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A novel method is presented for echo -cancellation in long distance
telephone connections. In contrast with conventional echo suppressors, the
device described achieves echo -cancellation without interrupting the return.
path. A replica of the echo is synthesized and subtracted from the return
signal. The replica is synthesized by means of a filter which, under the
control of a feedback loop, adapts to the transmission characteristic of the
echo path and tracks variations of the path that may occur during a con-
versation.

The adaptive control loop is described by a set of simultaneous, non-
linear, first -order differential equations. It is shown that under ideal
conditions, the echo converges to zero. Estimates of the rate of convergence
are obtained. Effects of noise are discussed. The results of computer simula-
tions of various alternative configurations of the system are described.

I. INTRODUCTION

In telephone connections that involve both 4 -wire and 2 -wire links,
an echo is generated at the hybrid that connects a 4- to a 2 -wire link.
The situation at one such hybrid is illustrated schematically in Fig. 1.
Here Si and 82 are the two speech signals and E is the echo of Si which
is returned along with S2 . In practice, E is an the average about 15 dB

lower than Si , but in extreme cases may be only 6 dB lower.
This echo has a disturbing influence on the conversation, which

appears to increase with increasing round-trip delay.' If no steps were
taken to reduce this echo, conversation would be seriously impaired
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over satellite communication links with round-trip delays of hundreds
of milliseconds. The devices used at the present time to combat echo
are called echo suppressors. A number of different types of echo sup-
pressors have been designed. They are all, basically, voice -operated
switches (albeit ingenious and complex ones) which disconnect the
return path or introduce a large attenuation in it whenever a decision
mechanism indicates that the level of Si is large compared to that
of S2 + E. However, since E and AS, both share the return path, the
use of such echo suppressors introduces "chopping" or interruptions
of 52 during periods of double talking.* It has been shown that the
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Fig. I --Typical situations where an echo canceller could be used.

degrading effect of chopping also increases with increasing round-trip
delay.' The characteristics, advantages and disadvantages of such echo
suppressors have been described in a number of papers."'

It appears that improvements in such echo suppressors are not
likely to solve the echo problem satisfactorily. Entirely different ap-
proaches are called for. One such approach was an open loop device
suggested by J. L. Flanagan and D. W. Hagelberger and implemented
by J. de Barbeyrac.6 In this approach, E is regarded as a linearly filtered
version of Si . The impulse response of this filter is measured by means
of a transmitted test pulse, and a transversal filter is synthesized to
approximate this impulse response. With 8, as an input to the trans-
versal filter, the output approximates E, and may, therefore, be sub-

* In this paper, the term "double -talking" will be used for the simultaneous
presence, at the echo suppressor, of speech signals of the two speakers.
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tracted from the return signal to cancel the echo. In this manner,
effective echo cancellation (as opposed to suppression) is achieved
without interrupting S, . J. de Barbeyrac demonstrated the feasibility
and effectiveness of such a device on four- to two -wire junctions sim-
ulated in the laboratory.

An actual echo path is, however, not perfectly constant. Besides
obvious step changes such as the connection or disconnection of exten-
sion phones during a conversation, or transfer of calls via key tele-
phones or PBX's, there may be slow changes in gain and other fluctua-
tions of the transfer function of the echo path. Also, economic con-
sideration would force placement of echo cancellers at switching offices
high in the hierarchical structure rather than at the hybrids where
the echoes are generated. (The number of echo cancellers required in
the latter case would be many thousand times the number required
in the former.) In such a situation, one or more carrier links intervene
between the echo canceller and the hybrid. A large percentage of these
(e.g., the N carrier) use compandors which are nonlinear elements
with memory. Thus, what are available to the echo canceller are not
S, and 82 E but the modified signals SI and A% E' (see Fig. 1(b)).
E' is no longer a linearly filtered version of Sc , although a linear filter
with an impulse response dependent upon the power level of Si could
approximately transform Si to E'. Thus, for the open loop device to
work in practice, it would seem necessary to intermittently adjust the
transversal filter during a conversation. The transmission of test pulses
required for such adjustments might prove quite intolerable to the
customers.

A proposal made by John L. Kelly, Jr. avoids these difficulties. The
speech signal itself is used in place of test pulses and a control loop
continuously adapts the transversal filter to take care of fluctuations
in the echo path.

In this paper, we will describe the system proposed by Kelly. We
will describe various modifications of the system which simplify and
improve it. Finally, we will report the results of tests of these systems
by computer simulation, using artificially created echoes and also using
two -track tape recordings made on an actual N -carrier link.

II. KELLY'S PROPOSAL

The adaptive control loop shown in Fig. 2 is the system proposed
by Kelly, except for the introduction of the nonlinear function F.
This function is chosen to be an odd nondecreasing function with
F(0) = 0. (Kelly's proposal obtains as a special case when F(e) = e.)
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Fig. 2 -Schematic of the echo canceller using a transversal filter.

The signal x(t) is the input speech signal (corresponding to S1 or
Si of Fig. 1). The signal y(t) is the return signal (corresponding to
52 E or Si E' of Fig. 1) and is given by

y(t) -= n(1) z(t),

where z(t) is the echo of the input signal and n(t) is a noise which is
assumed statistically independent of z(t). The noise may include a
second speech signal besides circuit noise.

The N -tap transversal filter synthesizes an estimate of z(t) given by

g(t) = g,(t)x[t - (k - 1)77,i]

where Td is the delay of each section of the transversal filter. The
control loop uses the error e(t) = y(t) - i(t) to continuously improve
the estimate z(t).

Ideally, the system should drive itself to the condition e(t) = n(t)
(not necessarily e(t) = 0, for as mentioned earlier n(t) may contain
a speech signal which must be left as undistorted as possible). Such
ideal echo cancellation is possible with this system only if n(t) = 0
and if z(t) is exactly representable by passing x(t) through an N -tap
transversal filter with constant (or slowly varying) tap gains. In the
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next section we will exhibit a proof that under these conditions the
system does indeed converge monotonically to this echo -less steady
state. In the presence of noise the final state is one in which the tap
gains fluctuate around their settings for perfect echo cancellation.
The response of the system averaged over the noise ensemble will be
shown to converge monotonically to this final state.

The system is a first -order system and is stable for any arbitrary
input. As is the case with most control systems, speed of response can
be traded for immunity to noise. The constant multiplier K of Fig. 2
allows adjustment of this trade-off. (Unfortunately, in the present case
speed of response depends not only upon the feedback factor K but
also upon the level and properties of the signal x(t). Thus, K can be
adjusted to give a certain speed of response only for some average
level of x(t).)

For immunity from noise, K should be made as small as possible;
for fast convergence, it should be made as large as possible. We do not
have any theory at present to calculate the optimum setting for K.
This must be done by computer simulation and/or experiments with
hardware implementations of the system.

III. CONVERGENCE

The proof of convergence given in this section is very similar to
a proof given by Kelly. The introduction of the nonlinear function
F necessitates only minor modifications. However, as we shall show in
Section V, a judicious choice of this nonlinearity can considerably
simplify and improve the performance and implementation of the
system.

To simplify our discussion we introduce the following notation. We
denote the output x[t - (k - 1) Td] of the kth tap of the transversal
filter as xk(t). We will refer to N-tuples as vectors and consider them
as column matrices. Thus, X(t) will be a column matrix with elements
x, (t), x2(t), , xN(t), and G(t) the column matrix with elements
g1(t), g2(t), , gN(t). The signal 1(t) of Fig. 2 then becomes

i(t) = E g,(1)4(t)
A = I

= GTX.

Here the superscript T denotes the transpose of a matrix, and for
brevity the dependence of G and X on t is not explicitly shown. The
echo z(t) will likewise be represented as
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z(t) = HTX,

where H has elements h, , , hr, which are assumed fixed (or so
slowly varying that their time derivatives may be neglected). Thus,
we have

y(t) = z(t) n(t)

= HTX n(t)

e(t) = y(t) - i(t)

= RT X n(t), (1)

where R = H - G.
Before proceeding to the proof of convergence let us give an interesting

heuristic justification for the circuit of Fig. 2. Consider a function
C(e) such that C(e) = C(-e) and d2C /de2 -?; 0. C(e) is then a monoton-
ically nondecreasing function of the magnitude of e. Let us minimize
C(e) by varying the coefficients gk(t). If we choose to use the steepest
descent method, we find the gradient of C(e) with respect to the gk
and make the vector G change in the direction opposite to this gradient.
Now

C(e) = grad C(RTX n(t))

- C'(RTX n(t))X

F(R n(t))X,

where C'(  ) = F() is the derivative of C with respect to its argument.
To change G along the negative of the gradient we may set

G = KF(RTX n(t))X, (2)

where K is a positive constant of proportionality.
By inspection, the matrix equation (2) is the equation that governs

the dynamic behavior of the system of Fig. 2. Thus, the system is
a steepest descent control system in the above sense.

The proof of convergence follows easily from (2) in the case when
n(t) = 0. Observe that since

R = H - G,

premultiplying (2) with - 212 T gives

G = - R,
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2RT R =d RT R

= - 2KR TXF(R TX) . (3)

By its definition F is a monotonic nondecreasing function and also
an odd function. Thus, the right-hand side of (3) is always negative,
hence RTR is nonincreasing. It is strictly decreasing whenever R TX 0,
i.e., whenever there is an uncancelled echo. Now RTR = lR is the square
of the length of the vector R = H - G. Thus, /R is nonincreasing,
and as long as there is an uncancelled echo the length keeps decreasing,
i.e., G keeps approaching H. To show that the echo goes to zero we
integrate (3) between 0 and some time T and obtain

PR(0) - d(r) = K f RTXF(RTX) d t . (4)
0

As lR is nonincreasing the left-hand side is bounded and < /,',(0). Thus,
as 7- -* 00 we note that the integrand on the right must approach zero.
However, the integrand is a monotonic nondecreasing function of the
magnitude of RTX (which is the uncancelled echo). Thus, the echo
power must approach zero.*

If y(t) contains a noise n(t) besides the echo, then proceeding as
before we find that

dt
R R = -KRTXF(RTX it(t)). (5)

From our previous discussion it follows that the right-hand side of
(5) is negative, if and only if R n(t) has the same sign as RTX.
As long as the magnitude of the uncancelled echo is large compared
to n(t), this condition is met for a large percentage of time and conver-
gence proceeds essentially monotonically as before. When the level
of the uncancelled echo becomes of the same order as or lower than
n(t) the convergence clearly cannot be monotonic. There will be intervals
when n(t) is greater than RTX in magnitude and of opposite sign. How-
ever, if the feedback gain constant K is small then G is a slowly varying
function of time (typically K would be adjusted so that R has a "time
constant" on the order of 0.5 sec or so). In such a quasi -stationary
case it is justified to assume that RTX is independent of n(t) provided

* I. W. Sandberg has pointed out that, strictly speaking, this argument does not
prove that I RTX I 0 for certain pathological cases. Although these cases are of no
practical concern, it is interesting that weak conditions suffice to rule these out.
For example, it is sufficient that: (i) I X I and d/dtIXI be bounded and (ii) the function
F be such that eF(e) and d /de (eF(e)) be bounded for all finite e.
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n(t) is a wideband signal. Then it is not hard to show that the average
of F(RTX n(t)) over the noise ensemble has the same sign as the
average of R TX provided only that noise has a symmetric distribution
and thus, the system still converges in this average sense.

