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N. 8. Jayant has proposed a simple but effective form of adaptive delta
modulation which uses two positive paramelers, P and @, to adjust the
step stze. The values P = @ = 1 describe linear delta modulation (LbM),
and Jayant has recommended using @ = 1/P and 1 < P < 8. In this
paper, we study the slep response of this scheme for arbitrary P and Q.
For each P and @, we are able to define an inieger n, the stability exponent
for P and Q, such that the step response is unstable when P*@ > 1, it con-
verges to the new level when PrQ) < I, and when PrQ} = 1, it eventually
seltles into a periodic (Zn + 2)-step eycle, for almost all initial conditions.
For P = 2, and for some combinations of P and Q with P between 1.6
and 2, it is possible to have both PQ < I and P*Q) = 1, so thal PQ < I
is not sufficient for convergence. When a sysiem is convergent, but a mini-
mum step size § is imposed, the eventual periodic hunting will not neces-
sarily resemble that of LbM, but will be bounded by P

l. INTROPUCTION

The basic coneepts of delta modulation (M) have been thoroughly
discussed in several recent publications.!? In its simpler forms, delta
modulation is a method of digitally encoding an input signal X = {x}
into binary pulses C = {¢;} {where each ¢; = 1) so that an approxi-
mation Y = {y;} of X may be reconstructed from the pulses C by a
simple decoding scheme. The signal X, although presented to the
encoder as a discrete-time sequence, will normally be a sampled {and
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perhaps digitized) version of a continuous-time analog signal. The
encoder works by comparing each z: with y,_, through a feedback
circuit to determine the sign of the subsequent pulse ¢;, according to
the equations

c; = sign (T; — Yio1)
m; = axM,, where M;= |m;i >0
Yi = Yim1 T My

Various forms of delta modulstors differ primarily in the manner 6f
determining the step-size M.; of course, since only the pulses C are
t0 be transmitted to the decoder, what is required is a rule for deter-
mining M; from C. In conventional lnear delta modulation {npa),
the step-size M is taken to be a constant 5, independent of the pulses
C (and the signal X), so that each step m; = =8, resulting in the
familiar “staircase’’ appearance of ¥ under Loy, Since in this simplest
form of pM, Y can change by only & per step, no matter how far z; is
from y:_i, Y has a very limited ability to keep up with X when X has
a steep slope, which results in the condition known as slope overload.
In contrast to LDM, adapfive delta modulation (apm) permits M, to be
modified depending on X, especially as the slope of the signal X changes.
Since this relieves the slope-overload problem, such adaptation can
result in better encoding, and several types of adaptive delta modu-
lators have been described in the literature (for a survey, see Ref. 2).

In this paper, we are concerned with the particular apm scheme
devised by N. 8. Jayant,® and with certain generalizations of this
scheme which arise naturally in the course of the investigation.
Jayant’s one-bit-memory scheme has been characterized by Steele? as
“instantaneously companded’” (that is, having an “instantaneous’
adjustment of the step-size M,), and Steele refers to Jayant's Apm as
“first order constant factor delta modulation.” The method is “first
order,” gince Jayant computes M ; using only ¢. in addition to M.,
and ¢;; the “one-bit memory” is used to save ¢,_1. When ¢; and ¢i
are equal, so that Y has not yet crossed X, there is a possibility of slope
overload, so that M, should be inereased, and Jayant uses a “‘constant
factor” P = 1sothat M; = PM, , (and m; = Pm.,) when ¢; = ci;.
To keep the step size from growing continuously with time, a second
positive constant factor @ < 1 is chosen, so that when ¢; and ¢;_; have
different signs, indicating that Y has crossed X, the step size is reduced:
M= QM so mi = —Qmi_,. (Jayant concluded that values of P
and @ with P¢ = 1 gave the best performance on segments of speech,
and he especially recommended P = § = 1.5, § = %) We note that
when P = @ = 1, we recover LoM, with M; = & and m, = +é for
all <.
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As even basic LDy has proved to be quite difficult to analyze (see
Refs. 5 and 6 for some reeent successful efforts), it is hardly surprising
that there are few definite analytical conclusions concerning the
behavior of Jayant's apai. This is confirmed by Steele’s comment that
“An interesting feature of instantaneously adaptive [delta modu-
lators] is their resistance to mathematical analysis- - -.”" Thus, in this
paper, we restrict our attention to the comparatively simple problem
of the step response of the approximating signal Y for Jayant’s ApM,
where by step response we mean the ultimate behavior of Y when X
assumes a constant value £, 2; = £ for all 5 2 4.

For Lpwm, if X becomes constant, 2; = £ for j = ¢, then Y will even-
tually enter a “hunting” phase having a two-step period in which
adjacent values of Y bracket £ (see Fig. 1); for some k and all § = 0,

Yersy = Y& = £,
Yepoipr = Y& T 8 2 I,

Thus, for Lom, Y will eventually get and remain no more than § away
from a eonstant signal X, which is a very desirable characteristic. This
appreximation error, which occurs because Y is discrete and cannot
exactly match a constant or slowly varying signal X, is ealled “granular
error” {or “quantization error”), in contrast to the “slope-overload”
error which results from the inability of ¥ to keep up with a steeply
climbing X. For LoM, a one-time compromise between these two types
of error must be made in the choice of the sampling rate and step-size
3; then the granular error is known to be bounded by &, but the slope-
overload error can be severe for unexpectedly steep slopes. For apm
the step size can be varied with the signal, thus reducing the slope-
overload error, but nature and magnitude of the granular error is
less understood than for the Lo ease, a situation which it is hoped that
this paper will help resolve.

The question of the nature of the step response of Jayant's Apm
was briefly discussed by Jayant in Section 2.3 of Ref. 3, but his
conclusions were limited to the finding that in contrast to Lou, the char-
acteristics of the ““hunting” phase of the ApM, particularly the mini-
mum step size and maximum error, were very dependent on the mag-
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Fig. 1—Pericd-two (Lpm) hunting,.
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nitude of the constant value Z (with y¢ and m, held fixed). Figure 2,
taken from Ref. 3, shows the behavior for P =3, @ = %, 50 =0,
mo = 1, and Z = 9, 10, 12. Steele’s analysis? showed that the four-step
cycle exhibited in all three cases of Fig. 2 is exact and sustainable ; as
shown in Fig. 3, for some k and all j = 0, the cycle is given by

Yerti = < Z
Yrptirt =+t m < &
Yirspz =Y+ m{(P+ 1) > %
Yrraiea = W + mP > &,

where m = me,y > 0. Steele further indicated that this four-step
periodic behavior is the typical ultimate step response of Jayant’s
ApM when PQ = 1. He also concluded that PQ < 1 was necessary for
Y to converge to X for a step input, but he did not provide a complete
proof, and he did not elaim that PQ < 1 was sufficient for the decay
of Y to a constant £ (We note that when Y is in this four-step cycle,
which is a “pure hunting” phase, the dignal X is crossed only on alter-
nate steps, and the signal value is typically not in the middle of the
crossing step, calling into question assumptions used in Section IV
of Ref. 3 and in Ref. 4.)

Even before the appearance of Steele’s work, experimental results
and preliminary analysis had given rise to the general supposition that

TIME —

Fig. 2—P@ = 1 step responses {from Jayant?).
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for a step input, () ¥ would be unstable when PQ > 1 (as it was for
Jayant’s speech data?), (4%} that when PQ = 1, Y would ultimately fall
into the periodic four-step cycle, but with very large hunting ampli-
tudes possible, and (4iz) that for PQ < 1, Y would converge to the
constant £, with both step size and maximum hunting amplitude ap-
proaching zero. (Although having the step size get too small is con-
sidered undesirable in ease X should begin to vary, it was generally
thought that enforcing a well-chosen minimum step-size 8, as Jayant
did in Ref. 3, would avoid this problem.) The question of convergence
of Y for PQ < 1 is the most important of these, since as Steele and
others have ohserved, using a value of P slightly less than 1, together
with a minimum step size, would eliminate the problem of large-
amplitude hunting cycles in Y during times when X was carrying no
signal, while Jayant’s results? indicate that for PQ < 1 but close to 1,
the resulting penalty in signal-to-noise ratio diring speech segments is
negligible.

Il. SUMMARY

QOur findings on the step response of a P, ¢ delta modulator confirm
that for almost all initial conditions, Y will be unstable when PQ > 1,
and will eventually fall into the four-step cycle shown in Fig. 3 when
PQ = 1. (We say *“‘almost all”’ because for each P and @ with P@ = 1,
there is a set W of initial conditions, negligible in the sense of Lebesgue
measure, for which Y converges to X. In Fig. 2, there would be eon-
vergence for £ = 11.1625, so that yo = 0, me = 1, and £ = 11.1625 is
& point of W.) More importantly, we find that P@ < 1 is not sufficient
to ingure that Y will converge to a step input X. Rather, in addition to
those values of P and @ with PQ < 1 for which Y converges to X,
there are values of /? and @ with PQ < 1 for which Y is unstable, and
also some combinations for which Y is eventually periodie, with a
period even and greater than four. However, our results establish that
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Fig. 3—Period-four apm hunting.
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when P < 1 and either P < 1.6 or PQ = 1 — @, which are the cases
of most practical interest at present, then the PQ < 1 conjecture is
true, and Y converges to a step-input X for all initial conditions.

Our basic result is that for each P and @, we can define an integer n,
whieh we call the stability exponeni for P and @, such that the stability
of the step response of Y depends not on the product P@, as had been
supposed, but on the produet P~Q. Thus, for almost all initial condi-
tions, Y is unstable if P*Q > 1, and is eventually periodic with period
2% + 2if P~f) = 1: while for P*Q < 1 (or whenever the initial condi-
tions fall in W), Y converges to X. The generally expected findings for
PQ = 1 result from the fact that n = 1 when PQ = 1.

It is useful to describe the stability exponent # in terms of P and
PQ. If we define Fi(P) = P(P — 1)/(P* — 1), then n is the stability
exponent for P and @ if and only if F,.(P) £ PQ < F.(P). Figure
4 shows the graphs of Fi(P) for k = 1, 2, 3, 4. We see that Fi 1 (P)
< Fy(P) for P > 1, so that n is well defined, and that Fi.i(P} ap-
proaches zero with increasing k. Thus, n becomes unbounded as @
approaches zero.

The cases of most interest are those for which PQ < 1 and Y is not
convergent, that is, when F..(P) £ PQ < F.(P) and P"Q = 1.
Since F o1 (P) £ P-*1, P»Q = 1 implies PQ = F.;1(P), so the bind-

| |
| | |
[ 1 |
| f i
| | |
[ ! I
{ ! |
A ————— b — — e 4
| | ]
[ | |
{ | |
| | |
| | |
| ! |
g I i I
| ¢ |
I ! I
I | |
q————=—==—"= 1
: | s |
FaiP} I ] | I
| | I |
| n=2 | | |
| | |
FalP) '
AN I I I
| n=3 ] ] - |
0 FalP} | n24 I :I J
1 2 3 4 5

P
Fig. 4—Domains of the stability exponent n.
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Fig. 5~Domains of unstable step response.

ing constraints are that PQ < F.(P) and PQ = P~"*. In Fig. 5,
those areas for which P71 < PQ < F.(P) are shaded; they repre-
sent those values of P and PQ for which Y is unstable for almost all ini-
tial conditions. Looking particularly at the cases with PQ < 1, we see
that when P < 1.6, Y is never unstable, but even such seemingly safe
cases as P = 2, @ = 0.3 fall in the shaded region. As P is made larger,
which might be useful in some applications, the combinations for
which ¥ is unstable become dominant, so that fer P = 4, not only
those values of @ above 1 cause instability, but also all those between
& and 1, as well as most values below 5. The basic point of these
examples is, of course, that it is not PQ which determines the stability
of ¥, but Pr@Q.

The combinations for which P*Q = 1 are interesting in that their
step response is a straightforward generalization of that of Jayant’s
P@ = 1 apm. Specifically, if we first decide on the stability exponent
n, choose a P = 1 which satisfies

pri — 2P 4+ 1> 0,

and then set Q = P~" so that P*Q = 1, we find that for almost all
initial conditions, Y will eventually settle into a cycle of period 2n + 2
steps. The PQ = 1 apm thus appears as the n = 1 member of this
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family, while LbM may be viewed as the n = 0 case: P = Q@ = 1,
with 2 2-0 + 2 = 2 step period. For each n, the set of P which satisfies
the inequality consists of an open interval (p., + « ), where p, in-
creases with n and approaches 2 from below; {p., + «) is also exactly
the interval of P for which Y can be unstable when the stability ex-
ponent is n. Thus, when n > 1, the P*Q = 1 Apm is feasible primarily
for P = 2, in contrast to the PQ = 1 apm, for which Jayant has con-
jectured that 2 is an upper bound on the optimal P. These “high-
response” ADM may be useful for some applications, but we have not
tested them against any data. They seem to offer yet another method
of trading off granular error against slope overload. Of ecourse, as
for the PQ = 1 case, one would actually set P*Q slightly less than 1,
but large enough to preserve n as the stability exponent and thus insure
CONVErgence.

As we have observed, the primary current interest is in combinations
of P and @ for which Y converges to a step input X, so any practical
system will provide for a minimum step-size 8. Thus, for a step input,
the theoretically convergent Y will eventually encounter the minimum
step size and become periodie, hunting about the constant £. We have
considered the step response of a P, @ delta modulator with minimum
step size and stability exponent n, and we find that the eventual
periodic behavior is exactly that of a P, @ = P* delta modulator
with stability exponent k, where 0 < k < n and P > p., and where
the value of k depends on the initial conditions. Thus, the hunting
amplitude is bounded by §P* < 5P~ Moreover, all those k for which
0 <k <n and P> p; oceur for initial conditions having positive
Lebesgue measure. In particular, when 1 > P@ = 1 — @, so that the
stability exponent is n = 1, the four-step hunting cycle with range
3(1 + P) cannot be rejected. Thus, Steele’s conclusion that the k = 0,
LoM-type hunting is the only type that can oceur when &, minirnum
step size is imposed does not appear to be justified.

Our investigations also shed some light on the question of recognizing
when the slope-overload condition is oceurring. Since in the limit for
P~Q = 1, the sequence is n “forwards,” one “reverse,” etc., with only
the nth forward erossing the signal, a sequence of n or fewer forwards
should not be considered indicative of slope overload. But for n + k
forwards in a row, even if we decide to label k of them as slope over-
load, it is not clear which k of them: first? last? middle? Perhaps the
magnitude of the error must be considered as well as crossings. On the
other hand, for P"Q = 1, distance alone cannot be used as the defini-
tion since the amplitude of the hunting can be quite large, depending
on'the initial eonditions. For P*( < 1 with a minimum step size, much
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the same considerations apply, except that in this ease, the error
magnitude would be very useful in recognizing hunting.

. ANALYSIS

We assume that 7 = 0 for all 7, and that “initial conditions” zq, ¥,
and m, are given. Since there are no bounds on X or Y, we may assume
that £ = 0, and that the “step” in X ocecurs at ¢+ = 1, that is, that
z; = & = 0 for 7 2 1. The effects of the previous history of ¥ and X
can be summarized in the selection of y, and m,. The step response of
Y for a P, @ delta modulator is then charaeterized by how well Y can
approximate £ = 0 as a function of the parameters P and § and the
initial eonditions y, and m..

Jayant’s apm ealculates Y from X by the following equations:

¢ = sign {x; — Yi_1)

Pm,-_l if i = Ci—1
ms = .
—Qmi_, if Ci = —Ciy
¥i = Yio1 + ma

Sinee {(x; — yi—1), €;, and m; will always have the same sign, we may
summarize the first two equations as

= { Pm; . if (x; — yi1) and m; , have the same sigh
"= 1 —@Qmi, if they have different signs.

There is ambiguity in this definition, as the sign of zero is not defined ;
that is, what value of ¢; is chosen when z; = y; 1?7 Our later analysis
indieates that the proper choiee is ¢; = —¢i—y when z; = y._1, so that
equality is considered to be a “‘crossing.” After making this conven-
tion, and after observing that . = £ = 0 implies sign (& — yi1)
= —sign (y:1) for ¢ = 1, we obtain the equations

o { Pm; if y; and m, have different signs
Mit1 —@Qm, if they have the same sign (or if y: = 0)

Yit1 = Y + Mig1.

This is a two-state system whose state equations have a discontinuity
at y; = 0, but we can transform it into a single-state continuous system
if we note that the conditions on the comparative signs of y; and m;
may be expressed as a condition on the sign of their ratio, which is
always defined since . is never zero.

We define the error-step-size ratio r; by ri = yi/m.. Then we have

Topr = Yapt/mipr = 1+ yifmipa
=1+ (gi/md(mi/miy1) = 1 + ri(mi/miry),
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where

if y; and m; have different signs

if they have the same sign (or y; = 0)
if y.-/m.- = 7r; < 0

if go/m: =1 Z 0,

Miv1 {
m; =

OO

80 the state equation for the ratio may be written simply as

o 14+7/P if n<0
T T — /@ if 20

Thus, the sequence of ratios r; arises from repeated applications, be-
ginning with r¢ = yo/mo, of the function f(-) given by

(14 /P if r<0
1o = 1—r/@ if r=0.

This function is graphed in Fig. 6 for P = §, @ = %. Note that f(-)
is continuous at v = 1, and the continuity is not dependent on our
choice of ¢; when z; = y;_1, since f(0) = 1 simply says that y: = z.
+ m. when 2; = y._1, which is true no matter how one computes m;
from m._i. But an important observation is that a particular sequence
of r/s computed from ri1 = f(r.), together with an initial step mo,
gives the complete sequence of m.'s, since a negative r; indicates
mi = Pmi_1, while an r; which is positive or zero indicates m; = — @m._..
Thus, the convention on the sign of zero affects not the sequernce of
'8 but the sequence of m.'s derived from it.

We shall henceforth restrict ourselves to combinations of P and é
for which P > 1 and @ < 1, since this is the only case {other than
P = @ = 1) that is suitable for practical applications.

In our subsequent analysis we are primarily eoncerned with the
function f(-), which describes how the ratio r; = y:/m; changes from
one step to another. Since f(r) = 1 for all r, except for ro no r; can

firy

Fig. 6—The graph of f{r) and A for P = §, @ = &.
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exceed 1. Thus, after the first step we are not concerned with the be-
havior of f(r) for r > 1.

We are not only interested in the change in the error-step-size
ratio r; during one step, which is given by r;11 = f(r:), but also in the
change over two steps, three steps, etc. The change in the ratio over
j steps may be determined by applying the function j times, e.g.,
tir = f(ron) = FUf@)), ris = F(F(f(r:))), ete. The function ob-
tained by applying f(-) 7 times we call the jth iterate of f(-), which
we write f/(-). Thus, we have riy; = fi(r.), and by convention f!(r)
= f(r)and f°(r) = 1.

Sinee f(r) =1+7r/P=2 1+ 7 when P> 1 and r <0, when r is
negative, the successive values of f(r) will increase by at least 1 per
step until finally one of the values f#(r) is nonnegative, that is, 0 =
f(r) = 1. This is just another way of saying that the signal Y will
eventually cross zerc on step y.,; beginning at r = r; < 0. But once
fi(r) is in the interval [0, 1], the next value of the ratio, namely
f#(r), can be no smaller than f(1) = 1 — 1/@, which we denote by g¢.
If f#l(r) < 0, then the subsequent ratios will increase again
until they reach [0, 1], ete. Thus, the ratios can never escape the
interval [g, 1] =[1 —1/Q,1] = A once they enter, and we have
proven:

Theorem 1: [fq = f(1) =1 — 1/Q < Dand A = [q, 1], then for each
r there is a j such that f(r) € A, and r; € A implies v, © A for all
k=i

So the ultimate behavior of the ratios is determined by the function
f(-) and its iterates on the interval A = [g, 1], and thus by the graph
of f(+) on the square 4 XA, denoted by the dotted lines in Fig. 6.

We shall need more precise information on how many steps are
necessary to go from a given ratio r to a zero crossing, or a nonnegative
value of fi(r). We define a; = 0, a» = — P and, in general, a;;1 = a;
— Pv= — 3f_, Pi, We further define A, =[0,1], and A;=
(@1, a;) for © = 1. Since P > 1, this set of intervals forms a disjoint
cover of the range (— =, 1] of f(-).

Theorem 2: If r € A;, then j is the least integer such that f(r) is non-
negalive, so that + © A; if and only if r = 1 and exactly j steps produce a
zero crossing of Y. Alse, the sequence fi(r) is increasing for 0 < ¢ £ j.

Proof: Since f(ai,) = a, for ¢ = 1, it follows that f{d..) = A, for
i = 1. Thus, if r € A;, after j — 1 steps, f7(r) € Ay. Then, f(41)
=[0,1) C[0,1] = Ay, s0 fi{(r) € [0, 1]

Corollary: For every ro = yo/m., the ratios eventually enter and remain
n A.
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Proof: For r =1, we have fi(r) €[0,1] C A, while for r > 1,
J(r) < 1 so0 that f(r) € A; for some j, so that f*(r) € [0, 1]

We can now define n, the stability exponent for P and @, as the largest
value of jsuch that A; intersects 4 ; that is, it is the maximum number
of steps from a ratio r in A to a zero crossing. Clearly, n is determined
by the fact that ¢ < 0, so that ¢ € A, for some n > (}, and this = is
the stability exponent. More explicitly, P and @ must satisfy

Gnp1 S q < @n

or

—$Pi1-1/Q< -5 Pi

Fe=1 =1
or

S Pi21/Q> Y P

i=0 =0

To obtain the conditions cited in the simmary, we invert and multiply
by P to obtain

Foi(P) £ PQ < Fa(P),
where

ksl PP —1)
e T

Another way of expressing this condition is

Pr—1 1 _Pi—1
P-1 Q= P—1"°

so multiplying by (P — 1)@ and adding Q gives
PQ<P+Q—15 P,

Thus, the stability exponent = is the largest z such that P*@ is strictly
less than the quantity P 4+ @ — 1. Note that @ < 1 implies P8
<P+ @—1<P, so that P'() < 1 whenever n is the stability
exponent for P and Q.

Theorem 3: If n is the stability ezponent for P and Q, and P"Q < I,
then Y converges for all initial conditions, that is, both m: and y; tend
to zero with increasing 1.

Proof: Once the ratios enter A, no more than n negative ratios can
occur without an intervening nonnegative ratio. Thus, as m; evolves
by multiplication of P's and (—@)’s, each —@ can be grouped with
at most n P's with no P's left over. Since P*@ < 1, the absclute value of
m; will be decreasing by a factor bounded away from 1 at least every
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(n + 1) steps, and hence going to zero. Each time a ratio isnonnegative,
which occurs at least once every (n + 1) steps, Y has just crossed zero,
80 y; must go to zero along with m..

The next theorem is the basic result of the theory of Jayant’s
adaptive delta modulation. It states that not only is the stability ex-
ponent n the mazimum number of successive negative ratios that can
oceur once the ratios enter A, but that for aimost all initial conditions
(initial ratios ro), a sequence of n negative ratios all in A will eventually
ocecur. (Here by “‘almost all” we mean that the set of initial conditions
for which this is false has Lebesgue measure zero—it can be covered
by a family of open intervals of arbitrarily small total length.) This
result is the key to the analysis for P"Q = 1.

Theorem 4: Let B, = AN An = [q, a.) and let Bbe the set of r C A
such that fi(r) € B, for some j (so thai n successive negalive ralios
eventually occur). Then B is open (as a subset of A) and has Lebesgue
measure p(B) = 1/Q = 1 — g, the length (and Lebesgue measure) of A.
Thus, A\B (the points of A not in B) is a measurable set of Lebesgue
Measure 2ero.

Proof: B, iz open In A, and B can be written as

B = U {r] () € Ba).

Since each fi(-) is n continuous funetion from A into A, each zet In
the union is open, so B itself is open. Thus, B and its complement
ANB are measurable. Clearly, if S is a subset of B, and 8’ is a subset
of A such that f(S8’) = 8, then 8’ is a subset-of B alsc. In addition,
if f(-) is linear with slope 1/son §’, f(8’) = S, and 8§ and 8’ are mea-
surable, then u(S8’) = |s| -u(S). For each 4, 0 £ ¢ < n, let B; = A,
M B, so that each B; is measurable with measure u(B;}. Now f(-)
maps A, linearly onto A, with slope —1/, so f(-) must map B,
linearly onto B, and x(By) = Q-u(B). Similarly, for each ¢ such that
n—1>¢>0, f(-) maps A.,, linearly onto A, with slope 1/P, so
f(-} must map B, linearly onto B,, and u(Biy1) = P-u{B:). When
i =0, f(-) maps A; linearly onto Ao\{1}, 80 g(B1) = P-u(B\{1});
but since {1} has measure zero, u(By) = P-u(By) also. Thus, for
0 < ¢ < n, we have u(B\) = Pi-u(By). But since B is the disjoint
union of the B;, we have

WB) = ¥ (B = u(Bn) + ’ng-p(Bu)
= (@~ 9 +uBy T P
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Since u(Bo) = Q-u(B), and 375 PP = 1 — a,,
B(Bo)/Q = (an — @) + (1 — an)n(By)

or

B(Bo)(1/@ — 1+ as) = u(Bo)(an — @) = @ — ¢

Since ¢ < a, (this relies on the convention that m,, = —@-m; when
y: = 0), we have p(Bo) = 1, s0 p(B) = 1/Q@ = 1 — ¢ = p(A). Thus
u(A\B) = 0.

Corollary: Let W be the set of real numnbers r such that f(r) & B. for
all 7, 1i.e., once fi(r) is in A, no sequence of n successive negaiive ratios
ever occurs. Then W has Lebesgue measure zero.

