the paper by Runge and Cheng.

The next sequence of four papers covers the system electronics. There
are two papers on the detector, one (Hartman, Melchior, Schinke and

ATLANTA FIBER SYSTEM EXPERIMENT: OVERVIEW 171%

DIGITAL FIBER OPTIGS TRANSMISSION SYSTEM
LROSS
CONNECT FIBERGUIDE TERMINAL BAY
—
FIBERGUIDE
—— :l: DISTRIBUTION FRAME
=, CODER DRIVER | SDURCE &
L1
TRANSMITTING
REGENERATORA
INTEROFFICE
- E | PER- Decision/ | PHOTO FIBER CABLE
ECODERM rarmance “'{ TIMING | DETECTOR
MONITOR RECEIVING — *
REGENERATDR CABLE
SPLICE
pecisigny | SOURLCE
TIMING [heTecTOR
MAINTENANCE
CIRCUITS LINE REGENERATOR
] ||

Fig. 2—Atlanta Fiber System Experiment transmission system.,

Setdel) on the avalanche photodiode and one {Smith, Brackétt, and
Reinbold) on the detector package including the transimpedance
preamplifier. The transmitter package, including the GaAlAs laser, is
covered in the paper by Shumate, Chen, and Dorman. The design and
performance of the optical regenerator, including timing recovery and
decision functions in addition to the transmitter and receiver, is covered
in the fourth paper (Maione, Sell, and Wolaver) of this sequence.

‘Following the papers on the technology and subsystems, Kerdock and
Wolaver describe the'experiments performed and the results obtained.
In all cases, the system met or exceeded expectations.

Two themes run through all these papers. First is the imhportance of
careful measurement and characterization. The loss of a multimode fiber
or of a single fiber connector is critically dependent on how they are
measured, and particular attention is paid in these papers not only to
the results obtained, but to how they are obtained. Most of these results
are of a statistical nature, and the second recurrent theme is the “tail
of the distribution.” From a research standpoeint, one is often interested
in the best result achieved. But from an exploratory development
standpoint, the other end of the distribution is of importance, and
technical feasibility means achieving the knowledge and understanding
to control the low-performance tail of the distribution. The Atlanta
Experiment has provided important inputs of this nature, but it is only
one of many steps in the exploratory development phase prior to specific
design and development.

The system in Atlanta accepted standard DS3 (44.736 Mb/s) signals,

4720 THE BELL SYSTEM- TECHNICAL JOURNAL, JULY-AUGUST 1978

and the system was interfaced with an M13 multiplex and a D3 channel
bank, and voice, data, and television were transmitted over the system.
But it is one thing to set up an experimental link on premises, and it is
another to incorporate a system into the telephone network carrying
actual customers’ signals. The results achieved in Atlanta gave us con-
fidence that we were ready for this next step. A trial system was installed
in Chicago early in 1977, and has been carrying a wide range of services
on a trial basis since May 11, 1977. Although the evaluation of this trial
system is still in progress, %13 a brief article (Schwartz, Reenstra, Mullins,
and Cook) is included in this issue describing the Chicago installation
and the results to date. Both the Atlanta experiment and the Chicago
installation have given confidence in the feasibility of lightwave tech-
nology to meet Bell System transmission needs.

REFERENCES

1. J. 8. Cook, J. H. Mullins, and M. L Schwartz, “An Experimental Fiber Optics Com-
munications System,” 1976 TEEE/0SA Conference on Laser and Electro-Optical
Systems, San Diego, May 1976.

2, R. G. Smith, C. A. Brackett, H, Melchior, H. W. Reinbold, D. P. Shenke, T. C. Rich,
and M. DiDomenico, Jr., “Optical Detector Package for the FT3 Fiberguide Ex-
periment,” ibid.

3. M. L. Schwartz, R. A. Kempf, and W, B. Gardner, “Design and Characterization of
an Exploratory Fiber-Optic Cable,” Second European Conference on Optical Fiber
Communication, Paris, Sept. 1976.

. J.8. Sook and P. K. Runge, “An Exploratory Fiberguide Interconnection System,”
ibid.

5. I. Jacobs and J. R. McCrory, “Atlanta System Experiments Overview,” Topical

Meeting on Optical Fiber Transmission II, Williamsburg, Feb. 1977.

6. R. S. Kerdock and D. H. Wolaver, “Performance of an Experimental Fiber-Optic
Transmission System,” National Telecommunications Conference, Dallas, Dec.
1976.

. L Jacobs, “Lightwave Communications Passes Its Firat Test,” Bell Laboratories
Record, 54, Dec. 1976, pp 291-297.

. I Jacobs and S. E. Miller, “Optical Transmission of Voice and Data,” TEEE Spectrum,
14 (Feb. 1977), pp. 32-41.

9. C. M. Miller, “A Fiber-Optic Cable Connector,” B.5.T.J. 54, No. 8 (November 1875),
pp. 15647-1555.

10. T. L. Maione and D. D. Seil, “Experimental Fiber Optic Transmission System for
Interoffice Trunks,” IEEE Trans. Commun., COM-25 (May 1877), pp. 515-523.
pp. 515-5623.

11. L Jacobs, “Telecommunication Applications of Fiber Optics,” National Telecom-
munication Conference, Los Angeles, Dec. 1977.

12. M. 1. Schwartz, W. A. Reenstra, and J. H. Mullins, “The Chicago Lightwave Com-
munications Project,” 1877 International Conference on Integrated Optics and
Optical Fiber Communication (Post-Deadline Paper), Tokyo, July 1977,

13. J. H. Mullins, “A Bell System Optical Fiber System—Chicago Installation,” National
Telecommunications Conference, Los Angeles, Dec. 1977.

.

[« RS |

ATLANTA FIBER SYSTEM EXPERIMENT: OVERVIEW 1721

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol, 57, No. 8, July-August 1978
Printed in U.8.A

Atlanta Fiber System Experiment:

Reproducibility of Optical Fibers Prepared by a
Modified Chemical Vapor Deposition Process*

By F. V. DiIMARCELLO and J. C. WILLIAMS
(Manuscript received January 21, 1977)

The reproducibility of low-loss glass-fiber optical waveguides pre-
pared from preforms produced by a “modified” chemical vapor depo-
sition process was determined. The fibers have a multimode, graded-
index core of germania borosilicate glasses and a cladding of fused
silica. The quality of the fibers is expressed in terms of core/cladding
dimensions, circularity, and concentricity, as well as loss spectrum,
normalized index-of-refraction difference A, and graded-index profile
characteristic .

I. INTRODUCTION

A variety of multimede, low-loss glass fibers consisting of a core of
germania borosilicate glasses and a cladding of fused quartz have been
prepared over the past several years using the modified chemical vapor
deposition (MCVD) process. The primary purpose has been to provide
experimental glass fibers in response to in-house requests. Most of the
early fibers used for prototype fiber optic cable studies leading to the
Atlanta Fiber System Experiment! were prepared in this laboratory. The
requests for fibers were seldom alike in terms of core/cladding dimen-
sions, index profiles, index differences, and other properties. Although
the conditions of preparation and properties of these fibers were moni-
tored, it became desirable to establish the reproducibility of the process.
Equally important, this would enable us to determine where and possibly
how we should make improvements if needed.

* Part of this work was presented as a paper at the First European Conference on Optical
Fiber Communication at London, The Institute of Electrical Engineers, September 16-18,
1975.

1723

A series of fibers was to be fabricated on the basis of an arbitrarily
chosen set of objectives listed in Table 1. All process parameters selected
for meeting these requirements were attempted to be held constant. The
reproducibility achieved in these fibers is to be expressed in terms of
properties such as core/cladding dimensions, loss spectrum, normalized
index difference A, graded index profile characteristic a, circularity, and
core/cladding concentricity as well as their comparison to the objec-
tives.

Il. PROCEDURE

The MCVD process,? as practiced for this study, is summarized here
in conjunction with the schematic shown in Fig. 1.

A chemically cleaned tube (12 mm X 14 mm X 92 ¢m) of fused quartz
is rotated in a glass working lathe. An oxy-hydrogen torch, while moving
to the right at slow speed (0.35 cm/s), heats the tubing to ~1650°C. The
torch returns to the left, at a faster speed (1.5 cm/s) and lower flame
temperature, to complete one cycle. Throughout the torch cycle, con-
trolled proportions of semiconducting grades of B, Ge, and Si chlorides
in an oxygen carrier gas flow through the fused quartz tube. The depo-
sition and simultaneous fusion of a thin layer of core glass occurs along
the internal surface of the tube in the region of the torch as it moves from
left to right only.

The flow conditions of the reactants at an ambient temperature of 23°
t0:25°C are listed:in T'able II. An initial layer of borosilicate glass is de-
posited during the first two torch cycles. The numbers in parentheses
are the flow rates of oxygen through the bubblers containing the Ge and

Table | — Fiber property objectives

Loss {0.82 pm) <4 dB/km
Index profile, ~2.0
Index difference, A 0.013
Core diameter 55 pym
Fiber diameter . 110pm

,— FUSED OUARTZ TUBE ————

0, FLOW
SiCt,+0, | METERS St
FORPRO— |—m | “DEPOSITED CORE GLASS LAYER =
Gect,+0, | [ORFROC & 2 SRR 5> EXHAUST
BCly REACTANTS LO FLAME HIFLAME
TORCH RETURN | DEPOSITION AND FUSION
MULTI — BURNER
0,—H, TORCH
TRAVERSE

Fig. 1 — Schematic diagram of the modified chemical vapor deposition {MCVD) pro-
cess.

1724 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table Il — Flow conditions of reactants (cc/min)

Torch Cycles BCly SiCl, GeCly Additional Oy
2 24 81 (255} —_ 500
47 8 81 (255) 4.5-47 4 (70-500) a00

() = oxaygen to bubblers.

Si tetrachlorides. To obtain the 2:1 diameter ratio of the cladding to core
in the final fiber, an additional 47 torch cycles were required for depos-
iting the germania borosilicate core glass. The flow rate of the GeCl, was
increased automatically in 47 increments, or one per torch cycle, over
the range from 4.5 to 47.4 cc/min. This provides the compositional gra-
dient in the core glass required for the graded-index profile.

The fused quartz tubing is then collapsed into a solid rod within three
additional torch cycles, at which time the speed of the torch is reduced
(0.2,0.1, and 0.03 cm/s) to raise the transient temperature of the tubing
to the level of 1850° to 1950°C. During collapse, the flow of reactants was
stopped except for oxygen until the last cycle of the torch. This produces
a preform as seen in Fig. 2, measuring ~8 mm in diameter and 60 cm in
length, that yields 3 km of 110-um diameter fiber.

The preforms were drawn into fibers using the apparatus shown in
Fig. 3. The basic components consist of a preform support and feed
mechanism at the top, a high temperature heat source, a fiber diameter
monitoring unit, and a winding mechanism at the bottom. An experi-
mental coating system, shown just above the winding drum, was not used
in this study. The overall assembly is mounted on a heavy aluminum
frame measuring ~1.2 X 1.8 X 2.4 m.

The feed mechanism consists of a variable speed motor and control
system* capable of providing less than 1 percent variation and full torque
at low speeds of 0.5 to 1.5 cm/min. The heat source is a graphite resis-
tance furnacet provided with a zirconium oxide! muffle tube and oper-

P;ig. 2 — Collapsed glass preform obtained from the MCVD process (8 mm dia. X 60
cm).

* Motomatic E550M, B & B Motor and Control, N.Y.,, N.Y.
t Model 6000-2020, Astro Industries, Santa Barbara, California.
t No. 1706 Zircoa Div., Cohart Refractories, Solon, Ohio.

OPTICAL FIBER REPRODUCIBILITY 1725

Fig. 3 — Overview of the laboratory fiber drawing facility.

ated with a 50/50 mixture by volume of He and Ar (8-10 L/min.) gases
to prevent oxidation of the graphite heating element.

The winding mechanism consists of a black anodized aluminum drum
{28 cm diam. X 45 cm) driven by a variable speed motor.* A gear belt
connects the drum drive to a lead screw that traverses the drum to give
a 0.30-mm (0.012-in.} pitch to the fiber winding. Typically, a 1100-m
length of fiber is wound on a drum in a single layer. A drawing speed of
1 m/s was used in this work.

The diameter of the fiber was monitored during drawing by means
of the device' mounted just below the furnace. It employs an optical
comparison technique with the window located about 12 cm below the
furnace. The shadow of the fiber is compared to a pre-set illuminated
slit opening that has been calibrated previously. The size of the fiber

* Bodine NSH34RH, B and B Motor and Control, New York, N.Y.
¥ Model SSE-SR Milmaster, Electron-Machine Corp., Umatilla, Fla.

1726 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

relative to the slit opening is indicated on a nullmeter having a precision
of +£0.13 gm (£0.000005 inch). Normally, the preform feed speed and
furnace temperature are held constant while the speed of the winding
drum is adjusted manually to maintain a constant fiber diameter.

Initially, 18 lengths of fused quartz tubing* were selected at random.
Prior to cleaning, each tube was numbered for identification by means
of a diamond scribe at the designated left-hand end. An axial mark at
the same end served to indicate the “north” orientation of the tubing
when viewed from either end. The minimum and maximum outside di-
ameter {(0.D.) and wall thickness corresponding to the four main compass
directions at either end were determined by means of a vernier caliper.
Variations ranging in outside diameter from 0.02 to 0.13 mm and in wall
thickness from 0 to 0.16 mm were found in the 18 lengths of tubing. In
addition, the location and amount of the maximum warp along the length
of the tubing was determined using a feeler gauge to measure the maxi-
mum clearance between the tubing and a ground stone reference plane
as the tube was rotated about its axis. The warp was typically in the form
of a bow that ranged from a minimum of 0.13 to a maximum of 0.61 mm.
A further characterization of the quality of the fused quartz tubing was
attempted by a cursory inspection for visual blemishes as revealed by
illuminating the tubing from either end by means of a high-intensity
fiber-optic lamp. The predominate type of blemish manifested itself as
a bright speck of scattered light that resulted, in most cases, from small
bubbles within the glass tubing. Several tubes contained <10 specks/in.,
while others ranged up to ~50 specks/in. In addition, a number of
scratches, smears, and hazy areas were recorded for many of the tubes.
No correlation has been established between the visual quality of the
tubing and the quality of the resulting fiber.

Fibers were prepared from 12 of the 18 lengths of tubing selected.
Tubes numbered 2, 6, 13, 14, 15, and 17 were excluded from this study
because of accidental breakage before preform preparation (nos. 2and
6), excessive variation in wall thickness causing oval cores in the collapsed
preforms (nos. 13, 14, and 15), and being classified as a spare preform
{no. 17).

lll. RESULTS AND DISCUSSION

In this study, two 1-km lengths of fiber were drawn from each preform
using the above drawing facility. The following data were obtained from
an examination of these fibers and provide an indication of their quality
and reproducibility.

Figure 4 is a composite semilog plot of the loss spectrum of a kilometer
length of fiber from each of 11 preforms and two 1-km lengths from one
other preform. The Arabic number identifies the preform, while the

* Commercial Grade T08, Amersil Corp., Sayreville, New Jersey.

OPTICAL FIBER REPRODUCIBILITY 1727

éQMF‘OSITE LOSSSPECTRUM PLOT

LOSS IN dB/km
S

500 600 700 800 900 1000 1100
WAVELENGTH IN nm

OPTICAL LOSS IN'dB/km

PREFORM WAVELENGTH IN nm

—FIBER 820 900 1060
1 39 30 19

3 38 a1 1.8
411 35 28 15
511 44 a7 25

71 4.1 35 20

8 26 27 16

9 a9 30 18
101 a5 29 17
114 37 29 1.6
111 ag 31 18
12| 38 29 1.6
16-11 35 26 16
18| 37 3.0 18

{RMS = 3.8)

Fig. 4 — Composite loss spectrum plot and tabulated loss values {13 1-km fibers among
12 preforms, GeQz-B303-5i0; core and fused silica cladding).

Roman numeral refers to the first or second kilometer drawn from that
preform. The curves fall within narrow limits. The corresponding tab-
ulated values at wavelengths of 820, 900, and 1060 nm include minimum
values of 3.5, 2.6,-and 1.5 dB/km, respectively, with most of the fibers
being within 1% dB or less of these minima. The RMS valie at 820 nm is
3.8 dB/km.

The graded-index profile characteristic & and the normalized maxi-
mum index of refraction difference A were obtained by a technique de-
veloped by Wonsiewicz et al.3 The method provides a computer-gener-
ated plot of the index profile in Arn versus fiber radius as illustrated in
Fig. 5. The data are obtained from the pattern of a thin, polished cross-
section of a fiber as viewed in an interference microscope. A computer
program also determines the value of « corresponding to the curve that
fits the data best in accord with the basic equation shown in the diagram.
The maximum normalized A is determined from the maximum An of
the plot. The dip at the center among the data points results from a de-
pletion of Ge along the center of the fiber by volatilization during the
collapsing of the preform. The existence of this condition has not been
shown to be detrimental to the transmission characteristics of the fiber.

‘$f28 THE BELL SYSTEM TEGHNICAL JOURNAL, JULY-AUGUST 1978

REFRACTIVE INDEX PROFILE
IPREFORM-FIBER: 11-1 END}

anx 107

-10 0 0 20 3 a0
RADIUS IN am
Fig. 5 — Index of refraction profile for preform—iiber: 11-1.

The dip at either edge of the profile corresponds to the borosilicate layer
at the core cladding surface.

Figure 6 compares the range of values for « and A determined from
“four” fiber samples within each preform, as indicated by the height of
the bar, and among preforms. The RMS values for « were calculated to
be 2.14 and for A to be (0.012. The precision of measurement for « is £0.05
and for A is £0.001. Although the observed « values are higher than in-
tended, they could be corrected by adjusting the flow rates of the reac-
tants and other parameters. The values for A in this study tend toward
the low side for two reasons: (/) a decrease in the germania concentration
at the center of the core and (i) the thickness of the central region of the
core of the thin section sample being less than the apparent value because
of preferential abrasion during polishing.*

While the diameter of the fiber was monitored and controlled man-
ually during drawing, it was measured subsequently at a precision of
+1, um by an off-line forward light scattering technique described by
Watkins.® The diameters along 556 m from each of several randomly
selected fibers were determined at the rate of one measurement per
meter. Figure 7 illustrates a typical linear plot of the diameter variation
for such a length. The minimum, maximum, and average diameters and

OPTICAL FIBER REPRODUCIBILITY 1729

GRADED-INDEX PROFILE CHARACTERISTIC la}

2 I T

I
a 2.0 = I I I I
-- I RAMS = 2,14
16
MAXIMUM INDEX OF REFRACTION DIFFERENCE {4A)
0016 [1
L RAMS = 0.012
A 0013 — I I I
[" I/I|”
K I
0010 |—
| |
1 4 5 7 8] 10 1 12 13

PREFORM

Fig. 6 — Graded-index profile characteristic («) and maximum indez of refraction
difference {(A) vs preform (interference microscopy; sample thickness ~50 um).

113.6
1118 |
- i
| I
™ |
um 1102
[1 |
I i
' {
085 H
- I
1068 RN WA LA S T A U | S S T I N 1
a 13917 27829 41742 55654
cm
[um])
PREFORM ._
—FIBER MIN MAX AVG % STND DEV
51 107.0 113.1 110.2 1.02
8-1 105.7 113.2 109.7 1.30
11-1 104.8 1145 109.6 1.72
1241 105.7 1125 109.0 1.09
122 104.9 1135 109.7 1.45
16-1 106.7 115.0 109.7 1.13

Fig. 7 — Fiber diameter variation ve. 556-m length of preform—fiber: 5-1; and minimum,
ma)tglmum. average, and percent standard deviation of fiber diameter within and among
preforms,

the percent standard deviation within and among preforms are tabu-
lated. Considering that diameter control was by manual feedback during
drawing, the average values are relatively close to the objective of
110 pm.

1730 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

The circularity and concentricity of the core and cladding are im-
portant properties related to fiber alignment when splicing. They were
determined by microscopic examination of four fiber samples per pre-
form corresponding to the positions shown in the diagram at the top of
Fig. 8. The minimum and maximum diameters were determined by
means of dividers and a calibrated micrometer scale from a photograph
of a cross-section of the fiber, such as that shownion the left.

Circularity for either the core or cladding is expressed as the ratio of
the minimum and maximum diameter of each. The concentricity of the
core-cladding is defined as the separation (Acp) expressed in microm-
eters between the center points formed by the intersection of the mini-
mum and maximum diameters for each of the core and cladding.

In Fig. 9, the minimum-maximum diameter ratios of the core and
cladding are shown for fiber samples among each of 12 preforms. Each
dot represents a diameter ratio measurement. The numerical range of
values observed for the diameters among the four samples within each
preform is also shown. In general, the circularity of the cladding is better
than that of the core both within a preform and among preforms. The
circularity of the core becomes fixed, essentially during the collapsing
stage of the preform, while that of the cladding may be upgraded during
the drawing step. The circularity of the core and cladding vary inde-
pendently of each other as seen in the case of preforms 4, 9, and 18. It
was also observed that the variation in core circularity increases with
the variation in wall thickness of the deposition tubing.

4 3 2 1
-] '

MCVD PREFORM

CIRCULARITY = AL fe)
MAX id) Acp = CONCENTRICITY

FOR CORE AND CLADDING

Fig. 8 -- Core-cladding circularity and concentricity as defined and positions tested
along preform.

OPTICAL FIBER REPRODUCIBILITY 1731

CIRCULARITY

1.00 Feaafaa wasa| ssalaaar alaas [aaa |avaa]aas |a
= - . a - o] ba
E at .
0.85 cend
w -
(=] K
E 0.90 — CORE {55um)
« 53— | 55— | 50— | 55— | 51— | 54— | 56— | 50— | 54— 55 | 53— [52—
w [HAM. 57 57 55 | 56 54 | §7 58 | 51 56 57 57
] RANGES
= {um) 110-110— | 110—|110— | 108— 110 110-1108—|112—|110—| 110—[110-
g M2 [112 | 113 | 113 | 110 M2 | 110 115 | 111 [113 | 112
10 eaala as |avva|aasafacaa]aans|ssa (o0 o|ssaale asra
y L - . - LI XY
E|<t r 8
Z|= - .
0.95 CLAIDDINIG (I1Djlxm}

CONCENTRICITY

|
l‘:Ill:J;III:I:IIL*I

1 5 7 8 -] 10 1 i2 16 18
PREFCRM

i

Acpiam)

0O = N W B

Fig. 9 — Circularity and concentricity of fiber core and cladding within and among
preforms.

The concentricity values of the core-cladding (Fig. 9), represented by
four determinations within each preform, are typically low in magnitude
and range. The separation between center points is usually less than a
micrometer, while the maxima of 2 micrometers occur with preforms
exhibiting poorer circularity.

The objective and observed RMS values for the properties of interest
in this study are compared in Table III. The table also summarizes the
reproducibility of fibers prepared by a “modified” CVD process with our
equipment. The percent standard deviations within a preform for loss,
«, and core diameter are about one-half that observed among preforms,

Table |l — Reproducibility summary (MCVD:GeQ3-B;03-Si0;
core; fused quartz cladding)

Percent standard
s Observed deviation
Property Objective rma value Within Among
preform preforms
Optical loss (0.82 um) <4 dB/km 3.8 25 6.5
Index profile {(a) ~2.0 2.14 3.0 6.0
Index difference (A} 0.013 0.012 50 5.0
Core diameter 55 um 54.8 1.5 3.2
Fiber diameter 110 ym 109.9 1.27 1.28

1732 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

while the standard deviations for A and fiber diameter are about the
same within and among preforms. The data indicate that the “modified”
CVD process and equipment as discussed are capable of providing low-
loss optical fibers of adequate quality and reproducibility for many ap-
plications. The following process and equipment modifications are
suggested for enhancing the uniformity of dimensional and optical
properties.

({) There is a need for better dimensional uniformity and precision
in the fused-quartz tubing. In particular, there is a marked dependency
of core circularity upon the uniformity of the wall thickness of the pre-
form tubing. A 3-percent variation appears to be the upper limit that
can be tolerated for the change in wall thickness of the tubing used in
this study and a 0.4-percent variation as the upper limit on the outside
diameter of the tubing. The presence of blemishes of the type discussed
earlier did not affect the optical properties of the fibers. However, they
are recognized as possible factors affecting the strength of the fibers and
are being included in other studies initiated recently.

(ii) Improved control of the MCVD reactant flows and a more uniform
deposition temperature are expected to aid in achieving improvements
to A and a. These experiments have shown that maintaining a uniform
deposition temperature is important for optimizing the reproducibility
of the MCVD process. This applies not only to the temperature along the
length of the silica tubing during each torch cycle as it traverses from
left to right, but also throughout the deposition process of a preform and
from preform to preform. Temperature variations of as much as 40° to
50°C were observed to have occurred at all of these stages in the course
of conducting the above study.

In a subsequent series of experiments, a more uniform deposition
temperature was attained by more careful monitoring and by frequent
manual adjustments of the torch gases. This resulted in lowering the
range of a values (for 14 samples from among three preforms) to within
the precision of error of the measurement technique. These preliminary
experiments indicate that electronically controlled flow valves for both
the reactants and the torch gases as well as a feedback system to control
the tube temperature would significantly improve the reproducihility
of the process.

({ii) The incorporation of a capstan-drive, fiber-diameter menitoring
by means of a laser and electronic feedback controls to the fiber drawing
apparatus should improve control of the fiber diameter.

V. ACKNOWLEDGMENTS

The authors wish to express their appreciation for the assistance re-
ceived in the following phases of the investigation from C. L. Collins and
R. A. Becker for discussions about the statistical design of the experi-

OPTICAL FIBER REPRODUCIBILITY 1733

ments, M. Drohn for preform preparation, L. 8. Watkins and P. H.
Krawarik of Western Electric Engineering Research Center for diameter
analysis, E. A. Sigety for polishing fiber cross sections, J. R. Simpson for
spectrum loss, index, and profile data, and W. G. French for data pro-
cessing.

REFERENCES

1. “Experimental System Brings Lightwave Communication Closer,” Bell Laboratories
Record, 53, No. 11 {December 1975), pp. 444-445.

2. J.B. Macéhesney, P. B. O’Connor, F. V. DiMareello, J. R. Simpson, and P. D. Lazay,
Proc. Xth International Glass Congress, 6 (1974}, pp. 40-45.

3. B. C. Wongiewicz, W. G. French, P. D. Lazay, and J. R. Simpson, “Automatic Analysis
of Interferograms: Optical Waveguide Refractive Index Profiles,” Appl. Opt., 15,
No. 4 (April 1976}, pp. 1048-1052,

4. J. Stone and R. M. Derosier, “Elimination of Errors Due to Sample Polishing in Re-
fractive Index Profile Measurements by Interferometry,” Review of Scientific In-
struments, 47 {July 1976}, pp. 885-887.

5. L. S, Watkins, “Instrument for Continuously Monitoring Fiber Core and Quter Di-
ameters,” Technical Digest of Topical Meeting on Optical Fiber Transmission, {ua
4-1, Williamsburg, Va., Jan. 7-9, 1975.

1734 THE BELL SYSTEM TEGHNICAL JOURNAL, JULY-AUGUST 1978

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U.S.A.

Atlanta Fiber System Experiment:

Preform Fabrication and Fiber Drawing by
Western Electric Product Engineering
Control Center

By D. L. MYERS and F. P. PARTUS

(Manuscript received November 16, 1977)

Optical fibers for the Atlanta Fiber System Experiment were pro-
duced in the Western Electrie Produet Engineering Control Center
development laboratory. The processing methods and facilities used
in preform fabrication and fiber drawing are described. The results
obtained in terms of yield and process control factors are also pre-
sented.

I. INTRODUCTION

In 1974, the acquisition of a fiber-optics development laboratory was
started by the Western Electric Product Engineering Control Center
in Atlanta. This facility was intended to provide the experience needed
by Western Electric to establish manufacturing methods and machinery
in the new field of fabricating low-loss optical fibers. The first preform
fabrication facility and its companion tube-cleaning installation became
operational in April 1975. Operation of the fiber-drawing machine
started in August 1975, and fiber delivery to Bell Laboratories com-
menced in September. All fibers were characterized by Bell Laboratories
in Atlanta and subsequently used in their ribbons and cables. The de-
livery of fibers for the Atlanta Fiber System Experiment was completed
in November 1975.

ll. TUBE PREPARATION

The facility for acid-etching, fused-quartz starting tubes (Fig. 1)
consisted of a bench-mounted-cleaning chamber containing a rack for
seven tubes. Adjacent to the chamber was a work position for mixing and

1735

‘fytpor] Suwueep aqny—T1 "5

. 1
=)
H0O0T4 MNYL : ™ NIvHO
ONIZYHLINAN-__ [-
“
“
) NIVHT g fr™
{
| =
| i f
¥ILVM —
- N
o
[
IDIAHTS P 7
H3LYM A3ZINOIID” 7 A4 :
/ o
3
YIGWYHD DNINYITD” 7 7 _—

/
Inaow any 7
3ATYA 10 LNOD#

WOOH NV3T13 319v1H0d

NI AHNLXIW QioY

QOOH JANd ONV JINIS

1736 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

supplying the acid mixture to the cleaning chamber. A commercial
deionized water system provided clean rinsing water, and a marble chip
vat permitted neutralization and dilution of the acid mixture after each
etching cycle.

The 12 X 14-mm diameter, 0.91-m long tubes (Amersil* T08 grade)
were etched in a 50-percent solution of nitrie acid, hydrofluerie acid, and
deionized water. After etching and a thorough deionized water rinsing,
the tubes were dried with nitrogen and then capped to maintain a clean
inside tube surface.

lll. PREFORM FABRICATION

Although two preform fabrication installations were provided in an-
ticipation of future development and fiber needs, only one was initially
used. Both installations were identical (Fig. 2) and were modeled after
facilities used at Bell Laboratories in Murray Hill, N.J. for modified
chemical-vapor deposition.!-2

The glass working lathe was equipped with an oxygen-hydrogen torch
mounted on a motorized burner carriage. Tube temperature was moni-
tored with an infrared pyrometer, while oxygen and hydrogen flow rates
were controlled by flowmeters.

The chemical system consisted of stainless steel bubblers containing
liquid silica tetrachloride (SiCl;) and germanium tetrachloride (GeCly).
The third chemical, boron trichloride (BCls), was supplied in a com-
mercial cylinder. Oxygen to the bubblers and the extra oxygen added
in the chemical vapor stream were supplied from the liquid oxygen tank
also used to supply the burner. The chemical system Oz supply line was
equipped with a purifier and filter. All chemical vapors and the extra

DOPANT -~ FLOWMETERS
/ /

ok}

4

’ r { \ ~ i
PURGE” S VALVES ' “Hz GAS EXHAUST
DOPANT 032 TORCH

Fig. 2—Modified chemical-vapor deposition process,

* Amersil, Inc., Sayerville, New Jersey,

PREFORM FABRICATION AND FIBER DRAWING 1737

Os flow rates were controlled by means of flowmeters, which were cali-
brated for O; flow rates.

A typical run was very similar to that reported by DiMarcello and
Williams.? Table I gives the details of such a run. Note that in Steps-4
and 5, BClg and Oy are passed into the tube without SiCl,. Instead of
building a barrier layer as previously done, BCls was used to try to
eliminate surface water. The graded-index profiling is accomplished in
Steps 6 through 50 by increasing the GeCly flow rate for each step.

IV. FIBER DRAWING

The fiber-drawing machine design was also based on exploratory
equipment used at Bell Laboratories. The main frame consisted of two
vertical I beams on a base frame which was shock-mounted and stabi-
lized. The subassemblies for drawing and tandem coating were attached
to the main frame (Fig. 3). At the top was the feed mechanism utilizing
a traverse unit for lowering the preform into the drawing furnace.

The drawing furnace was a graphite resistance furnace modified to
operate without a muffle tube. Operating such a graphite furnace in the
2000°C region requires careful control of an inert gas atmosphere such
as argon. A high argon flow rate reduces element deterioration but
creates a turbulence detrimental to drawing stability. Thus, a restriction
of the furnace entrance and exit was provided to reduce the argon
flow.4

The furnace entrance restriction was a disk slightly larger than the
preform. The furnace exit restriction was a pair of interlocking, adjust-
able sliding plates, separated at start-up to provide a large opening for
grasping the tip of the preform. After start-up, the plates were moved
together so that the fiber passed through a small hole. An electronic
micrometer was positioned near the furnace exit to monitor fiber di-
ameter.

Table | — Deposition sequence
SICL; 0_2 to GeCl4 Bcl-:, Torch
Step gms/ SiCly gms/ Ozto cc/min—cmjk- Vel Extra

Operation No. min c¢cc/min min GeCly min—°C cde/min Temp O,
Polish 1 — = — - — — 1500 750
Polish 2 — — — — — 25.4 750
Polish 3 — — — — —- 750
BClytotube 4 “— —_— — — 10 515
BClytotube 5 — — ~- —
8iCiy and 4] 0.6 260 0.02 75 1580
GeC

to tube

for

deposit
End depesit 50 0.6 260 043 515 10 25.4 1590 515
Collapse 51 == — . — — 15.8 1740
Collapse 52 — — — — — 88 1750 515
Collapse 53 — — — — = 32 17170 —

1738 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1378

———FEED
ASSEMBLY
PREFORM— ——
FURNACE-~—
, L*... —-DIAMETER GAUGE
| 1-L-Hmps
FIBER —— __ | -.
f
ofl [
ol T2
'NQ(| |-{--POLYMER
|b 1 COATER
e
wﬁ--ﬁ FURNACE
COATED— —__| || T‘ CONTROL
FIBER 7 | MACHINE
CONTROL
i
I

Fig. 3—Fiber-drawing machine.

Two coating applicators were provided. The first was a compressed
polyurethane foam wiper to apply hexamethyldisilizane (HMDs). The
HMDS was dripped onto the pads to maintain a wet condition and min-
imize frictional contact with the fiber. Directly below this applicator was
a radiant-heat-tube furnace, which vaporized the excess silane.

The second coating mechanism was a polymer applicator which ap-
plied a solution of ethylene-vinyl acetate (EvA).5 This applicator con-
sisted of a heated reservoir attached to a coating die cavity such thata
nearly constant solution level was maintained above the die. The die and
die cavity were a split design to permit alignment of the fiber in the die

PREFORM FABRICATION AND FIBER DRAWING 1739

Fig. 4—Fiber coater.

hole (Fig. 4). The entire coating assembly was mounted in an X-Y po-
sitiordng arrangement. The EVA used was mostly Dupont Alathon* 3172
although a small quantity of fiber was coated with Alathon 3170 (Elvax*
460). The solution mixture was 28.3 gms EVA to 100 ml 1,1,1 trichlo-
roethane.

The distance between the coating applicator and drawing capstan
permitted a 2-s gelation time at 0.8 m/s draw speed. This was sufficient
to prevent distortion of the coating in the belt-type drawing capstan
where a minimum belt pressure was used.

The reel take-up was positioned a few feet from the capstan so that
a fiber catenary could be maintained for minimum winding tension. The
take-up was capable of supporting two 15-cm-diameter expanded

S0

THEORETICAL PREFORM YIELD
80—

70—

60—

ACTUAL DRAW DUTPUT

50—

ol

30

FIBER QUANTITY IN KILOMETERS

INSPECTED FIBER YIELD

20—

104=-

WEEK

Fig. 5—Fiber drawing results.

* Trademarks of E. I. DuPont de Nemours and Company.
4740 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table I| — Fiber rejection, Atlanta Experiment

Percent Rejection

1. Cladding diameter 10
(110 u + 2.5%)
Cladding diameter .

% “Core diameter 0 ®
(2.0 + 6%)

3. Coreellipticity 2
(5“-‘”‘-“.—'“2 dia. < s%)

min

4, Bandwidth 0
(200 MHz — km)

5. Loss @ 0.82 pm 18
(<7.0dB/km)

6. Proof testing 16
(30K psi} =

Total 55

polystyrene reels, one for start-up and one for accumulating the fiber
length in a loosely wrapped package.

The drive motors were dc permanent magnet servo type with integral
optical tachometers. These were used in a frequency and phase-locked
loop digital circuit for superior speed control.f In the operational mode
used, the draw speed control capstan was set at a speed of 0.8 m/s. The
take-up tracked the capstan while partially compensating for the di-
ameter change as the reel filled. Preform feed speed was manually se-
lected as a ratio hased on preform-to-fiber diameter.

V. RESULTS

Figure 5 shows fiber drawing output results for the eight-week period
during which most of the fibers were drawn. The theoretical output is
the number of preforms drawn multiplied by the expected 2.2-km length
for each preform. The length of fiber drawn is that quantity delivered
to Bell Laboratories for quality measurement. The difference between
the two curves represents machine failures, general processing dif-
ficulties, and preforms that would not yield the full 2.2 km.

The yield curve is simply the fiber passing the quality measurement
criteria. The early low yield was due to problems associated with the
diameter monitor. After procedures were established for calibrating and
adjusting the gauge, a gradual improvement was realized. The dip near
the end occurred when loss problems were experienced. Conditions
contributing to the high loss, primarily oxygen impurity, were subse-
quently cleared and higher yields returned. Table II shows the six criteria
limits for fiber quality and the percent rejection for each parameter.

As previously described, fiber diameter was controlled manually by
adjusting preform feed velocity. With this technique, the time required
for the diameter to respond to a step change in feed speed was too long,

PREFORM FABRICATION AND FIBER DRAWING 1741

{MIN, WALL)
[
=)
7]
&

—_—i
NUMBER OF PREFORMS

=
=z
Z 0016
u:'g Q A
Su 0008 o 9-000
o
) . [+] e
'So‘ouol_. LI LI R '
=]
0.578 o 3
—_ L]
g R ., 00 ’
O - O L]
g 0.550 - . b~ a o fo] ., %
= G o Q - .
- -
-
0522 o " .
* ROUND'CORE Q ELLIPTICAL CORE (DIMENSIONS IN INCHES)

Fig. 6 —Glass-tube dimension vs preform core.

and most diameter charts showed a sinusoidal variation. Preform
nonuniformity also affected the fiber diameter. Starting tube diameter
and wall thickness variations coupled with short-term variations in de-
position rates result in diameter changes along a preform. A random
sample of 37 preforms showed this variation to-beas much as 5 percent.
These factors, along with the diameter monitor inaccuracies, furnace
turbulence, and preform particle contamination caused by the furnace
seal, were major concerns in fiber diameter control.

Core-to-cladding ratio variations are a function of starting tube di-
ameter, wall thickness differences, and long-term deposition rate drift.
These variations are strongly related to tube dimensions and are larger
than the short-term variations previously mentioned. Therefore, the
ratio limits are larger than the fiber diameter limits.

Core ellipticity was originally a difficult problem. Nineteen of the first
67 preforms (28 percent) failed to meet limits. A study of 31 starting
tubes was made, and the results of fiber drawn from these are shown.in
Fig. 6. The study illustrated that tube out-of-roundness and wall
thickness variation at a cross-section were the important factors deter-
mining core ellipticity. Therefore, (.006-inch (0.152-mm) limits were
placed on each, which lowered the rejections.to 2 percent.

Losses greater than 7.0 db/km at 0.82 um were generally the result of
impure materials and material-handling procedures. It was found that

1742 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

LOSS IN dB/Km

1 | | 1 1
0.600 0.700 0,800 0.900 1.000 1.100
WAVELENGTH IN ftm

Fig. 7—Typical fiber loss.

purging all lines prior to installing a refilled bubbler was very important.
If not done properly, it was common to have a high-loss preform on the
first run. Leaks in the system also resulted in high loss fibers. They were
difficult to eliminate when Teflon* fittings were used. Leaks also de-
veloped in the oxygen supply line from the liquid oxygen tank. This
problem was eliminated by using high-purity oxygen obtained in bottles.
High loss could also be induced by inadequately fusing the doped silica
layers during deposition. Since the tube temperature was manually
controlled, the Hy-Os; flow increases for each deposit pass depended on
the accuracy of the flow meter settings. If the tube wall thickness varied
significantly, a large temperature change was noted. Figure 7 shows a
typical fiber loss curve, and Fig. 8 shows the loss distribution for the fi-
bers.

Proof test failures stemmed from a number of processing conditions.
Obviously, methods of handling tubes and preforms could cause damage.
Preforms were in contact with the top furnace seal, and the drawn fiber
would at times contact the die in the coating apparatus.

The bandwidth requirement was low and could be met without dif-
ficulties. The average bandwidth was approximately 450 MHz—km. A
high value of nearly 1200 MHz—km was measured.

In all, the above specifications led to a 45-percent yield. This yield was
considered a reasonable accomplishment, but certainly pointed to the
need for improvement in all aspects of fiber preparation.

* Registered trademark of E. I. DuPont de Nemours and Company.

PREFORM FABRICATION AND FIBER DRAWING 1743

a0+

20

PERCENT FIBER

10 - —

oll 1 1] | |
4 OR LESS 4.1-5 5.1-6 6,1-7 7.1-8 OVERg

LOSS IN dB/km AT 0.82 pim
Fig. 8—Fiber loss distribution.

Vi. ACKNOWLEDGMENTS

Making fibers for the Atlanta Experiment could not have been ac-
complished without the immense support of a host of Bell Laboratories
personnel. Special mention is made of the efforts of W. B. Gardner, B.
R. Eichenbaum, M. J. Buckler, and L. D. Tate. The highest accolade
belongs to the authors’ co-workers in the PECC laboratory, whose untiring
and enthusiastic performance made success a realization. They were M.
J. Hyle, E. A. Haney, R. L. Center, M. L. Vance, and T'. A. Karloff.

REFERENCES

1. J. B. MacChesney, P. B. 0’Connor, F. V. DiMarcello, J. R. Simpson, and P. D. Lazay,
Proc. Tenth Int. Congr. Glass, Kyoto, Japan, July 1974.

2. J. B. MacChesney, P. B. 0’Connor, and H. M. Preshy, “A New Technique for the
Preparation of Low-Loss and Graded Index Optical Fibers,” Proc. IEEE, 62, No.
9 (Sept. 1974), pp. 1278-1279.

3. F. V. DiMarcello and J. C. Williams, Conf. Pub. No. 132, IEEE, First European Conf.
on Opt. Fiber Comm., 37 (1975). .

4. P. Kaiser, “Method for Drawing Fibers,” U.S. Patent 4-030-901. See also Appl. Opt.,
16 (1977), p. 701.

5. B. R. Eichenbaum, unpublished work.

6. L.D. Tate, unpublished work.

1744 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in US.A.

Atlanta Fiber System Experiment:

Lightguide Cable Manufacture and Performarice

By M. J. BUCKLER, M. R. SANTANA, and M. J. SAUNDERS
{Manuscript received December 5, 1977)

The manufacture of the optical fiber ribbons and the optical cable
used in the Atlanta Fiber System Experiment is described. Yields and
added loss in each step of cable manufacture and installation are
covered, along with the bandwidth changes resulting from packaging
the optical fibers in the lightguide cable. Mechanical performance in
tension and in bending are also considered, as well as the thermal
stability of cable performance.

I. INTRODUCTION

As part of the Bell Laboratories Atlanta Fiber System Experiment,
a small, ruggedized, high-capacity, optical fiber cable was designed,
manufactured, and characterized both optically and mechanically. After
manufacture and evaluation of the fiber optic cable, it was installed in
underground ducts, typical of those used by telephone companies, and
characterized once again. In the present paper, we describe the optical
fiber ribbon and cable designs used for the Atlanta Experiment and their
performance results. In addition, the cable environmental performance
is also discussed. These results provide initial indications of the manu-
facturability of the cable design, including yield information.

Il. FABRICATION OF OPTICAL FIBER RIBBONS

In 1970, a proposal was made to put optical fibers together into easily
‘handled units for optical communication purposes.! This proposal
suggested “the use of fiber ribbons consisting of linear arrays of fibers
embedded in a thin, flexible supperting medium as components of a cable
for fiber transmission systems.” Such a medium is attractive from the
splicing standpoint, since groups of fibers can be handled at once with
relaxed alignment requirements needed to accomplish mass field

1745

splicing.?2 Moreover, this linear array provides increased size and me-
chanical support, thereby improving the human handling qualities of
the fibers.

Optical fibers can be assembled into a linear array structure in many
different ways. The method chosen here was to sandwich 12 optical fibers
between two layers of polyester-backed adhesive (adhesive sandwich
ribbon, ASR).? The machine for making the ASR is described in Ref. 3.
Figure 1 shows a sketch of the completed ribbon cross seetion. Each of
the ASRs contained twelve Western Electric optical fibers which were
coated in-line with ethylene-vinyl-acetate and proof-tested at 207
MN/m2 (30 ksi). The fibers? supplied by Western Electric for the Atlanta
Experiment were germania-doped borosilicate, multimode, graded-
index, and were made using a modified chemical vapor deposition pro-
cess (MCVD).? The ASRs manufactured using these fibers were then in-
corporated into the optical fiber cable for the Atlanta Fiber System
Experiment.8.7

GLASS CORE MVLA’R* TAPE
AND CLADDING 4
\\ ’J
\ ¥

Y e XY e Y Y o aYaeYaXaXe e
‘\v S APABR RO AR OO =

.\ !

N
:nc,féﬂ,i ETHYLENE-VINYL-
ACETATE FIBER COATING
Fig..1—Ribhon cross sectior
HOPE PRESSURE—
EXTRUDED'OUTER
SHEATH
\
1
STAINLESS | .
STEEL WIRES.. _, - PAPER INSULATION

POLYPROPYLENE =~
YARNS

\\
« GLASS CORE

.
HOPE INNER [H1BB{NS)

SHEATH
Fig. 2—Optical cable cross section.

* Registered trademark of E. I. DuPont de Nemours and Company.

1746 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Since the coated fibers are contiguous within the ribbon, any rough-
ness in the coating results in microbending,® which increases the fiber
loss. Indeed, it was found that this added loss due to microbending was
essentially eliminated when the coated fibers were not contiguous within
the ribbon. With contiguous fibers, increased pressure from the com-
pliant rollers in the ribbon machine pushes the fibers together. It was
found that, by adjusting this pressure, the added loss in the ribbon could
be varied in certain coated fibers from about 1 to 19 dB/km.

A total of 16 ASRs, all approximately 1050 m in length, were made hy
Bell Laboratories. Four of the ribbons were discarded because of multiple
fiber breaks. The 12 ASRs selected for the optical cable had a total of
seven fiber breaks. Since that time, better fiber-winding techniques and
improved ribbon machine design have substantially reduced the number
of fiber breaks occurring during ribbon fabrication.

. FABRICATION OF OPTICAL FIBER CABLE

The major consideration in the Bell Laboratories optical fiber cable
design was the simplification of the difficult task of splicing the optical
fibers. This provided the motivation for selecting a cable design based
on linear array fiber ribbons.

Figure 2 shows a developed view of the fiber optic cable design used
for the Atlanta Experiment. The cable core consisted of 12 ASRs (each
containing 12 fibers) stacked in a rectangular array to facilitate the ap-
plication of factory-applied cable connectors. This stacked ribben core
was twisted into a helix with about a 15-em lay, to improve the cable
bending characteristics. A paper thermal insulation layer was longitu-
dinally applied over the core, and a high density polyethylene (HDPE)
inner jacket was extruded over the paper layer. This loosely fitting jacket
provides enough space for the glass core to move, and thus allows re-
laxation of manufacturing and installation-induced stresses that oth-
erwise could result in optical fiber breakage or excessive microbending
loss.®

The reinforced outer sheath consists of helically applied strands of
fibrillated polypropylene twine which provide thermal and mechanical
isolation. The cable load-bearing strength members are helically applied
stainless steel wires over which an HDPE outer sheath is pressure ex-

Table | — Mechanical data for the cable components
Cable Tensile Stiffness
Component (N /percent)
Glass (144 fibers) 934
Mylar {12 ribbons) 40
HDPE {(inner jacket) 56
Polvpropylene twine 209
Steel wire 2732
HDPE {outer sheath) 109

CABLE MANUFACTURE AND PERFORMANCE 1747

truded. This outer sheath provides chemical as well as mechanical pro-
tection for the entire structure. Table I contains a listing of the cable
components and their respective material and cable assembly properties.
Optical and mechanical performance results for this cable design are
discussed in the following sections.

IV. OPTICAL PERFORMANCE

Optical fibers are incorporated in protective coatings, ribbons, and
cables for protection during handling and installation. However, during
this packaging process, microscopic perturbations of the fiber axis from
straightness? can cause mode coupling, and thus add loss (microbending
loss),8 and reduce pulse delay distortion.!® For our particular fiber design,
coupling between guided modes and lossy radiation modes occurs when
the fiber's longitudinal axis is deformed with periods of the order of
1 mm and amplitudes as small as a micrometer. Field-worthy cables must
inhibit fiber axis deflections of this microscopic nature and yet allow for
normal installation and handling procedures.

In this section, we discuss the optical transmission performance and
the vield after each cable manufacturing step.

4.1 Transmission loss

The transmission loss versus wavelength characteristic of each un-
packaged fiber was measured using an incoherent source and seven filters
between 0.63 and 1.05 um.1! In addition, since in this wavelength region
the added loss due to microbends is essentially independent of wave-
length,® the added losses induced by packaging the fibers in ribbons and

MEAN LDSS FOR 138
CABLEI} FIBERS

LOSS IN dB/km
wm

- 7 '-.___x.‘-_
I MEAN LOSS FOR 1447 X X X
UNPACKAGED FIBERS L O /
al- X
X

2+
1} i 1 i 1 n 1 1 - 1

60 kD) 20 90 1400

WAVELENGTH [N pm

Fig. 3—Spectral loss before and after cable manufacture.

1748 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

cables were measured using a He-Ne laser source. The use of 0.63-um
coherent radiation to measure packaging-induced loss provided the
capability of visually locating and diagnosing high scattering loss regions
in the packaged fibers. These two loss measuring sets had their launch
optics adjusted to match the average 0.23 numerical aperture of the
Western Electric fibers. For both measurement sets, the two-point
technique was used, where first the optical power received at the end of
a long fiber is measured and second, the fiber is broken at about 0.5 m
from the launch end and the output power from the short length is
meagured. The ratio of the received power from the long fiber to that of
the 0.5-m pigtail was used to calculate the transmission loss. The
agreement hetween the two sets at 0.63 pm and the measurement re-
peatability are both about +0.2 dB for a 1-km fiber length.

4.1.1 Unpackaged fiber losses

Western Electric at Atlanta fabricated the 144 in-line coated optical
fibers used for the Atlanta Experiment cable (12 ribbons each with 12
fibers). One hundred thirty-two fibers were coated with Alathon* 3172,
and 12 were coated with Elvax *460. The spectral loss of each unpack-
aged fiber was measured at seven different wavelengths between 0.63
and 1.05 um. The lower curve in Fig. 3 is a plot of the mean spectral loss
curve for the 144 unpackaged fibers measured, where the standard de-
viation at each wavelength is approximately 1 dB/km. At the Atlanta
Experiment transmission wavelength of 0.82 um (transmitter source was
a GaAlAs laser operating at 0.82 um), the mean unpackaged fiber loss
was 4.7 dB/km.

4.1.2 ASR loss resulls

Twelve 1-km adhesive sandwich ribbons, each containing 12 fibers,
were used in the Atlanta Experiment cable. The added loss due to
packaging the fibers in the ribbon structure was measured using the
He-Ne laser loss set. Due to the mechanical relaxation of the fibers within
the ASR structure, the added packaging-induced microbending loss
decreases with time after completion of ribbon manufacture. It has been
found that the added loss due to ribboning relaxes to a quasi-steady-state
minimum value within about 50 hours after the completion of ribboning,
Table II shows the results for each of the 12 ASRs. For each ribbon listed
in Table II, the manufactured ribbon length, fiber vield, and the mean
added loss just after the completion of ribboning (¢t = 0 hours)} and just
bhefore cable manufacture (¢ > 200 hours after ribboning) is shown, For
the 137 transmitting fibers in these 12 ASRs, the mean added loss just
before cable manufacture was 0.8 dB/km.

* Alathon and Flvax are ethylene-vinyl-acetate resins that are registered trademarks of
E. I. DuPont de Nemours and Company.

CABLE MANUFACTURE AND PERFORMANCE 1749

Table Il — ASR loss and vield results

Number of Mean Ribboning Added

Ribbon Manufactured Transmitting Loss {dB/km}
Designation Length (m). Fibers t=0 t > 200 Hours
ASR 281 1043 12 3.4 0.8
ASR 282 1064 12 6.0 1.1
ASE 284 1092 10 29 0.9
ASR 286 1067 12 2.8 0.6
ASR 287 1050 11 3.1 1.6
ASR 288 1092 10 3.1 0.4
ASR 290 1050 12 3.3 1.1
ASR 291 1146 12 3.3 0.7
ASR 292 1101 10 2.3 0.1
ASR 294 1047 12 39 0.8
ASR 205 1036 12 4.7 0.8
ASR 296 1081 12 4.1 1.3

4.1.3 Cable loss resulfs

Using the 12 ribbons described, a 1023-m length of cable was manu-
factured for the Atlanta Experiment. The added loss due to cable
manufacture was measured with the 1023-m length of cable wound
loosely on a cable reel. The mean added loss due to cable manufacture
was 0.5°dB/km for the 134 transmitting fibers in the cable (there were
three fiber breaks during cabling). Figure 4 is a histogram of the total
added losses due to ribbon and cable manufacture. The mean total
packaging induced loss was +1.3 dB/km with a standard deviation of
1.3 dB/km for the 134 transmitting fibers in the 1023-m cable length.
A 658-m section of this cable (with 138 transmitting fibers) was installed
in a standard plastic underground duct network (see Fig. 5) at the Bell
Laboratories/Western Electric Atlanta facility. The ducts terminate in
a basement room and extend 150 m to a manhole, and then another
140 m to a'second manhole. The lightguide cable was looped in the sec-
ond manhole so that both ends could be terminated in the basement
room. The remaining 365.m of cable not installed uriderground was cut
off and used for mechanical and environmental tests described later in
this paper. After completion of installation of the 658-m cable segment,
the spectral loss was measured for each of the 138 transmitting fibers.
The upper curve of Fig. 3 shows the mean spectral loss curve for the 138
fibers. Comparing the loss measurements between 0.63 and 1.05 pm for
the unpackaged fibers and the installed-cable fibers (Fig. 3, lower and
upper curve, respectively) indicates that the microbending loss is es-
sentially independent of wavelength for this spectral region, as pre-
dicted.8 These results also indicate that there was no measurable change
in cabled fiber transmission loss due to installation. The mean in-
stalled-cable fiber loss at the source wavelength of 0.82 ym was 6.0 dB/km
with a standard deviation of 1.9 dB/km.

1750 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

35

i o 134 TRANSMITTING FIBERS
MEAN =+13 dB/km

NUMBER OF FIBERS

: M

=10 0 1.0 20 30 4.0 50 6.0
TOTAL ADDED LOSS IN dB/ km

Fig. ——Histogram of cabled fiber added losses.

LIGHTGUIDE
CABLE
e MANHOLF
& \
ATLANTA WESTERN ELECTRIC/ = \
BELL LABS FACILITY N \
N
\\
~
UNDERGROUND _
OuCTS =

144
UNOERGRDUND WETERS
DUCTS MANt‘DLE
I
£ A
¥ 4

fa T

= LIGHTGUIDE
L4 CABLE

T A 1
—_— /
i VR W
150 T
METERS

Fig. 5—Atlanta installation route.

4.2 Pulse delay distortion

Pulse spreading in a multimode optical fiber is reduced when the ge-
ometry (microbends) of the waveguide induces power mixing among the
propagating modes (mode coupling).!2 In a waveguide with strong ran-

CABLE MANUFACTURE AND PERFORMANCE 1751

dom coupling among its guided modes, it has been predicted that for long
enough lengths the width of the impulse response will increase with the
square root of the fiber length. Thus, the length dependence of pulse
spreading for a particular fiber of a given length can vary between linear
and square root, depending on the strength of the intermodal cou-
pling.

The pulse delay distortion or pulse spreading characteristics of 72 of
the 144 fibers in the experiment cable were obtained from impulse re-
sponse measurements. The impulse response was measured at 0.82 um
using techniques and equipment described elsewhere.!® The 3-dB
bandwidth, i.e., the baseband frequency at which the Fourier transform
of the fiber impulse response has decreased to % of its dc loss value, will
be used here as a figure of merit.

4.2.1 Unpackaged fiber bandwidths

The 72 unpackaged fibers characterized for the Atlanta Experiment
cable varied in length between 1.1 and 2.3 km. Thus, in order to deter-
mine the effects of packaging on fiber pulse delay distortion, it is nec-
essary to normalize the fiber pulse spreading results to a common length.
Independent studies using fibers like those used for the Atlanta Ex-
periment indicate that the unpackaged fiber pulse spreading is ap-
proximately linear with length (i.e., the coupling length was usually larger
than 2.3 km). Using this approximation for the unpackaged fiber
bandwidths, the mean, measured, unpackaged fiber-optical-3-dB-point
bandwidth was 438 MHz for a 1-km length (with a standard deviation
of 224 MHz).

4.2.2 ASR bandwidih resulis

The 72 unpackaged fibers measured for impulse response were all
contained within six of the 12 ASRs used in the optical cable. The pulse
spreading characteristics of the 68 of these 72 fibers that survived rib-
boning were remeasured after the completion of ribbon manufacture.
Due to the fiber mode coupling induced by the ribbon package (as seen
in Section 4.1.2), the ribboned fiber bandwidth is assumed to be inversely
proportional to the square root of length (complete mode mixing). Since
the six ribbons measured varied in length between 1043 and 1092 m,
there is a minimum of ribboned fiber bandwidth data shifting required
to normalize the data to a 1 km length. Using this length dependence
assumption, the mean measured ribboned fiber bandwidth was 633 MHz
for a 1-km length. However, it should be noted that the ribboned fiber
bandwidths were usually measured right after the completion of ribbon
manufacture. As mentioned in Section 4.1.2, the time decaying compo-
nent of the ribboning added loss was not relaxed until about 50 hours
after the completion of ribboning. Thus, the ribboned fiber bandwidths

1752 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

measured are probably slightly high, since initially the fibers have ad-
ditional mode mixing due to the unrelaxed ribboned fiber micro-
bends.

4,2.3 Cable bandwidih results

For the 1023-m length of cable manufactured, 65 of the 72 fibers
which had been measured in the unpackaged state survived ribbon and
cable manufacture. The mean 3-dB point bandwidth measured for the
1023-m length of cabled fibers was 553 MHz (with a standard deviation
of 309 MHz). For the 658-m length of installed cable, 68 of the 72 fibers
were transmitting and had a mean 3-dB bandwidth of 690 MHz (with
a standard deviation of 286 MHz). Using the measured bandwidth data
for the 1023-m length of cabled fibers and the 658-m length of in-
stalled-cabled fibers, the 3-dB bandwidth was calculated to be propor-
tional to (length)—0-50£0.17 This result provides excellent agreement with
previous predictions of square-root-of-length dependence for complete
mode mixing.14 Using this measured square-root-of-length dependence,
the mean cabled fiber bandwidth normalized to a 1-km length was cal-
culated to be 559 MHz. Thus, the mean 3-dB bandwidth increase in going
from unpackaged to cabled fibers was 121 MHz (with a standard de-
viation of 249 MHz) for a 1-km length. However, this increase in band-
width was accompanied by a mean increase in loss of 1.3 dB/km.

V. ENVIRONMENTAL PERFORMANCE

Unless special precautions are taken during storage, shipment, and
installation of cables, they may encounter a large range of temperature
exposures. Dimensional changes within the optical fiber cable structure,
due both to linear thermal expansion of materials and polymeric
shrinkback, can result in variations in the optical transmission properties
of the fiber, thus possibly impairing system performance.

To evaluate how temperature variations affect the optical performance
of the Atlanta Experiment fiber optic cable, a 156.4-m section was in-
stalled in a thermally insulated, underground, temperature-controlled,
copper duct. The temperature of this duct can be controlled to about
+1°F over the range of +30°F to +150°F. Ribbons at one end of the cable
were spliced together in pairs with six ribbon splices,!® thus providing
72 fiber links, each 312.8 m in length. Four of these 312.8-m fiber links
were spliced together at the other cable end using three low-loss, loose-
tube, individual fiber splices,'® thus forming a single 1251.2-m cabled
fiber link. This 1251.2-m link was used to determine environmental ef-
fects on loss and pulse delay distortion at 0.82 um. Forty of the 312.8-m
cabled fiber links were each measured for the environmental effects on
the loss at 0.63 pm.

During the environmental tests at exposure temperatures above

CABLE MANUFACTURE AND PERFORMANCE 1753

+70°F, the cable was allowed to stabilize for 72 hours before measure-
ments were made. Twenty-four-hour exposure was assumed sufficient
at low temperatures. To better ascertain the nature (reversible or not)
and magnitude of the effect of the temperature exposure, the cable was
always returned to +70°F before any subsequent temperature expo-
sure,

Figure 6 shows a plot of the sensitivity of cable loss to thermal history
measured at 0.63 um for the forty 312.8-m fiber links. Figure 7 shows a
plot of the sensitivity of cable bandwidth to thermal history, measured
at 0.82 ym, for the single 1251.2-m fiber link. Correlation of the data
measured for the 0.82-um loss and bandwidth changes induced by the
+30°F to +150°F exposure temperatures shows that the 3-dB bandwidth
increased by 9.9 3 0.5 MHz (3.0 percent) for a loss increase of 1.0 dB (6.2
percent), with a coefficient of correlation of 0.86. Moreover, there was
essentially unity correlation between the 0.63-ygm and 0.82-um loss
changes, suggesting that these temperature-induced microbending loss
variations are essentially linear with length and independent of wave-
length over this wavelength range, as expected.? The environmental
results presented here clearly show that the cabled fiber loss and

25

40]-

——————— 20

I
=
T

MEAN CHANGE IN 0.63 um LOSS FOR THE FORTY 312.8m CABLED FIBER LINKS,
REFERENCED TO INITIAL 70°F AVERAGE 10SS IN dB/km
MEAN PERCENT CHANGE FROM INITIAL 70°F VALUE

N H-n
20 IR SO N NP WS N S SO (WO NS NN [W (NN PO LR, [[(|
70 il 30 90 no_ 130 150 30 10 10

EXPOSURE TEMPERATURE IN °F

Fig. 6-—~Change in 0.63-xm loss vs. exposure temperature.

1754 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

60

50

o
=
I

)
=
T

=
I

MEAN CHANGE IN 3dB BANDWIDTH FOR THE 1251.2m CABLED
FIBER LINK, REFERENCED TQ INITIAL T0°F VALUE IN MHz
=]

T

MEAN PERCENT CHANGE FROM INITIAL 7(FF VALUE

- 150 7 7
7[} 0 n 50 30 7[]9“ ?ﬂ"u'.'UlauTlJ s 70 30 70 0 10 D]'[I

EXPOSURE TEMPERATURE IN °F

Fig. 7—Change in 0.82-um bandwidth vs. exposure temperature.

bandwidth changes for this cable depend not only on cable exposure
temperature but on thermal history as well.

Design modifications of the “Atlanta type” optical cable are in prog-
ress, with the goal of reducing temperature-induced loss variations to
less than 0.5 dB/km over a temperature range from at least —20°F to
+150°F.

VI. MECHANICAL PERFORMANCE

Mechanical tests were conducted on a number of segments of the
Atlanta Experiment cable. The cable segments were subjected to both
tensile and bending tests. Figure 8 shows a typical curve obtained for
cabled fiber survival versus cable load and strain. No fiber breaks ac-
curred until the cable load exceeded 1779 Newtons, with more than 85
percent of the fibers still surviving at a load of 4448 N. Also, cable reverse
bends, which consisted of a 90-degree bend with a 12.5-cm radius fol-
lowed by a second 90-degree bend of 12.5-cm radius in the opposite di-

CABLE MANUFACTURE AND PERFORMANCE 1755

CABLE SHEATH STRAIN IN PERGENT

i] 0.1 02 0.3 0.4 05 0.5 0.7 0.2 0.4 1.0
T T T T T 1 T 1 T

100
98}~
9k
aaf
2}
a0l
88

FIGER SURVIVAL IN FERCENT

86|
sl

1

1 1 1 I 1 I |
82y 4500

1 |
900 1800 2700 3600
CABLE LOAD IN NEWTONS

Fig. 8—Percent fiber survival versus cable load.

rection, caused no fiber breaks or cable degradation. These results pro-
vide further proof that small, ruggedized, lightweight (the Atlanta cable
weighs only 934 N/km) fiber optic cables can be designed to package
hundreds of high-capacity lightguides.

VIl. CONCLUSIONS

The design and characterization of the optical fiber ribbons and cable
used in the Atlanta Experiment have been described. The cable per-
formed well, and results of the optical cable tests indicate that high
performance, large-capacity, optical-fiber cables are feasible. The suc-
cessful integration of this optical cable with the other necessary fiber-
optic transmission system components is described in companion papers
in this B.S.T.J. issue. This optical cable design was the stepping-stone
to the installation of optical fiber cables for the Bell System’s Chicago
Lightwave Communications Project.’” In the Chicago Project, the optical
cables are of the same design, but contain only a two-ribbon core (24 fi-
bers), and are being evaluated under actual live customer traffic.

As a result of the design and evaluation of the Atlanta Experiment
optical cable, new designs and material changes are being investigated.
The goal of these efforts is to improve performance and increase the
compatibility of the cable with real-world handling and environmental
conditions.

VIil. ACKNOWLEDGMENTS

The successful completion of the Atlanta Experiment optical cable
is due to the efforts of many individuals at Bell Lahoratories and Western
Electric. In particular, we would like to acknowledge the efforts of W.
P. Maxey in cable manufacture, W. L. Parham in ribbon manufacture,
and L. Wilson in optical characterization.

1756 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

REFERENCES

1. R. D. Standley, “Fiber Ribhon Optical Transmission Lines,” B.3.T.J., 53, No. 6
{July-August 1974), pp. 1183-1185.

2. M. L. Schwartz, “Optical Fiber Cabling and Splicing,” Technical Digest of Papers of
the Topical Meeting on Optical Fiber Transmission I, Williamsburg, Virginia,
January 1975, p. WA2.

. M. J. Saunders and W. L. Parham, “Adhesive Sandwich Optical Fiber Ribbons,”
B.S.T.J,, 56, No. 6 (July-August 1977), pp. 1013-1014.

. D.L. Myers and F. P. Partus, “Fiber Optics for Communications,” Wire Journal, 9,
No. 10 (October 19786), pp. 72-77.

5. J. B. MacChesney, P. B. 8'Connor, and H. M. Preshy, “A New Technique for the
Preparation of Low-Loss and Graded-Index Optical Fibers,” Proceedings of the
IEEE, 62, No. 9 (September 1974), pp. 1280, 1281.

. S. J. Buchsbaum, “Lightwave Communications—An Overview,” Physics Today, 29,
No. 5 (May 1976), pp. 23-27.

7. J.8. Cook, 4. H, Mullins, and M. 1. Schwartz, “An Experimental Fiber Optics Com-
munications System,” 1976 1EEE/0SA Conference on Laser and Electro-Optical
Systems, San Diego, May 1976.

8. W.B. Gardner, “Microbending Loss in Optical Fibers,” B.8.T.J., 54, No. 2 (February
1975), pp. 467-465.

9. D. Gloge, “Optical-Fiber Packaging and Its Influence on Fiber Straightness and Loss,”
B.S.T.J., 54, No. 2 (February 1975), pp- 245-262.

10. D. Marcuse, “Losses and Impulse Response of a Parabolic Index Fiber with Random
Bends,” B.8.T.J., 52, No. 8 (October 1973), pp- 1423-1437.

11. M. J. Buckler, L. Wilson, and F. P. Partus, “Optical Fiber Transmission Properties
Before and After Cable Manufacture,” Technical Digest of Papers of the Topical
Meet.;ng on Optical Fiber Transmission I1, Williamsburg, Virginia, February 1877,
p. WAL

12. 8. D. Personick, “Time Dispersion in Dielectric Waveguides,” B.S.T.J., 50, No. 3
{March 1971), pp. 843-859.

13. J. W. Dannwolf, S. Gattfried, G. A. Sargent and R. C. Strum, “Optical-Fiber Im-
pulse-Response Measurement System,” IEEE Transactigns on Instrumentation
and Measurement, IM-25, No. 4 {December 1976), pp. 401-406.

14. L. ;. Cohen and S. D. Personick, " Length Dependence of Pulse Dispersionin a Long
]\ir[sg})t.imnde Optical Fiber,” Applied Optics, 14, Na. 6 {June 1975), pp. 1357-
1 ,

15. A. H. Cherin and P. J. Rich, “A Splice Connector for Joining Linear Arrays of Optical
Fibers,” Technical Digest of Papers of the Topical Meeting on Optical Fiber
Transmission 1, Williamsburg, Virginia, January 1975, p. WB3.

16. C. M. Miller, “Loose Tube Splices for Optical Fibers,” B.5.T.J., 54, No. 7 (September
1975}, pp. 1215-1225.

17. A.R. Meier, “ *Real-Waorld’ Aspects of Bell Fiber Optics System Begin Test,” Tele-
phony, 192, No, 15 {April 11, 1977), pp. 35-39.

F o]

o

CABLE MANUFACTURE AND PERFORMANCE 1757

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U.S.A.

Atlanta Fiber System Experiment:

Optical Crosstalk Evaluation for Two End-to-End
Lightguide System Installations

By M. J. BUCKLER and C. M. MILLER
{Manuscript received October 14, 1977)

A visual photometric method of measuring lightguide cross-coupling
is described. Crass-coupling losses up to 100 dB can be measured with
a resolution of 1 dB. The end-to-end cross-coupling losses were
measured for the Bell System's 1976 Atlanta Fiber System Experiment
and 1977 Chicago Lightwave Communications Project installations.
In the Atlanta experiment, the crosstalk was also measured for the
unconnectorized lightguide cable and fanout ribbons, separately.
Worst-case cross-coupling losses were measured to be 55 dB for far-end
output-to-output and 70 dB for near-end. Results presented here con-
firm that properly designed parallel lightguides have negligibly small
levels of optical crasstalk. However, it ts shown that future optical in-
terconnection devices that involve high-fiber packing densities will have
to take crosstalk considerations into account.

I. INTRODUCTION

The Bell System uses many types of transmission media to carry
telephone calls, computer data, and television signals. One of the newest
telecommunications medium under development is the glass fiber
lightguide medium.! The first telephone plant application of lightwave
systems will probably be between central offices in metropolitan
areas—where duct and manhole space are at a premium, the volume of
traffic is high, and central offices are close enough so that manhole re-
peaters are not needed.

In 1976 Bell Laboratories successfully demonstrated an experimental
lightwave communications system at its facility shared with Western
Electric in Atlanta.2 This system, designated FT3, which uses solid-state

1759

lasers as light sources, could carry the equivalent of nearly 50,000 tele-
phone calls through a one-half-in. diameter cable containing 144 fiber
lightguides. Following this successful experiment, the Bell System’s first
lightwave system to be evaluated under actual service traffic conditions
was installed in Chicago (Illinois Bell Telephone Company) in early
19773

Advantages of optical fibers over conventional copper links include
small size, freedom from interference, immunity to ground-loop preb-
lems, large information capacity, and potential economy. Data available
thus far on early lightwave systems have, for the most part, been limited
to optical loss and signal distortion (pulse spreading),? which can be
related directly to economic viability. However, for telecommunication
applications in congested metropolitan areas, the trend is toward higher
fiber packing density. Therefore, as the lightguides are packed closer
together and as the connectorization schemes become more miniaturized,
the effects of lightguide cross-coupling will be enhanced. As a result,
lightguide crosstalk could directly influence system applications and
engineering rules, as well as system immunity to outside intrusion.

Although the theory of optieal crosstalk for parallel lightguides has
been studied by others,>® a search of the literature turned up no actual
measurements for a complete optical fiber transmission system. This
paper presents the in-depth optical cresstalk data measured for the Bell
System’s lightwave systems in Atlanta and Chicage. These results show,
as others have predicted,®? that crosstalk levels in parallel lightguides
arranged in our cable géometry are extremely low. Moreover, it is seen
that there are measurable levels of system end-to-end optical crosstalk;
however, the source of this crosstalk is believed to be the interconnection
hardware. The laser measurement technique and equipment used for
these optical crosstalk evaluations are deseribed in the next section.

Il. CROSS-COUPLING MEASUREMENT TECHNIQUE

Tt is well known that the human eye is incapable of making’an absolute
measurement of the amount of light entering it; we can leck at two
sources and estimate that one appears “brighter” than the other if there
is sufficient difference between them, but we cannot form a reliable
judgment as to how much they differ,1® However, the eye can decide with
very good accuracy whether two adjacent surfaces appear equally bright;
this was the basic premise used for our visual photometric measurement
of lightguide cross-coupling.

According to the law of Weber,!? the smallest perceptible difference
of apparent brightness or luminosity is a constant fraction of the lumi-
nosity (AL/L = constant). This fraction, known as Fechner’s fractiomn,

1760 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

is, over a large range of luminosities, about 1 percent. The eye can
therefore distinguish between two adjacent surfaces that differ in lu-
minance by this amount.10

The measurement setup for photometrically measuring the cross-
coupling between optical fibers is shown in Fig. 1. The optical excitation
source used for these measurements was a 2.5-mW helium-neon laser
having an approximately Gaussian distribution of light in the TEMgy
mode. This laser output beam is expanded, collimated, and focused to
a numerical aperture of 0.23 to match the average numerical aperture
of the optical fibers to be tested. The procedural steps of optically
measuring the cross-coupling between optical fibers are ag follows:

(t) Only one of the fibers is illuminated in the packaged fiber
structure to be tested.
(it} The end of the fiber being energized is covered at the far end of
the structure being tested.

(it} The far-end observer uses a loupe to observe the He-Ne lumi-

nance in a cross-coupled-to fiber.
{iv) The near-end observer (and source operator) now places a
neutral density filter in the laser beam path.
(v) The far-end observer uncovers the far end of the energized fiber
and observes the He-Ne luminance with the loupe.
(v} The far-end observer covers the energized fiber and the near-end
observer removes the neutral density filter.

(vit) Steps (i), (tv), and (v) are repeated in rapid succession with
different amounts of neutral density filtering until the far-end observer
notes that the energized fiber with filter has the same luminance as the
cross-coupled-to fiber.

The amount of neutral density filtering required to equalize these
luminances is the same as the equal-level far-end output-to-output
cross-coupling for that fiber pair. This is essentially a null-comparison
type measurement process in that it attempts to maintain a balance by
suitably applying an effect balancing that which is generated by the
cross-coupling.!! All the cross-coupling experiments were performed

SINGLE CABLE ARRAY LIGHTGUIDE
LIGHTGUIDE sPLICE -7 CABLE
CONNECTOR : ey

/
NEUTRAL H g
DENSITY | FBER £ 4
FILTERS p ~ " 3

e
r \
i ¥
HE - NE}—1 PIGTAIL
LASER | ! =1

SOURCE|— NEXT 46
5X

JE IR W Lo

&

2 FEXT

(| ® oBsERVER
EX

(] OBSERVER
LENS At . ;
i i w
5
LIGHTGUIDE
FANOQUT

Fig. 1~Cross-coupling measurement setup.

P r—r"-p-"

OPTICAL CROSSTALK EVALUATION 1761

under darkened ambient conditions. For these conditions, it was found
that input-to-input or output-to-output cross-coupling losses of up to
100 dB could be detected.

With parallel lightguides, not only is there far-end crosstalk (FEXT)
due to parallel interference, but there can also be near-end crosstalk
{NEXT) caused by antiparallel interference. The procedures for mea-
suring the near-end optical cross-coupling are essentially the same as
those stated above for FEXT. For near-end cross-coupling, neutral
density filters are inserted into the laser beam path until the energized
fiber pigtail output luminance equals the luminance of the near end of
the cross-coupled-to fiber. Using this visual photometric method of
measuring lightguide cross«coupling, the optical crosstalk was measured
for the Bell System’s end-to-end lightguide installations in Atlanta and
Chicago.

. CROSSTALK MEASUREMENTS FOR THE ATLANTA FIBER SYSTEM
EXPERIMENT

In the past several years, many fundamental advances have heen made
at Bell Laboratories in lightwave communications technology. Low-loss
optical fibers have been fabricated, cabling and splicing techniques
devised, long-lived laser transmitter packages constructed, and optical
repeater technology advanced. The 1976 Atlanta Fiber System Exper-
iment brought all these components together into a working system to
evaluate system performance in an environment approximating field
conditions. The experimental system contained all the elements of an
operational 44.7-Mb/s digital transmission system. Plastic underground
ducts, typical of those used in metropolitan areas, provided the outside
plant environment for the lightguide cable (see Fig. 2).

The 658-m cable is 12 mm in outer diameter and has 144 optical fibers
arranged in 12 fiber ribbons—each encapsulating 12 graded-index optical
fibers manufactured by the Western Electric Company at Atlanta.l2 The
12 ribbons are stacked and twisted together as shown in Fig. 3. The
stacked ribbon structure permits simple interconnection of cables via
array splice “butt’ joints.1? An important part of the central office en-
vironment 1s the transition (fanout) from the cable end to the individual
fiber connectors on a fiberguide distributing frame. This fanout is
composed of 12 laminated fiber ribbons,14 each containing 12 fibers,
where one end has a single 12 X 12 array connector!? for splicing to the
cable end and the other end has 144 individual fiber connectors!5 for
interconnection at the fiberguide distributing frame. This complete
Atlanta end-to-end installation of 658-m 144-fiber cable, two array
splices, and 24 fanout ribbons was measured for-optical crosstalk.

Because of the large number of fibers in this installation and the te-
dious nature of these measurements, the 144-fiber cross section was first

1762 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

ATLANTA WESTERN ELECTRIC/ FIBERGUIDE

BELL LABS FACILITY CABLE b

LY
-

MANHOLE.. _ _ _
—
7
UNDERGROUND ’
DUCTS 7T~ 140
METERS
MANHOLE — — _]
~ !
_¥
iRkl /- b
ra v a
T ‘- e
UNDERGROUND ¥ N J;
=~ =
pueTs ¥ =~ FIBERGUIDE
— — — 150METERS — — — CABLE
Fig. 2—Atlanta installation route.
12 rom QD

POLYOLEFIN SHEATH SHEATH
TWINE STRENGTH

| MEMBERS

PE JACKET }
% \

TWISTED h
RIBBON STACK
v

1
CONNECTOR

Fig. 3—Lightguide cable design.

quickly searched for fibers exhibiting abnormal amounts of ¢ross-cou-
pling. Only one energized fiber caused significant crosstalk at the far end.
In this case, the output-to-output cross-coupling loss to the two adjacent
fibers in that ribbon was 55 dB. Using an interfering digital signal and
error rate analyses with computer simulations, Wolaver!® has obtained
exactly the same result for these two fiber pairs. It should be noted that,
with present technologies, the digital receiver sensitivities are such that
cross-coupling losses of greater than ~65 dB cannot be detected using
these error rate analysis techniques, but at least this single comparison
has given additional credence to the photometric method of measuring
cross-coupling losses.

OPTICAL CROSSTALK EVALUATION 1763

Once all the fibers were scanned, six energized fibers showing the
largest far-end cross-coupling were selected and their measurable
cross-coupled-to near neighbors (14 in this case) were measured for
cross-coupling loss (to the nearest decibel). Output-to-output far-end
crosstalk was converted to input-to-cutput far-end crosstalk by in-
creasing the numerical value in decibels by the cable, array splice, and
fanout ribbon attenuation. The far-end cross-coupling losses in decibels
are presented in the format:

mean output-to-output, mean input-to-output
worst case output-to-output

Figure 4 shows the results for the far-end cross-coupling losses measured
for the end-to-end Atlanta lightguide installation. Since ribbons are
horizontal in Fig. 4, the primary far-end cross-coupling mechanism ap-
pears to be intra-ribbon induced, while secondary effects seem to be
associated with inter-ribbon mechanisms. For the complete Atlanta
end-to-end installation, there was no measurable near-end cross-cou-
pling. To try to isolate the system components causing the cross-coupling
mechanisms, further tests were performed for the various segments of
the end-to-end transmission medium.

Crosstalk measurements on a second 144-fiber cable fabricated for
the Atlanta Experiment, which were without connectors or a ribbon
fanout and which contained both Western Electric and Corning fibers,
showed that there was not a single case of measurable cross-coupling in
the cable. In fact, a different He-Ne laser source of 17-mW output was
used in the measurement setup of Fig. 1 and still no measurable crosstalk
was observed. Crosstalk was also measured for a 3-m long unconnecto-
rized laminated fiber ribbon like those used for the fanouts from the
connectorized cable. For this laminated fiber ribbon, the mean far-end
output-to-output cross-coupling loss was 83 dB for-adjacent fibers and

>100,>111
>100

>100, >111
=100

>100,>111
>100

>100,>i111
>100

_ Fig. 4—Far-end cross-coupling losses in decibels for the Atlanta Experiment installa-
tion.

1764 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

88 dB for fibers two positions apart. These data, along with the data of
Fig. 4, indicate that for the Atlanta end-to-end installation, the primary
far-end crosstalk inducing mechanism was the 12 X 12 array splices with
the secondary contributor being the laminated fiber fanout ribbons. It
should be pointed out that the measured crosstalk levels were sufficiently
small that their effect on system performance was negligible. No near-
end cross-coupling was found for the unconnectorized cable or the fanout
ribbons separately. This is not surprising, since the end-to-end instal-
lation had no measurable NEXT even for the connectorized case.

IV. CROSSTALK MEASUREMENTS FOR THE CHICAGO LIGHTWAVE
COMMUNICATIONS PROJECT

Upon the completion of the 1976 Atlanta Experiment, the Bell Sys-
tem’s first lightwave system to be evaluated under actual field conditions
was installed in Chicago in early 1977. A total of 10 lightguide cable
segments, each having the same make-up (except for the core) as those
in Fig. 3, were successfully installed in conventional ducts and manholes
along a 2.65-km route in downtown Chicago (see Fig. 5). There are 12
cable array splices on this route—five in manholes and seven in the three
buildings involved. In the Chicago project, the cable core consists of two
12-fiber ribbons stacked and twisted as in Fig. 3 (all other cable pa-
rameters are the same as those of the Atlanta Experiment cables). Thus,
the cable segments are joined together with 2 X 12 cable array splices.
The central office fanout from the cable end to the fiberguide distrib-
uting frame is accomplished this time with unribboned fibers, where one
end has a single 2 X 12 array connector and the other end has 24 indi-
vidual fiber connectors.

Crosstalk for the Chicago Lightwave Communications Project was
measured from distributing frame to distributing frame for the Frank-
lin-to-Wabash 1.62-km route and for the Franklin-to-Brunswick (.94-km
route. The characteristics of each route are listed below:

Number of Number of
Route Length Cable Segments Array Splices
Franklin-Wabash 1.62 kkm [7
Franklin-Brunawick 0.94 km 4 5

Each route also has two fanouts—one at each end location. To reduce
the measurement time per fiber so that all of the fibers could be mea-
sured, the crosstalk was measured to the nearest 5 dB instead of to the
nearest decibel.

Figure 6 shows the cross-coupling losses measured, both far-end and
near-end, for the Franklin-to-Wabash route. The format for the far-end
cross-coupling losses (shown in Fig. 6a) is the same as in Fig. 4. The
near-end cross-coupling losses shown in Fig. 6b are in the format:

mean input-to-input, worst case input-to-input

OPTICAL CROSSTALK EVALUATION 1765

FRAMNKLIN FOP

== 4

5
BRUNSWICK
fDP
FRANKLIN 2 3
cer DRDG— 3
mh 2562 mh 194
B
mh 16 Eg
i CABLE SEGMENTS
‘, '
7 7
7
/
I
[]
|
8
x_ ﬁ mh 208
mh 27

FDP— FIBER DISTRIBUTION PANEL

x WABASH CEF
CEF — CABLE ENTRANGE FACILITY

10
B4 spLice Lacation

WABASH FDP
FRANKLIN-WABASH: 1.62 km, 1.01 MILES E

FRANKLIN-BRUNSWICK: 0.94 km, 0.58 MILE

Fig. 5—Chicago route plan.

Figure 7 shows the cross-coupling losses for the Franklin-to-Brunswick
route. As can be seen from Figs. 6 and 7, far-end cross-coupling is almost
totally intra-ribbon effects most probably induced by the numerous array
splices. Unlike the Atlanta Experiment, the Chicago Project installation
had near-end cross-coupling. The data of Figs. 6 and 7 show that the
primary mechanism for near-end cross-coupling is also intra-ribbon
effects, with a secondary mechanism of inter-ribbon effects (both are
probably array splice effects). In fact, in the Atlanta array connectors,
the intra-ribbon fiber spacing was 9 mils with inter-ribbon fiber spacing
of 11 mils, whereas for the Chicago array connectors the intra-ribbon
fiber spacing was 9 mils, with inter-ribbon fiber spacing of 21 mils. The
major differences between the Atlanta and Chicago end-to:end instal-
lations are the number and size of the array splices, the presence of
fanout ribbons for Atlanta, and the installed length of the lightguide
medium. The numerous cable array splices with their inherent mirror-
like end-face cavity construction is most probably the cause of the Chi-
cago near-end cross-coupling. The Atlanta installation had only a single

1766 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

>100,>128
=100

>100, 100 | >100, 100

X

87, BO ENERGIZED
FIBER

bl NEAR-END CROSS-COUPLING LOSSES (dB}
Fig. 6—Cross-coupling losses in decibels for the Franklin-to-Wabash Chicago route.

=100, >117Y >100, >117
>100 >100

65, B2 ENERGIZED|
60 FIBER

98, 95 98, 20 98, 85 >100, 100

=100, 100

>100, 100
1) NEAR-END CRO55-COUPLING LOSSES (dB)

Fig. 7—Cross-coupling losses in decibels for the Franklin-to-Brunswick Chicago
route.

array splice at each end, thus possibly explaining why no near-end
cross-coupling was observed there.

V. SUMMARY AND CONCLUSIONS

A visual photometric method of measuring lightguide cross-coupling
has been described. Cross-coupling losses up to 100 dB can be measured

OPTICAL CROSSTALK EVALUATION 1767

with a resolution of +1 dB. These concepts could be used to build
cross-coupling measurement instrumentation using sensitive optical
detection devices, such as a photomultiplier tube.

The end-to-end cross-coupling losses were measured for the Bell
System’s 1976 Atlanta Fiber System Experiment and 1977 Chicago
Lightwave Communications Project installations. In the Atlanta Ex-
periment, the crosstalk was also measured for the unconnectorized
lightguide cable and fanout ribbons separately. For the Atlanta Exper-
iment, it was found that the primary far-end crosstalk-inducing mech-
anism was the cable array splices, with the fanout ribbons having a sec-
ondary effect. There was no measurable near-end cross-coupling. For
the Chicago project, both far-end and near-end cross-coupling were
measured and the primary mechanism was intra-ribbon effects that are
probably associated with the array connectors.

The worst case cross-coupling losses measured were 55 dB (far-end
output-to-output) for the Atlanta installation, and 70 dB (near-end) for
the Chicago installation. These results confirm one of the important
advantages of optical fiber transmission; namely, that crosstalk is not
a serious fundamental problem. However, it has been shown that, even
though parallel lightguides can be designed to produce little crosstalk,
optical components that are desirable for system operation introduce
measurable amounts of crosstalk. Future optical cable and intercon-
nection devices that involve high fiber packing densities will have to take
crosstalk considerations into account.

V. ACKNOWLEDGMENT

W. B. Gardner shared the burden of the many crosstalk measurements
made for the Chicago project, and his efforts are very gratefully ac-
knowledged.

REFERENCES

1. T. L. Maione and D. D. Sell, “Experimental Fiber-Optic Transmission System for
én%erozfﬁce Trunks,” IEEE Trans. Commun., COM-25, Ne. 5 (May 1977), pp.
17-523.