IV. RATE OF CONVERGENCE

While convergence can be proved by such relatively simple argu-
ments, estimating the convergence rate is an extremely difficult prob-
lem. The convergence rate depends upon the properties of X, upon
the choice of F, and upon K and we do not have a solution to the prob-
lem in the general case. However, we will now derive an estimate of
the mean convergence rate for the noiseless case under the assumption
that (3) can be averaged over the X ensemble (which is assumed sta-
tionary) and the vector R assumed independent of X on the right-hand
side. This assumption is justified if K is small, hence R slowly varying.
Under this assumption, the expectation can be calculated for a variety
of different functions and random processes X. We will give the result
when X is a zero mean Gaussian process with (i) F(x) = x, and (ii)
F(x) = sgn (x) (here sgn (x) = 1 for x > 0 and -1 for x < 0). In
case (i)

(It (R
`R)v = -2K,sr2(RTCDR)tiv

7
(6)

where a is the standard deviation of xi(t) (assumed identical for all
the xi(t)) and (I) is the normalized NxN correlation matrix of the xi(t).
The angular bracket denotes ensemble averaging. In case (ii)

dt
-(1 (RTR),. -2Ko- -=1 (R1 cia)ay. (7)

These equations follow easily since any linear combination of Gaussian
variables is another Gaussian variable. Equations (6) and (7) give
upper and lower bounds to the convergence rates for the two cases,
when we observe that

X,;127.12 < RT(141 < X,,,,,RTR,

where X,; and A,,,,,, are the smallest and largest eigenvalues of 01).

If x(t) is white noise, then 43 is an identity matrix with X,i,, = N, = I.
Thus, for case (i)

'VR TR it -0 exp (- Ko-2X,t)

VR TR <VR TR It =0 exp (-Kcr2Xmint) (8)
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and in case (ii)

VIZTR 1,=,, - NI:71K0ALI

VIZTR < VRTR I - \I! Kolttint. (9)

These upper and lower bounds are close to each other only if 01. is
nearly diagonal (i.e., when x(t) is broadband). More elaborate methods
can be used to estimate the convergence rate (e.g., perturbation meth-
ods). However, although these methods would be extremely interesting
from a theoretical point of view, they are not likely to yield much
more insight into the convergence process. This is especially true in
view of the fact that no satisfactory statistical description of a speech
signal is available at present. For Gaussian noise (8) and (9) have been
checked by computer simulation.

V. CHOICE OF NONLINEARITY

In the formulation of the echo suppressor problem discussed in Sec-
tion III, the choice of the nonlinearity F depends upon the choice of
the function C. This choice has a profound influence upon the behavior
of the resulting system. One could set up the problem of determining
the optimum F which would provide, according to some reasonable
criterion, the fastest convergence and the maximum immunity from
interfering noise. We do not know the solution to such a general op-
timization problem. In any case, since convergence rate depends upon
the statistics of the signal and noise, any such optimization would
be practically impossible for signals as difficult to characterize as speech.
signals. We have, however, found that a number of improvements
over the linear case result upon making F an infinite clipper. The use
of an infinite clipper has also been suggested independently by B. F.
Logan.

One of the main drawbacks of making F(e) = e (i.e., Kelly's proposal)
is the dependence of the time constant of the control system on the
signal level. Equation (6), although approximate, nevertheless indicates
that the time constant (at least for a wide band signal) is proportional
to the signal power. A 20 -dB change in signal level thus changes the
time constant by a factor of 100. If, however, an infinite clipper is
used the same change in signal level changes the time constant by a
factor of only 10, which is a considerable improvement.

Another important advantage of using an infinite clipper is the
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considerable simplification of the circuitry. The multipliers M11  MIN
can all be replaced by switch modulators, which are far cheaper and
simpler than broadband multipliers.

There is another advantage in using an infinite clipper which may
be described as follows. Suppose the system is near equilibrium and the
echo has been reduced to a very low value. If now there is a sudden
burst of noise (say a spurt of double -talking) then in the linear system
the rate at which the system moves away from equilibrium is propor-
tional to the level of the noise, whereas it is more or less independent
of noise level if an infinite clipper is used. (In Section VI we will give
a detailed example of this effect.) We will argue in Section VII that
during intervals of double -talking the control loop be opened and the
vector G frozen at its last value. However, any decision mechanism
that would make this possible would require a finite time to make
the decision. It is therefore important that the system should not depart
from equilibrium too rapidly upon the introduction of a large noise
in the return signal.

VI. OTHER MODIFICATIONS

It may be noted that although we started out by taking the com-
ponents of the vector X(t) to be delayed versions of the input x(t),
this fact was nowhere of any importance in the proof of convergence.
All that is required is that the vector X(t) be derived from x(t) in such
a way that all transformations of x(t), that may possibly be produced
by the round trip transmission path, should be representable as WI
with a suitable choice of H. This immediately gives us the possibility
of generalizing the circuit of Fig. 2 to that of Fig. 3. In Fig. 3 the w; (t)
are a set of impulse responses such that linear combinations of them
are good approximations to most practical echo path impulse responses.

Now there is an infinite variety of sequences of functions that are
complete on the semi -infinite interval. One such set is the set of La -
guerre functions which is of particular interest because it can be syn-
thesized as a simple tapped RC ladder network. The impulse response
of the nth Laguerre network is given by

/(t) = e' be') (10)n!

with the corresponding transfer function

a a-
(11)Ln(s) - 8 + a a ± 8
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y (t)= z (t)+ n (t)

Fig. 3-Generalization of the system of Fig. 2 using an orthonormal set of impulse
responses.

As telephone speech is limited to about 3 kHz the choice of a ap-
propriate in the present case is approximately 2r X 2000 radians
per second, although it is not critical.

Tests by computer simulation, to be described in the next section,
indicate that Laguerre networks are at least as satisfactory as a tapped
delay line for the simulation of the echo path. However, a cascade
of RC sections would be much cheaper than a delay line. The properties
and synthesis of Laguerre networks is described in the literature.'

VII. COMPUTER SIMULATION

For a computer simulation of the system described by (2), it was
converted to a difference equation. Thus, if a subscript n on a quantity
is used to denote its value at the nth sampling instant, then the equation
simulated on the computer is

G,, = G KF(127,',X n)Xn.

In one class of simulations we used filtered Gaussian noise as the
signal and computer -simulated echo paths. Equations (8) and (9)
appear to be very good approximations if the time constant of the
convergence (which we may define as the time taken for lR = RTR
to become, say 30 percent of its initial value) is large compared to the
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reciprocal of the bandwidth of the input signal. If uncorrelated white
noise is added to the echo before the system has converged then no
convergence takes place if the noise level is about 15 dB above the echo.
If the same noise is introduced after the system has converged, however,
the balance is only slightly disturbed. A typical example will illustrate
the orders of magnitude of these effects. The nonlinearity F was chosen
to be an infinite clipper, and the level of the signal (which was a white
gaussian noise) and the constant K were such that in the absence of
noise ItrI2 converged to about 55 dB below its initial value in 0.7 sec.
The following two tests were performed:

(i) The same input signal, initial conditions, etc. were used as be-
fore, but an uncorrelated noise was added to the return signal
at a level 18 dB above the echo.

(ii) Same as (i) except the noise was added after the system had
converged for 0.6 sec so that 1 (hence, the echo power) was
about 23 dB below its initial value.

In case (i) no convergence took place and lx hovered around its
initial value. In case (ii), after the onset of noise, lR increased slowly
by about 3 dB in 1.5 seconds.

For comparison the same simulations were repeated with F replaced
by a linear function and the constant K adjusted to give a time constant
of the exponential decay of about 0.3 sec. The noiseless case and test (i)
gave about the same results, except, of course, that the decay was
exponential. In test (ii) the noise was introduced after 1.1 sec instead
of 0.6, to allow 1;, to converge to about 30 dB. However, in this case,
after the introduction of the noise l; rose by about 20 dB within 0.2
seconds. Thereafter it stayed at about this level.

The same kind of behavior was obtained when speech signals were
used both as input and as interfering noise and when the echos were
generated by the computer. Of course, it is much more difficult to
estimate time constants of the convergence when speech signals are used.

We also used as inputs, digitized tape recordings of sentences spoken
over an N2 carrier system. Two -track tapes were made of the input
signal and the echo. Double -talking situations were also recorded and
tested. For tests with these tapes, 40 to 50 delay line taps spaced 0.1 ms
apart were used.

With' very strong echos (0 -dB return loss) the system provided a
reduction of about 20 to 25 dB as measured on a VU meter. This
reduction took place in 0.5 to 5 seconds depending on signal level
its discussed in Section IV. The larger variation of convergence rate
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with signal level when the clipper is removed, was apparent in these
tests also.

When a typical hybrid and a return loss of 6 dB were used the echo
was reduced to the point of being unintelligible and almost inaudible
even under quiet conditions. As in the case of tests with noise signals,
the introduction of double -talking at a very high level after convergence
had taken place produced little change in the balance.

The fact that in the case of these recordings over the N -carrier sys-
tem the echo could not be reduced by more than about 20 dB or so
is undoubtedly due to the compandors used in the N -system. The echo
canceller can provide only a linear approximation to the transmission
path of the echo, which in the case of the N -system has nonlinearities.

We have also simulated the echo canceller using the Laguerre expan-
sion. In this case, the digital equivalent of the Laguerre impulse re-
sponses were used. In terms of the delay parameter, z" = exp (-jcoT.)
where T, is the sampling interval, these are

L(1-1) = 1 z - a )"
az' (1 -az11 -

where a = (2 - aT.)/(2 aT,), a being as defined in Section V.
As mentioned earlier a is chosen so that the cut off frequency of the
Laguerre function is about 2 or 2.3 kHz.

VIII. DISCUSSION AND CONCLUSIONS

We have described a new method of cancelling echos in telephone
connections. From our theoretical discussion and simulations it appears
that the method is feasible and can yield echo cancellation of about
20 dB or so with a convergence time of about 0.2 to 0.5 second for
average speech levels. This convergence time increases to 10 times
its value for a 20 -dB decrease in signal level. Convergence much faster
than this is not possible, as then the system becomes too sensitive to
noise and behaves erratically with normal noise level to be expected
on a telephone connection.