Proof: Let Wy = A\B and for all ¢, let W, be the set of r for which
F¥(r) € W, Bince each f(:) is piecewise linear, each W; has measure
zero, 50 W = {Ji2g W, = |r| fi{(r) € W, for some z} has measure zero.
But since W, is the set of r € A such that f*(+) & B, for all &, W is the
set of (unrestricted) r such that fi(r) & B, for all 7.

We note that W is nonempty for all P > 1 and @ < 1, since f(:)
has a fixed-point w = Q/(Q + 1) € (0, 1), and w and all its preimages
(r such that f*(r} = w for some ) will be in W. In addition, for all
i = 2, f*(+) will have fixed points in addition to w, and many of these
fixed points and their preimages will be in W also.

Theorem &: With n the stability exponent for P and Q, on A= [@ny1, av)
the function f~11(-) 18 linear with slope — (P"Q)~' and has a fired point
z € EQ: au) = B.,.

Proof: Since f(A:.1) C A; end f(-) is linear on each A,, f(-) is linear
on each 4; for j £ 7 + 1. Clearly, f*(@¢sy1) = 0 and jf*(a.) = 1, s0
i {@ny) =1 and f**{a,) = f(l) =¢=1— 1/Q. The slope of
f*(-)on A, isthus (g — 1)/(an — @uy1) = (=1/Q)/P* = —(PrQ)™"
Since ¢ € A, by definition, ¢ = f**{a.) < a., but since f*+(-) has
negative slope, f*{g} > f**(a,) = ¢. Thus, f*H(q) > q, fr*{(a.)
< @, and so f*+1(:) has a fixed point z between ¢ and a,.

Theorem 6: If P*Q> 1, then f~+*(B,) C B.,, that i3, if r/EBn.=1[gq, @)}
then 74y (nyp1yx © B for all & = 0. Thus, except for ro © W, the ratios
eventually enter B, and return to B, every n + 1 steps thereafter. More-
over, the ratios falling tn B. converge to the fized point z of f**+(-).

Proof: f*t(a,) = q, and the absolute value of the slope of f*+(-) on
A, is (P ' <1 so |fM{q) — f*(a,})] < |[¢ — as| and so
(Ba) = (g, ()] C (g a:) C Ba. Each f#%(B,) is an in-
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terval containing z, and each increase in & (each n + 1 steps) reduces
the length of the interval by a factor (Pr@)~! < 1, so for each r &€ B,
we have fi»+1)%(r} approaching z with increasing k. Thus, except for
initial conditions in W, the ratios not only eventually enter B, (by the
corollary to Theorem 4) but return there every n + 1 steps, each time
coming closer to z.

Corollary: If n is the stability exponent for P and Q and PrQ > 1,
then for all initial conditions which are nol in W, the signal Y iz un-
stable. Also, if r;CB., then M. ;>M; for all j>0, where M;=|m;|.

Proof: Once r; is in B, every n + 1 steps M, increases hy a factor of
PrQ > 1; hence the step size increases without bound.

The next theorem and its corollary establish the nature of the stable,
periodic step response which is characteristic of the Jayant family of
delta modulators.

Theorem 7: If n is the stability exponent for P and @ and P*Q = I,
then fin+2(.} {5 the identilty on B., and if y: and m; are such thal r.
= yi/m; € B,, then whenever J = i, k= 0, and | = (&n + 2)k, we
have y; = y; and mj;z; = m;, so that Y becomes periodic with period
2n + 2 steps. Thus for all initial conditions which are not in W, ¥
eveniually settles tnlo a periodic (Zn + 2)-step cycle.

Proof: If P*Q) = 1, then the slope of f*+1(.) ig —1, go that f*H{q) = a.
in addition to f**'(a.) = ¢. Thus, f***%(a,) = a., fF**%(q) = ¢, so
f*2(.) is the identity on [gq, @.] and hence on B, = [¢, a.) itself.
Thus, when r; € By, riye.42 = r;. But by Theorem 2 we know that
among the 2n + 2 successive values of r;,,; there are 2n negative ones
and 2 nonnegative ones, so that M 9.2 = P{(—Q)m; = (—P*Q)*m;
= m;. Thus, ¥;12n+2 = ¥; 88 well. The connection with W is made as
in previous theorems.

Theorem 8:; If PrQ = I and ro & W, then y; and m; bolh converge to
0, i.e., for inilial conditions in W, Y is neither unstable nor periodic but
converges lo X.

Proof: For all initial conditions, the ratios eventually enter and remain
in A, but if rp € W, then all ratios in A fall in the A; with{ < n. Thus,
at most, n — 1 suceessive negative ratios can occur; hence, each —@Q
can be grouped with no more than n — 1 P’s with no P's left over.
But P'@ < 1 for i < n even if P*Q > 1, so at intervals of no more
than n steps m; will be reduced in absolute value by a factor bounded
away from 1; hence m; will converge to zero, and with it Y, since a
zero crossing will occur at least every n steps.
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We can now relate our findings to the general supposition on the
stability of Jayant’s delta modulator: that is, that the system is un-
stable, periodic, or convergent according to whether PQ exceeds,
equals, or is less than 1. We see that the general supposition is in fact
correct when PQ =2 1 — Qand ro G W.

Theorem 9: If PQ = 1 — Q, then the stabilily exponent for P and Q
18 1. Thus, Y converges to X when 1 — @ £ P€) < 1 {or when PQ = 1
and ro € W), seltles tnto a four-step cycle when PQ = 1 and re & W,
and is unstable when PQ > T and re E W.

Proof: All we must show is that ¢ =1 — 1/Q 2 e; = —PF, so that
g € A,. But dividing 1 — @ < PQby —8 yields ¢ = — P asrequired.
The rest. follows from our earlier theorems, taking » = 1.

The most-unéxjiticted results of our analysis are the existence of both
unstable combinations of P and @ with PQ < 1 and Jayant-type delta
modulaters that satisfy P*Q = 1 and are eventually periedic with a
2n + 2 step period when n > 1 (and r¢ & W). The next three the-
orems establish that since n depends on P and @, in order to attain
PrQ) = 1 we must have P > p,, where p; = 1, ps &2 1.62, pi < pisy,
and lim;,, pi = 2. Thus, for P = 2, all values of n are realizable,
while for P = p, /s 1.62, only the n = 1 value will allow PQ = L.
(The sequence {p:] that we define here comes up again in our subse-
quent analysis of a P, @ delta modulator with 'a minimum step size.)

Theorem 10: If P*Q = 1, then q Z Gy, S0 the stability gzponent for
P gnd @ = P cannot exceed k.

Proof: Since g = 1 — 1/¢ = 1 — PF¥, all we need show is that 1 — P*
2 Qg1 = — 2.5, PY, or P¥ £ Yk, PY, which always holds. Thus,
ifgE A, = [@n41, @s), then @, > ¢ = arp1 80 n 2 k.

Theorem 11: We can choose a @ such that P*Q = 1, where n s the
stability exponent for P and Q, if and only if P salisfies P"* — 2P%
+ 1 > 0. Equivalenily, n is the stability exponent for P and Q =
P (P"Q = 1) if and only of P** — 2P~ + 1 > 0.

Proof: If PQ = 1, then ¢ = 1 — 1/¢ = 1 — P». By thé definition
ofn,l—Pr<g<a,=— Y:iPiso P> Y21 Pi= (P — 1)/
(P —1). But then P*{(P —1) = P" — P» > P» — 1, and P""
— 2P 4+ 1 > 0. Since each of these steps can be reversed, if P**
— 2P* 4+ 1 > 0, then setting @ = P—* we have g < as, 80 n = k.
Since: ¢ is strictly less than.a; and d¢/9Q > 0, there is an open interval
of values of @ = P-* for which » = k. But by Théorem 10, n £k
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when PQ = 1, so for these values of § we have n = k and P"Q =1
or P*Q > 1, respectively.

Theorem 12: For each k = 1, let ®r be the set of P > 1 which satisfy
Pett — 2Pk 4 | > (. Then, each ®i is an open half-line (pr, + =),
where pr < Prp1 < 2 and limopr = 2.

Proof: For k = 1, the requirement is simply that (P — 1)? >.0, so
1= 1. For k =z 2, differentiating g(P) = P*1 — 2P*4- 1 gives
g (P) = (k4 1)Pt — 2kP*', whose only zerc besides P =0 is
P = 2k/(k + 1), which lies between 1 and 2 and approaches 2 with
inereasing k. Binee g(1) =0, /(1) = 1 — k < 0, and ¢(2) = 1, g(P)
has a zero p. between 2k/(k + 1) and 2, and ¢(P) > 0 for P = 2.
Thus, P > p; implies g(P) > 0, and 1 < P < p; implies g(P) < 0.
Sinee 2k/(k + 1) < pr < 2, ps approaches 2 with increasing k. Since
g(Pep1) = px — 1 > 0, payr > pr, so the sequence [pe] converges
monotonieally to 2.

In fact, sinece g(2) = 1 and g’{2) = 2%, a good approximation for
pr i8 2 — 2% For k = 2, 3, 4, the approximations are 1.75, 1.875,
1.9375 and the actual values 1.6180, 1.8393, 1.9275.

We have previously observed that the periodicity that occurs when
PrQ = 1 is undesirable in practical systems, since it may result in Y
having signifieant power when X is zero or close to it. This problem is
aggravated by the fact that the amplitude of the periodic hunting is
unpredietable and can be quite large. To overcome this problem,
Steele and others have suggested setting P*€) slightly less than 1, so
as to make the Y converge to X, and using a minimum step size, which
we call §, to prevent the step size from getting so close to zero during
long stretches of zero (or constant) signal X that Y cannot quickly
respond when X begins to vary. Indeed even when studying the case
P@ = 1, Jayant used a minimum step size, although it was seldom
binding {(see Fig. 3 of Ref. 3).

In our final three theorems we treat the case of a P, ¢ delta modula-
tor with a minimum step-size 8, so that when M, < §/& and a zero
erossing occurs, instead of the next step having magnitude M,
= QM, < 5, we set M, = 5 Thus, M; = & for all . We note that if
Y would be unstable or periedie in the absence of a minimum step
size, then the step sizes may never be reduced to the point that the
minimum becomes binding. If a step of size § does occur, however,
with M, =8 and r,., € [0,1] = A, we show that Y eventually
becomes periodic with a 2/ 4+ 2 step cyele, where 0 = J =< n (the
stability exponent for P and §) and P > p;r; with the exception of the
case P"Q > 1, r; & B, C A,, for which Y is unstable and a step of
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size & never reoccurs. Thus, in contradiction to Steele’s conclusion,
the step response of a P, @ delta modulator with minimum step size
does not reduce to the Lom ease, but is fully as eomplex as the P*@Q = 1
case with no minimum. However, it is true that if P*Q < 1, or P"Q
> 1 and ro € W, the minimum step size will eventually ocecur and the
hunting amplitudes be thereafter bounded by P=s.

Theorem 13: If ri < 0, then v = f(rd; of ri = 0 and M, = 5/Q,
then riy = F(rd); and if ro = 0 and 6 £ M; < 3/Q, then f(r:) <rip

=< 1. Thus, for all initial conditions, r; € A for some d, and if i € A
thenr; E A forallj = 1.

Proof: When r; < 0, we have mi,1 = Pmi, so the minimum is not
relevant, and when r; = 0 and M; = §/@, we have m;y, = —@m,, s0
the minimum is not binding. Thus, for these cases, r:y1 = f(ry). But
when 7, = 0 and M; < 8/Q, we have f(rj) =1 — r;/Q but ri
= yipr/Mipr = 1+ (my/mgd) (y’:‘/TRi) =1+ (m:/mip)ri. Since my/mag
<0, we can write this ryq =1 — (M/M; )r.. But My =36,
M: < §/QsoMi/M 1< $/N/=1/,0=21 —ry1= ri(Mi/M; (1)
< ri/@Q andsol = ri > 1 — vi/Q@ = f(ri). Thus, the evelution of #
for r; < 0 is given by f(-), so r; € A and r; < 0 implies ri;1 & A4;
while if r; € [0, 1], ¢ = f(r) = ri{y1 = 18071 € A in this case also.

For the next two theorems, we assume that a minimum step size
has occurred, with M; = §, and that r,_y € A, so that r; € A. Since
ri € A, we must have r; & A, for some J, 0 < J = n, where = is the
stability exponent for P and . For almost all cases of interest, steps
of size § will continue to oceur at least every J steps, and Y will be
periodic ; the sole exception, which we dispose of first, is when P > 1
and J = n, in which case Y is unstable and a step of size & never
FEOCCUTS.

Theorem 141 If M, 28, rn€ AN A, = B, and P"Q > 1, then
Fivi = J(rs) and My; > 8 for all § > 0, so that Theorem-6 aqnd uls
corollary apply and ¥ is unstable.

Proof: If M; = 6 and r. € B,, then by Theorem 13, rypn = f*(ri)
E Ay, and Miyn = P*M;. But P*Q > 1, so M. > M./Q = §/Q,
and My 1 = QMipn = PPQM; = 8P™Q > 8. Thus, ripnyr = f*H(r)
€ Ba, Mitntr 2 8PQ, and 50 riy(nyie € Ba and Moy uenp = 5(PQ)*
forall & = 0.

The next theorem characterizes the ultimate behavior of the P, @
delta modulator with minimum step size for the more interesting cases
—those not eovered by Theorem 14. Thus, we assume that M; = §
and »; € A, with r; €& A, where P/ < 1. Without loss of generality,

390 THE BELL SYSTEM' TECHNICAL JOURNAL, APRIL 1976



we choose signs so that m; = M; = s and y; — § = yi_1 = 0 {we con-
tinue to assume £ = 0, i.e., X is identically zero). Since r; € A5, we
have rips € A 50 154041 € Ag for some K, 0 £ K £ n. To simplify
the notation, we set [ = 2J + 2.

Theorem 15: If mi=8, o€ AN Ay, PPQ £ 1, and ripa41 € Axk,
then K < J. If K = J, then P > py, and Yip1 = Yi) Migr = My, and
Y is periodic with period 2J + 2 and mazimum amplitude sP7 = §P™.
Moreover, for each j such that 0 £ j £ n and P > p;, the sel of initial
conditions which produce a (2] + 2)-step period has positive Lebesgue
measure.

Proof: When J = 2, we have yi = yi + 8P <0, my = 8P; yise
= yi + 8(P + P?), miy: = 8P?; and, in general (even for J = 0, 1),
we have Y7 =y + 825 PP =0, miys = 8P/, Since P/Q <1,
8P7 = 8/Q so that mys41 = —8. If K = J, then

J
Yeorpt = Yips — 8L Pl=yi—d =y 20,
J==fi

s0 that K = J; thus, K 2 J implies K = J, so we have proven that
K = J.If K = J, then we have seen that y:_14: = y:1; also, Mg = 8
since Mi-141 = —spP7 and PJ é l/Q Thus, Yipr = Yi-141 + 6= Yi-1
+ & = yi, and myy; = 8§ = m;, s0 Y is periodic with period I = 2J + 2.
To show that P > py when K = J and Y has peried I = 2J 4 2, we
observe that by the definition of J and K {=J) we have (see Fig. 7,

s

|

1 1 ] 1 | | 1 | | 1 |
i—1 i i+1 i+2 i+3 (+4 i+5 i+6 i+7 i+8 i+9

Fig. 7—Period-eight apv hunting with minimum step-size 8.
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with J = 3)
Yirg1 <0, Yus 20,
Yoyt > 0, Yici = 0,

so that
F=1
Yirum1 = Yia + 0 2 Pi<0
j=0
Yieapt = Yiorqt + 8P7 = iy +8P7 > 0,
so that
=1
Vi + 8 3 p7 < yia + 8P,
y=0
30
pPr—1 ;
o1 <P
from which

P.i'+1 — 2PJ' + 1 s 0.

But this is the defining condition for P > ps. To show that each j
satisfying 0 £ 7 £ n and P > p; comes up with positive measure, it
is only necessary to observe that choosing ye, mo such that § £ —my
=5/Q and

J—1
—8PT <y < —8 ¥ Pi

j=1
will realize the 27 + 2 step period analyzed above with ¢ = 1.

We note that once a minimum step occurs, the series of “reversal
numbers” (of which the J and K are two adjacent elements) is mono-
tone decreasing (K < J)} until it repeats itself (K = J), after which
it is constant, and Y is periodic. This monotonicity holds only ajfter &
oceurs; when there is no minimum step size, there is no monotonicity,
except that when P @ = 1 an occurrence of J = n will result in
nothing but »’s thereafter. What we have shown is:

Corollary : If 6 is the minimum step size and M; = 8 wherer; € A [ 4
then unless PQ > 1 and j = n, within (j + 1)* steps ¥ will become
pertodic with period 2J + 2, where 0 < J = J.

Progf: Until the reversal numbers become constant, &t least every
j + 1 steps a new, lower reversal number occurs, and there are only
7 + 1 possible such numbers ; thus, within (j + 1)? steps the minimum
number J is obtained and Y is periodic.
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On the Design of All-Pass Signals With
Peak Amplitude Constraints
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In this paper, the problem is discussed of designing a signal other than
the standard smpulse function to be used to test a digital system of limited
dynamic range. The consirainis on such a signal are that it must be all-
pass, of limited duration (approximately), and peak-amplitude-limited
s0 as to ulilize the limited dynamic range of the system as far as possible.
Stated another way, the goal is to spread oul the energy in the signal as
much as possible to reduce its peak amplitude and therefore to be able to
pass higher energy signals through the system without clipping them. The
class of all-pass signals (obtained as the impulse response of a variable
order all-pass filter) was investigated for use as the test signal. The parame-
ters of the all-pass filter of a given order were optimized to give an all-pass
signal whose peak amplitude was the smallest possible. Filter orders from
first to eighth order were designed and investigated. Il was found thal
reductions in the peak signal level of up to 11.2 dB (relative to the signal
level of an equivalent energy impulse) could be oblained For an eighth-order
all-pass signal. Interpolated versions of these all-pass signals showed that
the peak value of the interpolated waveform was only on the order of 6 dB.
Thus, the use of an all-pass signal, rather than the standard impulse, for
testing a digital system can resull in about 1 bit extra dynamic range.

. INTRODUCTION

The problem of designing digital signals for testing (e.g., evaluating
the impulse response) digital systems is one which has received very
little attention in the digital signal-processing literature. This is be-
cause the impulse function is used as the standard test signal for most
systems. Although the impulse function is suitable for this purpose in
a wide variety of digital systems, there are cases in which the use of
the impulse function leads to problems. Generally, such systems are
those that have limited dynamic range—e.g., digital hardware im-
plementations of a system, or fixed-point, finite, precision, software
implementation of a digital system. In this paper, the problem is con-
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sidered of designing signals other fhan the standard impulse function
to be used to test digital systems of limited dynamic range.
The desirable features of a test signal for digital systems are

(2} Tt must be an all-pass signal in that it must be capable of testing
the system (i.e., determining the frequency response of the
system) for any admissible frequency.

(#2) It should be of limited duration.
(#) It should be peak-amplitude-limited, to give the maximum
utilization of the limited dynamic range of the system.

The above features define a desirable test signal 2s one whose energy
is spread out as much as possible to reduce the peak signal amplitude
and therefore be able to pass higher energy sighals through the system
without clipping.

If we let z(n) denote the test signal, then the requirements described
above can be related to z(n) and X (e}, the Fourier transform of
z(n), in the Tollowing manner. For the signal to be all-pass implies

| X(e®}| = C, allew, (1)

where C is an arbitrary constant value. If we let ¢ ='1, then by
Parseval’s theorem we have

2 @

o [ 1X@) e = 1= ¥ 2, @
m Jo n=0

i.e., the overall energy of the test signal is unity. For the signal to be

of limited duration (at léast approximately} requires

2 Tn) =, (3)
=i

where ¥ =2 1 and N is the signal duration in samples. (The constraint
of (3) has not been used directly in the work presented here, since it
was found that it was satisfied by all the signals that were designed.)
Finally, the constraint that the peak signal amplitude be as small as
possible requires that max, |z(n)| be minimized over the design pa-
rameters of the signal.

Besides the standard impulse function, the only other class of signals
that is appropriate for a test function (i.e., that has the set of features
described above) is the set of all-pass filter impulse responses. Such
signals can be optimized to meet the design requirements by varying
the parameters of the all-pass network to minimize the peak signal
amplitude.

The purpose of this paper is to discuss the issues in the design of all-
pass signals to be used to test & digital system. In Section I, the design
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methods used to optimize these all-pass signals are discussed. In
Section 111, considerations dealing with the interpolation of the result-
ing all-pass test signals are given. Finally, in Section IV a brief discus-
gion of the effects of filtering these all-pass signals is given.

If. DESIGN TECHNIQUES FOR ALL-PASS SIGNALS

The signal design problem is one of choosing the parameters {the
filter coefficients) in the implementation of an Nth-order all-pass filter
to minimizge the peak amplitude of the resulting impulse response. For
the actual implementation of most all-pass filters, it is generally con-
venient to consider the cascade realization which is of the form

N
X(2) = ng(Z), (4)

where N, is the number of sections in the cascade and H(z) are the
individual sections, which generally are either first-order or second-
order sections. A first-order all-pass section has the system function

—qa + z—l
Hi@® = Zgr ®
whereas a second-order all-pass section has the systern function
b —ezrl 42t
Hi(z) = 1 — ezl + biz? ©6)

The design problem is thus to choose the all-pass parameters (a, bs, €4)
to minimize the peak signal amplitude in the impulse response of the
filter.

For the first-order case, the parameter a can be analytically de-
termined. In this case, the difference equation is

z(n) = uo{n — 1) — awoln) + ax(n — 1), ¢))
where
uo(m) = 1 n =10
0 otherwise,

or

z(n) =0 n <0

z(0) = —a

2(1) = (1— a?) ®

z(n) = (1 — aBa™, n = 2.

Since |a| < 1 for stability, it is seen from (8) that the largest possible
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samples are z(0) and z(1). Thus, to minimize the larger of |z(0)| and:
|z(1) | requires a choice of a such that

[z(0)| = |z(1)] ®
or
Iaminl = !l_a'fnml' (‘10)

The solution to {10) gives Gu;, = 0.618.

For optimization of higher-order all-pass filters, no analytical soluz
tion could4be found. Thus, an optimization method was used to obtain
the desired solutions. In particular, 8 nonlinear unconstrained optimiza-
tion method developed by Powell' was used in which the evaluation
of derivatives was not required. The maximum peak amplitude of the
all-pass signal can be minimized by minimizing the function

In practice, however, the function of (11) is not unimodal or smooth;
and thus it is not practical to find the optimum choice of parameters
without a good starting point {initial choice of parameters) for the
optimization routine. To obtain such starting points, (11) was used as
the objective function for a value of p = 4. A variety of randomly
chosen starting points was used to obtain the best solutions for p = 4.
The p = 4 solutions were then used as starting points to determine the
optimum p = = solutions.

The parameters that were varied within the optimization program
were the b,’s and ¢/’s of the second-order sections within the cascade
and the a for a first-order section (used whenever the order of the
all-pass filter was odd). The advantage of using the cascade realization
is that it is simple to ensure stability of the resulting filter. Additionally,
instabilities occurring during the optimization program because of
poles drifting outside the unit circle were easily detected and cor-
rected with minimal computational effort.

Using the Powell optimization method, the optimum all-pass signals
of order 1 to 8 were designed. Table I gives values of the optimum
all-pass filter parameters and the resulting peak signal level foreach
of these cases. It is seen in this table that the peak signal level falls
from 0.618 to 0.275 as the all-pass filter order varies from first to
eighth order. Further, it can be seen that progressive increases in the
order of the all-pass filter result only in very modest reduections of the
peak signal level beyond a second-order filter. Figures 1 and 2 show
the positions of the poles and zeros of the optimum all-pass filters and
their group delay responses for each of the filters of Table I.
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Fig. 1—Positions of the poles and zeros of the optimized all-pass signals of order
1to&

An interesting property of this ¢lass of signals is that the optimum
all-pass filter is not unique. This result is readily seen since the simple
replacement of z by 27! in the 2 transform leads to a multiplication of
the signal by (— 1)#, which does not affect the signal magnitude at all.
Thus, each pole and zero of Fig. 1 could equally be shown reflected
about the imaginary z axis and still be a valid optimum solution.
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Fig. 2—Croup delay responses of the optimized all-pass signals of order 1 to 8.

(Il. INTERPOLATION OF THE OPTIMUM ALL-PASS SIGNALS

The results of the preceding section indicate that reductions in the
peak level of the optimized all-pass signal on the order of 4 to 1 can be
obtained with an eighth-order filter. This result can be somewhat mis-
leading, however, since the continuous waveform (from which the
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signal samples could be derived} could peak up between samples—i.e.,
the actual reduction in signal level could be a fortuitous result obtained
by sampling the waveform at the most opportune sampling intervals.
If this were the case, and the test signal was used as input to a network
which approximated a noninteger delay, the output signal could be of
higher amplitude than the input signal simply because of the interpola-
tive properties of the network.

To investigate the true peak amplitude of the continuous waveform
associated with the test signal, each of the eight test signals of Table I
were interpolated using a 20-to-1 interpolator implemented using the
methods described by Crochiere and Rabiner.2® Figure 3 and Table II
show the results of interpolating the test signals. Figure 3a shows both
the test signal samples as well as the interpolated waveforms (dotted
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Fig. 3—Bamples and interpolated waveforms of (a) the all-pass signals for orders
1 to 8 and (b) the all-pass signals modulated by (—1).
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Fig. 3 (continued).

lines) associated with the signals. Figure 3b shows the alternate set of
peak-limited waveforms formed by multiplication of the signals in
Fig. 3a by (—1)". Although each test signal attains its peak amplitude
at a number of different sampling instants, its interpolated waveform
generally shows a distinet maximum amplitude. Table II also shows
that the peak interpolated waveform amplitude ranged from 0.766 for
the first-order signal to 0.421 for the seventh-order signal. Thus, in
terms of the interpolated waveform, on the order of a 2-to-1 reduction
in pealk signal level was obtained for these test signals.