2. J. 8. Cock, J. H. Mullins, and M. I. Schwartz, *“An Experimental Fiber Optics Com-
munications System,” 1976 IEEE/0SA Conference on Laser and Electro-Optical
Systems, 8an Diego, May 1976. .

. A R. Meier, ' ‘Real-World’ Aspects of Bell Fiber Optics System Begin Test,” Tele-
phony, 192, Ne. 15 (April 11, 1977), pp. 35-39.

. M. J. Buckler, L. Wilson and F. P. Partus, “Optical Fiber Transmission Properties
Before and After Cable Manufacture,” Technical Digest of Papers of the Topical
Meeting on Optical Fiber Transmission II, Williamsburg, Virginia, February 1977,

. WAL
. Al EI Cherin and E. J. Murphy, *'Quasi-Ray Analysis of Crosstalk Between Multimode
Optical Fibers,” B.S.T.J., 54, No. 1 (January 1974), pp. 17-45.
. A. W. Snyder, “Coupled-Mode Theory for Optical Fibers,” J. Opt. Soc. Am., 62, No.
11 (November 1972), pp. 1267-1277.
. A. W.Snyder and P. McIntyre, “Crosstalk Between Light Pipes,” J. Opt. Soc. Am.,
66, No. 9 (September 1976), pp. 877-882.
8. A.L. Jones, “Coupling of Optical Fibers and Scattering in Fibers,” J. Opt- Soc. Am.,
55, No. 3 (March 1965), pp. 261-271.
9. D. Marcuse, Light Transmission Optics, New York: Van Nostrand Reinhold, 1972,
PD. 407437,

= R

-1 &

1768 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

10. H. A. E. Keitz, Light Calculations and Measurements, New York: 8t. Martin's Press,

1971, pp. 233-263.

. E. O. Doehelin, Measurement Systems: Application and Design, New York:
McGraw-Hill, 1966, pp. 9-71.

M. I. Schwartz, R. A. Kempf, and W. B. Gardner, “Design and Characterization of
an Exploratory Fiber Optic Cable,” Paper X.2, Second European Conference on
Optical Fiber Communications, Paris, September 1976.

. . M. Miller, “Fiber-Opiic Array Splicing with Etched Silicon Chips,” B.8.T J., 57,
No. 1 {(January 1978), pp. 75-90.

. C. M. Miller, “Laminated Fiber Ribhon for Optical Communication Cables,” B.S.T.J,,
55, No. 7 {September 1978), pp. 929-935.

. J.8. Cook and P. K. Runge, “An Exploratory Fiberguide Interconnection System,”
Second European Conference on Optical Fiber Communications, Paris, September
1976.

. R. 8. Kerdock and D. H. Wolaver, “Performance of an Experimental Fiber-Optic
Transmission System,” 1976 National Telecommunications Conference, Dallas,
November/December 1976.

OPTICAL CROSSTALK EVALUATION 1769

Copyright © 1978 American Telephone and Telegraph Company
THE BELL 8YSTEM TECHNICAL JOURNAL
Vol. 57, No. 8, July-August, 1978
Printedin US.A.

Atlanta Fiber System Experiment:

Demountable Single-Fiber Optic Connectors
and Their Measurement on Location

By P. K. RUNGE and S. S. CHENG*
{Manuscript received December 20, 1977)

The transfer-molded, single-optical-fiber connector and the fiber-
guide distribution system implemented for the Atlanta Fiber System
Experiment are described. A new technique for measuring the con-
nector and connectorized fiber cable loss in the field was implemented
and the results are reported. More recent results of the evolutionary
versions of the connector are also reported.

I. INTRODUCTION

The Atlanta Fiber System Experiment was a first test of fiberguide
equipment to explore the feasibility of using optical fibers for digital
metropolitan trunk transmission systems. It was realized at the onset
that high-density systems using cables containing up to 144 fibers! would
require a fiber interconnection system within the central offices to allow
convenient access to all fibers and to permit connecting any number of
fibers end to end and to the electronics. A fiberguide interconnection
system was therefore implemented for the Atlanta Experiment. This
paper describes the interconnection system and the single-fiber con-
nector on which it is based.

N. THE FIBERGUIDE INTERCONNECTION SYSTEM

Figure 1 shows the schematic of the fiberguide interconnection system.
The equipment bay containing the fiber optic transmitter and receiver
plug-ins and the bay containing the fiberguide distributing frame stand
side-by-side and are optically connected by “‘bay jumpers.” The trans-
mitter and receiver circuit boards have fiberguide plugs mounted at the

* P. K. Runge is reaponsible for the design of the single-optical-fiber connector and 8. 8.
Cheng for their measurement on location.

1771

FIBERGUIDE
DISTRIBUTING
FRAME

| I _BAY JUMPERS
i

I mek o7
I SANELS Tl | b
| | XMTR
——— '
l ——0 | B
XMTR
CABLE | I |
I l I
= ! =
: = 'D—“‘\\ RCVA
_—
~
A Y
\L\ ¢
I Ay
! | =
——a | ‘-I\ RCVR
.
l 9 ‘ \

1
PATCH CORDS
Fig. 1 — Schematie of the fiberguide distribution system.

back so that optical connections to the bay jumpers are made simulta-
neously with electricrical connections upon insertion. The bay jumpers
terminate on a jack panel in the distributing frame. Adjacent to that
panel are two jack fields that provide access to both ends of all 144 fibers
in the fiberguide cable.

Fiberguide patch cords, typically % to 1 meter long, are plugged into
the jack fields to provide cable end-to-end connections as shown in
Fig. 2. Patch cords also provide the optical link from the equipment jack
panel to the cable panels. Optical reconfigurations are all done by moving
patch cords at the distributing frame.

The jacks of the distributing frame are connected to cable splice
connectors? through the individual fibers of the “fan-out” unit. Figure 3
shows a photograph of one fan-out unit taken from the back of the dis-
tributing frame at the time the cable splice connection was made. (The

1772 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Fig. 2 — The fiberguide distribution frame.

fiberguide cable rises at the left edges of the fan-out units.) The stack
of 12 fiberguide ribbons fans out into individual ribbons containing 12
fibers each, each ribbon leading into one organizer tube. Inside the tube,
each ribbon fans out into its 12 individual fibers addressing the group
of jacks at the opposite end of the tubes. Two of these fan-gut units in
Fig. 3 were stacked in the back of the distributing frame.

. SINGLE FIBER CONNECTOR

The heart of the distribution system is the single fiber connector. The
connector butt joins two single optical fibers having nominally 110-xm
outside diameter and a 55-ym-diameter graded-index core. The me-
chanical tolerances that have to be maintained in each connection be-
come apparent in Fig, 4, The measured transmission loss is plotted versus
axial and lateral misalignment error between two fiber ends with the
same core parameters. The loss data were taken with light-emitting diode

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1773

I N

Fig. 3 — Onefi berguide fan-out box for 144 fibers.

excitation and glycerin as index-matching media in the gap of the joint.
The lateral misalignment error contributes mostly to this extrinsic loss
of a fiber connection, and for this fiber the sensitivity ratio of small lateral
and axial errors is about 20:1.

When fibers are connected at random, variations in their parameters,
as diameter, numerical aperture, and profile of the distribution of index
of refraction, lead to an additional, intrinsic loss in the connection. As-
suming that a connector with 1-dB average transmission loss has 0.5-dB
intrinsic loss leaves only 0.5 dB extrinsic loss for the connector design
itself. According to Fig. 4, the total lateral offset error then has to be held
below about 5 um. For the development of a demountable connection,
that constitutes a formidable task.

Besides the unprecedented tolerance requirements, the total cost of
the single-fiber connector will also be a decisive parameter, since a large
number of connectors will be needed, and ultimately optical fiber sys-
tems have to compete economically against copper facilities. In addition,
since, for the Atlanta Experiment itself plus the assorted test equip-
ments, over 1000 plugs (a plug is the male part of the connector con-
taining the optical fiber) were needed, a mass producible connector was
desired.

1774 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

4
OFFSET ONLY
— ® 75 um SEPARATIDN
3t — W 50 um SEPARATION
& 75 um SEPARATION
® X 0umSEPARATION
-1
= 1.0
w I
%)
(o]
)
0
1+ END SEPARATION 0.5
onLY
o L ! 0
% 50 75 100 10.0
DISPLACEMENT IN am OFFSET IN gm

FIBER CLADDING DIAMETER = 110 um
FIBER CORE DIAMETER = B3 ym
GRADED INDEX CORE; LED EXCITATION

Fig. 4 —Transmission of a single fiber butt joint.

A precision transfer-molding process was developed to produce the
plugs shown in Fig. 5. The connector alignment is provided by concentric
conical surfaces at the tips of the plugs and by a biconic socket. The
molded plug bodies have grooves for additional outside hardware to
provide an axial force to seat the connector. The cutout in Fig. 5 is an
exploded view of the two optical fiber ends embedded in flexible
index-matching cushions.

We have selected the transfer molding process as a mass production
process for thermosetting materials that is most gentle on the optical

SOCKET
/

4
N

\OPTICAL FIBER

AY
—. M INDEX MATCHING
CUSHION

Fig. 5§ — Craoss section of the single fiber connector detail shows elastomeric index
matching cushions.

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1775

fiber and guarantees that the mechanical impact of the molding material
rarely causes fiber breakage and minimizes deflection. The key part of
the mold is a precision die that is cylindrically symmetric without parting
lines. It possesses a centering guide hole of nominally 115 um in diameter,
concentric to better than a fraction of a micron with respect to the axis
of the tapered surface that constitutes the aligning surface of the molded
plug. The diameter of the guide hole equals the nominal fiber outside
diameter plus three standard deviations.
A taper was chosen as the aligning surface for a number of reasons.

(i) It accommodates molding materials with a varying rate of shrink-
age, as long as the material shrinkage is isotropic. Variations from
molding to molding do not manifest themselves in lateral mis-
alignments, but rather in the less critical axial error.

(i) It allows easy insertion for low abrasion and good performance
reproducibility.

iit} The geometry allows fibers of different diameters to be inter-
faced.

The molding material is a heavily silica-filled epoxy, which yields plugs
of excellent mechanical integrity, extreme toughness, and good surface
jualities, including excellent abrasion resistance. After molding, about
2 cm of unprotected fiber protrudes beyond the epoxy body. The angular
‘nisalignment between the optical fiber and the taper axis was measured
for a large number of plugs by inserting the plug into a brass socket with
¢omplementary taper, rotating it, and measuring the walkout of the
¢xposed fiber. The results for the first 397 plugs are indicated in Fig. 6.
Ninety percent of all plugs have an angular misalignment of less than
{1.8 degree, which is well within the design limit of 1 degree. If desired,
reduction of this angle is possible by improving the guidance of the bare
aptical fiber in the mold.

We cut the fiber end by inserting-the plug into a reference socket and
Ly scoring the fiber at a fixed position with respect to the socket such
that two plugs mating in a double conical socket would consistently have

30-um gap between fiber ends. The cutting technique of Gloge et al.3
vras employed, where the fiber is simultaneously bent and stressed and
then scored.

The most critical tolerance of the fiber optic connector is the eccen-
tricity of the fiber with respect to the axis of the tapered aligning surface.
T'o measure the eccentricity, we used a Ge-doped graded-index fiber that
possessed a small depression of the index of refraction at the center of
the core. This depression shows up as a dark spot at the center of the
illuminated core, about 1 um in diameter, and allowed us to measure the
plug eccentricity to within 0.5 pm.

1176 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

100% b !
I
|
TOTAL:
)
1

50%

397 PLUGS
i
1

o 1

60 I

40

20

0|||||1|111| m mJ
0 1
jal|”

~

Fig. 6 — Angular error of the first 397 molded plugs.

For this measurement, the plug is inserted into a single steel socket
mounted rigidly under a microscope with 400X magnification. By ro-
tating the plugs in this socket, the eccentricities of the optical fibers with
respect to the taper axis can be determined. As an example, Fig. 7 shows
the location of the centers of 24 plugs molded in die 5 as obtained by this
method. Within the accuracy of the measurements, the samples are
scattered at random and do not reveal a systematic error. Figure 8is a
plot of the results of 144 measurements of the absclute value of the ec-
centricity (the angular information is lost). The average error is about
1.2 um, and) percent of the measured plugs had an error of less than
2 um. A few plugs had eccentricities in excess of 4 pm, but these could
be traced to moldings imperfections as, for example, entrapped air
bubbles on the critical taper surfaces or a deformation of the taper itself
on demolding.

The measured eccentricity, of course, includes the eccentricity of the
fiber itself. Although it would have been desirable to obtain statistical
information about the eccentricity of the fiber, these data are very dif-
ficult to measure to an accuracy of a fraction of a micron. A few sample
measurements indicate an average fiber eccentricity of (.75 and a max-
imum value of 1.2 um. Eccentricities in the centering mechanism account
for an additional error of the order of 0.5 to 1 um. The average eccen-
tricity of about 1.2 pm in Fig. 8 thus can easily be explained in terms of
those two factors. In view of these facts, we have to conclude that the
eccentricity of the plug resulting from nonlinear shrinkage of the epoxy
is not dominant and must, on an average, be smaller than about 1 ym.

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1777

£ 24 PLUGS
MCLDED IN
DIE #5

o°

PLANE OF
EPOXY GATE

180°

270"

Fig. 7 — Distribution of core center location for first 24 plugs molded in one die.

The process for molding the precision biconic socket was not developed
in paralle]l with the process for plug molding, so that at the time of the
Atlanta Experiment only metallic sockets were available. Figure $is a
photograph of plugs molded on nylon coated fibers mated in a machined
brass biconic socket.

The socket in Fig. 9 has an observation hole through which the shad-
owgraphs of Figs. 10 and 11 were taken. Figure 9 shows the two fiber ends
opposing each other with an air gap of about 41 um. To reduce the
transmission loss from Fresnel reflection and refraction and also to
protect the fiber ends from contamination, transparent cushions of sil-
icone rubber were applied to each plug. Figures 11a through 11c are three
steps in a sequence showing two plugs being pulled apart. As Fig. 11c
demonstrates, an index-matching medium without interface is formed
between the fiber ends. This medium reduces the transmission loss by
about 0.4 dB when compared to the Joss in the air gap of Fig. 10. (Figures
10 and 11 have the same magnification.)

Two types of metallic biconic sockets were available for the experi-
ment: sockets made by hydroforming copper sleeves onto precision steel
mandrels and sockets machined from solid brass. The hydrofermed

1778 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

1008

TOTAL: 144 PLUGS

50% -
| /
1) S N TR | PR AEN RN SR S

== - -

TAPER AXIS

! —IThllﬁm

1
0 1 2 3 4 5
€ IN pm
Fig. 8 — Distributions of eccentricity errors of the first 144 molded plugs.

0

Fig. 9 —Two plugs mated in a braas biconic socket. Note the observation hole,

F.Fig. 10—Shadowgraph of opposing fiber ends of two plugs mated in the socket of
ig. 9.

sockets showed eccentricities between 6 to 10 um and had too much
resiliance on insertion of the plugs, so that the gap between fiber ends
had to be increased to 100 pm. The machined brass sockets had eccen-
tricities in the range from 0 to 5 um and were in addition stiffer, which
allowed the gap to be reduced to 65 um.

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1779

A

(a) (b) (c)

Fig. 11—(a) Shadowgraph of two plugs with flexible transparent “buttons” for index
match mated in the biconic socket (same magnification as Figure 10). (b) and (c) One
connector is gradually unseated; button surfaces cling together.

IV. INTERCONNECTION HARDWARE

The quick connection at the rear of the transmitter and receiver cards
is provided by mounting the molded plug in the spring-loaded jig as
shown in Fig. 12. Two pins guide the plug into the floating biconic socket
mounted on the frame. The plug is connected to the receiver or trans-
mitter package on the circuit board by a “pigtail,” which is a nylon-

J
Fig. 12 — Schematic drawing of the fiberguide card connector.

1780 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

coated fiber in a loose protective sheath that is looped to permit easy
motion when the plug engages. Figure 13 shows the three plug-ins that
comprise a full repeater photographed from the connector side.

The armor for an optical fiber patch cord must protect the fiber against
excessive bending, compression, and elongation forces, yet it should be
flexible and light in weight to ease the forces on the optical connectors.
The experimental patch cords utilized the standard protection of a
miniature coax cable with the optical fiber replacing the center con-
ductor. Its Teflon® inner jacket protects the optical fiber from contact
with the metallic braid and offers protection against sharp bends of the
cable. The metallic braid protects, within limits of about 20 kg, against
elongating forces. The optical connectors were molded directly onto the
ends of the patch cord. The cords have not been tested systematically
to failure, but they are surprisingly rugged, and to our knowledge there
have been no failures in normal usage from a fiber breaking in the
sheath.

The fiber connector of Fig. 3 required some outside hardware to exert
the seating force and also to protect the connector ends. For convenience,
the outer shell of a standard BNC coax connector was modified and served
that purpose well. Thus, the patch cords being handled in Fig. 2 only look
like coax cables; in reality they are fiberguides.

The fan-out was constructed by molding plugs onto 2-m-long,
nylon-coated fibers. These were assembled into ribbons, 12 at a time,
leaving about one-half meter of coated fiber between the ribbon and plug.
The 12 plugs were mounted on a 12-jack panel, the panel was mounted
on the distributing frame, and the ribbon was coiled loosely in the or-
ganizer tube behind each panel. The ribbons were then brought together
at the back of the distributing frame and mounted into a stack of grooved
wafers for connection to the cable.

V. A STATISTICAL LOSS MEASUREMENT METHOD

The loss measurement set (Fig. 14) consists of an optical transmitter
with a stable laser as the source, and an avalanche photodiode detector
(APD) operating in the linear range as the optical power detector. The
optical link may consist of up to three jumpers and two fibers. These
fibers are part of the 144 fibers in the 640-m long fiber cable in the At-
lanta Experiment.

Figure 14 shows a simplified measurement sequence that statistically
determines the loss of three jumpers and two fibers. The first setup is
for the baseline calibration; the transmitter is connected to the receiver
via a variable optical attenuator and/or reference jumpers and fibers for
setting a proper input level. The baseline level is chosen such that the
received power level for all subsequent setups will be within the linear
operating range of the APD. In each setup, the received power is measured

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1781

Fig. 13—A complete fiberpuide regenerator with: Left: receiver module with fiberguide
card connector. Center: decision and retiming module. Right: laser transmitter module
with fiberguide card connector.

Setup#

Baseline Measurement

/-\ €

234 T \\-’J At R

i=123

i Fi i
5.6,7 T | A
B,9,10
=123 i?i

k=12

NOTES:

{1} IN EACH SETUP, AT LEAST 10 POWER MEASUREMENTS ARE MADE TQ ENABLE A
MEANINGFUL AVERAGING OF MEAN AND RMS.

{2) V REPRESENTS A VARIABLE ATTENUATOR AND/OR SEVERAL REFERENCE
JUMPERS AND FIBERS FOR SETTING A PROPER BASELINE LEVEL.

Fig. 14 —A simplified sequence of statistical loss measurement.

many times so that a mean and an rms level can be determined. In each
measurement, the connection between the transmitter and the receiver
jumpers is disconnected and then reconnected with a slightly different

1782 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

orientation. The purpose is to enable a meaningful averaging of loss over
all possible connector orientations.

In setups 2 through 4, one of the three jumpers is added to the optical
link. Again, in each power measurement, the jumper is disconnected on
both ends and reconnected at a different angle. Setups 5 through 10
consist of the set and one possible combination of two jumpers and one
fiber. Here, in each measurement, both jumpers are disconnected and
reconnected each time.

At the conclusion of all measurements, a least-square technique is
applied to these data to determine the best fits for the six unknowns {five
loss elements and the baseline level of the set). The simultaneous de-
termination of many loss elements reduces the inconsistency that may
oceur in the measurement. The loss is represented by a mean value and
an rms value. The rms value is contributed partially by the measurement
inaccuracy and partially by the offset and the angular dependence of the
connector loss. The mathematical basis for such an approach is presented
in the appendiz.

The success of this method depends on the following assumptions and
precautions:

(i) The APD should be operated in a linear range to serve as an optical
power detector. For the optical receiver, —10 to —45 dBm is a
suitable range. The stability of the laser is also important. Overnight
monitoring of the laser power indicates a variation of less than 0.1
dB.

{{1) The loss of various components in the optical link must add up
linearly. To insure this, additional mode mixing is introduced
through one variable optical attenuator and/or additional reference
jumpers and fibers in front of the loss elements to be measured.
Once the attenuator position is set and the reference jumpers and
fibers are in place, they remain intact throughout the rest of the
measurement sequence. The reference jumper and fiber are chosen
on the basis that the connection yields a minimum uncertainty in
the repeated baseline measurements. With carefully chosen ref-
erence jumper and fiber, the uncertainty is typically 0.06 dB.

(iit) To take full advantage of the redundant measurements, a
jumper-to-fiber mix of 3 to 2 is preferred over 3 to 1 or 4 to 1. The
ratios of number of measurements to number of unknowns are 10
to 6, 7 to 5, and 9 to 6 respectively. The increased redundancy re-
duces the contribution from poor or inconsisieni measurements.

An HP 9830A calculator was programmed to perform the power mea-
surement and the data reduction. To double-check the results, we made
other measurements that include some previously measured jumpers
and fibers. Two such measurements were made at more than a 1-month

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1783

interval using different transmitters and receivers. The agreement has
been quite good and was sufficient to indicate that these measurements
are reliable and repeatable.

Vl. MEASURED LOSS OF CONNECTORS AND FIBERS IN THE ATLANTA
EXPERIMENT

Tables I and Il summarize the measured jumper and fiber loss. The
consistency among these measurements is generally good. That is, the
difference between the mean loss of two measurements is usually less
than the combined uncertainty of the measurements. Out of the 27 ele-
ments measured, there are three exceptions to this rule, J72, F1-4, and
F3-1. The reason for some of them may be purely statistical, but more
likely it may be because of a permanent deterioration of the surface
condition at the fiber tip of the connector. This is concluded on the basis
that the increase in loss invariably occurs after hundreds of times of
handling and that, once the loss is increased, it is irreversible.

The average insertion loss of jumpers using hydroformed sockets
ranges from 1.0 to 3.1 dB with an uncertainty between-0.1 to 0.4 dB. The
average loss of all such jumpers measured is 1.75 + 0.26 dB.

Jumpers using machined sockets have a mean loss ranging from 0.5
to 1.9 dB and an uncertainty from 0.1 to 0.4 dB. The average loss of this

Table | — Jumper loss in dB
Jumper No.* 1st 2nd 3rd Avg
72 24+ 03 3.6+04 2.4 £ 037
76 1.6 +0.3 1.6 +0.3
77 3104 2.5+ 0.2 2.5 +0.2 2.7+ 0.3
80 1.7+ 03 1.7+ 0.3
82 2.0+0.3 2.0+ 03
84 1.5+0.2 1.5+£0.2
87 1.0+40.1 1.0+0.1
91 1.0+03 1.1+0.1 1.0+0.2
149 1.6 +0.3 1.6+ 03
150 09+02 06+02 0.7+02
154 1.6 £ 0.1 1.7+ 0.1 1.6 +0.1
157 1.1+03 1.1+03
160 1.5+0.2 1.7+0.3 16+ 0.2
161 1.2+0.2 1.2+0.2
168 0.7+03 0.7+ 03
169 1.8+0.4 1.8+04
172 14+0.2 1.9+ 04 1.6 +0.3
174 1.2+0.2 1.2+ 0.2 13+0.1 13402
176 0.5+02 0.8+0.1 0.8+0.2 0.7+02
180 05+ 0.1 0.7T+0. 0.6 +0.

* Jumpers No. 72 through 91 are with hydroformed socket, No. 149 and up are with ma-
chined socket.

* The second measurement is excluded because the jumper by then might have suffered
permanent degradation due to repeated use.

1784 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table Il — Fiber loss in dB

Fiber No. 1st 2nd 3rd 4th Avg.
1-4 6.5+0.2 8.0 £ 0.4* 6.5+ 0.2t
1-11 8.1 +04* 83046 8.1+0.3 83 +0.3* 82+ 04
2-1 47+03 4.7+03 47+03
2-8 49+ 0.4* 56+ 05 5.2+05
3-1 50+03 5.9+02 50+ 0.3t
5-2 56+ 04 5.2 £+ 0.6 54+ 05
7-2 6.6 £ 0.5* 68 +04 67+04

* Jumpers with hydroformed socket.)
* The tips on the fiber connectors might have suffered permanent degradation after re-
peated use. The last measurement is excluded in obtaining the average loss.

type of jumperis 1.22 + 0.21 dB, indicating convincingly that this type
of socket is superior to the former type. As indicated before, machined
sockets have tighter tolerances, thus providing better alignment and less
loss. The small improvement in the loss uncertainty (from 0.26 to
0.21 dB) suggests that the measurement uncertainty may dominate the
angular loss variations of the connectors.

Fiber loss (Table IT) consists of the loss incurred in the 640 M glass
fiber, two array splices, and the two half-connectors on the distribution
frame. The average loss of the seven fibers measured is 5.96 + 0.40 dB.
Subtracting from it a mean loss of 0.55 dB for each array splice and 3.5
dB for the average fiber loss, the average full jumper loss would be 1.36
dB. Considering the small size of fiber sample measured, this crudely
defined connector loss with mixed sockets lies within the bounds of the
previously established loss of 1.75 dB with hydroformed socket and 1.22
dB with machined socket. This was also the first time the end-to-end
absolute loss of a fiber in the field environment was accurately deter-
mined.

The loss measurement method described and tested can be applied
to several areas of interest:

(i) To evaluate the comparative merits of optical jumpers with various
types of connectors or sockets.

(ii) To perform precision loss measurement of optical fibers in a field
environment.

(ii1) To provide a means to estimate the aging and environmental effects
on the optical fibers, jumpers, splices, and connectors.

{iv) When the absolute loss of a large number of jumpers or fibers needs
to be determined, we may use this method to determine the abso-
lute loss of a few elements. Then one can quickly switch over to
simpler means such as using a variable attenuator, a transmission
loss set, or an optical power meter to determine the relative loss
between these elements and the rest.

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1785

The method, though tedious, is capable of making asimultaneous loss
determination of six elements. Twenty-seven jumpers and fibers have
been successfully measured. Some of them were measured many times
to check consistency. The agreement among various measurements is
generally good. Three elements show a definite increase of loss after
hundreds -of times of handling, indicating a possible permanent dirt
penetration or surface damage on the connectors. A<lear understanding
and a substantial reduction, if not complete elimination, of such phe-
nomena is needed before the real system usage.

It is also:shown convincingly that connectors with machined sockets
perform better than those with hydroformed sockets. However, even with
machined sockets, the jumper loss variation of 0.5 to 1.9 dB is larger than
desirable, particularly from the viewpoint of setting engineering rules
for fiberguide systems.

VIl. EVOLUTION OF THE SINGLE-FIBER CONNECTOR AFTER THE ATLANTA
EXPERIMENT

The single-fiber connector obviously wasin the initial development
phase at the beginning-of the Atlanta Experiment. Nevertheless, valuable
information could be gained by the experiment itself, which led to.a
number of significant improvements. A molded biconicsleeve was de-
veloped by W. C. Young;* and the performance of the connector im-
proved significantly. The mechanical tolerances of molded sleeves can
be held more tightly than those of machined sleeves. The eccentricity
error islessthan 2 um and, because of tighter control of the length pa-
rameter, the nominal end separation between fibers could be reduced
‘to 25 um.

A second significant change liesin the preparation of the fiber ends.
The protruding fiber stub, as in Fig. 5, was found to be much too vul-
nerable to impact, and a fiber.end flush with the plug wasdesirable. The
breaking method of Gloge et al.2 does not lend itself to produce flush
ends. It was found that breaking a fiber closer to the plug body would
result in break faces that were no longer perpendicular to the fiber axis,
but showed progressively larger break angles (up to 60 degrees, when the
fibers were scored somewhat inside the epoxy). We have therefore
adopted a quick lapping and polishing process, which produces good,
square fiber ends flush with the plug body.

More recently reported results? of 0.4-dB transmission loss for L.ED
excitation and index match were a consequence of these implemented
changes plus the improved characteristics of the optical fiber itself. The
results were obtained by measuring the average transmission loss of 50

1786 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

jumper cables against a standard connector as the final step in their in-
spection. Perhaps more indicative of the present state of the fiber and
connector technology is the result obtained in January 1978. Twenty
randomly selected jumper cables of the newest variety were connected
in series at random connector orientations and excited with an LED. The
measured connector losses had a mean of 0.54 dB and a standard de-
viation of 0.3 dB without index match between the fiber ends.

vill. CONCLUSION

The Atlanta Fiber System Experiment was the testing ground for the
first generation of fiber-optic interconnection hardware and has yielded
valuable information for subsequent system experiments. An atternpt
was made to meet the challenge with a mass-produced single-fiber
connector. While the technology was not completely developed at the
time of the experiment, satisfactory results were nevertheless ob-
tained.

IX. ACKNOWLEDGMENTS

We would like to thank our colleagues T. C. Chu, L. Curtis, A. R.
McCormick, L. Maggi, C. R. Sandahl, and W. C. Young for their inval-
uable contributions to this success. The assistance by L. Wilson in loss
data collection is also appreciated.

APPENDIX

Matirix Formulation of Maximum Likelihood Loss Measurement

Let x;, ¢t = 1,5 represent the loss of three jumpers and two fibers re-
spectively and xg the baseline level of the set. The measured power level
and its uncertainty are represented by y; and oy, i = 1,10. The mesa-
surement sequence follows the order outlined in Fig. 14, Elements of x;
and y; can be related in a matrix equation

Ax =y, (2
where x and y are column matrices. A is a 6-by-10 configuration matrix

whose element is-either 1 or 0, depending on whetherthe particular loss

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1787

element in question is present in the link. In the measurement

Loss element J1 J2 J3 F1 F2 Set
0 0 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
A= |0 1 1 1 0 1 (2)
1 0 1 1 0 1
1 1 0 1 0 1
1 1 0 0 1 1
1 0 1 0 1 1
0 1 1 0 1 1

The sequence of measurements is chosen to minimize the number of
changes of loss elements from one setup to another.

Since there are more equations than unknowns in the matrix equation
(1), an exact or unique solution for x does not exist. However, a best-fit
can be found by using a multiparameter least-square-fit technique® that
is widely used by experimental physicists.

If we consider the measured results y; to be Gaussian, then the like-
lihood function is proportional to

-1 _ - £)?
L(x].:x 2, " ':xn) = ;'I=—Il \/2—1”,_:_ exp [20_-[2]’ (3)

where N = 10 is the number of measurements and n = 6 is the number
of unknowns. £; = £; (x1,x3, - » *x,) is the “theoretical” value or the best

fit value of y;.
To maximize the likelihood L is equivalent to minimizing the expo-

nent

which leads to the condition of least-square fit, namely,

5 (u) P60, m=12--m (4)

2
i=1 a; aIm

1788 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

Since

Ei = i Aimxm: [= 1r2r - '!N
m=1

from eq. (1), the maximum likelihood condition of eq. (4) becomes

N Ay N AipA;
Zlumy=z mALjl (5)

In matrix form, eq. (5) becomes

Y = Mx, (6)
where
N ,
Yp= 5 AmY o190 (7)
=1 O
is a modified data vector and
N AimAi
MmI= Z‘—21=Mfﬂ'l’ m,l= 1,2,"',” (8)

i=1 0]

is a symmetric square matrix called the measurement matrix. The so-
lution of eq. () is

x=M-1Y.)]
The standard error in x,, is
Ax'm = (M;}n)u‘zx m = 1r2! e (10)

Because of the above property, M~! is referred to as the error matrix.
From eqs. (9) and (10), it is clear that a symmetric matrix inversion
routine of rank B-by-6 constitutes the bulk of the data reduction. The
expected measured power is defined as

L= 3 Aimkm i=12,-N (11)
m=1]

and the expected measured uncertainty
n 1/2 .
7= [Y A,-mAx,Q,,] , 1=12,---N (12)
m=1

Comparison of &, 7; with y;, 6; can give a qualitative feeling of the quality
of the loss measurement and the least-square fit.

DEMOUNTABLE SINGLE-FIBER CONNECTORS 1789

REFERENCES

1. M.1 Schwartz, W. A. Reenstra, J. M. Mullins, and J. 8. Cook, “The Chicago Lighwave
Communications Project,” B.S.T.J., this issue, pp. 18811888,

2. C. M. Miller, “Fiber-Optic Array Splicing with Etched Silicon Chips,” B.S.T.J., 57,
No. 1 (January 1978), [‘JP T5-3).

3. D. Gloge et al., “Optical Fiber End Preparation for Low-Loss Splices,” B.S.T.J., 52,
No. 9 (Novemhber 1973), pp. 1579-1588.

4. P. K. Runge, L. Curtis, W. C. Young, “Precision Transfer Molded Singie Fiber Optic
Connector and Encapsulated Devices,” Topical Meeting on Fiber Optics,
Williamsburg, February 1977.

5. J. Mathews, R. L.. Walker, Mathematical Methods of Physics, New York: W. A. Ben-
jamin, 1965, pp. 365-367.

1790 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright © 1978 American Telephone and Telegraph Compuany
THE BELL SYSTEM TECHNICAT, JOURNAL
Val. 57, Na. 6, July-August 1978
Printed in U.8.4.

Atlanta Fiber System Experiment:

Planar Epitaxial Silicon Avalanche Photodiode

By H. MELCHIOR, A. R. HARTMAN, D. P. SCHINKE,
and T. E. SEIDEL
{Manuscript recelved March 1, 1978)

A silicon avalanche photodiode (APD) has been developed for optical
fiber communications systems. It has been optimized for optical
wavelengths of 800 to 850 nm and exhibits a quantum efficiency greater
than 90 percent. The APD operates between typical voltages of 100 and
400 V, exhibiting photocurrent gains of approximately 8 and 100, re-
spectively, at those biases. The device has a short response time of ~I
ns and low excess noise characterized by an excess noise factor ap-
proximately 5 times the shot naise limit for operation at a photocurrent
gain of 100. The APD has a four-layer n*-p-w-p* structure and is fab-
ricated on large-diameter epitaxial wafers using planar technology.
Uniform avalanche gain, low dark currerts, and good reliability are
achieved through the use of (i) a diffused guard ring, (ii) a diffused
channel stop, (iit} metal field plates, (iv) the removal of impurities
tn the surface oxides and the bulk of the APD, tv) passivation with sil-
teon nitride and (vi) a processing sequence that maintains low dislo-
cation density material.

I. INTRODUCTION

Solid-state photodetectors are particularly wel! suited to optical
communications. The detectors, fabricated from semiconducting ma-
terials, are small, fast, highly sensitive and relatively inexpensive.! Two
widely employed detectors are the PIN photodiode, which in reverse bias
collects the photogenerated minority carriers, and the avalanche pho-
todiode, which has a high field region that multiplies the photocurrent.
through the avalanche generation of additional electron-hole pairs.

The avalanche photodiode (APD} designed specifically for the FT3
optical communications system? will be deseribed in this paper. At a bit

1791

rate of 44.7 Mb/s, the APD allows an increase in system sensitivity by
approximately 15 dB over the same receiver with a PIN detector.? This
improvement is possible because the shot noise in the photocurrent of
the PIN diode is much smaller than the equivalent input noise of a re-
ceiver amplifier having sufficient bandwidth to carry the 45 Mb/s signal.4
The gain in the APD increases the signal intensity and system sensitivity
until the noise in the multiplied current is comparable to the noise of the
amplifier. The avalanche photodiode is not, however, an ideal multiplier.
It adds a substantial amount of noise because of fluctuations in the av-
alanche gain. The excess noise depends on the device structure and the
electron and hole ionization rates of the material chosen for the detector.5
The avalanche photodiode for the FT3 application was designed to
minimize excess noise and maximize the quantum efficiency without
compromising manufacturability or reliability.

In Section II, the design and operation of the APD are described. The
fabrication is outlined in Section III, and the optical and electrical
characteristics are given in Section IV,

Il. DESIGN AND OPERATION

Since the wavelengths of the GaAlAs double heterostructure laser
employed in the FT3 system are 800 to 850 nm, the choice of silicon as
the detector material is the obvious one. These wavelengths require
photocarrier collection lengths of 20 to 50 um, which lie well within
the range of achievable space charge layer widths in lightly doped ma-
terial.

For lowest noise, McIntyre5 has shown that in silicon the avalanche
should be initiated by pure electron injection into a relatively wide gain
region. This results from the high ratio of the electron-to-hole ionization
rates favoring electron multiplication by a factor of 10 to 50 for the
electric fields of importance.® The avalanche photodiodes combining
the highest efficiency and speed (in the 800- to 900-nm wavelength range)
with high uniform current gains and low excess noise are then con-
structed from silicon as n*-p-m-p* structures and operated at high re-
verse bias voltages with fully depleted p-r regions. In these devices, in-
cident light in the 800- to 900-nm range is mainly absorbed in the = re-
gion. From the = region, the photogenerated electrons drift into the n*-p
high field region where they undergo avalanche carrier multiplication.
This device structure is referred to as a reach-through structure.’2 To
achieve the lowest noise operation associated with pure eléctron injec-
tion, the light should be incident through the p* contact and fully ah-
sorbed in the « region. These APDs must be bulk devices thinned to 50
to 100 um before metallization® or epitaxial devices having n* substrates
and two sequential epitaxial p and r layers.1?

A device construction more amenable to fabrication on large-diameter

1792 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

silicon wafers with good control of the doping profile utilizes 7-type
epitaxial silicon on p* substrates and forms the nt-p-w-p* structure
through ion implantation and diffusion. This construction, as shown in
cross section in Fig. 1, dictates that the light be incident through the n*
contact on the epitaxial surface of the device. The noise penalty brought
about by the resultant generation and injection of electrons and holes
into the high-gain region is minimized by tailoring the field profile. With
a shallow nt and a deeply diffused p-type region, the electric field profile
in the p-region is essentially triangular with the maximum field at the
n*-p junction. Employing the noise analysis of Webb et al.,? the trian-
gular field profile results in lower noise operation for front-illuminated
APDs, when compared to a rectangular field profile. The electrons in-
jected from the = into the p-region encounter a low field and the holes
generated within and in front of the gain region encounter a large field,
both of which are shown by this analysis to be beneficial for low-noise
carrier multiplication.!!

While the noise of the gain process for front-illuminated epitaxial
devices is somewhat larger than for back-illuminated bulk devices, the
difference has only a small influence of approximately 1 dB on the overall
receiver sensitivity. Device construction from epitaxial silicon makes
fabrication with large-diameter wafers possible and avoids thinning and
handling bulk wafers.

Referring to the cross section of the device, the epitaxial = region is
typically 40 um thick, has a resistivity in excess of 300 (-cm, and is grown

SILICONR' —p—n—p*
AVALANCHE PHOTODIODE

ANTI-REFLECTION
.~ COATING (SiyN)

¥ hy
L
P :
2 T Y = e ALY L
50 7 Epi, p > 30002 —cm

l

p+ SUBSTRATE

I-

Fig. 1 — Cross-sectional view of epitaxial silicon n*-p-r-p* avalanche photodiode made
for illumination through the n* contact layer. Diameter of the light-sensitive high-gain
region is 100 um.

SILICON AVALANCHE DIODE 1793

on dislocation-free horon-doped substrates. The light doping of the =
region is required to minimize the voltage required to deplete the entire
region between the n* contact and the p* substrate. The p* channel stop
diffusion surrounding the device cuts off surface inversion channels,
limits the lateral spreading of the depletion region, and ensures that the
depletion region will not extend fo surface areas beyond the immediate
perimeter of the device. The doping in the p-control charge region is
determined by a boron ion implantation and subsequent drive~in. Deeper
drive-in produces lower excess noise but increases the operating voltage.
The n* contact under the optical window is made very shallow to mini-
mize both the carrier recombination and the hole injection from the n*
region to the p-region, which would increase the noise of the device. To
avoid the low breakdown voltage associated with the small radius of
curvature of the shallow n*.x junction, an n guard ring is diffused around
the perimeter of the junction. This guard ring also reduces constraints
on the metal contact by providing a deep junction under the contact
windows. The device is passivated over the exposed r region with SiOy
and St;N4 layers. Over the optical window, Si3N, is deposited to a con-
trolled thickness as an antireflection coating for normally incident ra-
diation.

The metal contacts are arranged to overlap the metallurgical n-r and
7-p junctions. These field plates prevent the buildup of charge within
and at the surface of the Si0; and SizN, layers near the edges of the
junctions. If charges on the surface of the dielectric were permitted to
build up there, they could induce sufficiently large electric fields to cause
bursts of avalanche and zener breakdown currents.!?2 High levels of
surface charge concentrations would ultimately lead to increased leakage
currents and reduced breakdown voltages. The field plates also increase
the breakdown voltage at the perimeter of the n-w junction by effectively
increasing the radius of eurvature of the guard ring diffusion.13-15 The
avalanche breakdown of the APD is then a bulk rather than surface effect
because of the additional charge in the p-region. Similarly, the region
of high multiplication lies within the optical window and has a diameter
of ~100 um.

The planar epitaxial n*-p-r-p* avalanche photodiode described above
provides both high reliability and processing capability in large diameter
silicon wafers. Similar epitaxial structures are achieving attention, as
indicated in several recent publications.?.1%16-19

lI. FABRICATION

The actual device fabrication begins with the growth on p* substrates
of (>300 Q-cm p-type) 50-um thick epitaxial material. The structure of
Fig. 1 is formed by first diffusing the n-type guard ring and p-type
channel stop. A carefully controlled boron dose is then implanted and

1794 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

diffused into the center region of the APD. A heavily doped phosphorus
layer is diffused into the back of the wafer to getter deep level impurities
in the silicon. This gettering substantially reduces the dark currents. A
shallow n* (phosphorus) contact is deposited and the time of its drive-in
diffusion is adjusted to control the current gain-voltage characteristics
of the device. The wafers are annealed in an HCl ambient to reduce the
mobile ion content of the surface oxide, and SigN, is deposited to
passivate the structure. The SigN, is impervious to ionic contamination
such as Nat.

The n* diffused layers are removed from the back of the wafer, and
an ohmic contact is formed by ion implantation of beren. At this point,
the wafer is approximately 450 um thick and has good mechanical
strength. The front surface metallization is Ti-Pt-Au formed over sin-
tered PtSi, and the back metal is Ti-Au.

PIN photodetectors are obtained with this fabrication sequence by
omitting the boron ion implantation. Like the APDs, the PIN detectors
have low leakage and capacitance and excellent reliability.

IV. CHARACTERISTICS

A relatively large number of optical and electrical characteristics
contribute significantly to the performance of the avalanche photodiode.
The characteristics of the nt-p-7-p* APD that are of interest in the FT3
application are:

() Quantum efficiency.
(i) Current gain-voltage characteristics.
(itf) Dynamic range.
(iv) Temperature and wavelength dependence of the gain-voltage
characteristics.
(v) Uniformity of the gain under the optical window.
(1) Excess noise as a function of wavelength and nominal gain.
(vii) Speed of response.
(viif) Capacitance.
(ix) Temperature dependence of the dark current.
{x) Reliability for 300-V operation.

The subject of system performance is treated in other papers in this
volume.

4.1 Quantum efficlency

Consider first the quantum efficiency of the front-illuminated
structure for normally incident radiation. The spectral response char-
acteristics of Fig. 2 show the quantum efficiency of these avalanche
photodiodes to be greater than 90 percent over the wavelength range
from 680 to 860 nm. The accuracy of the measurements is ~+5 percent.

SILICON AVALANCHE DIODE 1795

I

T

20 —

PERCENT QUANTUM EFFICIENCY

10 —

SILICONR" —p —w —p*
AVALANCHE PHOTODIODE

5 1 | 1 l I I
400 600 80D 1000
WAVELENGTH IN nm

Fig. 2 — Spectral response curve of silicon n*-p-r-p* avalanche photodiode with 40-um
wide 7-type carrier collection region and SiOg-SpisNa antireflection coating.

The antireflection coating keeps the surface reflection to less than ~3
percent at 800 nm. Recombination in the thin n* contact and at the
surface becomes substantial for wavelengths less than 600 nm. The re-
sponse drops rapidly beyond 900 nm as the radiation penetrates deeply
into the p* substrate.

4.2 Gain-voltage characieristics and dynamic range

Typical gain-voltage characteristics for different temperatures and
with excitation at 825 nm are shown in Fig. 3. The operating bias range
of these avalanche photodiodes extends from the onset of current gain
at 60 V and complete sweepout around 100V to avalanche breakdown
at 250 to 400 V. At sweepout, the current gains (M) are between 5 and
10, and before breakdown they increase to values of several hundred.

In-the FT3 system, the bias on the APD is decreased to reduce the gain
for high levels of radiation. This current gain control adds to the dynamic
range of the receiver. For the APD of Fig. 3, the dynamic range is given
by the ratio of the maximum gain (M = 80 in the FT3 system) to the
minimum gain (M = 6.5 at 150 V bias), which is 11 dB of optical power,
The minimum bias is determined by the speed of response requirements
discussed in Section 4.5.

To preserve the dynamic range in the APD, the control charge doping
was precisely adjusted to obtain the above characteristics. It is well

1796 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

1000 =
SILICON R —p—7 —p* 2 43
AVALANCHE PHOTORIODE
500 |—
TEMPERATURE {°C)
200 |-
100 —
=z
T 50
o
-
=
w
-
o
> 20
L]
10
5
2 -
1 i L | I |
0 100 200 300 400

VOLTAGE {V}

Fig.3 — Current gain-voltage characteristic of silicon n*-p-w-p* avalanche photodigde
at different temperatures measured with excitation at 825 nm.

known that the breakdown voltage of n*-p-7-p* structures are very
sensitive to the charge of the p region.20 A small increase of approxi-
mately 10 percent in the p region doping reduces the breakdown voltage
by more than 100 V, but simultaneously increases the gain at the mini-
mum bias. Lower voltage APDs are then characterized by lower dynamic
range. For the front-illuminated APD with high resistivity epitaxy, the
operating voltage range could be reduced from 150 V minimum—400 V
maximum to 120 V minimum-200 V maximum (23°C), where the only
engineering trade-off would be a reduction in the dynamic range from
12:1 (11 dB) to 4:1 (6 dB of optical power).

The gain-voltage characteristics show a pronounced dependence on
temperature. As can be seen from Fig. 3, a bias voltage change of 1.4 V/°C
is needed to keep the gain constant as a function of temperature. In
addition, the gain-voltage characteristics show some dependence on
wavelength of excitation, especially at short wavelengths, as shown in
Fig. 4. The decrease in gain throughout the operating bias range at short
wavelengths is due to mixed initiation of the avalanche by electrons and
holes when most of the light is absorbed in the n*-p region clese to the
silicon surface. The ionization coefficient for holes is smaller than that
for electrons causing a reduction in the total current gain.

SILICON AVALANCHE DIODE 1797

SILICON n* —p~n —p*
AVALANCHE PHOTODIODE
500 -
200
100
=
= 50 |
a
-
-
e WAVELENGTH {nm}
[« =4
g 20
(&}
10 |
5 |
2 —
t
0 100 200 300 400

VOLTAGE (V]

Fig. 4 — Current gain-voltage characteristics of silicon n*-p-r-p* avalanche photodiode.
at room temperature for different wavelengths of optical excitation.

4.3 Current gain uniformity

The current gain uniformity is extremely important for the noise
performance of the APD. Nonuniformities arise from two primary
sources—crystalline defects and doping density fluctuations in the p-
region.

Certain defects lead to premature breakdown spots or microplasmas.
At their onset, the microplasmas generate irregularly fluctuating spikes
of current that render the detectors useless for weak light signals.
Through proper measures such as the choice of low dislocation materials
and processing that does not introduce additional defects, the number
of devices with disturbing microplasmas can be kept small.

All avalanche photodiodes exhibit high noise at the onset of bulk
breakdown.21-22 The breakdown noise is first observed as current pulses
or spikes. In good devices, the breakdown noise threshold is substantially
above the voltage for an average optical gain of 100, typically by 20 V.
As the device is operated at higher gains, the regions of locally higher
electric field develop a rapidly increasing tendency to support very large
multiplication. Equivalently, the tail of the probability distribution
extends rapidly to higher multiplications. A finite probability develops

1798 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

that a single incident electron will produce a very large number of sec-
ondaries (i.e., 1000 to 10,000 carriers). The voltage onset of the avalanche
noise is then believed to depend on the region of highest electric field
in the APD.

A second source of electric field en hancement, after erystalline defects,
is local fluctuations in the doping of the p region. When operating at an
optical gain of 100, the APD will experience approximately 10 percent
increase in gain for a doping fluctuation of 0.1 percent. The importance
of the uniformity of the ion implantation for the p region cannot be
overstated.

In the APD fahricated in this work, the avalanche carrier multiplication
is quite uniform over the center part of the light-sensitive area of the
diodes. This can be seen from Fig. 5, where the current gain as a function
of position of the photoexcitation is shown for different bias voltages.
At a maximum gain of 100, the gain is uniform within £5 percent over
a diameter of 75 um and #10 percent over a diameter of 90 um.

4.4 Excess multiplication noise

The multiplication process in the avalanche photodiode increases the
noise in the output current beyond the multiplied shot noise of the
photocurrent. The source of the excess noise [ies in the fluctuations in
the avalanche process. The incident electrons are accelerated by the high

166
l

|

125 |-
100 -
=
3
= 75 |-
=
w
o
@
=
L&)
50 —
;
28
| SILICONn* —p—7 —p* |
AVALANCHE PHOTODIODE) I
0 ! i ! L [i [
100 75 50 25] 25 50 75 100

RADIUS pm
Fig. 5 — Spatial variation of the current gain across the light-sensitive area of an ava-
lanche photediode at different bias voltages. Measurements were done by scanning with
a 3-um light spot at 799.3 nm.

SILICON AVALANCHE DIODE 1799

electric field and at the same time experience various inelastic scattering
processes. When they achieve sufficient energy above the band gap, they
can generate secondary electron-hole pairs. These charge carriers in turn
gain sufficient energy to create additional electron-hole pairs. An ideal
multiplier would provide exactly the same number of secondary electrons
for each incident electron. In practice, the random nature of the scat-
tering processes produces a broad distribution of multiplication factors.
The current. gain M of the APD is the average of the distribution of the
multiplication factors. This statistical variation in the multiplication
process increases the noise fluctuations of the output current.

A measure of the excess noise is given in the equation below, where
the excess noise factor,

FOM) = (i)

(iZn) X M2’
is defined as the measured mean-square noise current {tZ) at the output
of the avalanche photodiode divided by the product of the mean square
noise (i;“;h) of the primary photocurrent and the square of the average
gain M. Equivalently, the noise spectral density of the APD current is
written as

(1)

d .
af ¢

The noise factor increases with gain reflecting a broadened distribu-
tion of multiplication factors. The development of a long tail in the
distribution toward high multiplication factors at high electric fields was
discussed in the previous section in connection with breakdown noise.
The detailed dependence of F(M) on M determines the optimum ava-
lanche gain to be used with a given receiver front end and ultimately the
optimum sensitivity of the receiver. The quantity F(M) is often ap-
proximated by the relation F(M) = M*, but a more exact expression,
and one which is equally tractable mathematically, is®

%) = 2q{ipr) M2F(M). (2

FM) =M[1 — 1=k (%}1)2] @
or
FMy=21-R+EM M>1. (4)

where & is the effective ratio of the ionization coefficients of holes and
electrons, suitably averaged over the high field region where avalanche
occurs. The value of £ depends upon the detailed electric field profile
within the avalanche region and also upon the extent to which the ava-
lanche is initiated by holes.

Shown in Fig. 6 is the excess noise factor of an APD as a function of

1800 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

S$int—p-n-p*
FAONT ILLUMINATION Q.8um
T=0°C-60°C
B —
- },/’I
= -
: 6 — ”/f
& e
: 1T
w
a8 /P
o F
4 /I/
z/
2K
v
o | 1 |] ! 1
0 20 40 60 BO 100 120 140

CURRENT GAIN M

Fig. 6 — Noise factor F(M) as a function of average current gain M for silicon nt-p-r-p*
avalanche photodiode at 300 nm. The measurement bars give an indication of the noise
spread measured on devices made from different wafers.

gain. The measurement was done at room temperature; however, the
excess noise factor is quite independent of temperature, at least over the
0° to 60°C range investigated. The excess noise at an average gain of 100
for excitation at 800 nm is only a factor of 5 to 6 higher than the shot noise
limit of an ideal multiplier. This noise factor compares favorably with
the noise factor of F(M = 100) of 3 to 5 measured for the best bulk n*-
p-7-p+ devices with illumination through the p* contact and pure
electron initiation of the avalanche.1® The value of k extracted from Fig.
6 at 800 nm is ~0.04.

Lower excess noise and k values are obtained for small increases in
the width of the high field region. An extension of the multiplication
region allows lower electric fields where the ratio of hole-to-electron
jonization coefficients becomes even smaller.8 However, the knee of the
current gain-voltage characteristic (at 60 V in Fig. 3) corresponding to
the depletion voltage of the p region moves to higher voltages increasing
the voltage requirements for the APD. Additionally, for front-illuminated
devices, wider p regions cause a larger fraction of the multiplication to
be initiated by holes. For wide p regions, this effect determines the noise
of the APD. Consequently, an optimum doping profile exists for the de-
sired wavelength range. As discussed in Section II, the front-illuminated
devices show lower noise for a triangular rather than a square electric
field profile, where the initiating electrons first encounter a low electric
field. To the first order, the electric field of the p region is essentially
triangular because of the doping profile after drive-in.

Noise factor measurements on another APD with excitation at different
wavelengths are shown in Fig. 7. While the lowest noise, F(M = 100) =

SILICON AVALANCHE DIODE 1801

NOISE FACTQR F

7 SILICON " —p—aw — p*
AVALANCHE PHOTODIODE
ol | It L i | [& i | fi : !
0 20 45 80 BF 100 120 140 180 180 200 220t 240
AVERAGE CURRENT GAIN

Fig. 7 — Noise factor F(M} asa function of average current gain for optical excitation
at different wavelengths.

4, is observed for excitation at long wavelengths at 1060 nm, the noise
at 799 nm s not significantly higher, F(100) ~ 5. Actually, the diodes
are quite low in excess noise even for mixed injection at 647 nm.

The overall penalty in optical sensitivity at A = 825 nm incurred by
the mixed injection of holes and electrons was 51 dB of optical power.
The ability to fabricate this device structure with a planar, high-veltage
process is judged to outweigh the foss of 1 dB in sensitivity.

4.5 Response time and capacitance

To gain a measure of the speed of response, the duration of the mul-
tiplied output current pulses was investigated as a function of bias
voltage for excitation with short Iaser spikes of 220 ps duration from a
(GaAlAs laser at 838 nm. The output pulses are quite symmetric in their
rise and fall times without any tails at the end of the pulses. As depicted
in Fig. 8, the duration of the output pulses at full depletion above 100
V is at most a few nanoseconds. At high bias voltages, where the holes
drift with almost saturation-limited velocity through the = region, the
pulse duration at 50 percent amplitude is less than 1 ns. At bias voltages
less than 100 V, the pulse response becomes slower due to lower drift
velocities and carrier diffusion within the undepleted = region.

The FT3 application requires a pulse width of 20 ns. To minimize jitter,
the rise and fall times of the APD should be on the order of 1.0 fo 2.0 ns.
This requirement sets the minimum bias voltage at 150 V.

1802 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

WAVELENGTH 838 nm /

5O |-
9 Tso =220 ps

EXCITATION

Tio_1q0 =550 ps /

-
o
I

RESPONSE TIME IN ns
CURRENT GAIN

\

~—Tio—10%

SILICONR* —p -7 —p*
AVALANCHE PHOTODIODE
05 1 l t | |]
0 100 200 300
VOLTAGE (V).

Fig. 8 — Response time and gain of multiplied photocurrent as a function of bias voltage
for asilicon n*-p-r-p* avalanche photadiode excited with pulses from a GaAlAs laser at
838 nm. The insert shows the shape and duration of the laser spikes as measured with a
f{ast germanium photodiode.

Over the range of operating voltages, the capacitance of the avalanche
photodiode is nearly independent of voltage. For a 40-um = region, the
capacitance is ~0.3 pF. The capacitance-voltage characteristic at lower
voltages is given in Fig. 9. The gradual drop in capacitance between 0
and 50 V reflects the movement of the depletion layer through the p
region. The rapid drop around 55 V eorresponds to the movement of the
depletion layer into the = region. The APD reaches full sweepout at ~85
V bias.

4.6 Leakage currents

Leakage or dark currents in the avalanche photodiode can be gener-
ated in the bulk of the depleted region due to thermal generation of
carriers, or they can originate at the surface and bulk terminations of
the space charge regions. The major part of the leakage of a typical APD
is collected at the perimeter in a low field portion of the junction. These
currents simply create a small offset that is not of importance to the

SILICON AVALANCHE DIODE 1803

SILICON
n—p-n_p*
AVALANCHE PHOTODIODE

B —
-~
/!
Mi{V), 830 nm
2~ o 2
w
s z
= <
w [
2 _- C{V]. ARD + HEAQER | =
< VP p———— 1 £
= T
(%]
b4 3
3
05 [C=033pf J os
02 — 02
- CHeADER = 0.12— 015pF
¥
0.1 ' L —L 1 0.1
] 20 40 80 80 100
VOLTAGE (V)

Fig. 3 — Capacitance and gain of an avalanche photodiode on a header as a function
of bias voltage. From the difference between the total capacitance of the device and header
and the capacitance of the header, it can be inferred that the capacitance of the device chip
is between 0.2 and 0.3 pF at full depletion.

optical repeater. The leakage current collected in the high field portion
of the junction is a potential source of noise since it experiences 80-fold
multiplication in the APD. If the leakage current that is to be multiplied
approaches the photocurrent induced by the laser in its off state, the
noise of the APD would be increased. The smallest laser off-state pho-
tocurrents before multiplication fall between 1010 and 1072 A. By
comparison, the leakage current to be multiplied is less than 10712 A (at
23°C), and is negligible over the full temperature range of 0 to 60°C. Low
leakage is achieved in these devices through the use of low dislocation
materials, processes that avoid defect formation, and a back surface
phosphorus diffusion gettering to eliminate fast-diffusing, deep-level
impurities.

In Fig. 10, the dark current of a well-gettered APD with a 100-um di-
ameter active region is plotted as a function of reciprocal temperature.
The dark current around room temperature is due to carrier generation

1804 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

°c}

280 200 150 120 100 &0 60 40 23 0 -20
10-3 T T T T T = T T
DARK CURRENT AVALANCHE PHOTODIODE
~ + Sin*—p—n-p’
e b N . -
\++ \/ID.”.Ilmr‘ n. (T)
-
£\
A\
10 E |- \ —
+5N
+‘\\
-6 — \ —
10 \ ~
+\
AY
1w’ - \+\ _
2
\‘+ y le‘extr ~ O AT
a AY
T el N ¢ _
o N *\\
\ 1:4‘
7
10-° ~N % -
N\
N
+
1010 - \ =
\ %-
by
N
_ +, -
w1)_ \\ .
\ \+
\ +
\ %
10712 - \ "‘\N -
10-13 1 g | Joo1 1] 1 l 1\\‘4

1.8 2.0 2.2 24 2.6 2.8 30 32 34 36 38 40

x10% / T i°K)

Fig. 10 — A plot of dark current as a function of reciprocal temperature for an avalanche
photodiode with a 100 ym diameter high gain region and an overall diameter of 360 um of
fully depleted = region (40 um thick).

from impurity centers with energy levels close to the middle of the
bandgap. From the temperature dependence of the current between
—20° and +40°C, the thermal activation energy for the carrier generation
in these well-gettered devices is estimated to be 0.66 to 0.69 eV.

At higher temperatures between 40 and 150°C, the dark current in-
creases with temperature in proportion to the square of the intrinsic
carrier density as

nH(T)Dn(T), (5)

where [),(T) is the temperature-dependent diffusion constant of the
-electrons. Based on numerical estimates and measurements on devices
of different diameters, it is suggested that this dark current component

SILICON AVALANCHE DIODE 1805

is due to the diffusion of electrons out of the undepleted high resistivity
w-type sidewalls of the device.

For temperatures in excess of 150°C, the intrinsic carrier concentration
exceeds the doping in the = region. The leakage resulting from electron
diffusion out of the APD’s perimeter then increases in proportion to the
intrinsic carrier concentration.23

4.7 Reliability

The avalanche photodiodes are reliable, having mean times to failure
in excess of 103 hours at 200°C and 300-V bias in hermetic packages.
Assuming an activation energy of 0.7 eV, which is estimated from the
accelerated aging of several groups at different temperatures, the mean
time to failure is in excess of 107 hrs at room temperature. This reliability
results from the silicon nitride passivation, the gettering of mobile ions,
and the use of field plates as discussed in Section IL. Failures occur in
devices without field plates because of surface charge accumulation over
doped regions of the device. The surface charge induces high etectric
fields which reduce the breakdown voltage or produce breakdown
noise.

V. SUMMARY

Front-illuminated, epitaxial silicon avalanche photodiodes having
an n*-p-7-p* structure are well suited to the detection of 800- to 900-nm
radiation in fiber waveguide systems. The APD-developed for the FT3
system is a state-of-the-art device providing high quantum efficiency,
~1-ns response times, and low excess noise and dark currents. The APD
allows ~15-dB improvement in receiver sensitivity, when compared to
a nonavalanching photodiode. Its fabricaticn as a planar device on
large-diameter, high-resistivity epitaxial wafers provides substantial
improvements in manufacturability and reliability.

VI. ACKNOWLEDGMENTS

We are greatly indebted to R. P. Deysher and R. G. McMahon of
Western Electric for the development and fabrication of the high-
resistivity epitaxial material and to R. E. Carey and R. 8. D’Angelo who
contributed to the process development. Many helpful discussions with
G. A. Rozgonyi, R. A. Moline, R. Edwards, R. G. Smith, A. U. MacRae,
and M. DiDomenico are also acknowledged.

REFERENCES

L. H. Melchior, Physics Today, 30 (1977), p. 32.

2. J.8. Cook, J. H. Mullins, and M. I. Schwartz, paper presented at Conference on Lasers.
and Electro-optical Systems, San Diego, Calif. (1976), p.25:

3. H. Melchior and A. R. Hartman, Technical Digest of the International Meetingon:
Electron Devices (Wash., D.C.), 1EEE, New York (1976), g 412

1806 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

8. D. Personick, Fundamentals of Optical Fiber Communications, New York: Aca-
demic Press, 1976, p. 155.

. R. J. McIntyre, [EEE Trans Electron Dev., ED-13 (1966), p. 164.

. C.A.Lee, K. A. Logan, J. J. Kleimack, and W. Wiegman, Phys. Rev., A134.(1964), p.
716.

7. H. Ruegg, IEEE Trans. Electron Dev., 14 {1967}, p. 230.

| P.P. “ngb, R. J. Mclntyre, and J. Conradi, RCA Rev., 3541974}, p. 234.

9. J. Conradi and P. P. Webb, IEEE Trans. Electron Dev. 22 4{1975), p. 1062.

10. T. Kageda, H. Matsumoto, T. Sakurai, and T. Yamaoka, J. Appl. Phys., 47 (19786},
p. 1605.

11. H. Melchior, D. P. Schinke, and A. R. Hartman, unpublished work.

19. S.R. Hofstéin and G. Warfield, IEEE Trans. Electron Dev,, ED-12 (1965, p. 66.

13. S. M. Sze and G. Gibbons, Solid State Electron., 9 (1966}, p. 831.

14. D.S.'Zoroglu and L. E. Clark, 1EEE Trans, Electron Dev., ED-19(1972),p. 4.

15. L.&. Clark and D. 8. Zorogluy, Solid State Electron., 15 (1972), p. 653.

16. H. Kanbe, T. Kimurs, ¥. Mizushima, and K. Kajiyama, IEEE Trans. Electron Dev.,
ED-25 (1976),p. 1337.

17. T. K:;rllgtila, H. Matsumuota, T. Sakurai, and T. Yamaoka,«J. Appl. Phys. 99 (1976),
p. .

18. S.Takamiy, A. Kondo, and K. Shirahata, Meeting of the Group on Semiconductors
;a}nd Semgi'(_‘.:gnduct,or Devices, Inst. of Elect. and Comm. Engr. of Japan, Tokyo,
Japan, 1 .

19. . K’e?mbe, T Kimura, and Y. Mizushima, IEEE Trans. Electron Dev., ED-24 (1977},
p. T3,

28. 'T. K. 8Beidel, D. E. Iglesias, and W. C. Niehaus, (EEE Trans. Eleciron Dev., ED-21
{1974}, p. 523.

23. R.J. McIntyre, IEEE Trans. Electron Dev., ED-19 (1972}, p. 703.

93 R.J. Mclntyre, JEEE Trans. Electron Dev., £1-20 (1973), p. 637

93. A.S. Grove, Physics and Technology of Semiconductor Devices, New York: John

Wiley, 1967, p. 176.

[or LI

SILICON AVALANCHE DIODE 1BO7

Capyright © 1978 American Telephone and Telegraph Company
THE BELL 8YSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U1.5.A.

Atlanta Fiber System Experiment:

Optical Detector Package

By R. G. SMITH, C. A. BRACKETT, and H. W. REINBOLD
{(Manuscript recelved February 10, 1978)

The optical detector package used in the Atlanta Fiber System Ex-
periment is described. The detector subsystem consists of an avalanche
phoatodetector and a transimpedance amplifier packaged in a dual
in-line configuration, with a connectorized optical-fiber pigtail for
optical interfacing. We describe here the design, operation, and con-
struction of the amplifier circuit, the gain and noise characteristics of
the avalanche photodetector, and the experimental performance of 53
completed packages. The design is found to meet or exceed all system
performance goals. The measured performance of the 53 subsystem
packages gives an average optical sensitivity of —54.1 dBm (BER =
107%) with a standard deviation of 0.28 dB, a transimpedance of 13.7
k$l, a dynamic range of 76 dB (38 dB of optical power), an effective
quantum efficiency of 69 percent, and a frequency response corre-
sponding to complex poles located at ~70 + j56 MHz. The optical
sensitivity was found to be unchanged within experimental error when
measured at 50°C. Prelimunary life testing of 32 units, 10 of which are
operating at 60°C, has produced no failures in over 7 X 105 equivalent
device hours. These are very encouraging results and imply a device
reliability approaching that required for system applications.

. INTRODUCTION

This paper describes the design, packaging, and performance char-
acteristics of the optical detector packages used in the receiver portion
of the regenerator employed in the Atlanta Fiber System Experiment
recently completed in Atlanta, Georgia.

The goal of this development effort was to design a self-contained
optical detector package containing the photodetector along with the
associated preamplifier which would operate at the DS3 transmission

1809

rate (44.7 Mb/s), achieve good sensitivity, possess a wide dynamic range,
and be easily interfaced both optically and electrically to the printed
circuit board and backplane. The design was also to produce a level of
performance representative of a manufacturable unit. This latter con-
straint affected several of the engineering choices made during this de-
velopment.

The optical detector package, to be described in detail below, employs
an avalanche photodiode as the opticakdetector and a transimpedance
amplifier as the interface between the detector and the remainder of the
linear channel. The combination is enclosed in an EMI shield and potted
in plastic to provide mechanical rigidity. Optical interfacing is accom-
plished by use of a short piece of optical fiber connected on one end to
the APD and on the other end to an optical connector. Electrical inter-
facing is achieved via pins designed to fit eitherinto a socket orontoa
printed circuit board.

The performance of 53 detector packages fabricated and evaluated
for this project includes a measured optical sensitivity of —54.1 dBm with
a standard deviation of 0.3 dB for a bit error rate of 10~% and a dynamic
range of 38 dB of optical power compared to design goals.of —53 dBm
and 80 .dB, respectively. Measured performance at 50°C showed no
«Jegradation from room temperature results.

1. CIRCUIT DESCRIPTION

The front.end of an optical receiver consists of a photodetector, gen-
erally a PIN or avalanche photodiode, along with some form of amplifying
stage or stages. The overall combination of the detector, amplifier, and
subsequent filtering is designed to respond to the input light signal in
such a way as to provide an output pulse shape—usually with a raised
cosine spectrum—appropriate for presentation to the digital decision
circuit. The combination, referred to as the linear channel, must there-
fore have sufficient bandwidth to respond properly to the input pulse.
It should also contribute as little noise as possible in order to give a good
optical sensitivity.

A number of approaches to the design of the input amplifier or front
end have been investigated. The most straightforward method is to
terminate the detector in a lead resistor, R,.chosen such that in combi-
nation with the input capacitance of the amplifier, C, the RC time con-
stant is sufficiently small to reproduce the input pulse shape. This ap-
proach, though straightforward, has been shown to be excessively
noisy.l-3

An alternative to this approach, usually referred to as the high im-
pedance or integrating front end, used extensively in nuclear engineering,
has been analyzed in detail by Personick.! He shows that it has less noise
and results in considerable improvement in optical sensitivity comparéd

1810 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

to the technigque discussed above. Receivers have been designed and built
using integrating front ends, verifying the predicted noise reduction and
sensitivity improvement.2:3

The essential feature of the design of a low-noise front end is mini-
mizing the contributions of the various sources of noise, including those
resulting from leakage currents in the photodiode, thermal noise asso-
ciated with biasing resistors, and noise associated with the amplifying
transistors. If the input signal source is a photodiode, which looks like
a current source shunted by a capacitor,* minimizing the noise is ac-
complished by increasing the values of biasing resistors, reducing all
associated capacitances, and minimizing leakage currents.! For a hipolar
transistor, choice of an optimum collector current is also required.5 Such
an optimization results in an amplifier which has a bandwidth consid-
erably smaller than that required to reproduce the desired pulse shape.
This situation is remedied by subsequent equalization which can be
performed with little or no noise penalty.

Although this approach has been shown to give optimum performance,
there are several drawbacks. First of all, the degree of equalization will
depend upon the parasitics of the circuit. This introduces the possibility
that circuits would require equalization on an individual basis—an un-
desirable step from a manufacturing point of view. The most serious
drawback, however, is the loss of dynamic range resulting from the
equalization.b

A third approach, and the one employed here, is to use a shunt feed-
back amplifier, commonly referred to as a transimpedance amplifier,
which is essentially a current-to-voltage converter. A simplified diagram
of the transimpedance amplifier is shown in Fig. 1. In the limit of large
gain, the output voltage, V,, is related to the input current, i, by the
relation

Vo, = —ZFi, (1)
where Zp is the feedback impedance.

The feature of the transimpedance amplifier that makes it desirable
for the present use is that, compared to an unequalized amplifier that
does not employ feedback, it is less noisy for a given bandwidth or al-
ternatively has more bandwidth for a given noise level. Compared to an

Zr

—V\VWV—

b———0
P

=Ch
Fig. 1—Schematic representation of the transimpedance amplifier.

OPTICAL DETECTOR PACKAGE 1811

optimized, equalized amplifier of the high impedance design, a receiver
employing the transimpedance amplifier along with an avalanche
photodetector requires approximately 1 dB more optical power to
achieve a given error rate. Circuit simplicity, eliminating the need to
employ equalization, and obtaining increased dynamic range were judged
worth the 1-dB loss in sensitivity.

A schematic diagram of the transimpedance amplifier used here is
shown in Fig. 2. The first two transistors comprise the feedback pair or
transimpedance portion of the circuit; the third stage provides additional
gain and isolation, §; was chosen to have as small an input capacitance
as possible and was selected to have a high 3. 2 and &5 were unselected
devices of the same type, chosen for commonality in bonding technique.
A tendency of early circuits to oscillate was eliminated by using a resis-
tance in the base of @o. Other components shown in Fig. 2 are used for
filtering and bypassing.

The basic transimpedance of the feedback pair is approximately given
by the feedback resistor, in this case, 4 k. To increase the cutput signal
level to 4 mV peak to peak at the minimum optical signal level, the gain
of the third stage was chosen to be 3.7, giving an effective transimpedance
of 14.8 kQ,

+6v

1

ouTPuT

-VapD

Fig. 2—Circuit diagram of the amplifier used. Components shown within the dotted
line are included within the package.

1812 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

. AVALANCHE PHOTODIODE

The photodetector used in the optical detector package is an avalanche
photodiode (APD). This detector, designed and developed for this ap-
plication, is described in a companion paper.” The essential feature of
the avalanche photediode is that it provides internal multiplication of
the photo-generated current that improves the sensitivity of the re-
ceiver.

A typical gain-versus-voltage curve for the avalanche photodetectors
used is shown in Fig. 3. The important features of this curve are the rapid
increase in the gain with voltage near 50 V reverse bias and again near
400 V. The first region is associated with the depletion of the device, the
second with approach to self-sustained avalanche breakdown. The device
must be operated at a voltage in excess of that required to deplete the
= region in order to obtain adequate speed of response and below self-
sustained breakdown where the device is excessively noisy. More spe-
cifically, the devices used here could operate with a minimum gain of
approximately 6, at which point they were sufficiently fast, and were
capable of producing gains in excess of 100. (As discussed later, the op-
timum gain was found to be 80.)

T=23C
EDWE-L76
RECEIVER NO. 1038

100

AVALANCHE GAIN, M

1 1 1 1 i 1]
50 100 150 200 250 300 350 400

REVERSE BIAS IN VOLTS

Fig. 3— Room temperature gain curve of an avalanche photodiode typical of those used
in the detector packages.

OPTICAL DETECTOR PACKAGE 1813

The gain of the avalanche photodiode is temperature-dependent,
requiring approximately 1.5 V per °C increase in bias voltage to achieve
constant gain. To compensate for temperature variations and for varying
input light levels, the bias to the diode, which is generated by an up-
converting power supply located on the main board, is controlled by a
feedback loop which maintains the signal level at the output of the linear
channel at a constant value.B The range over which the APD gain is varied
extends from a minimum value of approximately 6 (at high light levels)
to B0 (corresponding to an error rate of 10~ at the minimum detectable
optical power level). Further discussion of the operation of the gain
control of the linear channel may be found in Ref. 8.

IV. PACKAGE DESIGN

The physical design of the optical detector package was approached
with the goal of designing a unit that would be physically sturdy and that
could be easily interfaced with the cireuit board and backplane both
electrically and optically. Electrical interfacing was achieved using a
standard electrical pin configuration to permit the package to be plugged
into a socket on the printed circuit board. Optical interfacing was
achieved through the use of an optical pigtail —a short piece of optical
fiber protected by a plastic sheath—placed in proximity to the APD on
one end with a molded optical connector on the other end. Fig. 4 is a
photograph of the completed package.

In this design, the APD and the optical pigtail were packaged as a
subassembly, and this subassembly was later attached to the ceramic
circuit board. This approach was taken to simplify the package devel-
opment and to permit separate testing of the APD and circuit. More re-
cent packaging approaches coupled with improved circuit design have
resulted in a detector package with the APD chip mounted directly to
the circuit beard, yielding a more compact package with improved per-
formance.

The amplifier circuit was fabricated using thick-film technology. The
transistors used were beam-lead, sealed-junction devices that were
thermocompression-bonded to the thick-film circuit. The ceramic circuit
board with the APD subassembly attached was placed within an EMI
shield, and the entire assembly was potted in plastic to provide me-
chanical rigidity to the electrical pins and the optical pigtail.

V. PERFORMANCE CHARACTERISTICS

During the course of this development, approximately 100 detector
packages were fabricated; of these, 53 were characterized in detail. The
results and comparison with theory, where appropriate, are summarized
below.

1814 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

ki A it e R

Beil Labs

(2N

Lab 234

Fig. 4—Finished optical detector package.

5.1 Equivalemt input noise current density

The optical sensitivity of an optical receiver is determined primarily
by the equivalent input noise current density of the detector-amplifier
combination and the avalanche characteristics of the ApD, For a
transimpedance amplifier of the type used here, there are several prin-
cipal sources of noise including: (i) thermal noise of the feedback resistor,
Rpg, (i) shot noise of the base current of @y, (iii) shot noise associated
with the collector current of @, and (i) leakage currents in the photo-
detector. The APD used here was designed to minimize leakage currents
and in all cases, even at elevated temperatures, noise associated with
surface leakage and bulk dark currents was completely negligible. Fur-
ther, for the collector current used in &y, the contribution from (it} is
expected to be small. The dominant noise sources for the present circuit

OPTICAL DETECTOR PACKAGE 1815

are thus the feedback resistor and the base current. of §,. For these noise
sources, the spectral density of the equivalent input noise current will
be flat and is given by

d 4k T
— (i2) = — 1+ 2qip, 2
df('L) R dip (2)

where

k = Boltzmann’s constant
T = absolute temperature
g = electronic charge

In = base current of ¢

Rr = feedback resistor.

Using RF = R¢c = 4kQand V. = 5V, eq. (2) reduces to
70
a2y =4.14x10-24(1+—), (3)
df g8

where 8 = Ic/Ig and T is taken to be 300 K. Taking 8 = 150, a typical
value for the transistors used, eq. (3) has a value of 6.07 X 10~
AZ/Hz.

The above noise current density is, by assumption, independent of
frequency. The actual frequency dependence was determined by mea-
suring the output noise spectral density with a spectrum analyzer, re-
ferring this to the input using the measured frequency response of the
amplifier. The results are shown in Fig. 5, where the noise is found to be
flat out to approximately 20 MHz with a 3-dB corner frequency of 87.5
MHz. When the frequency response of the filter used to limit the noise
and shape the pulse is taken into account (the system response is down
10 dB at 40 MHz and 20 dB at 54 MHz), the contribution to the total
output noise from the frequency dependent portion is found to be neg-
ligible. Thus, assuming a flat equivalent noise spectral density at.the
input introduces little error in receiver sensitivity calculations.

The absolute magnitude of the input noise spectral density was de-
termined by measuring the total output noise power (after the filter,
using a true rms power meter) and referring this to the input using known
amplifier gains, the measured transimpedance, and the measured
characteristics of the filter. The resultant mean input noise current
density was found to be 6.92 X 10724 A2/Hz. The difference of 0.6 dB
between the measured and calculated values may be due in part to noise
sources that have been neglected, but a significant contribution is be-
lieved due to uncertainties in the determination of the transim-
pedance.

1816 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

0 AELATIVE GAIN
-1 =
CI:!. 7
z
:9: -3
-4
-5
L [1 1 L L L1
4
w S
-
bl o
[a]
z 3
Fads = B7.5 MHz
L, 3dB SMHz.
E]
2,k (OUTFUT NOISE F‘DWER)\
u RELATIVE GAIN N
c OT- -
4
i i | i 1 1 1 1

ey 4 6 8 10 20 40 60 80 100
FREQUENCY IN MHz

Fig. 5 —Plots of relative gain and effective input noise current density as functions of
frequency.

5.2 Recelver sensilivily

The sensitivity of an optical receiver is given by?

Q[Q(MZ)B 2]’)

T = hr— 4 —— ({2y)1/2
P =R T qM((a ?)

where

n = the overall quantum efficiency of the diode
and coupling structure
p = the average optical power required to achieve
a given bit error rate (BER), assuming an
equal population of ones and zeros
a function of the bit error rate; & =~ 6 for BER
=107°
hv = energy of a photon =2.4 X 10719 J
g = electronic charge = 1.6 X 10712 coulomb
B = hit rate (assuming the two-level coding)
({i%))1/2 = root-mean-square noise current of the
amplifier referred to the input
M = (M) = average avalanche gain
(M2) = (M)2F(M) = mean square avalanche gain
F(M)} = excess noise factor associated with the
avalanche process.

Q@

Equation (4) has been derived assuming that the noise in the zero state

OPTICAL DETECTOR PACKAGE 1817

is independent of the signal level and that the noise has a Gaussian
amplitude distribution.

For a given bit rate, B, and error rate determined by @, the average
optical power required to achieve the error rate is a function of the av-
erage avalanche gain, (M), and the excess noise factor, F(M). The excess
noise factor, F(M), is given by?

—1\2

F(M)=M[1—(1—k)(M—Ml)] (5)
where k is an effective ratio of the ionization coefficients of holes and
electrons in the avalanche region. For the devices used here, k& ~ 0.035
for a front-illuminated diode and a wavelength of 825 nm.!1° The value
‘of 77 required to achieve an error rate of 10~? (@ = 6) as determined from
eqs. (4) and (5) is plotted in Fig. 6 as a function of M, using the average
measured input noise current, ({¢2)}!/2 = 1.45 X 1078 A. The curve in-
dicates that the sensitivity is maximum for an avalanche gain of ap-
proximately 140 with an optimum value np = —56.6 dBm. The sensitivity
for M = 1, corresponding to a p-i-n diode is —38.9 dBm. Also shown by
the cross in the figure is the average measured sensitivity of 53 devices
taken at an avalanche gain of 80. This value of gain was found to yield
the optimum sensitivity as constrasted to the predicted value of ~140.,
The optimum value of threshold for the decision circuit was found to be
approximately 45 percent of the peak eye height in contrast to a con-
siderably smaller value predicted by the theory.

-8
i B =44.7 Mb/s
48 k = D.035
B <i?¥ o 45% 1004
hrfe= 1.5V
BER = 1079
€
D 52
[[+3
® e
_54—
—56 -
58 Lol |
0 100 1000

AVERAGE AVALANCHE GAIN, M

Fig. 6 —Plot of the calculated optical sensitivity as a function of the average avalanche
gain, M. The cross represents the average of the measured sensitivity of 53 receivers.

1818 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

The primary reason for the above deviations is associated with the fact
that the amplitude distribution of avalanche gain is not Gaussian, but
is skewed toward higher gain values.11-14 This has the effect of greatly
enhancing the effective noise generated by current associated with the
zero state of the incident light {determined by the extinction ratio of the
sourcel®). The rapid increase of this noise with avalanche gain effectively
limits the extent to which the decision level can be lowered and hence
reduces the optimum avalanche gain. Sensitivity calculations incorpo-
rating the non-Gaussian nature of the avalanche gain do, in fact, predict
an optimum gain very close to the value of 80 determined here.' The
measured sensitivity is seen to be in close agreement with that calculated
from eq. (4} at a gain of 80.

A plot of the distribution of measured values of 5P is shown in Fig. 7b.
The mean value is —55.7 dBm with a standard deviation of 0.22 dBm.

5.3 Quantum efficlency

The sensitivity discussed above is expressed interms of the product
of the quantum efficiency, #, and the average optical power, p. This is
a convenient means of characterizing the sensitivity of receivers, as it
requires only a measurement of the current drawn by the photodetector
and a knowledge of the avalanche gain; it is not necessary to measure
optical power, which can be difficult at such low power levels. By mea-
suring the optical power, it is possible to determine p and thus to infer
the quantum efficiency, . A plot of the measured values of p is shown
in Fig. 7a. The mean value is —54.1 dBm with a standard deviation of
0.28 dBm. Comparing the mean values for 7 and g, the mean quantum
efficiency is calculated to be —1.6 dB, or 69 percent. Contributing to this
value are coupling losses within the pigtail structure as well as the in-
trinsic quantum efficiency of the diode, which was typically 90 per-
cent.

5.4 Temperature effects
The sensitivities of the optical detector packages were measured at

-
o
w

_ (a) S (b)

g <P g £ g —im J—
ERT = ' ERTy =
w = be— 20 w
=] ¥ =53 [} I=53
T o
u g,
g s e s
3 2

\] 1 Ui ﬂ Q In_l |

~53 —54 -55 —55 -56 —-57
P {dBm} 1P (dBm)

Fig. 7—Plots showing the distribution of op;tical gensitivities for a bit error rate of
109,

OPTICAL DETECTOR PACKAGE 1819

50°C as well as at room temperature. Within +0.1 dBm, and well within
experimental error, the measured values were found to be the same at
the two temperatures. There is thus no evidence of degradation in per-
formance, at least to 50°C.

5.5 Pole locations

In the initial design of the amplifier, it was not known how accurately
the pole locations could be controlled, It was thus decided to design the
amplifier with sufficient bandwidth that any variatiens in its frequency
response characteristics would not significantly affect the overall re-
sponse of the linear channel including the final filter. The resulting
amplifier design thus had a bandwidth in excess of that required for
operation at 45 Mb/s, and its noise was correspondingly higher,

The frequency response of the detector package was measured by il-
luminating the APD with incoherent light and measuring the output noise
spectrum with a spectrum analyzer. When the spectral density of the
shot noise of the APD is much larger than that of the amplifier noise, the
output noise is proportional to the amplifier response function. This
response function was fitted, using a least-squares method, to a two-pole
transfer function. The resulting pole locations were found to be complex
with a mean value of =70 4 j56 MHz. Although the poles are complex,
they are sufficiently removed from the poles of the filter to have little
effect on the overall system response. In amplifier designs performed
subsequent to this development, careful attention to the reduction of
parasitics has resulted in amplifiers with real poles and bandwidths in
excess of those reported here.

5.6 Power supply requirements

The circuit was designed to operate from nominal +5 V, —5.2 V power
supply voltages. No variation in performance of the detector package
was observed for variations of 1 V about these nominal values.

5.7 Dynamic range

One of the principal reasons for choosing the transimpedance design
was to obtain a large dynamic range. The dynamic range of the amplifier
is defined as the ratio of the maximum cutput voltage swing to the value
when the receiver is operating at maximum sensitivity. For an error rate
of 1072, yF = —55.7 dBm and using M = 80, the peak input current to
the amplifier is calculated to be 0.29 pA. With a measured transim-
pedance of 13.7 kQ, the output voltage is 4 mV p-p. The maximum output
voltage swing is found to be £0.9 V, limited by the third-stage biasing
and the use of ac coupling of the APD to the amplifier. The resultant
dynamic range is then 53 dB electrical, or 26.5 dB of optical power.

1820 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

The overall dynamic range of the optical detector package includes
the range of available gain of the APD as well as the dynamic range of the
amplifier. The ratio of the optimum gain (M = 80) to the minimum value
where the device becomes slow (M =~ 6) gives an additional contribution
to the dynamic range of 22.5-dB electrical or 11.3-dB optical. The overall
dynamic range of the optical detector package is then approximately
76-dB electrical or 38-dB optical power, compared to a design goal of
30-dB optical power.

Vi. SUMMARY

An optical detector package consisting of a silicon avalanche photo-
detector and a low-noise amplifier has been developed for experimental
studies of a fiber-optic system operating at 45 Mb/s. The self-contained
unit has been designed to plug into a printed wiring board and to inter-
face optically via a connectorized optical pigtail.

The performance of the unit is characterized by an optical sensitivity
of —54.1 dBm at a bit error rate of 1079, with a dynamic range in excess
of 38 dB of optical power. Both values exceed the nominal specifications
placed on the units, The range of measured sensitivities showed a rather
tight standard deviation of (.28 dBm, and performance was unchanged
over the temperature range of 20°C to 50°C.

A number of units of this design have been successfully operated in
the Atlanta Experiment and are currently being used in a field evaluation
now under way in Chicago, Illinois.

Vil. ACKNOWLEDGMENTS

The development of the detector package described here involved the
contributions of many people within Bell Laboratories. In addition to
those involved in the development of the avalanche photodiode, de-
scribed in a companion paper, the authors wish to thank T. C. Rich for
the package design; H. M. Cohen, W. B. Grupen, B. E. Nevis, E. L. So-
ronan, and A. E. Zinnes for supplying the thick-film circuits; M. M.
Hower, F. M. Ogureck, and Tseng-Nan Tsai for providing transistors;
A. W. Warner and W. W. Benson for supplying the fiber pigtails; M. F.
Galvin, R. P. Morris, and J. R. Potopowicz for their excellent technical
assistance; and D, P. Hansen and 8. W. Kulba for fabricating the pack-
ages. The authors would like to express appreciation to G. L. Miller for
many stimulating discussions and M. DiDomenico for his encouragement,
throughout the project.

REFERENCES

1. S. D. Personick, “Receiver Design for Digital Fiber Optic Communication Systems,
Parts [and II,"” B.S.T.J., 52, No. 6 {July-August 1873}, pp. 843-886.