We have shown that the system would not appreciably depart from
equilibrium even upon the incidence of double -talking. However, it
needs, initially, a period of time in which only the echo is present in
the return signal (of course low-level noise may be present also, but
there should be no double -talking in this period). This initial interval
can be as small as 0.5 seconds if the input signal is loud, but would have
to be proportionately longer for weaker input signals.
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It would be advisable to break the control loop during bursts of
loud double -talking. This need not be done by very sophisticated
Means. The following simple method should be satisfactory. Assume
that the maximum level of an echo is 6 dB below the input signal.
Clearly if the return signal is much larger than this it indicates double -
talking. Rectification and integration with a time constant of about
0.5 second gives a reasonably good estimate of the levels of the input
and return signals. A switch could then be adjusted to open the feed-
back path in Fig. 3 immediately following the nonlinearity F, whenever
the input level is less than, say, 3 dB above that of the return signal.
It is important to note that this merely prevents the gain setting
G from changing. It does not interrupt the return path.

We have tested our system only on an N2 carrier system (besides
on artificially generated echos). This is a double-sideband modulation
system in which compandors are used. There are also in use single-
sideband carrier systems, in which no compandors are used but in
which carrier frequency variation (during the round-trip transmission
time) would introduce a time -varying nonlinearity. The degree to which
this type of variation exists and its effect require further investigation.

The delay between the input signal and its echo must be compensated
for. This delay may be as large as 60 ms. The problem of automatically
determining this delay and compensating for it is a challenging problem
and is being investigated by a systems group at Bell Telephone Lab-
oratories. They are also collecting a large sample of impulse responses
of various connections. This information would be very useful in the
final design of the system. For example, this will enable us to decide
upon the optimum number of taps. Also, a fixed weighting of the gain
vector G depending upon the statistical distribution of the impulse
responses would improve the average performance of the system.

The ultimate test of the system's performance and usefulness is its
actual use during normal long distance telephone conversations. For
this, actual hardware must be built. Two, rather different, instrumenta-
tions have been recently completed, one by A. J. Presti7 and the other
by F. K. Becker and H. R. Rudin,8 and it should be soon possible to
carry out such tests.
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Temperature Dependence of Inversion-
Layer Frequency Response in Silicon

By A. GOETZBERGER and E. H. NICOLLIAN
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Conductance -voltage and capacitance -voltage curves of metal -oxide semi-
conductor (MOS) capacitors on n -type silicon were investigated in the
temperature range between room temperature and ,200°C. Plots of the inversion -
layer conductance versus reciprocal temperature show a sequence of two
activation energies: one corresponding to the temperature dependence of the
intrinsic carrier density ni , the other to that of 74 . The low -temperature
range is characterized by recombination -generation in the space -charge
region, the high -temperature range by diffusion current from the bulk. The
technique permits measurement of bulk lifetime for the two regimes and
determination of room temperature cutoff frequency for the channel.

I. INTRODUCTION

Theoretical calculations of metal -oxide semiconductor (MOS) capac-
itance show a total capacitance approaching oxide capacitance in strong
accumulation and strong inversion.' Experimentally, it has been found
that response time of the inversion layer can be very long.' The re-
sponse time can be drastically shortened, however, by lateral ac current
flow in an extended inversion layer.' The lateral current flow mode
requires equilibrium surface inversion beyond the metal contact. This
condition is usually found in p -type silicon because of the preponderance
of positive surface charge in thermally oxidized silicon. Channel cutoff
frequencies are then typically in the MHz range.

In n -type silicon, charge in the inversion layer can communicate
with the bulk under steady-state conditions only by means of genera-
tion -recombination processes.' Inversion -layer cutoff frequencies in
n -type silicon are normally below 100 Hz, sometimes below 1 Hz.
These low frequencies make it difficult to measure cutoff frequencies
and to determine the mechanism of generation of minority carriers.
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In this study, measurements with n -type silicon were carried out at
elevated temperature where generation is more rapid. It is thus possible
to study the generation mechanisms and confirm the theory for cal-
culating response time. This theory was derived by Hofstein and
Warfield.2 They consider three different generation mechanisms for
minority carriers. These are: bulk diffusion current, space -charge gen-
eration, and surface -state generation. Fig. 1 shows a simplified equiv-
alent circuit proposed by Hofstein and Warfield for strong inversion.
The inversion capacitance is fed by three parallel conductances cor-
responding to the three generation mechanisms. Because inversion
capacitance is large compared to oxide capacitance with which it is
in series, it can be neglected as done in Fig. 1.

The conductances are given for n -type bulk material by the following
relations.2

For surface -state response

G,.. = 03N.N De 0-0 , (1)

where q= electronic charge in coulombs, N, = surface -state density/cm2,
ND = donor density in the bulk in cm', 3 = q/kT, a, = capture
cross section for holes in cm2, vi, = average thermal velocity of holes
in cm/sec, and IA, = surface potential in volts. Relation (1) was orig-
inally derived for a single level close to midgap. Because only levels in
this range contribute to recombination, it is also valid for a continuum
of surface states as is generally encountered in oxidized surfaces.

Gd

Fig. 1-Equivalent circuit of MIS capacitor in strong inversion proposed in
Ref. 2. C. is the oxide layer capacitance per cm2, CD is the depletion layer capacitance
per cm2, Go., is the conductance arising from generation -recombination through
surface states, mhos/cm2, G,D is the conductance arising from generation -recombina-
tion through states in the silicon space -charge region, mhos/cm2, and Gd is the
conductance due to the diffusion of minority carriers from the quasi neutral region in
the silicon to its surface, mhos/cm2.
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Space -charge generation response:

G,.13 - qnd (2)
To 11/8

where ni = intrinsic carrier density in cm', To = bulk lifetime in
seconds, and d = space -charge layer thickness in cm.

Diffusion response
eALe_,

(3)-rd 1

where 12, = hole mobility in cm2/volt-sec, and L9 = diffusion length
for holes in cm. We have further

L9 = (romp/MI. (4)

By measuring temperature dependence of the inversion -layer response,
it is possible to determine which mechanism is dominant. Surface -state
generation should go with an activation energy of IP, . It has to be
considered here that 4, is itself a function of temperature. Space -charge
generation has the activation energy of ni , and diffusion current that
of n . In the present investigation, surface -state density was made
very small, so that only G5,11 and Gd had to be considered. This was
also done because surface -state density can reach high values close
to the band edges." This, in turn, causes considerable uncertainty
of the value of surface potential. In the absence of surface -state effects,
the experiments reported here showed that at low temperature space -
charge generation dominates while at higher temperature diffusion
current takes over.

II. EXPERIMENTAL TECHNIQUE

Samples used for the measurements consisted of expitaxial layers
of 1.5 X 1018 cm' doping, 10 µ thick, on low -resistivity substrates of
[100] orientation. Use of epitaxial samples was advantageous because
the measurements were not affected by series resistance in the substrate.
Because epitaxial layers are not as perfect as regular crystals, rather
low lifetimes were encountered. Samples were thermally oxidized in
steam to a thickness of 1000 A. The previously described bias oxidation
technique' was used. In order to reduce surface -state density, the
samples were subjected to a 30 -minute annealing treatment in N2 at
350°C after an aluminum film had been evaporated!' After annealing,
circular areas of 3.75 X 10-2 cm diameter were etched out for MOS meas-
urements. Capacitance and conductance were measured versus voltage
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at 100 KHz and 6 KHz at various temperatures. For this purpose,
the entire wafer was placed on a heated stage and contact was made
to one capacitor with a wire probe. Temperature was controlled to
± 2°C. Next, depletion -layer capacitance and inversion -layer conduct-
ance were extracted from the raw data by correcting for oxide capac-
itance as described in Ref. 5 and 3.

III. RESULTS

A family of capacitance versus voltage curves and conductance
versus voltage curves at 6 KHz are shown in Figs. 2 and 3. Figs. 4 and
5 contain 100-KHz curves for the same sample. It is seen that both
capacitance and conductance saturate in the inversion range at negative
voltage. Due to the influence of the residual surface -state density
small bumps appear in the depletion region. In Figs. 6 and 7, Arrhenius
plots of the computed inversion conductance G, are presented. These
curves were obtained from the conductance curves of Figs. 3 and 5
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as parameter. Sample is n -type silicon oriented in the [100] direction. Field plate
diameter is 370 A, donor density is 1.17 X 1016 cm -3, and oxide layer capacitance is
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at high negative voltage. The fact that both plots agree within the
accuracy of the measurement indicates that the equivalent circuit of
Fig. 1 is valid. The values of the activation energies also prove that
in the surface studied here there is no noticeable influence from surface
states. Fig. 8 contains room temperature capacitance -voltage curves
at various frequencies.

IV. DISCUSSION

Hofstein and Warfield2 showed that the dominant effect is most
likely space -charge recombination (2). Surface recombination may also
be important at relatively high surface -state densities. Because the
sample investigated here contained very few surface states, it can be
expected that space -charge recombination dominates. From Fig. 6
it is seen that this is the case up to temperatures around 140°C. In
this range, the activation energy is 0.56 eV for Fig. 6, curve (a), and
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0.620 eV for Fig. 7, curve (a). The expected activation energy' for
ni is 0.605 eV. Equation (2) can now be used to calculate bulk lifetime,
T., under certain simplifying assumptions given in Ref. 2. We obtain
ro = 4.19 X 10' seconds. This rather low lifetime is explained by the
fact that it refers to an epitaxial layer.

Above 140°C a new process dominates as shown by the break in
the 1/T curves. This process could be either surface -state generation
or diffusion current from the neutral part of the bulk. It can be shown
that surface -state generation is very unlikely in this case. Surface -state
density as determined by the conductance technique' is varying be-
tween 6.1 X 101° and 3.3 X 1011 states per cm2 and eV. This density
would, according to (1), give a conductance orders of magnitude lower
than the measured G, . It is also expected that the activation energy
of surface -state processes should decrease because surface potential
at constant voltage decreases considerably with increasing temperature.

If the high -temperature points in Figs. 6 and 7 are connected by a
straight line, they give an activation energy of 0.908 eV for 6 KHz
and 0.935 eV for 100 KHz. This energy is lower than the expected
energy of 1.21 eV. The discrepancy can be resolved by correcting the
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high temperature points by subtracting the influence of space -charge
generation as indicated in Fig. 6, curve (c). If this is done, the high -
temperature activation energy in Fig. 6, curve (c), is 1.17 eV which
is very close to the expected value. Fig. 7 did not contain sufficient
experimental points to carry out the correction.