One more observation can be cbtained from Fig. 3 and that is that
the test signals, although generated as the output of a recursive strue-
ture, damp out in level extremely rapidly and eould be considered
finite duration signals. It was found that 128 samples of the test signal
were sufficient for obtaining 16-bit test signals to full 16-bit accuracy.
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IV, APPLICATION OF PEAK-LIMITED SIGNALS AS TEST SIGNALS

One application of the above class of peak-limited signals is for use
as test signals for systems of limited dynamic range. By spreading the
signal energy among many samples, a test signal of greater total energy
than an impulse can be used without exceeding the dynamic range of
the system. This then enhances the signal-to-noise ratio (s/n) of the
measurement.

For a system that has approximately a linear-phase response, s/n
improvements of the orders shown in Table II can be expected. If the
system has considerable phase distortion, the amount of s/n enhance-
ment may be less. In an extreme case, a system could act as a ““matched
filter’” to a particular test signal and compress all the signal energy
back into a single sample. In this case, no s/n improvement would be
possible with that test signal, although other peak-limited test signals
in this class might be useful.

To investigate the use of the peak-limited signals as test signals, we
chose a system that consists of a complex modulator, a decimator, an
interpolator, and another complex modulator. The system was im-
plemented on a 16-bit computer, and the decimator and interpolator
were designed as discussed in Refs. 2 and 3. The net function of the
above system is that of a bandpass filtering operation. It represents a
useful type of system for speech-processing applications (e.g.,
vocoders).

The frequency response of the system is shown in Fig. 4a. It was
measured by exciting the system with the peak-limited signal for
N = 7 and taking the Fourier transform of the output. The largest
peak amplitude signal which could be used without overflow was
16384, or 2. Similarly, the largest impulse that could be used as a test
signal was 214, The frequency response measurement in this case was
essentially equivalent to that using the peak-limited signal (see Fig.
4a). The reason for this is apparent. The 16-bit system has a large
dynamic range (about 90 dB) compared to the frequency response of
the filter (about 45 dB). Obviously, the use of peak-limited signals is
not warranted.

We next considered a 12-bit implementation of the same system.*
This would very likely be the available word length of a practical
hardware implementation or small minicomputer implementation. In
this case, the dynamic range of the system is about 66 dB, and we can
expect that roundoff noise will affect the frequency response measure-
ment. The largest magnitude impulse that could be used to test this

_ " This was simulated on the 16-bit system by not allowing the use of the four most
significan$ bits.
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system without overflow was 1024, or 2'9. A measurement of the fre-
queney response based on this impulse response is shown in Fig. 4b. It
is apparent that the roundoff noise has degraded the measurement con-
siderably. The passband response has been distorted, and the peak
stopband signal rejection measures only 31 dB compared to 41 dB in
Fig. 4a.

Figure 4¢ shows the frequency response measurement of the same
12-bit system based on the peak-limited signal for N = 7. The maxi-
mum amplitude that could be used for this signal was 2 and, as ean
be seen from Table II, it contains 10.75 dB more signal energy than
an impulse of the same amplitude. In comparing Figs. 4a, b, and ¢, it
is clear that the use of the peak-limited signal has improved the
frequency response measurement of the 12-bit system. The measure-
ment of the stopband rejection is on the order of 40 dB, or 9 dB hetter
than in Fig. 4b. The passband response looks more like the essentially
noiseless measurement in Fig. 4a.

V. CONCLUSIONS

It has been shown that a class of peak-limited and essentially finite
duration signals can be generated by optimizing the p = « norm of
the impulse responses of the class of all-pass networks. Signals were
generated for all-pass filter orders from ¥ = 1 to N = 8. It was
demonstrated that this class of signals is useful as test signals for
gystems of limited dynamie range. Improvements of up to 11 dB in
s/n enhanecement were found to be possible.
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Analysis of a Gradient Algorithm for
Simultaneous Passband Equalization
and Carrier Phase Recovery

By D. D. FALCONER
{Manuscript received December 11, 1975}

A two-dimensional recetver structure has been proposed, incorporating
two innovalions: passband equalizalion, which mitigates intersymbol
interference, and data-directed carrier recovery and demodulation following
equalization, which enables compensation of carrier frequency offsel and
phase jitter, but does not require transmission of a separate pilot tone with
the data signal. The receiver is fully adaptive; the adjustment of the equal-
izer tap coefficients and of the estimale of the current channel phase shift is
based on a gradient algorithm for jointly minimizing the mean squared
error wilh respect to those paramelers.

In this paper, we analyze the dynamic behavior of the deterministic
gradient algorithm (where channel parameters entering into the gradient
expression are assumed known in advance}. The corresponding esttmated
gradient algorithm (where these parameters are initially unknown) has
previously been studied experimentally, bul is not treated here.

The first part of the present study concerns system start-up (or iransient)
response when the channel’s phase shift is fixed. Examination of the analyi-
tcal solution leads fo the qualitative conclusion that, if the equalizer tap
adaplation coefficient 8 is small relative to the phase-tracking coefficient o,
the added phase estimalion feature does nol strongly affect the start-up
behavior of the passband equalizer under typical operating conditions.
Indeed, if the equalizer tap coefficients all start at zero, their evolution in
the deterministic gradient algorithm is completely unaffected by the phase-
tracking loop.

The second situation analyzed is the sieady-siate response of the system
to a constant carrier frequency offset. In this case, the phase-tracking loop
1s found to reduce the resulting rate of rotation of the equalizer laps to aboul
8/ (ax + B) of the original frequency offsel. As a resull, the degradation in
system mean squared error due o frequency offset is typically quite small.

The final analysis is of the response of a linearized version of the
recetver struclure to sinusoidal phase jitter. When the channel's linear
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distortion 1is not too severe and the coefficient 8 is small, the system mean
squared error owing to phase tracking error is found to approximale that
of a simple, first-order, phase-locked loop.

I. INTRODUCTION

The combination of adaptive equalization and decision-directed
estimation of a fixed carrier phase offset in suppressed-carrier PAM
modems by means of a gradient algorithm has been suggested by
Chang! and by Kobayashi,? the latter also including adaptive timing
recovery. The receivers contemplated in those papers demodulated the
received data signal prior to equalization and carrier phase estimation.

Reference 3 describes an alternative receiver configuration for two-
dimensional modulated data transmission systems, combining equaliza-
tion and carrier recovery. This receiver’s distinction is that it employs
a passband equalizer* whose reference signal consists of receiver
decisions amplitude-modulating a carrier whose phase shift is the
receiver’s estimate of the channel phase shift. Following the passband
equalizer is a demodulator which compensates for the channel’s phase
shift (which may be time-varying as a result of frequency offset or
phase jitter).

The receiver's estimation of the: carrier phase shift is based on a
decision-directed gradient algorithm for estimating a fixed phase shift,
a8 proposed in Refs. 1, 2, 5, and 6. An advantage of the demodulator
following the equalizer is that the demodulator’s phase reference is
delayed relative to the actual channel phase shift by only one symbol
interval instead of by the entire equalizer delay as in the traditional
“bageband” receiver configuration. This fact, plus the provision of a
sufficiently large gain coefficient in the phase-tracking gradient algo-
rithm, makes possible tracking and compensation of typical conditions
of frequency offset and phase jitter that may oceur on voiceband
telephone channels. Computer simulations, reported in Refs. 3 and:7,
have confirmed this capability.

In this paper, we study the dynamic behavior of the gradient algo-
rithm for jointly adjusting the equalizer tap coefficients and the phase
estimate in each of the following situations: (i) start-up (transient
response) for a fixed carrier phase shift; (i7) steady-state response to a
frequency offset (#75) steady-state response to sinusoidal phase jitter.
Throughout, we consider -only the deterministic gradient algorithm;
that is, receiver decisions are assumed perfect, and the gradient of the
mean squared error as a function of equalizer tap coefficients and carrier
reference is assumed known. A stochastic gradient algorithm, which
would be used in practice, has been simulated,*” but is not treated in
this paper.
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Il. SYSTEM EQUATIONS

The transmitted two-dimensional modulated data signal is assumed
to be of the form

8(t) = Re {2 A,g(t — nT)e/et}

where A, 15 a two-dimensional (complex-valued) data symbol trans-
mitted in the nth symbol interval, ¢(f} is a band-limited baseband
pulse waveform, T is the duration of a symbol interval, and f, is the
carrier frequency. The set of possible diserete complex values that each
A, can assume constitutes the signal constellation. Quadrature ampli-
tude modulation (gam) and digital phase modulation (PM} systems are
familiar examples of two-dimensional medulation systems. We shall
assume that successive data symbols are uncorrelated;i.e.,

(4.4 =1 forn = m
=0 otherwise.

Figure 1 shows the receiver structure. The received signal, after
transmission through a noisy, dispersive channel which may introduce
a slowly time-varying phase shift, is passed through a phase splitter
to produce parallel in-phase and quadrature components. These parallel
waveforms can be represented as a single complex waveform that is
sampled and passed on to a passband transversal equalizer with, say,
2N 4 1 complex-valued tap coefficients. In the nth symbol interval,
when a decision is to be made on the nth data symbeol, the latest
(2N 4 1) complex-valued samples stored in the (2N + 1)-tap pass-
band equalizer can be represented by the complex (2N + 1)-dimen-
sional vector R.e®~, where @, is the channel phase shift (assumed
quasi-stationary in the nth symbol interval}. A sequence {8.} changing
at a constant rate with time is an example of frequency offset, while
{8.) varying randomly or quasi-periodically constitutes phase jitter.
Typically, the change in 8. in one or two symbol intervals is s0 small
as to allow us to neglect the phase-to-amplitude modulation con-
version effected by filtering the sequence of incidental frequency-
modulated components {e®}.

A
exp[—j(2nf.nt + 8 }]

RECEIVED
SIGNAL PHASE PASSBAND
SPLITTER EQUALIZER QUANTIZER [— 2>
R“eiﬂn Q, Yn A,

Fig. 1--~Two-dimensional receiver.
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The (2N + 1) complex equalizer tap coefficients in the nth symbol
interval are denoted by the complex (2N + 1)-dimensional vector
C.,= (c_y, **+, co, -+, ¢v).* The symbol * will denote transposed
complex conjugate throughout. Then the nth complex equalizer cutput
is

Qn = C:Rnejan: (1)
the real part being interpreted as the in-phase component and the
imaginary part as the quadra.ture component.

The receiver's estimate of &, is a real quantity denoted by 8,, and
the demodulator output is written

Y, = Qe ietaTia, (2)

This quantlty is passed into a simple quantizer to produce A, which
is the receiver’s decision on A, Based on this decision, the complex
reference signal used for updating the equalizer taps and the phase

estimate is
Qn = A“eJ‘(z‘l'fa:ﬂTHn)_ (3)

We define thé properties of the channel in terms of expectations
(denoted by ( )) with respect to the ensembles of information symbol
sequences and additive noise samples. The complex impulse response
X is defined by

X = —— (AR )g=fenT, 4
The positive definite Hermitian @ matrix of the channel is defined by
1
R.R. 5
= A ReRD: ®)

The normalized mean squared error in the nth symbol interval is

defined to be
1

= 4.5 (| @ueserterTHin — A, |3, (62)
which, by virtue of (1), (4), and (5), can be rewritten as
en =1 — X*@ X + v, (6b)

where v» = EfGE, = 0 is the excess mean squared error and: E, is 4
tap-error vector, . -
E, = C.git — g—1X. ¢

Since @ is positive definite, the value of en 16 & positive mlmmum,T

1 — X*@'X, when the equalizer taps C. and phase shift estimate 8.

_ 1 The positive quantity X*@X is therefore less than unity, s fact which is expleited
in the appendix.
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are adjusted so that E, = 0, or
Crefn = @ 'Xe#n. (8)

This equation is also the condition for the gradients of ¢. with respect
to C., and 8. to be jointly zero; it is satisfied by an infinitude of points
(Cn, 82).

Thus, a gradient algorithm can be used to adjust the tap coefficients
C. and phase estimate &, recursively toward optimal values. The
equations governing the evolution of {C.} and {641 are?

Cup1 = (I — BR)C, + fXeit®ntn 9
and
fopr = bn + o Im [CiXe®irtn ], (10)

where I is the identity matrix and 8 and « are positive gain coefficients.
These equations [or the equivalent equations (13) and (14)] form the
basis for the results in this paper.

In practice, X and @ would generally not be known in advance, and
the following stochastic gradient algorithm,? involving the equalizer in-
puts R,e#n, outputs §,, and modulated decisions 0., would replace
the deterministic gradient algorithm described by eqgs. (9) and (10).

Cop1 = Cu — BRe™(Qr — OF). (11y
én+1 = én + ﬁ.‘:—lz Im (Qné:) (12)

These are coupled stochastic difference equations, since successive
vectors {R,} are correlated random variables. Simple stochastic
gradient algorithms have been studied by Widrow.® The application
to equalizer adaptation, where no phase recovery is involved and under
the assumption that the {R.} are uncorrelated, has been studied by
Ungerboeck,? by Gersho,® and by Gitlin, Mazo, and Taylor." The
extension to correlated vectors {R,} has been introduced by Daniell.'?

That the algorithm specified by (11) and (12) converges and can
perform satisfactorily is confirmed by the computer simulations re-
portedin Refs. 3 and 7. Analysis of the stochastic gradient algorithm is
complicated by the possibility of a cycle-slipping phenomenon as-in
phase-lock loop systems. References 5 and 6 deal with continuous-
time, decision-directed, phase-locked loops in the absence of adaptive
equalization.

However, insight can be gained by studying instead the deterministic
gradient algorithm of (9) and (10), since the estimated gradient algo-
rithm can be interpreted as implicitly performing the averaging in-
volved in determining X and @, provided the signal-to-noise ratio is
high and the gain coefficients a and A are sufficiently small.
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Using definition (7), we can rewrite the coupled difference equations,

ae
Ewn= (I — BQ)Engi(anH—ﬁnHJ + @ X (eiBrr-8nt0 — 1) (13)
and 7
Anyy = o Im (E.X), (14)
where
A1'14-1 = 8n+1 — 8, and An+l = 8n+|_ — én.

IN. SYSTEM START-UP WITH FIXED CHANNEL PHASE SHIFT

In this section, we study the behavior of the deterministic gradient
algorithm during start-up, assuming the channel’s phase shift is fixed:
8. = 0.' General theorems tell us that, if the initial error and the
coefficient of the gradient algorithm are small encugh, convergence is
guaranteed.!® However, we are interested in sharper results for the
specific problem at hand.

The solution of (13) and (14) will depend on the initial choice of
Eo (or Cp) and &. It is interesting to consider first the special case
Cy = 0, the all-zero vector; i.e.,, Eg = — @&'X, In this case,

A= —oIm [X*aX] =0,
since @ is Hermitian, and
E,= —(I—pga)a'X.
Continuing, it is easy to show that
A, =0 for all n

and that
E,= —(I — ga)aX. (15)

Thus, at least for this special all-zero starting condition, the estimated
carrier phase shift §, does not change at all and the start-up behavior
of the deterministic algorithm is exactly the same as that of the pass-
band equalizer alone.*

Let us now consider the more general case, when E, is not necessarily
equal to the right-hand side of (15) for some n = 0, We remark that
the mathematical formulation of this start-up situation will be basi-
cally the same as that of a system transient caused by an abrupt change
in the channel’s carrier phase shift.

Expression (6b) for the normalized mean squared error involves the
positive definite quadratic form E;@E. = vy.. We can bound this term

t There is no loss of generality in assuming a fixed phase shift of zero, since any
nonzero fixed phase-shiff factor ¢/ can be incorporated in the complex channel in-
pulse response X.
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and study its evolution by writing down a recursive expression for it
and upper-bounding the right-hand side of that expression. Using (13)
with A.y1 = O for all », we can write

Yagl = E;(I —ae)a{l — pR)E,. + X*&_lx!ej3n+l — 1]
+ 2 Re {Ei(I — BA)X(1 — eBa1)},  (16)

The right-hand side of expression (16) is upper-bounded in the ap-
pendix. The derivation of the bound requires the following assumptions
about the channel and algorithm parameters.

Assumption (1): The initial value vy, = E{GE; is less than unity. This
condition is fulfilled, for example, if Cq = 0; i.e., Ep = — G7X, for
then vs = X*@'X £ 1, since the positive quadratic form X*@~'X,
which is one minus the minimum mean squared error, must be less
than unity.
Assumption (2): a < as, where aq is the solution of

ar(l + Vyo) = 2 sine (anVva),
where

sin §

gine 8 = e

Assumption (3): Let the maximum and minimum eigenvalues of the
positive definite Hermitian matrix @* be denoted respectively by Amax
and Ami.. Then the gain coefficient 8 must satisfy

2)\mm
Muax(1 + )7

where €2 is defined in terms of a by

a (L4 +5) = 260 (@), a<an
0

0 <8<

Figure 2 illustrates the solution of the equations defining ¢ and ao.
For example, if we assume a = 0.5 and v, = 1, then oo is 0.88 and
& is 0.543.

The upper bound obtained in the appendix is

Yail = E:+[@En+1 é E:QEn —_ 2,6E:_&2En
+ 61 + G)E,G°E..  (17a)

An explicit bound on v,y is obtained by first weakening (17a) using
(41) of the appendix to obtain

Yapl = (1 — 28%min + 162(1 + fg)kfnax)'yﬂr (17b)
go that
¥+t é (1 - 2.B)tmin + }82(1 + Eg))\fnx)"?o- (170)
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Fig. 2—INustration of the definitions of & and ap.

In the absence of phase tracking, « = A, = 0, and the mean
squared error at step n + 1 of the deterministic gradient algorithm is
obtained directly from expression (15)%-10:14 ag

varr = 2 M1 — BA)™ 6], (18)

where the summation is over all the eigenvalues of the matrix &, the
{A:} are the set of eigenvalues, and & is the inner product of Ey with
the normalized #th eigenvector.

Comparison of the upper bound (17¢) for the joint equalizing and
phase-tracking receiver and the exact expression (18) for the equalizer
alone yields some insight into the penalty in convergence rate imposed
by the additional phase-tracking algorithm. Consider an example where
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all {x;] (and therefore Annx and Amia) are equal to a common value A
This would represent the case of a channel with delay distortion but
not amplitude distortion (flat Nyquist equivalent frequency charac-
teristic). Then inequality (17¢} becomes

varr £ [(1 — BN + BV vy, (19)

and, recognizing that
vo =T Nl8uil?,

we can write equality (18) for the case of no-phase tracking as
Y1 = (1 - 18)\)2"‘70- (20)

In practice, the equalizer adaptation coefficient 8 is small (B K 1/7},
to minimize the mean squared error resulting from a practical stochastic
gradient algorithm.? Thus the right-hand sides of {19) and (20) should
be nearly equal, and we conclude that an ideal gradient algorithm for
joint phase tracking and equalization should not converge appreciably
slower than the equalizer adjustment algorithm alone. An exact
analytieal evaluation of the effect of phase tracking on the convergence
of a practical stochastic gradient algorithm for a severely distorted
(Amax 3> hmia) channel remains elusive. However, the results of this
section suggest that the influence of the phase-tracking parameter «
in the convergence is relatively small. This conjecture is bolstered by
the experimental results summarized in Figs. 3a and 3b. A 9600-b /s
two-dimensional data transmission system was simulated, employing
the stochastic gradient algorithm described by eqs. (11) and {12).
The transmission channel, whose frequency characteristics are shown
in Fig. 3a, was regarded as severely distorted (it violates the minimum
standard for private line voiceband channel data transmission). The
plots of measured mean squared error versus time for a = 0 and for
« = 0.2 shown in Fig. 3b are very similar, indicating that little penalty
in convergence rate is to be ascribed to the use of joint decision-
directed phase tracking.

IV. CASE OF FREQUENCY OFFSET

In this section, we study the behavior of the system in the presence
of frequency offset by obtaining steady-state solutions to eqgs. {13) and
(14) when the channel phase shift increases linearly with time; i.e.,
A, = 27AT, where A is the frequency offset. In this case, eq. (13)
becomes

Enps = (I — B@)EeiGnm2ea)  go1X (eiBnni—2eaD — 1), (21)
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Fig. 3a—Frequency characteristics of the simulated channel.

A steady-state solution to (21) and (14) is obtained by substituting

the trial solution,
E.=E
An = 2x(A + 8T,

and then solving for the fixed quantities E and & The substitution
results in

E = (277 — )M X, (22)
where M is the matrix
M =1— ¢™T(] — pR)

and
22(A 4+ 8)T = alm (E*X).

= o Im [(e#%7 — 1)X*@M*X]. (23)

It is clear from the definition of M that the eigenvectors {w:i}¥y of @,
which form a complete orthonormal set, are also those of 3. Thus,
expressing the vector X as a linear eombination of u;, we write

N
X = E Gil‘l‘;
=N
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Fig. 3b—Convergence with and without phase tracking (ideal reference; all
equalizer top coefficients start at zero).

we can rewrite (23) after a little algebra as

' N |G

= —i2xdT __
20{A + 8)T = aIm[ (¢! 1}] oy WL = T = ]
- —aBsin2rdT 3 |G4* (24)

= —N 1-— 2(1 - B)\;) co3 2r8T + (1 - ﬂk.‘)zl
where {A;}}-_y are the eigenvalues of @ and are positive and real.
The excess mean squared error is similarly given by

¥+ = EnQE, = |7 — 1 2ZX*a ' M*aM1aX

= 2(1 — cos 2x5T)

N KL
|Gl (25)

,’=E_N )\,’[1 — 2(1 — B\ cos 2w8T + (1 — ,3)\;)2] ’

Equation (24) is a transcendental equation whose solution & is
clearly not zero in general. The quantity § may be interpreted as a bias
in the receiver's estimate of the frequency offset. This ‘‘residual”
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frequency offset then must be compensated for by a rotation of the
gqualizer complex tap coefficients at rate § Haz.

For purposes of illustration, we again consider only a special case
of a “good’’ channel, for which all \; = 1and 3, [G4|* = 1. Then (24)
becomes

—apf sin 2x§T (26)

206+ 0T = 50— g)(1 = cos 2r6T)

Typically, 8 € @ < 1; for example, 8 = 0.001 and « = 0.2, The left-
and right-hand sides of (26) as functions of 2#87T are sketched in Fig. 4.
Apparently in the region of intersection, 2737 « # and sin 2x5T
= 2787T. Solving (26) with this approximation yields

- 2#&

8T.

2r{(A + 8)T =~

Thus
oy —BE
8 = a8’ (27)
and the necessary rate of rotation of the equalizer taps has been reduced

by a factor of 8/(a + g), which is about 1/200 for a typical case,
a = 0.2,8 = 0.001. The corresponding normalized excess mean squared

error is
. o (2weT) (2rAT)? )
E.CE. R 5 (0nsT) ™ (@ + A + (2rATY (28)
If A=1Hz, « =02, 8 =0001, T =1/2400 s. This amounts to
about 10—,

V. STEADY-STATE SINUSCIDAL RESPONSE

The phase jitter process {4,} that occurs in telephone channels is
typically quasi-periodic. It is thus of interest to determine the steady-
state solution of the coupled difference equations (13) and (14) when
the driving term {8.} is sinusoidal.

It is convenient at this point to rewrite eqs. (13) and (14) further
in terms of eigenvalues and eigenvectors of the matrix @. Since @ is
Hermitian, its eigenvalues [A;}{L_x are positive real and its eigen-
veetors {w:}Y._y form an orthonormal set which is a basis in 2N + 1-
dimensional space, Using these properties and expressing the vectors
E, and X as linear combinations of the [u:},

N

En = Z gnivi
i=—N
N

X = Z G-‘Bi,
i=—N
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Fig. 4—1Illustration of the solution of
—af sin 2x5T

2r(A + 0T = e T30 — 8)(0 = cos 2m8T)

we can write (13) and (14) as

Emin: = (1 — BN &, i Buri=tary L % (eﬁﬁnﬂ—anﬂ) - 1)
' ~N=<isN (29
and
. N
Avpr=a _ZN Im (8,G2). (30)
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We now make the following change of variable in (29} and (30).

Define .
& GieiBrtn) = g+ gy, (31)

Then we can write the real and imaginary parts of (29) as

|2 . .
Ueatni = (1 — BN) Ui + @ [eos (6. — 6.) — cos (Bapr — Gapr)],
—N=2t=N (32

and

G2 . A .
Vnpny = (1 — BN)vwi + u [(sin (. — 6.) — sin (fayr — 6a11)]

A

and we can write (30} in the form

N

b1 — b=« 'ZN [¥ni cos (B — 8.) — uaesin (8, — 8,)].  (34)
Equations (32), (33), and (34) are a set of nonlinear coupled differ-
ence equations. In particular, eq. (34) is reminiscent of the equation
governing s discrete-time, first-order, phase-locked loop. We shall solve
linearized wversions of (32), (33), and (34). Assuming the steady-state
error angle (8, — 6,) for n >> 1 is very small, we replace cos (6. —0.)

by 1 and sin (8, — 8.) by (8, — 8,). Then (32) becomes

Ut = (1 — BhJuns,
= (1 — Bh) " gy, —N=72N,

which approaches zero in the stéady state (assuming § < 1/, for all 7).
Thus in the steady state we are left with the linearized versions of {33)

and (34):

Gif* - .
Ving1)t = (1 b ﬁxf)vﬂ‘l. + I A‘ (8n+1 = Bn — Bﬂ+1 + en)
_N<isN (35
and
" - N
bor—Bn—a 5 bas (36)

i=—N

Equations (35) and (36) are linear and can be solved for a given
sequence of channel phase shifts {#.}. We consider the ease where the
phasge jitter is sinusoidal with frequeney o rad/s; i.e.,

6. = Re (Je*rT),
where J is a complex eonstant. The solution for {v.;} is also sinuscidal:

vai = Re (VehnT); —-N=7i=N. @37)
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Substitution of this trial selution in (35) and (36) yields a value of
V', after some algebraic manipulations.
J(1 — e®TY|E,|?
Vi= — £ _
)\f(]. — 8\ — G’I“T) (1 —a 3 ZN ‘G,g[z/[(l — ,B)\k - 8-’""""))\;,])
(38)

It follows from the sinusoidal variation of {v..}i~ _» that the error
angle {#. — 8.} and the equalizer tap coefficient vector C, also vary
sinusoidally with frequency w in the steady state.