9. J. E. Goell, “An Optical Repeater With High-Impedance Input Amplifier,” B.S.T.J.,
53, No. 4 (April 1974), pp. 629-643.

OPTICAL DETECTOR PACKAGE 1821

3. P. K. Runge, “An Experimental 50 Mb/s Fiber Optic PCM Repeater,” IEEE Trans.
Commun., COM-24 (April 1976}, pp. 413-418. .

4. H. Melchior, Laser Handbook, Arecchi and Schulz-DuBois, eds., Amsterdam: North
Holland, 1972, pp. 727-835.

5. J. E. Goell, “Input Amplifiers for Optical PCM Receivers,” B.8.T.J., 53, No. 9 (No-
vember 1974), pp. 1771-1793.

6. Y. Ueno, Y. Ohgushi, and A. Abe, ““A 40 Mb/s and a 400 Mb/s Repeater for Fiber Optic
Communication,” Proceedings of the First European Conference on Optical Fiber
Communication, 16-18 September 1975, IEEE Conference Publication, No. 132,
pp. 147-149. .

. H. Melchior, A. R. Hartman, D. P. Schinke, and T- E. Seidel “Planar Epitaxial Silicon
Avalanche Photodiode,”” B.S.T.J., this issue, pp. 1791-1807.

. T. L. Maione and D. D. Sell, “Experimental Fiber-Optic Transmission System for
Interoffice Trunks,” IEEE Trans. Commun., COM-25 (May 1977), pp. 517-522.

. R.J. MclIntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans.
Electron Dev., ED-13 (January 1966), pp. 164-168.

10. H. Melchior and A. R. Hartman, “Epitaxial Silicon nt-p-x-p* Avalanche Photodiodes

for Optical Fiber Communications at 800 to 900 Nanometers,” Technical Digest
IEDM Meeting, Washington, D.C., 1976, pp. 412-415,

11. R. J. McIntyre, “The Distribution of Gains in Uniformly Multiplying Avalanche
Photodiodes: Theory,” IEEE Trans. Electron Dev., ED-19 (June 1972}, pp. 703
713.

12. J. Conradi, " The Distributicn of Gains in Uniformly Multiplying Avalanche Photo-
diodes: Experimental,” IEEE Trans. Electron Dev., ED-19 (June 1972), pp. 713
718.

13. 8. D. Personick, P. Balaban, J. H. Bobsin, and P. Kumer, “A Detailed Comparison
of Four Approaches to the Calculation of the Sensitivity of Optical Fiber System
Receivers,” IEEE Trans. Commun., COM-25 (May 1977), pp. h41-548.

14. P. Balaban, “Statistical Evaluation of the Error Rate of the Fiberguide Repeater using
Importance Sampling,” B.8.T.J., 55, No. 6 (July-August 1971), pp. 745-766.

15. P. W. Shumate, Jr., F. g Chen, and P. W. Dorman, “GaAlAs Laser Transmitter for
Lightwave Transmission Systems,” B.S.T.J., this issue, pp. 1823-1836.

w oo =

1822 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U.S.A.

Atlanta Fiber System Experiment:

GaAlAs Laser Transmitter for Lightwave
Transmission Systems

By P. W. SHUMATE, JR., F. S. CHEN, and P. W. DORMAN
(Manuscript received February 16, 1977)

A feedback-stabilized GaAlAs injection laser optical-communication
source for transmission of NRZ data at 44.736 Mb/s has been built and
tested. The emitter-coupled driver circuit and the feedback scheme
utilizing an operational amplifier are described. Two special hybrid
packages contain the circuit components on thick-film substrates, and
the package holding the laser provides laser heat-sinking as well as the
interface between the laser and optical fiber. The laser source packages
that were fabricated were capable of launching an average power of
>0.5 mW into the 55-um diameter core of a graded-index fiber (N.A.
= (0.23). The sources draw a total of 0.9 W from the +5.0 Vand —5.2V
(15 percent) supplies and operate properly over a temperature range
of 5° to 55°C.

I. INTRODUCTION

An experimental lightwave communication system has been designed
and set up in an environment approaching field conditions at the Bell
Laboratories facility in Noreross, Georgia to study the feasibility of
optical fiber transmission systems in interoffice digital trunking.! The
experimental system operates at the DS-3 signal rate {(44.736 Mb/s, the
third level of the Bell System digital hierarchy) using a binary (on-off)
nonreturn-to-zero {NRZ) signal format. Terminal transmitters and line
regenerators require an optical source to convert the ECL-level logic
signals to optical signals of 0.5 mW average power into a transmission
fiber. GaAlAs injection lasers are sources well suited for this application,
as they can be on-off modulated at high speeds (with rise times of less
than 1 ns) with low drive power. In addition, the laser light can be effi-

1823

ciently coupled into low N.A. fibers, and the laser wavelength and line-
width are nearly optimum for digital transmission in low-loss glass fibers.
However, some inherent disadvantages must be circumvented before
(GaAlAs lasers can be used in practical optical fiber systems, the most
important of which is the temperature sensitivity of the laser.

A two-package GGaAlAs laser source subsystem was designed and built
to operate at 44.7 Mb/s over the temperature range 5% to 55°C. One
package contains the GaAlAs double-heterostructure injection laser
operating at 825 nm and the driver modulation circuitry. This package
also interfaces the laser to the fiber. The second package contains cir-
cuitry to provide closed-loop feedback control of the laser output power,
rendering this insensitive to changes in ambient temperature or changes
in laser parameters due to aging. Sixty-two functioning subsystems were
fabricated. This paper describes the circuits and packages and gives data
on the overall source subsystem performance as a function of tempera-
ture including output power, power stability, pulse response, extinction
ratio, and amplitude ripple.

I. DRIVER CIRCUIT

For the 44.736-Mb/s trunking application, the following requirements
-were specified. First, the peak light-pulse output must remain constant,
regardless of changes in temperature or changes due to laser aging.
Second, the extinction ratio (on-off ratio of the light pulses) should be
210 to avoid an excessive sensitivity penalty at the receiver.2 Third, the
delay time between the application of a current pulse and the onset of
laser emission must be much shorter than the bit interval so that the light
pulses accurately reproduce the digital input signal. Fourth, the relax-
ation oscillation of the light-output pulses excited by the application of
fast current pulses should be damped. Depending on the design of the
system, this oscillation may degrade the system’s performance. The
driver ¢ircuit described in this section, used with the laser bias circuit
described in the next section, meets these four requirements for a
44.7-Mb/s source subsystem.

Figure 1 shows the response of a semiconductor laser diodeto current
through the device. A typical diode exhibits spontaneous or LED light
for currentis below about 100 mA, the lasing threshold. Above this
threshold, the output is predominantly coherent laser light. The ratio
between these two levels determines the on and off states in the digital
signal. To operate at >10:1 on-to-off ratio in the laser transmitter, the
diode is biased slightly below threshold at Iz (~%0 mA) in the off or zero
state. A high-speed driver then adds an additional current Ip (~20 mA)
for a one state to bring the light level up to the on level. This scheme
results in efficient, high-speed operation because the diode capacitance
need not be charged repeatedly and the turn-on delay time of the laser

1824 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

3
[!
- !
3 I
@« ON"
@z2r — — p— = — e
«
g |
5 LED + LASER LIGHT __
o "~ |
[
oo
e i
s
o I
.
LED LIGHT |
\
\ | “OFF"
i _ o] —
0 L | - TIME
]T
D 50 100 150
DIODE CURRENT {ma)
bt == - -~ lg==~— —=f
- b — 1
|
| INPUT

= TIME

Fig. 1—Transfer characteristic of a semiconductor laser, shown with input (current)
waveform and resulting light cutput.

emission is minimized. The demands placed on the high-speed switch
are reduced since Ip << (Ig + Ip). Undesirable effects due to pattern-
dependent junction heating are minimized since the on and off power
dissipations are nearly equal. Finally, the principal benefit of this biasing
scheme is that the dc bias can be varied easily in a low-frequency,
closed-loop manner to stabilize the light output of the laser. This can
correct for slow changes in ambient temperature or gradual aging of the
laser itself.

The drive current Ip is provided by an emitter-coupled current switch
which supplies constant-amplitude pulses directly to the laser terminal.
During assembly, these pulses, with switching speeds of approximately
2 ns, are adjusted in amplitude to match the particular laser being used
and left unchanged as the laser ages. This driver circuit is shown in
Fig. 2. Transistors @ and @2, forming the current switch, are a con-
ventional emitter-coupled pair. When the base of § is more positive
than the base of @5, all the current (= /p) from the current source is
steered through the collector of §; and no drive current passes through
the laser. When the base of @, is more negative than the base of Q, all

GaAlAs LASER TRANSMITTER 1825

LASER B!AS

ECL INPUT Vg

[REFERENCE)

CURRENT
SOURCE

Fig. 2—Emitter-coupled driver circuit.

the drive current is steered through the laser. The selection of one of
these conditions is made by an ECL input signal (one = —1.8 V, zero =
—0.8 V) applied to the base of & after level shifting through @3 and diode
D. The base of g is fixed at —2.6 V, a voltage midway between the
shifted zero and one levels, by a temperature-compensated reference,
VBB.

With an emitter-coupled circuit and with proper choice of input
voltage levels, none of the transistors can-ever be driven into saturation.
This results in fast switching since no stored charge need be removed
from a saturated transistor. Another advantage of this driver configu-
ration is its constant-current nature; minimum noise in the form of
switching transients is placed on the power bus.

I, LASER BIAS CIRCUIT

Since the laser is a threshold device and the threshold changes with
temperature and aging, the optical power level must be stabilized. This
is accomplished using a feedback circuit (Fig. 3) to supply the dc bias
Ip which is adjusted to maintain the peak light output constant relative
to a reference. For these transmitters, light from the “back” mirror of
the laser crystal is monitored using a p-i-n photodiode while light from
the “front” mirror is coupled to the fiber. It was assumed for this de-
velopment effort that the front and back intensities track each other as
a funetion of temperature and aging, although they need not be equal
in magnitude.

In a systems application, it is possible that the input signal may be
removed from a channel for an extended period. A simple intensity
regulator would tend to raise the bias during such an interval to maintain
the average light level expected for ordinary random-data operation.
This is not acceptable, since an idle channel would be transmitting
half-intensity ones. With a reasonably fast bias circuit, this would occur
even during long sequences of zeros in random data, thus generating
errors.

1826 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

BIAS
QUTPUT
+ 5V :
REGENERATED SIGNAL 500 02 8
0TO -1v)
a
Ay 1
- Ry T 52V < 78
EFERENCE . _n 3 | <
(FROM + 5, -5.2V) i fa
PHOTODIODE
5.2v °—N——J;—_l_ o1 Ry
LT < 300 uf 10
Y <
il < :[
BACK MIRROR L
LIGHT FROM LASER =

-5.2V
Fig. 3—Bias circuit that provides feedback stabilization of laser output.

To prevent this situation, the input signal pattern is fed to the feed-
back circuit so that the on, or ldsing-light, level is compared with a one
and the off, or LED-light, level is compared with a zero. In effect, the dc
reference, through resistor R, in Fig. 3, sets the bias current at the proper
operating point during long sequences of zeros. This bias current, when
added to the drive current supplied by the circuit of Fig. 2, results in the
desired peak output power. Resistor R¢ then balances the signal reference
current against the p-i-n photocurrent for 50 percent duty ratio at 25°C.
As the threshold of the laser changes, due either to aging or to changes
in ambient temperature, the circuit automatically adjusts Ig so that the
balance between the data reference and the p-i-n photocurrent is re-
stored. The circuit will maintain the LED-light level during long se-
quences of zeros.

Since the input pattern serves as a precise reference, and also since
ECL levels are temperature-dependent, the input signal is thus regen-
erated to temperature-independent 0-V and —1-V levels before reaching
the feedback circuit. This regeneration uses an emitter-coupled driver
very similar to Fig. 2 except the collector load resistances of @, and Q,
are large (500 Q).

The operational amplifier of Fig. 3 sums the three inputs—p-i-n
photocurrent, dc reference, and signal pattern reference—and provides
an output voltage which results in the proper value of /g through the
action of transistor ;. This amplifier has unity gain at 800 kHz, per-
mitting small bias corrections to be made in ~1 us. This correction speed
is desirable to prevent amplitude ripple effects resulting from pattern-
dependent junction heating, but the circuit is slow enough to ensure
stability with a loop gain of approximately 200.

Another function of the feedback circuit is to prevent a transient
overshoot of light output from the laser when the power supplies com-
mon to both feedback and driver circuits are switched on and off, The
scheme adopted here for the turn-on is to let the driver circuit and the

GaAlAs LASER TRANSMITTER 1827

operational amplifier in the feedback circuit reach a steady-state oper-
ating condition first while the bias current is slowly increasing. The
negative supply voltage to @, in the feedback circuit (Fig. 3} is filtered
by R3 and C,, providing an adequately long time constant of ~1 ms. Thus
by the time the sum of the bias and the drive current reaches threshold,
the feedback circuit is ready to limit the laser output to a predetermined
magnitude with a minimum overshoot.

IV. OPTICAL INTERFACE

The transmission fibers used in the Bell Laboratories lightwave
communications experiment had a 55-um-diameter, GeQs-doped,
graded-index silica core and were clad with silica bringing the glass-fiber
outside diameter to 110 um. The fiber numerical aperture was ap-
proximately 0.23. Nylon jacketing was placed around the fiber for me-
chanical protection, bringing the diameter up to about 200 um. The
jacket has no optical function. Typical fibers with these parameters,
when coated with DuPont ethylene-vinyl acetate (EVA) and assembled
into transmission cables, display an average loss of 6 dB/km at 825
nm.?

A practical scheme for permanently affixing such a fiber near the stripe
geometry laser is to use a single fiber optical jumper cable. This permits
initial adjustment of the fiber for maximum coupling, yet still allows the
package to be removed from system equipment along with the jumper
and its optical connector without disturbing the laser-to-fiber interface.
For this purpose a 40-cm jumper, or “pigtail,” is assembled. The fiber,
which is nylon-jacketed instead of EVA-coated for this application, is
placed inside a 2.8-mm Q.D. Teflon* sleeve, which provides additional
mechanical protection. A special molded connector? is attached at one
end, and several millimeters of fiber are left protruding from the Teflon
at the other end. A spherical lens is melted on this end of the fiber, the
lens raising the coupling from =35 percent without the lens to =55 per-
cent, a gain of 2 dB.*7

During packaging, the Teflon sleeve is attached to the package with
a strain-relief bushing, and the free end of the fiber is positioned about
50 um in front of the laser (see Fig. 4). A micropositioner is used to po-
sition the fiber for maximum coupling (the laser is operated as the light
source), and the fiber is then cemented in place. This is a critical step.
Coupling efficiencies of 50 to 55 percent are normally attained, but the
sensitivity to transverse misalignment (i.e., parallel to plane of laser
mirror) is high (see Fig. 5). For example, £5 um in either the x or the y
direction results in 0.4-dB loss relative to maximum coupling As shown
in Fig. 5, the longitudinal (z) direction is much less critical—the —1-dB
point occurs after 40 um of motion away from the laser mirror. Once

* Registered trademark of E. I. DuPont de Nemours and Company.
1828 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

FIBER LENS

LASER CHIP i 0.002"" Au WIRE

Fig. 4—Photomicrograph (40X) showing wire-bonded laser chip and lensed optical fiber
cemented in position (cement is white material over fiber) after alignment.

cemented in place, however, the fibers in these packages have remained
stably pesitioned.

V. PACKAGING

The two packages forming a complete transmitter subsystem are
shown in Fig. 6. The laser and the driver circuit of Fig. 2 are placed in
the larger of the two packages (5.1 X 7.0 cm) along with the fiber pigtail.
The second emitter-coupled pair used to regenerate the signal for the
feedback circuit is also placed in this package. The feedback circuit,
including the series pass transistor for the bias current (@, in Fig. 3), is
in the smaller package (4.1 X 6.3 cm). This separation is done so that the
power dissipated by the pass transistor will not interact thermally with
the laser. The reasons for packaging the feedback components at all are
s0 that high-reliability beam-lead silicon components can be used and
g0 that all adjustments made during assembly will be sealed off from
accidental changes, thus protecting the laser from damaging over-
drives.

Components in both packages are bonded to thick-film, hybrid, in-
tegrated circuits. The metallization is Pd-Ag and the resistors are made
using DuPont 1400 Birox-series paste. It was found that these resistors
were stable in the presence of the amine potting epoxy (see the discussion
below). Other materials used for resistors might be expected to show
severe instability in the presence of amines.?

GaAlAs LASER TRANSMITTER 1829

50 -

40
LONGITUDINAL

2 g
= 7
2 g
> -5

(U]

g 30 =
= z
2 3
5 e °
2 TRANSVERSE
O 20+ (X or Y} 7
5
3 Ja

0 I 1 1 I I]]
25 50 75 100 125 150 176 200

DISPLACEMENT {um}

Fig. 5—Sensitivity of power coupled into a 55 pm-core fiber as functions of displacement
perpendicular (longitudinal) and parallel (transverse) to plane of laser mirror,

The thick-film circuits, earrying pins for electrical connections, are
attached to black-anodized, finned, aluminum heat sinks using silver-
filled conductive epoxy. For the laser/driver package (Fig. 7 shows the
internal details), a 2.5-em dia. gold-plated copper header is placed under
the thick-film circuit. This header was designed to facilitate heat flow
between the laser and the aluminum heat sink. (The laser crystal is in-
dium soldered to a gold-plated, rectangular copper pedestal. The ped-
estal, in turn, is indium soldered into a slot on the round head.)

As described above, the pigtail sleeve is secured to the driver heat sink.
The fiber is positioned using the laser light as a monitor for maximizing
the coupling, and the fiber end is cemented near the laser.

For both packages, the circuit is covered with an electromagnetic in-
terference shield. Hysol 4179 potting epoxy is then added, filling out the
package (the cavity in Fig. 7) to the outer dimensions of the aluminum
heat sink. The p-i-n photodiode used to moniter the back laser mirror
for feedback is mounted on a special standoff on the driver circuit (see
Fig. 7). Potting materials are kept from obstructing the laser-photodiode
optical path by using a plastic shield to create an internal cavity before
potting.

One hundred package starts were attempted, resulting in 62 successful
completions. Section VI summarizes the measurements made on these
subsystems.

1830 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

LASER SOURCE
PACKAGE

FEEDBACK
PACKAGE
Ay

R

£y

\
CONNECTOR I

FIBER “PIGTAIL"

Fig. 6—T'ransmitter subsystem packages. The laser/driver package is shown on the right
and the bias/feedback package on the left.

PHOTODIODE

HEADER

Fig. 7—Laser/driver package shown prior to final potting,

V. PERFORMANCE CHARACTERISTICS

Table I lists the design goals for several parameters important to the
systems application. These goals were selected for optimum performance
of the experimental 44.736-Mb/s link. All goals were met for the com-
pleted units.

GaAlAs LASER TRANSMITTER 1831

Table | —— Summary of parameter design goals and measured
values for 62 packages. Measurements were made at 25°C using
a 1023-bit pseudo-random input word

Parameter Goal Measured
Average power output @ 25°C =05 mW 0.63 mW
Average power output @ 50°C =05 mW 0.63 mW
Amplitude variation (p-p) <10% T9%
Propagation delay* <20 ns 5 ns
Extinction ratio =10:1 18:1
QOperational temperature range 5-56°C 5-55°C
Power requirement 1L.5W 09 W

* Midpoint of ECL logic transition to midpoint of optical cutput.

6.1 Signal-pattern effects

Figures 8 and 9 show optical-output pulses under various conditions,
In Fig. 8, a 500-MHz real-time oscilloscope was used in conjunction with
an avalanche photodetector for a resultant rise-time of ~1.5 ns. The
output was measured at the connector end of the fiber pigtail. Figure
8a shows the optical output for a 0100110100 bit sequence (NRZ at 50
Mb/s). The spiking and relaxation oscillation of light-output pulses were
reduced by choosing transistors and components to give a rise-time of
~2 ns. (The spiking and oscillations disappear from Fig. 8a because of
the slow response of the photodetector used.) Figure 8b shows an “eye”
diagram—a superposition of pseudorandom zeros and ones. Such a trace
includes the worst and best outputs and, since the pseudorandom se-
quence is relatively short (1023 bits), the worst-case bits are easily visible
(from a duty-cycle point of view). Note that the eye is extremely clean
with regard to amplitude ripple. Figure 8¢ shows the complete 1023-bit
word twice using a slow sweep in the upper trace, while the lower trace
shows that part of the sequence containing the worst-case pattern—39
zeros followed by 10 ones, at the 6.2-cm mark in the sweep. Notice that
the pattern-dependent amplitude tipple is clearly less than 10 per-
cent.

6.2 Temperature effects

Figure 9 shows the pulse-shape control supplied by the bias circuit
as a function of temperature. For these data, a faster avalanche photo-
detector was used with a sampling oscilloscope for a resultant rise-time
of ~0.15 ns. Shorter data pulses lasting 10 ns were also used. The output
was measured at the front mirror of the laser. No fiber was in the optical
path. Figure 9a shows reasonably clean, constant-width pulses at 0°, 25°,
and 45°C. Observe that the relaxation oscillation associated with the
leading edge of each pulse is uniformly damped at each temperature.
Figure 9b, however, shows the output degradation observed when the
feedback loop, adjusted at 25°C, is opened and the temperature changed.

1832 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

* 10mv

(b)

$10mv $10my

(c)

Fig. 8—Oscillographs of optical output as detected using an ApD. Horizontal scales
(t/div) are shown on each figure. (a) Individual NRZ bits. (b) Eye diagram using a 1023-bit
pseudorandom sequence. (c} 1023-bit pséudorandom sequence showing the entire word
{upper) and the worst-case sequence (lower), namely, ones after many sequential zeros
near the 3, 6, and 9 cm ordinates.

At 35°C, the threshold rises. With the bias still at its 25°C value, the laser
is biased too far below threshold, resulting in large relaxation oscillations
and increased delay. In addition, the light output is down about 2 dB
from its 25°C value. At 45°C, not shown in the figure, no lasing takes
place because the sum of bias plus drive is now below threshold. Upon
cooling to 0°C, which decreases the threshold, the pulses are excessively
wide: biased very near threshold, the delay associated with reaching
threshold is absent. The amplitude of the relaxation oscillations is de-
creased; this would be an advantage if it were not that this occurs only
at a particular temperature. Finally, one notices that the light output
increases although not as much as expected. This is because the partic-

GaAlAs LASER TRANSMITTER 1833

OFF

T=0C T=25C T=a5°C

LIGHT

T=0C T=25C T=35°C

(b)
Fig, 9—Light-pulse patterns at various ambient temperatures detected using an APD.

I-{ﬂri(izontal scales are 10 ns/div. (a) With feedback circuit. (b) With feedback circuit dis-
abled.

ular laser used for these photographs developed a nonlinearity in the
operating region of its L-I characteristic at 0°C. Figure 2 clearly shows
the stabilization provided by feedback control of the laser bias.

It is instructive to calculate the output-power regulation expected to
be provided by the feedback circuit during changes in temperature. From
an elementary closed-loop calculation, the light level subject to regulation
can be related to temperature-induced threshold shifts as:

dP _dP dIp _ _ (L/4)y dIr

= = 1
dT alrdT 1+ ABdT’ ()

where

P = average light power launched into fiber (mW)
T = temperature {°C)
It = laser threshold current {mA)

n = laser slope efficiency (mW/mA)

A = transfer gain of amplifier without feedback

B8 = reverse transmission factor.

The last factor 8 is a function of the p-i-n diode’s quantum efficiency,
the slope efficiency of the laser dicde, and the coupling between the laser
and the p-i-n diode. Typical values are:

P =0.63 mW
Ir =100 mA (T = 25°C)
7 = 0.2 mW/mA (for each mirror)

1834 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

A = 23000

8=0.01
The factor of 1/4 in the numerator of (1) adjusts laser peak power for a
50-percent duty cycle {for random signrals) and for the 50-percent cou-
pling efficiency to the fiber. Since the threshold of these lasers shifts
approximately +1 mA/°C, which is dI+/dT, (1) gives

dP
— =—0.2uW/°C. 2
T uW/ (2

Experimentally, a typical package showed a =1 percent power decrease
as the package temperature was raised from 25°C to 50°C. For the data
used above, this gives dP/dT ~ —0.25 uW/°C, in very good agreement
with the prediction in (2).

6.3 Aging effects

Approximately half the 62 completed units were used in the Bell
Laboratories experiment, while the others were aged under normal op-
erating conditions at 25° or 50°C. The principal aging characteristic of
these lasers is a gradual increase of threshold current with time. Thus
at either temperature, the closed-loop bias circuit should hold the cutput
power quite constant with time until the circuit can no longer supply
adequate current for a greatly shifted threshold. The circuit described
here limits at about 225 mA. When the threshold, initially ~100 mA,
reaches this value, the output power will begin to decrease as the laser
continues to age. For both the 25° and H0°C packages, however, while
some package outputs did remain constant with time, others showed
increasing or decreasing power trends. Approximately as many packages
showed increasing power as showed decreasing power.

A careful analysis of these packages showed that the feedback control
circuitry was performing properly but that the front and back laser
mirrors mistracked slightly.’® Therefore, while the feedback circuit was
maintaining constant power at the back mirror, the power launched into
the fiber from the front mirror was not precisely regulated.

For power stability with aging, (1) can again be used if dI+/dT is re-
placed by dIr/dt, the value of, at most, +1 mA/1000 h.1! Thus

dP
—_— -
o s 0.2 uW/kh.

Due to the front-to-back mistracking, however, the output of our units
varied from less than 10 to as much as 100 times more than this predic-
tion, as well as changing in either direction, although the back-mirror
power was maintained constant to within the resolution of our apparatus
{+3 uW). For future transmitter designs, the power actually launched
into the fiber should be monitored for feedback-control purposes unless
lasers, at that time, demonstrate better front-to-back tracing.

GaAlAs LASER TRANSMITTER 1835

Vil. SUMMARY AND CONCLUSIONS

An optical communications source has been designed for use at 44.736
Mb/s. Sixty-two such transmitters were completed, meeting the design
goals and clearly demonstrating the viability of using GaAlAs injection
lasers for stable optical sources in lightwave communications. It is con-
cluded that feedback control of laser bias is a practical solution for reg-
ulating output power. It was found, however, that unless the front and
back mirrors of GaAlAs lasers can be made to track each other linearly,
the light power actually launched into the transmission fiber should be
monitored to assure maximum power stability.

Vill. ACKNOWLEDGMENTS

We thank B. C. DeLoach, R. W. Dixon, R. L. Hartman, and B.
Schwartz for supplying the GaAlAs lasers used for this work, G. Moy for
his careful measurements on all these devices, and D. R. Mackenzie for
developing the soldering technique for mounting the laser pedestals.
Thanks also gote D. D. Sell for his comments and suggestions concerning
the feedback scheme, to P. K. Runge for supplying connectors for the
pigtails, to the Thick-Film Technology Group at the Allentown labo-
ratory of Bell Laboratories for supplying the thick-film circuits, and to
W. W. Benson for the data used in Fig. 5. We thank M. DiDomenico for
his guidance and technical suggestions that contributed substantially
to the project. Finally, we especially thank E. E. Becker, D. P. Hansen,
R. Pawelek and J. R. Potopowicz for their expert assistance in package
assembly, and M. A. Karr for the package design and assistance with
assembly.

REFERENCES

1. T. L. Maione and D. D. Sell, “Experimental Fiber-Optic Transmission System for
Interoffice Trunks,” IEEE Trans. Commun., to be published.

2. S.D. Personick, “Receiver Design for Digital Fiber Optic Communications Systems,
II," B.S.T.J., 52, No. 6 (July—August 1973}, pp. 875-86.

3. M. 1. Schwartz, R. A. Kempf, and W. B. Gardner, “Design and Characterization of
an Exploratory Fiber-Optic Cable,” Second European Conf. on Optical Fiber
Communication, Paris 1976, paper X.2.

. J. 8. Cook and P. X. Runge, “An Exploratory Fiberguide Interconnection System,”
%cﬁimd European Conf. on Optical Fiber Communication, Paris 1976, paper

3.

. D. Kato, “Light Coupling from a Stripe-Geometry GaAs Diode Laser into an Optical
Fiber with Spherical End,” J. Appl. Phys., 44 (1973), pp. 2756-2758.

. L. G. Cohen and M. V. Schneider, “Microlenses for Coupling Junction Lasers to Optical
Fibers,” Appl. Opt., 13 (1974}, pp. 83-94.

. C. A. Brackett, “On the Efficiency of Coupling Light from Stripe-Geometry GaAs
Lasers into Multimode Optical Fibers,” J. Appl. Phys., 456 (1974), pp. 2636-2637.

. W. W. Benson, private communication.

. K. Asama, Y. Nishimura, and H. Sasaki, “Study on the Thick-Film Resistance Abrupt
Change by Resin Packaging,” Proc. 1969 Hybrid Microelectronics Symposium, pp.
51-62.

10. T. L. Paoli, “Nonlinearities in the Emission Characteristics of Stripe-Geometry (Al-
Ga)As Double-Heterostructure Junction Lasers,” IEEE J. Quantumn Electron.,
QE-12, No. 12 (Dec. 1976), pp. T70-776.

11. R. L. Hartman, private communication.

-

wen =3 ;o

1836 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U.8.A.

Atlanta Fiber System Experiment:

Practical 45-Mb/s Regenerator for
Lightwave Transmission

By T. L. MAIONE, D. D. SELL and D. H. WOLAVER
(Manuscript received June 15, 1977)

A 45-Mb/s optical regenerator using an avalanche photodiode and
a GaAlAs injection luser has been designed for a field environment. Its
design and performance are described here. Feedback control of the
optical transducers permits operation over a temperature range of 0
to 60°C. The regenerator has simple power requirements, and optical
connectors permit easy installation. Its input sensitivity and output
power makes useful regenerator spacings possible with currently
available optical fiber. The large AGC range permits a wide range of
regenerator spacings. A novel phase-locked loop design achieves a wide
pull-in range for the timing recovery circuitry.

I. INTRODUCTION

An optical regenerator* iz essentially a digital regenerator with
optoelectronic transducers at the input and cutput. The transducers used
here are an avalanche photodiode and a GaAlAs injection laser. The
regenerator includes the usual features of amplification, filtering, au-
tomatic gain control, retiming, and regeneration. Some features peculiar
to a design for a lightwave transmission system are very high gain and
wide dynamic range. Also, the characteristics of the transducers must
be stabilized with feedback.

The optical regenerator described here is the prototype of a design
for a field environment. The intended transmission medium is low-loss
graded-index fiber.!'® The regenerator was initially used in the Atlanta
Experiment, a study of a lightwave transmission system in an environ-
ment simulating field conditions.?

* A regenerator is 8 one-way repeater.

1837

The feasibility of an optical regenerator operating at a data rate of
45 Mb/s has already been shown.? The objective here is a practical re-
generator with simple power requirements, operation over a temperature
range from 0° to 60°C, wide dynamic range, practical optical connectors,
and a design that could be manufactured by present methods.

The selected data rate was 44.736 Mb/s, the DS3 level of the Bell
System digital hierarchy. This rate makes use of the wide bandwidth of
the fiber without incurring significant penalty from fiber dispersion. The
signal format is binary nonreturn-to-zero* with scrambling to insure
adequate balance and timing information.

The optical regenerator was constructed in three separate modules,
as shown in Fig. 1. This design relaxed the requirements on size and
isolation in order to fo¢us effort on the requirements mentioned above.
It also allowed the modules to be used for terminal regenerators. The
functions performed in each module are shown in Fig. 2. The receiver
module accepts an optical signal as low as —55 dBm at its optical con-
nector and produces a 1-V p-p electrical output signal. The decider
module extracts timing and regenerates the signal. The transmitter
module converts the regenerated electrical signal to a regulated optical
signal and couples a minimum of —3 dBm of average power into an op-
tical connector.

Notice that the optical connectors? on the receiver and transmitter
are designed to engage when electrical connection is made to the module.
Electrical test points are brought to the face of each module.

The remainder of the paper describes the operation of the three
modules. The regenerator performance reported is based on the mea-
surement of 15 regenerators.

Il. RECEIVER

The receiver module comprises the linear channel of the regenerator.
It converts the received optical signal to an electrical signal and main-
tains a constant output by automatic gain control (AGC). The dispersion
of the glass fiber medium is small enough that the receiver does not need
to equalize for it. However, filtering is done to limit the noise. The circuit
in Fig. 3 shows the functions performed in the receiver.

Special care was needed in the layout, shielding, and bypassing for this
module. (Most of the bypassing is not shown in Fig. 3 to simplify the
drawing.) Signal currents differing in level by 90 dB are present in the
circuit.

* Light on corresponds to a logical “one”; light nominally off is a logical *“zero.”

1838 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

ITNO0JW U3 LLVWSNYHL

W GT X §F X §°9 81 ahipow yory “Jojereuadan eondg — 1 'Sig

371Nasw 4301034 IINCOW E3A1333H

1839

PRACTICAL 45-Mb/s REGENERATOR

RECEIVER — ——DECIDER—~, ,—— TRANSMITTER——

MAIN
o AMPLIFIER o
)_@_ OETECTOR LPF b—g—gee] DECISION SOURCE @ ?

AND PRE— CIRCUIT
AMPLIFEER

V4
PEAK
HV FREGUENCY
i ELEJEE) %%R RRCYFHESE CSC?I’\LI!TR%L
GEN LOCK LOOPS
AMPLIFIER

Fig. 2 — Optical regenerator.

2.1 Photodetection

The optical signal is detected by an avalanche photodiode (APD} ca-
pable of providing current gain in the range from 6 to 120. The depen-
dence of the gain on the bias voltage is shown in Fig. 4. The bias, supplied
by the dec-to-de converter, can be varied from —150 to —420 volts by the
p-n-p transistor loading down the converter’s output. Zener diodes limit
both the maximum and minimum voltages applied to the APD. The
voltage limitation prevents excessive burst noise or damage that can
occur at high voltages. It also avoids the slow APD response at low volt-
ages.

The small current from the APD is amplified by a transimpedance
preamplifier located in the same shielded package with the APD. The
noise figure is not so low as that of a high-impedance preamplifier,56 but
the sacrifice in sensitivity is only 1 dB. The advantages of a trans-
impedance preamplifier are greater dynamic range and no equalization
required.” Further details of the ADP and preamplifier performance are
given by the designers and builders of the detector package in Ref. 8.

A useful measure of the received optical power level is the detected
power #P. This is the product of the average power F* available at the
optical connector and the combined efficiency n of the connector, pigtail,
and APD.* The detected power nP is conveniently obtained by measuring
the APD current for a known-gain. For light of wavelength 825 nm, the
perfect conversion to primary photocurrent would be 0.67 ampere per
watt of optical power.

For a given error rate, an optimum APD gain will minimize the required
optical power nP. The optimum gain for 10~ error rate was determined
experimentally to be B0, and the receiver is aligned to realize this con-
dition. The required »P is about —55 dBm.

The measured curve of error rate versus 7P for a typical regenerator
is shown in Fig. 5. For this range of low 7P, the APD gain was adjusted

* The efficiency » was measured to be about —1.5 dB.

1840 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

u3toLsas-" N
a

%]@

ol

’

e |
B9 PSP T TV

ino
o8

Al

i

Ll

NI 1341809y — € “Si

f

+

-
130 Av3d

39%L10A DOV 7

—

Jov

|

S N——NIYD Q3% ——

— L

rmumﬁ
I

M————— ¥I1HIANDD 20 AL 20 AH

Ll Sl Y !:

I

T 11 f
H—hphelontonnd

+

' N———dWV-IHd OdY ————

NIYD IT8YIHYA

1H917

1841

PRACTICAL 45-Mb/s REGENERATOR

45

Lol
3

Wy
-
w
@
Q
8 z
=4
E (]
- =
=3 I
w [%)
s —20 =
i >
£ o
3 I
3 3]
U 1wz
=
:1‘) 4 3
Z m L
3 <t
<L — &
=
e ==
—4
_
— 2
L] =
0 i 1 1 I | i 1
50 100 150 200 250 300 350 400

APD REVERSE BIAS VOLTAGE (V)

Fig. 4 — Avalanche photodiode gain characteristic.

by the AGC to maintain a constant output signal level. The performance
of the regenerator is considered to be useful to an error rate of 1078,
corresponding to a detected power nP. of about —57 dBm and an APD gain
of 120. (Burst noise can begin to occur at gains greater than 120.)

2.2 Main amplifier

The main amplifier consists of a variable-gain amplifier, a fixed-gain
power amplifier, and a low-pass filter to limit noise.

The first stage of the variable-gain amplifier is a dual-gate FET. This
device accepts a large signal input without distortion and achieves a gain
variation of 20 dB. Each of the following two stages is an emitter-coupled
pair with a gain variation of 14 dB. The fixed-gain amplifier provides
a 2-V p-p signal to the low-pass filter. The signal at the output of the
filter is maintained at 1-V p-p by the AGC.

1842 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

10
10—5 .
el VRl
<L
[: =
=
o
o
o107
]
1072 1 1 L
-59 58 57 56 55

DETECTED OPTICAL POWER IN dBm
Fig. 5 — Error rate versus detected optical power.

2.3 Automatic gain contro}

The level of the output signal is monitored by a peak detector and
compared against a reference by a comparator with a gain of 125. The
peak detector includes a low-pass filter with a cutoff frequency of
0.12 Hz. The “AGC voltage” at the output of the comparator controls gain
of both the APD (by varying the bias voltage) and the main amplifier.

Table I lists these gains and their ranges; 26 dB range for the APD and
48 dB for the main amplifier. Thus, the total AGC range is 74 dB. Note
this is twice the 37-dB range indicated for the corresponding detected
power P, since the APD is a square-law detector. The ranges indicated
are the maximum for linear operation. nP can be extended 5 dB higher
without incurring significant closing of the “eye.”

If the APD and the main amplifier are in the active parts of their AGC
ranges simultaneously, interaction and oscillation are possible. There-
fore, the AGC is designed so their ranges do not overlap. For low detected
power (7P < —44 dBm) the APD gain is varied, and the main amplifier
gain is at maximum (see Fig. 6). This maximum gain is accurately set,
and the AGC acts to stabilize the APD gain over temperature as well as
to accommodate changes in the detected power.

Table | — Receiver gains and levels

Min, Max. Range
Detected power nP =57 dBm —20 dBm 37dB
APD current gain 6 (15.6 dB) 120 (41.6 dB) 26 dB
APD putput (average) 0.16 uA 40 uA
Preamp transimpedance 14 kQ
Preamp output 4.5 mV p-p 1120 mV p-p
Main amplifier gain -1dB 47 dB 48dB
Receiver gutput 1.0V p-p

PRACTICAL 45-Mb/s REGENERATOR 1843

50

a0}

AMPLIFIER GAIN -1

w - —
z X £
o
b5 -0 g
w <
o 20 [~
e <3
= -1 =
3 B 8
g W g
-
ol AGC VOLTAGE
\\\
S - 3
10 i]]] I] | T ——
-60 55 -50 45 —4D 35 —30 -25 -20 —16

DETECTED POWER BF IN dBm
Fig. 6 — Receiver automatic gain control.

For nP > —44 dBm, the main amplifier gain is varied, and the APD is
at minimum gain. The value of the AGC voltage over the range is also
shown in Fig. 6. The change in gain with AGC voltage is greatest at the
extremes—about 30 dB/V, corresponding to an open-loop gain of 430
and a closed-loop bandwidth of 52 Hz.

2.4 Linear channel response

The low-pass filter at the output of the receiver shapes the frequency
response of the linear channel to limit noise without introducing much
intersymbol interference in the 44.7-Mb/s signal. An optimum design
minimizes the detected power required for a given error rate. The filter
used here introduces a complex pole pair at 24 + j38 MHz and at 76 +
712 MHz, and a real pole at 58 MHz. Roll-off due to parasitics in the
linear channel can be modeled by two additional poles—one at 46 MHz
and one at 54 MHz. This filter gives performance within 1 dB of the
optimum design.?

The measured high-frequency roll-off of the linear channel is shown
in Fig. 7. From this, the effective noise bandwidth is calculated to be
33.7 MHz. The low-frequency roll-off due to coupling capacitors is shown
in Fig. 8. Cutoff is at about 650 Hz.

A single detected light pulse at the input can be modeled by a trape-
zoid with rise and fall times of 3 ns. The time response of the linear
channel to this pulse was calculated by fast Fourier transform from the
measured frequency response (see Fig. 9). Note that the time response
is a litile too narrow, reflecting the fact that the low-pass filter design
is not the optimum. The measured eye pattern is shown in Fig. 10.

1844 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

I
o MAGNITUDE * T~
s . —{ 200
308 DOWN 1
AT 33,
Ty - PHASE 3.5 MHz \ {100
(9]
@
B s 1 -0 @
a &
Z 20 x \ ——100 ©
z a
< z
<9 -25 L, — —200 o
S 2
< 30 [Jao0
o
a MIDBAND GAIN = 47 dB Y \
2 3|~ APDNOTINCLUDED . 400
<
< a0} t\— —500
45 [E | L1l
1 10 100

FREQUENCY IN MHz

Fig. 7 — Receiver high-frequency electrical gain characteristic.

3dB DDWN
AT 650 Hz

=35k

GAIN/MIDBAND GAIN IN DECIBELS

-40 p—l

—asliul Lol Lottt

10? 107 10*
FREQUENCY IN Hz

Fig. 8 — Receiver low-frequency electrical gain characteristic.

1. DECIDER

The decider module includes a decision circuit that samples the signal
from the receiver and generates a logic-level output signal. The timing
of sampling and of logic transitions is controlled by a clock recovered
from the receiver output. A narrowband phase-locked loop is used to
recover the timing. A circuit diagram of the decider is shown in
Fig. 11.

PRACTICAL 45-Mh/s REGENERATOR 1845

NORMALIZED AMFLITUDE

1
0 /\
= [+]

£ S —— e
v 7
TIME IN TIME-SLOTS (TIME-5LOT = 22.4 ns)

Fig. 9 — Nominal linear channel pulse response.

___ Eame— N

X
N

! 224 ns
Fig. 10 — Typical eye pattern (receiver output).

3.1 Declision circuit

The decision circuit compares the SIGNAL IN with a threshold and
decides, at sampling times determined by the recovered clock, whether
the signal is “high” or “low.” In a lightwave system, the signal is not
symmetric; the high (light on) state has more noise associated with it
than the low (light off) state.® For this reason, the optimum threshold
is not at the center of the “‘eye” (0 V with ac coupling), but closer to the
low state. A typical plot of error rate versus threshold is shown in Fig.
12. For the 1-V p-p eye, the optimum threshold averages about
—70mV.

Error rate is plotted as a function of the sampling time in Fig. 13. For
timing within +1.3 ns (+20.5 degrees), about the optimum, the error rate
is not even doubled. The measured timing variation from circuit to circuit
at room temperature is +18 degrees. The stability of a timing recovery
circuit over a range of 65°C is +2.5 degrees with temperature compen-
sation. This compensation (not shown in Fig. 10) consists of a thermistor
in the load of the PLL phase comparator. (Without compensation, the
variation would be £10 degrees over a temperature range of 65°C.)

1846 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

6

[
: W
<

Moo Jeprag — 11 81y

:

1

3

5

:

g+
v

7

TItL
P odd il §i

A

1d4IHS 357Hd 06

HOLINOW

4317diLnw

5432178

H3IL447 HOLYEY4NDD 38YHL

z5-
13
-)
z5 - oo 25§ z5- - 26—
¥IL112 T W W T
%
o "
[71
4
= = |= |= ot |
= HM !
!
h {5+
ze- /
= = = = /
/
HOLYIINIEII407
- FRE]
= b T 26"
VY HOHY3 35VHd- 25~ L1
75 z- R
wouu3 St
- AIN3NDI LS %, Ge G |
WAL 47 HOLYHYAWOD 35VHd ﬁLﬁ
Hmd
Z2- 5+ g+
4410

LINJHI1J NCISID30

1N0 ¥.iva

NI 28

1847

PRACTICAL 45-Mb/s REGENERATOR

103

DETECTED OPTICAL
POWER IN dBm

1
T

TTIT 1

T

ERROR RATE

1078

TTT]

1

107

TTTT

1 | 1 1 1
—260 —200 —150 —T00 —50O u] 50 100

DEC!SION THRESHOLD IN mV

Fig. 12—Error rate vérsus decision threshold. Logic “1” = +5800 mV; logic “0” =
=500 mV.

DETECTED POWER =—57 dBm

3
©
2 4
w
[=
<
o
o 3
=]
«©
o«
w

2l

360° = 224 ns
EARLY LATE
-— —
1 1 i 1 1 1 1 1L 1 1
-60 -50 —40 -30 -20 -10 0 19 20 30 40 50

STATIC SAMPLING OFFSET IN DEGREES
Fig. 13 — Error rate dependence on sampling time.

The decision circuit is a commercial integrated circuit MC1650 con-
nected as a master-slave D-type flip-flop. As shown in Fig. 14, the first
stage samples the SIGNAL IN when C goes low, timed to be at the center
of the eye. The second stage resamples to prevent feedthrough while €y
is high. If the eye is sufficiently open to eliminate decision errors, the

1848 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

SIGNAL IN
IEYE) e
ra

-’
,

THRESHOLD

T [
' |

|
€
{SAMPLE)
o]
{RESAMPLE}
DATA OUT X X

NOTE: PROPAGATION DELAYS OMITTED

Fig. 14 — Decision circuit waveforms.

DATA OUT will be a logic-level version of the lightwave signal originally
transmitted.

3.2 Timing recovery

The information for timing recovery is in the transitions of the SIGNAL
IN (see Fig. 15). After some preprocessing of the signal, a local oscillator
is locked to the transitions by a second-order phase-locked loop (PLL}).
The PLL, with a 3-dB bandwidth 1/1200 of the baud, limits the amount
of timing jitter in the recovered clock. The pull-in range of the PLL is
extended by a frequency comparator, permitting use of a low-tolerance
{and inexpensive) oscillator.

3.2.1 Signal preprocessing

It is possible for low-frequency components of SIGNAL IN to cause
timing jitter. Therefore the signal is high-pass filtered by a 60-MHz pole
{approximating a differentiator); the information of the high-speed
transitions is retained. See Fig. 15 for waveforms.

The signal is then processed by a full-wave rectifier {with dead zone)
to produce a line in the frequency spectrum at the baud. The output of
the full-wave rectifier is a series of current pulses corresponding to the
transitions of SIGNAL IN.

PRACTICAL 45-Mb/s REGENERATOR 1849

SIGNAL IN 1

-

[+ ?V

DIFFERENTIATOR B N CThany e
ouUTPUT
i \/
FULLWAVE
RECTIFIER OUTPUT i
{CURRENT) 0 I
|
VCO OUTPUT g
{CLOCK)
|
PHASE
COMPARATOR OUTPUT
{CURRENT)

Fig. 15 — Timing recovery waveforms.

3.2.2 Phase-locked loop

The PLL comprises a phase comparator, a low-pass filter, and a volt-
age-controlled oscillator (vCO). Its input is the series of current pulses
from the full-wave rectifier, and its output is the clock used by the de-
cision circuit for sampling.

The phase comparator multiplies the clock by the PLL input, devel-
oping an average current proportional to their phase difference (for
differences less than about 60 degrees}). When the relative phase is zero,
as shown in Fig. 15, the average output current is zero. The maximum
average differential output of about 35 4 A corresponds to a relative phase
of 90 degrees.

The transfer function of the filter is (1 + sCofg)/sCq, where CoRg =
1 ms. Since the gain of the filter at dc is very great, offset of the center
frequency of the VCO has a negligible contribution to the static phase
offset of the clock.

An undesired differential offset current as large as 7 uA can appear
at the input to the filter, causing up to 12 degrees static offset. It also
causes the VCO frequency to drift when the PLL input signal is removed.
If the input signal is interrupted for too long, the frequency drifts beyond
the seize range of the PLL, and recovery time will be long. T'o assure
seizure, the interrupt time must satisfy

TP =< RQCO Ip,_-/IO =5 ms,
where [, is the current corresponding to a phase difference of 90 degrees,

1850 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

and I 13 the maximum offset current. When this is satisfied, measured
recovery times are about 20 gs.

The voltage-controlled oscillator (VCO) has a center frequency of about
447 MHz. Its frequency can be varied over a range of +10 percent ac-
cording to the bias voltage applied to a varactor diode by the PLL filter.
The vCO includes an AGC to maintain a 1.2-V p-p output.

The vCO is inexpensive because high stability is not required. As the
power supply voltages vary over a range of +10 percent, the vCO fre-
quency varies by £2 percent. As the temperature varies over a range of
65°C, the vCO frequency varies by +1 percent. For nominal conditions,
the frequency stays within +2 percent. from circuit to circuit. Therefore,
the worst-case offset of the vCO over all conditions is £5 percent. This
18 well within the control range of +10 percent.

The nominal, closed-loop, 3-dB bandwidth fo of the PLL is 37 kHz. The
noise bandwidth is {(x/2) fo. Due to variations in the gains of the phase
comparator and vCO, fowas as low as 21 kHz and as high as 70 kHz for
different circuits. The open-loop zero at 160 Hz introduced by the PLL
filter causes up to 0.06-dB peaking in the closed-loop response.10:11

Since the phase comparator has a sinuseidal characteristic, the seize
frequency f, of the PLL equals its fo bandwidth.!? The pull-in range of
the unaided PLL is dependent on the offset current and can be as small
as 55 kHz, or only 0.12 percent of the band.!2 This will not cover the
+10-percent control range of the vCO and the +5 percent tolerance of
the VCO; a pull-in range of at least +15 percent is needed.

3.2.3 Frequency comparator

The pull-in range of the timing recovery circuit is extended to +20
percent by a frequency comparator. The scheme was suggested by Bel-
lisio!? and is similar to an earlier proposal by Richman.!2 The additional
circuitry needed consists of the second phase comparator, the low-pass
filter, the slicers, and the multiplier shown at the top of Fig. 11.

The clock delivered to the second phase comparator is delayed 90
degrees from that delivered to the one in the PLL. When the PLL is out
of lock, there is a beat note at the output of each phase comparator, and
the two beat notes are 90 degrees out of phase. Which one is ahead in
phase depends on the sign of the clock frequency error. The beat notes
are squared up by slicers, and one of the square waves is differentiated
to produce alternating positive and negative pulses. The product of the
pulses with the other square wave is a train of either positive or negative
pulses, depending on the sign of the frequency error. These current
pulses are summed with the phase-error current at the input to the PLL
filter and cause the PLL to pull in to its seize range. With the PLL in its
seize range, the pulses cease and the PLL behaves as if there were no
auxiliary pull-in circuitry.

PRACTICAL 45-Mb/s REGENERATOR 1851

The pull-in rate is proportional to the frequency comparator’s average
output current, which is plotted as a function of frequency difference
in Fig. 16. The curve is linear near the origin. As the period of the dif-
ference frequency approaches the width of the current pulses, the curve
falls off from the ideal, but it retains the right sign to beyond a frequency
difference of +20 percent.

The pull-in time is dependent on the difference between the initial
vCO frequency and the baud. Figure 17 shows measured pull-in times
for a typical circuit. Pull-in from a 10-percent frequency difference takes
less than 50 ms.

3.2.4 Timing jitter

A regeneérator retimes the phase of the data it transmits, but it can
also introduce some jitter in the phase. Noise causes random jitter, and
data dependence of the timing recovery circuit causes systematic
jitter.

In a line of regenerators, this jitter accumulates and may become a
problem for the terminal circuits. Each regenerator adds a certain
amount of random and systematic jitter, characterized by the jitter power
densities &5 (f) and ®5(f), respectively. (The unit of the “power” density
is degrees2/Hz.) The spectra can be considered, for all practical purposes,
to be flat and equal to $p(0) and ®g(0).

L2
(=]
(=]
—

[*]
(=1
(=1

DIFFERENTIAL OUTPUT IN A
8
T

] 1 i I | | | |
-0.20 -0.15 ~0.10 -0.05 005 0.10 0.15 0.90
NORMALIZED FREQUENCY DIFFERENCE

tTveo— TBALD) / TBAUD

100
faatp = 4.7 MHz

- —200

——300

Fig. 16 — Typical frequency comparator characteristic.

1852 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

70

60 -

a0

PULL-IN TIME IN ms

30[—

faaup =44.7 MHz

|fveo ~feaun |/ 1saup

0 b i
0 Q.05 0.10 0.15

NORMALIZED FREQUENCY DIFFERENCE

Fig. 17 — Typical pull-in times with aid of frequency comparator.

The accumulated jitter was measured for a line of 14 regenerators.214
From this data the worst-case $g(0) was calculated to be 33 degrees?/
MHz. This would correspond to 19 degrees rms of accumulated jitter for
a line of 50 regenerators. The effect of $(0) was negligible.

iV. TRANSMITTER

The transmitter module accepts an ECL data signal and provides the
data as an optical output from a fiber pigtail. The light source is a GaAlAs
injection laser with an emission wavelength of 825 nm. Circuitry is in-
cluded to monitor the laser output level and regulate it over time and
temperature. A more complete description of the transmitter module
is given by its designers and builders in Ref. 15.

A circuit diagram of the transmitter is shown in Fig. 18. When a pos-
itive-going pulse is present at DATA IN, the driver circuit applies a current:
pulse of about 356 mA to the laser, bringing it from below to above the
lasing threshold. The pulses ride on top of a prebias current which im-
proves switching speed and avoids chattering or oscillation of the light
output.

PRACTICAL 45-Mb/s REGENERATOR 1853

DATA LIGHT

LASER AND DRIVER PRE-BAS CONTROL
Fig. 18 — Transmitter circuit.

Through a feedback circuit, the prebias current is automatically es-
tablished at a value required to maintain the light output of the laser
constant. This circuit eliminates the changes in light output that would
occur from changes in the threshold due to temperature and aging. As
part of this control circuit, a pin photodiode senses the light output from
the back face of the laser. The pin output correlates closely with the
average light collected by the fiber pigtail at the other face of the lasing
cavity. By deriving a reference from the DATA IN signal, the control is
insensitive to the “ones” and ““zeros” density in the data. At 25°C, the
prebias current is typically about 100 mA, and at 50°C it is about
115 mA.

The varying density of “ones” in the data causes short-term heating
and cooling of the laser. As a result, the laser output level varies at a rate
faster than the response of the feedback control. Lasers are used that
have a pattern dependence of the peak output power below 8 percent
peak-to-peak.

For a balanced data signal, the average optical power available from
the fiber pigtail is at least —3 dBm. The output power corresponding to
a “‘one” is about 15 times that for a “zero.”

The driver, laser, pin diode, and reference are contained in one package
with cooling fins. The temperature of the package runs about 5°C above
ambient. The remainder of the control circuit is contained in a second
package.

A coaxial jack with normal-through contact provides an access point
where the line signal can be interrupted and a test signal injected.

1854 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

V. POWERING

The regenerator is powered by +5.0 V and —5.2 V with a typical power
consumption of 3.1 W. For high supply voltages and the laser near end
of life (high prebias), the power is estimated to be 3.9 W—0.9 in the re-
ceiver, 0.8 in the decider, and 2.2 in the transmitter. The supply voltages
can vary by +5 percent without affecting regenerator operation. In a
subsequent regenerator modification, filtering was improved so that 100
mV p-p transtents on the power line could be tolerated.

VI. CONCLUSION

The 45-Mb/s regenerator described here represents a practical design
for a field environment. Feedback control of the avalanche photodiode
gain and of the laser output level enable operation over a temperature
range of 0 to 60°C. The regenerator has simple power requirements. Its
input sensitivity and output power make useful regenerator spacings
possible with currently available optical fiber. The wide AGC range
permits the design to handle a wide range of regenerator spacings. The
wide capture range of the timing circuit makes an expensive crystal
unnecessary. The physical design is rugged and permits easy optical and
electrical connection. Future efforts will reduce the three-module design
to one module.

ViIl. ACKNOWLEDGMENTS

We gratefully acknowledge the contribution of Fred Radcliffe, now
retired from Bell Laberatories, who was responsible for the design of the
receiver module. Thanks are also due Richard Kerdock who carried out
the recovery time and powering tests and Harry Proudfoot and Bob
Hunter who provided valuable technical support.

REFERENCES
1. A.G. Chynoweth, "The Fiber Lightguide,” Physics Today, May 1976, pp. 28-37.
2. R. 8. Kerdock and D. H. Wolaver, “Performance of an Experimental Fiber-Optic

Transmission System,” Conference Record of National Telecommunications
Conference, November 29 to December 1, 1976.

. P. K. Runge, “An Experimental 50 Mb/s Fiber Optic PCM Repeater,” [EEE Trans.
Commun., COM-24, No. 4 (April 1976}, pp. 413-418.

. 4.8. Cook and P. K. Runge, “An Exploratory Fiberguide Interconnection System,”
2nd European Conf. on Optical Fiber Communication, Paris, September 27-30,
1976, pp. 253-256.

. J.E. Goell, “An Optical Repeater with High-Impedance Input Amplifier,” B.S.T.J.,
53, No. 4 (April 1974), pp. 629-643.

6. S. D. Personick, “Receiver Design for Digital Fiber Optic Communication Systems,

Parts [and I1,” BS.T.J., 52, No. 6 {(July-August 1973), pp. 843-886.

[

o

PRACTICAL 45-Mb/s REGENERATOR 1855

7. 4. L. Hullett and T. V. Muci, “A Feedback Receive Amplifier for Optical Transmission
Systems,” IEEE Trans. Commun., COM-24, No. 10 (October 1976), pp. 1180-

1185.

8. R.G. Smith, C. A. Brackett, and H. W. Reinbald, “Optical Detector Package,” BS.T.J,,
this issue, pp. 1809-1822.

9. 8. 8. Cheng, unpublished work.

10. C.J. Byrne, “Properties and Design of the Phase Controlled Oscillator with a Sawtooth
Comparator,” B.8.T.J., 61, No. 2 (March 1962), pp. 559-602.

11. A.J. Goldstein, “Analysis of the Phase-Controlled Loop with a Sawtooth Comparator,”
B.8.T.d., 61, No. 2 (March 1962), pp. 603-633.

12. D. Richman, “Color-Carrier Reference Phase Synchronization Accuracy in NTSC
Color Television,” Proc. IRE, 42, No. 1 {January 1954), pp. 106-133.

13. J. A. Bellisio, “A New Phase-Locked Timing Recovery Method for Digital Regener-
ators,” Conference Record for International Conference on Communications,
Philadelphia, June 14--16, 1976.

14. R.S. Kerdock and I). H. Wolaver, “Results of the Atlanta Lightwave System Exper-
iment,” B.8.T.J., this issue, pp. 1857-1879.

15. P. W. Shumate, Jr., F. 8. Chen, and P. W. Dorman, “GaAlAs Laser Transmitter for
Lightwave Transmission Systems,” B.8.T.J., this issue, pp. 1823-1836.

16. M. R. Santana, M. J. Buckler, and M. J. Saunders, “Lightguide Cable Manufacture
and Performance,” B.8.T.J., this issue, pp. 1745-1757.

1856 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 8, July-August 1978
Printed in (/.8 .A.

Atlanta Fiber System Experiment:

Results of the Atlanta Experiment

By R. S. KERDOCK and D. H. WOLAVER
(Manuscript received October 20, 1977)

Inthe Atlanta System Experiment, a digital lightwave transmission
system operating at 44.736 Mb/s was tested in an environment ap-
proximating field conditions. The system included a cable with 144
fibers pulled into a duct, lightguide cable splices, single-fiber connec-
tors, a fiber distribution frame, optical regenerators employing ava-
lanche photodiodes and GaAlAs lasers, and terminal equipment for
interfacing to the standard DS3 signal format. A number of experiments
were conducted to evaluate and gain experience with this digital
lightwave transmission system. These included fiber crosstalk, fiber
dispersion, timing jitter, system recovery, and dc powering. In this
paper the configuration of the Atlanta lightwave system is briefly de-
scribed, and experimental results are reported.

I. INTRODUCTION

Tests of an experimental lightwave transmission system operating
at 44.736 Mb/s (D83), the third level of the Bell System digital hierarchy,
were begun by Bell Laboratories in January, 1976.1-3 The system, op-
erating in an environment simulating field conditions, included all the
elements necessary for a practical transmission system at the D83 rate:
a small, ruggedized cable containing 144 fibers, lightguide cable splices,
single-fiber connectors, a fiber distribution frame, regenerators*
employing avalanche photodiodes and GaAlAs lasers, and terminal
circuits to interface with the DS3 signal format.

The main goals of the system experiment were to gain experience with
a digital lightwave transmission system and to obtain the data necessary
to turn this new technology into practical telecommunication equipment.

* A regenerator is a 1-way device, a repeater comprises two 1-way regenerators.

1857

Before the system experiment began, the individual elements eomprised
by the system were thoroughly tested and characterized. The system
experiment brought all these elements together in a simulated field
environment. Experiments were performed to measure important system
parameters and to evaluate system performance. These included ex-
periments on fiber crosstalk, fiber dispersion, timing jitter, system re-
covery, and de powering.

Il. SYSTEM DESCRIPTION

A 648-meter length of cable containing 144 fibers®* was looped
through an underground duct and two manholes so that both ends of the
cable were accessible in a basement laboratory (see Fig. 1). Each end of
the cable was spliced® to a short section of cable that fanned out toin-
dividual fibers terminating in a 12-by-12 optical connector array. The
array, called the fiber distribution frame (FDF), provided convenient
access to individual fibers. Optical patch cords with single-fiber con-
nectors® were used to interconnect the fibers and to connect the fibers
to the regenerators.

The regenerators” accept at their input an average optical power
ranging from —20 to —55 dBm. The data format is an unrestricted, bi-
nary, nonreturn-to-zero signal that has been scrambled. The data rate
is 44.736 Mb/s, the D83 rate of the Bell System digital hierarchy. The
output is a regenerated lightwave signal of 825-nm wavelength and-an
average power of at least —3 dBm. (Descriptions of the avalanche pho-

OPFICAL MANHOLE
7 BAY N
OPFICAL /-\
TEST
APPARATLS
oOes0 T =
INBIVIDUAL orea !
FIBERS TO A !
REGENERATORS | /| ©*+*© CABLE IN 140m
. .
,'7 JERERE UNDERGROUND i
iy DUCTS
o ..] 4
17 O
i . ¥ w,
// | 2 - 4
FIBER (P . | 22
msl:mﬂjglom{’\ osse ol T] came
N FANOUTS | ARRAY
o al =T serices J
5
-
- | X ./
. MANHOLE

0w+ o
-!-—150rr|-4-|

Fig: 1-—Lightguide cable configuration showing access to individual fibers.

BASEMENT LAB

1858 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

todiode® and GaAlAs laser? used in the regenerator are given elsewhere.)
Optical patch cords are used to bring the input and output to the
FDF.

The terminal circuits? provide the interface between the standard
bipolar DS3 signal format and the unipolar format required by the re-
generators. They also provide parity violation monitoring and removal.
Figure 2 is a functional block diagram of the terminal circuits. Three
pairs of terminal circuits were available.

These system elements were connected in various arrangements to
form experimental setups. A typical experimental setup is shown in Fig.
3. As many as seven loops of the 648-m fibers were included between
regenerators, and as many as 14 regenerators were included in a main-
tenance span.* Up to three maintenance spans could be connected in
tandem. A signal source provided pseudo-random data with appropriate
framing and parity bits.

ll. CROSSTALK EXPERIMENT

In the configuration of the lightguide cable,? 12 fibers are placed side
by side to form a ribbon, and 12 ribbons are stacked to form the cable

TRANSMITTING

—
LINE =
LBO,
N | JAcKs OFFICE TO TRANSMITTER
=1 “anD —7 LINE SCRAMBLER -
HYBRID RECEIVER
RECEIVING
P il
LINE =
LBO, PARITY * FROM
OVT | jacks Df_f,'\ﬁE RESTORER DE- RECEIVER
> anp [* DRIVER | OR “—] sCRAMBLER [* B
HYBRID 5IG DET
51G PARITY
GEN MONITOR [*| FRAMER

i

N

* THESE CIRCUIT PACKS
ERROR USED IN 3A-RDS RADIO
PROCESSOR DIGITAL SYSTEM

Fig. 2 ~Functional block diag;;m of the terminal circuits.

* For one experiment, fibers in a second lightguide cable 644 meters long were joined with
low-loss splices to provide extra-long fiber lengths with up to 17 loops between regenera-
tors.

RESULTS OF ATLANTA EXPERIMENT 1858

648 METER LOOPS ——
VIA CABLE

CABLE ARRAY ———
SPLICES

FDF——»I (:’ ¢""¢ é ¢' ¢""¢ ¢]
LJ) ik

>— 7TC ~J 0O b 0 R RTC b—(

OPTICAL
PATCH CORDS

FDF — FIBER DISTRIBUTION FRAME T — TRANSMITTER
TTC — TRANSMITTING TERMINAL CIRCUITS R — RECEIVER
ATC - REGE!VING TERMINAL GIRCUITS LR — LINE REGENERATOR

Fig. 3—Typical interconnection of system elements.

core. Thus most of the fibers have four neighbors. If stray light coupling
is a problem, it would most likely be between neighboring fibers either
along the length of the fibers or at cable splices.

The primary aim of this experiment was not to measure the amount
of crosstalk coupling between fibers. Such data, obtained by a more
sensitive technique, are reported elsewhere.i? The purpose here was to
measure the effect of crosstalk on system performance in terms of in-
creased error rate. We also develop a model for the effect of crosstalk and
compare measured results with a computer simulation.

3.1 Measured effect of crosstalk

Figure 4 shows the test arrangement for measuring the effect of
crosstalk. Fiber A carries a lightwave signal with pseudorandom data,
and the received signal is monitored for error rate. The level of the
lightwave signal is adjusted by an optical attenuator so that the error
rate is about 10~¢, (With a baud of 44.7 Mb/s and a count time of 10
seconds, there are about 447 error counts.) Then a lightwave signal 38
dB more powerful* is introduced into fiber B adjacent to fiber A, If this
causes the measured error rate to increase by 14 percent or more (30 of
the count variation), there is defined to be measurable crosstalk.

Each of the 138 transmitting fibers in the cable was taken in turn as
fiber A, and in each case the adjacent fibers (as many as four) were taken
in turn as fiber B. In all, 456 fiber pairs were tested for crosstalk. If the
measured error rate increased by a factor less than 1.14, the effect was
attributed to statistical variation, and the pair was not investigated

* This is intended to be near the maximum signal level difference between two adjacent
fibers in an actual application.

1860 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

DATA
SQURCE
A

TRANSMITTER

l—-——;).!\TA
l_ SOﬂ?CE

TRANSMITTER

4
POSSIBLE 63 FIBER B
X-TALK

“J

RE{:EWEF\

ERROR
RATE
MEASUREMENT

Fig. 4—Arrangement for crosstalk measurements.

further. There is some probability that actual crosstalk effects were
overlooked. For example, an actual error rate increased factor of 1.30
would be overlooked with a probability of 3 percent.

Those fiber pairs with a measured error rate increase factor « more
than 1.14 were tested again, measuring the error rates for 10 seconds.
If « was again less than 1.14, the effect was attributed to statistical
variation.

Two cases of fiber pairs with measurable crosstalk remained. The
results are illustrated in Fig. 5. The arrows indicate the direction of the
crosstalk, and « is the measured error rate increase factor. In determining
« here, the error rates were measured for 100 seconds, giving a standard
deviation of about 0.03 for o. The case with the greatest amount of
crosstalk had & = 2.0. This corresponds to a decrease of 0.25 dB in system
sensitivity (see Fig. 5 of Ref. 7).

Both crosstalk situations involved fiber number 1-11. Subsequent
investigation by Buckler and Miller!? determined that crosstalk did not
take place along the length of the fibers. An anomaly apparent in the
splice of fiber 1-11 at the end labeled “W” produced the measurable
crosstalk.

RESULTS OF ATLANTA EXPERIMENT 1861

FIBER 1-10 FIBER T-11 FIBER 1-12
w w w

G G G

Fig. 5—Only case of measurable crosstalk. Arrows show direction of crosstalk. « is errer
rate Increase factor.

The conclusion is that crosstalk measurably affecting the lightwave
transmission system is indeed rare (two cases out of 456). Even the worst
crosstalk case had a negligible effect on the system performance (0.25
dB decrease in sensitivity).

3.2 Model for effect of crosstalk

In this section, we develop a relation between strength of crosstalk
interference and the error rate increase factor. The work is based in part
on a computer simulation. There is one experimental data point.

As the interference from crosstalk is high (logical one) and low (logical
zero), it increases the error rate of the main signal in two ways. Because
of ac coupling in the receiver, it shifts the main signal both down and up
by an amount A proportional to the interference power. This is equiva-
lent to shifting the decision threshold up and down by A. When the in-
terference is high, it also increases the error rate by increasing the shot
noise and excess multiplication noise.11

In our case, the interference is high 50 percent of the time. We assume
that the effect of low threshold and added noise is the product of the
effect of each separately. Then the error rate increase factor is

a = Yolay (A) + ar(—A)a,), (1)

where o; and «, are the error rate increase factors due to threshold offset
and light-associated noise, respectively.
The function «; (A) has been measured (see Fig. 12, “Error Rate Versus

1862 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Decision Threshold,” of Ref. 7), and we can relate the offset to the in-
terference power by

A = 500(P;/Ps)mV, {2)

where P is the interference power and Pg is the signal power. To relate
o to P;/Pg we must also find «, as a function of P;/Pg.

If the crosstalk interference is constantly high {(not PCM modulated},
it will not shift the signal relative to the threshold because of ac coupling.
Its only effect on the error rate will be through light-associated noise.
This technique was used to measure «,, for one of the crosstalk cases in
Fig. 5. For the case o = 1.65, we measured a, = 1.76. Then from eqgs. (1)
and (2), P;/Ps was calculated to be —17.3 dB for the modulated case.
Since the signal in fiber B was 38 dB greater than the signal in fiber 4,
the crosstalk coupling was —55.3 dB for this case. This is in agreement
with measurements by a different technique of the same crosstalk cou-
pling.10

Only that one experimental point of a versus Py/Pgs was determined.
To generate a complete curve, & computer simulation incorporating a
Chernoff bound!2 was used to relate a, to P;/Ps. This, together with eqs.
(1) and (2), gave the curve of error rate increase factor « versus inter-
ference-to-signal ratio in Fig. 6. The simulated results and the experi-
mental point agree within a decibel.

IV. DISPERSION EXPERIMENT

When a pulse of light is launched into a fiber, the components of the
pulse will arrive at the end of the fiber with different delays, depending
upon the transit times for the modes. Therefore a transmitted pulse
becomes dispersed in time as it travels through the fiber. Fibers with a
graded index!3 are designed to reduce this effect, but some pulse
spreading persists.

A spreading of the impulse response is equivalent to a reduction of the
bandwidth. The bandwidths of the fibers in the cable are given in Ref.
14. The average 3-dB bandwidth (half-light power} of the 648-m cabled
fibers is 690 MHz with a standard deviation of 286 MHz.

At a bit rate of 44.7 Mb/s, the effect of dispersion on system perfor-
mance was expected to be small, so the six fibers with smallest bandwidth
(high dispersion) were selected for a dispersion study. The average 3-dB
bandwidth for the six is 177 MHz with a standard deviation of 27
MHz.

4.1 Measured effect of dispersion

The effect of dispersion was determined by comparing the system
performance using high-dispersion fiber with the system performance
using dispersionless attenuation (a neutral-density filter) in place of the

RESULTS OF ATLANTA EXPERIMENT 1863

30.0

200

10.0L

BO—

— COMPUTER SIMULATION
8.0

4.0

ERROR RATE INCREASE FACTOR

30—

EXPERIMENTAL POINT
\

2.0

1.0 1 1 | | |] 1] 1
-20 —18 —16 -14 —12 =10

INTERFERENCE-TO-SIGNAL RATIO IN DECIBELS

Fig. 6—Effect of crosstalk interference.

fiber. The measure of performance used here is the “system sensitiv-
ity”—the detected light power* for a 1078 error rate. The decrease in
sensitivity due to dispersion is called the “dispersion penalty.”

From one to six of the high dispersion fibers were concatenated using
optical jumpers. These fibers were included in the transmission path
along with enough dispersionless attenuation to make the error rate 1078,
Then the fibers were removed from the path, and the dispersionless
attenuation was increased until the error rate was again 10~6. The dif-
ference in detected light power for the two cases is the dispersion penalty
for that length of fiber.

The dispersion penalty is plotted as a function of high-dispersion fiber
length in Fig. 7. The highest penalty measured was only about 0.5 dB.

* The detected light power is calculated from the measured APD current. For this
measurement, the APD bias is set for a known APD gain, so the primary eurrent is known.
The detected light power is 1.5 watts per ampere of primary current (for light with a
wavelength of 825 nm).

1864 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

NUMBER OF 648 m FIBERS

1 2 a 4 5 B
06— T T T T 160
05 5.0
0.4 - 4.0

3.0

03 ’—

RMS DISPERSION

02+

DISPERSION PENALTY IN DECIBELS
RMS DISPERSION (N ns

DISPERSION PENALTY

010 —

0.08 o 1 L L L 1 0.8
0.6 0.8 1.0 1.5 2.0 ap 4.0

HIGH-DISPERSION F!BER LENGTH IN KILOMETERS

Fig. T—Effect of high-dispersion fiber.

The curve should be monotonic increasing; the reversals are due to the
limits of measurement accuracy.

4.2 Measured RMS dispersion

We have the dispersion penalties for a particular set of concatenated
fibers. By measuring the dispersion of those fibers, we can extend the
results to any fiber for which the dispersion is known.

The pulse responses for a few lengths of high-dispersion fiber were
measured by 8. D. Personick using the technique described in Ref. 14.
Since the source pulse was only 0.5 ns wide, the pulse response can be
considered to be an impulse response. The waveforms for four different
lengths of the high-dispersion fiber are shown in Fig. 8. The impulse
response broadens with increasing fiber length and approaches what is
approximately a Gaussian waveform. Note that the waveform for the
shortest fiber length is not smooth, indicating that mode mixing is not
complete.

The impulse response is conveniently characterized by one parame-
ter—the RMS dispersion « defined by!!

RESULTS OF ATLANTA EXPERIMENT 1865

0.85 km
{1 FIBER)

.30 km
(2 FIBERS)

2.60 km
(4 FIBERS)

3.25 km
{5 FIBERS)

S TN TN T N N T O N N N N N N W N N O T T
0 5 10 15 20 25
ns

Fig. 8—Impulse responses of high-dispersion fiber.

, _ Jt2h(t)dt [fth(t)dt]z
ge = - N
JTht)dt JThit)dt

where h(t) is the impulse response. The RMS dispersions for the four
impulse responses in Fig. 8 are plotted in Fig. 7. The points lie close to
a line with a slope of %, indicating a square-root dependence on
length.

From the data in Fig. 7, we can determine the dispersion penalty

1866 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

versus RMS dispersion (see the plot in Fig. 9). The curve through the data
points was generated by a computer simulation using a Chernoff bound
approximation of noise.!2 This curve holds for both high- and low-dis-
persion fiber. The corresponding lengths of high-dispersion fiber are
indicated on a scale at the top of Fig. 9. For example, 7 km of high-dis-
persion fiber would have a dispersion penalty of about 1.0 dB. Even for
this worst case, the dispersion penalty (for a bit rate of 44.7 Mb/s) is
negligible compared to a loss of about 40 dB for 7 km of fiber.

4.3 Long fiber spans

There was some question whether the methed of joining fibers at the
fiber distribution frame adequately simulated field splicing methods
in regard to dispersion characterization. Every time a 648-m fiber was
added to a regenerator span, it was necessary also to add two optical
fanouts with two splice interfaces and one optical patch cord with two
connector interfaces (see Fig. 3). The numerous connectors and splices
contribute significantly to the total loss of a fiber span, and they might
also have significantly affected the measured dispersion by providing
extra mode mixing.

To eliminate most of these connectors, an experiment was performed
using a second cable. This 644-m cable was installed in the ducts in the

HIGH-DISP. FIBER LENGTH IN KILOMETERS

O 1 2 3 4 5 6 78 10 12
T T I 717 17 T17TTTrTT
.0
20
] COMPUTER
w SIMULATION
L) -
o
w
o
E4
r osk
-
Y
i
o 03
=
[}
g 0.2
w
o
[}
o
Q1
44.7 Mbs
0.05 -
1 | 1 i
i ¥ 2 3 4 5 6

RMS DISPERSION IN ns

Fig. 9—Effect of RMS dispersion.

RESULTS OF ATLANTA EXPERIMENT 1867

same manner as the first cable (see Fig. 1). For these tests, the fiber
distribution frame was not used. Instead, fibers were concatenated using
low-loss loose tube splices! to join individual fibers. One single-fiber
connector was used at each end of the long concatenated fiber span to
interconnect with the optical regenerators.

Two long fiber spans were constructed by C. M. Miller using these
loose tube splices. Assuming that very little mode mixing occurred at
the splices, the effect of fiber dispersion could now be accurately mea-
sured. Using the technique described above, the dispersion penalty was
measured for each long span and compared to the span loss measured
by M. J. Buckler.! One span was 10.3 km long with a dB loss of 49.2 and
a dispersion penalty of 0.5 dB. The other span was 10.9 km in length and
had a 47.9 dB loss and a dispersion penalty of 1.1 dB. It is clear that, as
in the experiment using numerous connectors, the dispersion penalty
is negligible compared to the loss. Therefore it is concluded that fiber-
guide dispersion will have only a small effect on regenerator spacing at
44.7 Mb/s.

It should be noted that a length of nearly 11 ki is not to be considered
a “practical” regenerator spacing. In this experiment, low-loss fibers were
selected, splicing losses were minimized, and very little allowance was
made for operating margins. It has been estimated that these results
translate into a regenerator spacing of approximately 7 km {~4 miles)
for a practical transmission system employing current technology.

Y. TIMING JITTER EXPERIMENT.

In this experiment, a line of 14 regenerators was set up. The phase of
the data at the output of each regenerator was compared with the clock
phase of the data source—a maximum length pseudorandom sequence
of length 215 — 1 gerambled by a 17-stage feedback register. In this way,
the timing jitter accumulation was measured as a function of the number
of regenerators.

Two types of jitter were investigated: random jitter and systematic
jitter. In one experiment, as much random jitter as possible was intro-
duced by operating each regenerator near an error rate of 10~ (detected
optical power near —55 dBm). The effect on the accumulated jitter was
negligible. As will be explained below, random jitter tends to be swamped
by systematic jitter as the number of regenerators in the line grows.

Two cases of systematic jitter were investigated. In one, offset current
was purposely introduced in the phase-locked loop of each regenerator’s
timing recovery circuit. This caused a static timing offset p of —12 de-
grees in each. In the other case, any offset current was nulled out to re-
duce u to less than 1 degree. The measured results are shown in Fig. 10.
That the jitter does not always increase monotonically with NV is due to
measurement error.

1868 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

f4 = STATIC TIMING OFFSET
tg = PLL BANDWIDTH
& 501 = ITTER POWER DENSITY

INTRODUCED BY EACH
REGENERATOR

=~ P 5l0)=33 DEG 2/ MHz

P 5I0) =11 DEG 2/ MHz
A

\ o e 2
’3’,

RMS JITTER 0. g,, IN DEGREES

™| p) < 1DEG

SOLID CURVES: DASHED CURVES:

-
P MEASURED JITTER T = 2TNS (N) 1, B 510)
tp=37kHz
0 I ! ! I 1 1
0 2 a 6 8 10 12 74

NUMBER (N} OF REGENERATORS
Fig. 10—Cumulative timing jitter. The function S{N} is plotted in Fig. 11.

5.1 Jitter power densiy from fif to data

Each regenerator adds a certain amount of random jitter, caused by
noise, and systematic jitter, caused by data dependence. We assume that
each regenerator adds the same amount of jitter, and that the jitter power
density spectra of the random and systematic components are &g (f) and
®g(f), respectively. (The unit of the “power” density is degrees?/Hz.)
The spectra can be considered, for all practical purposes, to be flat and
equal to ®2(0) and $g(0). The cumulative RMS jitter agy is given by

oy = VN R(N)fo®r(0) + 2xNS(N)fos(0), (3)

where N is the number of regenerators, f; is the average PLL bandwidth,
and R(N) and S(N) are “correction factors” needed for small N: they
go to unity for large N (see Fig. 11). The first term, giving the dependence
of N for random jitter, is due to DeLange.'¢ The second term (systematic
jitter) is due to Byrne, et al.l7

In both experiments the measured spectra of the jitter power density
displayed the notches associated with systematic jitter!” (see Fig. 12).
The depth of the notches indicated that the contribution from random
jitter was insignificant. Therefore the RMS jitter ogy should grow with
V'N , as seen from the second term in (3). Using this relation, we fitted
curves to the measured data by selecting ®5(0) for each case. For p = —12
degrees, the fitted ¢5(0) is 33 degZ/mHz and for 1 < 1 degree, the fitted
®5(0) is 11 deg?/mHz.

RESULTS OF ATLANTA EXPERIMENT 1869

RiN}

[tR: 15

[+R-0 o8 SiN)

T gy =2V TNRNI g B (0] + 27NS (N} 1oDl0)
WHERE (I)R[ﬂ AND (I)stf] ARE POWER

DENSITIES OF RANDOM AND SYSTEMATIC
06~ JITTER INTRODUCED IN EACH REGENERATOR

JITTER ACCUMULATICN CORRECTION FACTOR

| A 1 1 L1 1 [|
1 bl 4 [8 10 15 20 30 40 BO 7O 100

NUMBER (N} OF REGENERATORS

0.5

Fig. 11—Jitter aceumulation correction factors.
5.2 Jilter power densily calculaled from model

Duttweiler!® has done a computation of the jitter power densities
$7(0) and $5(0) for a PLL that models the one used here fairly well.
$p(0) is calculated from the noise present at the output of the linear
channel. $5(0) is calculated from the static timing offset » and from the
pulse response of ‘the linear channel (intersymbol interference). The
analysis assumes a random data signal.

Using the pulse response in Fig. 9 of Ref. 7, the ¢g(0) for x < 1 degree
was calculated to be 1.5 degZ/MHz. This would produce only 37 percent
of the measured jitter. The ¢5(0) for u = —12 degrees was calculated to
be 7.7 deg?/MHz. This would produce only 50 percent of the measured
jitter. The discrepancy is not completely understood, but it may be due
in part to the difference between random and pseudorandom data.

The measured data can be extrapolated by (3), neglecting random
jitter. For u = —12 degrees and N = 50, the RMS jitter would be 19 de-
grees. This represents a worst case with the offset in the PLL of all re-
generators at the maximum and in the same direction. Even this worst
case is well within the capability of the terminal circuits, which can
handle up to 30 degrees RMS jitter.

VI, SYSTEM RECOVERY EXPERIMENT

The objective of this experiment was to measure the response of the
transmission system to signal interruptions of the sort that might be
expected in actual application. We also wanted to gain an understanding

1870 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

LINE OF 10 REGENERATORS
TIM{NG BANDWITH = 37 kHz \

=20

NORMALIZED JITTER “POWER" DENSITY IN CECIBELS

—25]]
2 5 10 20 30 40 50

FREQUENCY IN KfLOHERTZ

Fig. 12—Spectra of systematic jitter.

of the mechanisms affecting the recovery. To this end, recovery time was
measured as a function of the interruption interval and the signal level.
First we investigate the response of a single regenerator, then a line of
regenerators in tandem, then a maintenance span with terminal circuits,
and finally a number of maintenance spans in tandem.

In each test the data input to the system (or subsystem) was inter-
rupted and set to logical “zero” for intervals of 0.2, 1.0, 3.0, and 10.0 ms.
Following this, the data resumed.* The 0.2-ms interval is the expected
maximum interruption that would be incurred during a protection
switch. An interruption of 3.0 ms can occur due to the characteristics of
the terminal circuits. A 10-ms interruption is typical of that during
manual patching for service restoration or rolling.

6.1 Regeneralor recovery

The input to a regenerator was supplied by a pseudorandom data
source, and the output of the regenerator was monitored by a bit-
error-rate test set (RERTS). The BERTS received a clock signal directly
from the source so that it maintained synchronism during the inter-
ruption. The recovery time was defined as the time from the end of the
interruption to the beginning of the first error-free second.

* Some tests were made in which the resumed data had a baud shifted 1.0 kHz from the
original rate. However, this was found to have no measurable effect on the recovery
time.

RESULTS OF ATLANTA EXPERIMENT 1871

Typical regenerator recovery times are plotted in Fig. 13. The response
is a function of both the interruption interval and the input signal
level—the detected optical power. For interruptions up to 3.0 ms, the
recovery times are 0.1 ms or less. For an interruption of 10 ms, the re-
covery times are between 0.4 and 4.0 ms, We will examine the mecha-
nisms governing these responses.

Part of the recovery mechanism is illustrated in Fig. 14, which shows
the signal at the decision point in the regenerator. After 0.3 ms or more
of interruption time, the ac coupling in the linear channel causes the
signal to be displaced upward by about 500 mV. When the data signal

4.0

3.0

10 ms INTERRUPTION

1.0

08

0.6

04—

03

0.2

REGENERATOR RECCVERY TIME IN ms
o
o
T

.08 —

0.2, 1.0, 3.0 ms INTERRUPTIONS

0.04 —

0.03 —

0,02+

01 | |
—b5 —5a0 -45 —40 -35 =30 —25

OETECTED OPTICAL POWER IN dBm

Fig. 13—Regenerator recovery times.

1872 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Fig. 14—Signal at decision point for 8.0-ms interruption and —44-dBm detected optical
power.

returns, the signal in Fig. 14 drops to its proper position with the time
constant of about 0.25 ms. The error rate is high until the “eye opening”
moves down to include the decision threshold at =70 mV. Recovery is
then complete. With greater detected optical power, the “eye” is more
open, and the recovery time is shorter. This explains the characteristic
of the lower curve in Fig. 13.

For a 0.2-ms interruption and high (—25 dBm) detected optical power,
the “‘eye opening” does not have time to drift so far that it does not in-
clude the decision threshold upon the return of data. For this case the
recovery might be expected to be immediate. However, another mech-
anism becomes important—the 15 s recovery time of the phase-locked
loop (PLL) in the timing circuitry. The result is that the response curve
for a 0.2-ms interruption is about the same as that for 1.0-ms and 3.0-ms
interruptions.

The upper curve in Fig. 13 indicates significantly greater recovery
times for 10-ms interruptions. One reason for this is that the automatic
gain control (AGC) has time to drift during the interruption so that the
signal can be very large upon return of the data. In high (=25 dBm) de-
tected optical power, this can lead to a saturation effect that incapaci-
tates the linear channel of the regenerator for a number of milliseconds.
This effect is shown in Fig. 15. After the data resume and the 0.25-ms
transient is over, the signal remains unsymmetric for 2 to 4 ms. This
indicates a badly distorted signal that results in errors.

For detected optical powers of —40 dBm and lower, the saturation
effect does not occur. In this range, another mechanism dominates in
causing longer recovery times for 10-ms interruptions. In some regen-
erators, there was enough offset in the PLL to cause it to drift out of its
seize range during a 10-ms interruption. In that case, the recovery time
of the PLI was about 0.5 ms.

RESULTS OF ATLANTA EXPERIMENT 1873

-

0.5V

.l :

—-I 2.0ms
Fig. 15—Signal at decision point for 10-ms interruption and —~25-dBm detected optical
power.

6.2 Line recovery

Lines of as many as nine regenerators were constructed as in Fig. 3.
In this part of the experiment, the terminal circuits were not included.
The recovery times for various numbers of regenerators in tandem were
measured by the method outlined for single regenerators. Typical results
for a 3.0-ms interruption are plotted in Fig. 16. Notice that the recovery
time grows more slowly than the number of regenerators.