Using (3) and (4), the high -temperature lifetime and diffusion length
can be calculated. We find, 4, = 20.1 µ and T. = 1.8 X 10-7 seconds.
Because the calculated diffusion length is of the order of the epitaxial
layer thickness, it is possible that the actual diffusion length might
be longer. In calculating the above values, a temperature dependence
of the mobility Atz, of Ti was used as is necessary for highly -doped
samples.
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peaked at 180°C. Dotted lines are on high and solid lines are on low -temperature side
of peak.
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The two lifetimes calculated from the two temperature ranges are
actually expected to be equal. The linearity of the plots in curve (b)
of Figs. 6 and 7 indicates that there is no great temperature dependence
of To . A possible explanation for the discrepancy of lifetimes is that
they are measured in different parts of the crystal. Space -charge re-
combination occurs within 0.5 µ from the surface, while diffusion life-
time is determined in the entire epitaxial layer. It is likely that a thin
surface layer contains a higher concentration of recombination centers.

An alternative explanation is that electron and hole lifetime are
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Fig. 6-Equivalent parallel conductance measured at 6 kHz and a bias of -15
volts as a function of reciprocal degrees Kelvin. The experimental points indicated
by the circles were obtained from Fig. 3. Multiple circles at a given temperature re-
present several runs. The solid lines are the best fit to the experimental points.
Curve (c) is obtained by subtracting the values of GI in curve (b) from the extrap-
olation of curve (a) at each temperature.
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Fig. 7-Equivalent parallel conductance measured at 100 kHz and a bias of -15
volts as a function of reciprocal degrees Kelvin. The experimental points indicated
by the circles were obtained from Fig. 5. Multiple circles at a given temperature
represent several runs. The solid lines are the best fit to these points.

significantly different. In this case, rt, = (T0T)1 would have to be
used in (2) and r. = 7- in (3). Under this assumption rflo is calculated
to be 10-b0 second.

By taking inversion conductance from the curves in Fig. 6 at room
temperature, inversion -layer time constant can be accurately calculated.
This time constant' is Tr = CD/G1 = 2.25 X 10' second leading to
a cutoff frequency of 71 Hz. Fig. 8 demonstrates that a cutoff frequency
in this neighborhood is indeed observed.

V. CONCLUSIONS

By measuring inversion conductance, it could be shown that the
equivalent circuit and theory by Hofstein and Warfield is valid. The
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Fig. 8 - Capacitance vs field plate bias measured at 27 °C with frequency as
parameter. Sample is the same as in Fig. 2.

technique applied here permits an estimate of the room -temperature
time constant of an inversion layer by extrapolating the high -tempera-
ture curves. This way, even very long time constants may be estimated.
In samples having low surface -state density, like the one described here,
only bulk generation processes are important. The temperature range
up to 140°C is characterized by space -charge generation, above this
range diffusion current which has a higher activation energy becomes
more important.

VI. ACKNOWLEDGMENT

We wish to thank R. V. Terio for his help in making the measurements.

REFERENCES

1. Lindner, R., Semiconductor Surface Varactor, B.S.T.J., 41, 1962, p. 803.
2. Hofstein, S. R. and Warfield, G., Solid -State Electron, 8, 1965, p. 321.
3. Nicollian, E. H. and Goetzberger, A., IEEE Trans., ED -12, 1965, p. 108.
4. Grey, P. V. and Brown D. M., Appl. Phys. Letters, 8, 1966, p. 31.
5. Nicollian, E. H. and Goetzberger, A., to be published.
6. Goetzberger, A., J. Electrochem. Soc., 113, 1966, p. 138.
7. Balk, P., Electrochem. Soc. (Extended Abstracts, Electronics Division), 14, 1965,

p. 237,
8. Goetzberger, A. and Nigh, H. E., Proc. IEEE, 54, 1966, p. 1454.
9. Morin, F. J. and Maita, J. P., Phys. Rev., 94, 1954, p. 1525.



The Charge -Control Concept in the Form
of Equivalent Circuits, Representing a
Link Between the Classic Large Signal

Diode and Transistor Models
By DANKWART KOEHLER

(Manuscript received November 2, 1966)

I t is shown in this paper that the charge -control concept can be conceived
as a special form of the Linvill model for semiconductors. Instead of
mathematical tools, charge -control models become equivalent circuits amen-
able to ordinary network analysis techniques. In the simplest form, the
charge -control equivalent circuit for the junction transistor is fully equiv-
alent to the Linvill and the Beaufoy-Sparkes model. For all practical
purposes, it is also equivalent to the Ebers-M oll model.

The charge -control junction transistor equivalent circuit combines those
features of the other models that are important for electrical engineering
applications. It also permits the conversion between the three basic types
of models. Because of its close relationship to the physical processes governing
a device, it can readily be extended to higher -order phenomena. This is
usually done by expressing a Linvill-type lumped model in terms of charge
parameters. The charge -control equivalent circuit can be useful for modeling
a variety of semiconductor devices.

I. INTRODUCTION

Three basic approaches are generally used to obtain descriptive large -
signal models for transistors and diodes, the Ebers-Moll model,' the
Linvill model' and the charge -control concept' after Beaufoy and
Sparkes.

The Ebers-Moll transistor model"' is based on the idea of super-
imposing a "normal" and an "inverse" transistor. Semiconductor
junctions are represented by means of diodes and capacitors, whereas
the properties of the transistor base are represented by frequency -
dependent current sources. The Ebers-Moll transistor model is the

523
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most popular of all transistor models since it lends itself most readily
to simple "rule -of -thumb calculations." The current relations are
described in the frequency domain, whereas the junction voltages are
described as functions of current in the time domain, or, as in the
original paper, only at de. The model simulates only the effect which
minority carrier storage exercises on the relations among the various
device currents, but not the effect on current -voltage relations. Since
the diode is a one -port device, no diode model of the Ebers-Moll type
exists that could simulate carrier storage.*

The Linvill model' is almost a direct representation of the con-
tinuity and diffusion equations for semiconductor materials. It uses
physical rather than circuit parameters and is superior to any other
model when it comes to incorporating second -order physical effects
or symbolizing new structures.

The charge -control concept"'"-"" stands about halfway between
physics and circuit considerations. It has proven in the past to be
very useful for studying storage effects in diodes and transistors, but
appeared to be entirely a mathematical tool. Certain equivalent circuits
have been presented"' to illustrate charge control, but, as Linvill
phrased it, "they have little more meaning than a symbolic model
useful for the purposes of visualizing only."

Hamilton, Lindholm and Narud compared the three models for the
transistor in a well -written tutorial paper." They discussed the
approximations used in deriving each model from the same physical
background. [See also Ref. 34] In contrast to this parallel treatment
of the three models, the following study dwells on the interrelations
and conversions between the various models. This is illustrated sym-
bolically in Fig. 1.

We may call the Linvill model a physical model, the Beaufoy-Sparkes
charge -control model a mathematical model, and the Ebers-Moll model
an electrical model. The link between the three models is accomplished
through a modified approach to charge -control theory: instead of
deriving, from device physics by means of integration, mathematical
charge -control expressions, the charge -control concept can be treated
entirely as an equivalent circuit tool!' The transistor model, for ex-
ample, is in such a form readily comparable with, and convertible
into the Linvill and the Ebers-1VIoll model, provided all of these models
are at the same level of approximation. In its simplest form, the charge-

* Diode models that simulate storage and use neither the charge control nor the
Linvill concept are usually extensions of small -signal models towards incorporating
certain nonlinear properties.
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Fig. 1-Principle of derivation of transistor models and their interrelations (heavy
lines indicate main aspect of this paper; numbers refer to conversion equations in
the text).

control equivalent circuit model is fully equivalent with the standard
form of the Beaufoy-Sparkes charge -control model. But equivalency
is usually lost, as extensions to higher -order approximations are made
in each model.

In this paper, we shall review the derivation of the above -mentioned
types of models for diodes and transistors. This will be done with the
help of a differential transmission line model. The equivalent circuit
type charge -control concept will then be derived for diodes and tran-
sistors. This will be followed by a discussion of higher -order approxi-
mations, the inclusion of drift fields, and possible applications to
other semiconductor devices.

II. DIODE MODELS

2.1 Mathematical Description

As a starting point for our discussion it is assumed that the reader
is familiar with the continuity and transport equations, describing
current flow and carrier density in a semiconductor material.
Continuity equations
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-div j(t) _ e agt) 4_ -
at e

(la)

+div in(t) = e + en(t) -
T,,

(lb)

Transport equations

j9(t) = etipEp(t) - eD, grad p(t) (2a)

in(1) = ettnEn(t) + eDn grad n(t). (2b)

j, and jn are the hole and electron current densities, respectively.
p and n are the hole and electron carrier densities with po and no being
their equilibrium values at a given temperature. E is the electric field
intensity. D and Dn are the hole and electron diffusion constants,
and A, and An are the respective carrier mobilities. e = +I e I is the
value of the electronic charge.

2.1.1 p -n Junction

A p -n junction is described in a first -order approximation by the
transport equation (2). The well -justified assumption is made that
both j, and j are numerically small compared with the mutually
opposing diffusion and drift currents. With the help of the Einstein
relations

D, = 7'
A,

kTDn = -eIn

(3a)

(3b)

and the appropriate boundary conditions one obtains the Boltzmann
equations that express carrier densities as functions of the applied
junction voltage v.., :

Pn(0, = Pno exp [-kT ve=t(t)1

n9(0, t) = nyo exp ve.,(t)i
(4a)

(4b)

Here, p(0,t) and n,(0,0 are the carrier densities on both sides of the
junctions; pno and no are the densities for v,,,,, = 0 or, in other words,
at points away from the junction, previously called Po and no in (1).
The definitions of these notations are illustrated in Fig. 2.
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In terms of excess carrier densities, (4) transform into the following
expressions

pexooss(t) = PAM - pri0 = Pno[exp kT
vext(1)} - 1 (5a)

nem8(t) = nn(0,1) - no = no[exp kT ot(t)} -1. (5b)

Together with the reasonable approximation that the hole and electron
currents pass through the junction unchanged,* (5) uniquely char-
acterizes the junction.

2.1.2 p and n Regions
The following assumptions are implied in the analysis presented

for a p -n diode:

(i) The p -region is so heavily doped that the electron current can be
neglected and appreciable carrier injection occurs only in the n -region.

(ii) The problem is reduced to one-dimensional variations along the
x axis.

(iii) Drift fields are neglected. (Their inclusion will be briefly dis-
cussed later in Section 7.3.4.)

(iv) Space charge neutrality is assumed.
* This is not quite true for silicon diodes at low forward currents and in the

reverse direction where recombination in the space charge layer cannot be neglected.
With respect to some of the diode properties, especially the current -versus -voltage
relationship, the discrepancy can be accounted for by changing the exponent to
eve. e/2kT."
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With these assumptions the continuity and transport equations reduce
to

ajp(z,t) - eap(x,t) + e
p(x,t) - p,,

ax at r,

:axe!) = -eD8--'(")ax

(6)

(7)

We shall now express (6) and (7) in terms of the excess carrier den-
sities p,ce,, which we shall denote for simplicity as p, i.e.,

= P.(x,t) - pno

Multiplying by the cross section A we obtain

aip(x,t) -eA(x,t) + eA 'I) (8)
ax at Tn

ip(x,t) = -eAD,313(x't)
ax

These are the two equations describing the n -region.