The excess time-averaged mean squared error can be calculated from
expression (31}, (37), and (38).

v = (ya) = (E:QE.)

N
PMR R
1=N

|TJ2]1 = emT|28,

T 31 — e*T — a8y 2’ (39)
where
_ |Gs?
81 = ,<=Z.N M|l — BN/ (1 — e®T)|[2
and
_ = |G |?
S v ey W
The total mean squared error is, from (6b},
(en) =1 —X*a X + v
_p &Gl 1~ RS,
- 1,-._.,2_1\; ;i + 2|1 — el — C!Szlz (40)

Typically, if the overall mean squared error is close to zero,

¥oo|@? )
] and Bh: <& |1 — eT|.
im =N N

Then the excess mean squared error in (40) is approximately

1AL = o]
2[1 — enT — af?

This expression corresponds to a previously derived, approximate, mean
squared error due to sinusoidal jitter in the absence of noise [see eq.
(39) of Ref. 3]. That equation, valid for a first-order, phase-locked loop,
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was derived ignoring the coupling between egs. (13) and (14) and
assuming perfect equalization. Calculated curves of mean squared
error versus « are found in Ref. 3.

VI. CONCLUSIONS

Previous studies have shown that the functions of joint passhand
equalization and data-directed carrier recovery in a QAM receiver can
be formulated as a gradient search algorithm. If the channel parameters
entering into the expression for the gradient of the mean squared error
are known, it is termed a deterministic gradient algorithm. In this
paper we have analyzed the start-up bebavior of the deterministic
gradient algorithm and also the steady-state response to frequency
offset and to sinusoidal phase jitter. The more practically motivated
stochastic or estimated gradient algorithm, in which the channel
parameters are initially unknown, has been studied experimentally and
awaits further analytical study.

It was shown that, under typical channel conditions, when the
carrier phase offset is fixed, phase tracking does not greatly slow down
the start-up behavior of the deterministic gradient algorithm, at least
provided the equalizer adaptation coefficient 8 is much less than that
of the phase estimator a.

The phase estimator was first proposed as an adjunct to the pass-
band equalizer, to mitigate the effects of too-rapid tap-coefficient
rotation in the presence of channel frequency offset. It has been shown
that frequency offset still causes tap rotation in the equalizer-plus-
phase estimator system, but that the rate of rotation is tolerable, being
on the order of 1/[1 + («/8)] times the amount of frequency offset.

The steady-state response of the linearized system to sinusoidal phase
jitter was obtained. When linear distortion in the channel is not severe
and the coefficient 8 is small, the systern mean squared error due to
tracking error approximates that of a first-order, phase:locked loop,
as was assumed in an earlier paper.

APPENDIX

We wish to upper-bound the right-hand side of (16), given assump-
tions (1), (2), and (3) of Section IIIL

Eiy1GE. = Eb(I — 8@)G(I — BR)E. + X*@ X[+ — 1[7
+ 2 Re {Ei(] — BA)X(1 — e7Antn)},  (16)

where A, ., was given by (14).
The first term on the right-hand side can be written

E'GE. — 28E.Q*E, + F*E.GE..
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The matrix @ is positive definite and Hermitian; hence,
—EYPE, = — (@Q'E)*Q(QE,) £ —AuinE,GE,,

where Amin is the minimum eigenvalue of @. Similarly, E;G3E,
< M. ErGE,, where Auax 18 the maximum eigenvalue. Thus we note
for future reference that the first term in {16} is bounded as

EyI — 8aYe(I — BA)E, £ (1 — 28uin + B hmax) ERQEs  (41)
The second term in (16) is
X"‘a—IXJeﬁ‘ls"+1 — 1|2 = sin? B—;ﬂ ;
since X*@~X < 1. Upper-bounding sin® (Aey1/2) by (A.41/2)? and
substituting expression (14) for A,,, we have
X*@-X|ed — 1|2 £ o Im (E;X) 2 (42)

The third term in (16} can be written as the sum of three terms.

2 Re {EX(I — &)X (1 — e~2»n1)] = 4 Re [Er(I — 8@)X] sin? -AE—“
— 21Im (E:X) sin A,y + 28 Im (E;@X) sin ... (43)
As in the inequality (42), the first term in (43) is upper-bounded by
o?|ER(I — @)X |[Im (E;X)

The matrix I — 8@ is Hermitian ; its eigenvalues are {1 — 8X;}, where
the {\;] are the eigenvalues of @. Let Anux 80d Awmin be the maximum
and minimum eigenvalues, respectively. By assumption (3), 1 — BAmax
> 0 and thus I — g@& is positive definite. Therefore,

|Ex(I — ga)X| = |Ex{I — pa@)yiaiaH(I — Ba)iX|
< [Eqg¥(] — ga)@IE, J[X*a (] — ga)a’X], (44)
where we have used Schwartz’s inequality. Using the positive definite-

ness of I — @ and @, we can further upper-bound the right-hand
side of (44) by

[Ei(I — BA)X| £ (1 — Ahni)(ERGE,)HX*a—X)?

<
= (E.GE.), (45)

since the quantities 1 — BAnie and X*@'X are less than unity. Thus
we have upper-bounded the first term in (43) by

4 Re |EXI — @)X} sinz%ﬂ < ?(EXGE)[Im (EX) . (46)
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After substituting for A,,; using eq. (14), we can express the second
term in (43) as
—2Im (E}X) sin Ay, = —2a[Im (E;X)?sinc [« Im (EZX)], (47)
where
sin #

incd = -
sing 2

The third term in (43) is
2]8 Im (E; @X) sin An-{-l‘,

which ean be upper-bounded, using (14) and the inequality |sin A|
< |Al, by

208 (| E;0X[)[|Im (E;X)|] < ¢8| E;aX |
2
+ % [Im (E;X)?  for any arbitrary ¢,

where we have used the simple inequality
%
2084B < SFA + =3 B

But
|EGX|? = | (Ez@)(a*X)[?
< (E;@E ) [X*a'X]
< E;Q°E,,

by Schwartz’s inequality and the faet that X*a—X £ 1.
Thus the third term.in {43) is upper-bounded by

A 1

OB (EXGIE,) + % [Im (E:X)T. (48)
Finally, substituting {42), (46), (47), and (48) into the right-hand
side of (16}, we have

Yni1 = Epp1@Eqy1 £ ERGE, — 28E,@°E, + 821 + €)EG°E,
+ a®,.[Im (E;X)7?, (49)

where ¢ is arbitrary and
Rn = o [1 + (ERGE)t + ;12] — 2sine [o Im (E;X)]. (50)

We make the following choice of €: ¢ = ¢, where e is defined by (with
vo = E;QEy)

o (1 + Vo + i—g) = 2 sine (aVyo). (51)
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Figure 2 is a sketch of the left- and right-hand sides of eq. (51) as func-
tions of e for various values of e,. Equation (51) has a unique solution
with 0 £ 2 < » aslong as 0 £ & < «p, where «q is defined by

ao(l + Vo) = 2sine (aoVyo).

Note also that, by assumption (3), the coefficient 1 — 28Anin
+ B\max of ELGE, in the bound (41) is less than 1 and hence (49)
can be weakened to

E', QE..; < ELGE, + &.[Im (EXX) . (52)

Lemma: ®, is negative, and hence the sequence {v» = E,QE,.} is mono-
tone decreasing.

Proof: We first observe that the sinc function in (50) defining ®. is
even, positive, and monotone decreasing provided its argument’s
absolute value is less than #. But its argument is

aIm (EX) £ «| Erata¥X].
This can be bounded, using Schwartz's inequality, by
a(E.¢E . X*¢ X))} < a:('E:‘tf.'?.E,.)i

and so
— gine [a Im (E;X)] £ —sine [«(E,GE.)] for a(ErGE.)Y < 7.
(63)
In particular,
alm (EX) £ avyo < 7
by assumption (1), and hence we can upper-bound ®o by
moga(1+M+§)—2sinc {avr0). (54)
i}

According to our choice of € = ¢, defined by (51), the right-hand
side of (54) is zero, and so ®y = 0. It follows from (52) that vy, = \{:Y_o,

which is less than = by hypothesis. Thus ®, is bounded, using (53) and
€ = €, by ®: £ &,, where ®, is defined by

G = a1+ 2|~ 2sine @t (55)
i

and &y = 0 by the definition of &. Now since Vy1 £ Vyo £ 7,

—9sine (ay}) <€ —2sine (avd)

and so
Ri=R, = Ro = Q.
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Similarly, from (52), v < vi and by induction

Y E ¥t == Yo

and all ®, £ 0.
Q.E.D.

Finally, since R, is negative, we obtain the following recursive upper
bound from (49):

Yos1 = Er1 QE.1 £ ERQE, — 28E;G°E, + (1 + )EZQ'E.. (56)
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Spectral Occupancy of Digital
Angle-Modulation Signals

By V. K. PRABHU

{Manuscript recelved December 2, 1975)

The speciral or band occupancy of an RF signal i3 often defined as the
bandwidih that contains a specified fraction (usually 99 percent) of the
modulated RF power. The band occupancy of binary and quaternary PSK
signals with and without RF filtering and with modulation pulses of several
shapes has been evaluated and the resulls presented in graphical and
tabular form. For a binary FSK signal with phase deviation of +r/2,
sometimes called an FM-PSK signal, numerical values of the spectral oc-
cupancy with rectangular and raised-cosine signaling have been obtained
and the resulis given in graphical form. For a binary PSK signal with
signaling rate 1/T and with arbitrary baseband pulse shaping, we have
derived a lower bound on the fraction of the continuous power contained
outside any given band, but have not been able to get a bound on the total
band occupancy. However, for an FM-PSK signal, a lower hound on the tofal
band occupancy has been derived, and it is shown that the value of this
lower bound for 99-percent power occupancy is 1.117/T. The 89-percent
power occupancy bandwidth of an FM-PSK signal is 1.170/ T with rectangu-
lar signaling and 2.20/T with raised-cosine signaling.

I. INTRODUCTION AND SUMMARY

Efficiency of use of the radio spectrum has recently become the
subject of increased attention since terrestrial and satellite com-
munication needs have placed an increasing burden on the available
rF bands.!? For spectrum conservation, the band occupancy of the
chosen modulation scheme must be small so that as many channels as
possible can be accommodated in a given band. Since the band oc-
cupancy of analog signals has been extensively discussed in the litera-
ture,*® we shall deal here only with digital signals.

For radio systems, the “occupied bandwidth” is often specified by
the spectral band which contains a certain fraction of the total RF
power.” The Federal Communications Commission {FCC) presently

R 'fFor analog FM systems, an alternate way of specifying bandwidth is discussed in
ef. §
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specifies this power to be 99 percent and requires that not more than 1
percent of the power be contained outside the assigned band.® For
radio transmission using digital modulation techniques, the additional
requirements presently specified by the FCC are in terms of the spectral
density of out-of-band emission rather than just total out-of-band
power.” For operating frequencies below (above) 15 GHz, the attenua-
tion 4, expressed in dB and equal to the mean cutput power divided
by the power measured in any 4-kHz (1-MHz) band; the center fre-
quency of which differs from the assigned frequency by 50 percent or
more of the authorized bandwidth, shall not be less than 50 dB (11 dB)
and shall satisfy the relation 4 = 35 + 0.8 (P — 50) + 10 log;, B for
operating frequencies below 15 GHz and the relation 4 = 11 4+ 04
(P — 50) 4+ 10 logye B for operating frequencies above 15 GHz where
P is the percent difference from the carrier frequency and B is the
authorized bandwidth in megahertz. For operating frequencies below
(above) 15 GHz, attenuation greater than 80 dB (56 dB) is not re-
quired for any value of P. While this is the ‘“‘necessary bandwidth”
specified by the FCC, the quantity “oceupied bandwidth’ still remains
a3 one of the parameters used to specify the assighed band.?

The spectral occupancy of binary and quaternary psk signals with
nonoverlapping pulses of several shapes has been determined and the
results presented in graphical form. The 99-percent power occupancy
band of a rsk signal with rectangular signaling is extremely large;
hence, for this case we also give the band occupancy when different BF
filters are used to confine the spectrum.

By using the classical work of Slepian, Landau, and Pollak,3® we
derive a lower bound on the fractional power, contained outside any
given band, of the conétnuous part of the binary psk spectrum.® It is
shown that the lower bound can be achieved if the baseband pulse is
the inverse sine function of a certain prolate spheroidal wave function.
It is also shown that the smaller the value of the lower bound, the
smaller the amount of total power that can be contained in the con-
tinuous part (the total rF power has been normalized to unity). We
have not been able to get 2 bound on the total fractional power that
may be contained outside the assigned band of a binary psk signal or
find an -optimum pulse shape if the total power contained in the con-
tinuous part is assumed to be a specified fraction of the total RF power.

For a binary psk signal with phase deviation of +w/2, sometimes
called an FPM-PsK signal, numerical values of the spectral occupancy

* For details, see FCC Docket 19311, FCC 71-940, adopted September 8, 1971,
released September 15, 1971; FOC 73445, adopted May 3, 1973, released May 8,
1973; FCC 74-985, adopted September 19, 1974, released September 27, 1974,

¥ Another method of determining “sufficient bandwidth’’ for psE systems is dis-
cussed in Ref. 7.
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with rectangular and raised-cosine signaling have been obtained and
the results are given in graphical form. For such a binary FsK signal
with arbitrary baseband pulse shaping, a lower bound on the tofal band
occupancy has been derived, and it is shown that the value of this
lower bound for 99-percent power occupancy is 1.117/T, where T is
the signal interval. The 99-percent power occupancy bandwidth of an
FM-PsK signal is 1.170/T with rectangular signaling and 2.20/T with
raised-cosine signaling. The good spectral properties of an FM-PS8K
signal with rectangular signaling are well known," and it may be de-
tected as a psk signal with the same bit error rate performance as that
of BPsK.!2

Il. SPECTRAL OCCUPANCY OF DIGITAL SIGNALS

In our analysis for psk and FM-PSK systems, we assume that the
baseband signaling pulses have a common shape and that all signaling
pulses are equally likely. We also assume that symbols transmitted
during different time slots are statistically independent and identically
distributed.

If the digital angle-modulated (PSK or Fsk) wave is represented as

x(f) = Reexp [j[2nft + &(t) + 6]}, (1)

it is shown in Refs. 10 and 13 that the power spectral density P.(f)
of z(t) can be expressed as

Pz(f) = %Pv(f - fc) + %Pv(—f - fc)r (2)
where P,(f) is the power spectral density of
w()) = e (3)

and f, is the carrier frequency. In (1), 6 is assumed to be a random
variable uniformly distributed over [0, 2x).

The fractional power A? contained outside the band [ fo.— W, f.+ W]
can be shown to be
oo f e+ W
st =2 ["P.par— [T PuNAS, (@)
w 2fc—W

c—

In most cases of practical interest, P.{f) is a rapidly decreasing fune-
tion of f, f./W > 1, and"

A =2 f” P,(f)df. (5)
w
*Since Po(7) 2 0, 8 5 2 [ Pufaf for any J./W.

SIGNAL SPECTRAL OCCUPANCY 431



2.1 Spectral density of an M-ary PSK signal
For an M-ary psk signal (we assume M = 2% N an integer) with
signaling rate 1/7,

o) = 5 2yt~ k7)), (®)

where a, is a vector-valued stationary random process and g(t)] are
the pulse shapes corresponding to the M symbols.

If the signaling pulses in different time slots never overlap, it is
shown in Ref. 10 that P,(f) consists of a line component part P,,(f)
and a continuous part P,.(f), P.(f) = P., + P..(/),

Puh) - mlwR01 £ o(r—F), @
. 1 M M
P.() = 5 5, wan R(D ~ B ®)

where W, = [wy, ws, - - -, Wy ], Ws i8 the probability that the ith signaling
waveform g¢:(f) is transmitted in any time slot and R;(f) is the Fourier
transform of r:(f),

r() = 1P [(J)'g.-(t)], 0<it=<T -

; otherwise.

Since we assume that the M signaling pulses have a commiord' shape,
g(t) = [al’ oyt T, O!M]g(t), (10)

where «; is the peak phase value of the ith symhol and the maximum
value of g(¢) has been normalized to unity.
From (5),
A? = A7 + A (11)
where

Al = 2 jw P, (x)du

the fractional part of line power (12)
contained outside the band

and

Al =2 f P..(z)du = the fractional part of continuous (13)
o power contained outside the band.

2.2 Spectral density of an M-ary FSK signal
For an M-ary Fsk signal ®

20 = [ ' falwde, (14)
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jl) = T ayh(t— kD], B, =0,t20,t> T, (15)

P.(f) = pRU) (A + AY-R¥(), (16)
where et ar] 1 (T)
—j21, Tw - T W,

A= %W" + le_ e‘””""ﬁT)d]’ lw-r(T)]| <1, (17)

Wy 0 ]

Wa

Wy = " : (18)

0 wWar

Ri(f) is the Fourier transform of r:(¢), and

rlt) = {exp [j fo‘ h,-(.u)d.u], 0<t=T (19)
0

y otherwise.

We make the same assumptions for Fsx as for rsg. However, note
that P,(f) does not contain any lines if w] and r(#)] satisfy the in-
equality in (17). Since spectral lines do not often contain any useful
information (except for earrier recovery), their presence indicates
nonoptimum pulse shaping. In this paper, we shall not econsider Fsk
with spectral lines. For rsk, A? = A from (5).

. BAND OCCUPANCY OF A BINARY PSK SIGNAL

For binary Psk, we assume that a1 = —a» = 7/2 and that both
symbols are equally likely. From (8),

P.(f) = gm |Ba(D) = RalDIY (20)

where

T
f [e/trine (e — gmiteina(e)]g=sanfsgy
0

B.i(f) — Ro()
= 25 L “ith [’—;g(z)} ety (21)

For rectangular, cosinusoidal, raised-cosinusoidal, trapezoidal, and
triangular g(t), we have calculated P,(f) from (7) and (8) and A? from
(5). For these cases, the total out-of-band power ratio A? for binary
PsK is plotted in Figs. 1 and 2. The 99-percent (or any other fractional)
power bandwidth occupancy for binary psk may be determined from
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Fig. 1—Normslized power contained outside the band [ —W, W] for binary psk
with different baseband signaling waveforms.

these figures. Since the 99-percent power oceupancy of binary psk with
rectangular signaling is very large, we show the bandwidth oceupancy
with rr filtering in Figs. 3, 4, and 5.

1V. BAND OCCUPANCY OF A QPSK SIGNAL
For qpsE modulation and for equally likely symbols,

P.() = g7 5 &, 1B — RADI, (22
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Fig. 2—Normalized J)ower contained outside the band [ — W, W] for binary psx
with different baseband signaling waveforms.

where R,(f) is the Fourier transform of r:(%),

_ Jexp [jaug(®)], 0<t=T
ri® = { 0 , otherwise, (23)
and
a; = (21 — 5)’7;, 1=1,2 3, 4. (24)

P..(/) is given by (7).

For rectangular, cosinusoidal, raised-cosinusoidal, trapezoidal, and
triangular g(¢), we have caleulated P.(f) from (7} and (8) and A? from
{5). For these cases, the total out-of-band power ratio A? is plotted in
Figs. 6 and 7. The 99-percent (or any other fractional) power band-
width occupancy for guaternary psE may be determined from these
figures. Since the spectral density of gPsk with rectangular signaling
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Fig. 3—Normalized power contained outside the band [ —W, W] for M-ary psk
(M = 2% N 2 1) with rectangular signaling and a two-pole Butterworth trans-
mission filter. The squared amplitude characteristic of the equivalent low-pass filter
is assumed to be given by |He(f)|* = 1/[1 + (f/A}], where 2B = 24(x/4}/sin = /4
is the noise bandwidth of the filter.

is the same as that of BPsk, the bandwidth occupancy of gpsk with rF
filtering is also given by Figs. 3, 4, and 5.

V. BAND OCCUPANCY OF AN FM-PSK SIGNAL

A binary rm-Psk signal is a special case of the binary continuous-
phase Fek modulation where the phase deviation in one signaling
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Fig. 4—Normalized power contained outside the band [ — W, W] for M-ary psx
(M = 2% N = 1) with rectangular signaling and a four-pole Butierworth trans-
mission filter. The squared amplitude characteristic of the equivalent low-pass fiiter
is assumed to be given by |Hz{f)|? = 1/[1 + (f/A)*], where 2B = 24 (=/8)/sin /8
is the noise bandwidth of the filter.

interval is &= /2 and which can be detected as a psx signal. Note that
one may use a four-phase demodulator to detect a binary FM-psx
signal* to have the same bit error rate perfermance as that of spsg. 1418

* A form of binary FM-psk can be shown to be equal to the sum of two offset
quadrature-phase binary rsk signals. A form of it is, therefore, sometimes referred

to as offset @psk (Rei. 2). An FM-psk with rectangular frequency modulation signal-
ing is called fast rsk in Ref. 12 and msx in Ref. 14.
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Fig. 5—Normalized power contained outside the band [—W, W] for M-ary pax
(M = 2¥ N = 1) with rectangular signaling and a four-pole Thomson transmission
filter. The squared amplitude characteristic of the equivalent low-pass filter is as-
sumed to be given by |Hr(f)|2 = 11025/(z8 + 1025 + 1352 + 15752* + 11025),
z = f/A and 28 = 4.42384 is the noise bandwidth of the filter.

There are no discrete lines in the FM-PSK spectrum, but standard
techniques (such as the Costas loop) can be used to recover the co-
herent carrier (it is necessary to use differential encoding or prior
knowledge of framing polarity, ete., to resolve the ambiguity present
in the phase of the recovered carrier).!?
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Fig. 6—Normalized power contained outside the band [ —W, 1] for quaternary
psk with different baseband signaling waveforms.

To get the spectral density of binary Fsk, we put
oi(xi2)
r(M] = e—jwz)] (25)
in (16), (17), and (19) for any baseband signaling waveform A(f). We
assume that we transmit +1 by shifting the carrier frequency by

+ 590, 0 < ¢ =T, and —1 by shifting the carrier frequency by
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Fig. 7—Normalized IEmwer contained outside the band [ — W, W] for quaternary
psK with different baseband signaling waveforms.

— fag{t), 0 < t = T. For rectangular signaling,

11
fd T 1 T ] (26)
and for raised-cosine signaling,
11
fo=370 @)

so that the peak frequency deviation with raised-cosine signaling is
larger than that with rectangular signaling.

From (16}, (17}, and (25} one can show that the spectral density
P,(f) of binary FM-PSK is
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. % {1 + sin (2r7T)} — %cos @rfT)
P‘l’(f) = Plu(f) = TRI Rz. : 1
E %cos @rfT) ;{1 —sin (2x/T)}

R}
where Ry, B, are the Fourier transforms of {2}, r2(t)
¢
; <
exp [J21rf,g [n g(t)dt] g 0<t=T (29)

0 ; otherwise,

Tl(t) =

t
-7 <
ra(t) = exp[ J2nfa /0 g(t)dt] ; O0<t=sT (30)
0 ; otherwise.

For rectangular and raised-cosine signaling, we plot for binary
FM-PSK the out-of-band power ratio A? in Fig. 8. The 99-percent (or
any other fractional) power bandwidth oceupancy may be determined
from results given in this figure.

Vi. TIME-LIMITED AND BAND-LIMITED SIGNALS

We shall derive the lower bound on the band occupancy of binary
psk and rsk signals by using the results obtained for time-limited and
band-limited funections.

In their classical papers, Slepian, Landau, and Pollak have derived?®?
the pulse waveform of given duration that has a maximum of its energy
concentrated below a certain frequency band. These optimum pulse
waveforms are the well-known prolate spheroidal wave funetions. A
widespread opinion is that pulses with minimum energy at high fre-
quencies should have a rounded form with many continucus deriva-
tives. Since the optimum pulses (the prolate spheroidal wave fune-
tions) are usually not continuous at the limits of their truncation
interval, this opinion does not seem to be justified. In fact, Hilberg and
Rothe!” have shown recently that eonstraints of eontinuous derivatives
tend to increase the total out-of-band energy. We shall now state the
bounds given by Slepian, Landau, and Pollak.

If we define
to+T7 {2
JRFLO1E
of = T8 : 31)
JIRFOIE

—a0
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rM-psK with different baseband signaling waveforms and also the lower bound on A?
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and
W
[ 1F@1r 2
polr =" mp= [ erra, @)
[ iE s &
it is shown in Ref. 9 that
cos! (@) 4+ cos7! (B) = cos™? VAo, (33)
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where X, is the largest eigenvalue of the integral equation

1 fre sin {22 W(t — 8)}
MO = [ e T s (39

In (31), we assume that f(t) € £% where £% is the set of all complex-
valued functions defined on the real line and integrable in absclute
square [ f(f) has finite energy .