It was not expected that the recovery time for a line of N regenerators

0367 1
| I
| 3.0ms INTERRUPTION, |

DETECTED OPTICAL POWER
030 BETWEEN —62 AND —45
dBm FOR EACH REGENERATOR

E
z 0.25—
w
=
-
>
o
w
&
o 020
T
L
z
pur]

015

0.10] 1 L | 1 i 1 -

0 1 2 3 4 5 6 7 B 9

NUMBER OF REGENERATORS IN THE LINE
Fig. 16—Line recovery times.

1874 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

would be N times the recovery time for one regenerator. The recovery
mechanisms in the second regenerator can begin while the first regen-
erator is still recovering and putting out erroneous data.

The recovery of downstream regenerators is also affected by the ac-
tivity of earlier regenerators during the interruption. With no lightwave
signal at the input of the first regenerator, its PLL continues to free run.
It continues to clock out whatever signal appears at the decision point,
including noise. For example, Fig. 14 shows the noise meeting the deci-
sion threshold (—70 mV) after about 1.3 ms of interruption. For the rest
of the interruption, the regenerator provides noise-like data to the second
regenerator. For higher noise at the decision point, the interruption seen
by the second regenerator becomes even more filled in.

The filling in of the interruption continues down the line of regener-
ators until only the first few tenths of a millisecond remain free of
noise-like data. Figure 17 shows a typical example of the signal appearing
at the decision point of the eighth regenerator in a line during a 10-ms
interruption.

One effect of filling in the interruption is to keep the AGC from drifting
out of adjustment. Therefore, the saturation effect, which causes long
recovery times, can occur only in the first few regenerators in a line.

Another effect of filling in the interruption is to keep the PLL of each
regenerator locked to the frequency of the PLL in the previous regener-
ator. This has little effect on the recovery time unless the PLL offset in
one of the first few regenerators islarge. In that case, the PLL drifts out
of its seize range during a 10-ms interruption. If there is sufficient noise
at the decision point, the noise-like data at the output cause all down-
stream regenerators to be pulled out of their seize range. For such a case,
the recovery time for each regenerator is long, and line recovery times
as high as 9 ms were measured for a line of nine regenerators.

Extrapolating the measured results to a line of 20 regenerators, we
expect line recovery times of less than 1.0 ms for interruptions of 3 ms
or less. Recovery times for interruptions longer than 3 ms can be greater.

500mv

Fig. 17—Signal at the decision point of eighth regenerator in a line, illustrating the filling
in of & 10-ms interruption.

RESULTS OF ATLANTA EXPERIMENT 1875

It is planned to limit the PLL offset so that the PLL remains within its
seize range for interruptions up to 10 ms. In that case, the expected line
recovery time would be as much as 4 ms for interruptions from 3 to 10
ms. Such recovery times would be dominated by saturation effects in
the first regenerator.

6.3 Maintenance span recovery

In this portion of the recovery experiment, the line of regenerators was
extended to include the terminal circuit on each end (see Fig. 3). The
recovery time was measured from DS3 interface to DS3 interface. The
megsurement method was, by necessity, different from that used for the
regenerator and line recovery tests. The bit-error-rate test set that op-
erates with the DS3 format requires framing to do bit error measure-
ments, and the test set reframe time prevents accurate determination
of recovery time. Therefore we need another measure of recovery
time.

For some cases, the receive terminal circuit (RTC) itself provides a
meaningful measure of recovery time. If the RTC is unable to frame on
the data it receives for about 3 ms, it inserts a “blue signal” to satisfy
downstream equipment. When the RTC is able to reframe, the blue signal
is removed, and data transmission is resumed. We define maintenance
span recovery time as the time from the end of the interruption to the
removal of the blue signal by the RTC. One limitation of this definition
is that only recovery times in response to interruptions of 3 ms or longer
can be measured. Otherwise, the blue signal is not inserted. This is not
a serious limitation, since the terminal circuits should have no effect on
the recovery time for interruptions less than 3 ms.

The expected recovery time for a maintenance span is simply the line
recovery time plus the reframe time of the RTC. This expectation was
confirmed by recovery time measurements. The maximum average re-
frame time for the RTC is 1.5 ms. Therefore we expect a recovery-time
less than 5.5 ms for a maintenance span of 20 regenerators for inter-
ruptions of 3 to 10 ms. For interruptions less than 3 ms, we expect
maintenance span recovery times less than 1.0 ms (the line recovery
time).

6.4 System recovery lor maintenance spans in tandem

Sufficient system elements were available to arrange three mainte-
nance spans in tandem for a total transmission distance of 61 km (38
miles). With this arrangement it was possible to observe the effect of
signal interrupts in one maintenance span on subsequent maintenance
spans. These tests served to confirm the failure sectionalization capa-
bilities of the receive terminal circuit (RTC) and uncovered no anomalies
in system operation. If, during an interruption, all downstream main-

1876 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

tenance spans have had time to reframe on the blue signal inserted by
the RTC of the span experiencing the interruption, then the total system
recovery time is simply the recovery time of the interrupted maintenance
span. This also holds true, of course, if the interruption is less than 3 ms
since all the RTCs start to reframe simultaneously when the data re-
sume.

The system behavior is more complicated in the situation where
downstream RTCs do not have time to frame on the failed span’s blue
signal during the interruption. In the worst case, the total system re-
covery time is the recovery time of the interrupted maintenance span
plus the reframe times of the downstream RTCs.

The system recovery performance described here should be adequate
to virtually insure that calls will not be dropped during normal main-
tenance activity.

VIl. DC POWERING EXPERIMENT

The +5.0-Vdec and —5.2-Vdc supply voltages for the regenerators and
terminal circuits were provided by dc-to-de converters operating from
48 Vdc. In this experiment, we monitored system performance while
inducing transients on the common power distribution bus. The results
led to some modifications of the regenerator circuit.

Normal activity on a bay of equipment includes the connection and
removal of regenerator units. (A regenerator draws about 150 mA from
the +5.0 Vdc supply and 330 mA from the —5.2 Vdc supply.) The re-
sulting transients appearing on the common power distribution bus must
not impair the performance of working equipment in the bay.

Tests were made on a maintenance span in which each regenerator
had a detected optical power between —52 and —45 dBm. It was found
that the load change of connecting and removing one regenerator caused
the system to make a significant number of errors. The sensitivity was
traced to the regenerators and not the terminal circuits.

Further tests were made with even larger load changes to insure that
worst-case situations would be covered with adequate margin. A load
change of 790 mA on the —5.2-Vdc supply caused about 100 errors. A load
change of 720 mA on the +5.0-Vdc supply would induce RTC out-of-
frames.

Some waveforms accompanying this out-of-frame response are shown
in Fig. 18. The voltage on the +5.0 Vdc supply bus shows a 200-mV spike
and step change of 70 mV. This transient is a function of not only the
current load change but also the bus impedance and the de-to-de con-
verter characteristics. Figure 18 also shows the signal at the decision
point in the regenerator. The 1-v transient during the recovery of dc level
was the immediate cause of the errors.

One regenerator was modified to improve the filtering of the supply

RESULTS OF ATLANTA EXPERIMENT 1877

——J ‘——O.Sms

Fig. 18—Transients accompanying a step load change of 720 mA on the +5.0-Vdc supply.
Upper irace: voltage on +5.0-Vdc supply buss. Lower trace: voltage at decision point in
regenerator.

voltages in its linear channel. The above tests with load changes of about
720 mA were repeated on the modified regenerator. No errors resulted.
Subsequently, all regenerators were similarly modified.

Another source of interference on the supply busses is from the dc-
to-de converters themselves. However, the specification for the power
units guarantees 30 mV peak-to-peak or less ripple at their outputs, The
tests on the modified regenerator assured us that transients up to 100
mV peak-to-peak cause negligible degradation. The conclusion is that
the modified regenerator will tolerate all power supply transients and
noise routinely incurred in an operating bay.

VIIl. CONCLUSIONS

The Atlanta Fiber System Experiment was begun with high expec-
tattons for the system performance. There was some uncertainty due
to lack of experience with lightwave systems; the Atlanta system was the
Bell System’s first complete lightwave system available in conditions
approximating field environment. These experiments provided us with
the needed experience, and in all cases the system met or exceeded our
expectations.

Measurable crosstalk between fibers proved to be rare and to have only
a negligible effect on system performance when it did occur. The effect
of fiber dispersion is small compared to that of fiber loss; at 44.7 Mb/s
the regenerator spacing is essentially loss-limited, not dispersion-limited.
The jitter accumulation in a line of 50 regenerators should be well within
the capability of the terminal circuits. System recovery time will be a
fraction of interruption times caused by protection switches. This should
virtually assure that no calls are dropped. The modified regenerator
tolerates power supply transients and noise such as would be expected
in a field application.

Through experience with the Atlanta lightwave system, we gained
confidence in our technology. We were assured that the system and

1878 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

equipment design will meet the conditions of a practical Bell System
installation.

IX. ACKNOWLEDGMENTS

Much of the test circuitry used in the experiments was constructed
by H. W. Proudfoot. We gratefully acknowledge his effort as well as that
of M. J. Buckler, 8. S. Cheng, V. J. Mazurczyk, and C. M. Miller in as-
sisting with some of the tests. D. D. Sell provided valuable aid in de-
signing the experiments and interpreting their results.

REFERENCES

1. R. S. Kerdock and D. H. Wolaver, “Performance of an Experimental Fiber-Optic
Transmission System,” Conference Record of National Telecommunications
Conference, November 29 to December 1, 1976.

9. T. L. Maione and D. D. Sell, “Experimental Fiber-Optic Transmission System for
Interoffice Trunks,” IEEE Trans. on Communications, COM-25, No. 5 {May 1977),
pp. 517-523.

1. Jacobs, “Lightwave Communications Passes Its First Test,” Bell Laboratories
Record, December 1976, pp. 291-297.

M. L. Schwartz, “Optical Fiber Cabling and Splicing,” Technical Digest of Topical
Me;}tx]zg (;n Optical Transmission, Williamsburg, Virginia, January, 1975, pp. WAZ-1
to -4,

. C. M. Miller, “A Fiber-Optic-Cable Connector,” B.8.T.J., 54, No. 9 (November 1975},

pp. 1547-15565.

. P.K. Runge and S. 8. Cheng, “Demountable Single Fiber Optical Fiber Connectors
and Their Measurement on Location,” B.8.T.J., this issue.&p. 1771-1790.

T. L. Maione, D. . Sell, and D. H. Wolaver, “Practical 45 b/s Regenerator for
Lightwave Transmission,” B.S.T.J., this issue, pp. 1837-1856.

. R. G. Smith, C. A. Brackett, and H. W. Reinbold, “Optical Detector Package,” B.S.T.J.,

this issue, pp. 1809-1822.

. P. W. Shumate, Jr., F. S. Chen, and P. W. Dorman, “GaAlAs Laser Transmitter for

Lightwave Transmission Systems,” B.S.T.J., this issue, pp. 1823-1836.

10. M. J. Buckler and C. M. Miller, “Optical Crosstalk Evaluation for Two End-to-End
Lightguide System Installaticns,” B.5.T.J., this issue, pp. 1759-1770.

11. 8. D. Personick, “Receiver Design for Digital Fiber Optical Communication Systems,
1,” B.S.T.J., 52, No. 6 (July-August 1973), pp. 843-874.

12. 8. D. Personick, P. Balaban, and J. H. Bobsin, *A Detailed Comparison of Four Ap-
proaches to the Caleulation of the Sensitivity of Optical Fiber Systems Receivers,”
IEEE Trans. Communications, COM-25, No. 5 (May 1977), pp. 541-548.

13. A. G. Chynoweth. “The Fiber Lightguide,” Physics Today, May 1976, pp. 28-37.

14. M. R. Santana, M. J. Buckler, and M. J. Saunders, “Lightguide Cable Manufacture
and Performance,” B.S.T.J., this issue, pp. 1745-1757.

15. C. M. Miller, “Loose Tube Splices for Optical Fiber,” B.5.T.J., 54, No. 7 (September
1975), pp. 1215-1225.

16. 0. E. DeLange, “The Timing of High-Speed Regenerative Repeaters,” B.5.T.J., 37,
No. 6 (November 1958), pp. 1455-1486.

17. C.J. Byrne, et al., “Systematic Jitter in a Chain of Digital Regenerators,” B.S.T.d.,
42, No. 6 (November 1963), pp. 2692-2714.

18. D. L. Duttweiler, “The Jitter Performance of Phase-Locked Loops Extracting Timing
from Baseband Data Wavetorms,” B.8S.T.J,, 55, No. 1 {January 1976), pp. 37-58.

W

w o om = o

RESULTS OF ATLANTA EXPERIMENT 1879

-p

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, Ne. 6, July-August 1978
Printed in U.S. A,

Atlanta Fiber System Experiment:

The Chicago Lightwave Communications Project

By M. I. SCHWARTZ, W. A. REENSTRA, J. H. MULLINS,
and J. 8. COOK

(Manuscript received January 25, 1978)

The Bell System installed and is evaluating an exploratory lightwave
communications system in downtown Chicago. In addition to regular
interoffice trunk service, the system provides a range of telecommu-
nications services to customers in Chicago’s Brunswick Building, in-
cluding voice, analog data, digital data, and PICTUREPHONE®
Meeting Service, a 4-MHz video service. This paper describes the
transmission medium, its installation, and the system configuration,
and includes some preliminary performance data.

I. INTRODUCTION

The Atlanta Fiber System Experiment! 2 utilizes cable ducts similar
to those currently being installed in the telephone plant, but atypical
of active Bell System ducts in that they were dry and uncrowded.

In 1976, new cable-placing methods and equipment were developed
and tested at Bell Laboratories’ Chester, New Jersey location. With these
methods and equipment, optical fiber cables like those used in Atlanta®
but containing only two ribbons (24 fibers) were installed in downtown
Chicago in February 1977. The location was selected for the range of
services that could be provided on fibers, as well as for the demanding
cable route, representative of those found in busy, long-established
metropolitan areas.

During the winter months, much of the Atlanta Experiment equip-
ment was modified, replaced, or repackaged, and shipped to Chicago.
On April 1, 1977 the first commercial traffic was carried on the new
system, and on May 11 the Chicago Lightwave Communication System
was fully cut over. Video encoders and other terminal equipment had
been added so that the system could provide customer voice and data

1881

service, and PICTUREPHONE® Meeting Service {(PMS) as well as reg-
ular interoffice trunk service.

Il. SYSTEM CONFIGURATION

Figure 1 is an overview of the Chicago Lightwave System. Standard
video signals from a PMS customer in the Brunswick Building are digi-
tally encoded and transmitted at the DS3 rate (44.7 Mb/s) using a pair
of fibers (one for the return signal) in a 1-km long optical cable extending
from the Brunswick Building to the Franklin Central Office (C0). There
the fibers are connected directly to a pair of fibers in a second cable, 1.6
km long, between the Franklin ¢0 and the Wabash ¢0. Thus, the length
of this optical link is 2.6 k. The video is decoded and carried by stan-
dard means to the Television Qperating Center {TOC) adjacent to the
Wabash cO where it can be connected to standard intercity video circuits.
Another pair of fibers in the second cable provides a two-way link be-
tween the TOC and a public PMS room at Illinois Bell Telephone {IBT)
Headquarters, which is adjacent to the Franklin co.

The Brunswick-to-Franklin cable also carries customer voice and data
signals. Using three of its full capacity of 28 DS1 (1.54 Mb/s) channel
inputs, an M13 multiplex combines 78 voice circuits and one 2.4-kb/s
analog data signal from two SLC*-40 (subscriber loop carrier) terminals,
and two 4.8 kb/s digital data signals onto a single pair of optical fibers.
The digital data signals are connected by a T1 {DS1 rate) circuit to the
Canal St. Digital Data Service Office.

A third pair of fibers in the Franklin-Wabash cable carries 576 inter-
office trunk circuits (24 DS1 channels). Here, again, M13 multiplexes
combine signals from standard T1 systems to produce 44.7 Mb/s streams
that pass through the fibers. Voice and data links are backed up by an
operating spare fiber pair in each cable. All fiber links operate at 44.7
Mb/s, just as they did in Atlanta. The Franklin o installation is shown
in Fig. 2.

i, OPTICAL CABLE

The optical cable design used in Chicago is identical to the one used
in Atlanta except that two ribbons (each containing 12 fibers produced
by Western Electric—Atlanta) rather than 12 ribbons were used (Fig.
3). Three long cables, each approximately 1 km in length, and four short
cables ranging from 160 to 460 m were made by Bell Laboratories for the
project. Two fiber breaks occurred in one of the long cables and two
breaks occurred in a 180-m cable; all breaks occurred in cable manu-
facture. The remaining four cables had no broken fibers. Two of the long
cables and the three unbroken short cables were cut into ten cable seg-
ments of specified lengths. Half-connectors of the type reported .pre-

* Trademark of Western Electric.

1882 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

|
[

T

[&]
=}
-

-——————
|
L meam

‘wshs aneamy i oFeoyy—1 ‘A

¥ILNID SO0 =l
HHDYE 5/9 8'%) L
{ SINM Viva— woll :
su3ald IvLsIaz SH3BHd
a3asnnn | . - — —_ _ _ _ Jg3snnn
|||||||||| Q4= ———— === === o S —
———— ——— @asnnn |
Q3SMNN q3snNN : 050
- _— | _ = u
T GamlLL— |
_ _
IWLI'V.._ | e _ or |
Sil ||
i £IN [ELW e 1S B | N o N
; _ i | | |
u | | A ot .ITIAI |
T ov
; : w218 I I %t |
LI
| | " _f |
I
_ I
|V|“ _ _] T N
_ 03aiA I
I _ | I
I : _ _
P i | _
_ ! ¥3Q0ON3|
wzmooumall..A._I“ _ | _ e |
I I A
\ >~ LI~ 4300030 __ [|
] e 030IA |
543000N3 | X | _ z%.,m_x ;
$3aa | 1 _ “
< L} HIO0IN3 |
i 8- D3ata " [5/9 ME'F) VIVa IWLIDIOZ |
_ _ _ DOHsvawvm _ _ Ly § i e OONIDINVEY i BN __m.a Wk Eqn_%w.w,_%ne.m_m |
- ———-—-—-—====—|7 _ _
1 woou | | ! L _ _oNigun@domsNnue
| Shd "
|

L SH3.W¥YNDAv3IH 1734 SIONITTI

WILSAS 3AYMLHDIT O8YIIHD

1883

CHICAGO PROJECT

Fig. 2 Franklin Central Office installation.

12 mm DD
ATH
POLYOLEFIN SHEATH SHE g
TWINE STRENGTH -
MEMBERS ki
PE JACKET e .
‘Q

TWO RIBBON

GONNECTOR

Fig. 3—Two-ribbon lightguide cable.

viously%5 were fabricated on all 10 cables. As a result, when the cables
were installed in the field, splicing was a straightforward job that did not
involve handling individual fibers. Figure 4 is a photograph of a half-
connector formed on one end of a two-ribbon cable.

Figure 5 is a comparison of the loss histograms of the three long Chi-
cago cables with the Atlanta Experiment cable.34

At the system wavelength of 0.82 microns, the mean loss of the Chicago
cables was 5.1 dB/km, whereas the mean loss of the Atlanta Experiment
cable was 6.0 dB/km. Most loss reduction is due to the smaller added loss
(micro-bending loss) of 0.5 dB/km as opposed to 1.3 dB/km in the At-
lanta Experiment.

1884 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-~AUGUST 1978

Fig. 4—Half-connector on two-ribbon cable.

6 -

ATLANTA
7 EXPERIMENT — 1975
L / 7 // 138 TRANSMITTING
/ / FIBERS
= A MEAN = 6.0 dB/km

2% [.,//’

70 TRANSMITTING FIBERS
MEAN = 5.1 dB/km

\ CHICAGO PROJECT — 1976

N

NUMBER OF FIBERS
& I§
T T
it -
N
7

=
T
S
e
=

o
T
e

..:.

N

L

2 4 8 10 12 14
0.82 um CABLE LOSS IN dB/km
Fig. 5—Cabled fiber losses.

(=

IV. CABLE INSTALLATION

Figure 6 shows the optical cable route connecting the Brunswick
Building to the Franklin CO to the Wabash CO. Two short connectorized
optical cables were installed from the cable vault to the equipment bay
in the Franklin co by WE and IBT personnel, and a similar intra-
building cable was installed in the Wabash 0. The remaining seven
connectorized cables were installed in underground ducts along the route
with five outside plant manhole splices located as indicated in Fig. 6.
Since there was no cable vault in the Brunswick Building, the cable en-
tering the building ran directly to the equipment bay.

Before the installation of 12-mm (.D. optical cable, a polyethylene
inner duct with an LD, of 24 mm was installed inside the existing old tile

CHICAGO PROJECT 1885

WABASH C.0.

X
CEF

BRUNSWICK BLDG.

[—
O MANHOLE

x CABLE SPLICE ¥
T TUNNEL -
CEFCABLE ENTRANCE &
G FACILITY 5
o -4
I w
& g
z 0
2 2
=3 >
<L
=

FRANKLINSTREET

FRANKLIN €.0.
Fig. 6 —Chicago Lightwave Project cable route.

duct by IBT personnel. The inner duct provided a controlled environ-
ment for the optical cable as well as a simple method of pressurizing
around the optical cable. No problems were encountered in installing
and splicing the inner duct. The optical cables were pulled into the inner
duct and spliced by Bell Laboratories with the assistance of IBT per-
sonnel, Special optical cable installation equipment was designed and
built by Bell Laboratories, including sheaves and a special reel and
reel-handling assembly, that allowed cable to be payed out in opposite
directions from an intermediate point. The two-way cable pull reduced
the cable pulling tension when the cables were placed. All 10 cables were
pulled in without any breakage in the installation process. The five cable
manhole splices and seven inside building cable splices were made in a
manner similar to that described previcusly.? The optical splices were
enclosed and well protected by a special case inside a modified splice
case. The splice cases also permitted pressurization continuity of the
inner duct.

V. PERFORMANCE OF THE INSTALLED MEDIUM

After cable installation and splicing was completed, loss measurements
were made on the two cable routes, Franklin-Brunswick and Wabash-
Franklin. Loss histograms for the 24 fibers in each cable route are shown
in Fig. 7. Based on these data and cable loss measurements alone, it is
estimated that cable splice losses average about 0.5 dB per splice. Since
the transmission distances are short in the Chicago route, the longest

1886 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

WABASH—FRANKLIN: 1.62 km
MEAN =83 dB/km

FRANKLIN-BRUNSWICK: 0.94 km

MEAN = 8.8 dB/km

\\

N

N

-]
NN
N

T,
N

N
DN

/7
i, — /:‘/

s ’/%,

A \\

; iR Wy

3l 7
N\

NUMBER

DR
O
NN

A

o]

0

8 7 8 2] 1
WABASH—FRANKLIN LOSS {dB/km) AT 0.82 um
FRANKLIN—-BRUNSWICK LOSS {dB/km AT 0.B2 um}

Fig. 7—Installed, spliced Chicago lightguide loss.

being about 2.6 km, neither the loss nor the bandwidth limit of the 8Ys-
tem is approached.

It is of interest to roughly estimate what the maximum regenerator
spacing could be at the DS3 rate for a system using the Chicago tech-
nology. In doing this, we assume the following average values:

Allowable loss at DS3 = 46.0 dB
Single fiber connector loss* = 0.5dB
Cable splice loss = (0.5dB
Average connectorized unspliced

cable length = 350m
Cabled fiber loss = 5.1dB/km

With these values, an average loss budget can be constructed (Table
I). The results indicate that a spacing of about 6.5 km, including building
cable, is achievable with this technology.t

V. SYSTEM PERFORMANCE

The Chicago Lightwave Communication System was fully cut over
on May 11, 1977 and has been carrying voice, data, and PMS to com-
mercial customers on a trial basis since that time. A repeat of loss mea-

* In Chicago, an improved version of the single-fiber connector reported previously (Refs.
7-9) was used.

t This is intended to provide a rough estimate of regenerator spacing. An actual system
design must account more carefully for loss distributions as well as for mean losses.

CHICAGO PROJECT 1887

Table | — Estimating regenerator spacing at the 44.7 Mb/s rate,
based on Chicago technology

Average loss budget

Item No. Loss (dB)
Single fiber connectors 4 2.0
Terminal cable splices 4 2.0
Bui]c]ing cables (2 X 130 m) 2 1.3
Outside cables {6.3 km} 18 32.2
Outside cable splices 17 8.5
46.0

surements on the installed spliced medium, made two weeks after the
initial measurements, showed no changes.

All spans except those used for video are continuously monitored. As
of mid-December, 1977, the system had no outage; 75 percent of the days
of operation had been error-free, 99.999 percent of seconds had been
error-free, and one laser failure had occurred in 75,000 cumulative device
hours, a record consistent with the expected mean time to failure of those
devices in excess of 100,000 hours.

Vil. ACKNOWLEDGMENTS

The work reported here, carried out under the auspices of AT&T, was
accomplished through the extensive efforts and many individual con-
tributions of WE, IBT, AT&T, and Bell Laboratories personnel. Its
success stands as a tribute to the work and cooperation of everyone in-
volved.

REFERENCES

1. I. Jacobs, “Atlanta Fiber System Experiment: Overview,” B.S.T.J., thia issue, pp.
1717-1721.

2. I Jacobs, “Lightwave Communications Passes Its First Test,” Bell Laboratories Record,
54, No. 11 (Dec. 1976), pp. 291-297.

3. M. I. Schwartz, R. A. Kempf, and W. B. Gardner, “Design and Characterization of an
Exploratory Fiber Optic Cable,” Second European Conference on Optical Fiber
Communications, Paris, Sept. 1976, pp. 311-314.

4. C. M. Miller, “A Fiber-Optic Cable Connector,” B.S.T.d., 54, No. 9 (Nov. 1375), pp.
1547-1555.

5. C. M. Miller and C. M. Schroeder, “Fiber Optic Array Splicing,” 1876 IEEE/OSA Con-
ference on Laser and Electro-Optical Systems, San Diego, May 1976.

6. M. J. Buckler and F. P. Partus, “Optical Fiber Transmission Properties Before and
After Cable Manufacture,” Digest of Topical Meeting on Optical Fiber Transmission
II, Williamsburg, Virginia, Feb. 22-24, 1977, p. WAL

7. J. 8. Cook and P. Runge, “An Exploratory Fiberguide Interconnection System,” Second
European Conference on Optical Fiber Communications, Paris, Sept. 1976, pp.
253.

8. P.Runge, L. Curtis, and W. C. Young, “Precision Transfer Molded Single Fiber Con-
nector Encapsulated Devices,” Digest of Topical Meeting on Optical Fiber Trans-
mission [I, Williamsburg, Va., Feb. 22-24, 1977, p. WA4.

9. P. Runge and S. Cheng, “Demountable Single Fiber Optic Connectors -and Their
Measurement on Location,” B.S.T.J., this 1ssue, pp. 1771-1780.

1888 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Contributors to This Issue

Charles A. Brackett, BSEE, 1962, MS.E.E, 1963, M.S. (Physics),
1966, Ph.D., 1968, University of Michigan; Bell Laboratories, 1968—.
Mzr. Brackett has studied microwave circuits and low frequency phe-
nomena in IMPATT oscillators, GaAs lasers, the coupling of GaAs lasers
into optical fibers, receiver design for optical fiber communications, and
optical fiber data link design. Member, IEEE, Sigma Xi, Tau Beta Pi,
Eta Kappa Nu.

Michael J. Buckler, B.S.EE, 1971, M.S.E.E,, 1971, Georgia Institute
of Technology; Bell Laboratories, 1971—. Mr. Buckler has worked on
digital circuit and system design for high speed digital multiplexers and
test equipment. He is currently engaged in optical waveguide design,
analysis and characterization. Member, JEEE, OSA, Eta Kappa Nu.

F.S. Chen, B.S., 1951, National Taiwan University; M.S.E.E., 1955,
Purdue University; Ph.D. 1959, The Ohio State University; Bell Labo-
ratories, 1959—. Mr. Chen has worked in the development of ferrite
devices, masers, and optical modulators, and is presently engaged in
development of lightwave transmitter subsystems.

Steven Shui-uh Cheng, B.S., 1963, National Taiwan University;
M.S., 1967, Tufts University; Ph.D., 1970, California Institute of
Technology, all in physies; Bell Laboratories, 1971—. Between 1970 and
1971, Mr. Cheng participated in the first U.S. electron-position collid-
ing-beam experiment at Harvard University. Since joining Bell Labo-
ratories, he has worked on the millimeter waveguide system and recently
on the fiber-optic transmission system. He is currently supervisor of the
fiberguide applications group. Member, IEEE, American Physical So-
ciety, and Sigma Xi.

J. 8. Cook, B.E.E., M.S. (Electrical Engineering), 1952, The OQhio
State University. Bell Laboratories, 1952—. Mr. Cook has done research
in the fields of traveling-wave tubes, microwave propagation and devices,
antennas, and satellite communications. He has been working with op-
tical fiber communication systems in recent years and currently heads
a department responsible for development of optical fiber connectors
and the special technology of optical fiber telecommunication systems.
Senior member, IEEE, member, 0SA, SPIE, Eta Kappa Nu, Tau Beta
Pi, Sigma Xi.

1889

Frank V. DiMarcello, B.S. (Geochemistry) 1960, Pennsylvania State
University; M.S., (Ceramics) 1966, Rutgers University; Bell Laboratories,
1960—. Mr. DiMarcello has been involved in the development of glazes
for ceramic substrates and the preparation and property evaluation of
ceramics and glasses for various applications. He is currently involved
in the preparation of glass-fiber optical waveguides.

Paul W, Dorman, B.S. (E.E.}, 1972, Newark College of Engineering;
Bell Laboratories, 1964—. Mr. Dorman’s work has recently included
studies of modulation characteristics of (Al,Ga)As injection lasers and
development of practical modulator circuitry. Member, IEEE, Eta
Kappa Nu, Tau Beta Pi.

Adrian R. Hartman, B.S. (E.E.}, 1965, University of Pittsburgh; S.M.
(E.E.), 1966, Prof. E.E., 1967, and Ph.D. (E.E.}, 1970, Massachusetts
Institute of Technology; Bell Laboratories, 1970—. Mr. Hartman has
worked in the areas of solar energy conversion, low-temperature pho-
toluminescence, GaP light-emitting diodes, GaAlAs double hetero-
structure lasers, optical detectors, bipolar integrated circuits, and
gswitching devices. He is currently Supervisor of the Silicon Device
Technology Group. Member, IEEE and Sigma Xi.

Ira Jacobs, B.S. (physics), magna cum laude, 1950, City College of New

York; M.S. (physics), 1952, Ph.D. (physics), 1955, Purdue University;
Bell Laboratories, 1955 Mr. Jacobs became supervisor in the Com-
munications and Electromagnetic Analysis Department of Bell Labo-
ratories in 1960, participating in satellite communication and radar
cross-section studies. In 1962 he was appointed Head of the Military
Communication Analysis Department, with responsibilities for projects
in satellite communication, deep space communication, and signal
processing. He became Head of the Digital Transmission Analysis De-
partment in 1967, where he managed design work on digital transmission
systems. He was appointed Director of the Transmission Systems Re-
search Center in 1969. There he was in charge of departments performing
studies on transmission objectives, performance measurement, and
human factor analysis. In 1970 he became Director of the Transmission
Operations and Analysis Center, managing departments involved in
transmission systems maintenance, testing, and performance analysis.
From 1971 to 1976, Mr. Jacobs served as Director of the Digital Trans-
mission Laboratory where his respensibilities included the development
of planning tools and digital transmission facilities including the T1/0S,

1890 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

T2, and T4M systems. In 1976, Mr. Jacobs became Director of the
Wideband Transmission Facilities Laboratory, in charge of the design
and development of digital transmission systems using optical fiber and
coaxial cables, and the provision of the network services for radio and
television broadcasting. Member, American Physical Society, IEEE,
American Association for the Advancement of Science, Phi Beta Kappa,
Sigma Xi, Sigma Pi Sigma.

Richard S. Kerdock, RCA Institutes, 1966; B.S.E.E., 1972,
Polytechnic Institute of Brooklyn; MS.E.E., 1975, Polytechnic Institute
of New York; U.S. Air Force 1957-1961; New York Telephone Co.
1961-1962; Federal Electric Corp. (ITT) 1962-1963; Bell Laboratories
1966—. Since joining Bell Laboratories, Mr. Kerdock has done circuit
and systems work on digital transmission systems. He worked on the
development of the T2 Digital Line, and is presently involved in ex-
ploratory and early development of fiberguide transmission systems.

Theodore L. Maione, B.S.E.E, 1952, Massachusetis Institute of
Technology; RCA, 1952; U.S. Army Signal Corps, 1952-1954; Commu-
nications Development Training Program, 1954-1956; Bell Laboratories,
1954—. Mr. Maione has worked on submarine cable systems and re-
peater design, general purpese communications test equipment for
carrier and data systems, the T2 Digital Line, and lightwave communi-
cations system development. He currently has responsibility for light-
wave terminal circuits and M12 and M13 multiplexes.

Hans Melchior, Dipl. E.E. and Dr. Sc. Tech., 1959 and 1965, Swiss
Federal Institute of Technology, Zurich; Department of Advanced
Electrical Engineering, Swiss Federal Institute of Technology, 1960-
1965; Bell Laboratories, 1965-1976; Swiss Federal Institute of Tech-
nology, 1976—. As an Assistant and Research Assoclate at the Swiss
Federal Institute, Mr. Melchior worked on noise problems of p-n junc-
tions at breakdown, high injection effects, second breakdown in diodes
and transistors, and tunnel diode mixers and oscillators. At Bell Labo-
ratories, he worked on the development of high-speed avalanche pho-
todiodes, thin-film photoconductors and noise problems in MOS de-
vices.

CONTRIBUTORS TO THIS ISSUE 1891

Calvin M. Miller, B.S.E.E., 1963, North-Carolina State University
at Raleigh; M.S.E., 1966, Akron University; Goodyear Aerospace Cor-
poration, 1963-1966; Martin Marietta Company, 1966-1967; Bell Lab-
oratories, 1967—. Before joining Bell Laboratories, Mr. Miller designed
electronic and optical components of side-locking radar processor
equipment and control systems for reentry vehicles and aircraft flying
simulators. At Bell Laboratories, Mr. Miller developed equipment and
methods for transmission line characterization. His present interests
are in the area of fiber optics as a practical transmission medium. He is
supervisor of an exploratory optical fiber splicing group. Member,
O8SA.

Joe H. Mullins, B.S. (Physics), 1950, Texas A&M University; M.S,
(Physics), 1954, Ph.D. (Physics), 1959, California Institute of Technol-
ogy; California Institute of Technology, 1959-1967; Bell Laboratories,
1967—. Mr. Mullins worked on the Millimeter Waveguide System
{WT4) during his first years at Bell Laboratories. In 1972, he was ap-
pointed Head, Fiberguide Trunk Development Department, with pri-
maty responsibility for the T2 transmission system, an intercity paired
cable digital facility which was introduced into the Bell System in that
year. In 1978 he became Director, Switching Operations Systems Lab-
oratory. Member, American Institute of Physics, American Physical
Society, American Association for the Advancement of Science, Sigma
Xi; Senior member, IEEE.

Daryl L. Myers, B.S., 1953, Carnegie Institute of Technology;
Western Electric, 1953—. Mr. Myers transferred from the Baltimore
Works to the Product Engineering Control Center in Atlanta in 1969 and
was assigned to the lightguide project in 1973. He is presently a Senior
Staff Engineer responsible for fiber-drawing process development.

Fred P. Partus, Ph.D, 1971, Tulane University; Western Electri¢,
1971—. Mr. Partus’ work on the lightguide project began in 1973 with
internships at Bell Laboratories in Atlanta and Murray Hill, He is
presently a Senior Engineer responsible for the process developments
related to preform fabrication at the Western Electric Product Engi-
neering Control Center in Atlanta.

1892 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

W. A, Reenstra, B.S.EE, 1947, M.S. (Physics), 1949, Rensselaer
Polytechnic Institute; Bell Laboratories, 1942-1956; AT&T, 1956-1361;
Bell Laboratories, 1961—. Mr. Reenstra’s first assignment with Bell
Laboratories was in the Switching Research Department, where he
worked on the remote line concentrator. In 1961 he was appointed su-
pervisor in the Systems Engineering Department and in 1965 became
Head, Military Switching Systems Department. He is presently Head,
Loop Plant Construction and Installation Department. Member, IEEE,
American Physical Society.

Henry W. Reinbold, A.T., 1961, Temple University; B.S., 1973,
Fairleigh Dickinson University; Bell Laboratories, 1961—. After joining
Bell Lahoratories in 1961, Mr. Reinbold became involved with ruby
maser development, with emphasis on material studies. Later he worked
with electro-optic light modulators and optical communication links.
His present activity includes design of test apparatus used in evaluating
various lightwave devices and subsystems.

Peter K. Runge, Dipl. Ing., 1963, Dr. Ing., 1967, Technical University
of Braunschweig, Germany; Bell Laboratories, 1967—. Mr. Runge has
been engaged in research of He-Ne and organic dye layers and explora-
tory development of fiber optic repeaters and single-fiber optic con-
nectors. He is currently Supervisor of the Fiberguide Technology Group
and is responsible for the development of single-fiber optic connec-
tors.

M. R. Santana, B.S.E.E., 1970, University of Hartford; M.S.E.E,,
1971, Georgia Institute of Technology; Bell Laboratories, 1970—. Mr.
Santana has been continuously involved in cable design and development
in the Loop Transmission Division. At present he is involved in optical
fiber cable design, analysis, and testing. Member, IEEE, Kappa Mu.

M. J. Saunders, B.S. (Physics), 1950 and M.S. (Physics), 1952, Uni-
versity of Virginia; Ph.D. (Physics), 1956, University of Florida; Bell
Laboratories, 1956—. Mr. Saunders has worked on a variety of optical
problems and is currently investigating methods of determining the
refractive index profiles of optical fibers and preforms. Member, Optical
Society of America, New York Academy of Sciences, American Associ-
ation for the Advancement of Sciences, and the Federation of American
Scientists.

CONTRIBUTORS TO THIS ISSUE 1893

David P. Schinke, B.S., 1963, Central Methodist College; Ph.DD.,
The University of Kansas; Bell Laboratories, 1968—. Mr. Schinke’s fields
of interest have included quantum electronics, thin film optics, and
avalanche photodetectors.

Thomas E, Seidel, B.S. (Physics), 1957, St. Joseph’s College, Pa.; M.S.
(Physics), 1959, U. of Notre Dame; Ph.D. (Physics), 1965, Stevens In-
stitute of Technology; RCA, 1959-1965; Bell Laboratories, 1965—. At
Bell Laboratories, Mr. Seidel has worked on high field carrier transport,
ion implantation and gettering phenomena in silicon and their device
applications to microwave (IMPATT) devices, bipolar and MOS integrated
circuits. In 1977, he held a teaching-research position at Cal Tech’s
Applied Physics Department. Member, American Physical Society, IEEE,
ECS, and Bohmische Physical Society.

Morton 1. Schwartz, B.E.E., 1956, City College of New York; M.E.E.,
1959, Eng. Sci.D. 1964, New York University; ITT Laboratories,
1956-1962; Bell Laboratories, 1961—. At ITT, Mr. Schwartz’ principal
efforts were in the field of radar systems studies and design. At Bell
Laboratories, he has been engaged in theoretical and experimental work
in radar, sonar, and communications. Since 1972, he has been responsible
for the exploratory development of optical fiber communication media
which led to the Atlanta Lightwave Communications Experiments and
to the Chicago Lightwave Communication Project. He is currently re-
sponsible for the development of optical fiber communications
media.

Darrell D. Sell, B.A. 1962, St. Olaf College; Ph.D. (Physics), 1966,
Stanford University, Bell Laboratories, 1967—. Mr. Sell joined Bell
Laboratories in'the physical research area and for six years carried out
optical spectroscopic research on materials. He transferred to lightwave
development work in 1973, where he has been involved in system design,
testing, field evaluations, and lightwave regenerator development.

Paul W, Shumate, Jr., B.S. (physics), 1963, College of William and
Mary; Ph.D. (physics), 1968, University of Virginia; Bell Laboratories,
1969—. Mr. Shumate’s first assignments at Bell Laboratories included
research on the physical properties of magnetic bubble materials and
magnetic bubble memory devices. He transferred to the Integrated

1894 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Circuit Marketing and Applications Department in 1973, where he
studied memory applications for integrated circuits. In 1975 he became
Supervisor in the Lightwave Devices and Subsystems Department, where
he directs the design and packaging of gallium-arsenide laser trans-
mitters for use in future lightwave communications systems. Member,
American Physical Society, Phi Beta Kappa, Sigma Xi, IEEE. Member
of the IEEE Magnetics Advisory Committee and editor of the IEEE
Transactions on Magnetics.

Richard G. Smith, B.S. EE, 1958, M.S. E.E,, 1859, Ph.D., 1963,
Stanford University; Bell Laboratories, 1963—. Mr. Smith has been
engaged in research and development in the areas of solid-state lasers,
nonlinear optics, and electro-optic devices, and most recently in fiber
optics. His current work involves the development of detectors and re-
ceivers for lightwave applications. Member, AIP, IEEE, Phi Beta Kappa,
Tau Beta Pi.

John Williams, B.S. (Cer. E.) 1850, M.S. (Cer. E.), 1951, Prof. Degree
(Cer. E.) 1969, University of Missouri-Rolla; Bell Laboratories, 1951—.
Mr. Williams has been engaged in ceramic materials research and de-
velopment of substrates for carbon film resistors and thin film circuits,
ceramic dielectrics for microwave windows, and insulators in ocean ca-
bles. He is presently involved in the preparation of glass-fiber optical
waveguides. Fellow, American Ceramic Society; Member, National In-
stitute of Ceramic Engineers, ASTM-F-1.

Dan H, Wolaver, B.S.E.E., 1964, Rensselaer Polytechnic Institute;
M.S.E.E,, 1966, Ph.D. E.E., 1969, Massachusetts Institute of Technology,
Bell Laboratories, 1969—. Mr. Wolaver has worked on margin moni-
toring in the T4M digital repeater. He is currently working on timing
recovery and fault locating in fiberguide transmission systems. Member,
Eta Kappa Nu, Tau Beta Pi, Sigma Xi, IEEE.

CONTRIBUTORS TO THIS ISSUE 1895

THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 57 July-August 1978 Number 6, Part 2

Copyright © 1978 Amcrican Telrphone and Telegraph Company. Printed in US.A.

UNIX Time-Sharing System:

Preface

By T. H. CROWLEY
(Manuscript received April 18, 1878)

Since 1962, The Bell System Technical Journal has published over
90 articles on computer programming. Although that number is not
insignificant, it is only about 6 percent of all the articles published in
the B.S.T.J. during that period. Publications in the B.S.T.J. tend to
reflect the amount of activity in many areas of technology at Bell
Laboratories, but that has certainly not been true for computer pro-
gtamming work. Better indicators of the importance of program-
ming for current Bell Laboratories work are the following:

(/) 25 percent of the technical staff spent more than 50 percent of
their time on programming. or related work, in 1977.
(i) 25 percent of the professional staff recruited in 1977 majored
in computer science.
(iii) 40 percent of the employees entering the Bell Laboratories
Graduate Study Program in 1977 are majoring in computer
science.

Programming activities under way at Bell Laboratories cover a
very broad spectrum. They range from basic research on compiler-

1897

generating techniques to the maintenance of Bell Laboratories-
developed programs now in routine use at operating telephone com-
panies. They include writing of real-time control programs for
switching systems, development of time-shared text editing facili-
ties, and design of massive data-base systems. They involve work
on microprocessors, minicomputers, and maxicomputers. They
extend from the design of sophisticated programming tools to be
used only by experts to the delivery of program products to be used
by clerks in operating telephone companies. They include program-
ming for computers made by all the major computer hardware ven-
dors as well as programming for, special-purpose computers designed
at Bell Laboratories and built b/ the Western Eleciric Company.

Because computer science is still in an early stage of development,
no well-formulated theoretical structure exists around which prob-
lems can be defined and results organized. “Elegance™ is of prime
importance, but is not easily defined or described. Reliability and
maintainability are important, but they also are neither precisely
defined nor easily measured.

No single issue of the B.S.T.J. can characterize all of Bell Labora-
tories software activities. However, by using the UNIX* operating
system as a central theme, it has been possible to assemble a
number of related articles that do provide some idea of the impor-
tance of computer programming to Bell Laboratories. The original
design of the UNIX system was an elegant piece of work done in the
research area, and that design has proven useful in many applica-
tions. The range of applications described here typifies much of Bell
Laboratories software work with the notable omissions of real-time
programming for switching control systems and the design of very
large data-base systems. Given the growing importance of comput-
ers to the Bell System and the growing importance of programming
to the use of computers, it is certain that computer programming
will continue to grow in importance at Bell Laboratories.

* UNIX is a trademark of Bell Laboratories.

1898 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright ® 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. 5. A.

UNIX Time-Sharing System:

Foreword

by M. D. McILROY, E. N. PINSON, and B. A. TAGUE
{Manuscript received March 17, 1973)

Intelligence .. is the faculty of making artificial objects, especially tools
to make tools. — Bergson

UNIX is a trademark for a family of computer operating systems
developed at Bell Laboratories. Over 300 of these systems, which
run on small to large minicomputers, are used in the Bell System for
program development, for support of telephone operations, for text
processing, and for general-purpose computing, even more have
been licensed to outside users. The papers in this issue describe
highlights of the UNIX family, some important uses, and some UNIX
software tools. They also attempt to convey a feeling for the partic-
ular style or outlook on program design that is both manifest in
uNIX software and promoted by it.

The UNIX story begins with Ken Thompson’s work on a cast-off
PDP-7 minicomputer in 1969. He and the others who soon joined
him had one overriding objective: to create a computing environ-
ment where they themselves could comfortably and effectively pur-
sue their own work—programming research. The result is an
operating system of unusual simplicity, generality, and, above all,
intelligibility. A distinctive software style has grown upon this base.
UNIX software works smoothly together, elaborate computing tasks
are typically composed from loosely coupled small parts, often
software tools taken off the shelf.

The growth and flowering of UNIX as a highly effective and reliable

1899

time-sharing system are detailed in the prizewinning ACM paper by
Ritchie and Thompson that has been updated for this volume. That
paper describes the operating system proper and lists the important
utility programs that have been adopted by descendant systems as
well. There is no more concise summary of the UNIX time-sharing
system than the oft-quoted passage from Ritchie and Thompson:

It offers a number of features seldom found even in larger operating systems,
including
(/) A hierarchical file system incorporating demountable volumes,
(ii) Compatible file, device, and inter-process 1/0,
(sii) The ability to initiate asynchronous processes,
(/v) System command language sclectable on a per-user basis,
(v} Over 100 subsystems including a dozen languages.

Implementation details are covered in a separate paper by Thomp-
son. Matters of efficiency and design philosophy are considered in a
retrospective paper by Ritchie.

The most visible system interface is the “shell,” or command
language interpreter, through which other programs are called into
execution singly or in combination. The shell, described by
Bourne, is actually a very high level programming language that
talks about programs and files. Particularly noteworthy are its nota-
tions for input-output connections. By making it easy to combine
programs, the shell fosters small, coherent software modules.

The UNIX system and most software that runs under it are pro- .
grammed in the general-purpose procedural language C. C provides
almost the full capability of popular instruction sets in a setting of
structured code, structured data, and modular compilation. C is
easy to write and (when well-written) easy to read. The language
and the philosophy behind it are covered by Ritchie, Johnson, Lesk,
and Kernighan.

Until mid-1977, the UNIX operating system and its variants ran
only on computers of the Digital Equipment Corporation PDP-11
family. In an interesting exercise in portability, Johnson and
Ritchie exploited the machine-independence of C to move the
operating system and the bulk of its software to a quite different
Interdata machine. Careful parameterization and some repackaging
have made it possible to use largely identical source code for both
machines.

Variations

Three papers by Bayer, Lycklama, iand Christensen describe

1900 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

variations on the UNIX operating system that were developed to
accomm odate real-time processing, microprocessor systems, and
laboratory support applications. They were motivated by the desire
to retain the benefits of the UN1X system for program development
while offering different trade-offs to the user in real-time response,
hardware requirements, and resource management for production
programs, Many UNIX utilities—especially those useful for writing
programs and processing text—will run under any of these variant
systems without change.

The MERT operating system (Lycklama and Bayer) provides a
generalized kernel that permits extensive interprocess commurnica-
tion and direct user control of peripherals, scheduling, and storage
management. Applications with stringent requirements for real-
time response, and even different operating systems (in particular,
UNIX)} can be operated simultaneously under the MERT kernel.

The microprocessor version of the UNIX operating system (Lyck-
lama) and the Satellite Processing System that shares process execu-
tion between one big and one tiny machine (Lycklama and
Christensen) involve other trade-offs between efficiency and
resource requirements. Both also may be looked upon as vehicles
for applications in which one wishes to delegate some sticky part of
the job—frequently involving real-time demands—to a dedicated
machine. The application described later in the issue by Won-
siewicz, Storm, and Sieber is a particularly interesting example
involving UNIX, the microprocessor system, and the Satellite Pro-
cessing System.

Software Tools

Perhaps the most widely used UNIX programs are the utilities for
the editing, transformation, analysis, and publication of text of all
sorts. Indeed, the text-processing utilities covered by Kernighan,
Lesk, and Ossanna were used to produce this issue of the B.S.T.J.
Some more unusual applications that become possible where text
processors and plenty of text are ready at hand are described by
McMahon, Morris, and Cherry.

UNIX utilities are usually thought of as tools—sharply honed pro-
grams that hetp with generic data processing tasks. Tools were
often invented to help with the development of UNIX programs and
were continually improved by much trial, error, discussion, and
redesign, as was the operating system itself. Tools may be used in
combination to perform or construct specific applications.

FOREWORD 1901

Sophisticated tools to make tools have evolved. The basic
typesetting programs nroff and troff covered by Kernighan, Lesk,
and Ossanna help experts define the layouts for classes of docu-
ments; the resulting packages exhibit only what is needed for one
particular type of document and are easy for nonspecialists to use.
Johnson and Lesk describe Yacc and Lex, tools based in formal
language theory that systematize the construction of compiler “front
ends.” Language processors built with the aid of these tools are typ-
ically more precisely defined and freer from error than hand-built
counterparts.

The UNIX system was originally designed to help build research
software. What worked well in a programming laboratory also
worked well on modest projects to develop minicomputer-based sys-
tems in support of telephone company operations. Such projects are
treated in the final group of papers and are more fully introduced by
Luderer, Maranzano, and Tague. The strengths of this environ-
ment proved equally attractive to large programming projects build-
ing applications for large computers with operating systems that
were less tractable for program development. The PWB/UNIX exten-
sions discussed by Dolotta, Haight, and Mashey provide such pro-
jects with a “front -end” for comfortable and effective program
development and documentation, together with administrative tools
to handle massive projects.

Style

A number of maxims have gained currency among the builders
and users of the UNIX system to explain ‘and promote its characteris-
tic style:

(i) Make each program do one thing well. To do a new job,
build afresh rather than complicate old programs by adding
new “features.”

(ii) Expect the output of every program to become the input to
another, as yet unknown, program. Don’t clutter output
with extraneous information. Avoeid stringently columnar or
binary input formats. Don’t insist on interactive input.

(iii) Design and build software, even operating systems, to be
tried early, ideally within weeks. Don’t hesitate to throw
away the clumsy parts and rebuild them.

(iv) Use tools in preference to unskilled help to lighten a

1902 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

programming task, even if you have to detour to build the
tools and expect to throw some of them out after you've
finished using them.

Hlustrations of these maxims are legion:

{i) Surprising to outsiders is the fact that UNIX compilers pro-
duce no listings: printing can be done better and more flexi-
bly by a separate program.

(ii) Unexpected uses of files abound: programs may be compiled
to be run and also typeset 1o be published in a book from the
same text without human intervention; text intended for
publication serves as grist for statistical studies of English to
help in data compression or cryptography; mailing lists turn
into maps. The prevalence of free-format text, even in
“data™ files, makes the text-processing utilities useful for
many Strictly data processing functions such as shuffling
fields, counting, or collating.

{ii{) The UNIX system and the C language themselves evolved by
deliberate steps from early working models that had at most
a few man-months invested in them. Both have been fully
recoded several times by the same people who designed
them, with as much mechanical aid as possible.

(iv) The use of tools instead of labor is nicely illustrated by
typesetting. When a paper needs a new layout for some rea-
son, the typographic conventions for paragraphs, subhead-
ings, etc. are entered in one place, then the paper is run off
in the new shape without retyping a single word.

To many, the UNIX systems embody Schumacher’s dictum,
“Small is beautiful.” On the other hand it has been argued by
Brooks in The Mythical Man Month, for example, that small is
unreal; the working of a handful of people doesn’t extrapolate to
the world of big jobs. We agree only in part, for the present
volume demonstrates with unusual force another important factor;
intelligently applied computing technology can compress jobs that
used to be big to manageable size. The first system had only about
5 man-years’ work in it {including operating system, assembler,
Fortran, and many other utilities) when it began to be used for Bell
System projects. It was, to be sure, a taut package that lacked the
gamut of libraries, languages, and support for peripheral equipment
typical of a large commercial system. But the base was unusually

FOREWORD 1803

pliable and responsive; new facilities usually could be added with
much less work than is required by corresponding features in other
systems.

The UNIX operating system, the C programming language, and the
many toois and techniques developed in this environment are
finding extensive use within the Bell System and at universities,
government laboratories, and other commercial installations. The
style of computing encouraged by this environment is influencing a
new generation of programmers and system designers. This,
perhaps, is the most exciting part of the UNIX story, for the
increased productivity fostered by a friendly environment and qual-
ity tools is essential to meet ever-increasing demands for software.
UNIX is not the end of the road in operating system innovations, but
it has been a significant step that Bell Laboratories people are proud
to have originated.

1904 THE BELL 3YSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978:

Copyright ® 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S, A.

The UNIX Time-Sharing Systemt

by D. M. RITCHIE and K. THOMPSON
{(Manuscript received April 3, 1978)

UNIX* is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipmenr Corporation PDP-11 and the Interdata 8/32
computers. It offers a number of features seldom found even in larger
operating systems, including

(i) A hierarchical file system incorporating demountable volumes,
(ii) Compatible file, device, and inter-process /0,
(iii) The ability to initiate asynchronous processes,
(iv) System command language selectable on a per-user basis,
(v) Over 100 subsystems including a dozen languages,
(vi) High degree of portability.

This paper discusses the nature and implementation of the file system
and of the user command interface.

I. INTRODUCTION

There have been four versions of the UNIX time-sharing system.
The earliest (circa 1969-70) ran on the Digital Equipment Corpora-
tion PDP-7 and -9 computers. The second version ran on the unpro-

+ Copyright 1974, Association for Computing Machinery, Inc., reprinted by permis-
sion. This is a revised version of an article that appeared in Communications of the
ACM, /7, No. 7 (July 1974), pp. 365-375. That article was a revised version of a pa-
per presented at the Fourth acM Symposium on Operating Systems Principles, 18M
T;l_?mas 1. Watson Research Center, Yorkiown Heights, New York, October 15-17,
1973,

* uNIX IS a trademark of Bell Laboratories.

1905

tected PDP-11/20 computer. The third incorporated multiprogram-
ming and ran on the PDP-11/34, /40, /45, /60, and /70 computers;
it is the one described in the previously published version of this
paper, and is also the most widely used today. This paper describes
only the fourth, current system that runs on the PDP-11/70 and the
Interdata 8/32 computers. In fact, the differences among the vari-
ous systems is rather small, most of the revisions made to the origi-
nally published version of this paper, aside from those concerned
with style, had to do with details of the implementation of the file
system.

Since PDP-11 UNIX became operational in February, 1971, over
600 installations have been put into service. Most of them are
engaged in applications such as computer science education, the
preparation and formatting of documents and other textual material,
the collection and processing of trouble data from various switching
machines within the Bell System, and recording and checking tele-
phone service orders. Our own installation is used mainly for
research in operating systems, languages, computer networks, and
other topics.in computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to demon-
strate that a powerful operating system for interactive use need not
be expensive either in equipment or in human effort: it can run on
hardware costing as little as $40,000, and less than two man-years
were spent on the main system software. We hope, however, that
users find that the most important characteristics of the systenr are
its simplicity, elegance, and ease of use.

Besides the operating system proper, sOme major programs avail-
able under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs2 3

Dozens of languages including Fortran 77, Basic, Sno-
bol, APL, Algol 68, M6, TMG, Pascal

There is a host of maintenance, utility, recreation and novelty pro-
grams, all written locally. The UNIX user community, which
numbers in the thousands, has contributed many more programs
and languages. It is worth noting that the system is totally self-
supporting. All UNIX software is maintained on the system; like-
wise, this paper and all other documents in this issue were generated
and formatted by the UNIX editor and text formatting programs.

1806 THE BELL SYSTEM TEGHNIGAL JOURNAL, JULY-AUGUST 1978

Il. HARDWARE AND SOFTWARE ENVIRONMENT

The pDp-11/70 on which the Research UNIX system is installed is a
16-bit word (8-bit byte) computer with 768K bytes of core memory;
the system kernel occupies 90K bytes about equally divided between
code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space
for 1/0 buffers and system tables; a minimal system capable of run-
ning the software mentioned above can require as little as 96K bytes
of core altogether. There are even larger installations; see the
description of the PWB/UNIX systems,%5 for example. There are also
much smaller, though somewhat restricted, versions of the system.5

Our own pDP-11 has two 200-Mb moving-head disks for file sys-
tem storage and swapping. There are 20 variable-speed communica-
tions interfaces attached to 300- and 1200-baud data sets, and an
additional 12 communication lines hard-wired to 9600-baud termi-
nals and satellite computers. There are also several 2400- and
4800-baud synchronous communication interfaces used for
machine-to-machine file transfer. Finally, there is a variety of mis-
cellaneous devices including nine-track magnetic tape, a line printer,
a voice synthesizer, a photolypesetter, a digital switching network,
and a chess machine.

The preponderance of UNIX software is written in the above-
mentioned C language.” Early versions of the operating system
were wrilten in assembly language, but during the summer of 1973,
it was rewritten in C. The size of the new system was about one-
third greater than that of the old. Since the new system not only
became much easier to understand and to modify but also included
many functional improvements, including multiprogramming and
the ability to share reentrant code among several user programs, we
consider this increase in size quite acceptable.

tll. THE FILE SYSTEM

The most important role of the system is to provide a file system.
From the point of view of the user, there are three kinds of files:
ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for
example, symbolic or binary (object) programs. No particular

UNIX TIME-SHARING SYSTEM 1807

structuring is expected by the system. A file of text consists simply
of a string of characters, with lines demarcated by the newline char-
acter. Binary programs are sequences of words as they will appear in
core memory when the program starts executing. A few user pro-
grams manipulate files with more structure; for example, the assem-
bler generates, and the loader expects, an object file in a particular
format. However, the structure of files is controlled by the pro-
grams that use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and
the files themselves, and thus induce a structure on the file system
as a whole. Each user has a directory of his own files; he may also
create subdirectories to contain groups of files conveniently treated
together. A directory behaves exactly like an ordinary file except
that it cannot be written on by unprivileged programs, so that the
system controls the contents of directories. However, anyone with
appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of
these is the root directory. All files in the system can be found by
tracing a path through a chain of directories until the desired file is
reached. The starting point for such searches is often the root.
Other system directories contain all the programs provided for gen-
eral use; that is, all the commands. As will be seen, however, it is
by no means necessary that a program reside in one of these direc-
tories for it to be executed.

Files are named by sequences of 14 or fewer characters. When
the name of a file is specified to the system, it may be in the form
of a path name, which is a sequence of directory names separated by
slashes, “/”, and ending in a file name. If the sequence begins with
a slash, the search begins in the root directory. The name
/alpha/beta/gamma causes the system to search the root for direc-
tory alpha, then to search alpha for beta, finally to find gamma in
beta. gamma may be an ordinary file, a directory, or a special file.
As a limiting case, the name “/" refers to the root itself.

A path name not starting with “/” causes the system to begin the
search in the user’s current directory. Thus, the name alpha/beta
specifies the file named beta in subdirectory alpha of the current
directory. The simplest kind of name, for example, alpha, refers to
a file that itself is found in the current directory. As another limit-
ing case, the null file name refers to the current directory.

1908 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

The same non-directory file may appear in several directories
under possibly different names. This feature is called finking; a
directory entry for a file is sometimes called a link. The UNIX sys-
tem differs from other systems in which linking is permitted in that
all links to a file have equal status. That is, a file does not exist
within a particular directory; the directory entry for a file consists
merely of its name and a pointer to the information actually describ-
ing the file. Thus a file exists independently of any directory entry,
although in practice a file is made to disappear along with the last
link to it.

Each directory always has at least two entries. The name *.” in
each directory refers to the directory itself. Thus a program may
read the current directory under the name “.” without knowing its
complete path name. The name “..” by convention refers to the
parent of the directory in which it appears, that is, to the directory
it which it was created.

The directory structure is constrained to have the form of a rooted
tree. Except for the special entries “ .” and “..”, each directory
must appear as an entry in exactly one other directory, which is its
parent. The reason for this is to simplify the writing of programs
that visit subtrees of the directory structure, and more important, to
avoid the separation of portions of the hierarchy. If arbitrary links
to directories were permitted, it would be quite difficult to detect
when the last connection from the root to a directory was severed.

3.3 Speciai flles

Special files constitute the most unusual feature of the UNIX file
system. Each supported I/0O device is associated with at least one
such file. Special files are read and written just like ordinary disk
files, but requests to read or write result in activation of the associ-
ated device. An entry for each special file resides in directory /dev,
although a link may be made to one of these files just as it may to
an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communi-
cation line, each disk, each tape drive, and for physical main
memory. Of course, the active disks and the memory special file are
protected from indiscriminate access.

There is a threefold advantage in treating I/0 devices this way:
file and device I/0 are as similar as possible; file and device names
have the same syntax and meaning, so that a program expecting a
file name as a parameter can be passed a device name; finally,

UNIX TIME-SHARING SYSTEM 1909

special files are subject to the same protection mechanism as regular
files.

3.4 Removable flle systems

Although the root of the file system is always stored on the same
device, it is not necessary that the entire file system hierarchy reside
on this device. There is a mount system request with two argu-
ments: the name of an existing ordinary file, and the name of a spe-
cial file whose associated storage volume (e.g., a disk pack) should
have the structure of an independent file system containing its own
directory hierarchy. The effect of mount is to cause references to
the heretofore ordinary file to refer instead to the root directory of
the file system on the removable volume. In effect, mount replaces
a leaf of the hierarchy tree (the ordinary file) by a whole new sub-
tree (the hierarchy stored on the removable volume). After the
mount, there is virtually no distinction between files on the remov-
able volume and those in the permanent file system. In our installa-
tion, for example, the root directory resides on a small partition of
one of our disk drives, while the other drive, which contains the
user’s files, is mounted by the system initialization sequence. A
mountable file system is generated by writing on its corresponding
special file. A utility program is available to create an empty file sys-
tem, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of
files on different devices: no link may exist between one file system
hierarchy and another. This restriction is enforced so as to avoid
the elaborate bookkeeping that would otherwise be required to
assure removal of the links whenever the removable volume is
dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some
untusual features. Each user of the system is assigned a unique user
identification number. When a file is created, it is marked with the
user [D of its owner. Also given for new files is a set of ten protec-
tion bits. Nine of these specify independently read, write, and exe-
cute permission for the owner of the file, for other members of his
group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user

1910 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

identification (hereafter, user 1D) of the current user to that of the
creator of the file whenever the file is executed as a program. This
change in user ID is effective only during the execution of the pro-
gram that calls for it. The set-user-1D feature provides for privileged
programs that may use files inaccessible to other users. For exam-
ple, a program may keep an accounting file that should neither be
read nor changed except by the program itself. If the set-user-ID bit
is on for the program, it may access the file although this access
might be forbidden to other programs invoked by the given
program’s user. Since the actual user 1D of the invoker of any pro-
gram is always available, set-user-ID programs may take any meas-
ures desired to satisfy themselves as to their invoker’s credentials.
This mechanism is used to allow users to execute the carefully writ-
ten commands that call privileged system entries. For example,
there is a system entry invokabie only by the “super-user” (below)
that creates an empty directory. As indicated above, directories are
expected to have entries for *.” and "..”. The command which
creates a directory is owned by the super-user and has the set-user-
1D bit set. After it checks its invoker’s authorization 1o create the
specified directory, it creates it and makes the entries for “.” and

Because anyone may set the set-user-ID bit on one of his own
files, this mechanism is generally available without administrative
intervention. For example, this protection scheme easily solves the
MOO accounting problem posed by “Aleph-null.”8

The system recognizes one particular user ID (that of the “super-
user”) as exempt from the usual constraints on file access; thus (for
exampie), programs may be wrillen to dump and reload the file sys-
tem without unwanted interference from the protection system.

3.6 /O calls

The system calls to do [/O are designed to eliminate the
differences between the various devices and styles of access. There
is no distinction between “random™ and “sequential” 1/0, nor is any
logical record size imposed by the system. The size of an ordinary
file is determined by the number of bytes wrilien on it; no predeter-
mination of the size of a file is necessary or possible.

To illustrate the essentials of 1/0, some of the basic calls are sum-
marized below in an anonymous language that will indicate the
required parameters without getting into the underlying complexi-
ties. FEach call to the system may potentially result in an error

UNIX TIME-SHARING SYSTEM 1911

return, which for simplicity is not represented in the calling
sequence.

To read or write a file assumed to exist already, it must be opened
by the following call:

filep = open{name, flag)

where name indicates the name of the file. An arbitrary path name
may be given. The flag argument indicates whether the file is to be
read, written, or “updated,” that is, read and written simultaneously.

The returned value filep is called a file descriptor. It is a small
integer used to identify the file in subsequent calls to read, write, or
otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a
create system call that creates the given file if it does not exist, or
truncates it to zero length if it does exist! create also opens the new
file for writing and, like open, returns a file descriptor.

The file system maintains no-locks visible to the user, nor is there
any restriction on the number of users who may have a file open for
reading or writing. Although it is possible for the contents of a file
to become scrambled when two users write on it simultaneously, in
practice difficulties do not arise. We take the view that locks are
neither necessary nor sufficient, in our environment, to prevent
interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained
by independent. processes. They are insufficient because locks in the
ordinary sense, whereby one user is prevented from writing on a file
that another user is reading, cannot prevent confusion when, for
example, both users are editing a file with an editor that makes a
copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the
logical consistency of the file system when two users engage simul-
taneously in activities such as writing on the same file, creating files
in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential.
This means that if a particular byte in the file was the last byte writ-
ten (or read), the next I/O call implicitly refers to the immediately
following byte. For each open file there is a pointer, maintained
inside the system, that indicates the next byte to be read or written.
If » bytes are read or written, the pointer advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)

1912 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

n = write (filep, buffer, count)

Up to count bytes are transmitted beiween the file specified by filep
and the byte array specified by buffer. The returned value n is the
number of bytes actually transmitted. In the write case, n is the
same as count excepl under exceptional conditions, such as 1/0
errors or end of physical medium on special files; in a read, how-
ever, n may without error be less than count. If the read pointer is
so near the end of the file that reading count characters would cause
reading beyond the end, only sufficient bytes are transmitted to
reach the end of the file; also, typewriter-like terminals never return
more than one line of input. When a read call returns with n equal
to zero, the end of the file has been reached. For disk files this
occurs when the read pointer becomes equal to the current size of
the file. It is possible to generate an end-of-file from a terminal by
use of an escape sequence that depends on the device used.

Bytes written affect only those parts of a file implied by the posi-
tion of the write pointer and the count; no other part of the file is
changed. If the last byte lies beyond the end of the file, the file is
made to grow as needed.

To do random (direct-access) 1/0 it is only necessary 10 move the
read or write pointer to the appropriate location in the file.

location = Iseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes
from the beginning of the file, from the current position of the
pointer, or from the end of the file, depending on base. offset may
be negative. For some devices (e.g., paper tape and terminals) seek
calls are ignored. The actual offset from the beginning of the fite to
which the pointer was moved is returned int location.

There are several additional system entries having to do with 1/0
and with the file system that will not be discussed. For example:
close a file, get the status of a file, change the protection mode or
the owner of a file, create a directory, make a link to an existing file,
delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains
only a name for the associated file and a pointer 1o the file itself.
This pointer is an integer called the i-number {for index number) of
the file. When the file is accessed, its i-number is used as an index

UNIX TIME-SHARING SYSTEM 1913

into a system table (the /-/ist) stored in a known part of the device
on which the directory resides. The entry found thereby (the file’s
i-node) contains the description of the file:

(i) the user and group-ID of its owner
(i) its protection bits
(iif) the physical disk or tape addresses for the file contents
(iv) its size
(v) time of creation, iast use, and last modification
(vi) the number of links to the file, that is, the number of times it
appears in a directory
(vii) a code indicating whether the file is a directory, an ordinary
file, or a special file.

The purpose of an open or create system call is to turn the path
name given by the user into an i-number by searching the explicitly
or implicitly named directories. Once a file is open, its device, i-
number, and read/write pointer are stored in a system table indexed
by the file descriptor returned by the open or create. Thus, during
a subsequent call to read or write the file, the descriptor may be
easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a
directory entry is made that contains the name of the file and the i-
node number. Making a link to an existing file involves creating a
directory entry with the new name, copying the i-number from the
original file entry, and incrementing the link-count field of the i-
node. Removing (deleting) a file is done by decrementing the link-
count of the i-node specified by its directory entry and erasing the
directory entry. If the link-count drops to 0, any disk blocks in the
file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a
number of 512-byte blocks logically addressed from 0 up to a limit
that depends on the device. There is space in the i-node of each file
for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger
than 10 blocks, the 11 device address points to an indirect block
containing up to 128 addresses of additional blocks in the file. Still
larger files use the twelfth device address of the i-node to point to a
double-indirect block naming 128 indirect blocks, each pointing to
128 blocks of the file. If required, the thirteenth device address is a
triple-indirect block. Thus files may conceptually grow ‘to
[(10+128+1282+128%):512)] bytes. Once opened, bytes num-
bered below 5120 can be read with a single disk access; bytes in the

1914 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

range 5120 to 70,656 require two accesses; bytes in the range 70,656
to 8,459,264 require three accesses; bytes from there to the largest
file (1,082.201,088) require four accesses. In practice, a device
cache mechanism (see below) proves effective in eliminating most
of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0
request is made to a file whose i-node indicates that it is special, the
last 12 device address words are immaterial, and the first specifies an
internal device name, which is interpreted as- a pair of numbers
representing, respectively, a device type and subdevice number.
The device type indicates which system routine will deal with /O on
that device; the subdevice number selects, for example, a disk drive
attached to a particular controller or one of several similar terminal
interfaces.

in this environment, the implementation of the mount system call
(Section 3.4) is quite straightforward. mount maintains a system
table whose argument is the i-number and device name of the ordi-
nary file specified during the mount, and whose corresponding value
is the device name of the indicated special file. This table is
searched for each i-number/device pair that turns up while a path
name is being scanned during an open or create; if a match is
found, the i-number is replaced by the i-number of the root direc-
tory and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be syn-
chronous and unbuffered. That is, immediately after return from a
read call the data are available; conversely, after a write the user’s
workspace may be reused. In fact, the system maintains a rather
complicated buffering mechanism that reduces greatly the number of
1/0 operations required to access a file. Suppose a write call is
made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk btock currently
resides in main memory; if not, it will be read in from the device.
Then the affected byte is replaced in the buffer and an entry is made
in a list of blocks to be written. The return from the write call may
then take place, although the actual /O may not be completed until
a later time. Conversely, if a single byte is read, the system deter-
mines whether the secondary storage block in which the byte is
located is already in one of the system’s buffers; if so, the byte can
be returned immediately. If not, the block is read into a buffer and
the byte picked out.

The system recognizes when a program has made accesses to
sequential blocks of a file, and asynchronously pre-reads the next

UNIX TIME-SHARING SYSTEM 1915

block: This significantly reduces the running time of most programs
while adding' little to system overhead.

A program that reads or writes files in units of 512 bytes has an
advantage over a program that reads or writes a single byte at a
time, but the gain is not immense;, it comes mainly from the
avoidance of system overhead. If a program is used rarely or does
no great volume of 1/0, it may quite reasonably read and write in
units as small as it wishes.

The notion of the i-list is-an unusual feature of UNIX. In practice,
this method of organizing the file system has proved quite reliable
and easy to deal with. To the system itself, one of its strengths is
the fact that each file has a short, unambiguous name related in a
simple way to the protection, addressing, and other information
needed to access the file. It also permits a quite simple and rapid
algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful infor-
mation and those free to be allocated are disjoint and together
exhaust the space on the device. This algorithm is independent of
the directory hierarchy, because it need only scan the linearly organ-
ized i-list. At the same time the notion of the i-list induces certain
peculiarities not found in other file system organizations. For exam-
ple, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status.
Charging the owner of a file is unfair in general, for one user may
create a file, another may link to it, and the first user may delete the
file. The first user is still the owner of the file, but it should be
charged to the second user. The simplest reasonably fair algorithm
seems to be to spread the charges equally among users who have
links to a file, Many installations avoid the issue by not charging
any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a
memory image, general register values, status of open files, current
directory and the like. An image is the current state of a pseudo-
computer.

A process is the execution of an image. While the processor is
executing on behalf of a process, the image must reside in main
memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process
forces it to be swapped out to the disk.

1916 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

The user-memory part of an image is divided into three logical
segments. The program text segment begins at location 0 in the vir-
tual address space. During execution, this segment is write-
protected and a single copy of it is shared among all processes exe-
cuting the same program. Al the first hardware protection byte
boundary above the program text segment in the virtual address
space begins a non-shared, writable data segment, the size of which
may be extended by a system call. Starting at the highest address in
the virtual address space is a stack segment, which automatically
grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a
new process can come into existence only by use of the fork system
call:

processid = fork ()

When fork is executed, the process splits into two independently
executing processes. The two processes have independent copies of
the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in
the parent, the returned processid actually identifies the child pro-
cess and is never 0, while in the child, the returned value is always
0.

Because the values returned by fork in the parent and child pro-
cess are distinguishable, each process may determine whether it is
the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same
system read and write calls that are used for file-system I/O. The
call:

filep = pipe()

returns a file descriptor filep and creates an inter-process channel
called a pipe. This channel, like other open files, is passed from
parent to child process in the image by the fork call. A read using a
pipe file descriptor waits until another process writes using the file
descriptor for the same pipe. At this point, data are passed between

UNIX TIME-SHARING SYSTEM 1917

the images of the two processes. Neither process need know that a
pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valu-
able tool (see Section 6.2}, it is not a completely general mechan-
ism, because the pipe must be set up by a common ancestor of the
processes involved.

5.3 Execution of programs

Another major system primitive is invoked by
execute (file, arg,, arg,, ... , arg)}

which requests the system to read in and execute the program
nameéd by file, passing it string arguments arg, , arg,, ..., arg,.
All the code and data in the process invoking execute is replaced
from the file, but open files, current directory, and inter-process
relationships are unattered. Only if the call fails, for example
because file could not be found or because ils execute-permission
bit was not set, does a return take place from the execute primitive,
it resembles a “jump” machine instruction rather than a subroutine
call.

5.4 Process synchronization
Another process control system call:
processid = wait (status)

causes its caller to suspend execution until one of its children has
completed execution. Then wait returns the processid of the ter-
minated process. An error return is taken if the calling process has
no descendants. Certain status from the child process is also avail-
able.

5.5 Termination
Lastly:
exit (status)

terminates a process, destroys its image, closes its open files, and
generally obliterates it. The parent is notified through the wait
primitive, and status is made available to it. Processes may also

1918 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

terminate as a result of various illegal actions or user-generated sig-
nals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with
the aid of a program cailed the shell. The shell is a command-line
interpreter: it reads lines typed by the user and interprets them as
requests to execute other programs. (The shell is described fully
elsewhere,? so this section will discuss only the theory of its opera-
tion.) In simplest form, a command line consists of the command
name followed by arguments to the command, all separated by
spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into
separate strings. Then a file with name command is sought; com-
mand may be a path name including the *“/” character to specify
any file in the system. If command is found, it is brought into
memory and executed. The arguments collected by the shell are
accessible to the command. When the command is finished, the
shell resumes its own execution, and indicates its readiness to accept
another command by typing a prompt character.

If file command cannot be found, the shell generally prefixes a
string such as /bin/ to command and attempts again to find the
fite. Directory /bin contains commands intended to be generally
used. (The sequence of directories to be searched may be changed
by user request.)

6.1 Standard 170

The discussion of 1/O in Section III above seems to imply that
every file used by a program must be opened or created by the pro-
gram in order to get a file descriptor for the file. Programs executed
by the shell, however, start off with three open files with file
descriptors 0, 1, and 2. As such a program begins execution, file 1
is open for writing, and is best understood as the standard output
file. Except under circumstances indicated below, this file is the
user’s terminal. Thus programs that wish to write informative infor-
mation ordinarily use file descriptor 1. Conversely, file 0 starts off
open for reading, and programs that wish 1o read messages typed by
the user read this file.

UNIX TIME-SHARING SYSTEM 1919

The shell is able to change the standard assignments of these file
descriptors from the user’s terminal printer and keyboard. If one of
the arguments to a command is prefixed by “>", file descriptor 1
will, for the duration of the command, refer to the file named after
the “>". For example:

Is

ordinarily lists, on the typewriter, the names of the files in the
current directory. The command:

Is >there

creates a file called there and places the listing there. Thus the
argument >there means “place output on there.” On the other
hand:

ed

ordinarily enters the editor, which takes requests from the user via
his keyboard. The command

ed <script

interprets script as a file of editor commands; thus <script means
“take input from script.”

Although the file name following “<” or “>" appears to be an
argument to the command, in fact it is interpreted completely by the
shell and is not passed to the command at all. Thus no special cod-
ing to handle 1/0 redirection is needed within each command; the
command need merely use the standard file descriptors 0 and 1
where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the termi-
nal output stream. When an output-diversion request with “>" is
specified, file 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the
output file.

6.2 Filters

An extension of the standard 1/0 notion is used to direct output
from one command to the input of another. A sequence of com-
mands separated by vertical bars causes the shell to execute all the
commands simultaneously and to arrange that the standard output of
each command be delivered to the standard input of the next com-
mand in the sequence. Thus in the command line:

1820 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Is | pr —2 | opt

Is lists the names of the files in the current directory; its output is
passed to pr, which paginates its input with dated headings. (The
argument “—2” requests double-column output.) Likewise, the out-
put from pr is input to opr; this command spools its input onto a
file for off-line printing.

This procedure could have been carried out more clumsily by:

Is >temp1
pr —2 <templ >temp2
opr <temp?2

followed by removal of the temporary files. In the absence of the
ability to redirect output and input, a still clumsier method would
have been to require the Is command to accept user requests to
paginate its output, to print in multi-column format, and to arrange
that its output be delivered off-line. Actually it would be surprising,
and in fact unwise for efficiency reasons, to expect authors of com-
mands such as I8 to provide such a wide variety of output options.

A program such as pr which copies its standard input to its stan-
dard output (with processing) is called a filter. Some filters that we
have found useful perform character transliteration, selection of
lines according to a pattern, sorting of the input, and encryption and
decryption.

8.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward.
Commands need not be on different lines; instead they may be
separated by semicolons:

Is; ed

will first list the contents of the current directory, then enter the
editor.

A related feature is more interesting. If a command is followed
by “&,” the shell will not wait for the command to finish before
prompting again; instead, it is ready immediately to accept a new
command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to out-
put; no matter how long the assembly takes, the shell returns

UNIX TIME-SHARING SYSTEM 1821

immediately. When the shell does not wait for the completion of a
command, the identification number of the process running that
command is printed. This identification may be used to wait for the
completion of the command or to terminate it. The “&” may be
used several times in a line:

as source >output & |s >files &

does both the assembly and the listing in the background. In these
examples, an cutput file other than the terminal was provided; if
this had not been done, the outputs of the various commands would

have been intermingled.
The shell also allows parentheses in the above operations. For

example:
(date; Is) >x &

writes the current date and time followed by a list of the current
directory onto the file x. The shell also returns immediately for
another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively.
Suppose file tryout contains the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog.
a.out is the (binary) output of the assembler, ready to be executed.
Thus if the three lines above were typed on the keyboard, source
would be assembled, the resulting program renamed testprog, and
testprog executed. When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substi-
tute parameters and to construct argument lists from a specified sub-
set of the file names in a directory. It also provides general condi-
tional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood.

1922 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Most of the time, the shell is waiting for the user to type a com-
mand. When the newline character ending the line is typed, the
shell’s read call returns. The shell analyzes the command line, put-
ting the arguments in a form appropriate for execute. Then fork is
called. The child process, whose code of course is still that of the
shell, attempts to perform an execute with the appropriate argu-
ments. If successful, this will bring in and start execution of the
program whose name was given. Meanwhile, the other process
resulting from the fork, which is the parent process, waits for the
child process to die. When this happens, the shell knows the com-
mand is finished, so it types its prompt and reads the keyboard to
obtain another command.

Given this framework, the implementation of background
processes is trivial, whenever a command line contains “&,” the
shell merely refrains from waiting for the process that it created to
execute the command.

Happily, all of this mechanism meshes very nicely with the notion
of standard input and output files. When a process is created by the
fork primitive, it inherits not only the memory image of its parent
but also all the files currently open in its parent, including those
with file descriptors 0, 1, and 2. The shell, of course, uses these
files to read command lines and to write its prompts and diagnostics,
and in the ordinary case¢ its children—the command programs—
inherit them automatically. When an argument with “<” or “>" is
given, however, the offspring process, just before it performs exe-
cute, makes the standard 1/0 file descriptor (0 or 1, respectively)
refer to the named file. This is easy because, by agreement, the
smallest unused file descriptor is assigned when a new file is opened
(or created); it is only necessary to close file 0 {(or 1) and open the
named file. Because the process in which the command program
runs simply terminates when it is through, the association between a
file specified after “<™ or “>" and file descriptor 0 or 1 is ended
automatically when the process dies. Therefore the shell need not
know the actual names of the files that are its own standard input
and output, because it need never reopen them.

Filters are straightforward extensions of standard 1/Q redirection
with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never ter-
minates. (The main loop includes the branch of the return from
fork belonging to the parent process; that is, the branch that does a
wait, then reads another command line.) The one thing that causes
the shell to terminate is discovering an end-of-file condition on its

UNIX TIME-SHARING SYSTEM 1923

input file. Thus, when the shell is executed as a command with a
given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile
is redached; then the instance of the shell invoked by sh will ter-
minate. Because this shell process is the child of another instance of
the shell, the wait executed in the latter will return, and another
command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are
themselves children of another process. The last step in the initiali-
zation of the system is the creation of a single process and the invo-
cation (via execute) of a program called init. The role of init is to
create one process for each terminal channel. The various subin-
stances of init open the appropriate terminals for input and output
on files 0, 1, and 2, waiting, if necessary, for carrier to be esta-
blished on dial-up lines. Then a message is typed out requesting
that the user log in. When the user types a name or other
identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user’s name is found,
and if he is able to supply the correct password, init changes to the
user’s'default current directory, sets the process's user ID to that of
the person logging in, and performs an execute of the shell. At
this point, the shell is ready to receive commands and the logging-in
protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the
subinstances' of itself that will later become shells) does a wait. If
one of the child processes terminates, either because a shell found
an end of file or because a user typed an incorrect name or pass-
word, this path of init simply recreates the defunct process, which in
turn reopens the appropriate input and output files and types
another log-in message. Thus a user may log out simply by typing
the end-of-file sequence to the shell.

8.7 Other programs as shell

The shell as described above is designed to allow users full access
to the facilities of the system, because it will invoke the execution
of any program with appropriate protéction mode. Sometimes,

1924 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

however, a different interface to the system is desirable, and this
feature is eastly arranged for.

Recall that after a user has successfully logged in by supplying a
name and password, init ordinarily invokes the shell to interpret
command lines. The user’s entry in the password file may contain
the name of a program to be invoked after log-in instead of the
shell. This program is free to interpret the user’s messages in any
way it wishes.

For example, the password file entries for users of a secretarial
editing system might specify that the editor ed is to be used instead
of the shell. Thus when users of the editing system log in, they are
inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In
practice, it has proved desirable to allow a temporary escape from
the editor to execute the formatiing program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) avail-
able on the system illustrate a much more severely restricted
environment. For each of these, an entry exists in the password file
specifying that the appropriate game-playing program is to be
invoked instead of the shell. People who log in as a player of one of
these games find themselves limited to the game and unable to
investigate the (presumably more interesting) offerings of the UNIX
system as a whole.

VII. TRAPS

The ppP-11 hardware detects a number of program faults, such as
references to non-existent memory, unimplemented instructions,
and odd addresses used where an even address is required. Such
faults cause the processor 1o trap to a system routine. Unless other
arrangements have been made, an illegal action causes the system 1o
terminate the process and lo write its image on file core in the
current directory. A debugger can be used to determine the state of
the program at the time of the fault.

Programs that are looping, that produce unwanted output, or
about which the user has second thoughts may be halted by the use
of the interrupt signal, which is generated by typing the “delete”
character. Unless special action has been taken, this signal simply
causes the program to cease execution without producing a core file.
There is also a quit signal used to force an image file to be pro-
duced. Thus programs that loop unexpectedly may be halted and
the remains inspected without prearrangement.

UNIX TIME-SHARING SYSTEM 1925

The hardware-generated faults and the interrupt a..J quit signals
can, by request, be either ignored or caught by a process. For
example, the shell ignores quits to prevent a quit from logging the
user out. The editor catches interrupts and returns to its command
level. This is useful for stopping long printouts without losing work
in progress (the editor manipulates a copy of the file it is editing).
In systems without floating-point hardware, unimplemented instruc-
tions are caught and floating-point instructions are interpreted.

Vill. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely
due to the fact that it was nol designed to meel any predefined
objectives. The first version was written when one of us (Thomp-
son), dissatisfied with the available computer facilities, discovered a
little-used PDP-7 and set out to create a more hospitable environ-
ment. This (essentially personal) effort was sufficiently successful to
gain the interest of the other author and several colleagues, and
later to justify the acquisition of the pDP-11/20, specifically to sup-
port a text editing and formatting system. When in turn the 11/20
was ouigrown, the system had proved useful enough to persuade
management to invest in the PDP-11/45, and later in the pDP-11/70
and Interdata 8/32 machines, upon which it developed to its present
form. Qur goals throughout the effort, when articulated at all, have
always been to build a comfortable relationship with the machine
and to explore ideas and inventions in operating systems and other
software. We have not been faced with the need to satisfy someone
else’s requirements, and for this freedom we are grateful. _

Three considerations that influenced the design of UNIX are visible
in retrospect.

First: because we are programmers, we naturally designed the sys-
tem to make it easy to write, test, and run programs. The most
important expression of our desire for programming convenience
was that the system was arranged for interactive use, even though
the original version only supported one user., We believe that a
properly designed interactive system is much more productive and
satisfying to use than a “batch” system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is
not true.

Second; there have always been fairly severe size constraints on
the system and its software. Given the partially antagonistic desires
for reasonable efficiency and expressive power, the size constraint

1926 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the “salvation
through suffering” philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did,
maintain itself. This fact is more important than it might seem. If
designers of a system are forced to use that system, they quickly
become aware of its functional and superficial deficiencies and are
strongly motivated to correct them before it is too late. Because all
source programs were always available and easily modified on-line,
we were willing to revise and rewrite the system and its software
when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least
the first two of these design considerations. The interface to the file
system, for example, is extremely convenient from a programming
standpoint. The lowest possible interface level is designed to elim-
inate distinctions between the various devices and files and between
direct and sequential access. No large “access method™ routines are
required to insulate the programmer from the system calls; in fact,
all user programs either call the system directly or use a small library
program, less than a page long, that buffers a number of characters
and reads or writes them all at once.