(9)

2.2 Differential Diode equivalent circuits

Equations (8) and (9) become transmission line equations if ip and
p are taken as currents and voltages, respectively. (Mathematically,
one may think of p as an analog voltage representing carrier density.)
Fig. 3 illustrates the resulting r -g -c transmission line.

The currents in the network branches are true currents but the
voltages associated with the nodes are analog voltages. As a reminder,
we have labeled the nodes with encircled "p's". The series and shunt
elements are accordingly analog resistors, conductors and capacitors
per unit length.

If the diode is forward biased, the junction injects carriers into the
n -region. They diffuse across the n-region gradually recombining until,
at x 00 , all hole current is converted into electron current. Fig. 4
shows the carrier distribution across the n -region which is equal to
the voltage distribution along the infinitely long r -g -c line. It can
be derived easily from (8) and (9) that, under steady-state conditions,
the shape of the charge distribution is proportional to

exp (-x/L,),

where
4 = VD,T . (10)
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Fig. 3-Analog differential transmission line representation of diode model. (The
bars indicate dimension per unit length.)

L, is called the diffusion length. r is the hole recombination time
constant, or hole "lifetime".

Since the analog voltage distribution on the capacitors of the r -g -c

transmission line is identical with the physical charge density distribu-
tion, and since many engineers have a much better feel for the charging
and discharging processes of such a line than for the physical process,
the r -g -c line representation may be quite helpful as an illustration
of the carrier injection process. In early semiconductor work, such
r -g -c transmission lines were frequently USed.26'35'36.37 No attempt was
made, however, to attribute the physical meaning of carrier density
to the network nodes; the junctions were represented by so-called
K -amplifiers. These amplifiers transform the internal voltage at x = 0

p (x)

Fig. 4-Excess carrier distribution in diode n -region.



530 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

to the external voltage with the appropriate exponential relationship,
while not transforming current at all.

Linvill"'" has introduced new symbols for the network elements
which relate current to carrier density. These new notations avoid
possible confusion between analog and physical circuit parameters,
especially voltages, and hence enable us to combine current/carrier-
density with current/voltage networks. Fig. 5 shows such a Linvill
model in differential form. Again we have added bars over the letters
as it was done with the f, "0, and c in Fig. 3 to denote their dimensions
as being "units per length".

The symbols in the models are defined as follows:

where

dii(x,t) = -H, dx p(x,t) (11a)

dio(x,t) = -S dx alxt't) (11b)

dp(x,t) = -(1/Hci) dx ip(x,t), (11c)

H, = combinance per length = eA/T, (12a)

S = storance per length = eA (12b)

(1///d) = 1 per length = 1 / eAD, . (12c)
diffusance

JUNCTION

C(V)

p(o,t) x , t) p(x,t)

Lp

Sdx

dLp2

v (t)

v(t) = -keT Ln
(1 p(o,t)

Pno

i.,(x,t)

Fig. 5-Differential Linvill diode model. Note that, in consistency with common
transmission line notations, the reciprocal of diffusance must be used.
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This model can be extended to include majority carriers, drift fields
etc. The reader is referred to the literature.'

2.3 Integrated Diode Models

2.3.1 Mathematical Integration.

In order to arrive at an expression for the external diode current
from the continuity equation (8) we can integrate this expression with
respect to x. Choosing x = 0 and x = CO as the limits of integration,
we obtain

r aii)(x't) dx - cA aP(x '1) dx eAp(x,t) dx. (13)ax at Tr 0

The third integral represents the total charge in the bulk material.
With the appropriate boundary conditions ip(0) = i, in(0) = 0,
ii,( oo) = 0, i( oo) = i, the well-known charge -control equation' can
readily be obtained as

di(t) - (t) 4(0
(14)dt r

To obtain (14) from (13) the assumption must be made that A and
7", are constant. Note that no approximations or restrictions to specific
charge distributions are implied in (14). (They must be made, however,
when relating the current to the junction voltage.)

2.3.2 Lumped Linvill Diode Model

The crudest approximation to the distributed Linvill model of Fig. 5
is to replace the "line" by just one storance and one combinance"
as shown in Fig. 6. These two elements are obtained by summing, i.e.,

v (t)._

p(t)=p(0,t)

H,

THc

v(t)= -kr I+( P(0,t))
e Pno )

LHc(t) eALp
=

p(t) Tp

LS(t)s= = eALp
dp (t)

dt

Fig. 6 - Lumped Linvill diode model showing single -pole approximation for
minority carrier storage. Chosen values: Ax = Lp, p(t) = p(0,t).
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integrating, all differential storances and combinances from x = 0
to some value Ax. The value of Ax is usually chosen to equal the diffusion
length 4, . This may seem arbitrary,' but has no effect on the terminal
properties of the first -order model, as long as p(t) is chosen such as
to maintain the same amount of total charge.

The values of the circuit elements follow from (11), (12), and (5a) as

eAL,
TD

H. = H. Ax = H,L, (15a)

S = 8 Ox = eALi, (15b)

v(t) = In (1 + P("))
Pno

where X is an abbreviated notation, used hereafter for

e

= kT.

(15c)

(16)

The meaning of such lumping with respect to the carrier distribution
is illustrated in Figs. 7 and 8. The solid lines in Fig. 7 present the
actual carrier distribution in a switching example in which a current
pulse is assumed. As required by the transport equation, the slope
at x = 0 is, at any time, proportional to the current. Under steady-
state conditions, an exponential distribution is obtained. To assume
such exponential distributions at any instant of time (dashed lines
in Fig. 7) represents a simplifying assumption. The corresponding

p(x,t)

(a)

Lp

p(x,t)

0

RESIDUAL
CHARGE

(b)

Fig. 7-Illustration of the (a) charging and (b) discharging process in the neutral
bulk material. The applied signals are assumed to be forward and reverse current
pulses. The solid lines represent the actual shape for current pulse drive; the dashed
lines represent exponential model approximations.
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p(x,t)

LUMPED WITH m = 1

LUMPED WITH
M > 1

EXPONENTIAL

L mLp

TOTAL CHARGE =ci (t)=eALpp (o,t)

(a)

p(t)= p(0,t)
LUMPED WITH

m=1

EXPONENTIAL

L p

(b)

Fig. 8-Exponential and corresponding lumped distribution of excess minority
carriers in the bulk material of a diode. (a) Illustration of the choice of lumping
length. (b) Time variation for in = 1; m = 1 is generally preferred in the Linvill
model, and is irrelevant in charge models or circuit applications of the Linvill model.

errors are negligible in all those applications where the switching times
are large compared with the carrier redistribution times (= diffusion
times T. and Tb in Fig. 12).

In the lumped Linvill model, it is assumed that the carrier density is,
at any instant of time, constant from x = 0 to x = L , and that it is
0 for all x > 4 . Any information on the distribution of the charge,
especially of the slope at x = 0, as expressed in the transport equation,
has been lost since all series elements (diffusances) are neglected. The
only parameter of importance left is the total number of minority
carriers and hence, the total charge. The approximation used is therefore
equivalent to the dashed line exponential distribution in Fig. 7.

As mentioned above and illustrated in Fig. 8(a), the length Ax over
which p is nonzero, is most conveniently chosen to equal L, . But it
is permissible to choose ix 0 4 if the constant value p(x) is recognized
to be different from p(0,t); for ha = mL, , we must choose p(t) = p(0,t)/ni
such as to yield the same total charge

q = eAL,p(0,1). (17)

Fig. 8(b) shows, for 17/ = 1, the time variation of the carrier distribu-
tions for the lumped model (solid lines) and the exponential distribution
(dashed lines).

As the external voltage v(t) varies, the carrier density p(0,t) changes
accordingly. The relation between v(t) and p(0,t) has been given above
in (15c). We shall see below that the approximation made in the lumping
process, as discussed above, effects only v(t) but not the current. Little
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or no error is made whenever, and as long as the external driving
source impedance is large.

Since, in this and any other lumped Linvill model, all circuit param-
eters are functions of total charges in the various sections of the semi-
conductor we can transform the model of Fig. 6 into a charge -controlled
model, in which all carrier densities are replaced by charges. This will
be shown in Section 2.4.1.

2.4 Charge -Control Diode Model

Without invoking any of the approximations introduced in Section
2.3.2 and illustrated in Figs. 7 and 8, the diode is completely described
by (14) and (5a). These two equations are the basis for the classic
charge -control theory after Beaufoy-Sparkes as applied to diodes.
Throughout the charge -control literature, only the current appears as
a function of the total charge but not the voltage. If we want to relate
the junction voltage to the charge rather than to pn(0,t) as it was
done in (5a), we must make some approximation: The simplest possible
approximation is the assumption that p(0,t) is proportional to q(t).
This is, for example, satisfied if the shape f(x) of the carrier distribution
never changes, i.e., if the carriers redistribute themselves instanta-
neously. p(x,t) is then of the form

p(x,t) = f(x)g(t).

The shape of f(x) does not matter as long as the integral 5 f (x) dx
yields the proper proportionality constant. Examples of this are the
exponential distribution or the lumped distribution (with any arbitrary
value of m) in Fig. 8(a). This shows the equivalency between the
postulate of instantaneous carrier redistribution in classic charge -
control theory and carrier density lumping in the first order Linvill
model.

If we now want to establish an equivalent charge -control circuit
we must first represent (14) by corresponding circuit symbols. This is
done in the n -region part of Fig. 9. S is the store originally introduced
by Beaufoy and Sparkes."' To account for directionality, we have
added a vertical bar to the store symbol in the manner of the standard
diode symbol. The properties of 8, as defined in this paper, are:

(i) charge stored = q(t)
(ii) current in direction indicated by arrow

q.- d (I)
dt
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JUNCTION REGION

C(v)

kT q(t)
v(t)= in

ps
dq (t)

PROPERTIES OF S: CD L(t)= dt
OR I (s)= sQ (s) -Q (0+)

70(t1

q(t.)/Tp

(?) VOLTAGE = 0

0

535

Fig. 9-Complete first -order charge -control equivalent circuit (this circuit is a
charge representation of Fig. 6).

(iii) voltage across store = 0.

S is often interpreted as an infinite capacitor for which i = dq/dt =
d(Cv)/dt = finite, but C 00 and v 0.

It follows from (15c) and (17) that the junction voltage is of the form

v(t) = -1 In [I -I- Kq(t)],

where K is a proportionality factor. If we denote the steady-state
reverse current (flowing through the diode when v(t) is very large
and negative) by /s we can evaluate the constant: For v - co we
obtain

and from Fig. 9

Hence,

and thus,

K  Q = -1

= Q/7,

1K -
1sT,

P(I) = 1 In [1 + q(l) 1.
I , rp (18)
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Under steady-state conditions where Q/T ---- I, this equation becomes
the well-known diode equation.