In binary psk and certain binary Fsk, we shall show that P.(f) or
P.,.(f) can be expressed as the energy density spectrum [ X (f) |7] of
a certain z({), time-limited to a duration T'e,.* From (31), if z(¢) 1s of
duration T,

e =1

T = Toq
B = Ao

(35)

and the maximum value of 8 is attained when x(¢) is a prolate sphe-
roidal wave function yot, d) given in Refs. 8 and 9, d = »WT.,. The
fractional energy A? contained outside the band [—W, W] is, there-
fore, lower-bounded by
A=1—p821— Dl = Az (36)
The values of A%, computed from the relations given in Refs. 8, 9,
and 18 are shown in Fig. 9. It therefore follows that it is impossible to
find an £%-integrable pulse waveform () which has a duration T, and
which has a fractional energy less than A%, (WT.,) outside the band
[—W, W]

Vil. LOWER BOUND ON THE BAND OCCUPANCY OF PSK AND
FM-PSK SIGNALS

Let us first consider the band occupancy of the continuous part
P..(f) of & Bpsk spectrum.

From (20) and {21},

P.(fy = [X(NI (37
where X (f) is the Fourier transform of
sin { %g(t)l
—F

0 , otherwise.

z(t) = 0<t=T (38)

In (37) we have expressed the continuous part of the spectral
density of a binary psk signal in terms of the energy density spectrum

* In FM-P2K, it will turn out that T, = 2T, where T is the duration of the signaling
waveform g(t). Hence, we use the symbol T.q to denote the duration of x{t).
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of an arbitrary pulse waveform z(f) &€ @ C £%.* z{({) can be nonzero
only for 0 < ¢ £ T. From Section VI, it therefore follows that the
out-of-band power ratio A2 of a binary sk signal is lower-bounded by

Al 2 AL (WT), (39)
where

AZ — Continuous power contained outside the band (—W, W) (40)
¢ Total power contained in the continuous part

Note that A2 # A? or A%, but

A2 Total power in P,(f)
de 10t - = 1. 41
Al Total power in P,,(f) — ! (4D

Now A2 can be made equal to AL, (WT) by choosing
z(t) = kot — T/2, d}, d==rTW, T = (42)

where ¥o(t, d) is a prolate spheroidal wave function and k is a normaliz-
ing constant.! We choose k so that the total power E contained in the
information-bearing part P.,(f) [equivalently, the total energy con-
tained in z(t)] is maximum. Since yo{¢, d) is maximum at ¢ = 0, E is
maximized by choosing

2 | ¥l — T/2,d)
b Y S M2 < T}
o) = {70 { w0, |0 O<tED
0 ) otherwise.
For this value of g{t},
-— Rﬂ B
B= rg0,0 (44)

For z(f) in (42) and g(¢) in (43), the minimum out-of-band power
ratio A2, (WT) can be attained, and

A2(WT) =1 — ho (45)

For some values of d, the minimum out-of-band power ratio Afu(WT)
and the maximum power contained in the continuous part are listed
in Table I.§ The rest of the power in the psk signal is contained in
P,.(f) or the discrete lines. For binary psk, it follows from Sec. VI and
eqs. (39) and (42) that [A?]uin i8 given in Fig. 9.

*Bince |z(t}| < 1, note that © is a proper subset of £.

T Our letter d in o(t, d} corresponds to the letter ¢ used in Refs. 8, 9, and 18.

$§ = Sin™! (z) denotes the principal value of the inverse sine, —=/2 =8 = »/2.

§ We chose the values of d given in Table I so that we can make use of the results
given in Refs. 8, 9, and 18.
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Tabie | — Minimum out-of-band power ratio of binary PSK

Minimum . :
Maximum Normalized
d = zTW wT gg;-::_g:ﬁg Power Contained in the
AL (WT) Continucus Part of P, (/)
0.5 0.1592 0.6903 09730
1.0 0.3183 04274 0.9015
2.0 0.6366 0.1194 0.7122
4.0 1.2732 0.00411 0.4736

For d = 0.5, 1.0, 2.0, and 4.0, we plot the optimum ¢(f) from (43)
in Fig. 10. For g(¢) in (43) and Fig. 10, we plot the spectral density
P..(f) of binary psk in Fig. 11.

From (11), A* = A7 + A% and sinee one usually specifies the total
out-of-band power ratio, we list in Table IT AZ, A%, and A? for g(¢) in
(43) and WT in Table I. Also for g(t) in (43), we plot the fotal out-of-
band power in Fig. 12. Comparing Figs. 1, 2, and 12, note that the
total out-of-band power for the optimum pulse is very close to that for
the rectangular pulse for 0 < 2WT = 1. In the neighborhood of

1
s T T T T T T x
6 —
4k —
w
]
= 2 -
i
o
x 1
F g = —
z s =
23 B
w
2 e .
o
=
g 2 ]
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=
a 1072 — —
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- —
z 6
2
o i N
=
3 _
1073 { i L 1 ol
0 05 1.0 1.6 2.0 25 3.0 35

Ty,

Fig. 9—Lower bound on the fractional energy contained outside the band [ —W, W]
when the pulse F(¢) is of duration Fe,.
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Fig. 10—Phase modulation pulse g(t) for binary rsx for cptimum continuous
spectral occupancy.

2WT = 0, the total out-of-band power with the optimum pulse is
greater than that with cosine, raised-cosine, triangular, or trapezoidal
pulse. This is because the optimum pulse minimizes the fractional
out-of-band continuous power and not the total power. For g(f) in (43},
it must be noted that the smaller the out-of-band eontinuous power
ratio, the smaller the maximum amount of power contained in the
continuous part. The rest of the power is contained in the discrete
lines.”
One must note that, in general,

A? # AL (WT) (46)
the total out-of-band power ratio (the total out-of-band power divided

* The total out-of-band power with optimum pulse inereases as a function of 2WT
if we use the pulse in (43) and if 2ZW1T > 2.5, %his is because an increasingly large
amount of power is contained in the discrete lines and the total out-of-band discrete
power very much dominates the out-of-band continucus power. By choosing the
pulse which is optimum for 2W1 = 2.5, we can make the total out-of-band power a
monotone-decreasing function of 2W 7.
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Fig. 11—Continuous spectral density P..(f) of binary psk for optimum continucus
spectral occupancy.

by total power) is not equal to the out-of-band continuous power (the
out-of-band eontinuous power divided by power eontained in the con-
tinuous part). Also note that we have obtained a lower bound on
AZ(WT) and not on A% Since any time funetion y(f) containing
diserete lines does not belong to £2, analysis given in Refs. 8 and 9
does not enable the optimization of A%

Our efforts to find a lower bound on the total band occupancy of a
Bpsk signal have not been suecessful so far, and it is suggested as an
interesting problem for the reader.

So that we may compare the spectral occupancy of binary psk with
several different modulation pulses for A? = 0.1, 0.01, and 0.001, we
list in Table III the values of 2WT.

Let us now consider a qpsk signal. From (22) one can show that no
single funetion x(¢) can be found such that its energy density spectrum
| X(f)]? is equal to P,.(#). If 2WT is large so that a small amount of
total power is contained in the tails, we feel that the total out-of-band
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Fig. 12—Normalized total power contained outside the band [ —W, W] for g(t)
in (43). Observe that the tota!i. out-of-band power for g(t) in (43} increases (see the
dashed portion of the figure) as & function of 2W T for 2WT > 2.5. This is because
the total out-oi-band discrete power, which is not optimized, very much dominates the
out-of-band continuous power. Note that g{1) in {43) only minimizes the fraction of
the continuous power contained outside the band [—W, W3J. For 2WT > 2.5, by
choosing g{t} which is optimum for 2T = 2.5, we can make the total out-of-band
power decrease as a function of 2WT.

power for a qesk signal is lower-bounded by the results given for a
BpsK signal. The band occupancy of qpsk for A? = 0.1, 0.01, and 0.001
for different modulation pulses is listed in Table IV.

We now derive a lower bound on the {oial band occupancy of an
FM-PSK signal. In (29) and (30), g(!) € £% is assumed to be completely
arbitrary.

By defining
(xfT—xjd) —3{rfT—7/4)
R R e : (47)
L gitrfT—mid) . g—ixfT—=[4)
R, = j . By, (48)
we can show from (28) that
1
P.(f) = 1 IRy — Rul* = |X(D]? (49)
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Table Il — Values of out-of-band power ratio A? for binary PSK
with different baseband modulation pulses

TOPtal Out-of-Band
. Ratio- A?
Pulse Normalized ower fabio
a(t) CPower q
_ ontaine 0.1 0.01 0.001
ety =0,t =0, t>T in P,,(f)
2WT | 2WT | 2WT
Rectangular
%‘(t) = 1!d01< t=T 1.000 1.807 | 19.285
rapezolda
Lo<lt sy
(t + = ) 0.750 2.000 | 4.000 | 8.000
206\ T T
21 -2), T sy 2T
Triangular
Gy
o 0.500 2.000 | 3.283 | 6.000
0<ltl =5
Cosinusoidal
T at
alt+ 5 ) = cos5R,
o 0.652 2000 | 3.744 | 6.246
0< |t = 7
Raised-Cosinusoidal
1 2t
gt) = 3 (l — GOST),
0ct<T 0.500 2.000 | 2.958 | 4.904

Table IV — Values of out-of-band power ratio A® for quaternary
PSK with different baseband modulation pulses.
Expressions for g{t) are given in Table Il

Total Qut-of-Band Power Ratio A?
Puls Nofl;malized

e ower
() Contained in 0.1 0.01 0.001

P.(f)
2WT 2wWr 2WT

Rectangular 1.000 1.807 19.295

Trapezoidal 0.769 2.000 5.389 8,672
Triangular 0.538 2.000 3.651 6.274
Cosinusoidal 0.682 2.000 3.839 6.270
Raised-Cosinusoidal 0.526 2.000 4.000 543
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where X (f) is the Fourier transform of 2(f) and

Vi?sm [2«3&: f g(u)du} , 0<({ST,
z(t) = 71—?@05 {%fd fo‘_Tg(u)du}, T<t<9T, (50)

0 s otherwise.

Since z{{) may be nonzero only over an interval (0, 27 it follows that
the minimum out-of-band power ratio A? of a binary ru-psKk is lower-
bounded by*

A2 AL (WTe), Te = 27T, (51)

where A%, is defined by (45). For 2WT > 1, one can show that
3
2 I [ B —
A% 2 AL (2WT) ~ 4nV2WT (1 6411-WT) exp (—4xWT). (52)

Note that z(¢} is not completely arbitrary over the interval (0, 2773.
From (50) one can show that if

2(f) = zr(L), O0<t=T, (53)

then
s() = Al — @B =T), Tstsel (54)
Equations (25) and (50) also yield
z(0) = 0 (55)
and
o(T) = 7o (56)

When z(#) € £% is completely arbitrary, the lower bound in (51)
is attained when

o(t) = kvt — T,d), d=2gTW, T'=2T,  (57)

where Wo(t, d) is defined in Seetion VI. Any function other than (57)
has a larger out-of-band power ratio. Since z(¢) in (57) does not satisfy
(53) to (56), it follows that the bound in (51} is strietly a lower bound
and is not attainable.?

* Note that there is no discrete power contained in an FM-pPsK signal.

t The derivation of an attainable lower hound is extremely complicated and will
not be attempted here. Also, Table V shows that rectangular signaling gives a band-
vr;ic_lth oceupancy which is very close to the lower bound when A* = 0.01, the region
of interest.
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Table V — Values of the lower bound on 2WT and of bandwidth
occupancy for binary FM-PSK with rectangular
and raised-cosine signaling

;  Raised-Cosinusoidal
Pulse g(t) Reat)a.ngullar ity = 1 1— 05@
git) = 0,02 0,¢> T ey | Y T2 BOBT
0<t=T Lower
0<t=T Bound
(Perk-to-Peak Frequency o

Deviation) X T 0.5 1.0 wr

Out-of-Band Power Ratio A? {(Bandwidth Oecupaney 2W) X T
0.1 0.773 0.930 0.675
0.01 1.170 2.200 1.117
0.001 2.578 2.874 1.517

The values of the lower bound on 2W7T and of band occupancy of
binary rm-psk for A? = 0.1, 0.01, and 0.001 with rectangular and
raised-cosine signaling are listed in Table V. The lower bound on A?
given by (51) is also plotted in Fig. 8. Note that the lower bound is very
close to A? with rectangular signaling for 1 £ A? = 0.01.

Note that the bandwidth oceupancy of binary FM-P8K with rectan-
gular signaling is smaller than that with raised-cosine signaling if
A? = 0.001." Note also that the peak-to-peak frequency deviation with
raised-cosine signaling is larger than that with rectangular signaling.
The phase deviation in one signaling interval is always /2.

VIll. CONCLUSIONS

For binary and quaternary psk systems, the band occupancy results
presenited here can be combined with the results given in Ref. 7 so
that channel bandwidth and channel spacing can be chosen to produce
minimum distortion transmission and to satisfy any specified power
oceupancy criterion. The band oceupancy of psk with overlapping
baseband pulses is known to be narrower,? but we have not considered
such signals in this paper.

The 99-percent power occupancy bandwidth of an rm-psk signal
with rectangular signaling is shown to be only 4.7 percent higher than
the lower bound. The channel spaecing requirements of FmM-psK, from

* The tails of the FM-psk spectra with raised-eosine signaling go as ~1/f%, with
rectangular signaling as ~1/f4. Hence, the bandwidth oecupancy with raised-cosine
signaling becomes smaller than that with rectangular signaling for small enough
AAT < 7.5 X 1079).

452 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1976



the point of view of distortion produced by adjacent channel inter-
ference, will be treated in subsequent work.

An attempt is also being made to derive a lower bound on the band
occupancy 1f the total power in the continuous part of a BPsK signal
is a specified fraction of the total RF power.
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A Touch-Tone® Receiver-Generator With
Digital Channel Filters
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A Touch-Tone® receiver with cyclotomic digital channel filters intro-
duced in a companion paper is presenied in this paper. A comparison
with standard digital channel filters reveals that the number of additions
per second needed to implement the channel filters is significanily reduced
using cyclotomic filters. The performance of cyclotomic fillers as a function
of their period is presented in graphic form. The results presented here
simulating the filler with random inpuls indicates that the filters ean
effectively reject non-Touch-Tone signals. Sensitivity of some imporiant
eriteria as a function of the accuracy of the clock used to control the digital
filters is summarized. The results show that the filters are not particularly
senstitve to nonaccurale clocks.

I. INTRODUCTION

In Ref. 1 we describe a family of filters with several advantages over
existing filters, which can be used to generate and detect single tones.
Here, we describe how such filters can be used in the construction of
a Touch-Tone® receiver.

The standard Touch-Tone receiver is described in Ref. 2; many
other receivers have been proposed in the literature; one which is
completely digital is deseribed in Refs. 3 and 4, and an analog receiver
with a digitally controlled center frequency is described in Ref. 5.
The basic Touch-Tone telephone must generate tones to identify the
ten basic possible inputs (1,2, - -+, 9, 0) or, in the case of augmented
telephones, 12 to 16 possible inputs (including, for example, * and # ).
This is done by arranging the input buttons in a grid of four rows and
three or four columns. Associated with each row is one of four “low”
frequencies (697, 770, 832, or 941 Hz), and associated with each
column is one of three or four high frequencies (1209, 1336, 1477, or
1633 Hz). When a button is pushed, one low and one high frequency
are simultaneously generated, corresponding to the row and column
in which the button is situated. In the central office, a detector decodes
the incoming pair of tones to determine which button was pushed.
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An incoming signal first passes through a series of tuned filters that
filter out dial tones, ring tones, busy tones, and power harmonics
{which have amplitude too large to be accommodated by the subse-
quent channel filters). Next, the signal passes through two parallel
bandpass filters (BPF) (see Fig. 1), one toreject the four high-frequency
tones (low BPF) and one to reject the four low-frequency tones (high
BPF). The output of each BPF passes through a limiter, and the limited
signal passes through four parallel channel filters. Each channel filter
is connected to a threshold detector which, in 40 ms, makes a deter-
mination of whether the tone was present or absent.

In analog receivers, the most critical section consists of the channel
filters. Hence, these have to be made with precision components to
meet the specifications for station sets. Use of a completely digital
receiver requires analog-to-digital (A-to-D) conversion, and special
care has to be taken to avoid problems caused by roundoff errors in
the BPFs. Furthermore, use of the receiver to generate Touch-Tone
gignals leads to unwanted limit cycles, impairing performance (see
Ref. 6).

We propose here a hybrid receiver based on the cyclotomic filters
presented in Ref. 1. In the hybrid receiver, the filters that attenuate
the dial tone, ete., are the standard analog filters which, using rc
active circuitry, can be integrated.® The digital part of the receiver
follows the limiting circuits (see Fig. 1), which in this case are hard-
clippers, thus eliminating the need for separate A-to-D eonversion,
and at the same time replacing a significant portion of the receiver by
digital cireuitry. The analog part need not be made with precision
¢omponents, since variation in the gains of the bandpass filters does
not affect the output of the hard limiter significantly. Only the sign
of the outputs of the BrFs are used in the digital part of the receiver.
The digital filters in the receiver are all operated with perfect arith-
metic. All channels have identical filters operating on samples of the
output of the hard limiters. However, for each channel, the sampling
frequency is proportional to the channel frequency.

Some important features of the system can be summarized as
follows:

(i) Compared to the channel filters in the all-digital receiver
presented in Ref. 3, the number of additions needed to detect
tones is relatively small. Hence, fewer adders are needed.

(#7) All digital channel filters are mechanized with perfect arith-
metic, thus avoiding problems of roundoff.

(#77) Since we use perfect arithmetic, we can also generate Touch-
Tone receiver frequencies using the same channel filters in the
receiver.
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(1) Without using any A-to-D conversion, we use digital channel
filters with analog BeFs.

(v) By resetting the filters periodically, we lessen the chance that
noise during inter-digit silences, or residual ring tone signals
before the first digit, will affect performance.

(v7) Since the channel filters have infinite @, it is possible to increase
the signaling rate.

(vi0) Although the filters have infinite @s, the peak-to-threshold
rejection is kept below 3 dB, thus still preserving the guard
action of the hard limiters.

We assume that the reader is familiar with Refs. 1 and 2. Section II
gives a description of the hybrid receiver. Section III deals with the
performance of the channel filters. Some remarks concerning the factors
that enter into choosing the period of cyclotomic filters and interval of
operation are contained in Section IV.

Il. DESCRIPTION OF THE HYBRID RECEIVER

Figure 1 is a block diagram of the general receiver. The structure of
the hybrid receiver is very similar to the standard receiver which is
deseribed in Ref. 2. The analog part of the receiver includes both the
pprs and the filters which attenuate power harmonics, ring tones, ete.
The outputs of each BPF go into hard-limiters, which convert the analog
output of the BPFs into a signal which is either 41 or —1, depending

TUNED
FILTERS
687
770
LOW FREQ TONE | LIMITER DETECTION
CIRCUITS
852
941
SUM OF
TWOC TONES | SEPARATION DIGIT
GENERATOR [ /N — — —— ————~ |
LINE FILTER i
1209
HI FREGQ TONE m
DETECTION
o~ LIMITER CIRCUITS
1477

Fig. 1-—General receiver.
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on whether the analog signal is nonnegative or negative, respeetively.
This entire analog part can be integrated using active Rc circuitry
{see Ref. 4). The channel filters which follow the hard-limiters (see
Tig. 1) are identical cyclotomic filters (see Ref. 1 and Fig. 2). The
eyelotomic filter for each channel has as its input the output of the
hard-limiter sampled at a rate p times the channel frequency, where p
is the period of the cyclotomic filter used. This requires clock pulses
of different frequencies for the different channels.

The channel filters are run periodically for an interval of time in-
versely proportional to the channel frequency, called the interval of
operation. At the beginning of each such interval, the filters are set to
zero. The magnitude of the output of each of the filters is compared
with a fixed threshold ; when the magnitude exceeds this level, a tone
corresponding to this frequency is assumed to be present (during the
entire interval of operation). The length of the interval of operation is
dependent on the permissible error. An interval of operation corre-
sponding to seven cycles of the channel frequency was found to be
sufficient (see Section 3.2). This corresponds to 10 ms for the channel
corresponding to the lowest Touch-Tone frequency, 697 Hz. Hence,
if the 697-Hz channel tone is present for the required 40 ms {(Ref. 2,
p. 11), then in at least three consecutive intervals the tone will produee
a signal above the threshold. For higher frequencies, the interval of

px 770 Hz
px 697 Hz
CYCLGTOMIC THRESHOLD
FILTERS DETECTORS
LIMITER
QUTPUT
p 941 Hz
p x 852 Hz

Fig. 2—Channel filters of the low group.
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operation is shorter. By synchronizing the intervals of operation of
all channels, testing is made for the simultaneous presence of a high
tone and a low tone. When a high tone and a low tone are each present
for three eonsecutive intervals, a valid Touch-Tone signal is assumed
to be present. The digit eorresponding to a pair of tones 1s decoded in
the standard way, as deseribed in Section I. Modification of the ele-
mentary decision process could be made to increase the signal rate,
since the interchannel rejection achieved in a single operating interval
is sufficient (see below).

We will not be concerned here with details of hardware in the
mechanization of the receiver, but will describe some ways in which
the computations in the channel filters can be performed in a multi-
plexed system.

Two basic modes of implementation will be discussed. One involves
individual channel filters dedicated to a fixed frequency. These could
be multiplexed to receive inputs from many sources (Fig. 3). This
may be more useful in eentral office applications, where a substantial
number of Touch-Tone receivers have to be operating at the same time.
In this case, the channels controlled by the same clock can be mul-
tiplexed in the usual way using serial arithmetic as described in Ref. 1.
A system of 20 receivers would require eight clocks (or clock pulses
derived from a simple high-frequency clock). For a system using, for
example, six times the channel frequency as sampling rate, one adder
per channel seems adequate. From Table I, Ref. 1, computations show
that the cyclotomic polynomial of period 6, Fs, needs 84 adds per
period. The channel corresponding to the highest frequency, 1633 Hz,
will need (1633 X 84 X 20) adds/s. This implies that an add must
not take more than about 0.36 us. So, with 0.36-us adders, eight adders
would be needed for the whole system. This is, of course, excluding the
logic involved in the decision process. If in the system we allow for
buffers in the higher frequency channels, then a slower adder eould be
used, since we wait 10 ms before a decision is made. In this case, the
speed of the adder is determined by the channel corresponding to the

LINE1
LINE 2
LIMITER
QUTPUTS
SAMPLED CYCLOTOMIC THRESHOLD
ES??HHTHE FILTER DETECTCR
-Hz

CHANNEL
LINE 20 Vg

Fig. 3—System amenable to serial multiplexing.
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lowest frequency. The lowest frequency channel requires (697 X 84
X 20) adds/s, correspending to an add in ~ 0.85 us.

Another system involves buffering the input in such a way that a
single filter can be used for two or more channels (Fig. 4). This might
prove useful when an adder is mutliplexed between channels corre-
spending to the same receiver. In this case, buffers for each channel
store the output from the limiter in segments corresponding to the
seven-cycle interval of operation. For the filter based upon Fy, this
would be 42 bits long. Since the buffer corresponding to a. higher
frequency would fill up faster than one corresponding to a lower fre-
quency, the channel corresponding to the highest frequency, ie.,
1633 Hz, is fed into the filter first, say, after 5 ms (the buffer of this
channel fills up in less than 5 ms). After completing the operation on
all the 42 bits of input of this channel, the filter is multiplexed to op-
erate on the next highest frequency channel, and so on. This requires
that the adder be fast encugh to do 7 X 84 adds in less than § ms,
ie., 940,800 adds/s so a 1-us adder would suffice. Since this adder is
idle for every 5 ms of the 10-ms eyelé, it can be used for another re~
ceiver. Henece, a 1-us adder could do all the additions for the e¢hannel
filters of two reeeivers. Modification of this elementary decision
process eould be made depending on the statistics of noise in the
channel and sensitivity of the limiter. When a high and a low tone

px 770 Hz

p x 697 Hz

SAMPLERS
AND BUFFERS

LIMITER Ko =
QUTPUT CYCLOTOMIC THRESHOLD
— _/o FILTER DETECTOR
px941 Hz
px 852 Hz

Fig. 4—Multiplexing using buffers.

460 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1976



have been simultaneously detected for three consecutive 10-ms periods,
then a decision is made that a Touch-Tone signal has been received
and the digit is identified in the usual way. The regular second-order
filter used in the all-digital receiver of Ref. 3 requires a minimum of
2400 adds/ms and a total of 96,000 adds and achieves an interchannel
rejection of ~ 7 dB. Using a cyclotomic filter of period 6 (based on F'y)
would require 840 adds to give the same interchannel rejection. This
corresponds to a rate up to 60 adds/ms for the 697-Hz channel. If the
period were raised to 30 and no use of read-only memory were made,
it would still only require a maximum of 56,700 adds to achieve the
same rejection; this corresponds to approximately 4010 adds/ms. Of
course, intermediate periods would give intermediate statistics, which
can be readily computed for systems based on F, (p = 8, 9, 12, 15,
16, 18, 24 ; see Ref. 1).