Another important aspect of programming convenience is that
there are no “control blocks” with a complicated structure partially
maintained by and depended on by the file system or other system
calls. Generally speaking, the contents of a program’s address space
are the property of the program, and we have tried to avoid placing
restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with
any file or device as input or output, it is also desirable to push
device-dependent considerations into the operating system itself.
The only alternatives seem to be to load, with all programs, routines
for dealing with each device, which is expensive in space, or to
depend on some means of dynamically linking to the routine
appropriate to each device when it is actually needed, which is
expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface
have proved both convenient and efficient. Because the shell
operates as an ordinary, swappable user program, it consumes no
“wired-down” space in the system proper, and it may be made as
powerful as desired at little cost. In particular, given the framework
in which the shell executes as a process that spawns other processes
to perform commands, the notions of I/0 redirection, background

UNIX TIME-SHARING SYSTEM 1927

processes, command files, and user-selectable system interfaces all
become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather
in the full exploitation of a carefully selected set of fertile ideas, and
especially in showing that they can be keys to the implementation of
a small yet powerful operating system.

The fork operation, essentially as we implemented it, was present
in the GENIE time-sharing system.!® On a number of points we were
influenced by Multics, which suggested the particular form of the
I/0 system calls!! and both the name of the shell and its general
functions. The notion that the shell should create a process for each
command was aiso suggested to us by the early design of Miltics,
although in that system it was later dropped for efficiency reasons.
A similar scheme is used by TENEX.12

IX. STATISTICS

The following numbers are presented to suggest the scale of the
Research UNIX operation. Those of our users not involved in docu-
ment preparation tend to use the system for program development,
especially language work. There are few important “applications”
programs.

Overall, we have today:

125 user population
33 maximum simultaneous users
1,630 directories
28,300 files
301,700 512-byte secondary storage blocks used

There is a “background” process that runs at the lowest possible
priority; it is used to soak up any idle CPU time. It has been used to
produce a million-digit approximation to the constant e, and other
semi-infinite problems. Not counting this background work, we
average daily:

13,500 commands
9.6 CPU hours
230 connect hours

1928 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1678

62 different users
240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially

apposite phrase, too numerous to mention. Certainly, collective
salutes are due to our colleagues in the Computing Science Research
Center. R. H. Canaday contributed much to the basic design of the
file system. We are particularly appreciative of the inventiveness,
thoughtful criticism, and constant support of R. Morris, M. D. Mcll-
roy, and J. F. Ossanna.

REFERENCES

1

——

B N

—S B e M o L

L. P. Deutch and B. W. Lampson, “An online editor,” Commun. Assn. Camp.
Mach., 10 (December 1967), pp. 793-799, 803.

B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,”
Commun. Assn. Comp. Mach., /8 (March 1975), pp. 151-157.

B. W, Kernighan, M. E. Lesk, and J. F. Ossanna, “UNIX Time-Sharing System:
Document Preparation,” B.S5.T.J., this 1ssue, pp. 2115-2135,

. T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’'s Work-

bench,” Proc. 2nd Int. Conf. on Sofiware Engineering (October 13-15, 1976),
pp. 164-168.

. T. A. Dolotta, R. C. Haight, and J. R, Mashey, “UNIx Time-Sharing System: The

Programmer's Workbench,™ B.S.T.T, this issue, pp. 2177-2200.

. H. Lycklama, “unNix Time-Sharing System: UNIX on a Microprocessor,” B.S.T.1.,

this issue, pp. 2087-2101.
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N.1.: Prentice-Hall, 1978.

. Aleph-null, “Computer Recreations,” Software Practice and Experience, { {April-

June 1971), pp. 201-204.

S. R. Bourne, “UNIX Time-Sharing System: The unix Shell,” B.S5.T.]., this issue,
pp. 1971-1990.

L. P. Deutch and B. W. Lampson, Dec. 30.10.10. Project GEnig,. April 1965,

R.]. Feiertag and E. I. Organick, “The Multics input-output system,” Proc. Third
Symposium on Operating Systems Principles (October 18-20, 1971), pp. 35-41.

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. 8. Tomlinson, “TENEX, a
Paged Time Sharing System for the ppp-10," Commun. Assn. Comp. Mach.,
15 (March 1972), pp. 135-143,

UNIX TIME-SHARING SYSTEM 1929

TR = 5 0 T

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. 5. A.

UNIX Time-Sharing System:

UNIX Implementation

By K. THOMPSON
{(Manuscript received December 5, 1977)

This paper describes in high-level terms the implementation of the
resident UNIX* kernel. This discussion is broken into three parts. The
first part describes how the UNIX system views processes, users, and pro-
grams. The second part describes the IO system. The last part
describes the UNIX file system.

I. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and
about 1,000 lines of assembly code. The assembly code can be
further broken down into 200 lines included for the sake of
efficiency (they could have been written in C} and 800 lines to per-
form hardware functions not possible in C.

This code represents 5 to 10 percent of what has been lumped
into the broad expression “the UNIX operating system.” The kernel
is the only UNIX code that cannot be substituted by a user to his own
liking. For this reason, the kernel should make as few real decisions
as possible. This does not mean to allow the user a million options
to do the same thing. Rather, it means to allow only one way to do
one thing, but have that way be the least-common divisor of all the
options that might have been provided.

What is or is not implemented in the kernel represents both a

* UNIX is a trademark of Bell Laboratories.

1931

great responsibility and a great power. It is a spap-box platform on
“the way things should be done.” Even so, if “the way” is too radi-
cal, no one will follow it. Every important decision was weighed
carefully. Throughout, simplicity has been substituted for efficiency.
Complex algorithms are used only if their complexity can be local-
ized.

Il. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment
called a user process. When a system function is required, the user
process calls the system as a subroutine. At some point in this call,
there is a distinct switch of environments. After this, the process is
said to be a system process. In the normal definition of processes,
the user and-system processes are different phases of the same pro-
cess (they never execute simultaneously). For protection, each sys-
tem process has its own stack.

The user process may cxecute from a read-only text segment,
which is shared by all processes executing the same code. There is
no functional benefit from shared-text segments. An efficiency
benefit comes from the fact that there is no need to swap read-only
segments out because the original copy on secondary memory is still
current. This is a great benefit to interactive programs that tend to
be swapped while waiting for terminal input. Furthermore, if two
processes are executing simultaneously from the same copy of a
read-only segment, only one copy needs to reside in primary
memory. This is a secondary effect, because simultaneous execu-
tion of a program is not common. It is ironic that this effect, which
reduces the use of primary memory, only comes into play when
there is an overabundance of primary memory, that is, when there is
enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained
from the text table. A text table entry holds the location of the text
segment on secondary memory, If the segment is loaded, that table
also holds the primary memory location and the count of the
number of processes sharing this entry. When this count is reduced
to zero, the entry is freed along with any primary and secondary
memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment
is' loaded onto secondary memory. If a second process executes a
text segment that is already allocated, the entry reference count is
simply incremented.

1832 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

A user process has some strictly private read-write data contained
in its data segment. As far as possible, the system does not use the
user’s data segment to hold system data. In particular, there are no
1/0 buffers in the user address space.

The user data segment has two growing boundaries. One,
increased automatically by the system as a result of memory faults,
is used for a stack. The second boundary is only grown (or shrunk)
by explicit requests. The contents of newly allocated primary
memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size
system data segment. This segment contains all the data about the
process that the system needs only when the process is active.
Examples of the kind of data contained in the system data segment
are: saved central processor registers, open file descriptors, account-
ing information, scratch data area, and the stack for the system
phase of the process. The system data segment is not addressable
from the user process and is therefore protected.

Last, there is a process table with one entry per process. This
entry contains all the data needed by the system when the process is
not active. Examples are the process’s name, the location of the
other segments, and scheduling information. The process table
entry is allocated when the process is created, and freed when the
process terminates. This process entry is always directly addressable
by the kernel.

Figure 1 shows the relationships between the various process con-
trol data. In a sense, the process table is the definition of all
processes, because all the data associaled with a process may be
accessed starting from the process table entry.

2.1 Process creation and program execution

Processes are created by the system primitive fork, The newly
created process (child) is a copy of the original process (parent).
There is no detectable sharing of primary memory between the two
processes. (Of course, if the parent process was executing from a
read-only text segment, the child will share the text segment.)
Copies of all writable data segments are made for the child process.
Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to
allow them to select their own (usually non-identical) destiny. The
parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the

UNIX IMPLEMENTATION 1933

TEXT
PROCESS +— TABLE
TABLE ENTRY
ENTRY _I L/[/_[
= I/ RESIDENT
PROCESS TABLE TEXT TABLE ?
SYSTEM
DATA SWAPPABLE
SEGMENT
USER
TEXT
USER
DATA SEGMENT
SEGMENT
USER
ADDRESS
SPACE

Fig. 1-Process control data structure.

current text and data segments of the process for new text and data
segments specified in the file. The old segments- are lost. Doing an
exec does not change processes; the process that did the exec per-
sists, but after the exec it is executing a different program. Files
that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay
itself with another program, say the second pass, then it simply
execs the second program. This is analogous to a “goto.” If a pro-
gram wishes to regain control after execing a second program, it
should fork a child process, have the child exec the second pro-
gram, and have the parent wait for the child. This is analogous to a
“call.” Breaking up the call into a binding followed by a transfer is
similar to the subroutine linkage in SL-5.!

2.2 Swapping

The major data associated with a process (the user data segment,
the system data segment, and the text segment) are swapped to and
from secondary memory, as needed. The user data segment and the
system data segment are kept in contiguous primary memory to
reduce swapping latency. {(When low-latency devices, such as bub-
bles, CCDs, or scatter/gather devices, are used, this decision will
have to be reconsidered.} Allocation of both primary and secondary

1934 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

memory is performed by the same simple first-fit algorithm. When
a process grows, a new piece of primary memory is allocated. The
contents of the old memory is copied to the new memory. The old
memory is freed and the tables are updated. If there is not enough
primary memory, secondary memory is allocated instead. The pro-
cess is swapped out onto the secondary memory, ready to be
swapped in with its new size.

One separate process in the kernel, the swapping process, simply
swaps the other processes in and out of primary memory. It exam-
ines the process table looking for a process that is swapped out and
is ready to run. It allocates primary memory for that process and
reads its segments into primary memory, where that process com-
petes for the central processor with other loaded processes. If no
primary memory is available, the swapping process makes memory
available by examining the process table for processes that can be
swapped out. It selects a process to swap out, writes it to secondary
memory, frees the primary memory, and then goes back to look for
a process to swap in.

Thus there are two specific algorithms to the swapping process.
Which of the possibly many processes that are swapped out is to be
swapped in? This is decided by secondary storage residence time.
The one with the longest time out is swapped in first. There is a
slight penalty for larger processes. Which of the possibly many
processes that are loaded is to be swapped out? Processes that are
waiting for slow events (i.e., not currently running or waiting for
disk 1/0) are picked first, by age in primary memory, again with size
penalties. The other processes are examined by the same age algo-
rithm, but are not taken out unless they are at least of some age.
This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system.
With limited primary memory, these algorithms cause total swap-
ping. This is not bad in itself, because the swapping does not impact
the execution of the resident processes. However, if the swapping
device must also be used for file storage, the swapping traffic
severely impacts the file system traffic. It is exactly these small sys-
tems that tend to double usage of limited disk resources.

2.3 Synchronization and scheduling

Process synchronization is accomplished by having processes wait
for events. Events are represented by arbitrary integers. By

UNIX IMPLEMENTATION 1935

convention, events are chosen to be addresses of tables associated
with those evenis. For example, a process that is waiting for any of
its children to terminate will wait for an event that is the address of
its own process table entry. When a process terminates, it signals
the event represented by its parent’s process table entry. Signaling
an event on which no process is waiting has no effect. Similarly,
signaling an event on which many processes are waiting will wake all
of them up. This differs considerably from Dijkstra’s P and V syn-
chronization operations,2 in that no memory is associated with
events. Thus there need be no allocation of events prior to their
use. Events exist simply by being used.

On the negative side, because there is no memory associated with
events, no notion of “how much™ can be signaled via the event
mechanism. For example, processes that want memory might wait
on an event associated with memory allocation. When any amount
of memory becomes available, the event would be signaled. All the
competing processes would then wake up to fight over the new
memory. (In reality, the swapping process is the only process that
waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for
that event and the time that process enters the wait state, then the
process will wait on an event that has already happened (and may
never happen again). This race condition happens because there is
no memory associated with the event to indicate that the event has
occurred; the only action of an event is to change a set of processes
from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit
calls to the event-wait mechanism. If the event in question is sig-
naled by another process, then there is no problem. But if the event
is signaled by a hardware interrupt, then special care must be taken.
These synchronization races pose the biggest problem when UNIX is
adapted to multiple-processor configurations.?

The event-wait code in the kernel is like a co-routine linkage. At
any time, all but one of the processes has called event-wait. The
remaining process is the one currently executing. When it calls
event-wait, a process whose event has been signaled is selected and
that process returns from its call to event-wait.

Which of the runable processes is to run next? Associated with
each process is a priority. The priority of a system process is
assigned by the code issuing the wait on an event. This is roughly
equivalent to the response that one would expect on such an event.
Disk events have high priority, teletype events are low, and time-

1938 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

of-day events are very low. (From observation, the difference in
system process priorities has little or no performance impact.) All
user-process priorities are lower than the lowest system priority.
User-process priorities are assigned by an algorithm based on the
recent ratio of the amount of compute time to real time consumed
by the process. A process that has used a lot of compute time in the
last real-time unit is assigned a low user priority. Because interac-
tive processes are characterized by low ratios of compute to real
time, interactive response is maintained without any special arrange-
ments.

The scheduling algorithm simply picks the process with the
highest priority, thus picking all system processes first and user
processes second. The compute-to-real-time ratio is updated every
second. Thus, all other things being equal, looping user processes
will be scheduled round-robin with a 1-second quantum. A high-
priority process waking up will preempt a running, low-priority pro-
cess. The scheduling algorithm has a very desirable negative feed-
back character. If a process uses its high priority to hog the com-
puter, its priority will drop. At the same time, if a low-priority pro-
cess is ignored for a long time, its priority will rise.

. 170 SYSTEM

The I/0O system is broken into two completely separate systems:
the block 1/0 system and the character I1/0 system. In retrospect,
the names should have been “structured I/O" and “unstructured
1/0,” respectively; while the term “block 1/0” has some meaning,
“character 1/0” is a complete misnomer.

Devices are characterized by a major device number, a minor
device number, and a class (block or character). For each class,
there is an array of entry points into the device drivers. The major
device number is used to index the array when calling the code for a
particular device driver. The minor device number is passed to the
device driver as an argument. The minor number has no
significance other than that attributed to it by the driver. Usually,
the driver uses the minor number to access one of several identical
physical devices.

The use of the array of entry points (configuration table) as the
only connection between the system code and the device drivers is
very important. Early versions of the system had a much less for-
mal connection with the drivers, so that it was extremely hard to

UNIX IMPLEMENTATION 1937

handcraft differently configured systems. Now it is possible to
create new device drivers in an average of a few hours. The
configuration table in most cases is created automatically by a pro-
gram that reads the system’s parts list.

3.1 Block 1/0 system

The model block 1/0 device consists of randomly addressed,
secondary memory blocks of 512 bytes each. The blocks are uni-
formly addressed 0, 1, ... up to the size of the device. The block
device driver has the job of emulating this model on a physical
device.

The block 1/0 devices are accessed through a layer of buffering
software. The system maintains a list of buffers (iypically between
10 and 70) each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is
found, the data are made available to the requester without any phy-
gical 1/0. If the block is not in the cache, the least recently used
block in the cache is renamed, the correct device driver is called to
fill up the renamed buffer, and then the data are made available.
Write requests are handled in an analogous manner, The correct
buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as “dirty.” The physical 1/0 is 'then
deferred until the buffer is renamed.

The benefits in reduction of physical I/0 of this scheme are sub-
stantial, especially considering the file system implementation.
There are, however, some drawbacks. The asynchronous nature of
the algorithm makes error reporting and meaningful user error han-
dling almost impossible. The cavalier approach to 1/O error han-
dling in the UNIX system is partly due to the asynchronous nature of
the block 1/0 system. A second problem is in the delayed writes, If
the system stops unexpectedly, it is almost certain that there is a lot
of logically complete, but physically incomplete, 1/0 in the buffers.
There is a system primitive to flush all outstanding 1/0 activity from
the buffers. Periodic use of this primitive helps, but does not solve,
the problem. Finally, the associativity in the buffers can alter the
physical 1/0 sequence from that of the logical 1/0Q sequence, This
means that there are times when data structures on disk are incon-
sistent, even though the software is careful to perform 1/0 in the
correct order. On non-random devices, notably magnetic tape, the
inversions of writes can be disasirous. The problem with magnetic

1938 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

tapes is “cured” by allowing only one outstanding write request per
drive.

3.2 Character |/0O system

The character 1/O system consists of all devices that do not fall
into the block 1/0 model. This includes the “classical” character
devices such as communications lines, paper tape, and line printers.
It also includes magnetic tape and disks when they are not used in a
stereotyped way, for example, 80-byte physical records on tape and
track-at-a-time disk copies. In short, the character [/O interface
means “everything other than block.” I/0 requests from the user
are sent to the device driver essentially unaltered. The implementa-
tion of these requests is, of course, up 1o the device driver. There
are guidelines and conventions to help the implementation of certain
types of device drivers.

3.2.1 Disk drivers

Disk drivers are implemented with a queue of transaction records.
Each record holds a read/write flag, a primary memory address, a
secondary memory address, and a transfer byte count. Swapping is
accomplished by passing such a record to the swapping device driver.
The block 1/0 interface is implemented by passing such records with
requests to fill and empty system buffers. The character I/0 inter-
face to the disk drivers create a transaction record that points
directly into the user area. The routine that creates this record also
insures that the user is not swapped during this 1I/C transaction.
Thus by implementing the general disk driver, it is possible to use
the disk as a block device, a character device, and a swap device.
The only really disk-specific code in normal disk drivers is the pre-
sort of transactions to minimize latency for a particular device, and
the actual issuing of the 1/0 request.

3.2.2 Character lists

Real character-oriented devices may be implemented using the
common code to handle character lists. A character list is a queue
of characters. One routine puts a character on a queue. Another
gets a character from a queue. [t is also possible to ask how many
characters are currently on a queue. Storage for all queues in the
system comes from a single common pool. Putting a character on a

UNIX IMPLEMENTATION 1939

queue will allocate space from the common pool and link the charac-
ter onto the data structure defining the queue. Getting a character
from a queue returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for exampie)
is implemented by passing characters from the user onto a character
queue until some maximum number of characters is on the queue.
The 1/0 is prodded to start as soon as there is anything on the
queue and, once started, it is sustained by hardware completion
interrupts. Each time there is a completion interrupt, the driver gets
the next character from the queue and sends it to the hardware.
The number of characters on the queue is checked and, as the count
falls through some intermediate level, an event (the queue address)
is signaled. The process that is passing characters from the user to
the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader)
is handled in a very similar manner.

Another class of character devices is the terminals. A terminal is
represented by three character queues. There are two input queues
(raw and canonical) and an output queue. Characters going to the
output of a terminal are handled by common code exactly as
described above. The main difference is that there is also code to
interpret the output stream as ASCII characters and to perform some
translations, e.g., escapes for deficient terminals. Another common
aspect of terminals is code to insert real-time delay after certain con-
trol characters.

Input on terminals is a little different. Characters are collected
from the terminal and placed on a raw input queue. Some device-
dependent code conversion and escape interpretation is handled
here. When a line is complete in the raw queue, an event is sig-
naled. The code catching this signal then copies a line from the raw
queue to a canonical queue performing the character erase and line
kill editing. User read requests on terminals can be directed at
either the raw or canonical queues.

3.2.3 Other character devices

Finally, there are devices that fit no general category. These
devices are set up as character I/O drivers. An example is a driver
that reads and writes unmapped primary memory as an I/0 device.
Some devices are too fast to be treated a character at time, but do
not fit the disk I/0 mold. Exampies are fast communications lines

1940 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

and fast line printers. These devices either have their own buffers
or “borrow™ block I/0 buffers for a while and then give them back.

IV. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes.
No other structure of files is implied by the system. Files are
attached anywhere (and possibly multiply) onto a hierarchy of direc-
tories. Directories are simply files that users cannot write. For a
further discussion of the external view of files and directories, see
Ref. 4.

The UNIX file system is a disk data structure accessed completely
through the block 1/0 system. As stated before, the canonical view
of a “disk” is a randomly addressable array of 512-byte blocks. A
file system breaks the disk into four self-identifying regions. The
first block (address 0) is unused by the file system. It is left aside
for booting procedures. The second block (address 1) contains the
so-called “super-block.” This block, among other things, contains
the size of the disk and the boundaries of the other regions. Next
comes the i-list, a list of file definitions. Each file definition is a 64-
byte structure, called an i-node. The offset of a particular i-node
within the i-list is called its i-number. The combination of device
name (major and minor numbers) and i-number serves to uniquely
name a particular file. After the i-list, and to the end of the disk,
come free storage blocks that are available for the contents of files.

The free space on a disk is maintained by a linked list of available
disk blocks. Every block in this chain contains a disk address of the
next block in the chain. The remaining space contains the address
of up 10 50 disk blocks that are also free. Thus with one I/0 opera-
tion, the system obtains 50 free blocks and a pointer where to find
more. The disk allocation algorithms are very straightforward.
Since all allocation is in fixed-size blocks and there is strict account-
ing of space, there is no need to compact or garbage collect. How-
ever, as disk space becomes dispersed, latency gradually increases.
Some installations choose to occasionally compact disk space o
reduce latency.

An i-node contains 13 disk addresses. The first 10 of these
addresses point directly at the first 10 blocks of a file. If a file is
larger than 10 blocks (5,120 bytes), then the eleventh address points
at a block that contains the addresses of the next 128 blocks of the
file. If the file is still larger than this (70,656 bytes), then the
twelfth block points at up to 128 blocks, each pointing to 128 blocks

UNIX IMPLEMENTATION 1841

of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a “triple indirect” address. The algorithm ends here
with the maximum file size of 1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure
simply by adding a new type of file, the directory. A directory is
accessed exactly as an ordinary file. It contains 16-byte entries con-
sisting of a 14-byte name and an i-number. The root of the hierar-
chy is at a known i-number (viz., 2). The file system structure
allows an arbitrary, directed graph of directories with regular files
linked in at arhitrary places in this graph. In fact, very early UNIX
systems used such a structure. Administration of such a structure
became so chaotic that later systems were restricted to a directory
tree. Even now, with regular files linked multiply- into arbitrary
places in the tree, accounting for space has become a problem. It
may become necessary to restrict the entire structure to a tree, and
allow a new form of linking that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random
accessing, and very easy space allocation. With most physical
addresses confined to a small contiguous section of disk, it is also
easy to dump, restore, and check the consistency of the file system.
Large files suffer from indirect addressing, but the cache prevents
most of the implied physical I/0O without adding much execution.
The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files con-
taining 130M bytes of data-file content. The overhead (i-node,
indirect blocks, and last block breakage) is about 11.5M bytes. The
directory structure to support these files has about 1,500 directories
containing 0.6M bytes of directory content and about 0.5M bytes of
overhead in accessing the directories. Added up any way, this
comes out to less than a 10 percent overhead for actual stored data.
Most systems have this much overhead in padded trailing blanks
alone.

4.1 File system implementation

Because the i-node defines a file, the implementation of the file
system centers around access to the i-node. The system maintains a
table of all active i-nodes. As a new file is accessed, the system
locates the corresponding i-node, allocates an i-node table entry, and
reads the i-node into primary memory. As in the buffer cache, the
table entry is considered to be the current version of the i-node.
Modifications to the i-node are made to the table entry. When the

1942 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

last access to the i-node goes away, the table entry is copied back to
the secondary store i-list and the table entry is freed.

All I/O operations on files are carried out with the aid of the
corresponding i-node table entry. The accessing of a file is a
straightforward implementation of the algorithms mentioned previ-
ously. The user is not awar¢ of i-nodes and i-numbers. References
to the file system are made in terms of path names of the directory
tree. Converting a path name into an i-node table entry is also
straightforward. Starting at some known i-node (the root or the
current directory of some process), the next component of the path
name is searched by reading the directory. This gives an i-number
and an implied device (that of the directory). Thus the next i-node
table entry can be accessed. If that was the last component of the
path name, then this i-node is the result. If not, this i-node is the
directory needed to look up the next component of the path name,
and the algorithm is repeated.

The user process accesses the file system with certain primitives.
The most common of these are open, create, read, write, seek,
and close. The data structures maintained are shown in Fig. 2. In
the system data segment associated with a user, there is room for
some (usually between 10 and 50) open files. This open file table
consists of pointers that can be used to access corresponding i-node
table entries. Associated with each of these open files is a current
170 pointer. This is a byte offset of the next read/write operation
on the file. The system treats each read/write request as random
with an implied seek to the 1/0 pointer. The user usually thinks of
the file as sequential with the [/O pointer automatically counting the
number of bytes that have been read/written from the file. The
user may, of course, perform random 1/Q by setting the 1/0 pointer
before reads/writes.

With file sharing, it is necessary to allow related processes to share
a common 1/O pointer and yet have separate 1/0 pointers for
independent processes that access the same file. With these two
conditions, the 1/O pointer cannot reside in the i-node table nor can
it reside in the list of open files for the process. A new table (the
open file table) was invented for the sole purpose of helding the 1/0
pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the
same file will only share the i-node table entry, but will have distinct
open file table entries.

The main file system primitives are implemented as follows.
open converts a file system path name into an i-node table entry. A

UNIX IMPLEMENTATION 1943

PER-USER OPEN
FILE TABLE

/L

SWAFPED
PER/USER
OPEN FiLE ACTIVE I-NODE
TABLE TABLE
RESIDENT
PER/SYSTEM
I-NODE
SECONDARY
STORAGE
FILE PER/
FILE mg—a({ MAPPING - FILE 8YSTEM
ALGORITHMS

/1/

Fig. 2—File system data structure.

pointer to the i-node table entry is placed in a newly created open
file table entry. A pointer to the file table entry is placed in the sys-
tem data segment for the process. create first creates a new i-node
entry, writes the i-number into a directory, and then builds the same
structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the 1/0 pointer.
No physical seeking is done. close just frees the structures built by
open and create. Reference counts are kept on the open file table
entries and the i-node table entries to free these structures after the
last reference goes away. unlink simply decrements the count of
the number of directories pointing at the given i-node. When the
last reference to an i-node table entry goes away, if the i-node has
no directories pointing to it, then the file is removed and the i-node
is freed. This delayed removal of files prevents problems arising
from removing active files. A file may be removed while still open.
The resulting unnamed file vanishes when the file is closed. This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe.

1944 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Implementation of pipes consists of implied seeks before each read
or write in order to implement first-in-first-out. There are also
checks and synchronization to prevent the writer from grossly
outproducing the reader and to prevent the reader from overtaking
the writer.

4.2 Mounted flle systems

The file system of a UNIX system starts with some designated
block device formatted as described above to contain a hierarchy.
The root of this structure is the root of the UNIX file system. A
second formatted block device may be mounted at any leaf of the
current hierarchy. This logically extends the current hierarchy. The
implementation of mounting is trivial. A mount table is maintained
containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the
new i-node is a designated leaf. If it is, the i-node of the root of the
block device replaces it.

Allocation of space for a file is taken from the free pool on the
device on which the file lives. Thus a file system consisting of many
mounted devices does not have a common pool of free secondary
storage space. This separation of space on different devices is neces-
sary to allow easy unmounting of a device.

4.3 Other system functions

There are some other things that the system does for the user—a
little accounting, a little tracing/debugging, and a little access protec-
tion. Most of these things are not very well developed because our
use of the system in computing science research does not need
them. There are some features that are missed in some applica-
tions, for example, better inter-process communication.

The uNiX kernel is an [/O multiplexer more than a complete
operating system. This is as it should be. Because of this outlook,
many features are found in most other operating systems that are
missing from the UNIX kernel. For example, the UNIX kernel does
not support file access methods, file disposition, file formats, file
maximum size, spooling, command language, logical records, physi-
cal records, assignment of logical file names, logical file names,
more than one character set, an operator’s console, an operator,
log-in, or log-out. Many of these things are symptoms rather than
features. Many of these things are implemented in user software

UNIX IMPLEMENTATION 1945

using the kernel as a tool. A good example of this is the command
language.® Each user may have his own command language.
Maintenance of such code is as easy as maintaining user code. The
idea of implementing “system™ code with general user primitives
comes directly from MULTICS.6

REFERENCES

1. R. E. Griswold and D, R. Hanson, "An Overview of SL3,” siGpLAN Notices, 12
(April 1977), pp. 40-50.

. E. W. Diikstra, “Cooperating Sequential Processes,” in Programming Languages, ed.
F. Genuys, New York: Academic Press (1968), pp. 43-112.

. J. A. Hawley and W. B. Meyer, “MuNIX, A Multiprocessing Version of unix,” M.S.
Thesis, Naval Postgraduate School, Monterey, Cal. (1975).

. D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T.J., this
issue, pp. 1905-1929,

. 8. R. Bourne, “uNix Time-Sharing System: The unix Shell,” B.S.T.J., this issue,
pp. 1971-1990.

. E. 1. Organick, The MuLTiCs Syster, Cambridge, Mass.: M.L.T, Press, 1972

(- LY R . I X |

1946 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright ® 1978 American Telephone and Telegraph Company

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S, A.

UNIX Time-Sharing System:

A Retrospectivet

By D. M. RITCHIE
{Manuscript received January 6, 1978)

UNIX* is a general-purpose, interactive, time-sharing operating system
for the DEC PDP-11 and Interdata 8/32 computers. Since it became
operational in 1971, it has become quite widely used. This paper
discusses the strong and weak points of the UNIX system and some areas
where we have expended no effort. The following areas are touched on:

(i)

(i)
(iii)
(iv)
(v)

(vi)
(vii)

(viii)
(ix)

(x)

The structure of files: a uniform, randomiy-addressable sequence
of bytes. The irrelevance of the notion of “record.” The efficiency
of the addressing of files.

The structure of file system devices: directories and files.

/O devices integrated into the file system,

The user interface: fundamentals of the shell, 1O redirection, and
pipes.

The environmeni of processes: system calls, signals, and the
address space.

Reliability: crashes, losses of files.

Security: protection of data from corruption and inspection; protec-
tion of the system from sfoppages.

Use of a high-level language—the benefits and the costs.

What UNIX does not do: “real-time,” interprocess communication,
asynchronous 11O,

Recommendations to system designers,

t A version of this paper was presented at the Tenth Hawaii International Conference
on the System Sciences, Honolulu, January, 1977,
* UNIX is a trademark of Bell Laboratories.

1047

UNIX* is a general-purpose, interactive time-sharing operating sys-
tem primarily for the DEC PDP-11 series of computers, and recently
for the Interdata 8/32. Since its development in 1971, it has
become quite widely used, although publicity efforts on its behalf
have been minimal, and the license under which it is made available
outside the Bell System explicitly excludes maintenance. Currently,
there are more than 300 Bell System installations, and an even
larger number in universities, secondary schools, and commercial
and government institutions. It is useful on a rather broad range of
configurations, ranging from a large PDP-11/70 supporting 48 users
to a single-user LSI-11 system.

. SOME GENERAL OBSERVATIONS

In most ways, UNIX is a very conservative system. Only a handful
of its ideas are genuinely new. In fact, a good case can be made that
it is in essence a modern implementation of M.I.T.’s CTSS system.!
This claim is intended as a compliment to both UNIX and CTSS.
Today, more than fifteen years after CTSS was born, few of the
interactive systems we know of are superior to it in ease of use;
many are inferior in basic design.

UNIX was never a “project”; it was not designed to. meet any
specific need except that felt by its major author, Ken Thompson,
and soon after its origin by the author of this paper, for a pleasant
environment in which to write and use programs. Although it is
rather difficult, after the fact, to try to account for its success, the
following reasons seem most important.

(/) Itis simple enough to be comprehended, yet powerful enough
to do most of the things its users want.

(ii} The user interface is clean and relatively surprise-free. It is
also terse to the point of being cryptic.

(iii) 1t runs on a machine that has become very popular in its own
right.

(iv) Besides the operating system and its basic utilities, a good deal
of interesting software is available, including a sophisticated
text-processing system that handles complicated mathematical
material? and produces cutput on a typesetter or a typewriter
terminal, and a LALR parser-generator.3

* UNIX is a trademark of Bell Laboratories.

1948 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

This paper discusses the strong and weak points of the system and
lists some areas where no effort has been expended. Only enough
design details are given to motivate the discussion; more can be
found elsewhere in this issue.3

One problem in discussing the capabilities and deficiencies of UNIX
is that there is no unique version of the system. It has evolved con-
tinuously both in time, as new functions are added and old problems
repaired, and in space, as various organizations add features
intended to meet their own needs. Four important versions of the
system are in current use:

(/) The standard system maintained by the UNIX Support Group
at Bell Laboratories for Bell System projects.

(i) The “Programmer’s Workbench” version,b 7 also in wide use
within Bell Laboratories, especially in areas in which text-
processing and job-entry to other machines are important.
Recently, PWB/UNIX has become available to outside organiza-
tions as well.

(i) The “Sixth Edition™ system (so called from the manual that
describes it), which is the most widely used under Western
Electric licenses by organizations outside the Bell System.

{iv) The version currently used in the Computing Science
Research Center, where the UNIX system was developed, and
at a few other locations at Bell Laboratories.

The proliferation of versions makes some parts of this paper hard
to write, especially where details (e.g., how large can a file be?) are
mentioned. Although compilation of a list of differences between
versions of UNIX is a useful exercise, this is not the place for such a
list, so the paper will concentrate on the properties of the system as
it exists for the author, in the current research version of the sys-
tem.

The existence of several variants of UNIX is, of course, a problem
not only when attempting to describe the system in a paper such as
this, but also to the users and administrators. The importance of
this problem is not lost upon the proprietors of the various versions;
indeed, vigorous effort is under way to combine the best features of
the variants into a single system.

Il. THE STRUCTURE OF FILES

The UNIX file system is simple in structure, nevertheless, it is
more powerful and general than those often found even in

RETROSPECTIVE 19549

considerably larger operating systems. Every file is regarded as a
featureless, randomly addressable sequence of bytes. The system
conceals physical properties of the device on which the file is stored,
such as the size of a disk track. The size of a file is the number of
bytes it contains; the last byte is determined by the high-water mark
of writes to the file. It is not necessary, nor even possible, to preal-
locate space for a file. The system calls to read and write each come
in only one form, which specifies the local name of an open file, a
buffer to or from which to perform 1/0, and a byte count. [/O is
normally sequential, so the first byte referred to by a read or write
operation immediately follows the final byte transferred by the
preceding operation. “Random access” is accomplished using a
seek system call, which moves the system’s internal read (or write)
pointer for the instance of the open file to another byte that the
next read or write will implicitly address. All I/0Q appears com-
pletely synchronous, read-ahead and write-behind are performed
invisibly by the system.

This particularly simple way of viewing files was suggested by the
Multics I/O system.8

The addressing mechanism for files must be carefully designed if
it is to be efficient. Files can be large (about 10° bytes), are grown
without pre-allocation, and are randomly accessible. The overhead
per file must be small, because there can be many files (the machine
on which this paper was written has about 27,000 on the disk storing
most user’s files); many of them are small (80 percent have ten or
fewer 512-byte blocks, and 37 percent are only one block long).
The details of the file-addressing mechanism are given elsewhere.’

No careful study has been made of the efficiency of disk 1/0, but
a simple experiment suggests that the efficiency is comparable to fwo
other systems, DEC’s IAS for the PDP-11, and Honeywell’s GCOS Tss
system running on the H6070. The experiment consisted of timing
a program that copied a file that, on the ppr-11, contained 480
blocks (245,760 bytes). The file on the Honeywell had the same
number of bytes (each of nine bits rather than eight), but there
were 1280 bytes per block. With otherwise idle machines, the real
times to accomplish the file copies were

system sec. msec./block

UNIX 21 21.8
IAS 19 19.8
H6070 9 23.4

1850 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

The effective transfer rates on the PDP-11s are essentially identical,
and the Honeywell rate is not far off when measured in blocks per
second. No general statistical significance can be ascribed to this lit-
tle experiment. Seek time, for example, dominates the measured
times (because the disks on the pDP-11 transfer one block of data in
only 0.6 millisecond once positioned), and there was no attempt to
optimize the placement of the input or output files. The results do
seem to suggest, however, that the very flexible scheme for
representing UNIX files carries no great cost compared with at least
two other systems.

The real time per block of I/0 observed under the UNIX system in
this test was about 22 milliseconds. Because the system overhead
per block is 6 milliseconds, most of which is overlapped, it would
seem that the overall transfer rate of the copy might be nearly dou-
bled if a block size of 1024 bytes were used instead of 512. There
are some good arguments against making such a change. For exam-
ple, space utilization on the disk would suffer noticeably: doubling
the block size would increase the space occupied by files on the
author’s machine by about 15 percent, a number whose importance
becomes apparent when we observe that the free space is currently
only 5 percent of the total available. Increasing the block size would
also force a decrease in the size of the system’s buffer cache and
lower its hit rate, but this effect has not been reliably estimated.

Moreover, the copy program is an extreme case in that it is totally
1/0 bound, with no processing of the data. Most programs do at
least look at the data as it goes by, thus to sum the bytes in the file
mentioned above required 10 seconds of real time, 5 of which were
“user time” spent looking at the bytes. To read the file and ignore
it completely required 9 seconds, with negligible user time. It may
be concluded that the read-ahead stratepy is almost perfectly
effective, and that a program that spends as little as 50 microseconds
per byte processing its data will not be significantly delayed waiting
for 1/0 (unless, of course, it is competing with other processes for
use of the disk).

The basic system interface conceals physical aspects of file storage,
such as blocks, tracks, and cylinders. Likewise, the concept of a
record is completely absent from the operating system proper and
nearly so from the standard software. (By the term “record” we
mean an identifiable unit of information consisting either of a fixed
number of bytes or of a count together with that number of bytes.)

RETROSPECTIVE 1851

A text file, for example, is stored as a sequence of characters with
new-line characters to delimit lines. This form of storage is not only
efficient in space when compared with fixed-length records, or even
records described by character counts, but is also the most con-
venient form of storage for the vast majority of text-processing pro-
grams, which almost invariably deal with character streams. Most
important of all, however, is the fact that there is only one represen-
tation of text files. One of the most valuable characteristics- of UNIX
is the degree to which separate programs interact in useful ways; this
interaction would be seriously impaired if there were a variety of
representations of the same information.

We recall with a certain horrified fascination a system whose For-
tran compiler demanded as input a file with “variable-length”
records each of which was required to be 80 bytes long. The pre-
valence of this sort of nonsense makes the following test of software
flexibility (due to M. D. Mcliroy) interesting to try when meeting
new systems. It consists of writing a Fertran (or PL/I, or other
language) program that copies itself to another file, then running the
program, and finally attempting to compile the resulting output.
Most systems eventually pass, but often only after an expert has
been called in to mutter incantations that convert the data file gen-
erated by the Fortran program to the format expected by the Fortran
compiler. In sum, we would consider it a grave imposition to
require our users or ourselves, when mentioning a file, to specify
the form in which it is stored.

For the reasons discussed above, UNIX software does not use the
traditional notion of “record™ in relation todﬁles, particularly those
containing textual information. But certainly there are applications
in which the notion has use. A program or self-contained set of
programs that generates intermediate files is entitled to use any form
of data representation it considers useful. A program that maintains
a large data base in which it must frequently look up entries may
very well find it convenient to store the entries sequentially, in
fixed-size units, sorted by index number. With some changes in the
requirements or usual access style, other file organizations become
more appropriate. It is straightforward to implement any number of
schemes within the UNIX file system precisely because of the uni-
form, structureless nature of the underlying files; the standard
software, however, does not include mechanisms to do it. As an
example of what is possible, INGRES? is a relational data base
manager runnirg -under UNIX that supports five different file organi-
zations.

1962 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

il. THE STRUCTURE OF THE FILE SYSTEM

On each file system device such as a disk, the accessing informa-
tion for files is arranged in an array starting at a known place. A file
may thus be identified by its device and its index within the device.
The internal name of a file is, however, never needed by users or
their programs. There is a hierarchically arranged directory structure
in which each directory contains a list of names (character strings)
and the associated file index, which refers implicitly to the same
device as does the directory. Because directories are themselves
files, the naming structure is potentially an arbitrary directed graph.
Administrative rules restrict it to have the form of a tree, except
that nondirectory files may have several names (entries in various
directories).

A file is named by a sequence of directories separated by “/™ lead-
ing towards a leaf of the tree. The path specified by a name starting
with “/” originates at the root, without an initial “/™ the path starts
at the current directory. Thus the simple name x indicates the entry
x in the current directory; /usr/dmr/x searches the root for direc-
tory usr, searches it for directory dmr, and finally specifies x in
dmr.

When the system is initialized, only one file system device is
known (the root device); its name is built into the system. More
storage is attached by mounting other devices, each of which con-
tains its own directory structure. When a device is mounted, its
root is attached to a leaf of the already accessible hierarchy. For
example, suppose a device containing a subhierarchy is mounted on
the file /usr. From then on, the original contents of /usr are hid-
den from view, and in names of the form /usr/.. the ... specifies a
path starting at the root of the newly mounted device.

This file system design is inexpensive to implement, is general
enough to satisfy most demands, and has a number of virtues: for
example, device self-consistency checks are straightforward. It does
have a few peculiarities. For example, instantaneously enforced
space quotas, either for users or for directories, are relatively
difficult to implement (it has been done at one university site).
Perhaps more serious, duplicate names for the same file (links)
while trivial to provide on a single device, do not work across
devices; that is, a directory entry cannot point to a file on another
device. Another limitation of the design is that an arbitrary subset
of members of a given directory cannot be stored on another device.
It is common for the totality of user files to be too voluminous for a

RETROSPECTIVE 1953

given device. It is then impossible for the directories of all users to
be members of the same directory, say /usr. Instead they must be
split into groups, say /usr1 and /usr2, this is somewhat incon-
venient, especially when space on one device runs out so that some
users must be moved. The data movement can be done expedi-
tiously, but the change in file names from /usri/.. to /usr2/.. is
annoying both to those people who must learn the new name and to
programs that happen to have such names built into them.

Earlier variants of this file system design stored disk block
addresses as 16-bit quantities, which limited the size of a file-system
volume to 65,536 blocks. This did not mean that the rest of a larger
physical device was wasted, because there could be several logical
devices per drive, but the limitation did aggravate the difficulty just
mentioned. Recent versions of the system can handle devices with
up to about 16 million blocks.

IV. INPUT/OUTPUT DEVICES

The UNIX system goes to some pains to efface differences between
ordinary disk files and 1/0 devices such as terminals, tape drives,
and line printers. An entry appears in the file system hierarchy for
each supported device, so that the structure of device names is the
same as that of file names, The same read and write system calls
apply to devices and to disk files. Moreover, the same protection
mechanisms apply to devices as to files.

Besides the traditionally available devices, names exist for disk
devices regarded as physical units outside the file system, and for
absolutely addressed memory. The most important device in prac-
tice is the user’s terminal. Because the terminal channel is treated
in the same way as any file (for example, the same 170 calls apply),
it is easy to redirect the input and output of commands from the ter-
minal to another file, as explained in the next section. It is also easy
to provide inter-user communication.

Some differences are inevitable. For example, the system ordi-
narily treats terminal input in units of lines, because character-erase
and line-delete processing cannot be completed until a full line is
typed. Thus if a program attempts to read some large number of
bytes from a terminal, it waits until a full line is typed, and then
receives a notification that some smaller number of bytes has actu-
ally been read. All programs must be prepared for this eventuality
in any case, because a read operation from any disk file will return
fewer bytes than requested when the end of the file is encountered.

1954 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

Ordinarily, therefore, reads from the terminal are fully compatible
with reads from a disk file. A subtle problem can occur if a program
reads several bytes, and on the basis of a line of text found therein
calls another program to process the remainder of the input. Such a
program works successfully when the input source is a terminal,
because the input is returned a line at a time, but when the source is
an ordinary file the first program may have consumed input intended
for the second. At the moment the simplest solution is for the first
program to read one character at a time. A more general solution,
not implemented, would allow a mode of reading wherein at most
one line at a time was returned, no matter what the input source.*

V. THE USER INTERFACE

The command interpreter, called the *“shell,” is the most impor-
tant communication channel between the system and its users. The
shell is not part of the operating system, and enjoys no special
privileges. A part of the entry for each user in the password file
read by the login procedure contains the name of the program that
is to be run initially, and for most users that program is the shell.
This arrangement is by now commonplace in well-designed systems,
but is by no means universal. Among its advantages are the ability
to swap the shell even though the kernel is not swappable, so that
the size of the shell is not of great concern. It is also easy to replace
the shell with another program, either to test a new version or to
provide a non-standard interface.

The full language accepted by the shell is moderately complicated,
because it performs a number of functions; it is discussed in more
detail elsewhere in this issue.l®’ Nevertheless, the treatment of indi-
vidual commands is quite simple and regular; a command is a
sequence of words separated by white space (spaces and tabs). The
first word is the name of the command, where a command is any
executable file. A full name, with “/” characters, may be used to
specify the file unambiguously; otherwise, an agreed-upon sequence
of directories is searched. The only distinction enjoyed by a
system-provided command is that it appears in a directory in the
search path of most users. (A very few commands are built into the
shell.) The other words making up a command line fall into three
types:

*This suggestion may seem in conflict with our earlier disdain of “records.” Not real-
ly, because it would only affect the way in which information is read, not the way it is
stored. The same bytes would be obtained in either case.

RETROSPECTIVE 1955

(1) Simple strings of characters.
(i7) A file name preceded by “<™, “>”, or “>>",
(iii) A string containing a file name expansion character.

The simple arguments are passed to the command as an array of
strings, and thereafter are interpreted by that program. The fact that
the arguments are parsed by the shell and passed as separate strings
gives at least a start toward uniformity in the treatment of argu-
ments; we have seen several systems in which arguments to various
commands are separated sometimes by commas, sometimes by
semicolons, and sometimes in parentheses, only a manual close at
hand or a good memory tells which.

An argument beginning with “<” is taken to name a file that is to
be opened by the shell and associated with the standard input of the
command, ndmely the stream from which programs ordinarily read
input, in the absence of such an argument, the standard input is
attached to the terminal. Correspondingly, a file whose name is
prefixed by “>” receives the standard output of commands; “>>"
designates a variant in which the output is appended to the file
instead of replacing it. For this mechanism to work, it is necessary
that I/O to a terminal be compatible with [/O to a file; the point
here is that the redirection is specified in the shell language, in a
convenient and natural notation, so that it is applicable uniformly
and without exception to all commands. An argument specifying
redirection is not passed to the command, which must go to some
trouble even to discover whether redirection has occurred. Other
systems support 1/0 redirection (regrettably, too few), but we know
of none with such a convenient notation.

An argument containing a file name expansion character is turned
into a sequence of simple arguments that are the names of files.
The character “»”, for example, means “any sequence of zero or
more characters™; the argument “».c¢” is expanded into a sequence
of arguments that are the names of all files in the current directory
whose names end with the characters “.c”. Other expansion charac-
ters specify an arbitrary single character in a file name or a range of
characters (the digits, say).

Putting this expansion mechanism into the shell has several
advantages: the code only appears once, so no space is wasted and
commands in general need take no special action; the algorithm is
certain to be applied uniformly. The only convention required of
commands that process files is to accept a sequence of file argu-
ments even if the elementary action performed applies to only one

1958 THE BELL-SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

file at a time. For example, the command that deletes a file could
have been coded to accept only a single name, in which case argu-
ment expansion would be in vain; in fact, it accepts a sequence of
file arguments (however generated) and deletes all of them. Only
occasionally is there any difficulty. For example, suppose the com-
mand save transfers each of its argument files to off-line storage, so
save + would save everything in the current directory; this works
well. But the converse command restore, which might bring all the
named arguments back on-line, will not in general work analo-
gously; restore » would bring back only the files that already exist
in the current directory (match the “+”), rather than all saved files.

One of the most important contributions of UNIX to programming
is the notion of pipes, and especiaily the notation the shell provides
for using them. A pipe is, in effect, an open file connecting two
processes; information written into one end of the pipe may be read
from the other end, with synchronization, scheduling, and buffering
handled automatically by the system. A linear array of processes (a
“pipeline”) thus becomes a set of coroutines simultaneously pro-
cessing an I/0 stream. The shell notation for a pipeline separates
the names of the various programs by a vertical bar, so, for exam-
ple,

anycommand | sort | pr

takes the output of anycommand, sorts it, and prints the result in
paginated form. The ability to interconnect programs in this way
has substantially changed our way of thinking about and writing util-
ity programs in general, and especially those involved with text pro-
cessing. As a dramatic example, we had three existing programs
that would respectively translate characters, sort a file while casting
out duplicate lines, and compare two sorted files, publishing lines in
the first file but not the second. Combining these with our on-line
dictionary gave a pipeline that would print all the words in a docu-
ment not appearing in the dictionary; in other words, potential spell-
ing mistakes. A simple program to generate plausible derivatives of
dictionary words completed the job.

The shell syntax for pipelines forces them to be linear, although
the operating system permits processes to be connected by pipes in a
general graph. There are several reasons for this restriction. The
most important is the lack of a notation as perspicuous as that of the
simple, linear pipeline; also, processes connected in a general graph
can become deadlocked as the result of the finite amount of

RETROSPECTIVE 1957

buffering in each pipe. Finally, although an acceptable (if compli-
cated) notation has been proposed that creates only deadlock-free
graphs, the need has never been felt keenly enough to impel anyone
to implement it.

Other aspects of UNIX, not closely tied to any particular program,
are also valuable in providing a pleasant user interface. One thing
that seems trivial, yet makes a surprising difference once one is used
to it, is full-dupiex terminal I/O together with read-ahead. Even
though programs generally communicate with the user in terms of
lines, rather than single characters, full-duplex terminal I/0 means
that the user can type at any time, even if the system is typing back,
without fear of losing or garbling characters. With read-ahead, one
need not wait for a response to every line. A good typist entering a
document becomes incredibly frustrated at having to pause before
starting each new line; for anyone who knows what he wants to say
any slowness in response becomes psychologically magnified if the
information must be entered bit by bit instead of at full speed.

Both input and output of UNIX programs tend to be very terse.
This can be disconcerting, especially to the beginner. The editor,
for example, has essentially only one diagnostic, namely “?”, which
means “you have done something wrong.” Once one knows the edi-
tor, the error or difficulty is usually obvious, and the terseness is
appreciated after a period of acclimation, but certainly people can be
confused at first, However, even if some fuller diagnostics might be
appreciated on occasion, there is much noise that we are happy to be
rid of. The command interpreter does not remark loudly that each
program finished normally, or announce how much space or time it
took; the former fact is whispered by an unobtrusive prompt, and
anyone who wishes to know the latter may ask explicitly,

Likewise, commands seldom prompt for missing arguments;
instead, if the argument is not optional, they give at most a one-line
summary of their usage and terminate. We know of some systems
that seem so proud -of their ability to interact that they force interac-
tion on the user whether it is wanted or not. Prompting for missing
arguments is an issue of taste that can be discussed in calm tones;
insistence on asking questions may cause raised voices.

Although the terseness of typical UNIX programs is, to some
extent, a. matter of taste, it is also connected with the way programs
tend to be combined. A simple exampie should make the situation
clear. The command who writes out one line for each user logged
into the system, giving a name, a terminal name, and the time of
login. The command wc (for “word count™) writes out the number

1958 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

of lines, the number of words, and the number of characters in its
input. Thus

who | wc

tells in the line-count field how many users are logged in. If who
produced extraneous verbiage, the count would be off. Worse, if
wc insisted on determining from its input whether lines, words, or
characters were wanted, it could not be used in this pipeline. Cer-
tainly, not every command that generates a table should omit head-
ings; nevertheless, we have good reasons to interpret the phrase
“extraneous verbiage” rather liberally.

Vi. THE ENVIRONMENT OF A PROCESS

The virtual address space of a process is divided into three
regions: a read-only, shared-program text region; a writable data area
that may grow at one end by explicit request; and a stack that grows
automatically as information is pushed onto it by subroutine calls.
The address space contains no “control blocks.”

New processes are created by the fork operation, which creates a
child process whose code and data are copied from the parent. The
child inherits the open files of the parent, and executes asynchro-
nously with it unless the parent explicitly waits for termination of
the child. The fork mechanism is essential to the basic operation of
the system, because each command executed by the shell runs in its
own process. This scheme makes a number of services extremely
easy to provide. [/O redirection, in particular, is a basically simple
operation; it is performed entirely in the subprocess that executes
the command, and thus no memory in the parent command inter-
preter is required to rescind the change in standard input and out-
put. Background processes likewise require no new mechanism, the
shell merely refrains from waiting for the completion of a command
specified to be asynchronous. Finally, recursive use of the shell to
interpret a sequence of commands stored in a file is in no way a spe-
cial operation. ;

Communication by processes with the outside world is restricted
to a few paths. Explicit system calls, mostly to do I/0, are the most
common. A new program receives a set of character-string argu-
ments from its invoker, and returns a byte of status information
when it terminates. It may be sent “signals,” which ordinarily force

RETROSPECTIVE 1058

termination, but may, at the choice of the process, be ignored or
cause a simulated hardware interrupt. Interrupts from the terminal,
for example, cause a signal to be sent to the processes attached to
that terminal; faults such as addressing errors are also turned into
signals, Unassigned signals may be used for communication
between cooperating processes. A final, rather specialized, mechan-
ism allows a parent process to trace the actions of its child, receiving
notification of faults incurred and accessing the memory of the
child. This is used for debugging.

There is thus no general inter-process communication or syn-
chronization scheme. This is a weakness of the system, but it is not
felt to be important in most of the uses to which UNIX is put
(although, as discussed below, it is very important in other uses).
Semaphores, for example, can be implemented by using creation
and deletion of a known file to represent the P and V operations.
Using a semaphore would certainly be more efficient if the mechan-
ism were made a primitive, but here, as in other aspects of the
design, we have preferred to avoid putting into the system new
mechanisms that can already be implemented using existing
mechanisms. Only when serious and demonstrable inefficiency
results is it worth complicating the basic interfaces.

VII. RELIABILITY

The reliability of a system is measured by the absence of
unplanned outages, its ability to retain filed information, and the
correct functioning of its software.

First, the operating system should not crash. UNIx systems gen-
erally have a good, though not impeccable, record for software relia-
bility. The typical period between software crashes (depending
somewhat on how much tinkering with the system has been going
on recently) is well over a fortnight of continuous operation.

Two events-—running out of swap space, and an unrecoverable
I/0 error during swapping--cause the system to crash “voluntarily,”
that is, not as a result of a bug causing a fault. It turns out to be
rather inconvenient to arrange a more graceful exit for a process
that cannot be swapped. QOccurrence of swap-space exhaustion can
be made arbitrarily rare by providing enough space, and the current
system refuses to create a new process unless there is enough room
for it to grow to maximum size. Unrecoverable 1/0 errors in- swap-
ping are usually a signal that the hardware is badly impaired, so in

1960 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

neither of these cases do we feel strongly motivated to alleviate the
theoretical problems.

The discussion below points out that overconsumption of
resources other than swap space does occur, but generally does not
cause a crash, although the system may not be very useful for a
period of time. In most such cases, a really general remedy is hard
to imagine. For example, if one insists on using almost all of the
file storage space for storing files, one is certain to run out of file
space now and then, and a quota system is unlikely to be of much
help, because the space is almost certainly overallocated. An
automatically enforced file-space quota would help, however, in the
case of the user who accidentally creates a monstrous file, or a mon-
strous number of small files.

Hardware is by far the most frequent cause of crashes, and in a
basically healthy machine, the most frequent difficulty is momentary
power dips, which tend to cause disks to go off line and the proces-
sor to enter peculiar, undocumented states. Other kinds of failures
occur less often. It does seem characteristic of the PDP-11, particu-
larly in large configurations, to develop transient, hard-to-diagnose
UNIBUS maladies. It must be admitted, however, that the system is
not very tolerant of malfunctioning hardware, nor does it produce
particularly informative diagnostics when trouble occurs.

A reliable system should not lose or corrupt users’ files. The
operating system does not take any unusual precautions in this
regard. Data destined to be written on the disk may remain in an
associative memory cache for up to 15 seconds. Nevertheless, the
author’s machine has ruined only three or four files in the past year,
not counting files being created at the time of a crash. The rate of
destruction of files by the system is negligible compared to that by
users who accidentally remove or overwrite them, but the file sys-
tem is insufficiently redundant to make recovery from a power dip,
crash, or momentary hardware malfunction automatic. Frequent
dumps guard against disaster (which has occurred—there have been
head crashes, and twice a sick disk controller began writing garbage
instead of what was asked).

VHI. SECURITY

“Security” means the ability to protect against unwanted accessing
or destruction of data and against denial of service to others, for
example, by causing a crash. The UNIX system kernel and much of

RETROSPECTIVE 19861

the software were written in a rather open environment, so the con-
tinuous, careful effort required to maintain a fully secure system has
not always been expended; as a result, there are several security
problems.

The weakest area is in protecting against crashing, or at least crip-
pling, the operation of the system. Most versions lack checks for
overconsumption of certain resources, such as file space, total
number of files, and number of processes (which are limited on a
per-user basis in more recent versions). Running out of these
things does not cause a crash, but will make the system unusable for
a period. When resource exhaustion occurs, it is generally evident
what happened and who was responsible, so malicious actions are
detectable, but the real problem is the accidental program bug.

The theoretical aspects of the situation are brighter in the area of
information protection. Each file is marked with its owner and the
“group” of users to which the owner belongs. Files also have a set
of nine protection bits divided into three sets of three bits specifying
permission to read, to write, or execute as a program. The three
sets indicate the permissions applicable to the owner of the file, to
members of the owner’s group, and to all others.

For directories, the meanings of the access bits are modified:
“read” means the ability t0 read the directory as a file, that is, to
discover all the names it contains; “execute” means the ability to
search a directory for a given name when it appears as part of a
qualified name; “write™ means the ability to create and delete files in
that directory, and is unrelated to writing of files in the directory.

This classification is not fine enough to account for the needs of
all installations, but is usually adequate. In fact, most installations
do not use groups at all (all users are in the same group), and even
those that do would be happy to have more possible user IDs and
fewer group-IDs. (Older versions of the system had only 256 of
each; the current system has 65536, however, which should be
enough.)

One particular user (the “super-user”) is able to access all files
without regard to permissions. This user is also the only one per-
mitted to exercise privileged system entries. It is recognized that
the very existence of the notion of a super-user is a theoretical, and
often practical, blemish on any protection scheme.

An unusual feature of the protection system is the “set-user-ID”
bit. When this bit is on for a file, and the file is executed as a pro-
gram, the user number used in file permission checking is not that
of the person running the program, but that of the owner of the file.

1962 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

In practice, the bit is used to mark the programs that perform the
privileged system functions mentioned above (such as creation of
directories, changing the owner of a file, and so forth).

In theory, the protection scheme is adequate to maintain security,
but, in practice, breakdowns can easily occur. Most often these
come from incorrect protection modes on files. QOur software tends
to create files that are accessible, even writable, by everyone. This
is not an accident, but a reflection of the open environment in
which we operate. Nevertheless, people in more hostile situations
must adjust modes frequently; it is easy to forget, and in any case
there are brief periods when the modes are wrong. It would be
better if software created files in a default mode specifiable by each
user. The system administrators must be even more careful than
the users to apply proper protection. For example, it is easy to write
a user program that interprets the contents of a physical disk drive
as a file system volume. Unless the special file referring to the disk
is protected, the files on it can be accessed in spite of their protec-
tion modes. If a set-user-iD file is writable, another user can copy
his own program onto it.

It is also possible to take advantage of bugs in privileged set-user-
1D programs. For example, the program that sends mail to other
users might be given the ability to send to directories that are other-
wise protected. If so, this program must be carefully written in
order to avoid being fooled into mailing other people’s private files
1o its invoker.

There are thus a number of practical difficulties in maintaining a
fully secure system. Nevertheless, the operating system itself seems
capable of maintaining data security. The word “seems™ must be
used because the system has not been formally verified, yet no
security-relevant bugs are known (except the ability to run it out of
resources, which was mentioned above). In some ways, in fact,
UNIX is inherently safer than many other systems. For example, 1/0
is always done on open files, which are named by an object local 10 a
process. Permissions are checked when the file is opened. The 1/0
calls themselves have as argument only the (local) name of the open
file, and the specification of the user’s buffer; physical 1/0 occurs to
a system buffer, and the data are copied in or out of the user’s
address space by a single piece of code in the system. Thus, there is
no need for complicated, bug-prone verification of device commands
and channel programs supplied by the user. Likewise, the absence
of user “data control blocks” or other control blocks from the user’s
address space means that the interface between user processes and

RETROSPECTIVE 1983

the system is rather easily checked, because it is conducted by
means of explicit arguments.

IX. USE OF A HIGH-LEVEL LANGUAGE

Both the UNIX system kernel and the preponderance of the
software are written in the C language.!! An introduction to the
language appears in this issue.]2 Because UNIX was originally written
in assembly language, before C was invented, we are in a betier
position than most to gauge the effect of using a high-level language
on writing systems. Briefly, the effects were remarkably beneficial
and the costs minuscule by comparison. The effects cannot be
quantized, because we do not measure productivity by lines of code,
but it is suggestive to say that the UNIX system offers a good deal of
interesting software, ranging from parser-generators through
mathematical equation-formatting packages, that would never have
been written at all if their authors had had to write assembly code;
many of our most inventive contributors do not know, and do not
wish to learn, the instruction set of the machine.

The C versions of programs that were rewritten after C became
available are much more easily understood, repaired, and extended
than the assembler versions. This applies especially to the operating
system itself. The original system was very difficult to modify, espe-
cially to add new devices, but also to make even minor changes. By
comparison, the C version is readily modifiable, and not only by us;
more than one university, for example, has completely rewritten the
typewriter device driver to suit its own taste. (Paradoxically, the
fact that the system is easy to modify causes some annoyance, in the
form of variant versions.)

An extremely valuable, though originally unplanned, benefit of
writing in C is the portability of the system. The transportation of
UNIX from the PDP-11 to the Interdata 8/32 is discussed in another
paper.13 It appears to be possible to produce an operating system
and set of software that runs on several machines and whose expres-
sion in source -code is, except for a few modules, identical on each
machine. The payoff from-such a system, either to an organization
that uses several kinds of hardware or to a manufacturer who pro-
duces more than one line of machines, should be evident,

Compared to the benefits, the costs of using a high-level language
seemn negligible. Certainly the object programs generated by the
compiler are somewhat larger than those that would be produced by
a careful assembly-language coder. It is-hard to estimate the average

1964 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

increase in size, because in rewriting it is difficult to resist the
opportunity to redesign somewhat (and usually improve). A typical
inflation factor for a well-coded C program would be about 20 to 40
percent. The decrease in speed is comparable, but can sometimes
be larger, mainly because subroutine linkage tends to be more costly
in C (just as in other high-level languages) than in assembly pro-
grams. However, it is by now a matter of common knowledge that a
tiny fraction of the code is likely to consume most of the time, and
our experience certainly confirms this belief. A profiling tool for C
programs has been useful in making heavily used programs accept-
ably fast by directing the programmer’s attention to the part of the
program where particularly careful coding is worthwhile.

The above guesses of space and time inflation for C programs are
not based on any comprehensive study. Although such a study
might be interesting, it would be somewhat irrelevant, in that no
matter what the results turned out to be, they would not cause us to
start writing assembly language. The operating system and the
important programs that run under it are acceptably efficient as they
are. This is not to say, of course, that efforts to improve the code
generation of the C compiler are in vain. It does mean that we have
come to view the operating system itself, as well as other “system
programs” such as editors, compilers, and basic utilities, as just as
susceptible to expression in a high-level language as are the Fortran
codes of numerical mathematics or the Cobol programs of the busi-
ness world.

In assessing the costs of using C, the cost of the compilations
themselves has to be considered. This too we deem acceptable. For
example, to compile and link-edit the entire operating system (“sys-
gen”) takes somewhat over nine minutes of clock time (of which
seven minutes are CPU time); the system consists of about 12,500
lines of C code, leading to a rate of about 22 lines per second from
source to executable object on a PDP-11/70. The compiler is faster
than this figure would indicate; the system source makes heavy use
of “include™ files, so the actual number of lines processed by the
compiler is 38,000 and the rate is 65 lines per second.

These days, all the best authorities advocale the use of a high-
level language, so we can hardly be accused of starting a revolution
with this as its goal. Still, not all of those who actually produce sys-
tems have leaped on the bandwagon. Perhaps UNIX can help provide
the required nudge. 1n its largest PDP-11 configurations, it serves 48
simultaneous users (which is about twice the number that the
hardware manufacturer’s most nearly comparable system handles);

RETRQSPECTIVE 1965

in a somewhat cut-down version, still written in C and still recogniz-
able as the same system, it occupies 8K words and supports a single
user on the LSi-11 microcomputer.

X. WHAT UNIX DOES NOT DO

A number of facilities provided in other systems are not present
in UNIX. Many of these things would be useful, or even vital, to
some applications—so vital, in fact, that several variant versions of
the system, each implementing some subset of the possible facilities
mentioned below, are extant. The existence of these variants is in
itself a good argument for including the new extensions, perhaps
somewhat generalized, in a unified version of the system. At the
same time, it is necessary to be convinced that a proposed extension
is not merely a too narrowly conceived, isolated “feature™ that will
not mesh well with the rest of the system. It is also necessary to
realize that the limited address space of the PDP-11, the most com-
mon host, imposes severe constraints on the size of the system.

UNIX is not a “real-time” system in the sense that it is not possi-
ble to lock a process in memory so as to guarantee rapid response to
events, nor to connect directly to 1/0 devices. MERT,!4 in a sense a
generalization of UNIX, does allow these operations and in fact all
those mentioned in this section. It is a multi-level system, with a
kernel, one or more supervisor processes, and user processes. One
of the standard supervisor processes is a UNIX emulator, so that all
the ordinary UNIX software is available, atbeit with somewhat
degraded efficiency.

There is no general inter-process message facility, nor even a lim-
ited communication scheme such as semaphores. It turns out that
the pipe mechanism mentioned above is sufficient to implement
whatever communication is needed between closely related,
cooperating processes; “closely related” means processes with a
common ancestor that sets up the communication links. Pipes are
not, however, of any use in communicating with daemon processes
intended to serve several users. At some of the sites at which UNIX
is run, a scheme of “named pipes” has been implemented. This
involves a named file read by a single process that delays until mes-
sages are written into the file by anyone (with permission to do so)
who cares 10 send a message.

Input and output ordinarily appear to be synchronous; programs
wait until their I/0 is completed. For disk files, read-ahead and
write-behind are handled by the operating system. The mechanisms

1966 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

are efficient enough, and the simplification in user-level code large
enough, that we have no general doubts about the wisdom of doing
things in this way. There remain special applications in which one
desires to initiate I/0 on several streams and delay until the opera-
tion is complete on only one of them. When the number of streams
is small, it is possible to simulate this usage with several processes.
However, the writers of a UNIX NCP (“network control program™)
interface to the ARPANET! feel that genuinely asynchronous I/O
would improve their implementation significantly.

Memory is not shared between processes, except for the (read-
only) program text. Partly to alleviate the restrictions on the virtual
address space imposed by the PDP-11, and partly to simplify com-
munication among tightly coupled but asynchronous processes, the
controlled sharing of writable data areas would be valuable to some
applications. The limited virtual address space available on the
pDP-11 turns out to be of particular importance. A number of pro-
jects that use UNIX as a base desire better interprocess communica-
tion (both by means of messages and by sharing memory) because
they are driven to use several processes for a task that logically
requires only one. This is true of several Bell System applications
and also of INGRES.?

UNIX does not attempt to assign non-sharable devices to users.
Some devices can only be opened by one process, but there is no
mechanism for reserving devices for a particular user for a period of
time or over several commands. Few installations with which we
have communicated feel this to be a problem. The line printer, for
example, is usually dedicated to a spooling program, and its direct
use is either forbidden or managed informally. Tapes are always
allocated informally. Should the need arise, however, it is worth
noting that commands to assign and release devices may be imple-
mented without changing the operating system. Because the same
protection mechanism applies to device files as to ordinary files, an
“assign” command could operate essentially by changing the owner
identification attached to the requested device to that of the invoker
for the duration of usage.

Xl. RECOMMENDATIONS

The following points are earnestly recommended to designers of
operating systems:

(i) There is really no excuse for not providing a hierarchically

RETROSPECTIVE 1967

(i)

(i)

{iv)

XIt.

arranged file system. It is very useful for mdintaining direc-
tories containing related files, it is efficient because the
amount of searching for files is bounded, and it is easy to
implement.

The notion of “record™ seems to be an obsolete remnant of
the days of the 80-column card. A file should consist of a
sequence of bytes.

The greatest care should be taken to ensure that there is only
one format for files. This is essential for making programs
work smoothly together.

Systems should be written in a high-level language that
encourages portability. Manufacturers who build more than
one line of machines and also build more than one operating
system and set of utilities are wasting money.

ACKNOWLEDGMENT

Much, even most, of the design and implementation of UNIX is
the work of Ken Thompson. My use of the term “we” in this paper
is intended to include him; I hope his views have not been

misrepresented.
REFERENCES
1. P. A. Crisman, Ed., The Compatible Time-Sharing System, Cambridge, Mass.: M.[.T.
Press, 1965.
2. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, “UNIX Time-Sharing System:
Document Preparation,™ B.S.T.J., this issue, pp. 2115-2135.
3. 8. C. Iohnson, “Yacc — Yet Another Compilet-Compiler,” Comp. Sci. Tech. Rep.
No. 32, Bell Laboratories {(July 1975).
4. D. M. Ritchie and K. Thompson, “The uNix Time-Sharing System,”™ B.S.T.J., this
issue, pp. 1905-1929,
5. K. Thompson, “uUNix Time-Sharing System: unix Implementation,” B.S.T.J., this
issue, pp. 1931-1946.
6. T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’s Work-
bench,” Proc. 2nd Int. Conf. on Software Engineering (October 13-15, 1976),
pp. 164-168.
7. T. A. Dolotta, R. C. Haight, and J. R. Mashey, “UNix Time-Sharing System: The
Programmer’s Workbench,” B.S.T.J., this issue, pp. 2177-2200.
8. R. I. Feiertag and E. I. Organick, “The Multics input-output system,” Proc. Third
Symposium on Operating Systems Principles {October 18-20, 1971}, pp. 35-41.
9. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The Design and Implementa-
lio;lz{ifzINGRES," acM Trans. on Database Systems, ! (September 1976), pp.
189-222.
10. S. R. Bourne, “unNix Time-Sharing System: The unix Shell,” B.S.T.J., this issue,

pp. 1971-1990.

. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood

Cliffs, N.J.: Prentice-Hall, 1978.

1968 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

12. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B, W. Kernighan, “UNIX Time-
Shml-ing System: The C Programming Language,” B.S.T.J., this issue, pp.
1991-2019.

13. S. C. Johnson and D. M, Ritchie, “unix Time-Sharing System: Porlability of C
Programs and the UNIx System,” B.S.T .}, this issue, pp. 2021-2048.

14. H. Lycklama and D. L. Bayer, “unix Time-Sharing System: The MERT Operating
System,” B.S.T.J., this issue, pp. 2049-2086.

15. G. L. Chesson, “The Network uNix System,” Operating Systems Review, g
{1975), pp. 60-66. Also in Proc. 5th Symp. on Operating Systems Principles.

RETROSPECTIVE 1969

oo T P T N PR ¥ THR S

Copyright ® 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Voi. §7, No. 6, July-August 1978
Printed in U. 5. A.

UNIX Time-Sharing System:

The UNIX Shell

By S. R. BOURNE
(Manuscript received January 30, 1878)

The UNIX* shell is a command programming language that provides an
interface to the UNIX operating system. It contains several mechanisms
Jound in algorithmic languages such as control-flow primitives, variables,
and parameter passing. Constructs such as while, if, for, and case are
available. Two-way communication is possible between the shefl and
commands. String-valued parameters, typically file names or flags, may
be passed to a command. A return code is set by commands and may be
used to determine the flow of control, and the standard output from a
command may be used as input to the shell. The shell can modify the
environment in which commands run. Input and output can be
redirected and processes that communicate through "pipes” can be
invoked. Commands are found by searching directories in the file system
in a sequence that can be defined by the user.

I. INTRODUCTION

The UNIX shellt is both a programming language and a command
language. As a programming language, it contains control-Now
primitives and string-valued variables. As a command language, it
provides a user interface to the process-related facilities of the UNIX
operating system. The design of the shell is based in part on the

* uNIx is & trademark of Bell Laboratories,

t This term (shell} seems to have first appeared in the MULTICS system (Ref. 1}. It
is, however, not universal; other terms inciude command imterpreter, command
language.

1971

original UNIX shell? and the PwB/UNIX shell,3-4 some features having
been taken from both. Similarities also exist with the command
interpreters of the Cambridge Multiple Access System” and of
cT1ss.5 The language described here differs from its predecessors in
that the control-flow notations are more powerful and are under-
stood by the shell itself. However, the notation for simple com-
mands and for parameter passing and substitution is similar in all
these languages.

The shell executes commands that are read either from a terminal
or from a file. The design of the shell must therefore take into
account both interactive and noninteractive use. Except in some
minor respects, the behavior of the shell is independent of its input
source.

fl. NOTATION

Simhple commands are written as sequences of “words” separated
by blanks. The first word is the name of the command to be exe-
cuted. Any remaining words are passed as arguments to the
invoked command. For example, the command

ls —I

prints a list of the file names in the current directory. The argument
—I| tells Is to print the date of last use, the size, and status informa-
tion for each file.

Commands are similar to procedure calls in languages such as
Algol 68 or PL/I. The notation is different in two respects. First,
although the arguments are arbitrary strings, in most cases they
need not be enclosed in quotes. Second, there are no parentheses
enclosing the list of arguments nor commas separating them. Com-
mand languages tend not to have the extensive expression syntax
found in algorithmic languages. Their primary purpose is to issue
commands; it is therefore important that the notation be free from
superfluous characters.

To execute a command, the shell normally creates a new process
and waits for it to finish. Both these operations are primitives avail-
able in the UNIX operating system. A command may be run without
waiting for it to finish using the postfix operator & . For example,

print file &

calls the print command with argument file and runs it id the

1972 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

background. The & is a metacharacter interpreted by the shell and
is not passed as an argument to print.

Associated with each process, UNIX maintains a set of file descrip-
tors numbered 0,1, ... that are used in all input-output transactions
between processes and the operating system. File descriptor 0 is
termed the standard input and file descriptor 1 the standard output.
Most commands produce their output on the standard output that is
initially (following login) connected to a terminal. This output may
be redirected for the duration of a command, as in

Is —| >file

The notation >file is interpreted by the shell and is not passed as
an argument to |s. If the file does not exist, the shell creates it;
otherwise, the contents of the file are replaced with the output from
the command. To append to a file, the notation

Is —1 >>file

is provided. Simijlarly, the standard input may be taken from a file
by writing, for example,

we <file

wc prints the number of characters, words, and lines on the stan-
dard input.

The standard output of one command may be connected to the
standard input of another by writing the “pipe™ operator, indicated
by |, as in

Is —1 | we

Two commands connected in this way constitute a “pipeline,” and
the overall effect is the same as

Is —~I >file
wc <file

except that no file is used. Instead, the two processes are connected
by a pipe that is created by an operating system call. Pipes are uni-
directional; synchronization is achieved by halting wc when there is
nothing to read and halting Is when the pipe is full. This matter is
dealt with by UNIX, not the shell.

A filter is a command that reads its input, transforms it in some
way, and prints the result as output. One such filter, grep, selects
from its input those lines that contain some specified string. For
example, :

THE UNIX SHELL 1973

Is | grep old

prints those file names from the current directory that contain the
string old.

A pipeline may consist of more than two commands, the input of
each being connected to the ouiput of its predecessor. For example,

Is | grep old | we

When a command finishes execution it returns an exit status
{return code). Conventionally, a zero exit status means that the
command succeeded; nonzero means failure. This Boolean value
may be tested using the if and while constructs provided by the
shell.)

The general form of the conditional branch is N

if command-list

then command-list

else command-list

fi
The else part is optional. A command-list is a sequence of com-
mands separated by semicolons or newlines and is evaluated from
left to right. The value tested by if is that of the last simple-
command in the command-list following if. Since this construction is
bracketed by if and fi, it may be used unambiguously in any position
that a simple command may be used. This is true of all the
control-flow constructions in the shell. Furthermore, in the case of
if there is no dangling else ambiguity. Apart from considerations of
language design, this is important for interactive use. An Algol 60
style if then else, where the else part is optional, requires look-
ahead to see whether the else part is present. In this case, the shell
would be unable to determine that the if construct was ended until
the next command was read.

The McCarthy “andf™ and “orf” operators are also provided for

testing the success of a command and are written && and | | respec-
tively. :

command, && command, (1)

executes command, only if command, succeeds. It is equivalent
to

if command;
then command,
fi

1974 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Conversely,
command, || command, (2)

executes command, only if command, fails. The value returned
by these constructions is the value of the last command executed.
Thus (1) returns true iff both command, and command, succeed,
whereas (2) returns true iff either command, or command,
succeeds.

The while loop has a form similar to if.

while command-list;
do command-list,
done

command-list, is executed and its value tested each time around the
loop. This provides a notation for a break in the middle of a loop,
as in

while a; b
do ¢
done

First a is executed, then b. If b returns false, then the loop exits;
otherwise, c is executed and the loop resumes at a. Although this
deals with many loop breaks, break and continue are also available.
Both take an optional integer argument specifying how many levels
of loop to break from or at which level to continue, the default
being one.

if and while test the value returned by a command. The case
and for constructs provide for data-driven branching and looping.
The case construct is a multi-way branch that has the general form

case word in
pattern) command-list ;;

esac

The shell attempts to match word with each pattern, in the order in
which the patterns appear. If a match is found, the associated
command-list is executed and execution of the case is complete.
Patterns are specified using the following metacharacters.

* Matches any string including the null string.

? Matches any single character.

THE UNIX SHELL 1975

[..] Matches any of the enclosed characters. A pair of
characters separated by a minus matches any char-
acter lexically between the pair.

For example, ».c will match any string ending with .c. Alternatives
are separated by |, as in

case ... in
x]y) ...

which, for single characters, is equivalent to

case ... in
[xyl) ...

There is no special notation for the default case, since it may be
written as

case ... in
9 .
asac
Since it is difficult to determine the equivalence of patterns, no
check is made to ensure that only one pattern matches the case
word. This could lead to obscure bugs, although in practice it

appears not to present a problem.
The for loop has the general form

for name in word, word, ...
do command-tist
done

and executes the command-list once for each word following in.
Each time around the loop the shell variable (q.v.) name is set to
the next word.

Ill. SHELL PROCEDURES

The shell may be used to read and execute cormmmands contained
in a file. For example,

sh file arg, arg, ...

calls the shell to read commands from file. Such a file is called a
“shell procedure.” Arguments supplied with the call are referred to
within the shell procedure using the positional parameters $1,

1976 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

$2,.... For example, if the file wg contains
who | grep $1
then
sh wg fred
is equivalent to
who | grep fred

UNIX files have three independent attributes, read, write, and exe-
cute. If the file wg is executable, then

wqg fred
is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchange-
ably.

A frequent use of shell procedures is 10 loop through the argu-
ments ($1,%2,...) executing commands once for each argument.
An example of such a procedure is tel that searches the file
fusr/lib/telnos containing lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $i </usr/lib/telnos; done

The default in list for a for loop is the positional parameters. The
command

tel fred bert

prints those lines in /usr/lib/telnos that contain the string fred fol-
lowed by those lines that contain bert.

Shell procedures can be used to tailor the command environment
to the taste and needs of an individual or group. Since procedures
are text files requiring no compilation, they are easy to create and
maintain. Debugging is also assisted by the ability to try out parts of
a procedure at a terminal. To further assist debugging, the shell

THE UNIX SHELL 1977

provides two tracing mechanisms. If a procedure is invoked with
the —v flag, as in

sh —v proc

then the shell will print the lines of proc as they are read. This is
useful when checking procedures for syntactic errors, particularly in
conjunction with the —n flag which suppresses command execution,
An execution trace is specified by the —x flag and causes each com-
mand to be printed as it is executed. The —x flag is more useful
than —v when errors in the flow of control are suspected.

During the execution of a shell procedure, the standard input and
output are left unchanged. (In earlier versions of the UNIX shell the
text of the procedure itself was the standard input.) Thus shell pro-
cedures can be used naturally as filters. However, commands some-
times require in-line data to be available to them. A special input
redirection notation “<<7” is used to achieve this effect. For exam-
ple, the UNIX editor takes its commands from the standard input.
At a terminal,

ed flle

will call the editor and then read editing requests from the terminal.
Within a shell procedure this would be written

ed file <<!
editing requests
!

The lines between <<! and ! are called a here document; they are
read by the shell and made available as the standard input. The
string | is arbitrary, the document being terminated by a line that
consists of the string following << . There are a number of advan-
tages to making sere documents explicitly visible. First, the number
of lines read from the shell procedure is under the control of the
procedure wriler, enabling a procedure to be understood without
having to know what commands such as ed do. Further, since the
shell is the first to see such input, parameter substitution can,
optionally, be applied to the text of the document.

IV. SHELL VARIABLES

The sheli provides string-valued variables that may be used both
within shell programs and, interactively, as abbreviations for

1978 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

frequently used strings. Variable names begin with a letter and con-
sist of letters, digits, and underscores.

Shell variables may be given values when a shell procedure is
invoked. An argument to a shell procedure of the form
name=value causes value to be assigned to name before execution of
the procedure begins. The value of name in the invoking shell is
not affected. Such names are sometimes called keyword parameters.

Keyword parameters may also be exported from a procedure by
saying, for example,

export user box

Modification of such variables within the called procedure does not
affect the values in the calling procedure. (It is generally true of a
UNIX process that it may not modify the environment of its caller
without explicit request on the part of that caller. Files and shared
file descriptors are the exceptions to this rule.)

A name whose value is intended to remain constant throughout a
procedure may be declared readonly. The form of this command is
the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.
Within a shell procedure, shell variables are set by writing, for
example,

user=tred

The value of a variable may be substituted by preceding its name
with $; for example,

echo S$user

will echo fred. (echo is a standard UNIX command that prints its
arguments, separated by blanks.) The general notation for parameter
(or variable) substitution is

${name}

and is used, for example, when the parameter name is followed by a
letter or digit. If a shell parameter is not set, then the null string is
substituted for it. Alternatively, a default string may be given, as in

echo ${d—.)
which will echo the value of d if it is set and “.” otherwise. Substi-
tutions may be nested, so that, for example,

THE UNIX SHELL 1979

echo ${d—$1}

will echo the value of d if it is set and the value (if any) of $1 oth-
erwise. A variable may be assigned a default value using the nota-
tion

${d=}
which substitutes the same string as
$i{d-}

except that, if d were not previously set, then it will be set to the
string “.”. (The notation ${...=...} is not available for positional
parameters.)

In cases when a parameter is required to be set, the notation

${d? message)

will substitute the value of the variable d if it has one, otherwise
message is printed by the shell and execution of the shell procedure
is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set
might start as follows.

${user?] $lacct?] ${bin?}

A colon (:) is a command built in to the shell that does nothing
once its arguments have been evaluated. In this example, if any of
the variables user, acct or bin are not set, then the shell will aban-
don execution of the procedure.
The following variables have a special meaning to the shell.
$? The exit status (return code)} of the last command exe-
cuted as a decimal string.
$# The number of positional parameters as a decimal
string.
$% The UNIX process number of this shell (in decimal).
Since process numbers are unique among all existing
processes, this string is typically used to generate
unique temporary file names (UNIX has no genuine
temporary files).
$! The process number of the last process initiated in the
background.
$— The current shell flags.

The following variables are used, but not set, by the shell:

1980 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

Typically, these variables are set in a profife which is executed when
a user logs on o UNIX.

$MAIL

$HOME

$PATH

When used interactively, the shell looks at the file
specified by this variable before it issues a prompt. If
this file has been modified since it was last examined,
the shell prints the message you have mail and then
prompts for the next command.

The default argument (home directory) for the cd com-
mand. The current directory is used to resolve file
name references that do not begin with a /, and is
changed using the ¢d command.

A list of directories that contain commands (the search
path). Each time a command is executed by the shell,
a list of directories is searched for an executable file. If
$PATH is not set, then the current directory, /bin, and
/usr/bin are searched by default. Otherwise $PATH
consists of directory names separated by :. For exam-
ple,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory {the null string
before the first :), /usr/fred/bin, /bin and /usr/bin,
are to be searched, in that order. In this way, indivi-
dual users can have their own “private” commands
accessible independently of the current directory. If the
command name contains a /, then this directory search
mechanism is not used; a single attempt is made to find
the command.

V. COMMAND SUBSTITUTION

The standard output from a command enclosed in grave accents
(*...") can be substituted in a similar way to parameters. For exam-
ple, the command pwd prints on its standard output the name of
the current directory. If the current directory is /usr/fred/bin then

d="pwd’

is equivalent to

d=/usr/fred/bin

The entire string between grave accents is the command to be

THE UNIX SHELL 1981

executed and is replaced with the output from that command. This
mechanism allows string-processing commands to be used within
shell procedures. The shell itself does not provide any built-in
string processing other than concatenation and pattern matching.
Command substitution occurs in all contexts where parameter sub-
stitution occurs and the treatment of the resulting text is the same
in both cases.

V1. FILE NAME GENERATION

The shell provides a mechanism for generating a list of file names
that match a pattern. The specification of patterns is the same as
that used by the case construct. For example,

s —I *¢

generates, as arguments to I8, all file names in the current directory
that end in .c.

[a—z]*

matches all names in the current directory beginning with one of the
letters a through z.

fugr/srb/test/?

matches all file names in the directory fusr/srb/test consisting of a
single character. If no file name is found that matches the pattern,
then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names
according to some pattern. It may also be used to find files. For
example,

echo /usr/srb/*/core

finds and prints the names of all core files in subdirectories of
/usr/srb. This last feature can be expensive, requiring a scan of all
subdirectories of /usr/srb.

There is one exception to the general rules given for patterns.
The character “.” at the start of a file name must be explicitly
matched.

echo *
will therefore echo all file names in the current directory not begin-

ning with *.”.

1982 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

echo .=

will echo all those file names that begin with “." . This avoids inad-
vertent matching of the names “.” and “..” which, conventionally,
mean “the current directory” and “the parent directory” respec-
tively.

VIl. EVALUATION AND QUOTING

The shell is a macro processor that provides parameter substitu-
tion, command substitution, and file name generation for the argu-
ments to commands. This section discusses the order in which sub-
stitutions occur and the effects of the various quoting mechanisms.

Commands are initially parsed according to the grammar given in
Appendix A. Before a command is executed, the following evalua-
tions occur.

Parameter substitution, e.g., $user.
Command substitution, e.g., ‘pwd".

The shell does not rescan substituted strings. For example, if the
value of the variable X is the string $x, then

echo $X

will echo $x.

After these substitutions have occurred, the resulting characters
are broken into words (blank interpretation), the null string is not
regarded as a word unless it is quoted. For example,

echo ”
will pass on the null string as the first argument to echo, whereas
echo $null

will call echo with no arguments if the variable null is not set or set
to the null string.