For the possibilities of incorporating the junction capacitances see
the discussion in Section 7.3.2.

2.4.1 Derivation of the Charge -Control Model from the Lumped Linvill
Model

It represents not merely an additional proof of equivalency but also
a good preparation for the derivation of more complex models, if we
show27 that we can derive the charge -control model from the Linvill
model. A somewhat related modification of the Linvill model was more
recently proposed by Beddoes." To this end we calculate the currents
through the elements H, and S in Fig. 6:

i11,(t) = 11,p(0,0 (19a)

dp(O,t)
di

Substitution of the values for H, 5, and p(0,t) from (15a), (15b),
and (17) yields

eAL =
q(t)

Tp Ty

iS (t) = eALp (11)(°,1) _ dq(t)
di di

This result shows that the current source in the charge -control
model of Fig. 9 represents the current ill, through the combinance,
and that the store S represents the current is through the storance.

To find the expression for the junction, we can express p(0,t) in
terms of q(t) by means of (17). pflo can again be obtained from the case,
where V - 00 and where p(0,t) = P(0) = -

eAL eAL
= -I .s = P(0) = Puo

T, cc T,

(19b)

Itic

Thus, we find
p(0, t) q(t) / I sr, q(1)

p. eALi eAL,,,- I sTi,

(20a)

(20b)

(21)

With this we can make the transition from (15c) to (18).

2.4.2 Evaluation of the Charge -Control Model

The charge -control model is completely equivalent with the lumped
Linvill model in Fig. 6; in fact, it may be considered a circuit oriented
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form of the Linvill model. In almost all instances'' 11 where the Linvill
model is being used for circuit applications the conversion of carrier
density into charge must be made anyhow. The charge -control equiva-
lent circuit in Fig. 9 uses current and voltage sources plus one lesser
known circuit element described by the simple relations

v(t) = 0 (22a)

dq(t)i(t) - (22b)
dt

I(s) = sQ(s) - Q(0+). (22c)

or, in Laplace notation

Ordinary circuit analysis techniques can be used in working with
the model. No restriction exists with respect to the external waveforms.
Q appears as an additional circuit parameter with additional com-
plexity comparable to that of an additional branch current. From a
topological viewpoint it is a branch current. This is the price to be
paid for inclusion of the first -order dynamic storage properties.

Junction and n -region are clearly separated in the model. Thus, little
difficulty should arise in adding junction capacitors (dashed in Fig. 9),
series path resistors, and leakage resistors, provided, physical knowledge
of such effects exist.

2.4.3 Charge -Control Model for Short -Base Diodes

Diodes with extremely short bases do not show the exponential
minority carrier distribution represented in Fig. 4, but rather a prac-
tically linear fall -off (like in a transistor base except that the collector
is now a nonrectifying contact). With reference to Figs. 3 or 5, this
means that the distributed "transmission line" is so short that the
effect of the series diffusances Hd dominates over that of the shunt
combinances H. . The metallic contact behaves like a short circuit
at the end of the line.

The analogy with the r -g -c line of Fig. 3 may help the reader visualize
the difference between the long base and the short base diode: The
first -order approximation for the infinitely long line with respect to
currents and input voltage is the parallel connection of the shunt
resistor and the shunt capacitor; the first -order approximation for a
very short line is the parallel connection of the series resistor and the
shunt capacitor. In terms of the Linvill model, the short base diode
model is obtained by replacing H, in Fig. 6 by Hd eAD9/L and
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L9 by L. (Note that Hd increases as L becomes small.) In the charge
control model, of Fig. 9, the term 7-2, which represents the recombination
time constant for the long base diode, now becomes the diffusion time
constant. The new value T; can be derived most easily from the Linvill
model as follows:

Ip(0`,eAll7
-w 2

Tp=iHa //1\ // /W p(0)eAD,fw 2D (23Pku)11di)
Apart from this numerical change, the model in Fig. 9 for the normal
diode is equally valid for the short base diode.

2.4.4 Piecewise Linear Charge -Control Diode Model

For many practical purposes the logarithmic voltage source relation
can be approximated by a switch as illustrated in Fig. 10. The switch
opens when q becomes negative and closes when q is able to charge
up to q > 0. A threshold voltage V th is connected in series with the
forward path. If desired, the slope of the logarithmic curve

dV dV 1 2

dl d(q/ 7) Xq
ti

Xlma.

A v=f(q)

v= kT bn
q1+-rIs

(a)

0.
qtr

v=f (q)

Vth-
SLOPE = -

X k

cl<oI
0 ..-30

0-1111-V\N--
+ - T I

Vth Xk
L_

(b)

(24)

Fig. 10-Piecewise linear approximation for the semiconductor junction. (a)
Theoretical logarithmic curve. (b) Approximated curve (the dashed lines indicate the
completion of the diode model).
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can be added as a resistor, where /a, is an average current, which may,
in long hand calculations, be assumed to be i/ma. . The saturation
current IS must now be represented by an external current source.

2.4.5 Application of the Model

The above discussion of diode models serves two purposes: First,
they form a basic understanding for deriving transistor models. Secondly,
the diode models can be very useful in simulating dynamic effects due
to carrier storage in diodes.

With the piecewise linear junction approximation of Fig. 10 applied
to the charge -control model in Fig. 9, storage time equations can be
derived easily using Laplace transform concepts. The model has proven
to be very useful in the analysis of step -recovery diode circuits. In the
piecewise linear form, it can be handled without a computer, whereas,
for the more complex models with various parasitics added, computers
soon become mandatory.

Switching times for step -recovery diodes are derived in Appendix A.1
as an example of the use of the charge -control model. The equations
obtained have been found by many authors to agree well with actual
measurements. The normalized storage time for recovery from an
infinite ON -pulse according to (97) is plotted in curve a of Fig. 11 as
a function of the reverse -to -forward current ratio according to the
relation

T = Tin (1 -I,) (25)
iR

When applying this result to an ordinary diode with homogeneous
doping profile, one must be aware of the implied approximations:
(i) The single -section approximation in the model does not affect any
mutual relationships between currents and charges, but represents
approximations with respect to the junction voltage. As the amount
of stored charge is reduced considerably in the diode, the junction
voltage decreases noticeably. (ii) As the carrier density near the junction
becomes extremely small, the voltage reverses sign and the diode
impedance, at some point, becomes comparable with the external
source impedance. The ideal current source assumed in (97) ceases
to exist, and instead of the step -recovery, as given by the model, a
long tail in the current response results.

From either one of the two differential models in Figs. 3 or 5, we can
calculate the time in which the carrier density at x = 0, and hence
the junction voltage, reaches zero. Such a calculation yields the relation
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Fig. 11-Comparison of diode storage times as functions of the driving ratios.
(a) Single lump model; T = time when charge is fully depleted. (b) Differential
model; T = time when excess carrier density at x = 0 reaches zero.

originally derived by Lax and Neustadter"

erf Nr - 1

IR (26)
1 +

This relationship is illustrated in Fig. 11(b). Since curve (b) represents
only the storage phase but not the very long tail of the recovery, the
values are much smaller than those in curve (a) in which some sort
of "effective total recovery" is represented. The difference is most
remarkable at strong relative reverse drives where the carrier distribu-
tions on the lines differ most from the steady-state distributions.

If it becomes necessary to incorporate the tail of the recovery into
a lumped diode model, the double 7r-extension described below may
prove adequate for most applications.
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2.4.6 Higher -Order Approximations

Bearing in mind how the model originated as an approximation to
the differential transmission line or as just another form of the lumped
Linvill model we can now understand how higher -order approximations
are to be obtained.

Fig. 12 shows the example of a 7 -approximation for a diode. The

a Lp

,_a+b ,cLp - p

v(t)
+

Lp

(a)

Ld

q2(t)

.X

O

WHERE L d (t)=
(t)

acLpyDp
q2(t) qi (t) Q2 (t)

bcLp2/Dp Ta Tb

v (t) = /-(1.In + -(11(0)
Tv Is

TV (FROM DC CONSIDERATIONS) =
Ti T2

TI - + T2

CHARGE CONSERVATION CONSTRAINT ON a, b2c:

cb (1-a) Lp2
.1

(a +b-i) Dp 7-2

albC IS MOST APPROPRIATELY CHOSEN TO BE C= a2b

(b)(b)

Fig. 12-Higher-order, T -Approximation of diode charge -control model. (a)
Charge approximation. (b) Corresponding model.
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charge is broken up into two parts q1 and q2 . The diffusance between
the two stores controls the redistribution of the charge. Such a structure
provides a better representation of the junction at the higher frequencies

or at higher speeds than the model of Fig. 9, since the junction voltage
is now a function of only that part of the total charge which is close

to the junction. The model simulates recovery tails. It also permits
the simulation of variations in recombination time along the x-axis.
Fig. 12 assumes two different recombination times T1 and r2. The

i = f(q) relation then becomes

- d(q, + (12) + + -q, (27)
dt T1 T2

[which reduces to (14), if one assumes r1 = r2].
Three additional time constants T. , Tb and r, appear in Fig. 12.

They depend on the choice of the sections aL,, and bL over which the
shunt elements are integrated and on the choice of the section cL, over
which the diffusances are integrated. The three degrees of freedom
reduce to one, however, if one considers that (i) the total charge must
be conserved by the lumped approximation, and (ii) in a multisec-
tional approximation the diffusances are most appropriately lumped

over sections el, which extend between the centers of the charge
sections. The corresponding relations are given in Fig. 12; derivations
have been omitted.

III. LARGE -SIGNAL TRANSISTOR MODELS

In complete analogy to the diode models, we shall now compare
the various junction transistor models and establish the charge -control
model in the form of equivalent circuits. The Ebers-Moll concept,
which was found not to be applicable to dynamic diode description,
will now enter the "competition".

In order to dwell on the philosophies underlying each concept we
shall, at first, limit ourselves to diffusion type junction transistors,
neglecting again drift currents and secondary effects such as base -width
modulation. All derivations will be carried out for pnp transistors;
but, of course, everything will be correspondingly valid for npn tran-
sistors.

3.1 Differential Transistor Model

The most rigorous of all the equivalent circuits describing a junction
transistor, as defined by (5), (8), and (9), is the differential model shown
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p (o,t.)
d

p(W,t)

dHcn Lds

T=0
Ve(t)=f [p(o,q

TC

T=W
Vc(t)= f [p (w,tA

Fig. 13-Differential Linvill model for the transistor with drift fields neglected,
pnp version shown.

in Fig. 13. Linvill notations comparable to the diode model in Fig. 5
were chosen. (If so wanted, the model could also be drawn with the
notations used in Fig. 3 resulting in an r -g -c line and two K -amplifiers
at both ends.)