1Il. PERFORMANCE OF THE CHANNEL FILTERS

To discuss the performance of the channel filters, we need to define
certain terms. Let fi,7 = 1,2, -+ -, 8 be the eight channel frequencies.
As described earlier, each channel filter is a cyclotomic filter of some
period p, based on the cyclotomic polynomial F,. The order of the
filter is denoted by % (the degree of F,). The fundamental resonance
frequency of each filter is determined by ., the sampling interval in
seconds of the output of the hard-limiter. In order that the fundamental
resonance of the filter be at frequency f., 7. should satisfy

,o=1
PTi 7,

From Ref. 1 we see that the operation of any channel filter can be
modeled by

i
In = Z Ailn—i + un

i=]

k
y“ r z Cilpi n = 0' 1, RN N

i=l
Xy = 0 for _1 < 0,

where 2,_i, ¢ = 1, ---, k are the numbers stored in the shift register
implementing the particular channel filter, y. the output of the filter,
and u, the sampled output of the hard-limiter, which is, of course, the
input to the filter. Hence, if the output of the BPF is a sinusoid of fre-
quency f,
Uy = 1 if sin2wnfr =0
= —1 if sin2mnfr <0,
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where r is the sampling interval associated with the channel. So that
we may use the same threshold for all channels, we normalize the
interval of operation by the fundamental resonant frequency. Hence,
if each filter is operated for N steps, this corresponds to operating the
filter for Nr; 8. N/p describes the same interval in units corresponding
to a period of the fundamental resonant frequency, hence, an interval
of operation of seven periods of the fundamental, i.e., 7-1/f; 5. We will
compare performance of cyclotomie filters of different periods operating
for the same number of periods of the fundamental.

Let M{(f) denote the maximum absolute value of y, in the interval
of operation when the input square wave is of frequency f. Detection
of the fundamental frequency is based on M (f) exceeding a preassigned
threshold. A plot of M(f) vs frequency for various cylotomic filters
when operated for seven periods of the fundamental is given in Ref. 1.
The curves serve to indieate how well the filter performs in distinguish-
ing between tones. The model of a typieal curve is shown in Fig. 5.
Following standard terminology, we use the term power gain or gain
at f to mean 20 logiy M (f). Difference between power gains at two
frequencies is related in the obvious way to the ratio of M2(f) at these
two frequencies. By scaling the frequency axis linearly, the funda-
mental resonant frequency can be shifted arbitrarily. The specifica-

CGUTPUT ==

- —————— e e e e e

1
]
I
I
{
1
1
PN T
0.98f; 1.02¢,
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Fig. 5—Specifications for a typical channel.
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tions (see Ref. 2, p. 11) for the Touch-Tone receiver require that any
tone of frequeney S lying in the interval I: defined by f; = 0.987f;
— 42 f£1013fi + 4 = f be accepted as a tone corresponding
to frequency fi. This band of frequencies is referred to as the accept
band of channel . T'he threshold T'; has to be set such that M (f) > T4
for all f in the accept band. Therefore, T < Mins-<y<7M(f). We
call 20 log,, 7' the “maximum threshold” for channel 7. On the other
hand, T: has to be greater than M (f) for f € I, j# 7. We call 4;
= [Max,=; M(f;)] the “maximum gain at reject channels.”” If the
gain at any other channel 7 exceeds T, then a tone corresponding to
channel j could be mistaken as one corresponding to 7. The threshold
with 3-dB rejection is merely 20 logis A; + 3. Use of this threshold
assures that if the input to channel ¢ is a signal corresponding to some
other channel, then the signal level in the filter is at least 3 dB below
threshold. Finally, the “rejection at edge’ is the measure of the maxi-
mum drop in signal level at the edge frequencies f;” and fi* from the
center frequency fi.

Evidently, these parameters are different for different channels.
However, by setting certain standards for a typical threshold and
maximum reject channel gain, a worst-case standard set for the whole
receiver can be found to compare the performance of eyclotomic filters
of different periods. It is easily seen that I, is contained in the interval
[0.98f., 1.02f:]; on the other hand, this interval is not significantly
bigger than I, for any j. For each channel frequency f;, every f;j = ¢
lies outside the interval [0.91f;, 1.09f.]. The rejection of every alien
channel is greater than the rejection of frequencies at ends of this
interval because of the bell-shaped nature of the curve in the intervals
of interest.

Now that the ends of the intervals of interest have been scaled with
respect to the resonant frequency, we can define

T = Min [M(0.98f.), M(1.02f:)]
A = Max [M(0.91f), M(1.097)].

Then 20 logyo 7' and 20 logy, A serve as standards for threshold and
maximum reject channel gain for all channels. Figure 6° is a plot of
M(f.), T, and A for c¢yclotomic filters of periods 6 through 30, run for
seven periods of the fundamental resonant frequency. Although the
T and A as a percentage of 3/ (f) do not change appreciably as the
period of the filter increases, the effect of increasing the period of the
cyclotomic filter is not equivalent to scaling the input to the filter.

*In Fig. 8, O, +, and O correspond to A (f:), T, and A adjusted for phase
shift of input signal as deseribed in Section 3.2.
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This is because filters of larger periods assume a larger number of dis-
tinct levels. Furthermore, increasing the period of the filter may be a
way of reducing the effect of noise at the limiter as described in Ref. 1.
Although rejection in decibels is a conventional method of describing
performance of the tuned filter, the actual level of the signal may be
more pertinent to digital applications ; hence, the plot is a linear scale.
We can now discuss some specific aspects of the performance of these

filters.

10 14 18 22 26 30
PERIOD

Fig. 6—Performance vs period.
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3.1 Higher-order resonances of fillers

Since the ehannel filters are discrete-time filters, spurious resonaneces
could affect performance, especially since the inputs are hard-clipped,
and hence have all odd harmonics (see Ref. 1, Section III). The higher
harmonies introduced resulting from elipping could interfere with the
fundamental. However, for a cyclotomie filter with transversal weight-
ing function (see Ref. 1) of period p, the spurious resonance closest to
the/fundamental resonant frequency is (p — 1} times the fundamental.
Hefrwe, for example, for p = 6 (the lowest period considered here} the
clodest spurious resonance is five times the fundamental. Therefore,
for the channel corresponding to the lowest Touch-Tone frequency
(697 Hz), the first spurious resonance occurs at 3485 Hz, well outside
the' Touch-Tone band. The higher the period of the e¢ylotomic filter,
the further away this resonance will move.

3.2 Interchannel rejection

It was observed above that the ratio T;/A7 # j was greater than
T/A for all channels. Henee, the minimum interchannel rejection is
greater than 20 logys (7/A). We will use 20 logio (T/4) as a measure
of interchannel rejection. The interchannel rejection for all filters of
periods between 6 and 30 varies between 4.2 and 4.9 dB. This is predi-
cated on the assumption that the tone was synchronized with the
switching on of the filter. This, of course, need not be the case in prac-
tice. Hence, this figure was adjusted for the worst-case phase differ-
ence between switching on of the receiver and zero of the time signal.
Caleulations showed that in all cases the rejeetion was not lowered by
more than 0.5 dB for all filters. The values shown in Fig. 5 are cor-
rected for worst-case phase difference. By increasing the interval of
opération to 10 periods of the fundamental, the minimum interchannel
rejection for all channels ean be increased to about 7 dB. If the interval
of operation is of the form (m +- 3) periods of the fundamental for
any integer m, no correction for phase shift seems to be necessary.

3.3 Sensitivily to clock rafe

Some important parameters of the filters corresponding to each
channel as a function of percentage variation in sampling rate was
caleulated. The results when cyelotomic filters of period 6 are used for
seven cycles of channel frequency show that with a threshold set at
28 dB above the unit signal level of the hard-clipper, a Z-2-percent
change in sampling rate ean be tolerated. Hence, even though we have
to use eight different clock pulses, these clock pulses do not have to be
controlled especially aceurately. For cyclotomie filters of period 30,
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the largest period considered in Ref. 1, similar observations ean be
made based on computational results. It can be deduced then that the
performance of the ehannel filters are not especially sensitive to clock
rate. This allows for the use of cheaper clocks, when each channel is
clocked separately.

IV. REJECTION OF PSEUDO TOUCH-TONE SIGNALS

Whenever the input to the hard-limiter is a sinuscid, M (f} gives
an indieation of the signal level in the filter. However, when no
Touch-Tone signal is present, the output of the BPFs are not sinusoidas.
Owing to the nonlinear nature of hard-limiting, the eurve on Fig. 5
does not lend significant insight into the signal level for eomplex
signals. To simulate a family of non-T'ouch-Tone receiver inputs to the
filter, we modeled the output of the hard-limiters as a two-state sym-
metriec Markov chain sueh that the average number of changes of sign
in the interval of operation was equal to the number of changes of sign
of a tone corresponding to the ehannel frequency. Then a simulation
of the filter operating on such inputs was made. The noise level was
about 12 dB below the level in the accept band for all eyclotomie filters
of periods 6 through 30.

V. SOME REMARKS ON THE CHOICE OF INTERVAL OF OPERATION
AND PERIOD OF CYCLOTOMIC FILTERS USED

As mentioned earlier, an interval of operation corresponding to seven
periods is sufficient to provide adequate interchannel rejection. Hence,
for signaling it is possible that a 20-ms on-time reguirement. for tones
might be sufficient. In this case, one ean eliminate the need for bandpass
filters by altering the signaling proecess somewhat. Instead of trans-
mitting two tones simultaneously for 40 mis, the tones can be sent one
after the other, each heing 20 ms at present. However, it would be
necessary to determine whether this scheme ean provide adequate
speech immunity. This would reduece the number of channel filters to
four, sinee only one frequency from the two groups of frequencies is
present at a time. Beeause of simplifications effected in the receiver,
this method of signaling might prove more useful for transmitting
information using Touch-Tone signaling.

As for the period of the cyclotomie filter used, it is clear from Table
II, Ref. 1, that the number of adds/s increases as the period increases.
However, depending on the signal-to-noise ratio at the input to the
hard limiter, the use of a period high enough to make the frequency
of errors in detection small might be necessary.
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Digital Single-Tone Generator-Detectors

By R. P. KURSHAN and B. GOPINATH

(Manuscript recelved December 5, 1975)

A class of digital, linear generaior-deteciors, based upon cyclotomic
polynomzals, which have simple implemeniation and operate without
roundoff errors, is proposed. Il is shown how these filters are oplimal among
all inear generdlor-detectors which have no roundoff required i1 the feed-
back loop. The complexity of various cyclotomic filters are compared.
These fillers in general require far fewer binary adds/s than conventional
second-order filters used for the same purpose.

I, INTRODUCTION

Devices for pure tone generation and detection have widespread
applications. The most notable examples are Touch-Tone® signaling,
frequency shift keying (rsk), and multifrequency (mF) signaling.
Associated with such devices are problems of stability and predict-
ability, which in practice are dealt with on an individual basis, using
techniques peculiar to the particular application. When these devices
are realized digitally, the above problems are manifest from errors due
to operational roundoff.

Generally, tones for signaling are analog signalg of the form A4 sin wt
(A is the amplitude, 27/w is the period, and /27 is the frequency).
Devices that generate these tones are usually oscillators of various
kinds. Because of the requirement of structural siability, in practice
these devices are limit cycle oscillators. These are simulations and
realizations in hardware of nonlinear differential equations that have
limit cycles. Because of the complexity of these equations, the ampli-
tude and frequency are not easily predicted from given values of resis-
tors and eapacitors in the network.

For detection of these tones, linear analog filters are frequently used.
These are also used as generators, when the duration of the signal is not
too long compared to the period. However, passive linear analog oseil-
lators require inductors which are bulky, and the frequency and
amplitude of these oscillators can vary with changes in value of the
inductors and capacitors due to environmental conditions. Active
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linear oscillators using Rc elements are used in many applications:
However, they also generally need some form of limiting and end up
being nonlinear devices, thus usually preventing them from being used
as receivers.

Digital oscillators, on the other hand, are almost insensitive to chang-
ing parameter values and produce stable repeatable waveforms. How-
ever, in <the féchianization of thess &scillftors (which are Usually
based upon second-order linear equations), roundoff in multiplication
and addition produce errors in the feedback that lead to limit eycles
and can significantly impair the signal quality. Also, when such linear
digital devices are used as receivers, the precision required for satis-
factory performanee goes up quite rapidly with increasing €. Although
the effects of this can be satisfactorily controlled in certain specific
applications (see, for example, Ref. 1), the difficulties, in general, ean-
not be ameliorated except by increasing the accuracy of computations.®

In this paper, we present a class of digital filters that operate without
arithmetic roundoff. These filters are linear, and can be used both as
oscillators for signal generation and also as receivers for signal detec-
tion. The feedback loop of each filter is constructed in such a way as
to eliminate the possibility of roundoff or truncation errors, thus insur-
ing perfect arithmetic. This entirely eliminates the problem of limit
cycles. The filters presented, when used as generators, produce quan-
tized values of A sin wt of arbitrary aceuracy. Implementation of these
filters as receivers involves first sampling an analog input- signal to
produce a digital input into the filter. The filter is designed to resonate
for a particular input frequency, thus enabling detection.

The means by which arithmetic errors are eliminated in the feedback
loop involves constraining all feedback coefficients to be integers (a
constraint which turns out to be necessary to guarantee perfect
arithmetic in any digital filter). Thus multiplication by these coeffi-
cients can be performed as additions, simplifying implementation.

The behavior of the feedback loop of this filier is modeled by a linear
recursion whose characteristic polynomial is a eyclotomic- polynomial.
In recognition of this, we call the filter consisting of the feedback loop
alone a “cyclotomic filter.” It will be-demonstrated that the only way
to ensure perfect arithmetie with no limit on the period of operation
(end thus avoid limit cyeles) in a filter modeled by a linear recursion
(i.e., a linear digital filter) is to constrain the feedback coefficients to
be integers. Furthermore, it will be shown that, with this constraint
on the feedback coefficients and also subject to minimizing memory
and eliminating as many resonant harmonics as possible, the eyclotomic
filter is uniquely optimal among all digital linear filters, both for the
purpose of tone generation and the purpoese of tone deteetion.
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In subsequent sections of this paper, it is demonstrated how a
weighting function can be applied externally to the cyclotomie filter
to drastically reduce the impact of those higher-order resonances that
remain. This is applied also to determine those impulse responses
which have a small number of integer levels and lack higher-order
harmonics. All the eyclotomic filters of practical significance, along
with their associated weighting functions and impulse responses, are
examined.

In Ref. 3, a specific proposal is described for the Touch-Tone receiver
(and tone generator), utilizing eight cyclotomic filters.

Il. CYCLOTOMIC FILTERS

The purpose of this filter, as discussed in Section I, is to generate or
detect a single pure tone wu(f) = A sin (2rft + ¢) of frequency I
Digital implementation involves realizing a discrete time filter with
k stages of memory (see Fig. 1), which is described recurgively in terms
of an input sequence u, as

k
T = 2, @ilni + Un. (1)
=l
The numbers a:(i = 1, -+, k) are the feedback coefficients of the

filter. The filter is driven by « elock with the time interval r between
pulses. In tone generation, the filter must satisfy

In = u(n"'): (2)

at least for some initial conditions g, -, 24— When used as a
receiver, the analog input u(f) is sampled, producing a discrete input
un = A sin 2mfar + ¢); the filter (1) must distinguish between the
desired frequency fo and all other frequencies in a band containing fo.

__l .

Un

Fig. 1—Recursive filter in k stages of memory.
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Specifically, it must satisfy the resonance property
lim sup |z.]| = e, (3)

when f = fo, and in a sufficiently large band B ineluding fo there must
be no other such resonances. Then |z.| will be uniformly bounded in
B in the complement of any small interval & about fq, say, |x.| < m(8)
for all f € B, f & 5, for all n. A threshold detector can thus detect in
a finite amount of time N r, the presence (or absence) within B of an
input frequency fo (with error =3 |8|). It does this by comparing the
gain sup.sx || with the bound m(8) ;if sup {@a| > m(8), then f € 3;
otherwise it is not. Of course, the smaller the allowable error §, the
larger N must be.

To know precisely when an input w, will resonate with respect to
this filter, we first observe that the general solution to (1) is

n ok
Xn = Z Z b.-p{‘_’uj, (4)
=l i=1
where p1, - - -, pe are the roots (assumed to be distinct) of the charac-
teristic equation
k
AE— 3 gkt = (5)
=}
and by, - - -, by are complex functions of the roots. [This is derived in
(17) below.] If the magnitude of a root of (5) is greater than 1, the
filter will be unstable. However, if all roots are inside the unit circle,
then (1) will not have any resonance as defined in (3). Hence, in
general we will assume that all roots of {5} lie inside or on the unit circle.
Hence, the resonance (3) will oceur if and only if the frequency f is
such that with 8(z) = arg p; either

2rfr =.6(3) (modulo 27) of  2rfr = —§(z) (modido Zxj (6)

for some ¢ = 1, - -+, k with the propefty that |p:| = 1. That is, the
detector (see Fig. 2) will give a “yes’ response iff (6) is satisfied. As we
are trying to detect the presence of the frequency f = fo, let us sup-
pose by way of example that 8(1) = 2w for (|,]| = 1). Then an input
A sin (2rfot 4+ ) would elicit a “yes" response from our receiver. (Any
phase shift of A sin 2« f¢¢ will not affect the resonance of this signal, as
A sin (2rfot + ¢) = (4 cos ¢) sin 27t + (A sin @) cos 2xfqt, and
cos ¢ and sin ¢ never simultaneously vanish.) However, let us now
suppose that also 8(2) = 2z fir (|pz| = 1). Then the receiver would
also deteet an input frequency fi (and would not differentiate between
fo and f1). Henee, one would know only whether or not either foor fi
is among the inputs. To positively identify the presence of f,, one
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must either insure that fi is out of band or use some other means to
differentiate between f, and fi.

Similarly, because of (6), the filter cannot distinguish between the
frequency f and the frequency r! — f, since 2« (s — f}r = 2«
— 2xfr = —2rfr (modulo 2x). In fact, 2rfr and —2xfr are the re-
gpective arguments of complex conjugates, and thus we see from (6)
that no new rescnances can occur if the characteristic polynomial (5)
is altered to include among its roots any complex conjugates of pq, - - -,
pr- We shall use this fact in our determination of a good structure for
the recursion (4). When the filter is such that an input of frequency
f will resonate, we shall say that the filter resonates {or has a reson-
anece) at f.

Recapitulating, because of (6), whenever the filter has a resonance
at a frequency f, it will also necessarily and unavoidably resonate at
the frequency v! — f. To counter the effect of this in practice, r must
be made sufficiently small so that +—! — f is out of band. In keeping
with {6), we refer to resonance at the frequency f as “rescnance at the
root e27/7 " and resonance at r—' — f as “resonance at the eonjugate
root e~/ [the roots in question being, of course, roots of (5)].

The remaining resonances described by (6) are those due to aliasing.
These also are intrinsic to the system—a consequence of using discrete
(rather than continuous) input samples «,. Indeed, if resonance oecurs
at a frequency f {or, equivalently, at the roct e®?"7), it will also oceur
at all the frequencies f + mr=' for any integer m, as 2rnfr
= 2x(f + mr )7 (modulo 2r) or, equivalently,

Fig. 2—8tructure of a tone detector.

et = exp[i2«(f + mr1)7].

In practice, if conjugate resonances are out of band, resonances due to
aliasing will also necessarily be out of band.
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Hence, if py, - - -, pm are those roots of (5) of modulus 1, the filter will
have resonances within the band [0, 7] at the frequencies §(1)/2=,

[2r — 6(1)]/2xr, 6(2)/2xr, --- [2x — 8(m)]/2x7. The number of
distinet resonances in the interval [0, (2r)~'] is m, less the number of
roots among py, - - -, pm which appear along with their conjugates. This

picture is repeated in each successive interval [nr, (n + 1)r]
{(n = =%1, £2, ---).

It should be clear that, in choosing the recursion (1), one desires to
have the number of resonances as small as possible—for the purpose
of generation, to minimize the number of harmonics that can be pro-
duced by perturbations of the initial conditions; and for the purpose of
detection, to maximize the band in which the filter can detect a unique
signal. Also, of course, one desires to have the memory & (a measure of
the complexity of implementation) as small as possible.

Ideally, one would like to have only one resonance, namely at the
frequency one is trying to detect or generate. This is possible within
the band [0, =], by using the recursion &, = —Za—1 + un. However,
this resonates at a frequency equal to half the clock frequency ' and
thus also resonates at the third harmonie (27)~! 4+ 77! due to aliasing.
As the third harmonic is frequently in band, this recursion is generally
not satisfactory.

On the other hand, for some complex number p of unit modulus, one
could use the recursion z. = pTa._1 + % which also has memory one.
By adjusting =, one could make the argument of p = exp (i2x for}
small, thus avoiding any resonance up to as high a frequency as
desired. However, there are problems with this recursion. First of all,
the memory (in implementation) is not really one but two, as the real
and imaginary parts of p must be handled separately. In fact, as seen
before, no new resonances would be introduced by including the com-
plex conjugate 5 of p to form a recursion of order two. Hence, one does
just as well by replacing the characteristic equation A — p = 0 with
0=(—p)(A—p5) =7 —ax+ 1 (where the real number a = »
+ 5). The corresponding recursion replacing T = pTa_1 + ua, also
(but now explicitly) of memory two, i8 ¥n = GZa—1 — Es—2 T Un. This
is the recursion after which digital linear filters are customarily
modeled. However, as a (p) is, in general, not a rational number
(gaussian rational*), it must in general be truncated, leading to slight
frequency shifts, and multiplication round-off error in the feedback
loop of these filters (Fig. 1); this could lead to unwanted limit cycles.?
To avoid this, a (p) is restricted to be rational (gaussian rational).
Even for rational numbers, however, truncation error would oceur if

* Has rational real and imaginary parts.
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the number of bits necessary to represent the number x, exceeded the
word length allowed. In Section V we show that this can be controlled
only if e is an integer.

Hence, in the case of the real recursion, we restrict a to be an integer,
and the only possibilities are @ = 0, +1, +-2. We have already ruled
out @ = —2 (this gives the square of the characteristic equation of
Tnp1 = —n + ). If @ = 2, this gives the square of the characteristic
equation of %,y = an + %., which is even worse, as it produces
resonance at the second harmonie. The remaining three possibilities
for @ correspond to cyclotomic polynomials of orders 3, 4, and 6 (as
defined subsequently in this section). It will be shown that, by taking
a cyclotomic polynomial for the characteristic equation (3), one
always obtains the best possible reeursion (1) for the given amount of
Memory.

In general, to have perfect arithmetie {the only means by which to
uniformly avold unwanted limit eycles), it is necessary to constrain the
feedback coefficients a;, ¢ = 1, - -+, k [see (1)] to be gaussian integers
(see Section V). In fact, it will be shown that one can take each a; = 0,
+1 so that each tap in the feedback loop involves at most changing
the sign. Hence, from here on we restrict ourselves to three cases: the
a;'s are gaussian integers, are integers, or are 0, 2=1. In what follows,
we will show that the three are, for practical purposes, equivalent.

For the first case, in the récursion corresponding to A — p = 0 {no
complex conjugate)}, the restriction to integer real and imaginary parts
requires p = =1, &1 resulting in less generality than possible, as this
corresponds to the recursions of the previcus example with ¢ = 2
only. In fact, we can generalize this, and say it is always better to
inelude among the roots of (5) all the complex conjugates, and thus to
have a recursion (1), all of whose coefficients are real (and hence
integers). We will make this explieit in a moment, but let us first
indicate the reasoning. First of all, by including the conjugates, no new
resonances are introdueed (as has already been demoenstrated). Second,
if among the roots of (5) even one conjugate were missing, the coeffi-
cients of (1) would not all be real. In this case, the real and imaginary
parts of 2, would have to be considered separately, and one would thus
need an effective memory of 2k. On the other hand, if one multiplies
(5) by factors of the form (A — 5), one for each root p of (5) whose
complex conjugate is not also a root of (5), then the resulting poly-
nomial and the eorresponding reeursion will have real coefficients. The
respective degree and memory will thus be raised to no more than 2k
(the effective memory of the complex recursion). Furthermore, as will
be shown in Theorem 1 below, the new polynomial (and recursion)
obtained from multiplication by the faetors (A — p} will also be
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guaranteed to have integer coefficients. Thus, we will do at least as
well (and, as we have seen ahove, even hetter) by restricting 4ll the
recursions (1) to have real (and hence integer) coefficients.

Let us now make this explicit. Suppose one has the recursion

k
Tn = Z OLn—§ + Un,
=1

where a;{j = 1, ---, k) are gaussian integers: a; = a; + by (a; and b;
integers, 1 = ¥—1). Let y. and z. be, respectively, the real and im-
sginary parts of z.. Then

k

Yn = 2 (GilYn—s — b;'zn—j) + U,

=1

E
Zn = Z (bYu—s + a:‘zn—i)-

i=1

The only feature possibly mitigating in favor of the complex recursion
is this: We are constrained to have a; and b; be integers. If the new
recursion with added roots did not have integer coefficients, then in
spite of the other considerations above, one would choose the eomplex
recursion. However, in the following theorem we show this ds not
possible.

Theorem 1: Suppose F(X) is a polynomial with gaussian integer coeffi-
cients, and suppose py, - - -, pw are those roots of F () whose compler con-
jugates are nol also roots of F. Then F()) [If, (A — p:) has inieger
coefficienis. Furthermore, if F(A) has no polynomial with integer coeffi-
cients as a factor, then deg ' = m.

Proof : Write F(A) = g(0)h(}), where h(A) = ]I (A — p;). Then g has
real coefficients. Let p(\) be any irreducible factor of F(\) (considered
as a polynomial over the gaussian integers). Suppose p has the root r
in common with ¢ and the root & in common with k. Then $ (the
polynomial in A whose coefficients are the complex conjugates of the
coefficients of p) has ¥ as a root, and henee  must also be a faetor of
F. But 5 is also a root of , whereas & is expressly not a root of F.
Henee, any irreducible factor of F must be a factor of either g or k. It
follows that g has integer coefficients, and k (and thus A} have gaussian
integer coefficients. As k(A)A()\) has real, and hence integer, coefficients
the theorem follows.