Each word is then scanned for the file pattern characters *, 7, and
[...], and an alphabetical list of file names is generated to replace
the word. Each such file name is a separate argument.

Metacharacters such as < > * ? | (Appendix B has a complete
list) have a special meaning to the shell. Any character preceded by
a is quoted and loses its special meaning, if any. The \ is elided so
that

echo \?\\

THE UNIX SHELL 1883

will echo ?\. To allow long strings to be continued over more than
one line, the sequence \newline is ignored.

\ is convenient for quoting single characters. When more than
one character needs quoting, the above mechanism is clumsy and
error-prone. A string of characters may be quoted by enclosing
(part of) the string between single quotes, as in

£

echo

The quoted string may rot contain a single quote.

A third quoting mechanism using double quotes prevents
interpretation of some but not all metacharacters. Within double
quotes, parameter and command substitution occurs, but file name
generation and the interpretation of blanks does not. The following
characiers have a special meaning within double quotes and may be
quoted using \ .

$ parameter substitution

' command substitution

b ends the quoted string

\ quotes the special characters § °~ " \

For example,
echo "$x"

will pass the value of the variable x to echo, whereas
echo "§x’

will pass the string 3x to echo.

In cases where more than one evaluation of a string is required,
the built-in command eval may be used. eval reads its arguments
(which have therefore been evaluated once) and executes the result-
ing command(s). For example, if the variable X has the value 8x,
and if x has the value pgr then

eval echo $X

will echo the string pgr.

Vili. ERROR AND FAULT HANDLING

The treatment of errors detected by the shell depends on the type
of error and on whether the shell is being used interactively. An
interactive shell is one whose input and output are connected to a

1984 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

terminal. Execution of a command may fail for any of the following
reasons.

(/) Input output redirection may fail, for example, if a file does
not exist or cannot be created. In this case, the command is
not executed.

(ii) The command itself does not exist or is not executable.

(i} The command runs and terminates abnormally, for example,
with a “memory fault.”

(iv} The command terminates normally but returns a nonzero exit
status.

In all of these cases, the shell will go on to execute the next com-
mand. Except for the last case, an error message will be printed by
the shell.

All remaining errors cause the shell to exit from a command pro-
cedure. An interactive shell will return to read another command
from the terminal. Such errors include the following.

(/) Syntax errors; e.g., if ... then ... done.

(ii) A signal such as terminal interrupt. The shell waits for the
current command, if any, to finish execution and then either
exits or returns to the terminal.

(#ii) Failure of any of the built-in commands such as cd.

The shell flag —e causes the shell to terminate if any error is
detected.

Shell procedures normally terminate when an interrupt is received
from the terminal. Such an interrupt is communicated to a UNIX
process as a signal. If some cleaning-up is required, such as remov-
ing temporary files, the builti-in command trap is used. For exam-

ple,
trap 'rm /tmp/ps$$; exit” 2

sets a trap for terminal interrupt (signal 2) and, if this interrupt is
received, will execute the commands

rm Amp/ps$$; exit

exit is another built-in command that terminates execution of a
shell procedure. The exit is required in this example, otherwise,
after the trap has been taken, the shell would resume executing the
procedure at the place where it was interrupted.

UNIX signals can be handied by a process in one of three ways.
They can be ignored, in which case the signal is never sent to the

THE UNIX SHELL 1985

process; they can be caught, in which case the process must decide
what to do; lastly, they can be left to cause termination of the pro-
cess without it having to take any further action. If a signal is being
ignored on entry to the shell procedure, for example, by invoking
the procedure in the background, then trap commands (and the sig-
nal) are ignored.

A shell procedure may, itself, elect to ignore signals by specifying
the null string as the argument to trap. A trap may be reset by say-
ing, for example,

trap 2

which resets the trap for signal 2 to its default value (which is to
exit).

The following procedure scan is an example of the use of trap
without an exit in the trap command. scan takes each directory in
the current directory, prompts with its name, and then executes the
command typed at the terminal. Interrupts are ignored while exe-
cuting the requested commands but cause termination when scan is
waiting for input.

d="pwd"
for i in *
do if test —d $d/$i
then cd $d/$i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval $x; done
fi
done

The command
read x

is built in to the shell and reads the next line from the standard
input and assigns it to the variable x. The command

test —d arg

returns true if arg is a directory and false otherwise.

IX. COMMAND EXECUTION

To execute a command, the shell first creates a new process using

1986 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the system call fork. The execution environment for the command
includes input, output, and the states of signals, and is established in
the created process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required.
The environment for a command run in the background, such as

list *c | lpr &

is modified in two ways. First, the defauit standard input for such a
command is the empty file /dev/null. This prevents two processes
(the shell and the command), that are running in parallel, from try-
ing to read the same input. Chaos would ensue if this were not the
case.

ed file &

would allow both the editor and the shell to read from the same
input at the same time.

The other modification to the environment of a background com-
mand is to turn off the quit and interrupt signals so that they are
ignored by the command. This allows these signals to be used at the
terminal without causing background commands to terminate.

X. ACKNOWLEDGMENTS

I would like to thank Dennis Ritchie and John Mashey for many
discussions during the design of the shell. I am also grateful to the
members of the Computing Science Research Center for their com-
ments on drafts of this document.

APPENDIX A
Grammar
item: word

nput-output

simple-command: item
simple-command item

command. simple-command
(command-list)

[command-tist }

THE UNIX SHELL 1987

pipeline:

andor:

command-list:

input-output:

case-part:

pattern:

else-part:

emply:

word:

name:

digit:

1988 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

for name do command-tist done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor && pipeline
andor | | pipeline

andor

command-list ;
command-list &
command-list ; andor
command-list & andor

> word
>> word
< word
<< word

pattern) command-list ;;

word
pattern | word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters

a sequence of letters, digits or underscores
starting with a letter

01234586789

APPENDIX B

Metacharacters and Reserved Words

(i) Syntactic

| pipe symbol
“andf” symbol
Il “orf” symbol
: command separator
0 case delimiter
& background commands
{} command grouping
< input redirection
<< input from a here document
> output creation
>> oulput append

(ii) Patterns

* matches any character(s) including none
? matches any single character
[.] matches any of the enclosed characters

(iii} Substitution

${..} substitution of shell variables
‘... substitution of command output

{iv) Quoting

\ quotes the next character

... quotes the enclosed characters except for ’
quotes the enclosed characters except

for $ "\ "

{v) Reserved words

if then else elif fi
case in esac
for while until do done

THE UNIX SHELL

1989

REFERENCES

1. E. L. Organick, The MULTICS System, Cambridge, Mass.: M.LT. Press, 1972.

2. K. Thompson, “The UNIX Command Langusge,” in Structured Programming —
Infotech State of the Art Report, Nicholson House, Maidenhead, Berkshire,
England: Infotech International Ltd. (March 1975), pp. 375-384.

3. J. R. Mashey, “Using a Command Language as a High-Level Programming
Language,” Proc. 2nd Int. Conf. on Software Engineering (October 13-15,
1976), pp. 169-176.

4. T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’s Work-
bcn(lzlga"llgléoc. 2nd Int. Conf. on Software Engineering {October 13-15, 1976),
pp. - .

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System — Users Reference
Manual, Cambridge, England: Universily Mathematical Laboratory, 1968.

6. P. A Crisman, Ed., The Compatible Time-Sharing System, Cambridge, Mass.: M.L.T.
Press, 1965.

1980 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Copyright @ 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in 7. 5. 4.

UNIX Time-Sharing System:

The C Programming Language

By D. M. RITCHIE, S. C. JOHNSON, M. E. LESK,
and B. W. KERNIGHAN
(Manuscript received December 5, 1977)

C is a general-purpose programming language thar has proven useful
for a wide variety of applications. "It is the primary language of the
UNIX* system, and is also available in several other environments. This
paper provides an overview of the syntax and semantics of C and a dis-
cussion aof its strengths and weaknesses.

C is a general-purpose programming language featuring economy
of expression, modern control flow and data structure capabilities,
and a rich set of operators and data types.

C is not a “very high-level” language nor a big one and is not spe-
cialized to any particular area of application. Its generality and an
absence of restrictions make it more convenient and effective for
many tasks than supposedly more powerful languages. C has been
used for a wide variety of programs, including the UNIX operating
system, the C compiler itself, and essentially all UNIX applications
software. The language is sufficiently expressive and efficient to
have completely displaced assembly language programming on UNIX,

C was originally written for the ppp-11 under UNIX, but the
language is not tied to any particular hardware or operating system.
C compilers run on a wide variety of machines, including the
Honeywell 6000, the IBM System/370, and the Interdata 8/32.

* UNIX is a trademark of Bell Laboratories.

1991

I. THE LINGUISTIC HISTORY OF C

The C language in use today! is the product of several years of
evolution. Many of its most important ideas stem from the consid-
erably older, but still quite vital, language BCPL? developed by Mar-
tin Richards. The influence of BCPL on C proceeded indirectly
through the language B,? which was written by Ken Thompson in
1970 for the first UNTX system on the PDP-11.

Although neither B nor C could really be considered dialects of
BCPL, both share several characteristic features with it:

(i)

(i)
(iii)

(iv)

All are able to express the fundamental flow-control construc-
tions required for well-structured programs: statement group-
ing, decision-making (if), looping (while) with the termina-
tion test either at the top or the bottom of the loop, and
branching out to a sequence of possible cases (switch). It is
interesting that BCPL provided these constructions in 1967,
well before the current vogue for “structured programming.”
All three languages include the concept of “pointer” and pro-
vide the ability to do address arithmetic.

In all three languages, the arguments to functions are passed
by copying the value of the argument, and it is impossible for
the function to change the actual argument. When it is
desired to achieve “call by reférence,” a pointer may be
passed explicitly, and the function may change the object to
which the pointer points. Any function is allowed to be
recursive, and its local variables are typically “automatic” or
specific to each invocation.

All three languages are rather low-level, in that they dea] with
the same sorts of objects that most computers do. BCPL and B
restrict their attention almost completely to machine words,
while C widens its horizons somewhat to characters and (pos-
sibly multi-word) integers and floating-point numbers. None

‘deals directly with composite objects such as character strings,

sets, lists, or arrays considered as a whole. The languages
themselves do not define any storage allocation facility beside
static definition and the stack discipline provided by the local
variables of functions; likewise, 1/0 is not part of any of these
languages. All these higher mechanisms must be provided by
explicitly called routines from libraries.

B and BcpL differ mainly in their syntax, and many differences
stemmed from the very small size of the first B compiler (fewer

1992 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

than 4K 18-bit words on the PDP-7). Several constructions in BCPL
encourage a compiler to maintain a representation of the entire pro-
gram in memory. In BCPL, for example,

valof $(
resultis expression

$)

is syntactically an expression. [t provides a way of packaging a block
of many statements into a sort of unnamed internal procedure yield-
ing a single result (delivered by the resultis statement). The valof
construction can occur in the middle of any expression, and can be
arbitrarity large. The B language avoided the difficulties caused by
this and some other constructions by rigorously simplifying {and in
some cases adjusting to personal taste) the syntax of BCPL.

In spite of many syntactic changes, B remained very close to BCPL
semantically. The most characteristic feature of both languages is
their nearly identical treatment of addresses (pointers). They sup-
port a model of the storage of the machine consisting of a sequence
of equal-sized cells, into which values can be placed, in typical
implementations, these cells will be machine words. Each identifier
in a program corresponds to a cell, and a cell may contain a variety
of values. Most often the value is an integer, or perhaps a represen-
tation of a character. All the cells, however, are numbered; the
address of a cell is just the integer giving its ordinal position. BCPL
has a unary operator v {in some versions, and also in B and C,
shortened to &) that, when applied to a name, yields the address of
the cell corresponding to the name. The inverse operator rv (later
*) yields the value in the cell pointed to its argument. Thus the
statement

px = 8&x;

of B assigns to px the number that can be interpreted as the address
of x; the statements

y = *px + 2,
*px = §;

first use the value in the cell pointed to by px (which is the same
cell as x) and then assign 5 to this cell.

Arrays in BCPL and B are intimately tied up with pointers. An
array declaration, which might in BCPL be written

C PROGRAMMING LANGUAGE 1993

let Array = vec 10
and in B
auto Arrayl[10];

creates a single cell named Array and initializes it with the address
of the first of a sequence of 10 unnamed cells containing the array
itself. Since the quantity stored in Array is just the address of the
cell of the first element of the array, the expression

Array =+ i

is the address of the ith element, counting from zero. Likewise,
applying the indirection operator,

s (Array + i)

refers to the value of the ith member of the array. This operation is
s0 frequent that special syntax was invented to express it:

Array[i]

Thus, despite its asymmetric appearance, subscripting is a commuta-
tive operation; the above example could equally well be written

ilArray]

In BCPL and B there is only one type of object, the machine word,
50 when the same language operator is applied to two operands, the
calculation actually carried out must always be the same. Thus, for
example, if one wishes to provide the ability to do floating-point
arithmetic, the “+” operator notation cannot be used, since it
implies an integer addition. Instead (in a version of BCPL for the GE
635), a “.” was placed in front of each operator that had floating-
point operands. As may be appreciated, this was a frequent source
of errors.

The machine model implied by the definitions of BCPL and B is
simple and self-consistent. [t is, however, inadequate for many pur-
poses, and on many machines it causes inefficiencies when imple-
mented. The problems became evident to us after B began to be
used heavily on the first PDP-11 version of UNIX. The first followed
from the fact that the ppP-11, like a number of machines (including,
for example, the [BM System/370), is byte addressed; a machine
address refers to any of several bytes {(characters) in a word, not the
word alone. Most obviously, the word orientation of B cut us off
from any convenient ability to access individual bytes. Egqually

1994 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

important was the fact that before any address could be used, it had
to be shifted left by one place. The reason for this is simple: there
are two bytes per PDP-11 word. On the one hand, the language
guaranteed that if 1 was added to an address-quantity, it would point
to the next word; on the other, the machine architecture required
that word addresses be even and equal io the byte number of the
first byte in the word. Since, finally, there was no way to distinguish
cells containing ordinary integers from those containing pointers, the
only solution visible was to represent pointers as word numbers and
then, at the point of use, convert to the byte representation by mul-
tiplication by 2.

Yet another problem was introduced by the desire to provide for
floating-point arithmetic. The PDP-11 supports two floating-point
formats, one of which requires two words, the other four. In nei-
ther case was it satisfactory to use the trick used on the GE 635
(operators like “.+”) because there was no way to represent the
requirement for a single data item occupying four or eight bytes.
This problem did not arise on the 635 because integers and single-
precision floating-point both require only one word.

Thus the problems evidenced by B led us to design a new
language that (after a brief period under the name NB)} was dubbed
C. The major advance provided by C is its typing structure, which
completely solved the difficulties mentioned above. Each declara-
tion in a C program specifies (sometimes implicitly} a fype, which
determines how much storage the object requires and how it is to be
interpreted. The original fundamental types provided were single
character (byte), integer, single-precision floating-point, and
double-precision floating-point. (Others discussed below were added
later.} Thus in the program

double a, b;

a==mb+ 3

the compiler is able to determine from the declarations of a and b
the fact that they require four words of storage each, that the “+7
means a double-precision floating add, and that “3” must be con-
verted to floating.

Of course, the idea of typing variables is in no way original with
C: in fact, it was the general rule among the most widely used and
influential languages, including Algol, Fortran, and PL/1. Neverthe-
less, the introduction of types marked an important change in our
own thinking. The typeless nature of BCPL and B had seemed to

C PROGRAMMING LANGUAGE 1995

promise a great simplification in the implementation, understanding,
and use of these languages. By the time that C was created (circa
1972), advocates of languages like Algol 68 and Pascal recom-
mended a strongly enforced type structure on psychological grounds;
but even disregarding their arguments, the typeless nature of BCPL
and B seemed inappropriate, for purely technological reasons, to the
available hardware.

Il. THE TYPE STRUCTURE OF C

The introduction of types in C, although a major departure from
the tradition of BCPL and B, was done in such a way that many of
the characteristic usages of the earlier languages survived. To some
extent, this continuity was an attempt to preserve as much as possi-
ble of the considerable corpus of existing software written in B, but
even more important, especially in retrospect, was the desire to
minimize the intellectual distance between the past and the future
ways of expression.

2.1 Pointers, arrays and address arithmetic

One clear example of the similarity of C to the earlier languages is
its treatment of pointers and arrays. In C an array of 10 integers
might be declared

int Array[10];

which is identical to the corresponding declaration in B. (Arrays
begin at zero; the elements of Array are Arrayl0], ..., Array[8].) As
discussed above, the B implementation caused a cell named Array to
be allocated and initialized with a pointer to 10 otherwise unnamed
cells to hold the array. In C, the effect is a bit different; 10 integers
are allocated, and the first is associated with the name Array. But C
also includes a general rule that, whenever the name of an array
appears in an expression, it is converted to a pointer to the first
member of the array. Strictly speaking, we should say, for this
example, it is converted to an integer pointer since all C pointers are
associated with a particular type to which they point: In most
usages, the actual effects of the slightly different meanings of Array
are indistinguishable. Thus in the C expression

Array + i

the identifier Array is converted to a pointer to the first element of

1998 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the array; i is scaled (if required) before it is added to the pointer.
For a byte-addressed machine, the scale factor is the number of
bytes in an integer; for a word-addressed machine the scale factor is
unity. In any event, the result is a pointer to the ith member of the
array. Likewise identical in effect to the interpretation of B,

* (Array + i)
is the ith member itself, and
Arraylil

is another notation for the same thing. In all these cases, of course,
should Array be an array of, or pointer 10, some objects other than
integers, the scale factor is adjusted appropriately. The pointer
arithmetic, as written, is independent of the type of object to which
the pointer points and indeed of the internal representation of the
pointer.

2.2 Derived types

As mentioned above, the basic types in C were originally int,
which represents an integer in the basic size provided by the
machine architecture; char, which represents a single byte; float, a
single-precision floating-point number; and double, double-precision
floating-point. Over the years, long, short, and unsigned integers
have been added. In current C implementations, long is at least 32
bits; short is usually 16 bits; and int remains the “natural” size for
the machine at hand. Unsigned integers exist mainly to squeeze an
extra bit out of the machine, since the sign bit need not be
represented.

In addition to these basic types, C provides a conceptually infinite
hierarchy of derived types, which are formed by composition of the
basic types with pointers, arrays, structures, unions, and functions.
Examples of pointer and array declarations have already been exhi-
bited; another is

double *vecp, vector[100];

which declares a pointer vecp to double-precision floating numbers,
and an array vector of the same kind of objects. The size of an
array, when specified, must always be a constant.

A structure is an aggregate of one or more objects, usually of vari-
ous types, which can be treated as a unit. C structures are essen-
tially the same as records in languages like Pascal, and semantically,

C PROGRAMMING LANGUAGE 1997

though not syntactically, like PL/1 and Cobol structures. Thus,

struct tag |
int i;
float f;
char ¢l3];
&

defines a template, called tag, for a structure containing three
members: an integer i, a floating point number f, and a three-
character array ¢. The declaration

struct tag x, yl10], *p;

declares a structure x of this type, an array y of 10 such structurés,
and a pointer p to this kind of structure. The hierarchical nature of
derived types is clearly evident here: y is an array of structures
whose members include an array of characters. References to indi-
vidual members of structures use the . operator:

.0

x.1
ylil.clo]
(+p).c[1]

Parentheses in the last line are necessary because the . binds more
tightly than « It turns out that pointers to structures are so com-
mon that special syntax is called for to express structure access
through a pointer.

p—>¢1]
p—>i

This soon becomes more natural than the equivalent

(*p).cl1]
(*p).i

A union is capable of holding, at different times, objects of
different types, with the compiler keeping track of size and align-
ment requirements. Unions provide a way to manipulate different
kinds of data in & single part of storage, without embedding
machine-dependent information (like the relative sizes of int and
float) in a program. For example, the union u, declared

1998 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

union f{
int i;
float f;
) u;

can hold either an int (written w.i) or a float {written u.f). Regard-
less of the machine it is compiled on, it will be large enough to hold
either one of these quantities. A union is syntactically identical to a
structure; it may be considered as a structure in which all the
members begin at the same offset. Unions in C are more analogous
to PL/1’s CELL than to the unions of Algol 68 or the variant records
of Pascal, because it is the responsibility of the programmer to avoid
referring to a union that does not currently contain an object of the
implied type.
A function is a subprogram that returns an object of a given type:

unsigned unst();

declares a function that returns unsigned. The type of a function
ignores the number and types of its arguments, although in general
the call and the definition must agree.

2.3 Type composition

The syntax of declarations borrows from that of expressions. The
key idea is that a declaration, say

int i B

contains a part *...” that, if it appeared in an expression, would be
of type int. The constructions seen so far, for example,

int siptr;
int ifunc(};
int iarr[10];

exhibit this approach, but more complicated declarations are com-
mon. For example,

int sfuncptr();
int (sptriunc)();

declare respectively a function that returns a pointer to an integer,
and a pointer to a function that returns an integer. The extra
parentheses in the second are needed to make the » apply directly to
ptrfunc, since the implicit function-call operator (} binds more

C PROGRAMMING LANGUAGE 18989

tightly than ». Functions are not variables, so arrays or structures of
functions are not permitted. However, a pointer to a function, like
ptrfunc, may be stored, copied, passed as an argument, returned by
a function, and so on, just as any other pointer.

Arrays of pointers are frequently used instead of multi-
dimensional arrays. The usage of a and b when declared

int af10][10];
int »b[10];

may be similar, in that a[5][5] and b[5]{5] are both legal references
to a single int, but a is a true array: all 100 storage cells have been
allocated, and the conventional rectangular subscript calculation is
done. For b, however, the declaration has only allocated 10
pointers; each must be set to point to an array of integers. Assum-
ing each dees point to a 10-element array, then there will be 100
storage cells set aside, plus the 10 cells for the pointers. Thus the
array of pointers uses slightly more space and may require an extra
initialization step, but has two advantages: it trades an indirection
for a subscript multiplication, and it permits the rows of the array to
be of different lengths. (That is, each element of b need not point
to a 10-element vector; some may point to 2 elements, some to 20).
Particularly with strings whose length is not known in advance, an
array of pointers is often used instead of a multidimensional array.
Every C main program gets access to its invoking command line in
this form, for example.

The idea of specifying types by appropriating some of the syntax
of expressions seems to be original with C, and for the simpler
cases, it works well. Occasionally some rather ornate types are
needed, and the declaration may be a bit hard to interpret. For
example, a pointer to an array of pointers to functions, each return-
ing an int, would be written

int (s{sfunnyarray)[])();

which is certainly opaque, although understandable enough if read
from the inside out. In an expression, funnyarray might appear as

i = («{sfunnyarray)[jl){k);
The corresponding Algol 68 declaration is
ref [] ref proc int funnyarray

which reads from left to right in correspondence with the informal

2000 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

description of the type if ref is taken to be the equivalent of C’s
“pointer to.” The Algel may be clearer, but both are hard to grasp.

IIl. STATEMENTS AND CONTROL FLOW

Control flow in C differs from other languages primarily in details
of syntax. As in PL/1, semicolons are used to terminate statements,
not to separate them. Most statements are just expressions followed
by a semicolon; since assignments are expressions, there is no need
for a special assignment statement.

Statements are grouped with braces { and }, rather than with
words like begin-end or do-od, because the more concise form
seems much easier to read and is certainly easier to type. A
sequence of statements enclosed in { } is syntactically a single state-
ment.

The if-else statement has the form

if {expression)
statemen!
else
statement

The expression is evaluated; if it is “true™ (that is, if expression has a
non-zero value), the first statement is done. If it is “false” (expres-
sion is zero) and if there is an else part, the second statement is
executed instead. The else part is optional; if it is omitted in a
sequence of nested if’s, the resulting ambiguity is resolved in the
usual way by associating the else with the nearest previous else-less
if.

The switch statement provides a multi-way branch depending on
the value of an integer expression:

switch {expression) {
case const:
code
case const:
code

default:
code

}

The expression is evaluated and compared against the various cases,
which are labeled with distinct integer constant values. If any case

C PROGRAMMING LANGUAGE 2001

matches, execution begins at that point. If no case matches but
there is a default statement, execution begins there; otherwise, no
part of the switch is executed.

The cases are just labels, and so control may flow through one
case to the next. Although this permits multiple labels on cases, it
also means that in general most cases must be terminated with an
explicit exit from the switch (the break statement below).

The switch construction is part of C’s legacy from BCPL; it is so
useful and so easy to provide that the lack of a corresponding facility
of acceptable generality in languages ranging from Fortran through
Algol 68, and even to Pascal (which does not provide for a default),
must be considered a real failure of imagination in language
designers.

C provides three kinds of loops. The while is simply

while (expression)
statement

The expression is evaluated; if it is true (non-zero), the statement is
executed, and then the process repeats. When expression becomes
false (zero), execution terminates.

The do statement is a test-at-the-bottom loop:

do
statement
while (expression);

statement is performed once, then expression is evaluated. If it is
true, the loop is repeated; otherwise it is terminated.

The for loop is reminiscent of similarly named loops in other
languages, but rather more general. The for statement

for (expri; expr2; expr3)
statement

is equivalent to

exprl;

while (expr2) {
statement
exprd;

)

Grammatically, the three components of a for loop are expressions.
Any of the three parts can be omitted, although the semicolons
must remain. If expri or expr3 is left out, it is simply dropped from

2002 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the expansion. If the test, expr2, is not present, it is taken as per-
manently true, so

for (;;) (

}

is an “infinite” loop, to be broken by other means, for example by
break, below.

The for statement keeps the loop control components together
and visible at the top of the loop, as in the idiomatic

for (i = 0; i < N; i = i+1)}

which processes the first N elements of an array, the analogue of the
Fortran or PL/I 0O loop. The for is more general, however. The
test is re-evaluated on each pass through the loop, and there is no
restriction on changing the variables involved in any of the expres-
sions in the for statement. The controlling variable i retains its
value regardless of how the loop terminates. And since the com-
ponents of a for are arbitrary expressions, for loops are not
restricted to arithmetic progressions. For example, the classic walk
along a linked list is

for (p = top; p != NULL; p = p—>nexi)

There are two statements for controlling loops. The break state-
ment, as mentioned, causes an immediate exit from the immediately
enclosing while, for, do or switch. The continue statement causes
the next iteration of the immediately enclosing loop to begin.
break and continue are asymmetric, since continue does not apply
to switch.

Finally, C provides the oft-maligned goto statement. Empirically,
goto’s are not much used, at least on our system. The operating
system itself, for example, contains 98 in some 8300 lines. The
ppP-11 C compiler, in 9660 lines, has 147. Essentially all of these
implement some form of branch to the top or bottom of a loop, or
to error recovery code.

IV. OPERATORS AND EXPRESSIONS

C has been characterized as having a relatively rich set of opera-
tors. Some of these are quite conventional. For example, the basic

C PROGRAMMING LANGUAGE 2003

binary arithmetic operators are +, —, * and /. To these, C adds the
modulus operator %; m%n is the remainder when m is divided by n.

Besides the basic logical or bitwise operators & (bitwise AND), and
| (bitwise OR}, there are also the binary operators ~ (bitwise
exclusive OR)}), >> (right shift}, and << (left shift), and the
unary operator ~ (ones complement). These operators apply to all
integers; C provides no special bit-string type.

The relational operators are the usual >, >=, <, <=, ==
(equality test), and != (inequality test}). They have the value 1 if
the stated relation is true, 0 if not.

The unary pointer operators * (for indirection) and & (for taking
the address} were described in Section I. When ¥ is such as to
make the expressions &»y or &+y legal, either is just equal to Y.
Note that & and * are used as both binary and unary operators (with
different meanings).

The simplest assignment is written =, and is used conventionally:
the value of the expression on the right is stored in the object whose
address is on the left. In addition, most binary operators can be
combined with assignment by writing

aop= b
which has the effect of
a=awomphb
except that a is only evaluated once. For example,
x +=23
is the same as
X =x+ 3
if x is just a variable, but
pli+j+1] += 3

adds 3 to'the element selected from the array p, calculating the sub-
script only once, and, more importantly, requiring it 1o be written
out only once. Compound assignment operators also seem (o
correspond well to the way we think, “add 3 to x” is said, if not
written, much more commonly than “assign x+3 to x.”

Assignment expressions have a value, just like other expressions,
and may be used in larger expressions. For example, the multiple
assignment

2004 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

i=j=k=0

is a byproduct of this fact, not a special case. Another very com-
mon instance is the nesting of an assignment in the condition part
of an if or a loop, as in

while {(c = getchar()) |= EOF) ..

which fetches a character with the function getchar, assigns it to ¢,
then tests whether the result is an end of file marker. (Parentheses
are needed because the precedence of the assignment = is lower
than that of the relational |=.)

C provides two novel operators for incrementing and decrement-
ing variables. The increment operator ++ adds 1 to its operand,

the decrement operator — — subtracts 1. Thus the statement
+ +i;
increments i. The unusual aspect is that + + and — — may be used

either as prefix operators (before the variable, as in + +i), or
postfix (after the variable: i++). In both cases, the effect is to
increment i. But the expression + +i increments i before using its
value, while i+ + increments i affer its value has been used. If i is
5, then

i++;

x
il

sets X to 5, but
X = ++i;

sets x to 6. In both cases, | becomes 6.
For example,

stackli++]1 = ... ;

pushes a value on a stack stored in an array stack indexed by i,
while

. = stack[——il;

retrieves the value and pops the stack. Of course, when the quantity
incremented or decremented is a pointer, appropriate scaling is
done, just as if the “1™ were added explicitly:

sstackp++ = ... ;
. = «——stackp;

C PROGRAMMING LANGUAGE 2005

are analogous to the previous example, this time using a stack
pointer instead of an index.

Tests may be combined with the logical connectives && (AND), ||
(oRr), and ! (truth value negation). The && and || operators guaran-
tee left-to-right evaluation, with termination as soon as the truth
value is known. For example, in the test

if i <= N && arrayli] > 0) ...

if i is greater than N, then arraylil (presumably at that point an
out-of‘bounds reference) will not be accessed. This predictable
behavior is especially convenient, and much preferable to the expli-
citly random order of evaluation promised by most other languages.
Most C programs rely heavily on the properties of && and ||].

Finally, the conditional expression, written with the ternary operator
7 :, provides an analogue of if-else in expressions. In the expres-
sion

el ? e2 : el

the expression el is evaluated first. If it is non-zero (true), then the
expression e2 is evaluated, and that is the value of the conditional
expression. Otherwise, eJ is evaluated, and that is the value. Only
one of e2 and e is evaluated. Thus to set z to the maximum of a
and b,

z=1(a>b) ?2a:b; /+z = maxia, b) +/

We have already discussed how integers are scaled appropriately in
pointer arithmetic. C does a number of other automatic conversions
between data types, more freely than Pascal, for example, but
without the wild abandon of pL/1. In all contexts, char variables
and constants are promoted to int. This is particularly handy in
code like

n=c¢— '0;

which assigns to n the integer value of the character stored in ¢, by
subtracting the value of the character '0’. Generally, in fact, the
basic types fall into only two classes, integral and floating-point;
char variables, and the various lengths of int’s, are taken to be
representations of the same kind of thing. They occupy different
amounts of storage but are essentially compatible. Boolean values
as such do not exist;, relational or truth-value expressions have value
1if true, and 0 if false.

Variables of type int are converted to floating-point when

2006 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

combined with floats or doubles and in fact all floating arithmetic is
carried out in double precision, so floats are widened to double in
expressions.

Conversions that involve “narrowing” an expression (for exam-
ple, when a longer value is assigned to a shorter) are also well
behaved. Floating point values are converted to integer by trunca-
tion; integers convert to shorter integers or characters by dropping
high-order bits.

When a conversion is desired, but is not implicit in the context, it
is possible to force a conversion by an explicit operator called a cast.
The expression

(type) expression

is a new expression whose type is that specified in type. For exam-
ple, the sin routine expects an argument of type double; in the
statement

X = sin({{double) n);

the value of n is converted to double before being passed to sin.

V. THE STRUCTURE OF C PROGRAMS

Complete programs consist of one or more files containing func-
tion and data declarations. Thus, syntacti¢ally, a program is made
up of a sequence of declarations; executable code appears only
inside functions. Conventionally, the run-time system arranges 1o
call a function named main to start execution.

The language distinguishes the notions of declaration and
definition. A declaration merely announces the properties of a vari-
able (like its type); a definition declares a variable and also allocates
storage for it or, in the case of a function, supplies the code.

5.1 Functions

The notion of function in C includes the subroutines and functions
of Fortran and the procedures of most other languages. A function
call is written

name (arglist)

where the parentheses are required even if the argument list is
empty. All functions may be used recursively.
Arguments are passed by value, so the called function cannot in

G PROCGRAMMING LANGUAGE 2007

any way affect the actual argument with which it was called. This
permits the called program to use its formal arguments as con-
veniently initialized local variabies. Call by value also eliminates the
class of errors, familiar to Fortran programmers, in which a constant
is passed to a subroutine that tries to alter the corresponding argu-
ment. An array name as an actual argument, however, is converted
to a pointer to the first array element (as it always is), so the effect
is as if arrays were called by reference; given the pointer, the called
function can work its will on the individual elements of the array.
When a function must return a value through its argument list, an
explicit pointer may be passed, and the function references the ulti-
mate target through this pointer. For example, the function
swap(pa, pb) interchanges two integers pointed to by its arguments:

swap{px, py) /= flip int's pointed to by px and py +/
int' =px, =py;

int temp;

temp = *px;
DX = *py,;
*py = temp;

}

This aiso demonstrates the form of a function definition: the name
is followed by an argument list; the arguments are declared, and the
body of the function is a block, or compound statement, enclosed in
braces. Declarations of local variables may follow the opening
brace.

A function returns a value by

return expression;

The expression is automatically coerced to the type that the function
returns. By default, functions are assumed to return int; if this is
not the case, the function must be declared both in the calling rou-
tine and when it is defined. For example, a function definition is

double sqrt(x) /+ returns square root of x =/
double x;

{
)

In the caller, the declaration is

2008 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

double vy, sqrt();

y = sqrtiy);

A function argument may be any of the basic types or a peinter,
but not an array, structure, union, or function. The same is true of
the value returned by a function. (The most recent versions of the
language, still not standard everywhere, permit structures and
unjons as arguments and values of functions and allow them to be
assigned.)

5.2 Data

Data declared at the top level (that is, outside the body of any
function definition) are static in lifetime, and exist throughout the
execution of the program. Variables declared within-a function body
are by default automatic: they come into existence when the func-
tion is entered and vanish when it is exited. Automatic variables
may be declared to be register variables; when possible they will be
placed in machine registers, which may result in smaller, faster
code. The register declaration is only considered a hint to the com-
piler; no hardware register names are mentioned, and the hint may
be ignored if the compiler wishes.

Stratic variables exist throughout the execution of a program, and
retain their values across function calls. Static variables may be local
to a function or (if defined at the top level) common to several
functions.

External variables have the same lifetime as static, but they are
also accessible to programs from other source files. That is, all
references to an identically named external variable are references to
the same thing.

The “storage class™ of a variable can be explicitly announced in its
declaration:

static int x;
extern double y[10];

More often the defaults for the context are sufficient. Inside a func-
tion, the default is auto (for automatic). Outside a function, at the
top level, the default is extern. Since automatic and register vari-
ables are specific to a particular call of a particular function, they
cannot be declared at the top level. Neither top-level variables nor

C PROGRAMMING LANGUAGE 2009

functions explicitly declared static are visible to functions outside
the file in which they appear.

5.3 Scope

Declarations may appear either at the top level or at the head of 2
block {compound statement). Declarations in an inner block tem-
porarily override those of identically named variables outside. The
scope of a declaration persists until the end of its block, or until the
end of the file, if it was at the top level.

Since function definitions may be given only at the top level (that
is, they may not be nested), there are no internal procedures. They
have been forbidden not for any philosophical reason, but only to
simplify the implementation. It has turned out that the ability to
make certain functions and data invisible to programs in other files
(by explicitly declaring them static) is sufficient to provide one of
their most important uses, namely hiding their names from other
functions. (However, it is not possible for one function to access
the internal variables of another, as internal procedures could do.)
Similarly, the ability to conceal functions and data in one file from
access by another satisfies some of the most crucial requirements of
modular programming (as in languages like Alphard, cLu, and
Euclid), even though it does not satisfy them all.

VI. C PREPROCESSOR

It is well recognized that “magic numbers” in a program are a sign
of bad programming. Most languages, therefore, provide a way to
define symbolic names for constants, so that the value of a magic
number need be specified in only one place, and the rest of the code
can refer to the value by some mnemonic name. In C such a
mechanism is available, but it is not part of the syntax of the
language; instead, symbolic naming is provided by a macro prepro-
cessor automatically invoked as part of every C compilation. For
example, given the definitions

#define Pl 3.14159
#define E 271284

the preprocessor replaces all occurrences of a defined name by the
corresponding defining string. (Upper-case names are normally
chosen to emphasize that these are not variables.) Thus, when the
programmer recognizes that he has written an incorrect value for e,

2010 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

only the definition line has to be changed to
#define E 2.71828

instead of each instance of the constant in the program.

Providing this service by a macro processor instead of by syntax
has some significant advantages. The replacement text i$ not
restricted to being numbers; any string of characters is permitted.
Furthermore, the token being replaced need not be a variable,
although it must have the form of a name. For example, one can
define

#define forever tor (;;)
and then write infinite loops as

torever |

}

The macro processor also permits macros to have arguments; this
capability is heavily used by some 1/O packages.

A second service of the C preprocessor is library file inclusion: a
source line of the form

#include *name”

causes the contents of the file name to be interpolated into the
source at that point. (includes may be nested.) This feature is
much used, especially in larger programs, for making sure that all
the source files of the program are supplied with identical #defines,
global data declarations, and the like.

VIl. ENVIRONMENTAL CONSIDERATIONS

By intent, the C language confines itself to facilities that can be
mapped relatively efficiently and directly into machine instructions.
For example, writing matrix operations that look exactly like scalar
operations is possible in some programming languages and occasion-
ally misleads programmers into believing that matrix operations are
as cheap as scalar operations. More important, restricting the
domain of the C compiler to those areas where it knows how to do a
relatively effective job provides the freedom to design subroutine
libraries for the remaining tasks without constraining them to fit into
some language specification. When the compiler cannot implement
some facility without heavy costs in nonportability, complexity, or

C PROGRAMMING LANGUAGE 2011

efficiency, there are many benefits to leaving out such a facility: it
simplifies the language and the compiler, frequently without incon-
veniencing the user (who often rejects a high-cost built-in operation
and does it himself anyway).

At present, C is restricted to simple operations on simple data
types. As a result, although the C area of operation is comparatively
clean and pleasant, the user must know something about the pollut-
ing effects of the environment to get most jobs done. A program
can always- access the raw system calls on each system if very close
interaction with the operating system is needed, but standard library
routines have been implemented in each C environment that try to
encourage portability while retaining speed and flexibility. The basic
areas covered by the standard library at present are storage alloca-
tion, string handling, and 1/0. Additional libraries and utilities are
available for such areas as graphics, coroutine sequencing, execution
time monitoring, and parsing.

The only automatic storage management service provided by C
itself is the stack discipline for automatic variables. Two subrou-
tines exist for more flexible storage handling. The function
calloc (n, s) returns a pointer to a properly aligned storage block
that will hold n items each of which is s bytes long. Normally 8 is
obtained from the sizeof pseudo-function, a compile-time function
that yields the size in bytes of a variable or data type., To return a
block obtained from calloc to the free storage pool, cfree (p) may
be called, where p is a value returned by a previous call to calioc.

Another set of routines deals with string handling. There is no
“string” data type, but an array of characters, with a convention that
the end of a string is indicated by a null byte, can be used for the
same purpose. The most commonly used string routines perform
the functions of copying one string to another, comparing two
strings, and computing a string length. More sophisticated string
operations can often be performed using the 1/0 routines, which are
described next.

Most of the routines in the standard library deal with input and
output, Mest C programmers use stream 1/0, although there is no
reason why record 1/0 could not be used with the language. There
are three default streams: the standard input, the standard output,
and the error output. The most elementary routines for dealing
with these streams are getchar() which reads a character from the
standard input, and putchar(c}, which writes the character ¢ on the
standard output. In the environments in which C programs run, it
is generally possibly to redirect these streams te files or ‘other

2012 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

programs; the program itself does not change and is unaware of the
redirection.

The most common output function is printf{format, datat,
data2, ...), which performs data conversion for formatted output.
The string format is copied to the standard output, except that when
a conversion specification introduced by a % character is found in
format it is replaced by the value of the next data argument, con-
verted according to the specification. For example,

printf("n = %d, x = %f*, n, x);
prints n as a decimal integer and x as a floating point number, as in
n =17, x = 1234

A similar function scanf performs formatted input conversion.

All the routines mentioned have versions that operate on streams
other than the standard input or output, and printf and scanf vari-
ants may also process a string, to allow for in-memory format
conversion. Other routines in the I/O library transmit whole lines
between memory and files, and check for error or end-of-file status.

Many other routines and utilities are used with C, somewhat more
on UNIX than on other systems. As an example, it is possible to
compile and load a C program so that when the program is run, data
are collected on the number of times each function is called and
how long it executes. This profile pinpoints the parts of a program
that dominate the run-time.

Vilt. EXPERIENCE WITH C

C compilers exist for the most widely used machines at Bell
Laboratories (the 1BM S/370, Honeywell 6000, pDP-11) and perhaps
10 others. Several hundred programmers within Bell Laboratories
and many outside use C as their primary programming language.

8.1 Favorable experlences

C has completely displaced assembly language in UNIX programs.
All applications code, the C compiler itself, and the operating sys-
tem (except for about 1000 lines of initial bootstrap, etc.) are writ-
ten in C. Although compilers or interpreters are available under
unNix for Fortran, Pascal, Algol 68, Snobol, APL, and other

C PROGRAMMING LANGUAGE 2013

languages, most programmers make little use of them. Since C is a
relatively low-level language, it is adequately efficient to prevent
people from resorting to assembler, and yet sufficienctly terse and
expressive that its users prefer it to PL/I or other very large
languages.

A language that doesn’t have everything is actually easier to pro-
gram in than some that do. The limitations of C often imply shorter
manuals and easier training and adaptation. Language design, espe-
cially when done by a committee, often tends toward including all
doubtful features, since there is no quick answer to the advocate
who insists that the new feature will be useful to some and can be
ignored by others. But this results in long manuals and hierarchies
of “experts” who know progressively larger subsets of the language,
In practice, if a feature is not used often enough to be familiar and
does not complete some structure of syntax or semantics, it should
probably be left out. Otherwise, the manual and compiler get bulky,
the users get surprises, and it becomes harder and harder to main-
tain and use the language. It is also desirable to avoid language
features that cannot be compiled efficiently, programmers like to
feel that the cost of a statement is comparable to the difficulty in
writing it. C has thus avoided implementing operations in the
language that would have to be performed by subroutine call. As
compiler technology improves, some extensions {e.g., structure
assignment) are being made to C, but always with the same princi-
ples in mind.

One direction for possible expansion of the language has been
explicitly avoided. Although C is much used for writing operating
systems and associated software, there are no facilities for multipro-
gramming, parallel operations, synchronization, or process control.
We believe that making these operations primitives of the language
is inappropriate, mostly because language design is hard enough in
itself without incorporating into it the design of operating systems.
Language facilities of this sort tend to make strong assumptions
about the underlying operating system that may match very poorly
what it actually does.

8.2 Unfavorable experiences

The design and implementation of C can (or could) be criticized
on a number of points. Here we discuss some of the more vulner-
able aspects of the language.

2014 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

8.2.1 Language level

Some users complain that C is an insufficiently high-level
language; for example, they want string data types and operations,
or variable-size multi-dimensional arrays, or generic functions.
Sometimes a suggested extension merely involves lifting some
restriction. For example, allowing variable-size arrays would actually
simplify the language specification, since it would only involve
allowing general expressions in place of constants in certain con-
texis.

Many other extensions are plausible; since the low level of C was
praised in the previous section as an advantage of the language,
most will not be further discussed. One is worthy of mention, how-
ever. The C language provides no facility for i/0, leaving this job
to library routines. The following fragment illustrates one difficulty
with this approach:

printf("%d\n", x);

The problem arises because on machines on which int is not the
same as long, X may not be long; if it were, the program must be
written

printf(*%D\n*, x};

s0 as to teil printf the length of x. Thus, changing the type of x
involves changing not only its declaration, but also other parts of the
program. If I/0 were built into the language, the association
between the type of an expression and the format in which it is
printed could be reconciled by the compiler.

8.2.2 Type safety

C has traditionally been permissive in checking whether an
expression is used in a context appropriate to its type. A complete
list of examples would be long, but two of the most important
should illusirate sufficiently. The types of formal arguments of
functions are in general not known, and in any case are not checked
by the compiler against the actual arguments at each call. Thus in
the statement

s = sin(1)};
the fact that the sin routine takes a floating-point argument is not
noticed until the erroneous result is detected by the programmer.

C PROGRAMMING LANGUAGE 2015

In the structure reference
p— >memb

p is simply assumed to point to a structure of which memb is a
member; p might even be an integer and not a pointer at all.

Much of the explanation, if not justification, for such laxity is the
typeless nature of C’s predecessor languages. Fortunately, a
justification need no longer be attempted, since a program is now
available that detects all common type mismatches. This utility,
called lint because it picks bits of fluff from programs, examines a
set of files and complains about a great many dubious constructions,
ranging from unused or uninitialized wvariables through the type
errors mentioned. Programs that pass unscathed through lint enjoy
about as complete freedom from type errors as do Algol 68 pro-
grams, with a few exceptions: unions are not checked dynamically,
and explicit escapes are available that in effect turn off checking.

Some languages, such as Pascal and Euclid, allow the writer to
specify that the value of a given variable may assume only a given
subrange of the integers. This facility is often connected with the
usage of arrays, in that any array index must be a variable or expres-
sion whose type specifies a subset of the set given by the bounds of
the array. This approach is not without theoretical difficulties, as
suggested by Habermann.? In itself it does not solve the problems
of variables assuming unexpected values or of accessing outside
array bounds; such things must (in general) be detected dynami-
cally. Still, the extra information provided by specifying the permis-
sible range for each variable provides valuable information for the
compiler and any verifier program. C has no corresponding facility.

One of the characteristic features of C is its rather complete
integration of the notion of pointer and of address arithmetic. Some
writers, notably Hoare,’ have argued against the very notion of
pointer. We feel, however, that the facilities offered by pointers are
too valuable to give up lightly.

8.2.3 Syntax peculiarities

Some people are annoyed by the terseness of expression that is
one of the characteristics of the language. We view C's short opera-
tors and general lack of noise as a benefit. For example, the use of
braces { } for grouping instead of begin and end seems appropriate
in view of the frequency of the operation. The use of braces even
fits well into ordinary mathematical notation.

2016 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Terseness can lead to code that is hard to read, however. For
example,

e+ +eargv

where argv has been declared char #+argv {(pointer into an array of
character pointers) means: select the character pointer pointed at by
argv (sargv), increment it by one (+ + »argv), then fetch the char-
acter that that pointer points at {s+ +eargv). This is concise and
efficient but reminiscent of APL.

An example of a minor problem is the comment convention,
which is PL/I’S /+ ... ¢/, Comments do not nest, so an effort to
“comment out” a section of code will fail if that section contains a
comment. And a number of us can testify that it is surprisingly
hard to recognize when an “end comment™ delimiter has been
botched, so that the comment silently continues until the next com-
ment is reached, deleting a line or two of code. It would be more
convenient if a single unique character were reserved to introduce a
comment, and if comments always terminated at an end of line.

8.2.4 Semantic peculiarities

There are some occasionaily surprising operator precedences. For
example,

a>>4+ 5
shifts right by 9. Perhaps worse,
(x & MASK) ==

must be parenthesized to associate the proper way. Users learn
quickly to parenthesize such doubtful cases; and when feasible lint
warns of suspicious expressions (including both of these).

We have already mentioned the fact that the case actions in a
switch flow through unless explicitly broken. In practice, users write
so many switch statements that they become familiar with this
behavior and some even prefer it.

Some problems arise from machine differences that are reflected,
perhaps unnecessarily, into the semantics of C. For example, the
PDP-11 does sign extension on byte fetches, so that a character
(viewed arithmeticaily) can have a value ranging from —128 to
+127, rather than 0 to +255. Although the reference manual
makes it quite clear that the precise range of a char variable is
machine dependent, programmers occasionally succumb to the

C PROGRAMMING LANGUAGE 2017

temptation of using the full range that their local machine can
represent, forgetting that their programs may not work on another
machine. The fundamental problem, of course, is that C permits
small numbers, as well as genuine characters, to be stored in char
variables. This might not be necessary if, for example, the notion
of subranges {mentioned above) were introduced into the language.

8.2.5 Miscellaneous

C was developed and is generally used in a highly responsive
interactive environment, and accordingly the compiler provides few
of the services usually associated with batch compilers. For exam-
ple, it prepares no listing of the source program, no cross reference
table, and no indication of the nature of the generated code. Such
facilities are available, but they are separate programs, not parts of
the compiler, Programmers used to batch environments may find it
hard to live without giant listings; we would find it hard to use
them.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

C has continued to develop in recent years, mostly by upwardly
compatible extensions, occasionally by restrictions against manifestly
nonportable or illegal programs that happened to be compiled into
something useful. The most recent major changes were motivated
by the extension of C to other machines, and the resulting emphasis
on portability. The advent of union and of casts reflects a desire to
be more precise about types when moving to other machines is in
prospect. These changes have had relatively little effect on program-
mers who remained entirely on the UNIX system. Of more impor-
tance was a new library, which changed the use of a “portable”
library from an option into an effective standard, while simultane-
ously increasing the efficiency of the library so that users would not
ohject.

It is more difficult, of course, to speculate about the future. C is
now encountering more and more foreign environments, and this is
producing many demands for C to adapt itself to the hardware, and
particularly to the operating systems, of other machines. Bit fields,
for example, are a response to a request to describe externally
imposed data layouts. Similarly, the procedures for external storage
allocation and referencing have been made tighter to conform to
requirements on other systems. Portability of the basic language

2018 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

seems well handled, but interactions with operating systems grow
ever more complex. These lead to requests for more sophisticated
data descriptions and initializations, and even for assembler win-
dows. Further changes of this sort are likely.

What is not likely is a fundamental change in the level of the
language. Realistically, the very acceptance of C has compelled
changes to be made only most cautiously and compatibly. Should
the pressure for improvements become too strong for the language
to accommodate, C would probably have to be left as is, and a
totally new language developed. We leave it to the reader to specu-
late on whether it should be called D or P.

REFERENCES

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N.J.: Prentice-Hall, 1978.

2. M. Richards, “BcPL; A Tool for Compiler Writing and Systems Programming,”
Proc. AFIPs sice, 34 (1969), pp. 557-566.

3. S. C. Johnson and B. W. Kernighan, “The Programming Language B,” Comp. Sci.
Tech. Rep. No. 8, Bell Laboratories (January 1973).

4. A. N. Habermann, “Critical Comments on the Programming Language PASCAL,”
Acta Informatica, 7 (1973), pp. 47-38.

5 C %351 Hoare, “Data Reliability,” AcM sIGPLAN Notices, /0 (June 1975), pp. 528-

C PROGRAMMING LANGUAGE 2019

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vvol. 57, No. 6, July-Aupust 1978
Pristted in U5 A,

UNIX Time-Sharing System:

Portability of C Programs and
the UNIX System

By S. C. JOHNSON and D. M. RITCHIE
(Manuscript received December 5, 1977)

Computer programs are portable to the extent that they can be moved
to new computing environments with much less effort than it would take
1o rewrite them. In the limii, a program is perfectly portable if it can be
moved at will with no change whatsoever. Recent C language exiensions
have made it easier to write portable programs. Some tools have also
been developed thar aid in the detection of nonportable constructions.
With these tools many programs have been moved from the PDP-11 on
which they were developed to other machines. In particular, the UNIX®
operating system and most of ifs software have been rransported to the
Interdata 8/32. The source-language representation of most of the code
involved is identical in all environments.

I. INTRODUCTION

A program is portable to the extent that it can be easily moved to
4 new computing environment with much less effort than would be
required to write it afresh. It may not be immediately obvious that
lack of portability is, or needs to be, a problem. Of course, practi-
cally no assembly-language programs are portable. The fact is, how-
ever, that most programs, even in high-level languages, depend
explicitly or implicitly on assumptions about such machine-

* UNIX is a rademark of Bell Laboratories.

2021

dependent features as word and character sizes, character set, file
system structure and organization, peripheral device handling, and
many others. Moreover, few computer languages ar¢ understood by
more than a handful of kinds of machines, and those that are (for
example, Fortran and Cobol) tend to be rather limited in their
scope, and, despite strong standards efforts, still differ considerably
from one machine to another.

The economic advantages of portability are very great. In niany
segments of the computer industry, the dominant cost is develop-
ment and maintenance of software. Any large organization, cer-
tainly including the Bell System, will have a variety of computers
and will want to run the same program at many locations. If the
program must be rewritten for each machine and maintained for
each, software costs must increase. Moreover, the most effective
hardware for a given job is not constant as time passes. If a non-
portable program remains tied to obsolete hardware to avoid the
expense of moving it, the costs are equally real even if less obvious.
Finally, there can be considerable benefit in using machines from
several manufacturers simply to avoid being utterly dependent on a
single supplier.

Most large computer systems spend most of their time executing
application programs; circuit design and analysis, network routing,
simulation, data base applications, and text processing are particu-
larly important at Bell Laboratories. For years, application programs
have been written in high-level languages, but the programs that
provide the basic software environment of computers (for example,
operating systems, compilers, text editors, etc.) are still usually
coded in assembly language. When the costs of hardware were large
relative to the costs of software, there was perhaps some justification
for this approach; perhaps an equally important reason was the lack
of appropriate, adequately supported languages. Today hardware is
relatively cheap, software is expensive, and any number of
languages are capable of expressing well the algorithms required for
basic system software. It is a mystery why the vast majority of com-
puter manufacturers continue to generate so much assembly-
language software.

The benefits of writing software in a well-designed language far
exceed the costs. Aside from potential portability, these benefits
include much smaller development and maintenance costs. It is true
that a penalty must be paid for using a high-level language, particu-
larly in memory space occupied. The cost in time can usually be
controlied: experience shows that the time-critical part of most

2022 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

programs is only a few percent of the total code. Careful design
allows this part to be efficient, while the remainder of the program is
unimportant.

Thus, we take the position that essentially all programs should be
written in a language well above the level of machine instructions.
While many of the arguments for this position are independent of
portahility, portabhility is itself a very important goal; we will try to
show how it can be achieved almost as a by-product of the use of a
suitable language.

We have recently moved the UNIX system kernel, together with
much of its software, from its original host machine {DEC PDP-11) to
a very different machine (Interdata 8/32). Almost all the programs
involved are written in the C language,!-2 and almost all are identi-
cal on the two systems. This paper discusses some of the problems
encountered, and how they were solved by changing the language
itself and by developing tools to detect and resolve nonportable con-
structions. The major lessons we have learned, and that we hope to
teach, are that portable programs are good programs for more rea-
sons than that they are portable, and that making programs portable
costs some intellectual effort but need not degrade their perfor-
mance.

Il. HISTORY

The Computing Science Research Center at Bell Laboratories has
been interested in the problems and technologies of program porta-
bility for over a decade. Altran? is a substantial {25,000 lines) com-
puter algebra system, written in Fortran, which was developed with
portability as one of its primary goals. Altran has been moved to
many incompatible computer systems; the effort involved for each
move is quite moderate. Qut of the Altran effort grew a tool, the
PFORT verifier,% that checks Fortran programs for adherence to a
strict set of programming conventions. Most importantly, it detects
(where possible} whether the program conforms to the ANSI stan-
dard for Fortran,’ but because many compilers fail to accept even
standard-conforming programs, it also remarks upon several con-
structions that are legal but nevertheless nonportable. Successful
passage of a program through PFORT is an important step in assuring
that it is portable. More recently, members of the Computer Sci-
ence Research Center and the Computing Technology Center jointly
created the PORT library of mathematical software.® Implementation
of PORT required research not merely into the language issues, but

C PROGRAM PORTABILITY 2023

also into deeper questions of the model of floating point compuita-
tions on the various target machines.

In parallel with this work, the development at Bell Laboratories of
Snobold” marks one of the first attempts at making a significant
compiler portable. Snobol4 was successfully moved to a large
number of machines, and, while the implementation was sometimes
inefficient, the techniques made the language widely available and
stimulated additional work leading to more efficient implementa-
tions.

Illl. PORTABILITY OF C PROGRAMS — INITIAL EXPERIENCES

C was developed for the PDP-11 on the UNIX system in 1972, Por-
tability was not an explicit goal in its design, even though limitations
in the underlying machine model assumed by the predecessors of C
made us well aware that not all machines were the same.? Less than
a year later, C was also running on the Honeywell 6000 system at
Murray Hill. Shortly thereafter, it was made available on the IBM
370 series machines as well. The compiler for the Honeywell was a
new product,® but the IBM compiler was adapted from the PDP-11
version, as were compilers for several other machines.

As soon as C compilers were available on other machines, a
number of programs, some of them quite substantial, were moved
from UNIX to the new environments. In general, we were quite
pleased with the ease with which programs could be transferred
between machines. Still, a number of problem areas were evident.
To begin with, the C language was growing and developing as
experience suggested new and desirable features. It proved to be
quite painful to keep the various C compilers compatible; the
Honeywell version was entirely distinct from the PDP-11 version,
and the 1BM version had been adapted, with many changes, from a
by-then obsolete version of the PDP-11 compiler. Most seriously,
the operating system interface caused far more trouble for portability
than the actal hardware or language differences themselves. Many
of the UNIX primitives were impossible to imitate on other operating
systems; moreover, some conventions on these other operating sys-
tems (for example, strange file formats and record-oriented 1/0)
were difficuit to deal with while retaining compatibility with UNIX.
Conversely, the [/0 library commonly used sometimes made UNIX
conventions excessively visible—for example, the number 518 often
found its way into user programs as the size, in bytes, of a particu-
larly efficient I/0 buffer structure.

2024 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Additional problems in the compilers arose from the decision to
use the local assemblers, loaders, and library editors on the host
operatling systems. Surprisingly often, they were unable to handle
the code most naturally produced by the C compilers. For example,
the semantics of possibly initialized external variables in C was guile
consciously designed to be implementable in a way identical to
Fortran’s COMMON blocks to guarantee its portability. It was an
unpleasant surprise to discover that the Honeywell assembler would
allow at most 61 such blocks (and hence external variables) and that
the BM link-editor preferred to start external variables on even
4096-byte boundaries. Software limitations in the target systems
complicated the compilers and, in one case, the problems with
external variables just mentioned, forced changes in the C language
itself.

IV. THE UNIX PORTABILITY PROJECT

The realization that the operating systems of the target machines
were as great an obstacle to portability as their hardware architecture
led us to a seemingly radical suggestion: to evade that part of the
problem altogether by moving the operating system itself.

Transportation of an operating system and its software between
non-trivially different machines is rare, but not unprecedented.?!3
Our own situation was a bit different in that we already had a
moderately large, complete, and mature system in wide use at many
installations. We could not (or at any rate did not want to) start
afresh and redesign the language, the operating system interfaces,
and the software. It seemed, though, that despite some problems in
each we had a good base to build on.

Our project had three major goals:

(/) To write a compiler for C that could be changed without grave
difficulty to generate code for a variety of machines.

(i) To refine and extend the C language to make most C pro-
grams portable to a wide variety of machines, mechanically
identifying non-portable constructions where possible.

(/i) To revise or recode a substantial portion of UNIX in portable
C, detecting and isolating machine dependencies, and demon-
strate its portability by moving it to another machine.

By pursuing each goal, we hoped to attain a corresponding benefit:

(i) A C compiler adaptable to other machines (independently of
UNIX), that puts into practice some recent developments in
the theory of code generation.

C PROGRAM PORTABILITY 2025

(i} Improved understanding of the proper design of languages
that, like C, operate on a level close to that of real machines
but that can be made largely machine-independent.

(iii} A relatively complete and usable implementation of UNIX on
at least one other machine, with the hope that subsequent
implementations would be fairly straightforward.

We selected the Interdata 8/32 computer to serve as the initial
target for the system portability research. It is a 32-bit computer
whose design resembles that of the 1BM System/360 and /370 series
machines, although its addressing structure is rather different; in
particular, it is possible to address any byte in virtual memory
without use of a base register. For the portability research, of
course, its major feature is that it is nof a PDP-11. In the longer
term, we expect to find it especially useful for solving problems,
often drawn from numerical analysis, that cannot be handled on the
PDP-11 because of its limited address space.

Two portability projects besides those referred to above are partic-
ularly interesting. In the period 1976-1977, T. L. Lyon and his asso-
ciates at Princeton adapted the UNIX kernel to run in a viftual-
machine partition under vM/370 on an IBM System/370.14 Enough
software was also moved to demonstrate the feasibility of the effort,
though no attempt was made to produce a complete, working sys-
tem. In the midst of our own work on the Interdata 8/32, we
learned that a UNIX portability project, for the similar Interdata 7/32,
was under way at the University of Wollongong in Australia.l® Since
everything we know of this effort was discovered in discussion with
its major participant, Richard Miller,!® we will remark only that the
transportation route chosen was markedly different from ours. In
particular, an Interdata C compiler was adapted from the pDP-11
compiler, and was moved as soon as possible to the Interdata, where
it ran under the manufacturer’s operating system. Then the UNIX
kernel was moved in pieces, first running with dummy device
drivers as a task under the Interdata system, and only at the later
stages independently. This approach, the success of which must be
scored as a real tour de force, was made necessary by the 100 kilome-
ters separating the PDP-11 in Sydney from the Interdata in Wol-
longong.

4.1 Project chronology

Work began in the early months of 1977 on the compiler, assem-
bler, and loader for the Interdata machine. Soon after its delivery at

2026 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the end of April 1977, we were ready to check out the compiler. At
about the same time, the operating system was being scrutinized for
nonportable constructions. During May, the Interdata-specific code
in the kernel was written, and by June, it was working well enough
to begin moving large amounts of software; T. L. Lyon aided us
greatly by tackling the bulk of this work. By August, the sysiem was
unmistakably UNIX, and it was clear that, as a research project, the
portability effort had succeeded, although there were still programs
to be moved and bugs to be stamped out. From late summer until
October 1977, work proceeded more slowly, owing to a combination
of hardware difficulties and other claims on our time; by the spring
of 1978 the portability work as such was complete. The remainder
of this paper discusses how success was achieved.

V. SOME NON-GOALS

It was and is clear that the portability achievable cannot approach
that of Altran, for example, which can be brought up with a fort-
night of effort by someone skilled in local conditions but ignorant of
Altran itself. In principle, all one needs to implement Altran is a
computer with a standard Fortran compiler and a copy of the Altran
system tape; to get it running involves only defining of some con-
stants characterizing the machine and writing a few primitive opera-
tions in assembly language.

In view of the intrinsic difficulties of our own project, we did not
feel constrained to insist that the system be so easily portable. For
example, the C compiler is not bootstrapped by means of a simple
interpreter for an intermediate language; instead, an acceptably
efficient code generator must be written. The compiler is indeed
designed carefully so as to make changes easy, but for each new
machine it inevitably demands considerable skill even to decide on
data representations and run-time conventions, let alone the code
sequences to be produced. Likewise, in the operating system, there
are many difficult and inevitably machine-dependent issues, includ-
ing especially the treatment of interrupts and faults, memory
management, and device handling. Thus, although we took some
care to isolate the machine-dependent portions of the operating sys-
tem into a set of primitive routines, implementation of these primi-
tives involves deep knowledge of the most recondite aspects of the
target machine.

Moreover, we could not attempt to make the portable UNIX sys-
tem compatible with software, file formats, or inadequate character

C PROGRAM PORTABILITY 2027

sets already existing on the machine to which it is moved; to prom-
ise to do so would impossibly complicate the project and, in fact,
might destroy the usefulness of the result. If UNIX is to be installed
on a machine, its way of doing business must be accepted as the
right way; afterwards, perhaps, other software can be made to work.

VI. THE PORTABLE C COMPILER

The originat C compiler for the PDP-11 was not designed to be
easy to adapt for other machines. Although successful compilers for
the 1BM System/370 and other machines were based on it, much of
the modification effort in each case, particularly in the early stages,
was concerned with ridding it of assumptions about the PDP-11.
Even before the idea of moving UNIX occurred to us, it was clear
that C was successful enough to warrant production of compilers for
an increasing variety of machines. Therefore, one of the authors
(SCJ} undertook to produce a new compiler intended from the start
to be easily modified. This new compiler is now in use on the IBM
System/370 under both 0$ and TS, the Honeywell 6000, the Inter-
data 8/32, the SEL86, the Data General Nova and Eclipse, the DEC
vAaX-11/780, and a Bell System processor. Versions are in progress
for the Intel 8086 microprocessor and other machines.

The degree of portability achieved by this compiler is satisfying.
In the Interdata 8/32 version, there are roughly 8,000 lines of
source code. The first pass, which does syntax and lexical analysis
and symbol table management, builds expression trees, and gen-
erates a bit of machine-dependent code such as subroutine prologues
and epilogues, consists of 4,600 lines of code, of which 600 are
machine-dependent. In the second pass, which does the bulk of the
code generation, 1,000 out of 3,400 lines are machine-dependent.
Thus, out of a total of 8,000 lines, 1,600, or 20 percent, are
machine-dependent; the remaining 80 percent are shared with the
Honeywell, 1BM, and other compilers. As the Interdata compiler
becomes more carefully tuned, the machine-dependent figures will
rise somewhat; for the [BM, the machine-dependent fraction is 22
percent; for the Honeywell, 25 percent.

These figures both overstate and understate the true difficulty of
moving the compiler. They represent the size of those source files
that contain machine-dependent code; only a half or a third of the
lines in many machine-dependent functions actually differ from
machine to machine, because most of the routines involved remain
similar in structure. As an example, routines to output branches,

2028 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

align location counters, and produce function prologues and epilo-
gues have a clear machine-dependent component, but nevertheless
are logically very similar for all the compiiers. On the other hand,
as we discuss below, the hardest part of moving the compiler is not
reflected in the number of lines changed, but is instead concerned
with understanding the code generation issues, the C language, and
the target machine well enough to make the modifications
effectively.

The new compiler is not only easily adapted to a new machine, it
has other virtues as well. Chief among these is that all versions
share so much code that maintenance of all versions simultaneously
involves much less work than would maintaining each individually.
For example, if a bug is discovered in the machine-independent por-
tion, the repair can be made to all versions almost mechanically.
Even if the language itself is changed, it is often the case that most
of the job of installing the change is machine-independent and
usable for all versions. This has allowed the compilers for all
machines to remain compatible with a minimum of effort.

The interface between the two passes of the portable C compiler
consists of an intermediate file containing mostly representations of
expression trees together with character representations of stereo-
typed code for subroutine prologues and epilogues. Thus a different
first pass can be substituted provided it conforms to the interface
specifications. This possibility allowed S. I. Feldman to write a first
pass that accepts the Fortran 77 language instead of C. At the
moment, the Fortran front-end has two versions (which differ by
about as much as do the corresponding first passes for C} that feed
the code generators for the pPDP-11 and the Interdata machines.
Thus we apparently have not oniy the first, but the first two imple-
mentations of Fortran 77.

6.1 Design of the portable compiler

Most machine-dependent portions of a C compiler fall into three
categories.

(/) Storage allocation.
(it} Rather stereotyped code sequences for subroutine entry points
and exits, switches, labels, and the like.
(iii) Code generation for expressions.

For the most part, storage allocation issues are easily parameter-
ized in terms of the number of bits required for objects of the

C PROGRAM PORTABILITY 2029

various types and their alignment requirements. Some issues, like
addressability on the 1BM 360 and 370 series, cause annoyance, but
generally there are few problems in this area.

The calling sequence is very important to the efficiency of the
result and takes considerable knowledge and imagination to design
properly. However, once designed, the calling sequence code and
the related issue of stack frame layout are easy to cope with in the
compiler.

Generating optimal code for arithmetic expressions, even on
idealized machines, can be shown theoretically to be a nearly intract-
able problem. For the machines we are given in real life, the prob-
lem is even harder. Thus, all compilers have to compromise a bit
with optimality and engage in heuristic algorithms lo some extent, in
order to get acceptably efficient code generated in a reasonable
amount of time.

The design of the code generator was influenced by a number of
goals, which in turn were influenced by recent theoretical work in
code generation. It was recognized that there was a premium in
being able to get the compiler up and working quickly; it was also
felt, however, that this was in many ways less important than being
able to evolve and tune the compiler into a high-quality product as
time went on. Particularly with operating system code, a “quick and
dirty” implementation is simply unacceptable. It was also recog-
nized that the compiler was likely to be applied to machines not well
understood by the compiler writer that might have inadequate or
nonexistent debugging facilitics. Therefore, one goal of the com-
piler was to permit it to be largely self-checking. Rather than pro-
duce incorrect code, we felt it far preferable for the compiler to
detect its own inadequacies and reject the input program.

This goal was largely met. The compiler for the Interdata 8/32
was working within a couple of weeks after the machine arrived,
subsequently, several months went by with very little time lost due
to compiler bugs. The bug level has remained low, even as the
compiler has begun to be more carefully tuned; many of the bugs
have resulted from human error {e.g., misreading the machine
manual) rather than actual compiler failure.

Several techniques contribute considerably to the general reliabil-
ity of the compiler. First, a conscious attempt was made to scparate
information about the machine {e.g., facts such as “there is an add
instruction that adds a constant to a register and sets the condition
code”) from the strategy, often heuristic, that makes use of these
facts (e.g., if an addition is to be done, first compute the left-hand

2030 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

operand into a register}. Thus, as the compiler evolves, more effort
can be put into improving the heuristics and the recognition of
important special cases, while the underlying knowledge about the
machine operations need not be altered. This approach also
improves portability, since the heuristic programs often remain
largely unchanged among similar machines, while only the detailed
knowledge about the format of the instructions (encoded in a table}
changes.

During compilation of expressions, a model of the state of the
compilation process, including the tree representing the expression
being compiled and the status of the machine registers, is main-
tained by the compiler. As instructions are emitted, the expression
tree is simplified. For example, the expression a = b+ ¢ might first
be transformed into a = register+b as a load instruction for a is
generated, then into a = register when an add is produced. The
possible transformations constitute the “facts™ about the machine;
the order in which they are applied correspond to the heuristics.
When the input expression has been completely transformed into
nothing, the expression is compiled. Thus, a good portion of the
initial design of a new version of the compiler is concerned with
making the model within the compiler agree with the actual machine
by building a table of machine operations and their effects on the
model. When this is done correctly, one has a great deal of
confidence that the compiler will produce correct code, if it produces
any at all.

Another useful technique is to partition the code generation job
into pieces that interact only through well-defined paths. One
module worries about breaking up large expressions into manageable
pieces, and allocating temporary storage locations when needed.
Another module worries about register allocation. Finally, a third
module takes each “manageable™ piece and the register allocation
information, and generates the code. The division between these
pieces is strict; if the third module discovers that an expression is
“unmanageable,” or a needed register is busy, it rejects the compila-
tion. The division enforces a discipline on the compiler which,
while not really restricting its power, allows for fairly rapid debug-
ging of the compiler output.

The most serious drawback of the entire approach is the difficulty
of proving any form of “completeness” property for the compiler—
of demonstrating that the compiler will in fact successfully generate
code for all legal C programs. Thus, for example, a needed
transformation might simply be missing, so that there might be no

C PROGRAM PORTABILITY 2031

way to further simplify some expression. Alternatively, some
sequence of transformations might result in a loop, so that the same
expression keeps reappearing in a chain of transformations. The
compiler detects these situations by realizing that too many passes
are being made over the expression tree, and the input is rejected.
Unfortunately, detection of these possibilities is difficult to do in
advance because of the use of heuristics in the compiler algorithms.
Currently, the best way of ensuring that the compiler is acceptably
complete is by extensive testing.

8.2 Testing the compiler

We ordered the Interdata 8/32 without any software at all, so we
first created a very crude environment that allowed stand-alone pro-
grams to be run; all interrupts, memory mapping, etc., were turned
off. The compiler, assembler, and loader ran on the pDP-11, and the
resulting executable files were transferred to the Interdata for test-
ing. Primitive routines permitted individual characters to be written
on the console. In this environment, the basic stack management of
the compiler was debugged, in some cases by single-stepping the
machine. This was a painful but short period.

After the function call mechanism was working, other short tests
established the basic sanity of simple conditionals, assignments, and
computations. At this point, the stand-alone environment could be
enriched to permit input from the console and more informative
output such as numbers and character strings, so ordinary C pro-
grams could be run. We solicited such programs, but found few
that did not depend on the file system or other operating system
features. Some of the most useful programs at this stage were sim-
ple games that pitted the computer against a human; they frequently
did a large amount of computing, often with quite complicated logic,
and yet restricted themselves to simple input and output. A number
of compiler bugs were found and fixed by running games. After
these tests, the compiler ceased to be an explicit object of testing,
and became instead a tool by which we could move and test the
operating system.

Some of the most subtle problems with compiler testing come in
the maintenance phase of the compiler, when it has been tested,
declared to work, and installed. At this stage, there may be some
interest in improving the code quality as well as fixing the occasional
bug. An important tool here is regression testing; a collection of
test programs are saved, together with the previous compiler output.

2032 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Before a new compiler is installed, the new compiler is fed these test
programs, the new output is compared with the saved output, and
differences are noted. If no differences are seen, and a compiler bug
has been fixed or improvement made, the testing process is incom-
plete, and one or more test programs are added. If differences are
detected, they are carefully examined. The basic problem is that
frequently, in attempting to fix a bug, the most obvious repair can
give rise to other bugs, frequently breaking code that used to work.
These other bugs can go undetected for some time, and are very
painful both to the users and the compiler writer. Thus, regression
tests attempt to guard against introducing new bugs while fixing old
ones.

The portable compiler is sufficiently self-checked that many poten-
tial compiler bugs were detected before the compiler was installed by
the simple expedient of turning the compiler loose on a large
amount (tens of thousands of lines) of C source code. Many con-
structions turned up there that were undreamed of by the compiler
writer, and often mishandled by the compiler.

It is worth mentioning that this kind of testing is easily carried out
by means of the standard commands and features in the UNIX sys-
tem. In particular, C source programs are easily identified by their
names, and the uNIx shell provides features for applying command
sequences automaltically to cach of a list of files in turn. Moreover,
powerful utilities exist to compare two similar text files and produce
a minimal list of differences. Finally, the compiler produces assem-
bly code that is an ordinary text file readable by all of the usual utili-
ties. Taken together, these features make it very simple to invent
test drivers. For example, it takes only a half-dozen lines of input
to request a list of differences between the outputs of two versions
of the compiler applied to tens (or hundreds) of source files.
Perhaps even more important, there is little or no output when the
compilers compare exactly. On many systems, the “job control
language™ required to do this would be so unpleasant as to insure
that it would not be done. Even if it were, the resulting hundreds
of pages of output could make it very difficult to see the places
where the compiler needed attention.

The design of the portable C compiler is discussed more
thoroughly in Ref. 17.

VIl. LANGUAGE AND COMPILER ISSUES

We were favorably impressed, even in the early stages, by the

C PROGRAM PORTABILITY 2033

general ease with which C programs could be moved to other
machines. Some problems we did encounter were related to
weaknesses in the C language itself, so we undertook to make a few
extensions.

C had no way of accounting in a machine-independent way for the
overlaying of data. Most frequently, this need comes up in large
tables that contain some parts having variable structure. As an
invented example, a compiler’s table of constants appearing in a
source program might have a flag indicating the type of each con-
stant followed by the constant’s value, which is either integer or
floating. The C language as it existed allowed sufficient cheating to
express the fact that the possible integer and floating value might be
overlaid (both would not exist at once), but it could not be
expressed portably because of the inability to express the relative
sizes of integers and floating-point data in a machine-independent
way. Therefore, the union declaration was added, it permits such a
construction to be expressed in a natural and portable manner.
Declaring a union of an integer and a floating point number reserves
enough storage to hold either, and forces such alignment properties
as may be required to make this storage useful as both an integer
and a floating point number. This storage may be explicitly used as
either integer or floating point by accessing it with the appropriate
descriptor tag.

Another addition was the typedef facility, which in effect allows
the types of objects to be easily parameterized. typedef is used
quite heavily in the operating system kernel, where the types of a
number of different kinds of objects, for example, disk addresses,
file offsets, device numbers, and times of day, are specified only
once in a header file and assigned to a specific name; this name is
then used throughout. Unlike some languages, C does not permit
definition of new operations on these new types; the intent was
increased parameterization rather than true extensibility.

Although the C language did benefit from these extensions, the
portability of the average C program is improved more by restricting
the language than by extending it. Because it descended from type-
less languages, C has traditionally been rather permissive in allowing
dubious mixtures of various types;, the most flagrant violations of
good practice involved the confusion of pointers and integers. Some
programs explicitly used character pointers to simulate unsigned
integers; on the PDP-11 the two have the same arithmetic properties.
Type unsigned was introduced into the language to eliminate the
need for this subterfuge.

2034 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 19878

More often, type errors occurred unconsciously. For example, a
function whose only use of an argument is to pass it to a subfunc-
tion might allow the argument to be taken to be an integer hy
default. If the top-level actual argument is a pointer, the usage is
harmless on many machines, but not type-correct and not, in gen-
eral, portable.

Violations of strict typing rules existed in many, perhaps most, of
the programs making up the entire stock of UNIX system software.
Yet these programs, representing many tens of thousands of lines of
source code, all worked correctly on the PDP-11 and in fact would
work on many other machines, because the assumptions they made
were generally, though not universally, satisfied. It was not feasible
simply to declare all the suspect constructions illegal. Instead, a
separate program was written to detect as many dubious coding prac-
tices as possible. This program, called lint, picks bits of fluff from
programs in much the same way as the PFORT verifier mentioned
above. C programs acceptable to lint are guaranteed to be free from
most common type errors; lint also checks syntax and detects some
logical errors, such as uninitialized variables, unused variables, and
unreachable code.

There are definite advantages in separating program-checking
from compilation. First, lint was easy to produce, because it is
based on the portable compiler and thus shares the machine-
independent code of the first pass with the other versions of the
compiler. More important, the compilers, large programs anyway,
are not burdened with a great deal of checking code which does not
necessarily apply to the machine for which they are running. A
good example of extra capability feasible in lint but probably not in
the compilers themselves is checking for inter-program consistency,
The C compilers all permit separate compilation of programs in
several files, followed by linking together of the results. lint
(uniquely) checks consistency of declarations of external variables,
functions, and function arguments among a set of files and libraries.

Finally, lint itself is a portable program, identical on all machines.
Although care was taken to make it ¢asy to propagale changes in the
machine-independent parts of the compilers with a minimum of
fuss, it has proved useful for the sometimes complicated logic of lint
to be totally decoupled from the compilers. lint cannot possibly
affect their ability to produce code: if a bug in lint turns up, its out-
put can be ignored and work can continue simply by ignoring the
spurious complaints. This kind of separation of function is charac-
teristic of UNIX programs in general. The compiler’s one important

C PROGRAM PORTABILITY 2035

job is to generate code; it is left to other programs to print listings,
generate cross-reference tables, and enforce style rules.

Vill. THE PORTABILITY OF THE UNIX KERNEL

The UNIX operating system kernel, or briefly the operating system,
is the permanently resident program that provides the basic software
environment for all other programs running on the machine. Tt
implements the “system calls” by which user’s programs interact
with the file system and request other services, and arranges for
several programs to share the machine without interference. The
structure of the UNIX operating system kernel is discussed elsewhere
in this issue.!8.19

To many people, an operating system may seem the very model
of a nonportable program, but in fact 2 major portion of UNIX and
other well-written operating systems consists of machine-
independent algorithms: how to create, read, write, and delete files,
how to decide who to run and who to swap, and so forth. If the
operating system is viewed as a large C program, then it is reason-
able to hgpe to apply the same techniques and tools to it that we
apply to move more modest programs.

The UNIX kernel can be roughly divided intc three sections
according to their degree of portability.

8.1 Assembly-language primitives

At the lowest level, and least portable, is a set of basic hardware
interface routines. These are written in assembly language, and con-
sist of about 800 lines of code on the Interdata 8/32. Some of them
are callable directly from the rest of the system, and provide ser-
vices such as enabling and disabling interrupts, invoking the basic
1/0 operations, changing the memory map so as to switch execution
from one process to another, and transmitting information between
a user process’s address space and that of the system. Most of them
are machine-independent in specification, although not implementa-
tion. Other assembly-language routines are not called explicitly but
instead intercept interrupts, traps, and system calls and turn them
into C-style calls on the routines in the rest of the operating system.

Each time UNIX is moved to a new machine, the assembly-
language portion of the system must be rewritten. Not only is the
assembly code itself machine-specific, but the particular features

2036 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

provided for memory mapping, protection, and interrupt handling
and masking differ greatly from machine to machine. In moving
from the pDP-11 to the Interdata 8/32, a huge preponderance of the
bugs occurred in this section. One reason for this is certainly the
usual sorts of difficulties found in assembly-language programming:
we wrote loops that did not loop or looped forever, garbled critical
constants, and wrote plausible-looking but utterly incorrect address
constructions. Lack of familiarity with the machine led us to
incorrect assumptions about how the hardware worked, and to
inefficient use of available status information when things went
wrong.

Finally, the most basic routines for multi-programming, those that
pass control from one process to another, turned out (after causing
months of nagging problems) to be incorrectly specified and actually
unimplementable correctly on the Interdata, because they depended
improperly on details of the register-saving mechanism of the calling
sequence generated by the compiler. These primitives had to be
redesigned; they are of special interest not only because of the prob-
lems they caused, but because they represent the only part of the
system that had to be significantly changed, as distinct from
expressed properly, to achieve portability.

B.2 Device drivers

The second section of the kernel consists of device drivers, the
programs that provide the interrupt handling, 1/0 command process-
ing, and error recovery for the various peripheral devices connected
to the machine. On the Interdata 8/32 the total size of drivers for
the disk, magnetic tape, console typewriter, and remote typewriters
is about 1100 lines of code, all in C. These programs are, of course,
machine-dependent, since the devices are.

The drivers caused far fewer problems than did the assembly-
language programs. Of course, they already had working models on
the PpP-11, and we had faced the need to write new drivers several
times in the past (there are half a dozen disk drivers for various
kinds of hardware attached to the Ppp-11). In adapting to the Inter-
data, the interface to the rest of the system survived unchanged,
and the drivers themselves shared their general siructure, and even
much code, with their PDP-11 counterparts. The problems that
accurred seem more related to the general difficulty of dealing with
the particular devices than in expressing what had to be done.

C PROGRAM PORTABILITY 2037

8.3 The remainder of the system

The third and remaining section of the kernel is the largest. It is
all written in C, and for the Interdata 8/32 contains about 7,000
lines of code. This is the operating system proper, and clearly
represents the bulk of the code. We hoped that it would be largely
portable, and as it turned out our hopes were justified. A certain
amount of work had to be done to achieve portability. Most of it
was concerned with making sure that everything was declared prop-
erly, so as to satisfy lint, and with replacing constants by parameters.
For example, macros were written to perform various unit conver-
sions previously written out explicitly: byte counts to memory seg-
mentation units and to disk blocks, etc. The important data types
used within the system were identified and specified using typedef:
disk offsets, absolute times, internal device names, and the like.
This effort was carried out by K. Thompson.

Of the 7,000 lines in this portion of the operating system, only
about 350 are different in the Interdata and PDP-11 versions; that is,
they are 95 percent identical. Most of the differences are traceable
to one of three areas.

(i;) On the pDP-11, the subroutine call stack grows towards
smaller addresses, while on the Interdata it grows upwards.
This leads to different code when increasing the size of a user
stack, and especially when creating the argument list for an
inter-program transfer (exec system call) because the argu-
ments are placed on the stack.

(ii) The details of the memory management hardware on the two
machines are different, although they share the same general
scheme.

(iii) The routine that handles processor traps {memory faults, etc.)
and system calls is rather different in detail on the two
machines because the set of faults is not identical, and
because the method of argument transmission in system calls
differs as well.

We are extremely gratified by the ease with which this portion of
the system was transferred. Only a few problems showed up in the
code that was not changed, most were in the new code written
specifically for the Interdata. In other words, what we thought
would be portable did in fact move without trouble.

Not everything went perfectly smoothly, of course. Qur first set
of major problems involved the mechanics of transferring test

2038 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

systems and other programs from the pDP-11 to the Interdata 8/32
and debugging the result. Better communications between the
machines would have helped considerably. For a period, installing a
new Interdata system meant creating an 800 BPI tape on the sixth-
floor PDP-11, carrying the tape to another PDP-11 on the first floor to
generate a 1600 Brl version, and finally lugging the result to the
fifth-floor Interdata. For debugging, we would have been much
aided by a hardware interface between the PDP-11 and the front
panel of the Interdata to allow remote rebooting. This class of prob-
lems is basically our own fault, in that we traded the momentary
ease of not having to write communications software or build
hardware for the continuing annoyance of carrying tapes and hands-
on debugging,

Another class of problems seems impossible to avoid, since it
stems from the basic differences in the representation of informa-
tion on the two machines. In the machines at issue, only one
difference is important: the PDP-11 addresses the two bytes in a 16-
bit word with the first byte as the least significant 8 bits, while on
the Interdata the first byte in a 16-bit half-word is the most
significant 8 bits. Since all the interfaces between the two machines
are byte-serial, the effect is best described by saying that when a
true character stream is transmitted between them, all is well; but if
integers are sent, the bytes in each half-word must be swapped.
Notice that this problem does not involve portability in the sense in
which it has been used throughout this paper, very few C programs
are sensitive to the order in which bytes are stored on the machine
on which they are running. Instead it complicates “portability™ in its
root meaning wherein files are carried from one machine to the
other. Thus, for example, during the initial creation of the Interdata
system we were obliged to create, on the PDP-11, an image of a file
system disk volume that would be copied to tape and thence to the
Interdata disk, where it would serve as an actual file system for the
latter machine. It required a certain amount of cleverness to declare
the data structures appropriately and to decide which bytes to swap.

The ordering of bytes in a word on the PDP-11 is somewhat
unusual, but the problem it poses is quite representative of the
difficulties of transferring encoded information from machine to
machine. Another example is the difference in representation of
floating-point numbers between the PDP-11 and the lnterdata. The
assembler for the Interdata, when it runs on the PDP-11, must
invoke a routine to convert the “natural” pDP-11 notation to the
foreign notation, but of course this conversion must not be done

C PROGRAM PORTABILITY 2039

when the assembler is run on the Interdata itself. This makes the
assembler necessarily non-portable, in the sense that it must execute
different code sequences on the two machines. However, it can
have a single source representation by taking advantage of condi-
tional compilation depending on where it will run.

This kind of problem can get much worse: how are we to move
UNIX to a target machine with a 36-bit word length, whose machine
word cannot even be represented by long integers on the pDP-11?
Nevertheless, it is worth emphasizing that the problem is really
vicious only during the initial bootstrapping phase; all the software
should run properly if only it can be moved once!

IX. TRANSPORTATION OF THE SOFTWARE

Most UNIX code is in neither the operating system itself nor the
compiler, but in the many user-level utilities implementing various
commands and in subroutine libraries, The sheer bulk of the pro-
grams involved (about 50,000 lines of source) meant that the
amount of work in transportation might be considerable, but our
early experience, together with the small average size of each indivi-
dual 'program, convinced us that it would be manageable, This
proved to be the case.