The base section of the transistor model is only a very short "trans-
mission" line when compared with the "infinitely long" diode n -region
of the normal diode. Instead of 100 percent recombination, as found
in the diode, the transistor must have as little recombination as possible
in order to achieve high gain. Fig. 14(a) shows a steady-state charge
distribution under normal forward operation, and Fig. 14(b) shows
the distribution for the case where both junctions are emitting, i.e.,

(a) (b)

Fig. 14 - Excess minority carrier distribution in the transistor base under (a)
normal and (b) saturated operation.



544 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

in saturation. Under normal operation the collector acts as a "charge
short circuit" for the line. For high -gain units, the slope is almost
a straight line; at x = 0 it is proportional to /R and at x = W propor-
tional to /c .

The general case is that of Fig. 14(b) where both junctions are
emitting and p(W) 0. Any section of the base region can be de-
scribed analogously to a four -pole using the definitions given in Fig. 15.
Note that there are no nonlinearities in the base section.

I E(s) = A LIP i(s) + A 12P 2(s)

I c(s) = A 211' (s) + A 22P 2(s) .

(28a)

(28b)

By using complete analogy to standard transmission line theory, it
can be shown that with the use of (10) and (11) one obtains for a
homogeneous section Ax,

P i(s) P2 (S)
E (8) coth 7 Ax - cosech Ax (29a)

P i(s) P 2(8) coth 7 x ,I (s) cosech -y A.r (29b)

where

1

Z =eA D, V1
1

+ sr (30)

7 = + sr. (31)
Lip T

In the general case, the base is not homogeneous, which means that
Z and -y will vary along the line.

The junctions are described by the time relations

p1(0,t) = pno[exp {Xv6(t) } - 1] (32a)

p,(W,t) = po[exp Xve(t)) - 1]. (32b)

Fig. 15-Symbols and polarity conventions defining the four -pole description of
the transistor base.
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E E re'

CTe \

ve(t) = f(p, ,t)

ve(t)= e Ln +

vc(t) = -keT Ln +

pi (t)

Pno

P2 (t)
Pno

Hci =

Hc2 =

Hd =

Hd
L3
- I

2

2

L (t)
P

(t)
P2 (t)

Hc2

4

eA,W,

eA 2W2
T2

L5

eADp

(t) -p2(t) w

rcs Lc C

arc (t) = f (p2 t)

L2 (t)= = eAlw,dpi(t)/dt

L4 (t)
52 = = eA2w2

dp2(t)/dt

Fig. 16-First-order lumped Linvill transistor model.

IV. THE LUMPED LINVILL r -MODEL

In the literature, any lumped approximation to the transmission
line model presented in Fig. 13 is referred to as a "lumped Linvill
model" or simply "lumped model". The most common form is the
7 -model. With respect to its current properties and steady-state voltages,
this form will prove to be equivalent to the commonly known "Ebers-
Moll model", if both models are taken to be in the form of first -order
approximations.

By integrating all differential diffusances over a length Ax = W,
all emitter sided differential combinances and storances over a length
Az = W1 , and all collector sided differential combinances and storances
over a length Ax = W2( = TV - W1) one obtains the circuit shown
in Fig. 16. Nonsymmetry has been taken into account by using different
recombination times T1 and T2 and different cross-sectional areas A1
and A2 on the two sides. Note that the latter represents an extension
from the one-dimensional carrier flow and as such an example for the
reduction of multidimensional effects to a one-dimensional model.
Area A is some average cross section effective for the diffusion process.
Hd is the diffusance, the He's are the combinances, and the S's are
the two storances.
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The four -pole equations describing the transistor base are obtained as

/E(s) - eAD [ AJW W: (1. ± &rid- el2P2(s)

= 1-1,P,(s)[1 tH (1 s - HdP2(s)
cl

eAD p2141 A2WW2 (1 8,2)]
AT2.13, V

(33a)

= H dP i(s) - dP2(s)[1 Ha (1 s H82 2)1 (33b)

The junctions are described as

pl(t) = p(0,t) = {Xv.(0} - 1] (34a)

Mt) = p(W ,t) = p,,,,[exp {Xvc(t) - 1]. (34b)

A constraint has to be satisfied: Under equilibrium conditions, the
total charge in the base must equal that in the two sections, i.e.,

eA2W2P2 = eA f P(x) dx ieAW[P(0) P(Wn. (35)
0

The approximation holds for high -gain units. For this case the base
volume sections are equal, i.e., A 1 W 1 = A2W2 = 2 A W. For low -gain
units (34) must be modified: The terms p1(t) or p2(t) , or both, must
be replaced by p1(t)/m1 and p2(t)/m2 , respectively, whereby the m's
are constants >1, similar to m in Fig. 8.

Equation (33) represents one of several possible approximations to
(29) with the additional property of nonsymmetry being added.

Higher -order approximations of a lumped linear model are obtained
by representing the base of width W by more than the two sections
W1 and W2 .

V. THE EBERS-MOLL TRANSISTOR MODEL

The focal point of the Ebers-Moll model is the two -port description
of the base. Such a description has been given in (28) and (29), and
is permissible because of the linearity which exists between currents
and carrier densities in the base. Nonlinearity exists, however, in the
relationship between carrier densities and external voltages according
to (32). Since linearity allows the use of the superposition principle,
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the total current can be conceived as consisting of the superimposed
contributions of the currents injected by the two junctions.

When put into the form of an equivalent circuit, the Ebers-Moll
model shows the superposition of a normal transistor (subscript N)
and an inverse transistor (subscript I). In Fig. 17(a) the lower diode
and current source represent the normal transistor and the upper
elements represent the inverse transistor. Each junction is represented
by a diode, a fraction of the diode current is collected by the other
electrode. The ratios of collected currents to emitted currents are called
aN and a, for normal and inverse operation, respectively. The general
frequency behavior of the a's can be calculated for a homogeneous
base from (29), (30), and (31) as

aI ICF (S) LCF = IcF0[EXP r eVc

ref it CTe

L EF

LEF (t) = IEFo [EXP(eVe(t)kT

re, LE

-a1Ic(s)

e

L E(t) = 1E0 [EXP

-IF

C Tc

aNIEF(S)

-CF

i)]

C
C

(a)

Ic'(0 =Ico[EXP kTt
evc (t)

C Te

eve(t) ' aNIE(s)
kT )

allo
WHERE a N (S) =I s

N

B

aI(S)= as
wa I

L c

(b)

Fig. 17 -The two forms of the Ebers-Moll transistor model: (a) direct representa-
tion of the idea of superimposing a normal and an inverse transistor, (b) collecting
current sources as functions of the electrode currents. The junction saturation currents
in (b) are identical with the open -electrode diode saturation currents.
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a(s) = L. tPut(s) I -cosech 7 Ax 1

/i.t(s) pou,,t =0 coth 7 Ax cosh y Ax

= 1 2D,T

1
72 Lx2 2D,T + Ax2 + Sr 0x2

2

(36)

But symmetry does not exist in a practical transistor. The constants
in (36) are therefore, different for aN and for af . Equation (36) can
be rewritten under this consideration in the well-known form

a (s) - "NO

1 + S/WaN

aloai(s) - 1 + s/coai

(37a)

(37b)

The relations between the constants in (37) and the physical param-
eters (corresponding to the constants in (36) modified for the non -
symmetrical case) will be derived in Section 5.1.

On account of their nonlinearity, the junction diodes must be de-
scribed in the time domain. In their original paper, Ebers and Moll
defined only a dc relationship between voltages and currents. This
would restrict the use of their model to piecewise linear analysis.
But the Model can be made more genera138 by postulating that the
v = f (i) relation be valid at all times, as indicated in Fig. 17.

In either case, an important property of the semiconductor junction
is lost: Voltages and currents appear as being directly related instead
of being related indirectly through current density or charge. This can
best be illustrated by an example. If a forward current through a junction
is suddenly replaced by a reverse current the voltage actually does not
reverse sign until the excess carrier density at the junction is reduced
to zero. According to the Ebers-Moll model, voltage and current always
change polarity together. As mentioned before, it is for this reason that
for a diode, no dynamic model of the Ebers-Moll type exists that
would represent charge storage effects. In addition to this shortcoming,
the feature of mixed time and frequency domain characterization is
undersirable if the model is to be used in its nonlinear form, say on
a computer.

The Ebers-Moll model was originally presented in a form, shown
in Fig. 17(b), which differs slightly from that in Fig. 17(a). Both ver-
sions have been used throughout the literature over the past years
and very few authors' have clearly pointed out the difference between
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them. In Fig. 17(b) the collecting currents are a times as large as the
total emitter and collector currents, respectively. A simple calculation
shows that the two versions are formally equivalent, if the relations

P, F (3) -
PEW

(38a)
1 - aN(s)a/(s)

and

I cF(S) -
1- (S)

(38b)
1 -a N(s)« (s)

are satisfied. A glance at the equations for the voltage sources in Fig. 17
reveals that the two versions could not be completely equivalent,
unless either IEpo and IcF0 or IEo and /co would be considered frequency
dependent. Due to the approximative nature of both models, this is
normally not done.

From both Fig. 17(a) and (b) the respective four -pole equations,
on which the model is based, can readily be derived in terms of elec-
trical parameters:

IE(s) = IEE(s) - «I (s) c F (s)

= aN (s) I,(s) - Ic F (s) -

I 'E(s) - ar(s)Pc(s)
1 -a (s)a (s)

a (s) I F: (S) - I lc (S)
1 a (s) a (s)

(39a)

(39b)

After substituting the expressions for the junctions one obtains for
the steady-state case the well-known Ebers-Moll equations

I Ro aro' CO
E [exp (X V.) - 1] - [exp (X V.) - 1] (40a)

1- aNnain - alloan

allol po I co
I c - [exp (X V.) - 1] - [exp (X V.) - 1] . (40b)

- aivoctio 1 - azvoato

5.1 Comparison Between the Ebers-Moll and the Linvill Model

Comparing (40) with (33) and (34) for the steady-state solution
leads to the following relations:

e A Dnpno crivo/E0 aro/co
W - 1 - alloaro 1 - alloaro

A corresponding comparison for the ac case would yield the same
expression as in (41), except that axo and a10 would have to be replaced
by their frequency dependent forms. Since the left side term of (41)

(41)
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is frequency independent, no rigorous equality exists between the
Linvill model and any of the two versions of the Ebers-Moll model
under ac conditions. In the Ebers-Moll model, the junction voltage
is a function of the total diode current [being different in the two
versions of Fig. 17(a) and (b)] ; in the Linvill model it is only a function
of the resistive component of the diode current in Fig. 17(a); this
component equals the current through the combinance which is propor-
tional to the carrier density p. It can be shown that the correct solution
in which the junction voltage is a function of the carrier density directly
at the junction, lies between these two cases but much closer to the
lumped Linvill simulation. The discrepancy, mentioned here, affects
only the junction voltages and does not appear in many analyses
that use piecewise linearity.

aN(s) and ar(s) can be expressed in terms of the physical parameters
by comparing (39) and (33) separately for the normal operation (/CF = 0)
and for the inverse operation (IEF = 0). Subsequent conversion of
the a's into 3's yields

!3N (s)

where

and

aN(s) ONO ATiDp/A,WW,
1 - aN(s) 1 + s 1 + ST1

WAN

ar(s) Oro AT2D,/ A2WW2
1 - ar(s)

1
1 + sT2

WaN 1

a)" - 1 + )3NO Ti

War 1
COAT

-I- N/0 T2.