Thus, it is best to take the coefficients of the recursion (1) to be
integers. The theorem which follows completely characterizes those:
recursions.
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First, however, a short description of cyclotomic polynomials must
be given. The Euler ¢-function is a function on the positive integers,
defined as follows: ¢(m) is the number of positive integers less than or
equal to m and having no integer factor in common with m, other than
1 (such integers are said to be relatively prime to m}. For example,
e(l) = ¢(2) = 1, ¢(3) = ¢(4) = 2, ¢(9) = 6. The cyclotomic (“cir-
cle-dividing””) polynomial of order m, denoted F,(}), is that monic
polynomial (coefficient of the term of highest degree is 1} with integer
coefficients all of whose roots are primitive mth rocts of unity (that
is, m = 1, and r* = 1 for 0 < n < m). Over the integers, Fn(}\) is
irreducible (not a nontrivial product of polynomials with integer coeffi-
cients).* From the definition, cne ean explicitly determine that Fm(A)
= TIs O — exp [2wi(d/m)]}, where the product is taken over all d,
1 = d < m such that 4 and m are relatively prime. Thus, the degree
of Fo is ¢{(m).

The next theorem shows that, whatever constraints there are on
available memory and acceptable resonant harmonics, the characteris-
tic polynomisal of the optimal recursion will be a cyclotomic pelynomial.

Theovem 2: Let F(\) = X\ — 25, a\', wherea; = 0,a: (T = 1, -+, k)
are integers. Suppose every rool p of F(\) = 0 satisfies |p| = 1. Then F
15 @ product of cyelotomic polyromials.

This is proved in Section V. Recall from our prior discussion that all
the roots of F must be chosen to satisfy |p] = 1 to have stable detec-
tion. As it is, of course, better to have fewer resonances, one would
hence choose for (4) a single eyclotomic polynomial. The cyclotomic
polynomials make very desirable characteristic polynomials because of
their extremely simple structure. For example, for m < 105 or for m a
product of two primes, the coefficients of F,, are all 0, 1! For m a
power of a single prime, the coefficients are all 0, 1 and for m < 385,
the coefficients do not exceed 2 in absolute value. If m is a product of
three distinet odd primes, all the coefficients are less than the smallest
of those primes. These assertions are cited in Ref. 5.

This means that implementation of the recursion (1) in the filter
shown in Fig. 1 is very simple indeed. For all cases of practical interest,
the feedback coefficients a; will be 0, £1. Of course, when a; = 0, one
simply does not put a tap on the tth stage. Because of the relation

Fps o ogmn(A) = Fopporpu (57757

(p: distinet primes—see Ref. 4), most of the coefficients of F. will
usually be zero, and hence the taps-to-memory ratio is generally low
(see Table I).

In the preceding discussion, the principal emphasis has been on the
use of the filter as a receiver. However, considerations relating to its
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use as a generator lead to the same conclusion: that the characteristic
polynomial (5) of the recursion (1) should be a eyclotomic pelynomial.
Indeed, for a generator, the problem of unwanted limit cycles is more
critical. There is again the requirement that all the roots p; of (5)
gatisfy |pi] £ 1, as small perturbations in the initial conditions
Tp, - -+, Te_1 from the (ideal) values 0, sin 2« for, - - -, sin 2« fo(k — 1)r
(to generate sin 2rfonr) are inevitable; if such a perturbation occurs
along an eigenvector corresponding to a root p;, where [pi| > 1, it
produces a nonzero coefficient b. for that root in the general solution
Tn = 3%, b;p} (whereb,, - - -, b, are functions of the initial conditions
Zo, - - -, Tx_1; see Section III). This component would attain an arbi-
trarily large amplitude (with time) and overwhelm the desired tone.

Hence, one again requires a filter that can perform perfect arithmetic
and whose characteristic equation has all its roots on the unit dise.
From Theorem 2 we thus deduce that (5) should be a product of cyelo-
tomic polynomials for the generator as well. As tone generation is
impeded by the presence of harmonic resonances at other roots (due,
again, to perturbation of initial conditions), one takes for (5) a single
cyclotomic polynomial.

Thus we have shown that, for both generating and receiving, the
best linear recursion is one whose characteristic polynomial is cyclo-
tomic. As the roots in this case are all of the-form exp [2xi(d/m)], the
resonant frequencies can be expressed as

2rfr = 21:-% {modulo 2x) (7)

for all positive integers d < m such that d is relatively prime to m.
Resonance at the fundamental is deseribed by 27 fr = 2x(1/m), that
is, the fundamental of the filter is f = —!/m. Hence, if one requires a
fundamental frequency of f; (i.e., if fo is the frequency of the tone to
be generated or detected) and one intends to use a filter with memory
k = o{(m), the clock rate r—!is set at 1 = fym. All other resonances
oceur at various harmonies (multiples of f5) as follows: the resonant
harmonics in the band 0 £ f £ r~! oceur when fr = d/m, that is, at
f= dfy for all those integers d as above. For example, if m = 30 then
k = 8 and d assumes the values 1, 7, 11, 13, 17, 19, 23, 29. Hence, this
filter has no resonances between the fundamental f; and the seventh
harmoniec. It resonates at the seventh harmonic 7 fy, and thereafter at
111y, 13fy, and so on. The resonances are at all the prime harmonics
greater than 5, since in general those integers less than and relatively
prime to the product m of the first p primes, are those primes lying
between the pth prime and m. Furthermore, note that 30 = 1 + 29
=74 23 =11+ 19 = 13 + 17. The first resonance due to aliasing
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will alwaysbe at f = fo+ v = fo+ fom = (m + 1) fo. In the case
of the previous example, this is the thirty-first harmonie.

Factors pertinent to the choice of which cyclotomie polynomial to
use are relegated to Section VI. Suffice it to say at this point that the
more memory available, the farther away from the fundamental can
the first resonance be made due to aliasing. However, except for the
cases m = 1 and m = 2, the first resonance after the fundamental will
be below the clock frequency 1. In these cases, for a given amount of
memory k, if the interest is to have the first higher-order resonance as
far from the fundamental as possible, one would find the largest integer
r such that the product m of the first r primes satisfies ¢(m) = k. Then
the first higher-order resonance would occur at the ¢gth harmonie, where
g is the (r + 1)st prime.

Nl. ELIMINATING IN-BAND HIGHER-ORDER RESONANCES

The preceding analysis has indicated that, within the constraints
established, various higher-order resonances are unavoidable. This
could lead to difficulties. In practice, many higher-order harmonics are
introduced in the process of limiting the input signal. The limiter (see
Fig. 2} limits the amplitude of the input signal »(t). For example, a
common limiter is a “hard-clipper.” This has cutput =1, depending
upon whether u(t) = 0 or u(t) < 0. The effect of hard-clipping on an
input is to produce all the odd harmonics: sin 2xft — 2/ sin 2= ft
+ 2/3r sin 6xft + 2/57 sin 107 ft + - --. Henece, a filter with more
resonances frequently must be run for a longer period of time to attain
a threshold sufficiently high to reject spurious signals. Also, when used
as a generator, perturbations of the initial conditions of the filter could
lead to unwanted harmonies at all the resonances of the filter. As such
perturbations are inevitable, it is usually necessary to make allowance
for eliminating these harmonies.

While resonances due to aliasing are inherent to the discrete-time
nature of the system and are hence unavoidable, resonances below the
clock frequency 7! can be handled outside the feedback loop. In par-
ticular, it is possible (in theory) to eliminate (in practice, to reduce the
Fourier coefficients of) any or all resonances at a frequency f, ¢ < f
< (27)71, along with the conjugate resonance at r—!' — f. This is
effected through operations outside the feedback loop. Specifically, this
is accomplished either through alteration of the input before it enters
the filter: u, — v, = >, cit4n_;, or equivalently through alteration
of the filter output before it enters the threshold detector: x. — y«
= Y4, cirn_: (see Figs. 3 and B). Although these two options are
mathematically equivalent, considerations with respect to minimizing
the word length necessary for perfeet arithmetic would mitigate in
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favor of one or the other. This will be discussed in Section Vi Here, we
will describe the latter option only.
Let X{)\) be the generating function for the sequence

k
ZTp = ) @ini T Un,

tux]

and let T/(\) be the generating function for the input u.. That is,

X0 = Zaan, UM = X un ()
Then
X(O) = 3 aNXO) + U, o XQ) = ——— UQ).
ik 1-— Z a.-?\"

i=1

Notice that defining F(A) = A* — ¥ a:A*~%, the characteristic poly-
nomial of the filter, we obtain

X0 = UM (9)

1
AEF (D)
Since F(A) is assumed to be a cyclotomic polynomial, it is real and all
its roots are of unit modulus. Hence pisarcot if and onlyif 3 = ol is
a root. It follows that A*F (A1) = F(A). Thus (9) may be rewritten as

=

X0 = 75

U(N). (10)
We define a weighting funetion W(\) with the property that the
resulting output function

YO = WWXKN (11)

has poles only at those roots of F(\) corresponding to those resonances
actually desired. Specifically, W (») will be a real polynomial of degree
k — 2r, where r is the number of resonances desired in the band
[0, (27)71]; the roots of W shall be those roots of F corresponding to
the unwanted resonances. Typically, one desires to eliminate all
resonances but the fundamental, in which case r = 1 and W(A)/F())
= 1/(A\? — ax + 1) for an appropriate real number a. Then, from (10)
and (11), one obtains ¥Y(A) = W)X () = (1/(3 — ax + 1))U(A) so
Y\ = —xF(A) + axY(A) 4+ U(r), and

Yn = QYrt — Yn—z T Un. (1zy

This corresponds to a second-order filter with only one resonance in
the band [0, (27)71] as shown in Fig. 3. Although there will be trunca-
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Fig. 3 Implementation of the weighting function.

tion error in (12), this will not lead to limit eycles, as there is no feed-
back from this to the filter [although (12) represents the performance
of the filter in terms of resonances, the filter, of course, is not realized
in this way]. Specifically, the weighting function is implemented as in
Fig. 3. This is derived from definition (11): if W(A) = X{.ocid',
then equating terms in (11) yields

d
Yn = ‘E:ocfl'n_i, . (13)
where, typically, d = &£ — 2.

As mentioned earlier, the arithmetic of the weighting function is only
approximate ; since there is truncation error in the computation of the
coefficients ¢,, the roots of W will not precisely cancel out the roots of
F. Rather, the roots of W will be slightly perturbed from the corre-
sponding roots of F. The effect of this, as will be shown, is that all the
resonances due to the roots of F (i.e., all the resonant harmonics of the
original feedback loop) will be present in the cutput y.—however, they
will have reduced energy (but for the fundamental). That is, the less
the error in the implementation of W, the smaller the Fourier coeffi-
cients of the higher resonant harmonics of the filter. This is demon-
strated below.

Suppose F is the cyclotomie polynomial of order m (or any poly-
nomial whose roots py, - - -, pi are distinct mth roots of unity, so that
each p, = e27e/m for some integer ¢, 0 £ g < m). A continuous-time
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extension 2{f) of the discrete-time funetion z,, satisfying z(nr) = z.
can be defined as

5(l) = ”}Y_;;:z,.u(a — na), (14)

where »(f) describes a continuous-time extension of z.. Specifically,
»(f) is a periodic input pulse satisfying v(t + ms) = v(f) for all ¢
[typically, v(t) = 1 for 0 £ ¢ < 7. In (4), set u, = v(n7) and nor-
malize »(0) = 1. Then z, = Y %-, b;p} for n < m. Let £(¢) [9(q)]
denote the gth Fourier coefficient of z(t) [¢(#) ]. It follows that

#q) = 2 Dm z(t) exp (—1.21r ) dt

mr

I

m—1
g —gor L
(g ,.z=:o Tr €XD ( 12 p— n)

= 9(g) i,l b; ”;Z;:: P exp (—z’2ar % n)
= (@b, (15)

where 7 is that index such that p; = exp [42x(g/m)]; if no such index
exists, then #(g) = 0. To simplify matters, we will use the expression
“the Fourier coefficient at (the root) p;”’ to indicate whatin the case of
{15) is the gth Fourier coefficient £(g).

These Fourier coefficients can be computed explicitly from (9).

Indeed, factoring M*F (A"} = JI%-; (1 — p;») obtains
k
X0 = I 7= 55 U
i=1
= ¥ Bir—— UV, (16)
i=1

where the B,’s are the coefficients of the partial fraction decomposition,
derived explicitly in Lemma 3 below (it is assumed that all the roots
p; are distinet; in the case of multiple roots, however, similar results
obtain). From (16) one obtains

XW=§&§@W§%*

= X B; X o7 fud, (an

i i,n

80 Tn = Z,.=1 B; Y7 o3 'u; [which is (4) above]. Hence, B; = b;
(7 = 1, <~ -, k) and their explicit form is given in the following lemma.
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Lemma 3: Suppose py, -+ -, px ave distinet numbers. Then

k L pi 1
l;I 1 —pa zgl(H} (o — P:‘)) 1 — pir

]
FES

Proof: The residue of the left-hand side at the ¢th pole is the coeffi-
cient of that term in the sum above. The decompesition follows from
the Cauchy residue theorem.

Notice that, as the roots of ¥ occur in conjugate pairs, a direct con-
sequence of (17) is that, if p: and p; are conjugate roots, then ‘the cor-
responding Fourier coefficients are also conjugate: b; = b;.

The Fourier coefficients for the sequence y. can be determined as in
(15). For z. = }_ b;p7 as before, we obtain from (13)

d

k
Ya = 2 i 2 bipy ™"

im0 =1
k
= jgl W (5,)b;p}- (18)

Thus, the Fourier coefficient of the sequence y, at the root p; is W{5,)b;
(as could be expected, since Fourier transformations are multiplica-
tive). Again, the conjugate coefficient W(p;) = W(3;). Observe that,
if p; is a root of W, then the Fourier coeflicients of ¥, vanish at the roots
p; and p; (W was chosen to be real). If W' is the result of perturbing the
coefficients of W to correspond to truncation error, then W’'{g;) is (by
continuity) close to zero. Hence, as errors in the weighting functions
are reduced, so is the power at each of the resonant harmonies above
the fundamental (running the system for finite time, of course).
Surprisingly, W is very stable; if the coefficients of W’ are simply those
of W rounded to the nearest integer (!), the results are frequently
virtually as good as if W itself were used. This is exhibited in Table [
and illustrated in Figs. 4, 5, and 6. These figures correspond to a filter
using the eyclotomic polynomial Fi.. The input is a hard-clipped sine
wave for each given frequency up to 15 times the fundamental. The
input frequencies are normali zed to units of the fundamental frequency
for each filter. For each input frequency, the filter is run for an amount
of time equal to seven cycles of the fundamental. If this time corre-
sponds to N steps of the filter, the output is maxr<y |2.|, a8 measured
at each input frequency (1500 samples). Using a W’ with integer
coefficients (or any W' with uniformly truncated coefficients) enables
one to perform all the multiplications as additions, simplifying im-
plementation and eliminating any further errors. As one expeets, upon
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Fig. 6—Hard-clipped /fexact weighting.

setting pz = g1, the Fourier coefficient of y, at the fundamental

k -

P p1{l — p;
W (51) H — =11 i _p’p‘) =
i=2 p P .01 P2;=3 P Pj PL — P2

is the Fourier coefficient of (12) at the fundamental.

IV. IMPULSE RESPONSE

The impulse response is the output resulting from an input of a
single pulse: wy = 1, %, = 0. Since this output can also be produced
by appropriately setting initial conditions, we will refer to it as a pulse
train. From {(4) we see that if the input %, is a single pulse, then the
output z, reduces to

%

= §1 bipf. (19)
In the context of the previous sections, it is assumed that the charae-
teristic polynomial of the sequence 2, is cyclotomic. Since each p; is
then an mth root of unity, the sequence z, is periodic: Znim = Z. for
all n. As before, the resonant harmonics present in the pulse trains z,
correspond to the mth roots of unity which are roots p; (¢ = 1, -+ -, k)
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of F = F,,; the Fourier coefficient of the pulse train at the root p; is
b; (see Section III).

In particular, using the notations of Section III, U/{(A) = 1 and thus
(10) reduces to

1
X\ = o (20)
But X(\) = oo A = (2057 2.2") (X =0 A™) since Zaph = Za.
Defining f(A) = 3> 72 T.\", one obtains
1 —x
JON) = TFoy (21)

from (20). Notice that f has integer coefficients (the input u. is integer,
as are the coefficients a;). Indeed, 1 — A™ is a produet of cyclotomie
polynomials, one of which is F{)). Specifically,

1—a =24 I Fa(\)
nlm

[the product is taken over all n which divide m; hence, for example,

1 — A = —Fi(WF (M F3(M) Fs(M)
S — DO+ A+ DO — A+ DI;

and, from (21),
0 = £ I Fu)

nam

obtains. Consequently, f(s) = O for all mth roots of unity p, except
for the primitive rocts of unity [the roots of Fn(A)]: This was antici:
pated by E. N. Gilbert in Ref. 6, where he showed that a pulse train
xn of period m has resonances at those harmonies eorresponding to the
mth roots of unity which are not roots of 3 2.4 A" = 0. Equation
(21) eovers the general situation where f(A\) [and consequently F(1)]
are arbitrary products of cyclotomic factors of 1 — A=

In the same paper, Gilbert was concerned about the problem of
increasing the power of the pulse train at the fundamental (relativeto
the power at the other resonances). This could be done by shaping the
input u, for one period, but it is usually undesirable to do this. As
explained in Section IIl, however, the same effect is obtained by
utilizing a weighting function W. If utilized directly, this will introduce
noninteger levels into the pulse train. Nonetheless, it is possible to
avoid this by replacing W with W7 where the latter is obtained through
rounding off to the nearest integer the coefficients of the former.- The
pulse train resulting from W7 will have integer levels, but the trunca-
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tion error will again introduce higher-order resonances. However,
Table I shows that these are very small indeed, leaving typically about
98 percent of the power at the fundamental. This compares with 25
percent or less (for Fis, Fre, Fyo) without W7, Note, for example, Fs.
The pulse train 1, 0, 0, 0, —1, 0, 0, 0 has resonances at the third, fifth,
and seventh harmonies. However, by simply altering this to 1, 1, 1, 0,
—1, —1, —1, 0, the first appreciable resonance does not come until
the seventh harmonie. In this case, use of W' does not introduce any
new levels in the pulse train.

The worst case in Table I is Fy where 92 pereent of the power is at
the fundamental. E. N. Gilbert has pointed out that if one wished to
increase the proportion of the power at the fundamental of this train
{or any other), one could multiply the output ¥ (\) by some constant
¢ > 1, chosen so that the roundoff error of ¢W — (cW)? is smaller
than that for W7 alone [recall (11)]. This, however, would introduce
more levels into the pulse train (although no more than ¢ times as
many).

Table I gives an indication of the possibilities for various filters.
Included are the filters with memory less than 12 which provide the
greatest separation between the fundamental and the first resonant
harmonie, either with or without the weighting function. The asterisks
and daggers indicate those which, for the amount of memory, have the
largest possible separation without or with the weighting function. For
utilization with a “hard-clipper’”’ (which has all odd harmonics), #5,
Fy, and Fy; are included. Although these resonate at all even harmonies,
they have the same response to a hard-clipped input at the fundamental
as the respective cyclotomic filters of twice the sampling rate. To have
the first resonant harmonic higher than the seventh (without W)
would require a memory of 48 (and F to have a coefficient of 2). The
next interesting entry with respect to W is F;, with memory 12. The
columns to the right of the double line all deal with the integer-rounded
transfer function WZ. Columns A and B give |bi|%/2 %% |b:{% and
|b: W) |2/ [b;WI(5:)|? as a percent, respectively, where by is
the Fourier coefficient of the sequence w, at the root p; [see (6) and
Section I11)]. Column C gives (maxz=:sx2 |b:WH(E) 2/ |b1W (1) |2 as
a percent. The roots p: (5 = 1, - - -, k/2) are assumed to be in order of
ascending argument < (so p; i8 the fundamental). Columns D and E
give the moduli of the TFourier coefficients b; and b:;W7(5:) of the
sequences z, and ya., respectively. Columns F and G give the pulse
trains of z, and y,, respectively, with initial pulse uo = 1, Un»o = 0.
The exponent denotes repeated digit; the arrow indicates that the
preceding train is followed by another identical train, but that each
digit is the negative of what it was.
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Table 1 — Characteristics of

Resonant Harmonies in the
Band [0, 1], Aside From Number of
Mem- Characteristic Fundamental Ri;‘::n Taps on Filter Inm&:ﬁ;ﬁ%‘:&‘ied
ory POIW;??m“ﬂ Harmonie Due ‘gzil;gg&tg Funetion
o Alinsing Funetion) w?
‘Without ‘With
Waighting Weighting
Function Tunetion
*1 Fy=x-1 none — 3 1 —
2 Fy=214+%-+1 2 —_ 4 2 —_
2 Fa=x+1 3 S & 1 =
*2 Fa=At—A+1 5] — 7 2 —
4 Fa=hé-1 3,5 7 7 g 1 14+Xh-A2
4 Fay=M—A2+1 5, 7 11 11 13 2 1425422
6 | FoesAb-+a3-1 24,578 ] 10 2 1+fl+k“-{-2k'
18 Fra=it—A1 &, 7, 11, 13, 17 17 19 2 1+.E)\+3'.\’+2)«‘
B | Fis=ha—AT+H+AE | 2, 4,7, 8,11, 14 16 [} 1NN AR
;7{!-{-‘.\'—)\ 13, 14 4AE4-)0
8 | Fua=As41 3,579, 11, 15 17 1 1+2A+ 2024300
13, 4 2A4 4= ZAB-F A0
8 Fagmht—hi-1 57, 11 13,17, 23 25 1422 4-3624-3A8
ib, 23 EENEEINASY
48 Pan=AB-+NT—N8 | 7, 11 13, 17, 28 31 i 1-+3N5A2 45N
_—|-_‘M—7U+l 19, 23, 29 B LR P o 1
1

*} SBee text for explenation

V. CONDITIONS FOR PERFECT ARITHMETIC

Here we indicate why eyclotomic polynomials yield optimal recur-
sions for generating sinuosidal signals, When we use (1) to generate

tones, the ., is set to zero and some initial condition To, 2y, * ++, Te—1 18
chosen to generate the required samples z.,.:
k
= 2 @i (22)
i=]

If we use the usual second-order recursion, then (22) is of the fdrm
(23)

where |a| < 2, so we have complex roots. In this case; we show below
that the number of distinet values that z,, n = 0, 1, , ¥V ean take
grows at least as fast as N /2, with N. So, to simulate (22) with perfect
arithmetic, the number of ““words” needed grows at'least as fast as N,
the number of samples needed.

Tn = AFn—1 — Ta—y

Proposition 4: Suppose |a| < 2, and rational but not an integer. Then
Jor any initial conditions xo, T, (not both zero) and any positive inleger N,
the number of distinet values among xo, -+, Ty, Where Tn = ATny
— Lng, for 2 = n = N,isatleast N/2.
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some cyclotomic filters

A | B D E g G
% of Total Highest Power Alodulus of Fourier
[UP?;'Te]r_l'? at ﬂtRI;s%:ﬁlcc‘:d Coefficienta (in Order of Pulse Trains
Fundamental é% of Arguments < x)
Fundamentnl)
Wi.%'l;;.)ut. W];trh . ¥n - ”
100 _— —_ 1 == 1, -1 —
100 — —_ 0.58 = 1. —-1,0 —
100 - — 0.5 - 1,0, —-1,0 ==
100 — - 1.73 —- 1 —110 —
50 97.1 2.9 All 0.25 0.60, 0.10 18— 108 10 —130
it} 88.5 0.5 All 0.26 1.08, 0.08 10102 —10—10#% 12510—1— 25— 10
333 92.7 78 All 0,19 0.%5.22.04 107 —10% 1212—-11=2—10
33.3 99.6 0.3 All 0,19 7.(7('!]..8‘-‘04. 101104 — 1234210 —
53.3 98.9 0.8 0.33, 0.27, 4.73‘. 0.51, 1301 —1307 123321 —1—2
0.09, 0.11 .55, 0.75 —3:—-2-10
25 98.0 18 Al Q.13 1.2(]9(,]&).%2,17 107 —107 12132110 —
25 99.5 0.2 Allg.11 1.%'.568'.%5.1 , [10901-100-107 | 125uTsI0~
] 98.4 10 0.11, 0.08, 241, 0.04, | 1—11071—1107— | 123154504533210
0.27, 0.33 0.19, 0.24

Proof: We can write 2, = b1p? + bspl, where py, pa are the distinct
roots of A2 — aX + 1, as in (19). Since the roots are not real, let
p = pi(= pu), b = by(= b3). Then x» = 2. implies Re (bp") = Re (bp™).
In this case, letting § = arg p, @ = arg b, we obtain cos (¢ + n8)
= cos (¢ + mb) so ¢ + n8 = £(¢ + mf) (mod 27). Since p is not a
root of unity, the numbers n8 (n = 0, 1, 2, ---) are all distinet and
hence for fixed m either n = m or n8 = —2p — mf (mod 2x). As this
last eongruence can be satisfied by at most one n, it follows that, for
each m, there is at most one n # m such that x, = ...

The following result shows that, if one wishes to generate sin xnf
with perfect accuracy using a linear recursion, & must be a root of
the corresponding polynomial (3).

Proposition 5. If s, = sin 7n8 18 a solulion of ¥, = X a;x._; and 8§ s
not an inieger, then €™ is a rool of the polynomial \* — 3 aNk—i.