Even before the advent of the Interdata machine, it was realized,
as mentioned above, that many programs depended to an undesir-
able degree not only on UNIX I/O conventions but on details of par-
ticularly favorable buffering strategies for the PDP-11, A package of
routines, called the “portable 1/0 library,” was written by M. E.
Lesk?0 and implemented on the Honeywell and IBM machines as
well as the PDP-11 in a generally successful effort to overcome the
deficiencies of earlier packages. This library too proved to have
some- difficulties, not in portability, but in time efficiency and space
required. Therefore a new package of routines, dubbed the “stan-
dard I/O library,” was prepared. Similar in spirit to the portable
library, it is somewhat smaller and much faster. Thus, part of the
effort in moving programs to the Interdata machine was devoted to
making programs use the new standard I/O library. In the simplest
cases, the effort involved was nil, since the fundamental character
1/0 functions have the same names in all libraries.

Next, each program had to be examined for visible lack of porta-
bility. Of course, lint was a valuable tool here. Programs were also
scrutinized by eye to detect dubious constructions. Often these
involved constants, For example, on the 16-bit pDp-11 the

2040 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

expression
X & 0177770

masks off all but the last three bits of x, since 0177770 is an octal
constant. This is almost certainly better expressed

X & ~07

{(where —~ is the ones-complement operator) because the latter
expression actually does yield the last three bits of x independently
of the word length of the machine. Better yet, the constant should
be a parameter with a meaningful name.

UNIX software has a number of conventional data structures, rang-
ing from objects returned or accepted by the operating system kernel
{such as status information for a named file) to the structure of the
header of an executable file. Programs often had a private copy of
the declaration for each such structure they used, and often the
declaration was nonportable. For example, an encoded file mode
might be declared int on the 16-bit PDP-11, but on the 32-bit Inter-
data machine, it should be specified as short, which is unambigu-
ously 16 bits. Therefore, another major task in making the software
portable was to collect declarations of all structures common to
several routines, to put the declarations in a standard place, and to
use the include facility of the C preprocessor to insert them in the
source program. The compiler for the pDP-11 and the cross-
compiler for the Interdata 8/32 were adjusted to search a different
standard directory te find the canned declarations appropriate to
each.

Finally, an effort was made to seek out frequently occurring
patches of code and replace them by standard subroutines, or create
new subroutines where appropriate. It turned out, for example, that
several programs had built-in subroutines to find the printable user
name corresponding to a numerical user ID. Although in each case
the subroutine as written was acceptably portable to other machines,
the function it performed was not portable in time across changes in
the format of the file describing the name-number correspondence;
encapsulating the translation function insulated the program against
possible changes in a data base.

X. THE MACHINE MODEL FOR C

One of the hardest parts of designing a language in which to write
portable programs is deciding which properties are guaranteed to

C PROGRAM PORTABILITY 204t

remain invariant. Likewise, in trying to develop a portable operating
system, it is very hard to decide just what properties of the underly-
ing machine can be depended ont. The design questions in each case
are marny in number;, moreover, the answer to each individual ques-
tion may involve tradeoffs that are difficult to evaluate in advance.
Here we try to show the nature of these tradeoffs and what sort of
compromises are required.

Designing a language in which every program is portable is actu-
ally quite simple: specify precisely the meaning of every legal pro-
gram, as well as what programs are legal. Then the portability prob-
lem does not exist: by definition, if a correct program fails on some
machine, the language has not been implemented properly. Unfor-
tunately, a language like C that is intended to be used for system
programming is not very adaptable to such a Procrustean approach,
mainly because reasonable efficiency is required. Any well-defined
language can be implemented precisely on any general-purpose com-
puter, but the implementation may not be usable int practice if it
implies use of an interpreter rather than machine instructions.
Thus, with both language and operating system design, one must
strike a balance between convenient and powerful features and the
ease of implementing them efficiently on a variety of machines. At
any point, some machine may be found on which some feature is
very expensive to provide, and a decision must be made whether to
modify the feature, and thus compromise the portability of programs
that use it, or to insist that the meaning is immutable and must be
preserved. In the latter case portability is also compromised since
the cost of using the feature may be so high that no one can afford
the programs that use it, or the people attempting to implement the
feature on the new machine give up in despair.

Thus a language definition implies a mode] of the machine on
which programs in the language will run. If a real machine con-
forms well to the model, then an implementation on that machine is
likely to be efficient and easily written; if rntot, the implementation
will be painful to provide and costly to use. Here we shall consider
the major features of the abstract C machine that have turned out to
be most relevant so far.

10.1 Integers

Probably the most frequent operations are on integers consisting
of various numbers of bits. Variables declared short are at least 16
bits in length; those declared long are at least 32 bits. Most are

2042 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

declared int, and must be at least as precise as short integers, but
may be long if accessing them as such is more efficient. It is
interesting that the word length, which is one of the machine
differences that springs first to mind, has caused rather little trouble.
A small amount of code (mostly concerned with output conversion)
assumes a twos complement representation.

10.2 Unsigned integers

Unsigned integers corresponding to short and int must be pro-
vided. The most relevant properties of unsigned integers appear
when they are compared or serve as numerators in division and
remaindering. Unsigned arithmetic may be somewhat expensive to
implement on some machines, particularly if the number representa-
tion is sign-magnitude or ones complement. No use is made of
unsigned long integers.

10.3 Characters

A representation of characters (bytes) must be provided with at
least 8 bits per byte. It is irrelevant whether bytes are signed, as in
the PDP-11, or not, as in all other known machines. It is moderately
important that an integer of any kind be divisible evenly into bytes.
Most programs make no explicit use of this fact, but the I/0 system
uses it heavily. (This tends to rule out one plausible representation
of characters on the DEC PDP-10, which is able to access five 7-bit
characters in a 36-bit word with one bit left over. Fortunately, that
machine can access four 9-bit characters equally well.) Almost all
programs are independent of the order in which the bytes making up
an integer are stored, but see the discussion above on this issue.

A fair number of programs assume that the character set is ASCIL
Usually the dependence is relatively minor, as when a character is
tested for being a lower case letter by asking if it is between a and z
{which is not a correct test in EBCDIC). Here the test could be easily
replaced by a call to a standard macro. Other programs that use
characters to index a table would be much more difficult to render
insensitive to the character set. AsCIl is, after all, a U. §. national
standard; we are inclined to make it a UNIX standard as well, while
not ruling out C compilers for other systems based on other charac-
ter sets (in fact the current 1BM System/370 compiler uses EBCDIC).

C PROGRAM PORTABILITY 2043

10.4 Pointers

Pointers to objects of the various basic types are used very
heavily. Frequent operations on pointers include assignment, com-
parison, addition and subtraction of an integer, and dereferencing to
yield the object to which the pointer points. It was frequently
assumed in earlier UNIX code that pointers and integers had a similar
representation (for example, that they occupied the same space).
Now this assumption is no longer made in the programs that have
been moved. Nevertheless, the representation of pointers remadins
very important, particularly in regard to character pointers, which
are used freely. A word-addressed machine that iacks any natural
representation of a character pointer may suffer serious inefficiency
for some programs.

10.5 Functlons and the calling sequence

UNIX programs tend to be built out of many small, frequently
called functions. It is not unusual to find a program that spends 20
percent of its time in the function prologue and epilogue sequence,
nor one in which 20 percent of the code is concerned with preparing
function argument lists. On the ppp-11/70 the calling sequence is
relatively efficient (it costs about 20 microseconds to call and return
from a function) so it is clear that a less efficient calling sequence
will be quite expensive. Any function in C may be recursive
(without special declaration) and most possess several “automatic”
variables local to each invocation. These characteristics suggest
strongly that a stack must be used to store the automatic variables,
caller’s return point, and saved registers lgcal to each function; in
turn, the attractiveness of an implementation will depend heavily on
the ease with which a stack can be maintained. Machines with too
few index or base registers may not be able to support the language
well.

Efficiency is important in designing a calling sequence; moreover,
decisions made here tend to have wide implications. For example,
some machines have a preferred direction of growth for the stack.
On the pDP-11, the stack is practically forced to grow towards
smaller addresses; on the Interdata the stack prefers (somewhat
more weakly} to grow upwards. Differences in the direction of stack
growth leads to differences in the operating system, as has already
been mentioned.

2044 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Xi. THE MACHINE MODEL OF UNIX

The definition of C suggesls that some machines are more suitable
for C implementations than others; likewise, the design of the UNIX
kernel fits in well with some machine architectures and poorly with
others. Once again, the requirements are not absolute, but a serious
enough mismatch may make an implementation unattractive.
Because the system is written in C, of course, a (perhaps neces-
sarily) slow or bulky implementation of the language will lead to a
slow or bulky operating system, so the remarks in the previous sec-
tion apply. But other aspects of machine design are especially
relevant to the operating system.

11.1 Mapping and the user program

As discussed in other papers,!8.2] the system provides user pro-
grams with an address space consisting of up to three logical seg-
ments containing the program text, an extensible data region, and a
stack. Since the stack and the data are both allowed to grow at one
edge, it is desirable (especially where the virtual address space is
limited) that one grow in the negative direction, towards the other,
so as to optimize the use of the address space. A few programs still
assume that the data space grows in the positive direction (so that
an array at its end can grow contiguously), although we have tried to
minimize this usage. If the virtual address space is large, there is
little loss in allowing both the data and stack areas to grow upwards.

The ppp-11 and the Interdata provide examples of what can be
done. On the former machine, the data area begins at the end of
the program text and grows upwards, while the stack begins at the
end of the virtual address space and grows downwards; this is, hap-
pily, the natural direction of growth for the stack. On the Interdata
the data space begins after the program and grows upwards; the
stack begins at a fixed location and also grows upwards. The layout
provides for a stack of at most 128K bytes and a data area of 852K
bytes less the program size, as compared to the total data and stack
space of 64K byles possible on the rDP-11.

It is hard to characterize precisely what is required of a memory
mapping scheme except by discussing, as we do here, the uses to
which it is put. In general, paging or segmentation schemes seem to
offer sufficient generality to make implementation simple; a single
base and limit register (or even dual registers, if it is desired to

C PROGRAM PORTABILITY 2045

write-protect the program text) are marginal, because of the
difficulty of providing independently growable data and stack areas.

11.2 Mapping and the kernel

When a process is running in the UNIX kernel, a fixed region of
the kernel’s address space contains data specific to that process,
including its kernel stack. Switching processes essentially involves
changing the address map so that the same fixed range of virtual
addresses refers to the data area and stack of the new process. This
implies, of course, that the kernel runs in mapped mode, so that
mapping should not be tied to operating in user mode. It also
means that if the machine has but a single set of mapping
specification registers, these registers will have to be reloaded on
each system call and certain interrupts, for example from the clock.
This causes no logical problems but may affect efficiency.

11.3 Other considerations

Many other aspects of machine design are relevant to implementa-
tion of the operating system but are probably less important,
because on most machines they are likely to cause no difficulty.
Still, it is worthwhile to attempt a list.

(/) The machine must have a clock capable of generating inter-
rupts at a rate not far from 50 or 60 Hz. The interrupts are
used to schedule internal events such as delays for mechanical
motion on typewriters. As written, the system uses clock
interrupts to maintain absolute time, so the interrupt rate
should be accurate in the long run. However, changes to con-
sult a separate time-of-day clock would be minimal.

(if} All disk devices should be able to handle the same, relatively
small, block sizes. The current system usually reads and
writes 512-byte blocks. This number is easy to change, but if
it is made much larger, the efficacy of the system’s cache
scheme will degrade seriously unless a large amount of
memory is devoted to buffers.

Xil. WHAT HAS BEEN ACCOMPLISHED?

In about six months, we have been able to move the UNIX operat-
ing system and much of its software from its original host, the PDP-
11, to another, rather different machine, the Interdata 8/32. The

2048 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

standard of portability achieved is fairly high for such an ambitious
project: the operating system (outside of device drivers and assem-
bly language primitives) is about 95 percent unchanged between the
two systems; inherently machine-dependent software such as the
compiler, assembler, loader, and debugger are 75 to 80 percent
unchanged; other user-level software (amounting to about 20,000
lines so far) is identical, with few exceptions, on the two machines.

It is true that moving a program from one machine to another
does not guarantee that it can be moved to a third. There are many
issues in portability about which we worried in a theoretfical way
without having to face them in fact. It would be interesting, for
example, 10 fackle a machine in which pointers were a different size
from integers, or in which character pointers were fundamentally
different in structure from integer pointers, or with a different char-
acter set. There are probably even issues in portability that we
failed to consider at all. Nevertheless, moving UNIX to a third new
machine, or a fourth, will be easier than it was to the second. The
operating system and the software have been carefully parameter-
ized, and this will not have to be done again. We have also learned
a great deal about the critical issues (the “hard parts”).

There are deeper limitations to the generality of what we have
done. Consider the use of memory mapping: if the hardware cannot
support the model assumed by the code as it is written, the code
must be changed. This may not be difficult, but it does represent a
loss of portability. Correspondingly, the system as written does not
take advantage of extra capability beyond its model, so it does not
support (for example) demand paging. Again, this would require
new code. More generally, algorithms do not always scale well; the
optimal methods of sorting files of ten, a thousand, and a million
elements do not much resemble one another. Likewise, some of
the design of the system as it exists may have to be reworked to
take full advantage of machines much more powerful (along many
possible dimensions) than those for which it was designed. This
seems to be an inherent limit to portability; it can only be handled
by making the system easy to change, rather than easily portable
unchanged. Although we believe UNIX possesses both virtues, only
the latter is the subject of this paper.

REFERENCES

1. B. W. Kernighan and D. M. Rilchie, The C Programming Language. Englewood
Cliffs, N.J.: Prentice-Hall, 1978.

C PROGRAM PORTABILITY 2047

Y

14,
15,

16.
17.

18.
19,

20.
21

2

. D. M. Riichie, 8. C. Johnson, M. E. Lesk, and B. W, Kernighan, “unix Time-
Sharing System: The C Programming Language,” B.S.T.I., this issue, pp.
1991-2019.

. W. 8. Brown, 474N User's Manual, 4th ed., Murray Hill, N.I.,: Bell Laboratories,
1977,

. B. G. Ryder, “The proRT Verifier,” Software — Praclice and Experience, 4

(QOclober-December 1974), pp. 359-377.

. Awmerican National Standard ForRTRaAN, New York, N.Y.: American National Stan-

dards Institute, 1966. (ans X3.9)
P. A. Fox, A. D. Hall, and N. L. Schryer, “The peRT Mathematical Subroutine
Library,” acM Trans. Math. Soft. {1978), 1o appear.

R. E. Griswold, J. Poage, and 1. Polonsky, The snoBor4 Programming Language,
Englewood Cliffs, N. I.: Prentice-Hall, 1971.

A. Snyder, A Poriwable Compiler for the Language C, Cambridge, Mass.: Master's
Thesis, M.L.T., 1974,

D. Morris, G. R, Frank, and C.). Theaker, “Machine-Independent Qperating Sys-
tems,” in fnformation Processing 77, North-Holland (1977), pp. 819-825.

J. E. Stoy and C. Strachey, *086— An experimental operating syslem for a small
computer. Part |: General principles and structure,” Comp. J., /5 (May 1972),
pp. 117-124.

E. Stoy and C. Strachey, “0s6—An experimental operaling sysiemn for a small
computer. Part 2. Input/output and filing system.” Comp. I, /35 (August
1972}, pp. 195-203.

. Thalmann and B. Levrat, “seir, a Way of Wriling Porlable Operating Systems,”
Proc. acM Computing Symposium (1977}, pp. 452-459.

S. Melen, 4 Porrable Real-Time Execuiive, Thoth, Walerloo, Ontarie, Canada:
Masﬁler‘s Thesis, Dept. of Computer Science, Universily of Waierloo, Oclober
1976.

L. Lyon, privale communication

. Miller, *UNIX — A Portable Operating System?” Australian Universities Com-

puting Science Seminar (February, 1978).

. Miller, private communication.

C. Johnson, “A Portable Compiler: Theory and Practice,” Proc. 5th acM Symp.
on Principles of Programming Languages (January 1978).

M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T.1., this
issue, pp. 1905-1929.

. M. Ritchie, “unix Time-Sharing System: A Retrospective,” B.S.T.)., this issue,

pp. 1947-1969, Also in Proc. Hawaii [niernational Conference on Sysiems Sci-

ence, Honolulu, Hawai, Jan, 1977,

M. Riichie, B. W, Kernighan, and M. E. Lesk, “The C Programming

Language,” Comp. Sci. Tech. Rep. No. 31, Bell Laboratories (October 1975).

K. Thompson, “unix Time-Sharing System: unx Implementation,” B.S.T.)., this

issue, pp. 1931-1946,

[

- o

O O vm =~

©

048 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Caopyright ® 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, Juty-August 1978
Primied in U. S, A,

UNIX Time-Sharing System:

The MERT Operating System

By H. LYCKLAMA and D. L. BAYER
{Manuscript received December 5, 1977)

The MERT operating system supports multiple operating system environ-
ments. Messages provide the major means of inter-process communica-
tion. Shared memory is used where tighter coupling between processes is
desired. The file system was designed with real-time response being a
major concern. The system has been implemented on the DEC PDP-11/45
and PDP-11/70 computers and supports the UNIX* time-sharing system, as
well as some real-time processes.

The system is structured in four layers. The lowest layer, the kernel,
provides basic services such as inter-process communication, process
dispatching, and trap and interrupt handling. The second layer comprises
privileged processes, such as [/O device handlers, the file manager,
memory manager, and sysiem scheduler. At the third layer are the
supervisor processes which provide the programming environments for
application programs of the fourth layer.

To provide an environment favorable to applications with real-time
response requirements, the MERT system permits processes fo control
scheduling parameters. These include scheduling priority and memory
residency. A rich set of inter-process communication mechanisms includ-
ing messages, evenls (sofiware interrupts), shared memory, inter-process
traps, process ports, and files, allow applications to be implemented as
several independent, cooperating processes.

Some wuses of the MERT operating system are discussed. A

* UNIX is a trademark of Bell Laboratories.

2049

refrospective view of the MERT system is aiso offered. This includes a
critical evaluation of some of the design decisions and a discussion of
design improvements which could have been made lo improve overall

efficiency.

I. INTRODUCTION

As operating systems become more sophisticated and complex,
providing more and more services for the user, they become
increasingly difficult to modify and maintain. Fixing a “bug” in
some part of the system may very likely introduce another “bug” in
a seemingly unrelated section of code. Changing a data structure is
likely to have major impact on the total system. It has thus become
increasingly apparent over the past years that adhering to the princi-
ples of structured modularity!-2 is the correct approach to building
an operating system. The objective of the MERT system has been to
extend the concept of a process into the operating system, factoring
the traditional operating system functions into a small kernel sur-
rounded by a set of independent cooperating processes. Communi-
cation between these processes is accomplished primarily through
messages. Messages define the interface between processes and
reduce the number of ways a bug can be propagated through the
system.

The MERT kernel establishes an extended instruction set via sys-
tem primitives vis-a-vis the virtual machine approach of cp 67.
Operating systems are implemented on top of the MERT kernel and
define the services available to user programs. Communication and
synchronization primitives and shared memory permit varying
degrees of cooperation between independent operating systems. An
operating system functionally equivalent to the UNIX* time-sharing
system has been implemented to exercise the MERT executive and
provide tools for developing and maintaining other operating system
environments. An immediate benefit of this approach is that operat-
ing system environments tailored to the needs of specific classes of
real-time projects can be implemented without interfering with other
systems having different objectives.

One of the basic design goals of the system was to build modular
and independent processes having data structures and tables which
are known only to the particular process. Fixing a “bug” or making
major internal changes in one process does not affect the other

* UNIX s a trademark of Bell Laboratories.

2050 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

processes with which it communicates. The work described here
builds on previous operating system designs described by Dijkstral
and Brinch Hansen.? The primary differences between this system
and previous work lies in the rich set of inter-process communica-
tion techniques and the extension of the concept of independent
modular processes, protected from other processes in the system, to
the basic [/O and real-time processes. It can be shown that mes-
sages are not an adequate communication path for some real-time
problems.? Controlled access to shared memory and software-
generated interrupts are often required to maintain the integrity of a
real-time system. The communication primitives were selected in
an attempt to balance the need for protection with the need for
real-time response. The primitives include event flags, message
buffers, inter-process system traps, process ports and shared seg-
ments.

One of the major influences on the design of the MERT system
came from the requirements of various application systems at Bell
Laboratories. They made use of imbedded minicomputers 10 pro-
vide support for development of application programs and for con-
trolling their specific application. Many of these projects had
requirements for real-lime response to various external events.
Real-time can be classified into two categories. One flavor of real
time requires the collection of large amounts of data. This necessi-
tates the implementation of large and contiguous files and asynchro-
nous [/O. The second flavor of real time demands quick response
to hardware-generated interrupts. This necessitates the implementa-
tion of processes locked in memory. Yet another requirement for
some applications was the need to define a more controlled environ-
ment with better control over a program’s virtual address space lay-
out than that provided in a general-purpose time-sharing environ-
ment.

This paper gives a detailed description of the system design
including the kernel and a definition and description of processes
and of segments. A detailed discussion of the communication prim-
itives follows. The structure of the file system is then discussed,
along with how the file manager and time-sharing processes make
use of the communication primitives.

A major portion of this paper deals with a critical retrospective on
the MERT system. This includes a discussion of features of the
MERT system which have been used by various projects within the
Bell System. Some trade-offs are given that have been made for
efficiency reasons, thereby sacrificing some protection. Some

MERT OPERATING SYSTEM 2051

operational statistics are also included here. The pros and cons of
certain features of the MERT operating system are discussed in detail.
The portability of the operating system as well as user software is
currently a topic of great interest. The prospects of the portability of
the MERT system are described. Finally, we discuss some features of
the MERT system which could have been implemented differently for
the sake of efficiency.

Il. HARDWARE REQUIREMENTS

The MERT system currently runs on the DEC PDP-11/45 and PDP-
11/70 computers. These computers provide an eight-level static
priority interrupt structure with priority levels numbered from 0
(lowest) to 7 (highest). Associated with the interrupt structure is
the programmed interrupt register which permits the processor to
generate interrupts at priorities of one through seven. The pro-
grammed interrupt serves as the basic mechanism for driving the
system.

The PDP-11 computer is a 16-bit word machine with a direct
address space of 32K words. The memory management unit on the
POP-11/45 and PDP-11/70 computers provides a separate set of
address mapping and access control registers for each of the proces-
sor modes: kernel, supervisor, and user. Furthermore, each virtual
address space can provide separate maps for instruction references
(called l-space) and data references (D-space). The MERT system
makes use of all three processor modes (kernel, supervisor, and
user) and both the instruction and data address spaces provided by
these machines.

ill. SYSTEM DESIGN

Processes are arranged in four levels of protection (see Fig. 1).
The lowest level of the operating system structure, called the kernel,
allocates the basic computer resources. These resources consist of
memory, segments, the CPU, and interrupts. All process dispatch-
ing, including interrupt processing, is handled by the kernel
dispatcher. The kernel is the most highly privileged system com-
ponent and therefore must be the most reliable.

The second level of software consists of kernel-mode processes
which comprise the various 1/0 device drivers. Each process at this
level has access to a limited number of I-space base registers in the
kernel mode, providing a firewali between it and sensitive system

2052 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

LEVEL

4 USER USER |___| USER
1 n
5 PROC RT RT NEW 188 |___| Tss
MGR SUP. 1 SUP. 2 TSS 1 n
FILE 10 10
2 MGR DRIVER ORIVER

EMT TRAPS AND MESSAGES
¥ vy v ¥ ¥ Z. Yy ¥

1 KERNEL: TRAPS, INTERRUPTS, PRIMITIVES, SCHEDULER, MEMORY MANAGER

Fig. 1—System structure.

data accessible only using D-space mode. Within this level
processes are linked onto one of five priority lists. These lists
correspond to the processor priority required while the process is
exccuting. Three kernel processes must exist for the system to
function:

(/) The file manager is required since all processes are derived
from files.

{(ii) The swap process is required to move segments between
secondary storage and main memory.

(iii) The root process is required to carry out data transfers
between the file manager and the disk.

Since the same device usually contains both the swap area and root
file system, one process usually serves for both (ii) and (iii).

At the third software level are the various operating system super-
visors which run in supervisor mode. These processes provide the
environments which the user sees and the interface to the basic ker-
nel services. All processes at this level execute at a processor prior-
ity of either one or zero. A software priority is maintained for the
supervisor by the scheduler process. Two supervisor progesses are
always present: the process manager which creates all new processes*
and produces post-mortem dumps of processes which terminate
abnormally, and the time-sharing supervisor.

* The time-sharing supervisor can create a new process consisting of an exact copy of
itself.

MERT OPERATING SYSTEM 2053

At the fourth level are the various user procedures which execute
in user mode under control of the supervisory environments. The
primitives available to the user are provided by the supervisory
environments which process the user system calls. Actually, the
user procedure is merely an extension of the supervisor process.
This is the highest level of protection provided by the computer
hardware.

IV. DEFINITIONS
4.1 Segments

A logical segment is a piece of contiguous memory, 32 to 32K
16-bit words long, which can grow in increments of 32 words. Asso-
ciated with each segment are an internal segment identifier (ID) and
an optional global name. The segment identifier is allocated to the
segment when it is created and is used for all references to the seg-
ment. The global name uniquely defines the initial contents of the
segment. A segment is created on demand and disappears when all
processes which are linked to it are removed. The contents of a seg-
ment may be initialized by copying all or part of a file into the seg-
ment. Access io the segment can be controlled by the creator
(parent) as follows:

(/) The segment can be private — that is, available only to the
creator.

(ii) The segment can be shared by the creator and some or all of
its descendants (children). This is accomplished by passing
the segment ID to a child.

(iii) The segment can be given a name which is available to all
processes in the sysiem. The name is a unique 32-bit number
which corresponds to the actual location on secondary storage
of the initial segment data. Processes without a parent-child
relationship can request the name from the file system and
then attempt to create a segment with that name. If the seg-
ment eXxists, the segment ID is returned and the segment user
count is incremented. QOtherwise, the segment is created and
the process initializes it.

4.2 Processes

A process consists of a collection of related logical segments exe-
cuted by the processor. Processes are divided into two classes,

2054 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

HEADER 60000

KERNEL PROCESS
CODE AND DATA

140000
SYSTEM LIBRARY

160000

DEVICE REGISTERS

Fig. 2—Virtual address space of a typical kernel process.

kernel processes and supervisor processes, according to the mode of
the processor while executing the segments of the process.

4. 21 Kernel processes

Kernel processes are driven by software and hardware interrupts,
execute at processor hardware priority 2 to 7, are locked in memory,
and are capable of executing all privileged instructions. Kernel
processes are used to control peripheral devices and handle func-
tions with stringent real-lime response requirements.

The virtual address space of each kernel process begins with a
short header which defines the virtual address space and various
entry points (see Fig. 2). Up to 12K words (base registers 3 - 5} of
instruction space and 12K words of data space are available. All
kernel processes share a common stack and can read and write the
I/0 device registers.

To reduce duplication of common subprograms used by indepen-
dent kernel processes and to provide common data areas between
independent cooperating kernel and supervisor processes, three
mechanisms for sharing segments are available.

The first type of shared segment, called the system library, is
available to all kernel processes. The routines included in this

MERT OPERATING SYSTEM 2055

SUPERVISOR USER

I D I b}
BRO cODE CODE L
8K W 3 7
BR1
COMMON DATA 1
BRZ M naTA
(PR T]
BR3
CETEE + + .
ana LoePIPEST]
L 4 4 1 i
BRS
BRE
BR? STACK. STACK
TAXNENN

Fig. 3—unix™ process virtnal address space.

library are determined by the system administrator at system genera-
tion time. The system library begins at virtual address 140000(8)
(base register 6) and is present whether or not it is used by any ker-
nel processes.

The second type of shared segment, called a public library, is
assigned to base register 4 or 5 of the process instruction space.
References to routines in the library are satisfied when the process is
formed, but the body of the segment is loaded into memory only
when the first process which accesses it is loaded.

A third sharing mechanism allows a parent to pass the ID of a seg-
ment that is included in the address space of a kernel process when
it is created. This form of sharing is useful when a hierarchy of
cooperating processes is invoked to accomplish a task.

4 2.2 Supervisor processes

All processes which execute in supervisor mode and user mode
are called supervisor processes. These processes run at processor
priority 0 or 1 and are scheduled by the kernel scheduler process.
The segments of a supervisor may be kept in memory, providing
response on the order of several milliseconds, or supervisor seg-
ments may be swappable, providing a response time of hundreds of
milliseconds.

‘The virtual address space of a supervisor process consists of 32K
words of instruction space and 32K words of data space in both
supervisor and user modes (see Fig. 3). Of these 128K, at least part

2056 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

of each of three base registers {a total of 12K) must be used for
access Lo:

(/) The process control block {(pcB), a segment typically 160
words long, which describes the entire virtual address space of
the process to the kernel and provides space to save the state
of the process during a context switch. The PCB also includes
a list of capabilities which define the range of abilities of the
process.

(ii) The process supervisor stack and data segment.

(iii} The read-only code segment of the supervisor.

The rest of the virtual address space is controlled by the supervisor.
The primitives available to supervisor processes include the ability to
control the virtual address space (both supervisor and user) which
can be accessed by the process.

4.3 Capabilities

Associated with each supervisor process is a list of keys, each of
which allows access to one object. The capability key must be
passed as an argument in all service requests on objects. Each key is
a concatenation of the process ID of the creator of the object and a
bit pattern, defined by the creator, which describes allowed opera-
tions on the object. The capability list {C-list) for each supervisor
process resides in the PCB and is maintained by the kernel through
add and delete capability messages to the memory manager. A
special variation of the send message primitive copies the capability
from the PCB into the body of a message, preventing corruption of
the capability mechanism.

Capabilities are used by the file manager to control access to files.
The capability for a file is granted upon opening the file. A read or
write request is validated by decoding the capability into a 14-bit
object descriptor (file descriptor) and a 2-bit permission field. The
capability is removed from the process C-list when the file is closed.

V. THE KERNEL

The concept of an operating system nucleus or kernel has been
used in several systems. Each system has included a different set of
logical functions.5-6 The MERT kernel is to be distinguished from a
security kernel. A security kernel provides the basis of a secure
operating system environment.

MERT OPERATING SYSTEM 2057

The basic kernel provides a set of services available to all
processes, kernel and supervisor, and maintains the system process
tables and segment tables. Included as part of the kernel are two
special system processes, the memory manager and the scheduler.
These are distinguished from other kernel processes in that they are
bound into the basic kernel address space and do not require the
set-up of a base register when control is turned over to one of these
processes.

5.1 Kernel moduies

The kernel consists of a process dispatcher, a trap handler, and
routines (procedures) which implement the system primitives,
Approximately 4K words of code are dedicated to these modules.

The process dispaicher is responsible for saving the current state
and setting up and dispatching to all kernel processes. It can be
invoked by an interrupt from the programmed interrupt register, an
interrupt from an external device, or an inter-process system trap
from a supervisor process (an emt trap).

The trap handler fields all traps and faults and, in most cases,
transfers control to a trap handling routine in the process which
caused the trap or fault.

The kernel primitives can be grouped into eight logical categories.
These categories can be subdivided into those which are available to
all processes and others which are available only to supervisor
processes. The primitives which are available to all processes are:

(/) Interprocess communication and synchronization primitives,
These include sending and receiving messages and events,
waking up processes which are sleeping on a bit pattern, and
setting the sleep pattern.

(ii) Attaching to and detaching from interrupts.

{(iii) Setting a timer to cause a time-out event.

(iv) Manipulation of segments for the purposes of input/output.
This includes locking and unlocking segments and marking
segments altered.

{v) Setting and getting the time of day.

The primitives available only to supervisor processes are:

{vi) Primitives which alter the attributes of the segments of a pro-
cess. These primitives include creating new segments,

2058 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

returning segments to the system, adding and deleting seg-
ments from the process address space, and altering the access
permissions.

{vii) Altering scheduler-related parameters by roadblocking, chang-
ing the scheduling priority, or making the segments of the
process nonswap or swappable.

(viit) Miscellaneous services such as reading the console switches.

5.2 Kernel system processes

Closely associated with the kernel are the memory management
and scheduler processes. These two processes are special in that
they reside in the kernel address space permanenily. In all other
respects, they follow the discipline established for kernel processes.

5.2.1 Memory manager

The memory manager i8 a special system process. It communi-
cates with the rest of the system via messages and is capable of han-
dling four types of requests:

(i) Setting the segments of a process into the active state, making
space by swapping or shifting other segments if necessary.
(ii) Loading and locking a segment contiguous with other locked
segments to reduce memory fragmentation.
(iii) Deactivating the segments of a process.
{iv) Adding and deleting capabilities from the capability list in a
supervisor process PCB.

5.2.2 Schediiler

The scheduler is the second special system process and is respon-
sible for scheduling all supervisor processes. The main responsibil-
ity of the scheduler is to select the next process to be executed.
The actual loading of the process is accomplished by the memory
manager.

5.3 Dispatcher mechanism

The system maintains seven process lists, one for each processor
priority at which software interrupts can be triggered using the

MERT OPERATING SYSTEM 2058

programmed interrupt register. All kernel processes are linked into
one of the six lists for processor priorities 2 through 7, all supervisor
processes are linked to the processor priority 1 list. The occurrence
of a software interrupt at priorities 2 through 7 causes the process
dispatcher to search the corresponding process list and dispatch to all
processes which have one or more event flags set. The entire list is
searched for each software interrupt.

5.4 Scheduling policy

All software interrupts at processor priority 1, which are not for
the currently active process, cause the dispatcher to send a wakeup
event to the scheduler process. The scheduler uses a byte in the
system process tables to maintain the scheduling priority of each
process. This byte is manipulated by the scheduler as follows:

(/) Incremented when a process receives an event.
(ii) Increased by 10 when awakened by a kernel process.
(#ii) Decremented when the process yields control due to a road-
block system call.
(iv) Lowered according to an exponential function each successive
time the process uses its entire time slice (bhecomes compute
bound).

The process list is searched for the highest priority process which is
ready to run, and if this process has higher priority than the current
process, the new process will preempt the current process.

To minimize thrashing and swapping, the scheduler uses a “will
receive an event soon” flag which is set by the process when it road-
blocks. This flag is typically set when a process roadblocks awaiting
completion of 1/0 which is expected to finish in a short time relative
to the length of the time slice. The scheduler wiil keep the process
in memory for the remainder of its time slice. When memory
becomes full and all processes which require loading are of
sufficiently low priority, the scheduler stops making load requests
until one of the processes being held runs out of its time slice.

VI. INTER-PRCCESS COMMUNICATION

A structured system requires a well-defined set of communication
primitives to permit inter-process communication and synchroniza-
tion. The MERT system makes use of the following communication
primitives to achieve this end:

2060 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 19878

(i) Event flags.

(ii) Message buffers.
(iii) emt traps.

(iv) Shared memory.
(v) Files.

(vi) Process ports.

Each of these is discussed in further detail here.

8.1 Event flags

Event flags are an efficient means of communication between
processes for the transfer of small quantities of data. Of the 16 pos-
sible event flags per process, eight are predefined by the system for
the following events: wakeup, timeout, message arrival, hangup,
interrupt, quit, abort, and initialization. The other eight event flags
are definable by the processes using the event flags as a means of
communication. Events are sent by means of the kernel primitive:

event(procid, event)

When control is passed to the process at its event entry point, the
event flags are in its address space.

8.2 Message buffers

The use of message buffers for inter-process communication was
introduced in the design of the RC4000 operating system.?2 The SUE
project’ also used a message sending facility and the related device
called a mailbox to achieve process synchronization. We introduce
here a set of message buffer primitives which provide an efficient
means of inter-process communication and synchronization.

A kernel poot of message buffers is provided, each of which may
be up to a multiple of 7 times 16 words in size. Each message con-
sists of a six-word header and the data being sent to the receiving
process. The format of the message is specified in Fig. 4. The
primitives available to a process consist of:

alocmsg (nwords)
queuem (message)
queuemn (message)
dequeuem (process)
datype {process)
messink (message)

MERT OPERATING SYSTEM 2061

freemsg (message)

To open a communication channel between two processes P1 and
P2, P1 must allocate a message buffer using alocmsg, fill in the
appropriate data in the message header and data areas and then send
the message to process P2 using queuem. Efficiency is achieved by
allowing P1 to send multiple messages before waiting for an
acknowledgment (answer). The acknowledgment to these messages
is returned in the same buffer by means of the messink primitive.
The message buffer address space is freed up automatically if the
message is an acknowledgment to an acknowledgment. Buffer space
may also be freed explicitly by means of the freemsg primitive.
When no answer is expected back from a process, the queuemn
primitive is used.

Synchronization is achieved by putting the messages on P2’s mes-
sage input queue using the link word in the message header and
sending P2 a message event flag. This will immediately invoke the
scheduling of process P2 if it runs at a higher priority than P1. Pro-
cess P1 is responsible for filling in the from precess number, the fo
process number, the rype and the identifier fields in the message
header. The gpe field specifies which routine P2 must execute to
process the message. A type of “—1” is reserved for acknowledg-
ment messages to the original sender of the message. The status of
the processed message is returned in the status field of the message
header, a non-zero value indicating an error. The status of —1 is

LINK POINTER

FROM PROCESS NUMBER

TO PROCESS NUMBER

TYPE

{DENTIFIER

SEQUENCE NUMBER STATUS

MESSAGE
DATA

Fig. 4—Message format.

2062 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

reserved for use by the system to indicate that process P2 does not
exist or was terminated abnormally while processing the message.
The sequence number field is used solely for debugging purposes.
The identifier field may be planted by P1 to be used to identify and
verify acknowledgment messages. This word is not modified by the
system.

Process P2 achieves synchronization by waiting for a message. In
general, a process may receive any message type from any process
by means of the dequeuem primitive. However, P2 may request a
message type by means of dgtype in order to process messages in a
certain sequence for internal process management. In each case, the
kernel primitive will return a success/fail condition. In the case of a
fail return, P2 has the option of roadblocking to wait for a message
event or of doing further processing and looking for an input mes-
sage at a later time.

6.3 emt traps

The emulator trap (emt) instruction is used not only to imple-
ment the system primitives, but also to provide a mechanism by
which a supervisor and kernel process can pass information. The
supervisor process passes the process number of the kernel process
with which it would like to communicate to the kernel. The kernel
then dispatches to the kernel process through its emt entry point,
passing the process number of the calling supervisor process and a
pointer to an argument list. The kernel process will typically access
data in the supervisor process address space by setting part of its vir-
tual address space to overlap that of the supervisor. This method of
communication is used mainly to pass characters from a time-
sharing user to the kernel process which controls communications
equipment.

6.4 Shared memory

Supervisor processes may share memory by means of named as
well as unnamed segments. Segments may be shared on a supervi-
sor as well as a user level, In both cases, pure code is shared as
named segments. In the case of a time-sharing supervisor
{(described in Section VIII), a segment is shared for 1/0 buffers and
file descriptors. A shared segment is also used to implement the
concept of a pipe,® which is an inter-process channel used to com-
municate streams of data between related processes. At the user

MERT OPERATING SYSTEM 2063

level, related processes may share a segment for the efficient com-
munication of a large quantity of data. For related processes, a
parent process may set up a sharable segment in its address space
and restrict the access permissions of all child processes to provide a
means of protecting shared data. Facilities are also provided for
sharing segments between unrelated supervisors and between kernel
and supervisor processes.

8.5 Files

The file system has a hierarchical structure equivalent to the UNIX
file system® and as such has certain protection keys (see Section
VII). Most files have general read/write permissions and the con-
tents are sharable between processes.

In some cases, the access permissions of the file may themselves
serve as a means of communication. If a file is created with
read/write permissions for the owner only, another process may not
access this file. This is a means of making that file name unavail-
able to a second process.

8.8 Process poris

Knowing the identity of another process gives a process the ability
to communicate with it. The identity of certain key processes must
be known to all other processes at system startup time to enable
communication. These globally known processes include the
scheduler, the memory manager, the process manager, the file
manager, and the swap device driver process. These comprise a
sufficient set of known processes to start up new processes which
may then communicate with the original set.

Device driver processes are created dynamically in the system.
They are in fact created, loaded, and locked in memory upon open-
ing a “device™ file (see Section VII). The identity of the device
driver process is returned by the process manager to the file
manager which in turn may return the identity to the process which
requested the opening of the “device” file. These processes are
referred to as “external” processes by Brinch Hansen.2

The above process-communication primitives do not satisfy the
requirements of communication between unrelated processes. For
this reason the concept of process ports has been introduced. A
process port is a globally known “device” (name) to which a process
may attach itself in order to communicate with “unknown”

2064 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

processes. A process may connect itself to a port, disconnect itself
from a port, or obtain the identity of a process connected to a
specific port. Once a process identifies itself globally by connecting
itself to a port, other processes may communicate with it by sending
messages to it through the port. The port thus serves as a two-way
communication channel. It is a means of communication for
processes which are not descendants of each other.

Vil. FILE SYSTEM

The multi-environment as well as the real-time aspects of the
MERT system requires that the file system structure be capable of
handling many different types of requests. Time-sharing applica-
tions require that files be both dynamically allocatable and dynami-
cally growable. Real-time applications require that files be large, and
possibly contiguous, dynamic allocation and growth are usually not
required.

For data base management systems, files may be very large, and it
is often advantageous that files be stored in one contiguous area of
secondary storage. Such large files are efficiently described by a
file-map entry which consists of starting block number and number
of consecutive blocks (a two-word extent). A further benefit of this
allocation scheme is that file accesses require only one access to
secondary storage. Another commonly used scheme, using indexed
pointers to blocks of a file in a file-map entry, may require more
than one access to secondary storage to read or write a block of a
file. However, this latter organization is usually quite suitable for
time-sharing applications. The disadvantage of using two-word
extents in the file-map entry to describe a dynamic time-sharing file
is that this may lead to secondary storage fragmentation. In prac-
tice, the efficient management of the in-core free extents reduces
storage fragmentation significantly.

Three kinds of files are discernible to the user: ordinary disk files,
directories, and special files. The directory structure is identical to
the uNIx file system directory structure. Directories provide the
mapping between the names of files and the files themselves and
impose a hierarchical naming convention on the files. A directory
entry contains only the name of the file and a file identifier which is
essentially a pointer to the file-map entry (i-node) for that file. A
file may have more than one link to it, thus enabling the sharing of
files.

Special files in the MERT system are associated with each 1/O

MERT OPERATING SYSTEM 2065

device. The opening of a special file causes the file manager to send
a message to the process manager to create and load the appropriate
device driver process and lock it in memory. Subsequent reads and
writes to the file are transtated into read/write messages to the
corresponding /0O driver process by the file manager process.

In the case of ordinary files, the contents of a file are whatever
the user puts in it. The file system process imposes no structure on
the contents of the file.

The MERT file system distinguishes between contiguous files and
other ordinary files. Contiguous files are described by one extent
and the file blocks are not freed until the last link to the file is
removed. Ordinary files may grow dynamically using up to 27
extenis to describe their secondary storage allocation. To minimize
fragmentation of the file system, a growing file is allocated 40 blocks
at a time. Unused blocks are freed when the file is closed.

The list of free blocks of secondary storage is kept in memory as a
list of the 64 largest extents of contiguous free blocks. Blocks for
files are allocated and freed from this list using an algorithm which
minimizes file system fragmentation. When freeing blocks, the
blocks are merged into an existing entry in the free list if possible,
or placed in an unused entry in the free list. Failing these, an entry
in the free list which contains a smaller number of free blocks is
replaced.

The entries which are being freed or allocated are also added to an
update list in memory. These update entries are used to update a
bit map which resides on secondary storage. If the in-core free list
should become exhausted, the bit map is consulted to re-create the
64 largest entries of contiguous free blocks. The nature of the file
system and the techniques used to reduce file system fragmentation
ensure that this is a very rare occurrence.

Very active file systems consisting of many small time-sharing
files may be compacted periodically by a utility program to minimize
file system fragmentation still further. File system storage fragmen-
tation actually only becomes a problem when a file is unable to grow
dynamically having used up all 27 extents in its file map entry. Nor-
mal time-sharing files do not approach this condition.

Communication with the file system process is achieved entirely
by means of messages. The file manager can handle 25 different
types of messages. The file manager is a kernel process using both [
and D space. It is structured as a task manager controlling a
number of parallel cooperating tasks which operate on a common
data base and which are not individually preemptible. Each task acts

2066 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

on behalf of one incoming message and has a private data area as
well as a common data area. The parallel nature of the file manager
ensures efficient handling of the file system messages. The mode of
communication, message buffers, also guarantees that other
processes need not know the details of the structure of the file sys-
tem. Changes in the file system structure are easily implemented
without affecting other process structures.

VHIL. A TIME-SHARING SUPERVISOR

The first supervisor process developed for the MERT system was a
time-sharing supervisor logically equivalent to the UNIX time-sharing
system.2 The UNIX supervisor process was implemented using mes-
sages to communicate with the file system manager. This makes the
UNIX supervisor completely independent of the file system structure.
Changes and additions can then be made to the file system process
as well as the file system structure on secondary storage without
affecting the operation of the UNIX supervisor.

The structure of the system requires that there be an independent
UNIX process for each user who “logs in.” In fact, a UNIX process is
started up when a “carrier-on” transition is detected on a line which
is capable of starting up a user.

For efficiency purposes, the code of the UNIX supervisor is shared
among all processes running in the UNIX system environment. Each
supervisor has a private data segment for maintaining the process
stack and hence the state of the process. For purposes of communi-
cation, one large data segment is shared among all UNIX processes.
This data segment contains a set of shared buffers used for system
side buffering and a set of shared file descriptors which define the
files that are currently open.

The sharing of this common data segment does introduce the
problem of critical regions, i.e., regions during which common
resources are allocated and freed. The real-time nature of the sys-
tem means that a process could be preempted even while running in
a critical region. To ensure that this does net occur, it is necessary
to inhibit preemption during a critical region and then permit
preemption again upon exiting from the critical region. This also
guarantees that the delivery of an event at a higher hardware priority
will not cause a critical region to be re-entered. Note that a sema-
phore implemented at the supervisor level cannot prevent such re-
entry unless events are inhibited during the setting of the sema-
phore.

MERT OPERATING SYSTEM 2067

The UNIX supervisor makes use of all the communication primi-
tives discussed previously. Messages are used to communicate with
the file system process. Events and shared memory are used to
communicate with other UNIX processes. Communication with char-
acter device driver processes is by means of emt traps. Files are
used to share information among processes. Process ports are used
in the implementation of an error logger process to collect error
messages from the various I/0 device driver processes.

The entire code for the UNIX supervisor process {excluding the file
system, drivers, etc.) consists of 8K words. This includes all the
standard UNIX system routines as well as the many extra system rou-
tines which have been added to the MERT/UNIX supervisor. The
extra system routines make use of the unique features available
under MERT. These include the ability to:

(i) Create a new environment.

(i) Send and receive messages.

(iii) Send and receive events.

(iv) Set up shared segments.

{v) Invoke new file system primitives such as allocate coritiguous

files.

(vi) Set up and communicate with process ports.
{(vii) Initiate physical and asynchronous I/0.

All memory management and process scheduling functions are per-
formed by the kernel.

IX. REAL-TIME ASPECTS

Several features of the MERT architecture make it a sound base on
which to build real-time operating systems. The kernel provides the
primitives needed to construct a system of cooperating, independent
processes, each of which is designed to handle one aspect of the
larger real-time problem. The processes can be arranged in levels of
decreasing privilege depending on the response requirements. Ker-
nel processes are capable of responding to interrupts within 100
microseconds, nonswap supervisor processes can respond within a
few milliseconds, and swap processes can respond in hundreds of
milliseconds. Shared segments can be used to pass data between the
levels and to insure that the most up-to-date data are always avail-
able. This is sufficient to solve the data integrity problem discussed
by Sorenson.?

The system provides a low-resolution interval timer which can be

2088 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

used to generate events at any multiple of 1/60th of a second up to
65535. This is used to stimulate processes which update data bases
at regular intervals or time I/O devices. Since the timer event is an
interrupt, supervisor processes can use it to subdivide a time slice to
do internal scheduling.

The preemptive priority scheduler and the control over which
processes are swappable allow the system designer to specify the
order in which tasks are processed. Since the file manager is an
independent process driven by messages, all processes can commun-
icate directly with it, providing a limited amount of device indepen-
dence. The ability to store a file on a contiguous area of secondary
storage is aimed at minimizing access time. Finally, the availability
of a sophisticated time-sharing system in the same machine as the
real-time operating system provides powerful tools which can be
exploited in designing the man-machine interface to the real-time
processes.

X. PROCESS DEBUGGING

One of the most useful features of the system is the ability to
carry on system development while users are logged in. New I/0
drivers have been debugged and experiments with new versions of
the time-sharing supervisor have been performed without adversely
affecting the user community.

Three aspects of the system make this possible:

(/) Processes can be loaded dynamically.
{ii} Snapshot dumps of the process can be made using the time-
sharing supervisor.
{(iii} Processes are gracefully removed from the system and a core
dump produced on the occurrence of a “break point trap.”

As an example, we recently interfaced a PDP-11/20 to our system
using an inter-processor DMA {direct memory access) link. During
the debugging of the software, the two machines would often get
out of phase leading to a breakdown in the communication channel.
When this occurred, a dump of the process handling the pDP-11/45
end of the link was produced, a core image of the PDP-11/20 was
transmitted to the pDP-11/45, and the two images were analyzed
using a symbolic debugger running under the time-sharing supervi-
sor. When the problem was fixed, a new version of the kernel-
mode link process was created, loaded, and tested. Turnaround
time in this mode of operation is measured in seconds or minutes.

MERT OPERATING SYSTEM 2069

Xl. MERT-BASED PROJECTS

A number of PDP-11-based minicomputer systems have taken
advantage of the MERT system features to meet their system
specifications. The features which various projects have found use-
ful include:

Contiguous files.

Asynchronous input/output.

Interprocess communication facilities.

Large virtual address space.

Public libraries.

Real-time processes.

Dynamic debugging features.
Most projects have had experience with or were using the UNIX
time-sharing system. Thus the path of least resistance dictated the
use of the MERT/UNIX system calls which were added to the original
UNIX system calls to take advantage of the MERT system features.
The next step was to write a special-purpose supervisor process to
give the programmer more control in an environment better suited
to the application than the UNIX time-sharing system environment,
Almost all projects used the dynamic debugging features of the
MERT system to test out new supervisor and new kernel processes.

To take advantage of all of the system calls which were added to
the MERT/UNIX supervisor, a modified command interpreter, i.e. an
extended shell, was written.? The user of this shell is able to make
use of all of the MERT system interprocess communication facilities
without having to know the details of the arguments required. A
number of interesting new supervisor processes were written to run
on the MERT system. One of the user environments emulated was
the RSX-11 system, a DEC PDP-11 gperating system. This required
the design of an interface to the MERT file manager process. The
new supervisor process provided the same interface to the user as
that seen by the RSX-11 user on a dedicated machine. This offered
the user access to all language subsystems and utilities provided by
RSX-11 itself, most notably the Fortran IV compiler. Another super-
visor process written was one which provided an interface to a user
on a remote machine (SEL86)} to the MERT file system. Here the
supervisor process communicates with the MERT file manager pro-
cess by means of messages much as the MERT/UNIX supervisor does.
A special kernel device driver process controls the hardware chan-
nels between the SEL836 and the pPDP-11/45 computers. The UNIX
programming environment in the MERT system is used both for

2070 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

pDP-11 programming and for preparing files and programs to be used
on the SEL86 machine.

Xil. PROTECTION/PERFORMANCE TRADE-OFFS

We summarize here the results of our experience with the MERT
system as designers, implementers, and users. Some of the features
added or subtracted from the MERT System have been the result of
feedback from various users. We pay particular attention to various
aspects of the system design concerning trade-offs made between
efficiency and protection. The advantages of the system architecture
as well as its disadvantages are discussed.

Each major design decision is discussed with respect to perfor-
mance versus protection. By protection, we mean protection against
inadvertent bugs and the resulting corruption, not protection against
security breaches. In general, for the sake of a more efficient sys-
tem, protection has been sacrificed when it was believed that this
extra protection would degrade system performance significantly. In
most cases, the system is used in dedicated applications where some
protection could be sacrificed. Maximum protection is provided
mainly by separating the various functions into layers, putting each
function at the highest possible level, according 10 the access
privileges required. All processes were written in the high-level
language, C.1¢ This forced some structure in the processes. C con-
trols access to the stack pointer and program counter and automati-
cally saves the general-purpose registers in a subroutine call. This
provides some protection which is helpful in confining the access of
a program Or process.

12.1 Hardware

The hardware of the pDp-11 computers permits a distinction 1o be
made between kernel processes and supervisor processes. Kernel
processes have direct access 1o the kernel-mode address space and
may use all privileged instructions. For efficiency reasons, one base
register always points to the complete 1/0 page. This is 4K words of
the address space of the pDpP-11 computer which is devoted to device
addresses. It is not possible 10 limit access to only the device regis-
ters required for a particular device driver. The virtual address
space is limited 1o 16-bit addressing. This presents a limitation 10
some large processes.

MERT OPERATING SYSTEM 2071

12.2 Kernel

The number of base registers provided by the PDP-11 segpmenta-
tion unit is a restriction in the kernel. The use of I and D space
separation is necessitated to provide a reasonable number (16) of
segments. Some degree of protection is provided for the sensitive
kernel system tables by the address space separation, since the ker-
nel drivers do not use 1/D space separation in general. Such kernel
processes do not have access to sensitive system data in kernel D
space.

12.3 Kernel process

Most kernel-mode processes use only kernel I space. This prohi-
bits access to system segment tables and to kernel code procedures.
However, access to message buffers, dispaicher control tables, and
the 1/0 page is permitted. A kernel process is the most privileged
of all processes which the user can load into a running system. The
stack used by a kernel process is the same as that used by kernel
procedures.

To provide complete security in the kernel would require that
each process use its own stack area and that access to all base regis-
ters other than those required by the process be turned off. The
time to set up a kernel process would become prohibitive. Since
control is most often given 1o a kernel process by means of an inter-
rupt, the interrupt overhead would become intolerable, making it
more difficult to guarantee real-time response.

In actual practice, the corruption of the kernel by kernel processes
has occurred very infrequently and then only when debugging a new
kernel process. Fatal errors were seldom caused by the modification
of data outside the process’s virtual address range. Most errors were
timing-dependent errors which would not have been detected even
with better protection mechanisms. Hence we conclude that the
degree of protection provided for kernel processes in dedicated sys-
tems is sufficient without degrading system performance. The only
extra overhead for dispatching to a kernel process is that of saving
and restoring some base registers and saving the current stack
pointer.

12.4 Supervisor process

Supervisor processes do not have direct access to the segments of

2072 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

other processes, kernel or supervisor. Therefore, it is possible to
restrict the impact of these processes on the rest of the system by
means of careful checking in the kernel procedures. All communi-
cation with other processes must go through the kernel. Of course,
one pays a price for this protection since all supervisor base registers
must have the appropriate access permissions set when a supervisor
process is scheduled. Message traffic overhead is higher than for
kernel processes.

For protection reasons, capabilities were added to the system.
This adds extra overhead for each message to the file manager, since
each capability must be validated by the file manager. An alternate
implementation of capabilities which reduces overhead at the cost of
some protection is discussed in a later section.

12.5 Message buffers

System message buffers are maintained in kernel address space.
These buffers are corruptible by a kernel process. The only way to
protect against corruption completely would be to make a kernel
emt call to copy the message from the process’s virtual address
space to the kernel buffer pool. For efficiency reasons, this was not
done.

For a supervisor process, the copying of a message from the
supervisor’s address space to the kernel message buffer pool area is
necessary. This increases message traffic overhead for supervisor to
kernel or supervisor to supervisor transfers. The overhead for send-
ing and receiving a message between kernel processes amounts to
300 microseconds. whereas for supervisor processes the overhead is
of the order of 800 microseconds (on a PDP-11/45 computer without
cache memory).

12.6 File manager process

The file manager process is implemented as a kernel-mode process
with 1 and D space separated to obtain enough virtual address space.
In the early implementation stage of the MERT system, the file
manager was a supervisor process, but the heavy traffic to the file
manager process induced many context changes and contributed
significantly to system overhead. Implementation of the file
manager process as a kernel-mode process improved system
throughput by an average of about 25 percent. Again, this was a
protection/efficiency trade-off. Protection is sacrificed since the file

MERT OPERATING SYSTEM 2073

manager process has access to all system code and data. In practice,
it has not proven to be difficult to limit the access of the file
manager {o its intended virtual address space. Making the file
manager a separate process has made it easy {o implement indepen-
dent processes which communicate with the file manager. The file
manager is the only process with knowledge of the detailed structure
of the file system. To prevent corruption of the file system, all
incoming messages must be carefully validated. This includes care-
ful checking of each capability specified in the message. This is a
source of some system overhead which would not exist if the file
system were tightly coupled with a supervisor process. However,
this separation of function has proven very helpful in implementing
new supervisors.

12.7 Process manager

The process manager is implemented as a swappable supervisor
process. Its primary function is to create and start up new processes
and handle their termination. An example is the loading of the ker-
nel driver process for the magnetic tape drive. This is an infrequent
occurrence, and thus the time penalty to bring in the process
manager is tolerable. Other more frequent creations and deletions
of processes associated with the UNIX system forking of processes is
handled by the system scheduler process. In the early stages of
implementation of the MERT system, the creation and deletion of all
processes required the intervention of the process manager. This
required the loading of the process manager in each case and added
significantiy to the overhead of creating and deleting processes.

12.8 Response comparisons

The fact that a “UNIX-like” environment was implemented as one
environment under the MERT kernel gives us a unique opportunity
to compare the overall response of a system running as a general-
purpose development system to that of a system running a dedicated
UNIX time-sharing system on the same hardware. This gives us a
means of determining what system overhead is introduced by using
messages as a basic means of inter-process communication. Appli-
cation programs which take advantage of the UNIx file system struc-
ture give better response in a dedicated UNIX time-sharing system,
whereas those which take advantage of the MERT file system

2074 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

structure give a better response under the MERT system. Compute-
bound tasks respond in the same time under both systems. It is
only where there is substantial system interaction that the structure
of the MERT system introduces extra system overhead, which is not
present in a dedicated UNIX system. Comparisons of the amount of
time spent in the kernel and supervisor modes using synthetic jobs
indicate that the MERT system requires from 5 to 50 percent more
system time for the more heavily used system calls. This translates
to an increase of 5 to 10 percent in elapsed time for the completion
of a job stream consisting of compilation, assembly, and link-edit.
We believe that this overhead is a small price to pay to achieve a
well-structured operating system with the ability to support custom-
ized applications. The structure of the system provides a basis for
doing further operating system research.

Xill. DESIGN DECISIONS IN RETROSPECT

A number of design decisions were made in the MERT system
which had no major impact on efficiency or protection. However,
many of these impacted the interface presented to the user of the
system. The pros and cons of these decisions are discussed here.

13.1 File system

The first file system for the MERT system was designed for real-
time applications. For that, it is well-suited. For those applications
which require the collection of data at a high rate, the use of con-
tiguous files and asynchronous I/0 proved quite adequate. How-
ever, the number of applications which required contiguous files was
not overwhelming. For those applications which used the MERT sys-
tem as a development system as well, the allocation of files by
extents is not optimal, although adequate. The number of files
which exhausted their 27 extents was small indeed. Also the need
for compaction of file systems due to fragmentation was not as great
as might have been expected and seems not to have posed any prob-
lems. The root file system very rarely needs to be compacted due to
the nature of file system activity on it.

The file manager process uses multi-tasking to increase its
throughput. This has added another degree of parallelism to the
system, but on the other hand has also been the source of many
hard-to-find timing problems.

MERT OPERATING SYSTEM 2075

The use of 16-bit block numbers is a shortcoming in the file sys-
tem with the advent of larger and larger disks. However, this has
been rectified in a new 32-bit file system which has features that
make it more suitable for small time-sharing files and yet allows the
allocation of large contiguous files. Compaction of this file system is
not required.

13.2 Error logging

A special port process to collect error messages has proven to be
very useful for tracking down problems with the peripheral devices.
Sending messages rather than printing diagnostics out at the control
terminal minimizes impact on real-time response. One drawback of
this means of reporting errors is that the user is not told of the
occurrence of an error immediately at his terminal unless the error
is unrecoverable. He must examine the error logger file for actual
error indications. |

13.3 Process ports

Process ports were implemented as a means of enabling communi-
cation among unrelated processes. This has proven to be an easy-
to-use mechanism for functions such as the error logger. Other uses
have been made of it, such as a centralized data base-manager. The
nature of the implementation of ports requires that the port
numbers be assigned by some convention agreed upon by users of
ports. Probably a better impleméntation of ports would have been
to use named ports, i.e., to refer to ports by name rather than by
number. The number then is not dependent on any user-assigned
scheme.

13.4 Shared memory

Shared memory allows the acceLs to a common piece of memory
by more than one process. The use of named segments to imple-
ment sharing enables two or more processes to pass a large amount
of data between them without actually copying any of the data. The
PDP-11 memory management unit and the 16-bit virtual address
space are limitations imposed on shared memory. Only up to 16
segments may be in a process’ address space at any one time.
Sometimes it would be desirable to limit access to less than a total

2076 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

logical segment. The implementation chosen in the MERT system
does not allow this.

13.5 Public libraries

Public libraries are used in the MERT system at all levels: kernel,
supervisor, and user. The use of public libraries at the kernel level
has allowed device drivers to share a common set of routines. At
the user level, many programs have made use of public libraries 1o
make a substantial savings in total memory requirements. The ini-
tial implementation of public libraries required that when a public
library was reformed, all programs which referenced it had to be
link-edited again to make the appropriate connection to subroutine
entry points in the public library. The current implementation
makes use of transfer vectors at the beginning of the public library
through which subroutine transfers are performed. Thus, if no new
entry points are added when a public library is formed again, the
link-edit of all programs which use it becomes unnecessary. This
has proven to be very helpful for maintaining a set of user programs
which share public libraries. It has proven to be convenient also for
making minor changes to the system library when new subroutines
are not added. This makes the re-forming of all device drivers
unnecessary each time a minor change is made to a system library.

13.8 Real-time capabilities

The real-time capabilities of the MERT system are determined in
part by the mode of the process running, i.e., kernel or supervisor.
Control is given to a kernel mode process by an interrupt or an
event. Time-out events may be used effectively to guarantee repeti-
tive scheduling of a process. The response of a kernel process is
limited by the occurrence of high priority interrupts, and therefore
can only be guaranteed for the highest priority process. A supervi-
sor process’ scheduling priority can be made high by making it a
nonswap process and giving it a high software priority. A response
of the order of a few milliseconds can then be obtained. The
scheduler uses preemption to achieve this. One aspect missing from
the scheduler is deadline scheduling. Thus, it cannot be guaranteed
that a task will finish by a certain time. The requirement for
preemption has added another degree of complexity to the scheduler
and of necessity adds overhead in dispatching to a process. Preemp-
tion has also complicated the handling of critical regions. It is

MERT OPERATING SYSTEM 2077

necessary to raise the hardware priority around a critical region.
This is difficult to do in a supervisor, since it requires making a ker-
nel emt call, adding to response time. Shifting of segments in
memoty also adds to the response time which can be guaranteed.

13.7 Debugging features

Overall, the debugging features provided by the MERT system
have proven to be adequate. The kernel debugger has proven useful
in looking at the history of events in the kernel and examining the
detailed state of the system both after a crash and while the system
is running. In retrospect, it would have been helpful to have some
more tools in this area to examine structures according to named
elements rather than by offsets.

The dynamic loading, dumping, and then debugging of processes,
both kernel and supervisor, on a running system have been helpful
in achieving fast debugging turnaround. While post-mortem debug-
ging is useful, interactive debugging would eliminate the need to
introduce traces and local event logging to supervisor and kernel
ptocesses as debugging aids. One danger of planting break-point
traps at arbitrary points in the UNIX supervisor has been that of
planting them in a critical region in which a resource is allocated.
The resource may not be freed up properly and other processes may
hang waiting for the resource to be freed up.

13.8 Memory manager

The memory manager is a separate kernel process and handles
incoming requests as messages in a fairly sequential manner. One
thing it does do in parallel, however, is the loading of the next pro-
cess to be run while the current one is running. In certain cases,
the memory manager can act as a bottleneck in the system
throughput. This can also have serious impact on real-time response
in a heavily loaded system,

13.9 Scheduler

The scheduler in the MERT system is another separate kernel pro-
cess. One improvéement which could be made in this area is to
separate mechanism from policy. The fact that the scheduler and
memory manager are separate processes has system-wide impact in
that the scheduler cannot always tell which process is the best one to

2078 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

run based on which one has the most segments in memory. The
memory manager does not tend to throw out segments based on
which process owns it but rather on usage statistics.

13.10 Messages

Messages have proven to be an effective means of communication
between processes. At the lowest level, they have been helpful in
separating functions into processes and of making these processes
modular and independent. It has made things like error logging easy
to implement. Communication with the file manager process by
means of messages has removed the dependency of supervisor
processes on file system structures. In fact, a number of different
file managers have been written to run using the identical “UNIX-
like” supervisor. The UNIX file manager was brought up to run in
place of the original MERT file manager without any impact on the
supervisor processes. Messages at a higher level have not always
been easy to deal with. It is difficult to prevent a number of user
processes from swamping the kernel message buffer pool and
thereby impacting system response.

The MERT system implementation of messages solves the problem
of many processes sending to one process quite effectively. How-
ever, the reverse problem of one process sending to many processes
(i.e., many servers) is not handled efficiently at all.

13.11 Firewasalls

Having separate processes for separate functions has modularized
the design of the system. It has eased the writing of new processes
but required them to obey a new set of rules. To ensure that
processes obey these rules requires an amount of checking which
would not be necessary if processes were merged in one address
space. This has been especially true of the file manager where cor-
ruption of data is very crucial, as it can very quickly spread as a
cancer in the system.

XIV. PORTABILITY

Recently a great deal of interest has been expressed in porting
complete operating systems and associated user programs lo
hardware configurations other than the DEC 16-bit PDP-11 computer.

MERT OPERATING SYSTEM 2079

We discuss here some of the hardware characteristics on which the
MERT system depends and the impact of these on the software.

14.1 Hardware considerations

At the time that we designed the MERT operating system (circa
1973), the DEC PDP-11/45 processor with a memory management
unit allowing the addressing of up to 124K words of memory was a
new system. Moreover, the memory management unit was rather
sophisticated for minicomputers at that time, since it supported
three address modes: kernel, supervisor, and user. It also supported
two address spaces per mode, instruction and data. This enables a
mode to address up to 64K words in its address space. Two address
modes are generally sufficient for operating systems which provide
one environment to the user. To support multi-environments, three
modes are required (or at least are desirable), one of which provides
the various environments to the user. We decided to make use of
this feature. The separation of instruction and data address space
provides more address space for a process. It also provides a greater
number of segments per user and allows some degree of protection.
This was used in the kernel where a large number of separate pieces
of code and data need to be referenced concurrently. The protection
provided is made use of in kernel processes which need very few
base registers and do not need access to very much data; in fact, the
less the better. Thus a kernel process is not allowed to run with
instruction and data space separated so as lo protect sensitive system
tables.

The third unique feature of the PDP-11/45 computer is that it has
a programmable interrupt register (PIR). This enables the system to
trigger a software interrupt at one of seven hardware priority levels.
The interrupt goes off when the processor starts to run at less than
the specified priority. This is used heavily in the MERT system
scheduler process and by kernel system routines which trigger vari-
ous events to occur at specified hardware priorities. It is not
sufficient to depend on the line clock for a preemptive scheduler to
guarantee real-time response.

We have identified here three unique features of the PDP-11/45
processor (and the PDP-11/70) which have been heavily used in the
MERT system. These features are identified as unique in that a gen-
eral class of minicomputers does not have all of these features,
although some may have one or more. They are also identified as
unique in that the UNIX operating system has not made critical use

2080 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

of them. Therefore, the portability of the UNIX system is not
impacted by them. For the portability of the MERT system, three or
more address modes, a large number of segments (at least eight) per
address mode, and a programmed interrupt register are highly desir-
able.

14.2 Software considerations

Currently, most of the MERT system is written in C. This includes
all device driver processes, the scheduler, the file manager, the pro-
cess manager, and the UNIX supervisor. Most of the basic kernel,
including the memory manager process, is written in PDP-11 assem-
bly language. This portion is of course not portable to other
machines. Recently, a portable C compiler has been written for
various machines, both 16-bit and 32-bit machines, the two classes
of minicomputers which are of general interest for portability pur-
poses. These include the pDP-11 and the Interdata 8/32 machines.

The UNIX system has been ported to the Interdata 8/32 machine,
this includes all user programs as well as the operating system
itself.1! Thus, if the portability of the MERT system to the Interdata
32-bit machine were to be considered, all user programs have
already been ported. The main pieces of software which have to be
written in porilable format include all device drivers, the scheduler,
the process manager, the file manager and the UNIX supetviser. Of
these, only the device drivers have machine dependencies and need
substantial rewriting. The file manager, being a kernel process, has
some machine-dependent code. The bulk of the software which
must be rewritien is in the kernel itself, being substantially written
in ppp-11 assembly language. Also, all library interface routines
must be rewritten. Many of the calling sequences for library rou-
tines have to be reworked, since arguments are passed specifically as
16-bit integers. Some sizes, especially of segmenits, are specified in
terms of 16-bit words. For portability reasons, all sizes must be
treated in terms of 8-bit bytes.

XV. REFLECTIONS

In designing any system, one must make a number of crucial deci-
sions and abide by them in order to come up with a complete and
workable system. We have made a number of these, some of which
have been enumerated and discussed in the above sections. Upon
reflecting on the results and getting feedback from users of the

MERT OPERATING SYSTEM 2081

MERT system, we have come up with a number of design decisions
which could probably have been made differently from what was
actually done. Users have pushed the system in directions which we
never considered, finding holes in the design and also some bugs
which were never exercised in the original MERT system.

15.1 Capabillties

Capabilities were implemented in the system as a result of the
experience of one user in writing a new supervisor process which
sent messages to the file manager. There were two major
deficiencies. The first had to do with protection. Under the old
design (without capabilities), it was possible to ignore the protection
bits. Upon reading/writing a file, no check was made of the protec-
tion bits. As long as a file was open, any action could be taken on
the file, reading or writing; this included directories. With the addi-
tion of capabilities, when a file is opened, the capability is put in the
user’s PCB. The capability includes the entry number in the file
manager tables, protection bits, and a usage count. The capability is
put in a message to the file manager by the kernel when a request is
made to read/write a file. These three quantities are checked by the
file manager, A capability must be satisfactorily validated before an
access can be made to a file. This provides the degree of protection
desired.

The second deficiency of the file manager had to do with the
maintenance of an up-to-date set of open file tables. If a process is
abnormally terminated, i.e., terminated by the scheduler without
being given a chance to clean up, the process may not have been
able to close all its files. This would typically occur when a break-
point trap was planted in an experimental version of the UNIX super-
visor, The fact that no table is maintained in a central place with a
list of all files open by each process caused file tables to get out of
synchronization. Capabilities provide such a central table to the pro-
cess manager and the memory manager. Thus when an abnormal
termination is triggered on a process, the memory manager can
access the process PCB and take down the capabilities one by one,
going through the capability list in the PCB, sending close messages
to the file manager. This provides a clean technique for maintaining
open counts on files in the file manager tables.

In retrospect, the implementation of capabilities in the MERT sys-
tem was probably carried to an extreme, i.e. not in keeping with the
other protection/efficiency trade-offs made. The trade-off was made

2082 THE BELL SYSTEM TECHNICAL JCURNAL, JULY-AUGUST 1978

in favor of protection rather than efficiency, in this case. The
current implementation of capabilities is expensive in that extra
messages are generated in opening and closing files. For instance, in
closing a file, a close message is sent to the file manager; this in
turn generates a message to the capability manager (i.e., the
memory manager) to take down the capability from the pCB of the
process which sent the ¢close message. The asynchronous message
is necessary since the memory manager process must bring the FCB
into memory to take down the capability if the PCB is not already in
memory.

A more efficient means of achieving the same result would be to
maintain this list of capabilities in the supervisor address space with
general read/write permissions with a pointer 1o the capability list
maintained in the PCB. It would then be the supervisor’s responsi-
bility to fill in the capability when sending a message to the file
manager and to take down the capability when closing the file. This
requires no extra message traffic overhead as compared to the origi-
nal implementation without capabilities. Upon abnormal termina-
tion, the memory manager could still go through the capability list
to take down all capabilities by sending close file messages 1o the
file manager. Protection is still achieved by the encoded capability.
Efficiency is maintained by eliminating extra messages to the
memory manager. This proposed implementation also has the added
benefit that it can be implemented for kernel processes in the same
manner, i.e., using a pointer to a capability list in the kernel process
header.

15.2 Global system buffers

In the current implementation of the MERT system, each process
maintains its own set of system buffers. The file manager provides
its own set of buffers, used entirely for file mapping functions (e.g.,
superblocks for mounted file systems, i-nodes, and directories).
The UNIX supervisor provides its own set of buffers for use by all
UNIX processes. These buffers are used almost exclusively for the
contents of files. However, it is possible for a file 1o be the image of
a complete file system, in which case a buffer may actually contain
the contents of a directory or i-node. This means there may be
more than one copy of a given disk block in memory simultane-
ously. Because of the orthogonal nature of the uses of buffers in
the UNIX system and the file manager, this duplication hardly ever

MERT OPERATING SYSTEM 2083

occurs and does not pose a serious problem. Within the UNIX sys-
temn itself, all buffers are shared in a common data segment.

However, if one wishes to implement other supervisors and these
supervisor processes share a common file system with the UNIX
supervisor, it becomes quite possible that more than one copy of
some disk blocks exists in memory. This presents a problem for
concurrent updates.

An alternate method of implementation of buffers would have
been 1o make use of named segments to map buffers into a globally
accessible buffer pool. The allocation and deallocation of buffers
would then become a kernel function, and this would guarantee that
each disk block would have a unigue copy in memory. If the MERT
system had allowed protection on sections of a segment, then sys-
tem buffers could have been implemented as one big buffer segment
broken up into protectable 512-byte sections. The system overhead
in this implementation probably would have been no greater than
the current implementation. Each time a buffer is allocated and
released, a kernel emt call would be necessary. However, even the
present implementation requires two short-duration emt calls to
prevent process preemption during a critical region in the UNIX
supervisor both during the allocation and releasing of a buffer.

15.3 Diagnostics

One of the shortcomings of the MERT system has been the lack of
system diagnostics printed out at the control console reporting sys-
tem troubles. The UNIX system provides diagnostic print-outs at the
control console upon detection of system inconsistencies or the
exhaustion of crucial system resources such as file table entries,
i-node table entries, or disk free blocks. Device errors are also
reported at the control console. In the MERT system, device errors
are permanently recorded on an error logger file. One reason for
not providing diagnostic print-out at the control console is that the
print-out impacts real-time response.

The lack of diagnostic messages has been particularly noticeable in
the file system manager and in the basic kernel when resources are
exhausted. Providing diagnostic messages in the system requires the
use of some address space in each process making use of diagnostic
messages; this would require duplication of the basic printing rou-
tines in the kernel, the file manager, and any other process which
wished to report diagnostics or the inclusion of the printing routines
in the system library. A possible solution would have been to make

2084 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

use of the MERT message facilities to send diagnostic data to a cen-
tral process connected to a port to print out all diagnostics both on
the control console and into a file for later analysis. Using this tech-
nique, it would also be possible to send diagnostic messages directly
to the user’s terminal which caused the diagnostic condition to
occur. The diagnostic logger process would be analogous to the
error logger process.

15.4 Scheduler process

The current MERT scheduler is a separate kernel system process
which implements both the mechanism and the policy of system-
wide scheduling. It would be more flexible to implement only the
mechanism in the kernel process and let the policy be separated
from this mechanism in other user-written processes.

XVI. ACKNOWLEDGMENTS

Some of the concepts incorporated in the kernel were developed
in a previous design and implementation of an operating system ker-
nel by C. S. Roberts and one of the authors (H. Lycklama). The
authors are pleased to acknowledge many fruitful discussions with
Mr. Roberts during the design stage of the current operating system.

We are grateful to the first users of the MERT system for their ini-
tial support and encouragement. These include: S. L. Arnold, W. A.
Burnette, L. L. Hamilton, J. E. Laur, I. J. Molinelli, R. W. Peter-
son, M. A. Pilla, and T. F. Tabloski. They made suggestions for
additions and improvements, many of which were incorporated into
the MERT system and make the MERT system what it is today.

The current MERT system has benefited substantially from the
documentation and debugging efforts of E. A. Loikits, G. W. R.
Luderer, and T. M. Raleigh.

REFERENCES

1. E. W. Dijkstra, “The Structure of the THE Multiprogramming System,”™ Commun.
Assn. Comp. Mach., /7 (May 1968), p. 341.

. P. Brinch Hansen, “The Nucleus of a Muliiprogramming System,” Commun.
Assn. Comp. Mach., 13 (April 1970}, p, 238.

. P. G. Sorenson, “Interprocess Communication in Real-Time Systems,” Proc.
Fourth acM Symp. on Operating System Principles (October 1973), pp. 1-7.

. Digital Equipment Corporation, ppp-i 1145 Processor Handbook. 1971.

. W. A, Wull, “nypra — A Kerne! Protection System,” Proc. AFIPs NcC, 43 (1974),
pp. 998-999.

Lt W N

MERT OPERATING SYSTEM 2085

11.

. D. 1. Frailey, “psos — A Skeletal, Real-Time, Minicomputer Operating System,”

Software — Practice and Experience, § {1975}, pp. 5-18.

. K. C. Sevcik, 1. W. Atwood, M. §. Grushcow, R. C. Hold, J. J. Horning, and D.

Tsichritzis, “Project SUE as a Learning Experience,” Proc. AFIPS Ficc, 41, Pt. 1
(1972), pp. 331-339.

. D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T.]., this

issue, pp. 1905-1929.

. 8. R. Bourne, “unix Time-Sharing System: The unix Shell,” B.S.T.J., this issue,

10.

pp. 1971-1990.

D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “uniX Time-
Sharing System: The C Programming Language,” B.S.T.J., this issue, pp.
1991-2019.

§. C. Johnson and D. M. Ritchie, “unix Time-Sharing System: Portability of C
Programs and the UNIX System,” B.S.T.J., this issue, pp. 2021-2048.

2086 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

Copyright ® 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, Na. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

UNIX on a Microprocessor

By H. LYCKLAMA
{Manuscript received December 5, 1977)

The decrease in the cost of computer hardware, brought about by the
advent of the microprocessor and inexpensive solid-siate memory, has
brought the personal computer system to reality. Although the cost of
software development shows no sign of decreasing soon, the fact that a
large amount of software has been developed for the UNIX™ time-sharing
system in the high-level language, C, makes nuch of this software port-
able to another processor with rather limited hardware in comparison. A
single-user UNIX system has been developed for the DEC LSi-11 micro-
processor using 20K words of primary memory and floppy disks for sec-
ondary storage. By preserving the user-system interface of the UNIX sys-
tem, it is possible to run almost all of the standard UNIX languages and
subsystems on this single-user version of the UNIX system.

A background process as well as foreground processes may be run.
The file system is "UNIX-like,” but has provisions for dealing with con-
tiguous files. Subroutines have been written 1o interface to the file sys-
tem on the floppy disks. Asynchronous read/write routines are also avail-
able to the user.

The LSI-UNIX system (LSX) has appeal as a stand-alone system for
dedicated applications, as well as many potential uses as an intelligent
terminal system.

. INTRODUCTION

The UNIX operating system! has enjoyed wide acceptance as a
powerful, general-purpose time-sharing system. It supports a large

* UNIX is a trademark of Bell Laboratories.

2087

variety of languages and subsystems. It runs on the Digital Equip-
ment Corporation PDP-11/40, 11/45, and 11/70 computers, all 16-
bit word machines that have a memory management unit which
makes multiprogramming easy to support. The UNIX system is writ-
ten in the system programming language, C.2 in which most user
programs and subsystems are written. Other languages and subsys-
tems supported include Basic, Fortran, Snobol, TMG, and Yacc (a
compiler-compiler). The file system is a general hierarchical struc-
ture supporting device independence.

With the advent of the DEC LsI-11 microprocessor3 it has become
desirable to transport to this machine as much as possible of the
software developed for the UNIX system. One of the biggest prob-
lems faced is the lack of a memory management unit, which limits
the total address space of both system and user to 28K words. The
challenge, then, is to reduce the 20K-word, original UNIX operating
system to 8K words and yet maintain a useful operating system.
This limits the number of device drivers as well as the system func-
tions that can be supported. The secondary storage used is floppy
disks (diskettes). The operating system was written in the C
language and provides most of the capabilities of the standard UNIX
operating system. The system occupies 8K words in the lower part
of memory, leaving up to 20K words for a user program. This
configuration permits most of the UNIX user programs to run on the
LsI-11 microcomputer. The operating system (LSX) allows a back-
ground process as well as foreground processes.

The fact that a minimum system can be configured for about
$6000 makes the LSX system an attractive stand-alone system for
dedicated applications such as control of special hardware. The sys-
tem also has appeal as an intelligent terminal and for applications
that require a secure and private data base. In fact, this is a personal
computer system with almost all the functions of the standard UNIX
time-sharing system.

This paper describes some of the objectives of the LSX system as
well as some of its more important features. Its capabilities are
compared with the powerful UNIX time-sharing system which runs
on the PDP-11/40, 11/45, and 11/70 computers,* where appropriate.
A summary and some thoughts on future directions are also
presented.

Il. WHY UNIX ON A MICROPROCESSOR?

Why develop a microprocessor-based UNIX system? The

2088 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

increasing trend to microprocessors and the proliferation of intelli-
gent terminals make it desirable to harness the UNIX software into
an inexpensive microcomputer and give the user a personal com-
puter system. A number of factors must be considered in doing
this:

(i} Cost of hardware.
(i} Cost of software.
(iii} UNIX software base.
(iv) Size of system.

The hardware costs of a computer system have come down
dramatically over the last few years (even over the past few
months). This trend is likely to continue in the foreseeable future.
Microprocessors on a chip are a reality. The cost of primary
memory (e.g.. dynamic MOS memory) is decreasing rapidly as 4-kb
chips are being replaced by 16-kb chips. A large amount of exper-
tise exists in PDP-11 hardware interfacing. The similarity of the Q-
bus of the LsI-11 microcomputer to the UNIBUS of other members of
the pDP-11 family of computers makes this expertise available.

Software development costs continue to increase, since the
development of new software is so labor-intensive, making it
difficult to estimate the cost of writing a particular software applica-
tion program. Until automatic program writing techniques become
better understood and used, this trend is not likely to be turned
around any time soon. Thus it becomes imperative to take advan-
tage of as much software that has already been written as possible,
including the tremendous amount of software that has already been
written to run under the UNIX operating system. The operating sys-
tem developed for the Ls1-11 microcomputer supports most of the
UNIX user programs which run under UNIX time-sharing. even
though LsX is a single-user system. Thus most of the software for
the system is already available, minimizing the cost of software
development.

With the advent of some powerful microprocessors, the sizes of
some computer systems have shrunk correspondingly. Small secon-
dary storage units (floppy disks) are also becoming increasingly
popular. In particular, DEC is marketing the LSI-11 microcomputer,
which is a 16-bit word machine with an instruction set compatible
with the ppp-11 family of computers. It is conceivable that in the
next five years or so the power of a minicomputer system will be
available in a microcomputer. It will become possible to allow a
user to have a dedicated microcomputer rather than a part of a

UNIX ON A MICROPROCESSOR 2088

minicomputer time-sharing system. LSX is a step in this direction.
It will give the user a cost-effective interactive and powerful com-
puter system with a known response time ‘b given requests, since
the machine is not time-shared. A dedicated, one-user system can
be made available to guarantee “instantaneous” response to requests
of a user. There are no unpredictable time-sharing delays to deal
with. The system has applications in areas where security is impor-
tant. A user can gain access to the system only in the room in
which the system resides. It is thus possible to limit access to a
user’s data.

Local text-editing and text-processing features are now available.
Other features can be added easily. Interfaces to special [/O equip-
ment on the Q-bus for dedicated experiments can be added. The
user then has direct access to this equipment. Using floppy disks as
secondary storage gives the user a rather small data base. A link to
a larger machine can provide access to a larger data base. Interfaces
such as the DLVI11 (serial interface) and the DRv-11 (paraliel inter-
face) can provide access to other computers.

One of the main benefits of using the UNIX software base is that
the C compiler is available for writing application programs in the
structured high-level language, C. The use of the shell command
interpreter’ is also a great asset. A general hierarchical file system is
available.

The LSX system has two main areas of application:

(/) Control of dedicated experiments.
(i) Intelligent terminals.

As a. dedicated experiment controller, one can interface special 1/0
equipment to the LSI-11 Q-bus and both support and control the
experiment with the same 15X system. The applications as an intel-
ligent terminal are many-fold:

(i} Development system.

{(ii} General text-processing applications.

(iii} Form editor.

{iv) Two-dimensional cursor-controlled text editor.

lll. HARDWARE CONSIDERATIONS-

The hardware required to build a useful LSX system is minimal.
The absolute minimum pieces required are:

(i} 1sI-11 microcomputer (with 4K memory).

2080 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(i)
Giii)
(iv)
()
(vi)
(vif)
(wiif)

TERMINAL DRIVES

LSI-11 16K DLV-11 FLOPPY
MICRO COMPUTER DYNAMIC SERIAL 0ISK
(4K MOS) MOS MEMORY INTERFACE CONTRCOLLER
Q-BUS
SPECIAL DLv-11 DAV-11
1o SERIAL PARALLEL
INTERFACE INTERFACE INTERFACE

V CONNECTION TO

PDP-11/45
COMPUTER

Fig. 1—LsI-11 configuration.

16K memory (e.g.. dynamic MOS).
EIS chip (extended instruction set).
Floppy disk controller with one drive.
DLV-11 serial interface.

Terminal with serial interface.

Power supply.
Cabinet,

A more flexible and powerful system is shown in Fig. 1. An actual

total system is shown in Fig. 2,
The instruction set of the LSI-11 microcomputer is compatible

Fig. 2—Ls1-11 system.

UNIX ON A MICROPROCESSOR 2091

Table |

Controller DEC BTL AED
Sector size (bytes) 128 512 512
Sectors per track 26 8 16

Number of tracks 77 77 77
Total capacity (bytes) 256256 315392 630784
DMA capability (y/n) no yes yes

Max. transfer rate 6656 24576 49152

with that of the members of the pDP-11 family of computers with
the exception of 10 instructions. The missing instructions are pro-
vided by means of the EIS chip. These special instructions may be
generated by high-level compilers, and it is advantageous not to
have to emulate these instructions on the microprocessor. The
instructions include the multiply. divide, and multiple shift instruc-
tions.

A floppy disk controller with up to 4 drives is shown in Fig. 1. At
present, only a few controllers for floppy disks interface to the
LsI-11 Q-bus. The typical rotation time of the floppy disks is 360
pm. t.e., six times per second. All floppy disks have 77 tracks;
however, the number of sectors and the size of sectors is variable.
The comparative data for the various floppy diskettes are shown in
Table I. The maximum transfer rate is quoted in bytes per second.
The outside vendor (AED Systems*) supplies dual-density drives for
an increase in storage capacity. The DEC drives are IBM-compatible
and have less storage capacity. We have chosen to build our own
floppy disk controller for some special Bell System requirements.$
The advantages of DMA (direct memory access) capabilities are obvi-
ous in regard to ease of programming and transfer rate. If 1BM for-
mat compatibility is important, the throughput and capacity of the
system are somewhat diminished.

At least one serial interface card is required to provide a terminal
for the user of the system. Provided the terminal uses the standard
RS232c interface, most terminals are suitable. For quick editing
capabilities, CRT terminals are appropriate. For hard copy, either the
commeon TTY33 or other terminals which run at higher baud rates
may be more suitable.