Proof: From sin #{n + 1)§ = ¥ a; sin 7(n + 1 — j)8, we expand
both sides using & familiar trigonometric identity and get

sin 7nd cos x8 + cos wnd sin 78 = sin v{n + 1)¢
=Y a;sinw(n+1— j}0 =3 a;sinr(n — j)o eos xf
+ ¥ a;cos w(n — /)8 sin w8 = sin mné cos 7@
+ 3 a; cos w(n — j)f sin 6.
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Since @ is not an integer, sin =@ = 0, and thus from the equality of the
first and last expressions, we obtain cos mnf = X a; cos =(n — j)6.
Hence, cos 7nf is also a solution to the recursion, and it follows that
g8 = gos 7n@ + £ sin mn@ is a solution too. Consequently, e+
-3 aze’™ =8 = ().

The next theorem shows that every recursion which satisfies the
stability criterion |p| < 1 for all its roots, and for which perfect
arithmetic is possible, is cyclotomie.

Theorem 6: Suppose every root p of the polynomial F(X) = N\
— S5y @kt satisfies |p] < 1.

() If ar, -+ -, ax are integers and ax #= 0, then F(\) 48 b product of
cyclotomic polynomials.

(#5) If ay, - - -, ax are rational numbers and T, = 2 GiTn—: 18 periodic
(Xnyp = n for some p, all n) for some nonzero initial conditions
To, - - -, Ta—1, then F(A) has as a faclor a cyclotomic polynomial.

Proof: For case (1), each irreducible factor {(over the integers) of F()}
has the same form as F()) itself by* ‘Gauss’ Lemma”.® Thus, it
suffices to assume that F(A) is irreducible, in which case all its roots are
distinct. In this case, we ean write ., = 2 bip{ where the p,'s are the
roots of F(A) and z, is as in case (7). But then |z, £ X |b;/, and as
for any integer initial conditions xg, + - -, Z1—1, T+ Will be an integer for
all n, z, can in such a case assume only a finite number m of distinet
values (m = [ ¥ |b:|]). Hence for all n, the ktuple (€nt1, * -, Tass)
can assume at most m* distinct values, and as z, is recursively gen-
erated with memory k, ©. must be periodic, of period p < m*. This
brings us to case (it).

For case (i1), let L be the rational eanonical form associated with
the recursion z, (see Ref. 7, Section 5.2.1), and J be the Jordan
canonieal form of L. Then for some initial state vector x, J*x = x, and
it follows that some diagonal element of J, that is, some root of F(A},
must be & pth root of unity. Hence, the irreducible factor of F(A)
having that root must be cyclotomic.

Hence, from the above the & of Proposition 5 must be rational when
perfect accuracy is required.

In all the preceding, the basic assumption has been that all the
coefficients of the recursion (22) are real. We can infer from Theorem 1
that this is no loss of generality as, if the recursion had complex coeffi-
cients (with rational real and imaginary parts) and was irreducible
over the field Q(¢) (the field of gaussian rationals), then the roots of
the characteristic polynomial would be distinet, no pair being con-
jugate. Indeed, Theorem 1 remains true if the word “integer” is every-
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where replaced by “rational number.” The arguments of Section II
show that we may as well assume all the coeflicients are real.

VI. COMPUTING WORD LENGTH AND ADDITIONS PER CYCLE

To realize the eyclotomie filters in hardware with perfect arithmetie,
the necessary amount of memory and adder complexity must be pro-
vided. We describe here how to estimate the word length and the rate
of additions required to implement a eyclotomie filter with a weighting:
function. It shall be assumed that all operations are performed in
binary form. The number of binary bits required to store each z, is
called the word length @ of the system. For generators that produce a
signal approximating a sinusoid, the word length required will depend
on the accuracy of approximation needed. When the filter is used as a
tone detector, the word length required will depend on the duration of
operation, since the signal level tends to build up, especially at fre-
quencies close to any resonant frequency (Fig. 7). The signal level, of
course, does not uniquely specify the minimum word length. Even
though for storing z. we may need only w bits, it is conceivable that
during the computations numbers greater in magnitude than z,, which
need more bits for storage, could arise. To perform operations in a
serial-multiplexed fashion, it is desirable to have uniform word length
for all operations in the feedback loop of the filter. Hence, the word
length will have to be increased to accommodate any number en-
countered during the eornputations. However, for the filters considered
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in Table 1I, it is possible to arrange the computations in such a way
that the word length is determined by the maximum magnitude of ..
In general, there are a finite number of ways in which the additions
involved in the filter can be arranged. By simulation of the different
arrangements, the word length required can then be determined.

There are two possible ways of implementing the cyclotomie filters
as generators. The first is to generate the impulse response (19); this
is generally sufficient (see Table I). In this case, the weighting function
(13) shapes the effect of this impulse to simulate the initial eonditions
%o, - - -, T4_1 Of the tone being generated. As the input is zero after the
initial pulse u, = 1, the weighting function need only be used during
the first d 4+ 1 steps of the filter. Let m be the largest number in the
pulse train y, of Table I, and let [[z]] be the smallest integer larger
than z. The word length neeessary for perfect arithmetic is at least
w = [[logzm]] + 1 and, for the filters considered here, « is also
sufficient. (We add 1 for a sign bit.) This word length is shown in
column B of Table II.

However, rounding off in the weighting function introduces errors
in the effective initial values of the signal. If this approximation is not
sufficiently good, then the initial conditions. of the filter xq, - - -, Zpar
can be set as accurately as needed, and then the filter is operated with
the feedback loop alone. In particular, one can set the initial conditions
of the filter such that |z, — sin 2an/p| < 2™ (=0, -+, k= 1)
where sin 2zn/p is the desired signal. One can then eompute the mini-
mum word length required by simulating the filter for one period. In
all cases of interest here, the word length including sign is {(m + 1)
for m £ 12. Hence, as an example, the eyclotomic filter of order 30
can generate a sequence (x,) such that |z, — sin 2mxn/p| < 279 if
the initial conditions are set such that |z, — sin 2an/p|< 270
{n =0, ---,7), using a word length of 11.

To determine the number of binary additions per period of the filter
(i.e., per cyele of the fundamental), one counts the number of bit
additions per step. If m denotes the number of additions per step, then
pmw is the number of binary additions per cycle, where p is the period
of (22) and w the word length used in the feedback loop (see above).
When the generator is implemented in the first way (using an initial
pulse and the weighting funetion), the number of additions is shown
in eolumn C of Table II (not including those necessary in the initial
d + 1 steps for the weighting function). When the generator is im-
plemented in the second way (setting the initial eonditions), the num-
ber of additipns can be computed by multiplying the value in column C
by w/w’, where w is the word length ehosen and w’ is the corresponding
word length from column B.
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When the filter is used as a detector, we assume that the input to the
filter is a sequence which only assumes the values +1 and —1. This is
true, for example, when the analog signal to be detected is either hard-
clipped or delta-modulated. In these cases, it is advantageous to apply
the weight function to the input sequence u, rather than to the se-
quence ., ; since, in general, z, can assume many values other than 41
and —1, computations involving the weighting function are simplified
if they are performed on the input (see Section III). In fact, applying
the weighting function to the input is so simple arithmetically that it
can be implemented with read-only memory. On the other hand, if
read-only memory is not used and one wishes to save on computations
by checking the threshold (max {z.}) only in the last cycle of the filter
(with respect to its duration of operation for detection), then the
weighting function is best implemented as in Section I1I, on the output
of the feedback loop. Then the filter can be run during all but the last
cycle, without computing the weighting function.

When the weighting function is applied to the input, the filter is
described by

d

Up = 2. Lylhni (24)
=0
k

Tn = 2. @iTn_i + Un, (25)

i=l

where . is the input into the filter and v, is the result of the weighting
function. Figure 8 describes this filter.

For the filters in Table I, the effect of rounding ¢; to the nearest
integer is slight. Hence, it is a fortior: suitable to round off
¥a = ¥ clln_: to the nearest integer. Therefore, since the only values

_X,.,_1 Xiz p—m o o o Xn—x
ay ag ay
-—
xI'|
Cp Cy Cq
U, e—iped Un o U bt e s e i Up-da

Fig. 8—Implementation of the weighting function at the input.
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assumed by u; are &1, it suffices to have for v, a word length of
w = [[logs {X |e:|}]] + 1 (where {z} is the integer closest to z and
[[z]] ie the smallest integer larger than a; 1 is added for a sign bit).
The sequence v, can then assume any value between — {3 |¢:|} and
{¥ lei|}. With d as in (24) and w as above, implementations of the
weighting function with read-only memory then requires 2¢+! w memory
bits. The respective values for this are shown in column D of Table II.
When a bank of such tuned filters is used in one receiver {(for example,,
in & Touch-Tone® system such as described in Ref. 3), all the filters
could use one read-only memory for the weighting functions. Also, by
increasing w, we can make the round-off error as small as we wish.

To determine the word length for use in the feedback loop of the
detector, the maximum signal level can be determined by using an
input u, of the same frequency as the resonant frequency. Since the
impulse response [see (19)] of these filters is pericdic and of the same
period as the resonant frequency, the latter produces the maximum
signal level sups =» », for duration of operation Nr. Let this maximum
be M. The word length required should then be at least [[log. M ]+ 1.
For all the filters considered here, [[log: M ]] + 1 is also sufficient.
The number of M, of eourse, is determined by N. If the cyclotomic
filter is of period p (i.e., Theorem 1 is F,), then the filter runs through
N/p periods, corresponding to N /p cycles of the fundamental. Calcula-
tions have been made for two values of N/p: 7 (the number of cycles
computed in Ref. 3 to be necessary for Touch-Tone interchannel rejec-
tion), and 10 (a more uniform point of reference).

In Table II, column B shows the word length required in the feed-
back loop for the indicated durations, when the weighting function is
computed on the input as in {24), implemented equivalently with or
without read-only memory, producing the filter response (25).

When there is no weighting function on the input, the word length
required is shown in column F (of course, a weighting function may be
applied to the output as in Section III).

The number of binary additions per eycle for the detector is de-
termined in the same way as for the generator; the number is pme as
defined above. These numbers are shown in ¢olumng G, H, and K of
Table II. Column G shows the number of binary additions per cycle
in the feedback loop when read-only memory is used to implement the
weighting function, applied to the input as in'(24). If read-only memory
is not used, then the weighting function has to be computed. Since the
numbers involved in the computation of the weighting function [when
implemented as in (24) ] are generally smaller than those in the feed-
back loop, the word length required for their computations are smaller.
Hence, one can use two different adders, one for the weighting function
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Table 1 — Complexity of some cyclotomic generator-detectors

Detector: 7 Cyclen Detector: 10 Cycles
Generator
IUaing |
mpulse Word Word
Reaponse Length Adds/Cycle Length Adds/Cycle
for {zn) for (za) for {xa) for (za
2 % k] 2
.13 |4 3 g ~ |8% | = T 2 —~
Elw, | 5 |22 22| 2. | 2 P |E. (8. 5. | 2 z
Tlew ge| % Sz |%s| B% | %5 | ¢ |®3|fs| Ew | §n | S
R g¢o | zB)| 85 ) B 55| gb| B& sa ]
& 23|20 | £ BE|BS | BS |28 | & |BE | BE| B | B4 =
A B C po E F G H K E F G H K
<] 2 24 | = i) 6 72 72 — 7 7 84 84 —
8 2 16 24 7 & 56 40 112 8 6 64 48 128
9 3 128 B 5 144 50 360 8 [:] 144 108 360
12 3 72 24 8 6 182 144 288 4] 7 2186 168 324
15 3 270 | 512 9 7 810 630 810 10 7 800 630 900
14 3 48 | 640 9 5 144 80 1276 10 i 160 96 1440
18 3 108 | 128 9 6 324 214 1134 10 7 380 252 1260
24 4 192 | 640 10 6 480 288 2160 11 7 528 336 2376
30 4 720 | 788 11 8 1980 1440 3630 11 B 1980 1440 3830

and one for the feedback loop. Using this arrangement, the number of
additions per cycle for calculating the weighting function is shown in
column K. The number of binary additions per cyele when no weighting
funetion is used is shown in column H. This, of course, applies when
the weighting funetion is applied to the output as in Section III (but
does not include the number of additions necessary for the weighting
funetion). To calculate the number of additions when the weighting
funetion is applied to the input, but read-only memory is not used, add
columns H and K.

Column A indicates the respective eyclotomic filters described by
their periods.

One important consideration that affects the choice of the order of
cyclotomie filter is the noise level at the input to limiter (together with
the noise in the limiter). This affects the output of the limiter when the
signal level is low. One could divide the period of the signal to be
detected into regions where errors could affect the decision about the
sign of the signal, and regions where no errors will occur. Those sam-
pling instances where errors could oceur lie in regions where the absolute
value of the signal is small. Suppose these regions are intervals of
length e around the zero crossings of the signal. The worst case cor-
responds to a phase shift of the signal with respect to the sampling
interval which maximizes the number of samples in the error regions.
For ¢ = 1/63 (corresponding to approximately 20 dB s/n), there are
at most two samples per period that are subject to errors for all the
filters we have considered here. Hence the ratio of error-susceptible
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samples to error-free ones decreases in this case as the period p-in-
creases (for p =< 30). This ratio indicates the perturbation of the thresh-
old one has to make in order to compensate for errors in the limiter.

VIl. APPLICATIONS

Possible uses for the systems described in this paper have been
mentioned in Section I. In particular, a scheme is proposed in Ref. 3
for utilizing eight eyclotomie filters as channel detectors in a Touch-
Tone receiver.

Another application of eyelotomic filters may be rsk. As described
earlier, by selecting the initial conditions of a ecyclotomic filter of
period p, one can approximate uniformly sampled values of a sinusoid
of period p, i.e., sin 2rn/p. By changing the clock rate of the filter, one
can shift the frequency of the sinusoid to any preassigned value.
Hence, when using the filter as a generator, one can shift the clock rate
to shift the frequeney. This method of shifting frequencies does not
introduce any “discontinuities’ in the signal. If, instead of changing
clock rate, one were to change the coefficient of a filter, then the filter
has to be reinitialized to have constant amplitude, thus producing a
discontinuity in the signal. In a similar manner, when using the filter
as 8 detector, one can shift the resonant frequency by shifting clock
rate. Hence, with the same filter, one can generate and detect both
tones used in a typical Fsk arrangement. Furthermore, cyclotomic
filters have infinite @, allowing for the possibility of increasing signaling
rate above the presently used systems with finite Q.
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Abstracts of Bell System Papers
Appearing in Other Publications

Beginning with this issue, the Journal will publish abstracts of papers
written by Bell System authors for other technical and scientific publi-
cations. We hope this new section provides you, our readers, with a
reference source for articles covering the broad range of research and
development in the Bell System.

CHEMISTRY

Heterogeneous Removal of Free Radicals by Aerosols in the Urban Troposphere.
L. A. Farrow, T. E. Graedel, and T, A, Weber, ACS Symposium Series, Removal of
Trace Contaminants from the Air, ed. Victor R. Deitz, 17, 1975, pp. 17-27. The
effect of aerosols on atmospheric imtochemistry has been evaluated in a computation
of the gas phase chemistry of the urban tropesphere for the northern New Jersey
metropolitan region. It is shown that aerasol-radical interactions provide an efficient
radieal sink and stabilize the diurnal variation of radical concentrations.

The Influence of Aerosols on the Chemistry of the Troposphere. T. E. Graedel, L. A.
Farrow, and T. A, Weber, I. J. Chem. Kinetics, Symposium No. 1, 1975; Proceed-
ings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmo-
sphere, pp. 581-594. Full kinetic caleulations of the diurnal chemistry of the
urban troposphere have been made using a formalism that includes the interactive
effects of merosols and free radiculs. These effects are shown to be necessary to a
unified analysis of almospheric chemical reactions.

Liquidus-Solidus Isotherms in the In-Ga-As System. M. A. Pollack, R. E. Nahory,
1. V. Dens, and D. R. Wonsidler, I. Electrochem. Soc., 122 (November 1975), pp.
15350-1552. Liquidus and solidus data are presented for the 800°, 850°, and 900°C
isotherms in the In-rich corner of the In-Ga-As phase dingram. A simple solution
madel gives excellent agreement with the solidus data, but describes the liquidus
mare poorly than desired.

Ozone: Involvement in Atmospheric Chemistry and Meteorology. T. E. Graedel
and .. A, Farraw, Ozone Chemistry and Technology, ed. J. 8. Murphy and J. R. O,
Philadelphia : Franklin Institute Press, 1975, pp. 165-175. The chemistry of ozone
is closely related to virtually every gas phase chemical process that occurs in the
troposphere and stratosphere of the earth. This paper reviews the current knowledge
of ozane sources and sinks far the urban troposphere, the rural troposphere, the natural
stratosphere, and the perturbed stratosphere.

The Synthesis and Characterization of Some Oxide Fluorides of Rhenium and
Osmium. W. A. Sunder and F. A, Stevie, J. Fluorine Chem., § (November 1975),
g. 449, Existing synthetic methods for oxide fluorides of rhenium and osmium

nve been reviewed. New syntheses, using static heating, have been developed far
0s0,F., 0s0,F;, OsOF;, OsOF,, ReO;F, ReO.F;, ReOF;, and ReOF,. The products
were charaeterized principally by mass spectroscopy, with supporting information
for X-ray powder diffraction, chemical annlysis, and molecu{)ar beam deflection.

ELECTRICAL AND ELECTRONIC ENGINEERING

Using Discretionary Telecommunications. D. Gillette, IEEE Trans. Commun.,
COM-23 (October 1975), pp. 1054-1058. Continuing technical effort can help
reduce the cost of telecommunicntions and add oppertunities for their use. However,
the biggest task in application is organizing institutions and procedures to use exist-
ing telecommunieations systems and information technologies effectively.
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MATERIALS SCIENCE

Lead Alloys for High Temperature Soldering of Magnet Wire. W. G. Bader, Welding
Journal, 54 (October 1975), Research Supplement, pp. 370-5 to 375-s. Lead-tin
solders were evaluated for use in high-temperature soldering of fine gauge, poly-
urethane-insulated, copper-magnetic wire, The dissolution rates of copper by molten
solders were determinedp at temperatures to 900°F and the reduction of these rates by
copper additions to the solder. Also, wetting of copper by the solders and solder
joint appearance were evaluated.

GENERAL MATHEMATICS AND STATISTICS

Explicit Construction of Invariant Measures for a Class of Continuous State Markov
Processes. 8. Halfin, Ann. Prob., 8 (October 1975), pp. 859-864. An explidit
construction of invariant measures for a certain class of continuous-state Markov
processes is presented. A special version of these %‘ocesses is of interest in the theory
of representation of real numbers (S-expansions). Previous results of Rényi and Parry
are generalized, and an open problem of Parry is resolved.

Ridge Analysis Following a Preliminary Test of the Shrunken Hypothesis: R. L.
Obenchain, Technometrics, 17 (November 1975), pp. 431441 (with discussion by
G.C. Mcﬁonald, pb. 443-445). Ridge analysis is & “new’’ form of multiple linear
regression which can be helpful when the data are ill-conditioned {nearly multi-
collinear) and lenst-squares coefficients are highly intercorrelated. Utilizing the
likelihood function for mean-squared-error optimality under normal distribution, a
statistical test can deteet situstions where ridge analysis will be worthwhile.

PHYSICS

Aspects of the Band Structure of CuGaS, and CuGaSe,. B. Tell and P. M. Briden-
baugh, Phys. Rev. B, 12 (October 15, 1975), pp. 3330-3335. The spin-orbit
aplitting has been determined in the sulfur-rich section of the system CuGaSe;_».Sea.,
which demonstrates that the spin-orbit splitting is negative in CYEG&SQ. A model which
provides adjustable coupling and separation between the p- and d-like valence band
can account for the man features of the band structure of CuGaS. and CuGaSe..

Excitation of Transversely Excited CO, Waveguide Lasers. 0. R. Wood II, P. W.
Smith, C. R. Adams, and P. J. Muloney, Appl. Phys. Letters, 27 (November 15,
1975), pp. 538-541, Using a preionization scheme based on the Malter effect,
small-signal gains >5%/cm at 106 ym have been produced in a 1-mm? cross-section
waveguide CO, amplifier at total operating pressures of 0.1 to 1 atmosphere. Com-
parisons between this preionization scheme and those using electron beams are made.

Dynamic SXECtl‘OScOpY and Subpicosecond Pulse Compression. E. P. Ippen and C.
V. SBhank, Appl. Phys. Letters, 27 (November 1, 1975), pp. 488490, Picosecond
pulses from a mode-locked cw dye laser have been compressed in time to produce
pulses as short as a few tenths of a picosecond. Dynamic spectroscopic investigations
of the laser pulses reveal temporal asymmetry and frequency chirping on a sub-
picosecond time scale.

Frequency Dependence of the Electron Conductivity in the Silicon Inversion Layer
in the Metallic and Localized Regimes. 8. J. Allen, Jr., D, C. Tsui, and F. DeRosa,
Phys. Rev. Letters, 35 (November 17, 1975), pp. 1359-1362. The conductivity of
electrons in the inversion layer of silicon has Eeen measured from 0 to 40 cm™ at
1.2°K in the metallic and localized regimes. The correlation between «{7") and
o(w) in the localized regime suggests that the drop in conductivity at low electron
concentrations is caused by the appearance of a gap at the Fermi level.

Elasticity Measurements in the Layered Dichalcogenides TaSe. and NbSe;. M.
Barmatz, L. R. Testardi, and F. J. Di Salvo, Phys. Rev. B, 12 (November 15, 1975),
pp. 4367-43786. The Young's modulus and internal friction exhibit large anomalies
at the commensurate charge-density wave (¢DWw) transition in 2H-TaSe,. Hysteresis
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effects {~5K) verify the first-order nature of this transition. The incommensurate
oDw transitions and the superconducting transition in 2H-NbSe, show weak elastic
anomalies with essentially no hysteresis effects.

Interdiffusions in Thin-Film Au on Pt On GaAs (100) Studied with Auger Spectros-
copy. C. C. Chang, 8. P. Murarka, V. Kumar, and G. Quinlana, J. Appl. Phys,
46 (October 1973), pp. 4237-4243. Pt /GaAs heated 7n veruum reacted initially
by rapid Ga migration into Pt and formation of an As-rich layer at the Pt/GaAs
interface. Ga eventually traveled entirely thmugh even 9000 A Pt films, while As
always stopped abruptly about j way into the Pt. No Au was detected (<1 atom

ercent) in the Pt or GaAs after extensive Pt-GaAs reaction in Au/Pt/GaAs. Pt/

nAs heated in air behaved similarly, but developed a Ga-O layer over the Pt and
an oxygen-rich layer at the Pt/GaAs interface.

Low-Threshold Room-Temperature Double-Heterostructure GaAs,_.Sb,/Al,Ga,_,-
As,_.Sb, Injection Lasers at 1-um Wavelengths. R. E. Nahory and M. A. Pollack,
Appl. Phys. Letters, 27 (November 15, 1975), pp. 562-564. Double-hetero-
structure (DH) injection lasers based on the GaAs,_.Sb. /Al Ga,_ As, _Sh, system
have been fabricated using liquid phase epitaxial growth techmigues snd operated
al room temperature at wavelengths in the 1-um region. The observed room-tempera-
ture threshold current densities, as low as 2100 A em™2, are comparable to those of
GnAs/AlGaAs devices of similar geometry.

Observation of Resonance Radiation Pressure on an Atomic Vapor. J. E. Bjorkholm,
A. Ashkin, and D. B. Pearson, Appl. Phys. Letters, 27 (November 15, 1975), pp.
534-537. We have used the resonance radiation pressure from 40 mW of cw
dye lsser light propagating axially down a tube filled with sodium vapor to increase
the sodium pressure {density) up to 50 percent over a length of 20 em. The magni-
tude of the effect agrees well witﬁ measurements of the absorbed power.

Optical Pumping in Nitrogen Doped GaP. R. F. Leheny and Jagdeep Shah, Phys.
Rev. B, 12 (October 15, 1975), pp. 3268-3274. Absorption saturation at the A
bound exciton in GaP:N is described for a pulsed pump laser tuned directly to this
absorption line nnd for n pump laser tuned above the indirect absorplion edge. The
gecond measurement vields 10-percent capture efficiency for N impurity. These
messurements nre anslyzed by a model three-level system for the bound exciton by
states.

Physical Properties of Poly{vinylchloride)-Copolyester Thermoplastic Elastomer
Mixtures. T. Nishi, T. K. Kwei, and T. T. Wang, J. Appl. Phys., 46 {October 1975),
pp. 4157-4165. A study wns made on the compatibility, thermnl behsvior,
and mechaniea]l properties of the poly(vinylchloride) blended with copolyester
thermoplastie elastomer. Results from Nam, thermal expansion, tensile test, and

dynamic mechanical mensurements indicate extensive mixing of the segments of two
polymers.

Torsional-Mode Losses at Contacts Between Homogeneous Fiber Waveguides and
Supporting Structures. R. L. Rosenberg and G. D. Boyd, J. Appl. Phyas., 46 (Novem-
ber 1973), pp. 4654-4658. The losses from an ulirasonic torsional wave in a
homogeneous fiber that are eaused by contacts with fiber supports are found to de-
pend primarily on contact area for a wide range of contact forces and materials. The
associated force, compliance, and frequency dependencies are used to evaluate
long-waveguide potentialities.

Volume Holograms in Photochromic Materials. W. J. Tomlinson, Ap 1. Opt., 14
(October 1975), pp. 2456-24067. Theoretical expressions are deriveg desecribing
the process of writing volume (or thick) hologram gratings in photochromic materials.
The theory ineludes the effects of the saturation of the material response, seattering
of the writing beams by the partially writien hologrum, and the rvefractive index
changes that accompany the photoinduced absorption changes.
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