The choice of memory depends on the importance of system size
and whether power-fail capabilities are important. Core memory is,
of course, nonvolatile, but it takes more logic boards and more

* Advanced Electronics Design, Inc., 440 Potrero Ave., Sunnyvale, California, 94086.

2092 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

space and is therefore more expensive than dynamic MOS memory.
Dynamic M0OS memory does not take as much space, is less expen-
sive, and takes less power, but its contents are volatile in case of
power dips. Memory boards up to 16K words in size are available*
for the LsI-11 microprocessor at a very reasonable price. The
memory costs are likely to continue decreasing in the foreseeable
future.

Another serial or parallel interface is often useful for connection
to a larger machine with a large data base and a complete program
development and support system. It is, of course, necessary to use
such a connection to bootstrap up a system on the L$I-11 microcom-
puter. The central machine in this case is used to store all source
for the Lsx system and to compile the binary object programs
required.

The system hardware is flexible enough so that, if necessary, a
bus extender may be used to interface special devices to the Q-bus.
This provides the ability to add special-purpose hardware that can
now be controlled by the LsX system. In Section XI we describe a
TV raster scan terminal that was built for editing and graphics appli-
cations. Other systems have interfaced special signal-processing
equipment to the Q-bus. As DEC provides more of the interfaces to
standard I/0O peripherals, the applications will no doubt expand.

IV. LS8X FILE SYSTEM

The hierarchical file structure of the UNIX system is maintained.
The system distinguishes between ordinary files. directories, and
special files. Device independence is inherent in the system.
Mounted file systems are also supported. Each file system contains
its own i-list of i-nodes which contain the file maps. Each i-node
containg the size, number of links and the block numbers in the file.
Space on disk is divided into 512-byte blocks. In contrast with the
UNIX file system, two types of ordinary files are allowed. The
“UNIX-type™ file i-node contains the block numbers that make up a
file. If the file is larger than eight blocks, the numbers in the i-node
are pointers to the blocks which contain the block numbers. This
requires two accesses to the disk for random file access. LsX recog-
nizes another type of file, the contiguous file, in which the i-node
contains a starting block number and the number of consecutive
blocks in the file. This requires only one disk access for a random

* Maonolithic Memory Systems, Inc.

UNIX ON A MICROPROCESSOR 2093

access to a file, which is important for slow access devices such as
fioppy disks. Two special commands are provided for dealing with
contiguous files; one for allocating space for a file and a second one
for moving a file into a contiguous area. The layout of the disk is
also crucial for optimum response to commands. By locating direc-
tories and i-nodes close to each other, file access is measurably
improved over a random distribution on disk.

There is no read/write protection on files. File protection is
strictly the user’s responsibility. The user is essentially given
super-user permissions. Only execute and directory protection is
given on files. Group IDs are not implemented. File system space is
limited to the capacity of the diskette in use (616 blocks for the Bell
Laboratories controller).

V. LSX SYSTEM FEATURES

The LSX operating system is written in the C language., and, as
such, bears a strong resemblance to the mulli-user UNIX system
developed for the PDP-11/40, 11/45, and 11/70 computers. The
total system occupies 8K words of memory and has room for only
six system buffers. Because the C compiler itself requires up to 12K
words of user address space, it is possible to run the C compiler
using only 20K words of total memory. It is possible to increase the
system size if more capabilities are required in the operating system
sirice the total memory space available to the system and user is
actually 28K words. More system buffers could be provided in the
system. If the system is kept to 8K words, a 20K-word user pro-
gram could be run. However, this requires more swap space, which
is at a premium.

The system is a single-user system with only one process running
at any one time. A process is defined as the execution of an image
contained in a file. However, a process may fork up to two levels
deep, giving rise to a total of three active foreground processes.
The last process forked will run to completion first. More fore-
ground processes can be run, but this requires more swap space on
the diskette used for this purpose.

The command interpreter, the shell, is identical to that used in
the UNIX system. The file name given as a command is sought in
the current directory. If not found, /bin/ is prepended and the /bin
directory searched. The /bin directory contains all of the commands
generally used. Standard input, output, and diagnostic files are

2094 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 18978

supported. Redirection of standard I/0 is possible. Shell “scripts”
are also executable by the command interpreter.

“Pipes” are not supported in the system, but pseudo-pipes are
supported in the command shell. Pipes provide an interprocess
communication channel in the UNIX time-sharing system. These
pseudo-pipes are accomplished by expanding the shell syntax | to
> . pf; < _pf. In other words, a temporary file is used to store the
intermediate data passed between the commands. Providing that
sufficient disk space exists, the pipe implementation is transparent to
the user.

During initialization, the system automatically mounts a user file
system on a second diskette if it is desired. The mount and
unmount commands are not available to the user. Thus, a reboot
of the system is necessary to mount a new user diskette. The sys-
tem diskette is normally configured with swap space and temporary
file space. User programs and files may reside on the system
diskette if a user diskette is not mounted.

The size of memory available and the lack of memory protection
(i.e.. memory segmentation unit) have put some restrictions on the
capabilities of the LsX operating system. However these are not
severe in the single-user environment in which the system is run.
Profiling is not provided in the system. Timing information only
becomes available if a clock interrupt is provided on the LSI-11
event line at 60 times per second. Only one character device driver
is allowed at present, as well as only one block device driver. No
physical 1/0 is provided for. There is also no read-ahead on file
1/0. Only six system buffers are provided, and the buffering algo-
rithm is much simpler than in the UNIX system. I[nteractive debug-
ging is not possible, but the planting of break-point traps and post-
mortem debugging of a core image is possible. All user programs
must be relocated to begin execution at 8K in memory. This
required modifications to the UNIX link edit (Id} and debugger (db}
programs. Most other differences between the LSX and the UNIX
systems are not perceived by the user.

VI. BACKGROUND PROCESS

It is possible to run a background process on LSX while running a
number of foreground processes to get some concurrency out of the
system. The background process is run only while the current fore-
ground process is in an input wait state. Two new system calls were
added to LSX., bground and kill, to enable the user to run and

UNIX ON A MICROPROCESSOR 2085

remove a background process. Only one background process is
allowed to run and it is not allowed to fork another “child™ process;
however, it may execute another program. The background process
either may be compute-bound or may perform some 1/O functions,
such as outputting to a hard-copy terminal. When the background
process is compute-bound, it may take up to 2 seconds to respond to
a foreground user’s interactive command.

VIl. STAND-ALONE ROUTINES

Under LSX. it is possible to run a dedicated program (<20K
words) in real time using all the conveniences of the UNIX system
calls to communicate with the file system. For programs that
require more than 20K words of memory or that require more flexi-
bility than provided by the LSX system, a set of subroutines provide
the user with a UNIX-compatible interface to the file system without
using the LSX system calls. A user is given more control over the
program. Disk [1/0 issued by the user is buffered using the read-
ahead and write-behind features of the standard UNIX system. A
much greater number of system buffers are provided than is possible
in the LSX system. Eight standard file system interface routines are
provided. The arguments required for each routine and the calling
sequence are identical to those required by the UNIX system C-
interface routines. These include: read, write, open, close, creat,
sync, unlink, and seek. Three unique routines: saread, sawrite,
and statio are provided to enable the user to do asynchronous /0O
directly into buffers in the user’s area rather than into system
buffers. These additional routines allow a user to start multiple 1/0
operations to and from multiple files concurrently, do some compu-
tation, and then wait for completion of a particular outstanding 1/0
transfer at some later time. To provide real-time response in appli-
cations that require it, contiguous files may be created by means of
an salloc routine. The size of the file is specified in blocks. Once
created, the file may be grown by means of the sextend routine. A
load program under LSX enables the user to load a stand-alone pro-
gram that must start execution at location 0 in memory.

VIil. A PROGRAM DEVELOPMENT SYSTEM

One system disk has been configured to contain a fairly complete
program development system. The development programs include:

2098 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the editor,

the assembiler,

the C compiler,

the link editor,

the debugger,

the command interpreter,
and the dump program,

as well as a number of libraries that contain frequently used routines
for use by the link editor. It is thus possible to compile, run, and
debug application programs completely on-line without access to a
larger machine. In a typical application, the contents of the system
disk remain quite stable, whereas all user programs are maintained
on a permanently mounted user diskette. It is possible to run
minimal systems with only one diskette. Although, because of the
lack of protection, it is possible to crash the system, in practice, the
use of the high-level language C minimizes the number of fatal bugs
that actually occur, since the stack frame and program counter are
quite well controlled.

In our particular installation, it is often convenient to use the
Satellite Processor System’ to aid in the running and debugging of
new user programs. This is possible since programs running in the
Lsi-11 satellite microcomputer behave as if they are running on the
central machine with access to its file system. This emulates the
environment on LSX quite closely. Thus a program may be com-
piled on a central machine supporting the C compiler, run on the
LsI-11 microcomputer, and debugged. When the program has been
completely debugged, it is possible to load the program onto the
floppy file system using the stand-alone routines described previ-
ously and the satellite processor system. This program may then be
run under LSX.

IX. TEXT PROCESSING SYSTEM

Another area of application for the LSX system is as a personal
computer system for text processing. Files may be prepared using
the editor and run off using the UNIX nroff command with a hard-
copy device. This system disk includes programs such as:

ed editor
cat output ASCII files

UNIX ON A MICROPROCESSOR 2097

pr print ASCIl files

od octal dump files

roff formatter

nroff formatter

negn mathematical equation formatter

The file transfer program referred to in the previous section enables
one to transfer files to or from a machine with a larger data base.
Users’ files may be maintained on their personal mounted diskettes.
If a hard-copy device is attached to the computer as well as to the
user’s interactive terminal, hard-copy output can be obtained using a
background process while another file is edited in the foreground.

X. SUPPORT OF AN LSX SYSTEM

The limited secondary storage capacity available to LsX on floppy
disks prevents the mounting of all the system source and user pro-
gram source code simultaneously. Thus one must be selective as to
which programs are mounted at any one time. If a great deal of pro-
gram development is desirable on LsX, it is often desirable to have a
connection to a host machine on which the source code for the
application programs can be maintained and compiled. Two means
are available to do this. One is to use the Satellite Processor Sys-
tem’ and the stand-alone routines described in a previous section as
a connection program. This enables one to transfer files (including
complete file systems) between the host machine and the satellite
processor. The SPS must exist on the host machine and the satellite
processor must not be too far distant from the host machine.

A second means of providing support for LsX software is to use a
serial line connection such as the DLv-11 between the host machine
and the LSI-11 processor. The connection may be either dedicated
or dial-up. [t requires just five programs, three on the LSX system
and two on the host processor. The three programs on LSX include
a program to set up the connection to the host machine, i.e., login
as a user to the host machine, a program to transfer files from the
host to LSX, and a third program to transfer files from LSX to the
host. On the host machine, the programs include one to transfer a
file from the host to the LSX system and vice versa. Complete file
systems as well as individual files may be transferred. Checksums
are included to ensure error-free transmission.

2098 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

XIl. LSX SYSTEM USES

The LSX system has been put to a number of innovative uses at
Bell Laboratories. These include projects that use it as a research
tool, for exploratory development in intelligent terminals, and for
software support for dedicated applications. LSX is well-suited for
the control of an intelligent terminal. As an example. some dual-
ported memory has been interfaced to the LsI-11 Q-bus. One port
allows direct reading and writing of this memory by the LsI-11 CPu.
The other port is used by a microcontroller to display characters on
a TV raster scan screen. This enables one to change screen contents
“instantaneousiy.” The terminal is suitable for either a two-
dimensional text editor or form entry applications. LSX is being
used as a vehicle for investigating the future uses of programmable
terminals in an office environment for word processing applications.

Other LSX installations are being used to control dedicated
hardware configurations. One of the most exciting and in fact the
original application for LSX was the software support system for a
digital sound synthesizer system. Here the contiguous files sup-
ported by LSX are necessary for the real-time application, written as
a stand-alone program consisting of a complex multiprocessing sys-
tem controlling about 100 processes.3 The system is capable of
existing as a completely stand-alone system and of providing pro-
gram support on itself.

Xll. SUMMARY

The LSX system is currently being used for research in intelligent
terminals and in stand-alone dedicated systems. Plans exist to use
this system for further research in other areas of Bell Laboratories.
Hard-copy features have yet to be incorporated into the system in a
clean fashion. Currently, our system is connected to a larger
machine using the Satellite Processor System. More general connec-
tions to larger machines or possibly to a network of machines has
vet to be investigated. The LSX system also has potential uses in
multiterminal or cluster control terminal systems where multitasking
features are important. These application areas have only been
looked at superficially and warrant further investigation.

As a development system, LSX functions quite well. The response
to most programs is only a factor of four or so slower than on the
conventional minicomputers, due mainly to the slow secondary
storage devices used by LsX. Optimization of file storage allocation

UNIX ON A MICROPROCESSOR 2099

on secondary should somewhat improve the response. For instance,
the placement of directories close to the i-nodes has improved
throughput significantly. The placement of the system swap area
needs more investigation as to its effect on throughput.

The advent of large memory boards (64K words) will require the
installation of memory mapping to take full advantage of this large
address space. This will enable the running of multiple processes
without the need for swapping a process out of primary memory and
should also improve the response of the system and increase the
number of uses to which it can be put.

There is a necessary loss of some functions in the LSX system
because of the size of the memory address space available on the
LsI-11 computer. However. as a single user system, most functions
are still available to the user. As an intelligent terminal system, a
microprocessor with all of the UNIX software available is indeed
quite a desirable “intelligent” terminal.

XiN. ACKNOWLEDGMENTS

The author is indebted to H. G. Alles for designing and building
both the initial PERTEC floppy disk controller and the novel TV ter-
minal. These two pieces of hardware have provided much of the
motivation for doing the LSX system in the first place and for doing
research in the area of intelligent terminals in particular. Many of
the application and support programs described here were written by
Eugene W. Stark. John S. Thompson wrote a floppy disk driver for
the AED floppy disk controller to facilitate bringing up the LSX sys-
tem on these disks. The author is grateful to J. C. Swartzwelder and
D. R. Weller for their efforts in putting together the first LSI-11 sys-
tem. M. H. Bradley wrote the initial program to connect the LSX
system to a host machine.

REFERENCES

1. D. M. Ritchie and K. Thompson, “The uvix Time-Sharing System,” B.S.T.J., this
issue, pp. 1905-1929,

D. M. Ritchie, 8. C. Johnson, M. E. Lesk, and B. W, Kernighan, “unix Time-
?ggll'i%lgystem: The C Programming Language.,” B.S.T.J., this issue, pp.

pEc Ls1-11 Processor Handbook, 1976,

. K. Thompson and D. M. Ritchie, umx Programmer’s Manual, Bell Laboratories,

May 1975. Sixth Edition

. 8. R. Bourne, “UNIX Time-Sharing System: The unix Shell,” B.S.T.J., this issue,
pp. 1971-1990.

H. G. Alles, private communication.

[ad

& o omw

2100 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

7. H. Lycklama and C. Christensen. “Unix Time-Sharing System: A Minicomputer
Satellite Processor System,” B.S.T.I., this issue, pp. 2103-2113.

3
8. D. L. Bayer. “Real-Time Software for Digital Music Synthesizer.” Proc. Second
Intl. Conf. of Computer Music, San Diego {October 1977).

UNIX ON A MICROPROCESSOR 2101

PR

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Val. 57, Na. 6, July-August 1978
Pritted in U. S A.

UNIX Time-Sharing System:

A Minicomputer Satellite Processor
System

By H. LYCKLAMA and C. CHRISTENSEN
{Manuscript received December 5, 1977)

A software support system for a network of minicomputers and micro-
computers is described. A powerful time-sharing system on a central
computer controls the loading, running, debugging, and dumping of pro-
grams in the satellite processors. The Sfundamental concept involved in
supporting these satellite processors is the extension of the ceniral proces-
sor operating system to each saiellire processor. Software interfaces per-
mit @ program in the satclfite processor to behave as [f it were running in
the cenmral processor. Thus, the satellite processor has access 10 the cen-
tral processor's I/Q devices and file systen, yet has no resident operating
systen. The implementation of this system was considerably simplified by
the fact that all processors, central and satellire, belong 1o the same fam-
ily of computers (DEC PDP-11 series). We describe some examples of
how the SPS is used in various projects al Bell Laboratories.

I. INTRODUCTION

The satellite processor system {SPS) and the concept of a satellite
processor have evolved over the years at Bell Laboratories to pro-
vide software support for the ever-increasing number of mini- and
microcomputer systems being used for dedicated applications. The
salellite processor concept allows the advantages of a large comput-
ing system to be extended to many atiached miniprocessors, giving
each satellite processor (SP) access to the central processor’s {cp)

2103

file system, software tools, and peripherals while retaining the real-
time response and flexibility of a dedicated minicomputer. Since the
cost of the peripherals for a minicomputer often far exceeds the cost
of its CPU and memory, the CP provides a pool of peripherals for the
support of many SP’s. Although each SP requires a hardware link to
a CP, the idea of a salellite processor is basically a software concept.
It allows a user program, which might normatlly run in the CP using
its operating system, 10 run in an SP with no resident operating sys-
tem.

This paper describes the hardware and software required for SPS,
the concepts involved in 5pS, and how these concepts can be
extended to provide even more powerful tools for the SP. Several
examples of the use of the SPS in Bell Laboratories projects are
described.

Il. HARDWARE CONFIGURATION

The particular SpS hardware configuration described here consists
of a DEC PDP-11/45 central computer! with a number of satellite
processors attached using a serial 1/0 loop? as one of the communi-
cation links between the SP’s and the CP (see Fig. 1). Other satellite
processors are attached using DR11¢, DL11, and DHI1 devices (see
below). Each SP is a member.of the DEC PDP-11 family of comput-
ers, with its own set of special I/0 peripherals and at least 4K 16-bit
words of memory. A local contlo! terminal is optional. The central
computer has 112K 16-bit words of main memory and 96 megabytes
of on-line storage. Eight dial-up lines and various other terminals
are available for interaction with the UNIX* time-sharing system,3
supported by the MERT operating system.* Magnetic tape is avail-
able as one peripheral device for off-line storage of files. Access (o
line printers, punched card equipment, and hard-copy graphics
devices is available through the connection to the central computing
facility for Bell Laboratories.

. COMMUNICATION LINKS

A number of satellite processor systems have been installed in
various hardware configurations using both the UNIX and the MERT
operatling systems. The devices supported as communication links
include the serial I/O loop mentioned above, the DL11 asynchronous

* UNIX is a trademark of Bell Laboratories.

2104 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

DIAL-UP
CONNECTIONS

96
MEGABYTES
OF
SECONDARY

LINK TO
COMPUTER
CENTER

SATELLITE
PROCESSOR TERMINAL

SATELLITE LSI-11
TERMINAL PROCESSOR =
F
Lsi—11 (BEU DHT1 g
CENTRAL [
PROCESSOR I_ LSI-11 —=
DR11c, PDP-11/45 .
L3I-11 CONTROLLER)
— Ls1-11 [—
SERIAL

1/Q LOOP

il

POP- PDP—
1110 11720
PDP— POP-
11740 1110
PDP— LsI—11 l

11/10 \/

Fig. 1 —Satellite processor hardware configuration.

line interface unit and the DHI1 multipiexed asynchronous line
interface unit. These are all essentially characier-at-a-time transfer
devices. The asynchronous line units may be run up to a baud rate
of 9600. The most efficient communication link is the UNIBUS link
device, which is a direct memory access device permitting a transfer
rate of 100,000 words per second. However, the device limits the
inter-processor distance to 150 feet. Another efficient link is the
DRIIC device, which permits word-at-a-time transfers. 1is actual
transfer rate is limited by software (o about 10,000 words per
second.

The choice of communication link is based on the distance
between the SP and the CP, data transfer rate fequirements, and the
cost of the link. The 1/0 loop allows an SP (o be placed at least
1000 feet from the CP and supports a data transfer rate of 3000
words per second. Thus, an SP with 16K words of memory can be
loaded in 5 seconds.

MINICOMPUTER SPS 2105

NORMAL COMPUTER] USER
SYSTEM PROGRAM
| SYSTEM |SATELLITE
CALL PROGCESSOR
USER I
PROGAAM INTERFACE
I SOFTWARE
SYSTEM
CALL '
OPERATING |
SYSTEM |
INTERFACE
| PROGAAM
CENTRAL
l PROCESSOR
] OPERATING
SYSTEM

Fig. 2—Satellite processor concepl.

IV. SP SOFTWARE

The satellite processor concept extends an operating system on a
CP to multiple Sps. In an operating system such as the UNIX system,
the interface or communication between a user program and the sys-
tem is by means of the system call These UNIX system calls manipu-
late the cP file system and other resources managed by the operating
system. In the SP concept, the interface between a user program
running in the SP and the operating system which is being emulated
by the central processor is also the system call (see Fig. 2}, excepl
that here the extension is achieved by rrapping the system call in the
5P and passing the system call and its arguments to the CP. A pro-
cess running in the CP on behalf of the SP then executes the system
call and passes the results back to the sP. Control is then returned
to the SP user program. Each SP executes a program locally, has
access to the CP's file system and peripherals by means of the sys-
tem call, and yet does not contain an operating system. This tech-
nique of partitioning a program at the UNIX system call level pro-
vides a clean, well-defined communication interface beiween the
Processors.

The local SP software required to support SPS consists of two small

2106 THE BELL SYSTEM TECHNIGAL JOURNAL, JULY-AUGUST 1978

functional modules, a communication package and a trap handler.
The communication package transfers data between the SP and the
CP on behalf of the program running in the SP. The trap handler
catches processor traps (including system call traps) within the SP on
behaif of the SP user program and determines whether to handle
them locally or transmit the trap to the CP via the communication
package.

4.1 SP communication package

The satellite processor communication package resides in the SP at
the top of available memory and occupies less than 300 words.
Actual size depends on the communication link used. The com-
munication package normally resides in read-only memory. The
functional requirements of the communication package include CP-SP
link communication protocol, interpreting and executing CP com-
mands, and sending trap conditions to the CP. The basic element of
communication over a CP-SP link is an 8-bit byte, and messages from
the CP to the SP are variable length strings of bytes containing com-
mands and data. The SP communication package is able to distin-
guish commands from data by scanning for a special prefix byte.
This prefix byte is followed by one of five command code bytes.
Following is a list of the five commands and their arguments, which
can be sent from the CP to the SP.

read memory address nbytes
write memory address nbytes
transfer address

return

terminal i/o

Each argument is two bytes (16 bits) and is sent twice, the second
byte pair being the twos complement of the first to ensure error free
transmission. Also, the data following the read memory and write
memory commands have a checksum associated with them to
guarantee proper transmission. If within the byte stream of data, a
data byte corresponds to the command prefix, it is followed by an
escape character to avoid treatment as a command.

This communication package is sufficient to enable the user at an
SP terminal to communicate with the CP as a standard login terminal.
When the SP communication package is started, it comes up in ter-
minal i/o mode, passing all characters from the local SP terminal to

MINICOMPUTER SPS 2107

the CP over the communication link. In the reverse direction, all cp
output is printed on the local Sp terminal. The five communication
commands listed above are only invoked when a program is down-
loaded and executed in the sP. The read memory and write
memaory commands are used to read and write the memory of the
SP, respectively, starting at the specified address, address and con-
tinuing for nbytes bytes. The transfer command is used to force
the SP to transfer to a specified address in the SP program, normally
the beginning of the program. The return command is used to
return control back to the sp at the address saved on the SP stack.
When the CP wishes to write on or read from the local s terminal,
the sp is given the terminal i/o command.

4.2 SP trap handler

The second functional module which must be loaded into the SP is
the trap handler. It is prepended to each program to be executed in
the sp. This is the front-end package which must be link-edited
with the object code produced by a UNIX compiler. The trap handler
catches all sP traps and passes those that it cannot handle to the cp
via the communication package. The trap handler determines the
trap type (and, in the case of system call or SYS traps, the type of
sYs trap). If the trap is an illegal instruction trap, the handler wilt
determine if it has the capability to emulate this instruction, or
whether it must be passed to the cP. If the trap is to be passed to
the cp, a five-word communication area in the sP is filled with the
state of the sp at the time of the trap. The communication package
causes an interrupt to occur in the CP, thereby alerting the CP pro-
cess running on behalf of the Sp. The SP trap state is then read from
the communication area and, upon processing this trap in the CP,
the CP process passes argument(s) back in the communication area
of the sp. Control is then returned to the sp.

The trap handler also monitors the sP program counter and local
5p terminal 60 times a second using the 60-Hz clock in the satellite
processor. This permits profiling a program running in the SP and
controlling it from the local SP terminal. Upon detecting either a
rubout character (delete) or a control backslash character (quit)
from the local sp terminal, a signal is passed back to the CP, causing
the SP program to abort if these signals are not handled by the sp
process. At the same time a check is made to see if there have been
any delete or quit signals from the cP process. If the spP has no
local terminal, setting a -1 in the switch register will turn control

2108 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table |

I[nstruction pee-11/20 eppp-11/45
mul {multiply) 830 us 38 us
div (divide 1200 7.5
ash (shift) 660 1.5
ashe (double shift) 720 1.5
xor {exclusive or) 440 0.85
sob (sub. and branch} 400 0.85
sxt (sign extend) 400 0.85

over to the CP process. If an undebugged program in the SP halts,
restarting it at location 2 will force an iot trap to the system trap
handler, which in turn causes the memory of the $p to be dumped
into a core file on the CP.

The trap handler consists of up to four separate submodules:

(i} Trap vectors, communication area, trap routines (400 words)
(ii} pDP-11/45 instruction emulation package (500 words)
(iii} Floating point instruction emulation package (1000 words)
{iv} Start-up routine.

Of these, the first is always required. The illegal instruction emula-
tion packages are loaded from a library only if required. The start-
up routine depends on the options specified by the user of the pro-
gram to be loaded.

Estimates have been made of the execution time of the various
emulation routines. The times are approximate and assume a PDP-
11/20 sp, a pDP-11/45 P, and an [/0 loop connecting them.

The running times for the PDP-11/45 instructions emulated in the
Sp are shown in Table I. If execution time is important in a SP pro-
gram, these instructions should be avoided. In C programs, these
instructions are generated not only when explicit multiplies, divides,
and multiple shifts are written, but also when referencing a structure
in an array of structures. Using a pDP-11/35 or pDP-11/40 with a
fixed point arithmetic unit as an sp would reduce the execution time
for these instructions.

The average times to emulate floating point instructions in the SP
are shown in Table II. For applications which require large

Table 1l
Instruction pDP-11/20 pDp-11/45
add 2100 us 4 (s
sub 2300 4
mul 3500 6
div 5600 8

MINICOMPUTER SPS 2109

quantities of CPU time running Fortran programs, it is possible to
use a PDP-11/45 CPU with a floating point unit as an SP.

V. CP EMULATION OF TRAPS

During the time that the SP is executing a program, the associated
CP process is roadblocked waiting for a trap signal from the SP.
Upon receiving one, the CP process reads the SP trap state from the
communication area, decodes the trap, and emulates it, returning
results and/or errors. A check is also made to see if a signal (quit,
delete, etc.) has been received.

Of the more than 40 UNIX system calls’ emulated, about 30 are
handled by simply passing the appropriate arguments from the SP to
the cP process and invoking the corresponding system call in the CP.
The other 10 system calls require more elaborate treatment. Their
emulation is discussed in more detail here.

To emulate the signal system call, a table of signal registers is set
aside in the CP process, one for each possible signal handled by the
UNIX system. No system call is made by the CP process to handle
this trap code. When a signal is received from the SP, this table is
consulted to determine the appropriate action to take for the CP pro-
cess. The SP program may itself catch the signals. If a signal is to
cause a core dump, the entire SP memory is dumped into a CP core
file with a header block suitable for the UNIX debugger.

The stty and gtty system calls are really not applicable to the Sp
process, but if one is executed, it will be applied to the CP process’s
control channel, The prof system call is emulated by transferring
the four arguments to the profile buffer in the SP memory. Upon
detecting nonzero entries here during each clock tick (60 times per
second), the SP will collect statistics on the SP program’s program
counter. Upon completion of the SP program, data will be written
out on the mon.out file. The sbrk system call causes the CP process
to write out zeros in the SP memory to expand the bss area avail-
able to the program. An exit system call changes the communica-
tion mode between the sp and the CP back to the original terminal
operation mode. It then causes the CP process to exit, giving the
reason for the termination of the SP program.

The three most time-consuming system calls to emulate are read,
write, and exec. The exec system call involves loading the execut-
able file into the SP memory, zeroing out the data area in the SP
memory, and setting up the arguments on the stack in the SP. A
system read call involves reading from the appropriate file and then

2110 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

transfering this data into the sp buffer. The system write call is just
the reverse procedure.

The fork, wait and pipe system call emulations have not been
written at this time and are trapped if executed in a SP. One possi-
ble means of emulating the fork call would be to copy an image of
the parent process in one SP into another SP, permitting the piping
of data between two SPs.

VI. TYPICAL SESSION

Supporting a mini-PDP-11 as an SP on a CP running the UNIX Sys-
tem combines all the advantages of the UNIX system programming
support with the real-time response and economic advantage of a
stand-alone pPDP-11. In a typical SP programming session, a pro-
grammer sitting at the local SP terminal logs into the CP and uses the
UNIX editor to update an SP program source file. It could be assem-
bly language or one of the higher-leve! languages available on the
UNIX system (C, Lil,* Fortran). Assume a C source file prog.c.
When the edit is complete, the following commands are issued:

% cc —cC prog.c
% ldm —me prog.o
% 111 a.out

¢c -¢ compiles the C program prog.c in the CP and produces the
object file prog.o. Idm -me combines the sp trap handier (-m) and
instruction emulator (e) with the C object file prog.o, generating an
a.out object file. 11l loads the a.out file into the SP, and starts it
with the SP terminal as the standard input and output. The pro-
grammer then observes the results of running the program or forces
a core dump, and uses the UNIX debugger to examine it. If any pro-
gram changes are required, the preceding steps are repeated. During
this typical sp support sequence, the programmer initiates the edit-
ing, compiling, loading, running, and debugging of a program on a
mini-pDP-11 without leaving its control terminal. It is the speed and
convenience of this procedure along with the availability of high-
level languages that make the satellite processor concept a powerful
mini-PDP-11 support tool.

* Lil is a little implementation language for the poe-11.

MINICOMPUTER SPS 2111

Vil. USES

Some SP’s may be disconnected from the CP when their software
has been developed and the final product is a “stand-alone” system.
Other sps may always have a CP connection; they supply the real-
time response unavailable from the CP, combined with access to the
CP’s software base, file system, peripherals, and connection to the
computing community.

One use of the SPS system is discussed in a paper in this issue.b
Here LSI-11 microcomputers connected to a CP by means of a DHI11
device are used in a materials research laboratory, remote from the
CP, to coliect data, control apparatus and machinery, and analyze the
results.

One of the more interesting applications of the satellite processor
system 1s its use to support a digital sound synthesizer system. The
hardware consists of an LSI-11 processor with 24K words of
memory, two floppy disks, a TV raster scan terminal, and much
more special digital circuitry interfaced to the LSi-11 Q-bus to pro-
vide the control of the DSSS. The heart of the software consists of a
multi-tasking system designed to handle about 100 processes.” The
basic program directs the machine’s output devices such as oscilla-
tors, filters, multipliers, and a reverberation unit. The data for the
program are stored and reirieved from the floppy disk. The SPS is
used to download programs from the CP and produce core dumps of
the LSI-11 memory back at the CP for debugging purposes. The cP
is also used for program development.

Vill. SUMMARY

The advantages of the SPS system are the use of higher level
languages, ease of program developmeni and maintenance, use of
debugging tools, interactive turn-around, use of a common pool of
peripherals, access to files on the CP secondary storage, and connec-
tion to central computing facilities. The SP requires a minimum
amount of memory since it does not contain an operating system or
other supporting software. One additional advantage is that any SP
may be located in a remote laboratory location.

The ability to extend an operating system to an SP may be used
for purposes other than supporting software development for the Sp.
A new operating system environment may be defined by rewriting
the CP process which acts on behalf of the SP program. In this way a
new set of “systemn calls” emulating another operating system may

2112 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

be extended to an SP. $Ps other than PDP-11s may also be supported
by writing an appropriate SP communication package and CP inter-
face package. Cross compilers would be reguired on the CP to sup-
port software development for these non-pDP-11 processors.

Another avenue of research which has not yet been explored with
the spS concept is that of distributed computing. With a powerful
SP, e.g. PDP-11/45, a compute-bound program could run on the sP
rather than on the CP itself, thereby transferring the real-time load
from the cp to the Sp. The CP would only be called upon to load the
program initially and to satisfy certain file requests. The total com-
puting power of the system would increase greatly without duplicat-
ing the entire computer system.

REFERENCES

1. pec pop-11 Processor Handbook. 1975,

2. D. R. Weller, “A Loop Communication System for 1/0 10 a Small Multi-User
Computer,” Proc. Ieeg Intl, Computer Soc. Conf., Boston (September 1971).

3. D. M. Ritchie and K. Thompson, “The uNix Time-Sharing System,” B.S.T.J., this
issue, pp. 1905-1929.

4. H. Lycklama and D. L. Bayer, “UNIX Time-Sharing System: The MERT Operating
System,™ B.S.T.J., this issue, pp. 2049-2086,

5. K. Thompson and D. M. Ritchie, unvix Programmer’s Manual, Bell Laboratories,
May 1975, sixth edition.

6. B. C. Wonsiewicz, A. R. Storm, and J. D. Sieber, “unix Time-Sharing System:

Microcomputer Control of Apparatus, Machinery, and Experiments,” B.S.T.J,,
this issue, pp. 2209-2232.

7. D. L. Bayer, “Real-Time Software for Digital Music Synthesizer,” Proc. Second
Intl. Conf. of Computer Music, San Diego (October 1977).

MINICOMPUTER SPS 2113

Copyright ® 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. §7, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

Document Preparation

By B. W. KERNIGHAN, M. E. LESK, and J. F. OSSANNA, Jr.
(Manuscript received January 6, 1978)

The UNIX* operating system provides programs for sophisticated docu-
ment preparation within the framework of a general-purpose operating
system. The document preparation software includes a text editor, pro-
grammable text formatters, macro-definition packages Jor a variety of
page layout styles, special processors for mathematical expressions and
for tabular material, and numerous supporting programs, such as a
speliing-mistake detector. In practice, this collection of facilities has pro-
ven 1o be easy fo learn and use, even by secretaries, Iypists, and other
nonspecialists. Experiments have shown thar preparation of complicated
documents is about rwice as fast as on other systems. There are many
benefits to using a general-purpose operating system instead of specialized
stand-alone terminals or a system dedicated to “word processing.” On the
UNIX system, these include an excellent software development Jacility and
the ability fo share computing and data resources among a community of
users.

i. INTRODUCTION

We use the term document preparation 10 mean the creation,
modification, and display of textual material, such as manuals,
reports, papers, and books. “Document preparation”™ seems prefer-
able to “text processing” (which is not particularly precise), or

* UNIX is a trademark of Bell Laboratories.

2115

“word processing” (which has acquired connotations of stand-alone
specialized terminals).

Computer-aided document preparation offers some clear benefits.
Text need be entered only once. Thereafter, only those portions
that need to be changed require editing;, the remaining material is
left alone. This is a significant labor reduction for any document
that must be modified or maintained over a period of time.

There are many other important benefits. Special languiges can
be used to facilitate the entry of complex material such as tables and
mathematical expressions. The style or format of a document can
be decoupled from its content; the only format-control information
that need be embedded is that describing textual categories and
boundaries, such as titles, section headings, paragraphs, and the like.
Alternative document styles are then possible through the use of
different formatting programs and different interpretations applied to
the embedded format control. Furthermore, programs can examine
text to detect spelling mistakes, compare versions of documents,
and prepare indexes automatically. Machine-generated data can be
incorporated in documents; excerpts from documents can be fed to
programs without transcription.

A variety of comparatively elegant output devices has become
available, supplementing the traditional typewriters, terminals, and
line printers; this has led to a much increased interest in automated
document preparation. Automated systems are no longer limited to
straight text composed in unattractive constant-width characters, but
can produce a full range of printed documents in attractive fonts and
page layouts. The major example of an output device with
significant capabilities is the phototypesetter, which produces very
high quality printed output on photographic paper or film. Other
devices include typewriter-tike terminals capable of high-resolution
motion, dot matrix printer-plotters, microfilm recorders, and xero-
graphic printers.

Further advantages accrue when document preparation is done on
a general-purpose computer system, One is the opportune sharing
of programs and data bases among users; programs originally written
for some other purpose may be useful to the document preparer.
Having a broad range of users, from typists to scientists, on the
same system leads to an unusual degree of cooperation in the
preparation of documents.

The UNIX document preparation software includes an easy-to-
learn-and-use text editor, ed, which is the tool for creating and
modifying any kind of text, from documerits to data to programs.

2116 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

Two programmable text formatters, nroff and troff, provide pagina-
ted formatting and allow unusual freedom and flexibility in deter-
mining the style of documents. Augmented by various macro-
definition packages, nroff and troff can be programmed to provide
footnote processing, multiple-column output, column-length balanc-
ing, and automatic figure placement. An equation preprocessor,
eqn, translates a simple language for describing mathematical
expressions into formatter input, a table-construction preprocessor,
tbl, provides an analogous facility for input of data and text that is
to be arranged into tables.

We then mention other programs useful to the document preparer
and summarizeé some comparisons between manual methods of
document preparation and methods using UNIX document prepara-
tion software.

Il. TEXT EDITING

The UNIX text editor ed is the basic tool for entering text and for
subsequent modifications. We will not try to give a complete
description of ed here; details may be found in Ref. 1. Rather, we
will try to mention those attributes that are most interesting and
unusual.

The editor is not specialized to any particular kind of text; it is
used for programs, data, and documents alike. It is based on editing
commands such as “print” and “substitute,” rather than on special
function keys, and provides convenient facilities for selecting the
text lines to be operated on and altering their contents. Since it
does not use special function keys or cursor controls, it does not
require a particular kind of input device. Several alternative editors
are available that make use of terminals with cursors, but these have
been much less widely used, for most purposes, it is fair to say that
there is only one editor.

A text editor is often the primary interface between a user and the
system, and the program with which most user time is spent.
Accordingly, an editor has to be easy to use, and efficient of the
user’s time—editing commands have to “flow off the fingertips.” In
accordance with this principle, ed is quite terse. Each editor com-
mand is a single letter, e.g., p for “print,” and d for “delete.” Most
commands may be preceded by zero, one, or two “line addresses” 10
affect, respectively, the “current line” {i.e., the line most recently
referenced), the addressed line, or the range of contiguous lines
between and including the pair of addresses. There are also

DOCUMENT PREFARATION 2117

shorthands for the current line and the last line of the file. Lines
may be addressed by line number, but more common usage is to
indicate the position of a line relative to the current or last line.
Arithmetic expressions involving line numbers are also permitted:

—5,+5p
prints from five lines before the current line to five lines after, while
$—5%p

prints the last six lines. In both cases, the current line becomes the
last line printed, so that subsequent editing operations may begin

from there.

Most often, the lines to be affected are specified not by line
number, but by “context,” that is, by naming some text pattern that
occurs in them. The “line address”

fabc/

refers to the first line after the current line that contains the pattern
abe. This line address standing by itself will find and print the next
line that contains abc, while

/abc/d

finds it and deletes it. Context searches begin with the line immedi-
ately after the current line, and wrap around from the end of the file
to the beginning if necessary. It is also possible to scan the file in
the reverse direction by enclosing the pattern in question marks:
?abe? finds the previous abc.

The substitute command s can replace any pattern by any literal
string of characters in any group of lines. The command

s/ofrmat/format/
changes ofrmat to format on the current line, while
1,$s/ofrmat/format/

changes it everywhere. In both searches and substitute commands,
the patternt // is an abbreviation for the most recently used pattern,
and & stands for the most recently matched text. Both can be used
to avoid repetitive typing. The “undo” command u undoes the
most recent substitution.

Text can be added before or after any line, and any group of con-
tiguous lines may be replaced by new lines. “Cut and paste™ opera-
tions are also possible—any group of lines may be either moved or

2118 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

copied elsewhere. Individual lines may be split or coalesced; text
within a line may be rearranged.

The editor does not work on a file directly, but on a copy. Any
file may be read into the working text at any point; any contiguous
lines may be written out to any file. And any UNIX command may
be executed from within the editor, even another instance of the
editor.

So far, we have described the basic editor features: this is all that
the beginning user needs to know. The editor caters to a wide
variety of users, however, and has many features for more sophisti-
cated operations. Patterns are not restricted to literal character
strings, but may include several “metacharacters” that specify char-
acter classes, repetition of characters or classes, the beginning or end
of a line, and so on. For example, the pattern

/~[0-9)/

searches for the next line that begins with a digit.

Any set of editing commands may be done under control of a
“global” command: the editing commands are performed starting at
each line that matches a pattern specified in the global command.
As the simplest example,

g/interesting/p

prints all lines that contain interesting.

Finally, given the UNIX software for input-output redirection, it is
easy to make a “script” of editing commands in advance, then run it
on a sequence of files.

The basic pattern-searching and editing capabilities of ed have
been co-opted into other, more specialized programs as well. The
program grep (“global regular expression print™) prints all input
lines that contain a specified pattern; this program is particularly use-
ful for finding the location of an item in a set of files, or for culling
items from larger inputs. The program sed is a variant of ed that
performs a set of editing operations on each line of an input stream
of arbitrary length.

. TROFF AND NROFF — BASIC TEXT FORMATTERS

Once a user has entered a document into the file system, it can be
formatted and printed by troff and nroff.2 These are programmable
text formatters that accommodate a wide variety of formatting tasks
by providing flexible fundamental tools rather than specific features.

DOCUMENT PREPARATICN 2118

troff supports phototypesetting today on a Graphic Systems photo-
typesetter and potentially on other typesetters, while nroff produces
formatted output for a variety of terminals and line printers, using
the full capabilities and resolution of each. troff and nroff are highly
compatible with each other, and it is almost always possible to
prepare input acceptable to both. Except for device description
tables, device-oriented routines, and a relatively small amount of
scattered conditionally-compiled code, the source code for these pro-
grams is aiso identical. The device tables permit nroff to understand
the entire typesetter character set, printing non-ASCIl characters
where avaitable or where they can be constructed (by overstriking)
on a particular device. The remaining discussion in this section
focuses on troff, the behavior of nroff is identical within device
capability.

troff is intended to permit unusual freedom in user-designed doc-
ument styles, while being relatively easy to use for basic formatting
tasks. The fundamental operations that troff provides are sufficient
for programming complicated formatting tasks: For example, foot-
note processing, multi-column layout with column balancing, and
automatic figure placement are not built-in operations, but are pro-
grammed in troff macros when needed. To program in troff, the
user writes a set of macro instructions, which expand short abbrevia-
tions into the longer command sequences needed for each format-
ting step. troff may also be instructed to invoke certain macros
automatically at particular page positions, such as at the top and near
the bottom of the page, other commands are invoked by the user by
placing mactro calls at paragraphs, section headings, and other
relevant boundaries. Once a macro packagé has been written for
some particular style of document, users preparing a document in
that style need only provide their text with macro calls at the
appropriate points.

The more complex formatting tasks require relatively complex
macro packages designed by competent programmers. A well-
designed package can be easy to use, and usually permits convenient
choice between several related styles. At the simple end of the style
spectrum, a newspaper style galley may not require any embedded
format control except paragraphing. A simple, paginated style might
use only three macros, defining the nature of the top-of-page mar-
gin, the bottom-of-page margin, and paragraph breaks.

Input consists of rext lines, which are destined to be printed, inter-
spersed with controf lines, which set parameters or otherwise control
subsequent processing. Control lines begin with a control

2120 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

character—normally a period—followed by a one- or two-character
name that specifies either a buili-in reguest or the substitution of a
user-defined macre in place of the control line. This form is remin-
iscent of earlier text formatters.3-4 A typical request is

.pl 8.5i

which sets the page length to 8.5 inches. Various functions may be
introduced anywhere in the input by means of an escape character,
normally \; examples are \fB, which causes a change to bold font,
and \1’3i’, which draws a three-inch line.

There are some eighty built-in control-line requests that imple-
ment the fundamental operations, allow the setting of parameters,
and otherwise affect format control. In addition, some forty escape
sequences may appear anywhere to specify certain characters, set
indicators, and introduce various functions. Automatic services
available include filling and adjusting of text, hyphenation with user
control over exceptions, user-settable left, right, and centering tabs,
and output line numbering.

User-settable parameters include font, point size, page length,
page number, line spacing, line length, indent, and tabs. Functions
are available for building brackets, overstriking, drawing vertical and
horizontal lines, generating vertical and horizontal motions, and cal-
culating the width of a string. In addition to the parameters that are
defined by the formatter, users may define their own parameters,
stored in troff variables called “number registers” (for numeric
parameters) and “strings™ (for character data). These variables may
be used in arithmetic and logical expressions to set parameters or to
control the invocation of macros or requests.

A macro is a user-named set of lines of arbitrary text and format
control information. It is interpolated into the input stream either
by invoking it by name, or by specifying that it is to be invoked
when a particular vertical position on a page is reached. Arguments
may be passed to a macro invoked by name. A string is a named
string of characters that may be interpolated at any point. Macros
and strings may be created, redefined, appended to, renamed, and
removed. Macros may be nested to an arbitrary depth, limited only
by the memory available.

Processed text may be diverted into a macro instead of being out-
put, for footnote collection or to determine the horizontal or vertical
size of a block of text before final placement on a page. When
reread, diverted text retains its character fonts and sizes and overall
dimensions.

OOCUMENT PREPARATION 2121

A trap mechanism provides for action when certain conditions
occur. The conditions are position on the current output page,
length of a diversion, and an input line count. A macro associated
with a vertical page position is automatically invoked when a line of
output falls on or after the trap position. For example, reaching a
specified place near the bottom of the page could invoke a macro
that describes the bottom margin area. Similarly, a vertical position
trap may be specified for diverted output. An input line count trap
causes a macro to be invoked after reading a specified number of
input text lines.

A variety of parameters are available to the user in predefined
number registers. In addition, users may define their own registers.
Except for certain predefined read-only registers, a number register
can be read, written, automatically incremented or decremented, and
interpolated into the input int a variety of formats. One common
use of user-defined registers is to automatically number sections,
paragraphs, lines, etc. A number register may be used any time
numerical input is expected or desired. In most circumstarces,
numerical input may have appended scale factors representing
inches, points, ems, etc. Numerical input may be provided by
expressions inveolving a variety of arithmetic and logical operators.

A mechanism is provided for conditionally accepting a group of
lings as input. The conditions that may be tested are the value of a
numerical expression, the equality of two strings, and the truth of
certain built-in conditions.

Certain of the parameters that control text processing constitute
an environment, which may be switched by the user. It is con-
venient; ‘for example, to process footnotes in a separate environ-
ment from the main text. Environment parameters include line
length, line spacing, indent, character size, and the like. In addi-
tion, any collected but not yet output lines or words are a part of the
environment. Parameters that are global and not switched with the
environment include, for example, page length, page position, and
macro definitions.

It is not possible to give any substantial examples of troff macro
definitions, but we will sketch a few to indicate the general style of
use.

The simplest example is to provide pagination—an extra Space at
the top and bottom of each page. Two macros are usually
defined—a header macro containing the top-of-page text and spac-
ings, and a fooler macro containing the bottom-of-page text and
spacings. A trap must be placed at vertical position zero to cause

2122 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the header macro to be invoked and a second trap must be placed at
the destred distance from the bottom for the footer. Simple macros
merely providing space for the margins could be defined as follows.

de hd \" begin header definition

sp 1i \" space 1 inch

. \" end of header definition

de fo \" footer

‘bp \" space to beginning of next page

.. \" end of footer definition

wh 0 hd \" set trap to invoke hd when at top of page
wh —1i fo \" set trap to invoke fo 1 inch from hottom

The sequence \" introduces a troff comment.

The production of multi-column pages requires somewhat more
complicated macros. The basic idea is that the header macro records
the vertical position of the column tops in a register and initializes a
column counter. The footer macro is invoked at the bottom of each
column. Normally it increments the column counter, increments
the page offset by the column width plus the column separation, and
generates a reverse vertical motion to the top of the next column
(the place recorded by the header macro). After the last column,
however, the page offset is restored and the desired bottom margin
functions occur.

Footnote processing is complicated; only the general strategy will
be summarized here. A pair of macros is defined that allows the
user to indicate the beginning and end of the footnote text. The
footnote-start macro begins a diversion that appends to a macro in
which footnotes are being collected and changes to the footnote
environment. The footnote-end macro terminates the diversion,
resets the environment, and moves the footer trap up the page an
amount equal to the size of the diverted footnote text. The footer
eventually invokes and then removes the macro containing the accu-
mulated footnotes and resets its own trap position. Footnotes that
don’t fit have their overflow rediverted and are treated as the begin-
ning footnote on the next page.

The use of preprocessors to convert special input languages for
equations and tables into troff input means that many documents
reach troff containing large amounts of program-generated input.
For example, a simple equation might produce dozens of troff input
lines and require many string definitions, redefinitions, and detailed
numerical computations for proper character positioning. The troff
string that finally contains the equation contains many font and size

DOCUMENT PREPARATION 2123

changes and local motion, and so can become very long. All of this
demands substantial string storage, efficient storage allocation, larger
text buffers than would otherwise be necessary, and the accommo-
dation of large numbers of strings and number registers. Input gen-
erated by programs instead of people severely tests program robust-
ness.

IV. MACROS—DECOUPLING CONTENT AND FORMAT

Although troff provides full control over typesetter (or typewriter)
features, few users exercise this control directly. Just as program-
mers have learned to use problem-criented languages rather than
assembly languages, it has proven better for people who prepare
documents to describe them in terms of content, rather than speci-
fying point sizes, fonts, etc., in a typesetter-oriented way. This is
done by avoiding the detailed commands of troff, and instead
embedding in the text only macro commands that expand into troff
commands to implement a desired format.

For example, the title of a document might be prefaced by

TL

which would expand, for this journal, into “Helvetica Bold font, 14
peint type, centered, at top of new page, preceded by copyright
notice,” but for other journals might be “Times Roman, left
adjusted, preceded by a one-inch space,” or whatever is desired. In
a similar way, there would be macros for other common features of
a document, such as author’s name, abstract, section, paragraph,
and footnote.

Macro packages have been prepared for a variety of document
styles. Locally, these include formal and informal internal
memoranda; technical reports for external distribution; the Associa-
tion for Computing Machinery journals, some American Institute of
Physics journals, and The Bell System Technical Journal. All these
macro packages recognize standard macro names for titles, para-
graphs, and other document features. Thus, the same input can be
made to appear in many different forms, without changing it.

An important advantage of this system is the ease with which new
users learn document preparation. It is necessary only to learn the
correct way to describe document content and boundaries, not how
to control the typesetter at a detailed level. A typist can easily learn
the dozen or so most common macros in a few minutes, and

2124 THE BELL SYSTEM TECGHNICGAL JOURNAL, JULY-AUGUST 1978

another dozen as needed. This entire article uses only about 30 dis-
tinct macro calls, rather more than the norm.

Although nroff is used for typewriter-like output, and troff for
photocomposition, they accept exactly the same input language, and
thus hide details of particular devices from users. Macro packages
also provide a degree of independence: they permit a uniformity of
input, so that input documenits look the same regardless of the out-
put format or device they eventually appear in. This means that to
find the title of a document, for example, it is not necessary to
know what format is being used to print it. Finally, macros also
enforce a uniformity of output. Since each output format is defined
in appearance by the macro package that generates it, all documents
prepared in that format will look the same.

V. EQN—-A PREPROCESSOR FOR MATHEMATICAL
EXPRESSIONS

Much of the work of Bell Laboratories is described in technical
reports and papers coniaining significant amounts of mathematics.
Mathematical material is difficult 1o type and expensive to typeset by
traditional methods. Because of positioning requirements and the
multiplicity of characters, sizes, and fonts, it is not feasible for a
human to typeset mathematics directly with troff commands. troff is
richly endowed with the facilities needed for preparing mathematical
expressions, such as arbitrary horizontal and vertical motions, line-
drawing, size changing, etc., but it is not easy to use these facilities
directly because of the difficulty of deciding the degree of size
change and motion suitable in every circumstance. For this reason,
a language for describing mathematical expressions was designed;
this language is translated into troff by a program called eqn.

An important requirement is that the language should be easy to
learn and use by people who don’t know mathematics, computing,
or typesetting. This implies that normal mathematical conventions
about operator precedence, parentheses, and the like cannot be
used, for otherwise the user would have to understand what was
being typed. Further, there should be very few rules, keywords,
special symbols, and few exceptions to the rules. Finally, standard
actions should take place automatically—size and font changes
should follow normal mathematical usage without! user intervention.

When a document is typed, mathematical expressions are entered
as part of the text, but are marked by user-settable delimiters. eqn
reads this input and passes through untouched those parts that are

DOCUMENT PREPARATION 2125

not mathematics. At the same time, it converts the mathematical
parts into the necessary troff commands. Thus normal usage is a
pipeline of the form

eqn fites | troft

The language is defined by a Yacc’ grammar to insure regularity
and ease of change. We will not describe the eqn language in
detail; see Refs. 6 and 7. Nonetheless, it is worth showing a few
examples to give a feeling for the language. Throughout this section
we write expressions exactly as they are typed by the user, except
that we omit the delimiters that mark the beginning and end of each

expression.
eqn is an oral (or perhaps aural) language. To produce
2m [sin(w)ar
one writes

2 pi int sin { omega tdt

Each “word” in the input is looked up in a table. In this case, pi
and omega are recognized as Greek letters, int is a special charac-
ter, and sin is to be placed in Roman font instead of ttalic, following
conventional practice. Parentheses and digits are also made Roman,
and spacing is adjusted around characters to give a more pleasing
appeararnce.

Subscripts, superscripts, fractions, radicals, and the like are intro-
duced by words used as operators:

is produced by
x sup 2 over a sup 2 ~=~— sqgrt {pz sup 2 + gz + r}

The operator sub produces a subscript in the same manner as sup
produces a superscript. Braces { and } are used to group items that
are to be treated as a unit, such as all the terms to go under the rad-
ical. eqn input is free-form, so blanks and new lines can be used
freely to make the input easier to type, read, and subsequently edit.
The tilde — is used to force extra space into the output when
needed.

More complicated expressions are built from the same piece parts,
and perhaps a few new ones. For example,

2126 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1878

erf (z) —=—~ 2 over sqrt pi int sub 0 sup z
e sup —t sup 2 dt

produces
z
erf(z) = ~j—;ﬁ) e dt
while
zeta (s) ~—~=- sum from k=1 to inf
k sup —s ——— (Re ~ s > 1)
is
5y =Yk (Res>1)
k=1
and

lim from {x —> pi /2] (tan —~x) sup {sin~2x} ~=—~ 1
yields

lim (tan x)}" ¥ =1
X

In addition, there are built-up brackets, braces, etc., matrices;
diacritical marks such as dots and bars; font and size changes to
override defaults; facilities for lining up equations; and macro sub-
stitution.

Because not all potential users have access 1o a typesetter, there is
also a compatible version of eqn that interfaces to nroff for produc-
ing output on terminals capable of half-line motions and printing
special characters. The quality of terminal output leaves something
to be desired, but it is often adequate for proofreading and some
internal uses.

The eqn language has proven to be easy to learn and use; at the
present time, well over a hundred typists and secretaries use it at
Bell Laboratories. Most are either self-taught, or have learned it as
part of a course in UNIX system procedures taught by other secre-
taries and typists. Empirically, mathematically trained users
{mathematicians, physicists, etc.) can learn enough eqn in a few
minutes to begin useful work, for its syntax and rules are very simi-
lar 1o the way that mathematics is actually spoken. Persons not
trained in mathematics take longer to get started, because the
language is less familiar, but it is still true that an hour or two of
instruction is enough to begin doing useful work.

DOCUMENT PREPARATION 2127

By intent, eqn deces not know very much about typesetting; in
general, it lets troff do as much of the job as possible, including all
character-width computations. In this way, eqn can be relatively
independent of the particular character set, and even of the
typesetter being used.

The basic design decision to make a separate language and pro-
gram distinct from troff does have some drawbacks, because it is not
easy for egn to make a decision based on the way that troff will pro-
duce the output. The programs are very loosely coupled. Nonethe-
less, these drawbacks seem unimportant compared to the benefits of
having a language that is easily mastered, and a program that is
separate from the main typesetting program. Changes in one pro-
gram generally do not affect the other; both programs are smaller
than they would be if they were combined. And, of course if one
doesn’t use eqn, there is no cost, since troff doesn’t contain any
code for it.

Vi. TBL—A PREPROCESSOR FOR TABLES

Tables also present typographic difficulties. The primary difficulty
is deciding where columns should be placed to accommodate the
range of widths of the various table entries. It is even harder to
arrange for various lines or boxes to be drawn within the table in a
suitable way. tbl® is a table construction program that is also an
independent preprocessor, quite analogous to eqn.

tbl simplifies entering tabular data, which may be tedious to type
or may be generated by a program, by separating the table format
from its contents. Each table specification contains three parts: a set
of global options affecting the whole table, such as “center” or
“box™; then a set of commands describing the format of each line of
the table; and finally the table data. Each specification describes the
alignment of the fields on a line, so that the description

LARR

indicates a line with three fields, one left adjusted and two right
adjusted. Other kinds of fields are “C” (centered) and “N” (numer-
ical adjustment), with “S™ (spanned) used to continue a field across
more than one column. For example,

cCSs8Ss
LNN

describes a table whose first line is a centered heading spanning

2128 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

three columns; the three columns are left-adjusted, numerically
adjusted, and numerically adjusted respectively. If there are more
lines of data than of specifications (the normal case), the last
specification applies to all remaining data lines.

A sample table in the format above might be

Position of Major Cities
Tokyo 35°45' N 139°46'E
New York 40°43'N 74°01' W
London 51°30'N 0°10' W
Singapore 1917 N 103°51'E

The input to produce the above table, with tab characters shown by
the symbol @, is as follows:

TS

center, hox;

CSS

L N N

Position of Major Cities
Tokyo®35°45' ND139°46"' E
New York@40°43' NO74°01' W
London®51°30' NDO*10' W
Singapore®1°17° N©®103°51' E
TE

tbl also provides facilities for including blocks of text within a
table. A block of text may contain any normal typesetting com-
mands, and may be adjusted and filled as usual. tbl will arrange for
adequate space to be left for it and will position it correctly. For
example, the table on the next page uses text blocks, line and box
drawing, size and font changes, and the facility for centering vertical
placement of the headings (compare the heading of column 3 with
that of columns 1 and 2). Note that there is no difficulty with equa-
tions in tables. In fact, there is sometimes a choice between writing
a matrix with the matrix commands of eqn or making a table of
equations. Typically, the typist picks whichever program is more
familiar.

The tbl program writes troff code as output, just as eqn does.
This code computes the width of each table entry, decides where to
place the columns and lines separating them, and prints the table.
tbl itself does not understand typesetting: it does not know the

DOCUMENT PREPARATION 2129

Functional Systems

Functlon Function .
Number Type Solution
1 LINEAR Systems of equations all of which are linear
can be solved by Graussian elimination.
2 POLYNOMIAL Depending on the initial guess, Newton's

£
method (ﬁ+]=f,-——r) will often converge

£
on such systems.
3 ALGEBRAIC The program ZoNE by 1. L. Blue will solve
systems for which an accurate initial guess
is not known.

widths of characters, and may (in the case of equations in tables)
have no knowledge of the height, either. However, it writes troff
output that computes these sizes, and adjusts the table accordingly.
Thus tables can be printed on any device and in any font without
additional work.

Most of the comments about using eqn apply to tbl as well: it is
easy to learn and is in wide use at Bell Laboratories. Since it is a
program separate from troff, it need not be learned, used, or paid
for if no tables are present. Comparatively few users need to know
all of the tools: typically, the workload in one area may be
mathematical, in another area statistical and tabular, and in another
only ordinary text.

Vil. OTHER SUPPORTING SOFTWARE

One advantage of doing document preparation in a general-
purpose compuling environment instead of with a specialized: word
processing system is that programs not directly related to document
preparation may often be used to make the job easier. In this sec-
tion, we discuss some examples from our experience.

One of the most tedious tasks in document preparation is detec-
tion of spelling and typographical errors. Existing dala bases origi-
nally obtained for other purposes are used by a program called
spell, which detects potential spelling mistakes. Machine-readable
dictionaries (more precisely, word lists) have been available for
some time. COurs was originally used for testing hyphenation algo-
rithms and for checking voice synthesizer programs. It was realized,
however, that a rudimentary program for detecting spelling mistakes

2130 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

could be made simply by comparing each word in a document with
each word in the dictionary; any word in the document but not in
the dictionary is a potential misspelling.

The first program for this approach was developed in a few
minutes by combining existing UNIX utilities for sorting, comparing,
etc. This was sufficiently promising that additional small programs
were written to handle inflected forms like plurals and past partici-
ples. The resulting program was quite useful, for it provided a good
match of computer capabilities to human ones. The machine can
reduce a very large document to a tractable list of suspicious words
that a human can rapidly scan to detect the genuine errors.

Naturally, normal output from spell contains not only legitimate
errors, but a fair amount of technical jargon and some proper
names. The next step is to use that output to refine the dictionary.
In fact, we have carried this step to its logical conclusion, by creat-
ing a brand new dictionary that contains only words culled from doc-
uments. This new dictionary is about one-third the size of the origi-
nal, and produces rather better results.

One of the more interesting peripheral devices supported by the
UNIX system is an inexpensive voice synthesizer. The program
speak!? uses this synthesizer to pronounce arbitrary text. Speaking
text has proven especially handy for proofreading tedious data like
lists of numbers: the machine speaks the numbers, while a person
reads a list in parallel.

Another example of a borrowed program is diff,11 which compares
two inputs and prepares a list of all the places in which they differ.
Normally, diff is used for comparing two versions of a program, as a
check on the changes that have been made. But of course it can
also be used on two versions of a document as well. In fact, the diff
output can be captured and used to produce a set of troff commands
that will print the new version with marginal bars indicating the
places where the document has been changed.

We have already mentioned two major preprocessors for troff and
nroff, for mathematics and tables. The same approach, of writing a
separate program instead of cluttering up an existing one, has been
applied to postprocessors as well. Typically, these postprocessors are
concerned with matching troff or nroff output with the characteris-
tics of some different output device. One example is a processor
called col that converts nroff output containing reverse motions
(e.g., multi-column output) into page images suitable for printing on
devices incapable of reverse motion. Another example is a program
that converts troff output intended for a phototypesetter into a form

DOCUMENT PREPARATION 2131

suitable for display on the screen of a Tektronix 4014 terminal (or
analogous graphic devices). This permits a view of the formatted
document without actually printing it; this is especially convenient
for checking page layout.

One final area worth mentioning concerns the problem of training
new users. Since there seems to be no substitute for hands-on
experience, a program called learn was written to walk new users
through sets of lessons.!2 Lesson scripts are available for funda-
mentals of UNIX file handling commands, the editor ed, and eqn, as
well as for topics not related to document preparation. learn has
been heavily used in the courses taught by secretaries and typists for
their colleagues.

Vill. EXPERIENCE

UNIX document preparation software has now been used for
several years within Bell Laboratories, with many secretaries and
typists in technical organizations routinely preparing technical
memoranda and papers. Several books!3-19 printed with this
software have been published directly from camera-ready copy.
Technical articles have been prepared in camera-ready form for
periodicals ranging from the Journal of the ACM to Science.

The longest-running use of the UNIX system for document
preparation is in the Bell Laboratories Legal and Patent Division,
where patent applications have been prepared on a UNIX system for
nearly seven years. Computer program documentation has been
produced for several years by clerks using UNIX facilities at the Busi-
ness Information Systems Programs Area of Bell Laboratories.
More recently, the “word processing” centers at Bell Laboratories
have begun significant use of the UNIX system because of its ability
to handle complicated material effectively.

It can be difficult to evaluate the cost-effectiveness of computer-
aided versus manual documentation preparation. We took advan-
tage of the interest of the American Physical Society in the UNIX
system to make a systematic comparison of costs of their traditional
typewriter composition and a UNIX document preparation system.
Five manuscripts submitted to Physical Review Letters were typeset
at Bell Laboratories, using the programs described above to handle
the text, equations, tables, and special layout of the journal.

On the basis of these experiments, it appears that computerized
typesetting of difficult material is substantially cheaper than type-
writer composition. The primary cost of page composition is

2132 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

keyboarding, and the aids provided by UNIX software to facilitate
input of complex mathematical and tabular material reduce input
time significantly. Typing and correcting articles on the UNIX sys-
tem, with an experienced typist, was between 1.5 and 3.3 times as
fast as typewriter composition. Qver the trial set of manuscripts,
input using the UNIX system was 2.4 times as fast. These documents
were extremely complicated, with many difficult equations. Typists
at Physical Review Letters averaged less than four pages per day,
whereas our (admittedly very proficient) UNIX system typist could
type a page in 30 minutes. We estimate a very substantial saving in
production cost for camera-ready pages using a UNIX system instead
of conventional composition or typewriting. A typical UNIX system
for photocomposition of Physical Review style pages might produce
200 finished pages per day on a capital investment of about
$200,000 and with 20 typists.

The advantage of the UNIX system is greatest when mathematics
and tables abound in a document. For example, it is a great time
saving that keys need never be changed because all equation input is
ordinary text. The automatic page layout saves time when multipie
drafts, versions, or editions of a document are needed. Further
details of this comparison can be found in Ref. 20.

IX. CONCLUSIONS

It is important to note that these document preparation programs
are simply application programs running on a general-purpose sys-
tem. Any document preparation user can exercise any command
whenever desired.

As mentioned above, a surprising number of the programming
utilities are directly or indirectly useful in document preparation.
For example, the program that makes cross-reference listings of
computer programs is largely identical with the one that makes
keyword-in-context indexes of natural language text. It is also easy
to use the programming facilities to generate small utilities, such as
one which checks the consistency of equation usage.

Besides applying programming utilities to text processing, we also
apply document processors to programs and numerical data. Statisti-
cal data are often extracted from program output and inserted into
documents. Computer programs are often printed in papers and
books; because the programs are tested and typeset from the same
source file, transcription errors are eliminated.

In addition to the technical advantages of having programming

DOCUMENT PREPARATION 2133

and word processing on the same machine, there can be personnel
advantages. The fact that secretaries and typists work on the same
system as the authors allows both to share the document preparation
job. A document may be typed originally by a secretary, with tHe
author doing the corrections; in the case of an author who types
rough drafts but doesn’t like editing after proofreading, the reverse
may occur. We have observed the full spectrum, from authors who
give hand-written material to typists in the traditional manner to
those who compose at the terminal and do their own typesetting,
Most authors, however, seem to operate somewhere in between,

The UNIX system provides a convenient and cost-effective
environment for document preparation. A first-class program
development facility encourages the development of good tools.
The ability to use preprocessors has enabled us to write separate
languages for mathematics, tables, and several other formatting
tasks. The separate programs are easier to learn than if they were all
jammed into one package, and are vastly easier to maintain as well.
And since all of this takes place within a general-purpose operating
system, programs and data can be used as convenient, whether they
are intended for document preparation or not.

REFERENCES

1. K. Thompson and D. M. Ritchie, unix Programmer's Manual, Bell Laboratories,
May 1975. See ED ().

2. 1. F. Ossanna, “NROFF/TROFF User's Manual,” Comp. Sci. Tech. Rep. No. 54, Bell
Laboratories (April 1977).

3. 1. E. Saltzer, “Runoff,” in The Compatible Time-Sharing System, ed. P. A. Crisman,
Cambridge, Mass.: M1T. Press (1965).

4. M. D. Mcliroy, “The Roff Text Formatter,” Computer Center Report MHcc-005,
Bell Laboratories (Qctober 1972).

5. 8. C. Iohnson, “Yacc — Yet Another Compiler-Compiler,” Comp. Sci. Tech. Rep.
No. 32, Bell Laboratories (Tuly 1975).

6. B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,”
Commun. Assn. Comp. Mach., /8§ (March 1975), pp. 151-157.

7. B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,"”
Comp. Sci. Tech. Rep. No. 17, Bell Laboratories (April 1977).

8. M. E. Lesk, “Tbl — A Program to Format Tables,” Comp. Sci. Tech. Rep. No. 49,
Bell Laboratories (September 1976).

9. Federal Screw Works, Votrax ML-{ Mule-Lingual Voive System.

0. M. D. Mcllroy, “Synthetic English Speech by Rule,” Comp. Sci. Tech. Rep. No.
14, Bell Laboratories (March 1974).

11. 1. W. Hunt and M. D. Mcllroy, “An Algorithm for Differential File Comparison,”
Comp. Sci. Tech. Rep. No. 41, Bell Laboratories (June 1976).

12. B. W. Kernighan and M. E. Lesk, unpublished work (1976).

13. B. W. Kernighan and P.). Plauger, The Elements of Programming Style, New York:
McGraw-Hill, 1974,

14. C. H. Sequin and M. F. Tompsett, Charge Transfer Devices, New York: Academic
Press, 1975,

15. B. W. Kernighan and P. J. Plauger, Software Toois, Reading, Mass.: Addison-
Wesley, 1976.

2134 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

19.

20

" T. A. Dolotta et al., Data Processing in 1980-1983: A Study of Potential Limitations to
Progress, New York: Wiley-Interscience, 1976.

_A. V. Aho and J. D. Ullman, Principles of Compiter Design, Reading, Mass.:
Addison-Wesley, 1977.

. Commitiee on Impacts of Stratespheric Change, Halocarbons: Environmental Effects
of Chlorofluoromethane Release, Washington, D. C.: National Academy of Sci-
ences, 1977.

W. H. Wiliams, 4 Sampler on Sampling, New York: John Wiley & Sons, 1977

" M. E. Lesk and B. W. Kernighan, “Computer Typesetting of Technical Journals on

UNIX,™ Proc. AFips NCC, 46 (1977), pp. 879-888.

DOCUMENT PREPARATION 2135

Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No, 6, July-August 1978
Printed in U 8. A.

UNIX Time-Sharing System:

Statistical Text Processing

By L. E. MCMAHON, L. L. CHERRY, and R. MORRIS
(Manuscript received December 5, 1977)

Several studies of the statistical properties of English text have used the
UNIX* system and UNIX programming tools. This paper describes several
of the usefil UNIX facilities for statistical studies and summarizes some
studies that have been made at the character level the character-string
level, and the level of English words. The descriptions give a sample of
the results obtained and constitute a short introduction, by case-study, on
how to use UNIX tools for studying the statistics of English.

I. INTRODUCTION

The UNIX system is an especially friendly environment in which to
do statistical studies of English text. The file system does not
impose arbitrary limits on what can be done with different kinds of
files and allows tools to be written to apply to files of text, files of
text statistics, etc. Pipes and filters allow small steps of processing
to be combined and recombined to effect very diverse purposes,
almost as English words can be recombined to express very diverse
thoughts. The C language, native to the UNIX system, is especially
convenient for programs which manipulate characters. Finally, an
accidental but important fact is that many UNIX systems are heavily
used for document preparation, thus ensuring the ready availability
of text for practicing techniques and sharpening tools.

This paper gives short reports on several different statistical

* UNIX is a trademark of Bell Laboratories.

2137

projects as examples of the way UNIX tools can be used to gather
statistics describing text. A section describing briefly some of the
more important tools used in all the projects is followed by three
sections dealing with a variety of studies. The studies are divided
according to the level of atomic unit they consider: characters, char-
acter strings, and English words. The order of sections is also in
almost the chronological order of when the projects were done;
future work will almost surely push forward toward more and more
meaningful treatment of English.

Il. TOOLS FOR GATHERING STATISTICS

2.1 Word breakout

Throughout this paper, word means a character string. Different
words are made up of different characters or characters in a different
order. For example, man and men are different words; cat and cat’s
are different words. We have arbitrarily taken hyphens to be word
delimiters, so that single-minded is two words: single and minded. An
apostrophe occurring within an alphabetic string is part of the word;
an apostrophe before or after a word is not. Digits are discarded.
Upper- and lower-case characters are considered to be identical, so
that The and the are the same word. All these decisions could be
made differently; the authors believe that the events are rare enough
that no substantive conclusions would be changed.

The program that implements the definition of word just given is
prep. It takes a file of text in ordinary form and converts it into a
file containing one word per line. Throughout the rest of this paper,
“word” will mean one line of a prep output file.

Optionally, prep will split out only words on a given list, or all the
words not on a given list:

only option: prep -o list
ignore option: prep -i list

Another option which will be referred to below is the -d option,
which gives the sequence number of each output word in the run-
ning input text.

2.2 Sorting

Central to almost all the examples in the rest of the paper is the

2138 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

sort program. sort is implemented as a filter; that is, it takes its
input from the standard input, sorts it, and writes the sorted result
to the standard output. The ability to send sorted output easily to a
terminal, a file, or through another program is essential to make
statistics-gathering convenient. The same sort program works on
either letters or numbers. Among the many other features of the
sort program which are used in the following are the flags:

-n: sort a leading field nomerically
-r: sort in reverse order (largest first)
-u: discard duplicate lines

The sorting method used is especially well adapted to the kind of
files dealt with in statistical investigations of text. Its skeleton,
which decides which elements to compare, takes advantage of
repetition of values in the file to be sorted. The algorithm used for
in-core sorting is a version of Quicksort which has been modified to
run faster when values in the input are repeated. The standard ver-
sion of Quicksort requires nlog n comparisons, where »n is the
number of input items, the UNIX version requires at most nlog m
comparisons, where m is the number of distinct input values.

2.3 Counting

Another tool of interest for many statistics-gathering processes is
a program named unig. Its fundamental action is to take a sorted
file and produce an output containing exactly one instance of each
different line in the file. (This process simply duplicates the action
of sort with the -u option; it runs much more quickly if a sorted file
is already available.) More often useful is its ability to count and
report the number of occurrences of each of the output lines (uniq
-c).

A very generally useful tool is the program wc. It simply counts
the number of lines, words, and characters in a file. Throughout
any investigation of text statistics, the question arises again and
again: How many? Either as a command itself or as the last filter in
a chain of pipes, wc is invaluable for answering these questions.

2.4 Searching and pattern-matching

A program of common use for several purposes is grep. grep
searches through a file or files for the occurrence of strings of char-
acters which match a pattern. (The patterns are essentially the same

STATISTICAL TEXT PROCESSING 2139

as the editor’s patterns and, indeed, the etymology of the name is
from the editor command g/re./p where r.e. stands for regular
expression.) It will print out all matching lines, or, optionally, a
count of all matching lines. For example,

prep document | grep ""...8" | sort | uniq —¢ >fours

will find all of the four-letter words in document and create a file
named fours which contains each such different word along with its
frequency of occurrence.

sed, the stream editor, is a program which will not only search for
patterns (like grep), but also modify the line before writing it out.
So, for example, the following command (using the file fours
created by the previous example) will print only the four-letter
words which appear exactly once in the document (without the fre-
quency count):

sed —n "s/” «1 //p" fours

This ability to search for a given pattern, but to write out the
selected information in a different format (e. g., without including
the search key), makes sed a useful adhesive to glue together pro-
grams which make slightly different assumptions about the format of
input and output files.

lll. CHARACTER LEVEL

Frequency statistics of English text at the character level have
proved useful in the areas of text compression and typographical
error correction.

3.1 Compresslon

Techniques for text compression capitalize on statistical regularity
of the text to be compressed, or rather its predictability. The statis-
tical text-processing programs on UNIX have found use in the design
and implementation of text-compression routines for a -variety of
applications.

Suppose that a file of text has been properly formatted so that it
does not contain unnecessary leading zeros and trailing blanks and
the like, and that it does not devote fixed-length fields to variable-
length quantities. Then the most elementary observation that leads
to reducing the size of the file is that the possible characters of the
character set do not all occur with equal frequency in the text. Most

2140 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

text uses ASCII or other 8-bit representation for its characters and
typically one of these eight bits is never used at all, but one can go
much further. If we take as a measure of the information content
of a string of characters

H=Y —plogp,

where p; is the probability of occurrence of the character x; and the
sum is taken over the whole character set, then it is theoretically
possible to recode the text so that it requires only H bits per charac-
ter for its representation. It is possible to find practical methods
which come close to but do not attain the value of H. Of course, in
deriving this estimate of information content, we have ignored any
regularity of the text which extends over more than one character,
like digram statistics or words.

It is a simple matter to compute the value of H for any file
whether it is a text file or not. The value of H turns out to be very
nearly equal to 4.5 for ordinary technical or non-technical English
text. This leads immediately to the possibility of recoding the text
from AScH to a variable-length encoding so as to approach a
compression to 56 percent of the original length.

Data files other than English text usually have quite different
statistics from English text. For example, telephone service orders,
parts lists, and telephone directories all have character statistics
which are quite different from those of English and different from
each other. In general, data files have values of H smaller than 4.5;
when they contain a great deal of numerical information, the values
of H are often less than 4.

Programs have been written on UNIX to count the occurrences of
single letters, digrams and trigrams in text. Single-letter frequencies
are kept for all 128 possible ASCII characters. For the digram and tri-
gram statistics, only the 26 letters, the blank, and the newline char-
acters are used, and upper-case letters are mapped to lower case.

The result of running this program on a rather large body of text
is shown in Table 1. The input was nine separate documents with a
total of 213,553 characters and 36,237 words. The documents con-
sisted of three of the Federalist Papers, each by a different author,
an article from this journal, a technical paper, a sample from Mark
Twain, and three samples of graded text on different topics.

Some interesting (but not novel) observations about the nature of
English text can be made from these results. At the single-character
level, some characters appear in text far more often than others. In
fact, the 10 most frequent characters constitute 70.6 percent of the

STATISTICAL TEXT PROCESSING 214t

Table |—English text statistics

Sample character, digram, and trigram counts for a sample of English text. The
counis are truncated after the first 25 entries. 012 is the newline character, O in the
character column is a space character; in the digram and trigram columns, it is any
word separation character.

count character cum. % count digram count trigram
33310 O 15.5 6156 e 3661 Oth
21590 [257 5364 Ot 3617 the
16080 t 332 4998 th 2504 heO
13260 a 394 4099 he 1416 Oof
12584 [} 453 3801 Oa 1353 ofd
12347 n 51.1 3748 s 1301 Oin
12200 i 56.8 3367 in 1249 and
10997 s 61.9 2780 er 1225 Oan
10640 r 66.9 27157 td 1144 nd]
7930 h 706 2738 d0d 1088 Oto
6622 l 73.7 2708 re 1027 toO
5929 d 76.5 2666 an 1025 ion
5409 C 79.0 2572 Oi 1003 edd
4524 012 812 2517 n[] 946 ing
4508 u 833 2506 Oo 875 ent
4152 m 85.2 2244 on 854 isx
4080 f 87.1 2047 es 851 inOJ
3649 p 88.8 2025 at 830 tio
3090 E 90.3 1990 en 805 Oc¢o
2851 y 91.6 1912 Os 779 red
2654 w 92,9 1840 yO 747 Oal]
2483 b 94.0 1835 ti 734 ng]
1984 3 94.9 1799 nd 709 on]
1884 v 95.8 1723 nt 702 Obe
1824 p 96.7 1681 te 701 esO)

text and the 20 most frequent characters make up 91.6 percent of
the text. At the digram level, of the 784 possible 2-letter combina-
tions, only 70 percent actually occur in the text. More dramatically,
at the trigram level, of the 21952 possible combinations, only 4923,
or 22.4 percent, occur in the text. One implication is that, instead
of the 24 bits used to represent a trigram with an 8-bit character set,
a scheme using 13 bits would do, a compression to 54 percent of the
original length, using only the fact that less than 21% different tri-
grams occur in the text. Noting the widely varying frequencies of
the trigrams in the text, we can obtain a considerably better
compression rate by using a variable-length encoding scheme.

3.2 Spelling arror detaction

The observation that English text largely consists: of a relatively
small proportion of the possible trigrams led to the development of
a program typo which is used to find typographical errors in docu-
ments. A single erroneous keystroke on a typewriter, for example,
changes the three trigrams in which it occurs, more often than not,

2142 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

at least one of the erroneous trigrams will be otherwise extremely
rare or nonexistent in English text. The same thing happens in the
case of an erronecusly omitted or repeated letter. Better perfor-
mance is obtained when the comparison statistics are taken from the
document itself rather than using some set of trigram statistics from
English text in general.

typo accumulates the digram and trigram frequencies for a docu-
ment and uses them to calculate an index of peculiarity for each
word in the document.! This index reflects the likelihood that the
trigrams in the word are from the same source as the trigrams in the
document. Words with rare trigrams tend to have higher indexes
and are at the top of the list.

On systems large enough and rich enough to keep a large English
dictionary on line, the same function of finding likely candidates for
spelling correction is performed by a nonstatistical program, spell,
which looks up every word in the dictionary. Of course, suffixes
like -ing and -ed must be recognized and properly stripped before
the lookup can be done. What is more, very large dictionaries per-
form poorly because so many misspelled words turn out to be names
of Chinese coins or obsolete Russian units of distance. Not surpris-
ingly, the statistically based typo requires little storage and runs con-
siderably faster. Moreover, not all systems have such resources, and
typo has proven useful for authors and secretaries in proofreading.
A sample of output from the typo program is included as Table II.

IV. STATISTICS OF CHARACTER STRINGS

In this section we consider statistics which take character strings
as atomic units, without any reference to the string’s use or function
as an English word.

4.1 Word-frequency counts

A set of statistics from a text that is frequently collected (often as
a base for further work) is a word-frequency count. A list is made
of all the different words in the text, together with the number of
times each occurs.2 With the UNIX tools, it is quite convenient to
make such a count:

prep text—files | sort | uniq —¢

This command line produces a frequency count sorted in

STATISTICAL TEXT PROCESSING 2143

Table l—Typo output
A portion of the output of the typo program from a 108-page technical document. A
total of 30 misspelled words were found, of which 23 occurred in this portion. The
misspelled words identified by the author of the document upon scanning the list
have been marked by hand.

Apr 12 22:32:11 Possible typo’s and spelling errors Page 1

ar 17nd 14 flexible & 5 pesudonym
17 heretofore 14 flags & 5 neames
w17 erroronously 14 conceptually & 5 namees
o 16 suer w14 bwaite 5 multiplied
16 seized 14 broadly 5 interrelationship
& 16 poiter & 14amy 5 inefficient
16 lengthy 14 adds 5 icalc
16 inaccessible 14 accompanying 5 handler
16 disagreement 13 overwritten 5 flag
ar 16 bwirte 13 occupying 5 exercised
15 violating 13 lockup & 5 erroreous
15 unaffected 13 flagged 5 dumped
15 tape o 9Jiin 5 dump
15 swapped = 8 subrouutine 5 deficiency
15 shortly 8 adjunct 5 controller
o 15 mutiliated 7 drawbacks S contiguous
15 multiprogramming o 6 thee 5 changing
15 likewise & 6 odification 5 botioms
15 datum wr 6od o 5 bitis
w15 dapt 6 indicator 5 ascerlain
15 cumulatively 6 imminent = 5 accomodate
15 consulted 6 formats 4 unnecessarily
15 consolidation 6 cetera 4 traversing
15 checking 5 zeros 4 tracing
o 15 accordinng 5 virtually 4 totally
& 14 typpical 5 ultimately 4 tops
14 tabular 5 truncate 4 thirteen
14 supplying 5 therewith & 4 tallyed
14 subtle 5 thereafter ‘ 4 summarized
14 shortcoming 5 spectre 4 strictly
14 pivotal 5 rewritten 4 simultanecus
14 invalid 5 raises 4 retrieval
14 infrequently 5 prefix 4 quotient

alphabetical order, as in Table Illa. To obtain the count in numeri-
cal order (largest first):

prep text—files | sort | uniq ~¢ | sort —n —r

This is illustrated in Table HIb.

4.2 Dictionary compression

A more complex but considerably more profitable approach to text
compression is based on word frequencies. Text consists in large
part of words; these words are easy to find in the text; the total
number of different words in a text is several orders of magnitude

2144 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table INl—Word frequency counts

The beginning of (a) alphabetically sorted and (b) numerically sorted word frequency
counts for an early draft of this paper.

(a) (b)

124 a 321 the

3 ability 212 of

3 about 124 a

3 above 114 in

1 abrupt 105 to

1 abstract 80 is

1 accidental 78 and

1 according 65 words

1 accordingly 63 text

1 account 50 for

less than the total possible number of arbitrary character strings of
the same length. The approach can best be visualized by supposing
that a file of text consists entirely of a sequence of English words.
Then we can look up each word in a dictionary and replace each
word in the text by the serial number of the word in the dictionary.
Since a dictionary of reasonable size contains only about 2'¢ words,
we have found an immediate and trivial method to recode English
text so as to occupy 16 bits per word. Since the average length of a
word in text, including the blank after it, is 6 characters, we have a
representation that requires only about 2.7 bits per character. This
implies a compression to 37 percent of original length. Some
details, of course, could not be neglected in actual practice, like cap-
italization, punctuation, and the occurrence of names, abbreviations,
and the like. It turns out, however, that these are sufficiently rare
in ordinary running text that only about two or three extra bits per
word are required, on the average, to handle them and it is possible
to attain a representation requiring only about 3 bits per original
character.

In the case of technical text, it is profitable to find the words from
the text itself, and store them, each word once, in the compressed
file. When this is done, the total number of different words is
rather small and because of the tendency of technical authors to use
a small technical vocabulary very heavily, the performance is very
good. If the dictionary is stored in the file, then the compression
performance depends on the number of times each word is used in
the text. Suppose there is a word in the text which is m characters
long and occurs n times. Then, the occurrences of that word occupy
m X n characters in the original text, whereas in the compressed text,
m characters are used for the one dictionary entry and n Xk bits are
used as a dictionary pointer each time the word occurs in the text,

STATISTICAL TEXT PROCESSING 2145

where k is the logarithm (base 2) of the number of dictionary
entries.

Of course, words in a text do not occur with equal frequency and
it is possible, just as was done with letter statistics, to use a
variable-length encoding scheme for the words. The information
content of the words in a text can be found by passing the word-
frequency count found in the previous section through one more
filter:

prep file—name | sort | uniq —c | entropy

It turns out that, for nontechnical English text, the information con-
tent of the words is between 8 and 9 bits per word when it is
estimated from the text itself. This implies that a text consisting
entirely of a string of English words can generally be compressed to
occupy only about 1.5 bits per original character. Needless to say,
the amount of processing required to compress and expand text in
such a way is usually prohibitively high.

4.3 Speclalized vocabulary

A practical application of word-frequency counts arose when col-
leagues became interested in devising vocabulary tests for Bell Sys-
tem personnel to determine their familiarity with the vocabulary
used in Bell System Practices (BSPs) in various areas. It is intui-
tively clear that the vocabulary used in Bell System Practices differs
from the general English vocabulary in several details. Some words,
like the, of, an, elc., are common in the language in general and in
specialized writing; others, like democracy, love, mother would be
found much more frequently in the language in general than in
BSPs; others, like line, circuit, TTY would be more frequent in BSPs
than in the language generally. What was desired was an automatic
procedure which would identify such words without relying on intui-
tion. The general problem proposed was to identify the specialized
vocabulary of a specific field; the immediate interest was in words
with moderate frequencies in BSPs dealing with a certain area, and
which are much less frequent in the language as a whole. It was
hoped that familiarity with such words would indicate familiarity
with the field.

A word-frequency count of approximately one million words of
English text was available. It was made from the text of the Brown
Corpus?® and closely resembles the published frequency count of that
corpus. It differs in detail only because we used prep’s definition of

2146 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table IV—Indexes (see text) of specialization

Frequency of words in a half-million words of Bses, frequency in a million words of
general English, and the words for (a) words which occur too often in BsPs relative to
general English; and (b) words which appear too seldom.

(a) (o)

[ndex BSP English Word Index BSP English Word

Frequency Frequency Frequency Frequency
4362