By definition we shall call in later sections

and

T1 = 7BN

T2 7BI

(42)

(43)

(44)

(45)

(46)

(47)

5.2 A Better Approximation for the a Frequency Dependence in the Ebers-
Moll Model

Pritchare has first suggested that a better approximation for the
3 -dB cut-off points of the a's or $'s are obtained if one inserts a factor
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1.22 into the corresponding equations, i.e.,

1 1=
cosh -y Ax 1 + 1.22jco

COout-of f measured

(48)

This can readily be calculated from the fall -off behavior of the cosh
expression while assuming 13N0 >> 1.

The same factor 1.22 appears in the corresponding expressions for
a, , 13N and #, . It is evident from (48) that this problem can be reduced
to a matter of defining co aN . For less ideal transistors the factor is
usually between 1 and 1.22.

Higher -order approximations to the hyperbolic function commonly
use two pole expressions or delay -producing excess phase terms.

VI. THE CHARGE-CONTROL TRANSISTOR MODEL

In analogy to the diode charge -control model we can establish a
charge -control equivalent circuit for the transistor. To that end, we
want to express all parameters in terms of the charge in the base.

Three approaches appear feasible: A lumped Linvill model can be
labeled in such a way that all elements appear as functions of charges
rather than integrated charge densities of the form 73.6a . The two are
proportional; the proportionality factors are of the form "electron
charge times area". Most of the special circuit components of the
Linvill model become current or voltage sources in the charge -control
version. This procedure of converting a Linvill model into a charge
control model can readily be applied to higher -order Linvill models.

A second approach is to use the Ebers-Moll principle of superposition
whereby two charge -control diode models plus the corresponding col-
lecting currents can be joined to form the transistor model. This ap-
proach is essentially limited to the first order of approximation. Two
seemingly different, but fully equivalent and easily convertible models
result.

The third and classic approach to charge -control theory, originated
by Beaufoy and Sparkes,3 is basically mathematical. Through integra-
tion of the continuity equation the carrier density as a variable is
replaced by the total charge in the base. Certain simplifying assump-
tions have to be made to obtain a relation between currents and charges.
In essence, these assumptions are equivalent to the approximations
implied in the first -order Linvill and Ebers-Moll models as well as in
the first -order charge -control equivalent circuits to be described below.
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Some equivalent circuits have been presented in the literature, but
they were less rigorous than the circuits described below in the sense
that they cannot be used as complete networks. Additional knowledge
of the physics of the device is required to use these models. Extension
to higher -order models in the Beaufoy-Sparkes approach is accom-
plished through increased physical and mathematical complexity and
not through more complex network topology as in the Linvill model
or the charge -control model to be described.

6.1 The ir-Version (Base -Controlled Version) of the Charge -Control

Equivalent Circuit

In the lumped Linvill 7 -model of Fig. 16, the base charge distribution
is approximated by two levels of carrier density. This is illustrated
in Fig. 18. p,(t) is constant over the length Ax, = W, , and p2(t) is
constant over the length W2 , where W, + W2 --= basewidth W. The
total charge in the two sections follows with (34a) and (34b) as

qi(t) = P1(1)W1eA = PnoWleAdexp {Xve(t) - 1] (49)

q2(t) == p2(1)W 2e A 2 = Pn0W2eA2[exp Xvc(t) - 1]. (50)

Using the definitions of the elements given in Fig. 16, one can calculate
from the Linvill' model in Fig. 16 the currents through 1-/c1 , Hc2
and Hd and obtains

p(o)-

i,(t) = 1 c,p,(t) eA1W1 MO) -
qqN(t)qN(t)

=
Ti TBN

i5(0 = He2P2(0 - eA2W2 P2(t) qi (I) gL(11

T2 TB/

A. p(W)

-P2

W2

(a)

P,-p(o)

W2

(b)

(51)

(52)

P2= P (W)

Fig. 18-Excess carrier distribution in the transistor base as used or implied in all
first -order transistor models. (a) General case pi X p(0), p2 p(W). (b) Commonly
used choice pi = P(0), P2 = p(W).
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i(t) = HAM') - p2(t)]

eAwD DwA GALvit 2(1)12)
(53a)

Using the more familiar Ebers-Moll notations and the relations found
earlier in (42) through (47), i3 can be expressed as

i3(0 6'1 qN(t) - QIo
Mt). (53b)

7BN TBI

Thus, the three current sources in the charge -control model are found
and related to the Linvill model by means of (51) through (53).

The remaining two branch currents i2 and i4 are obtained from
Fig. 16 as

6(0 =dp(t)dqN(t)
tit dt

i4(1) =
4(0

dt dt

(54)

(55)

These equations describe two stores ISN and Si. , whose properties have
been described in Section 2.4.

The conversion between the two models will be summarized and
further discussed in Section 6.4.

The voltage sources for the junctions follow from (34), (51), and
(52) as

Xv,,(0 = i (i

In + p(IV ,t)\

In (1 +
PnoWleAl

qN(t) (56)

= In (1 + wqr(t) A (57)
Pn0 - 2e112

With the help of (41) through (47) that link the constants used in
the Ebers-Moll model to those in the Linvill Model, (56) and (57)
can be rewritten as

Xve(t) = In

Xvc(t) = In

[1 ± 141Q1 X )]
rn.v -BO! alloal0/

[1 + '21(LI X 1 + ° 1.
781 IC0/(1 aN0a10)

(58)

(59)

(The reader may prefer to derive the constants directly from the
steady-state Ebers-Moll model in (40) by considering the limiting
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cases v, = 0 and v, = 0.) With the addition of (58) and (59) the equiv-
alent circuit in Fig. 19(a) is completely defined.

It is customary and useful in charge -control work to define additional
parameters TEN , TON , Tx/ , rci . We define their relationship as follows:

Since, as usual,

and

it also follows that

and

TEN TEN
TCN

ONO allo

TBI Tel = TEl
Sro a70

ONO

al" 1 + ONO

010a10 - I

1 1 1

TEN TEN TCN

1 1 1

TC1 TBI TEL

(63)

(64)

(65)

(The classic definition of these time constants after Beaufoy-Sparkes
will be discussed in Section 6.5.) The subscripts B, E, and C stand
for base, emitter, and collector, respectively. The subscripts N and I
on the time constants and on the charges have been chosen to indicate
the normal and inverse transistor operation. Many authors"' use
F (forward) and R(reverse) instead of N and I. Since F and R are
commonly reserved for diode forward and reverse currents, and since
such currents can flow in each of the two junctions, the different nota-
tions N and I, as proposed by Ebers and Moll, appear more appropriate.

In Appendix B, the notations for the stored charges and the time
constants used in this paper are related to those used in a recent book
published by the Semiconductor Electronics Education Committee;"
they are also compared with the notations and definitions used by
Beaufoy and Sparkes.

The additional time constants do not add any additional degree
of freedom. But it is advantageous to use "base" notations when
controlling base current, i.e., in common -emitter or common -collector



CHARGE -CONTROL CONCEPT 555

tre(t)
re +7'4 -E t

(,\J)

CTE
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(t) = "N qN(t)o
TBN 1810 TEl = TCN TEI

Lnve (t) keT 1+
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a10 .rc

CTE
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4111--

ct,(t)(1+fiNo)

TBNIE0/(1 allo alo)

Ci./(t) (I+ Pio)

TBI IC0/(1 -aN0 aI0)

(a)

JUNCTION
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5NCIN(t))

qN(t)

TEN

qi (t)
Ter

-{q

vc (t)
- +

CTC

qN(t)
-0 TEN

/ /
BASE REGION JUNCTION

kT r qN(t)ve(t)=, Ln +
TEN IE0/(1-aN0 c4I0)

1vc (t) = * Ln I+ cit(t)
TCI IC0/(1- "No CgIo)

(b)

Fig. 19-Charge-control19-Charge-control equivalent circuit for transistor in first -order approxi-
mation, shown in two equivalent and convertible forms: (a) ir-version, Linvill type,
(b) T -version, Ebers-Moll type.
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connection, and to use "emitter" and "collector" notations when
emitter and collector forward currents are injected, such as in common -
base connection.

The model obtained in Fig. 19(a) maintains the most valuable
property found in the Linvill model, namely the close relationship
between the physical processes and the circuit elements. For example,
TB, and T- BI are the recombination times on the emitter and collector
side, respectively, and TCN and TEl are the diffusion time constants
for the charges injected from the two junctions. Junctions and base
are represented by individual sections within the equivalent circuit.
This separation makes it easy to expand the model and to take other
effects into account.

6.2 The 7' -Version (Emitter -Collector Controlled Version) of the Charge -
Control Equivalent Circuit

In complete analogy with the derivation of the Ebers-Moll model
in Fig. 17(a) we can take two diode charge -control models back to
back and add current sources on the collector and emitter side, which
are aN0 and an times the diode currents.

For the simulation of the junctions, we are left with two alternatives:
One is to convert the corresponding expressions ill the Ebers-1VIoll
model in Fig. 17(a) into charge functions; the other is to use the expres-
sions in the charge -control 7 -model (which are equivalent to the Linvill
model), but replace the 0 -notations by a -notations according to (60)
through (63). The first -mentioned alternative for simulating the voltage
sources would amount to simply substituting the diodes from Fig. 17(a)
for the voltage sources in Fig. 19(b). The property of charge control
would not be simulated. The second procedure is therefore chosen;
it yields

ve(t) =
1
-X in

E
(1 + qN(t)

TN/ E6/0_ - alloa/0))
(66)

Mt) = -1 In (1 -I- (67)
X Teri

Mt)
co/(1 alloarn))

Thus, the equivalent circuit in Fig. 19(b) is obtained.
As far as the current relations in the models are concerned, the

main difference between the charge -control T -model and the Ebers-Moll
model is that the frequency dependence is simulated by a mathematical
expression in the Ebers-Moll model, and by an additional network
branch in the charge -control model. This is analogous to the option
existing in small signal models where one can represent the frequency
dependence either with an appropriate RC circuit, holding «0 frequency
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independent, or alternatively, with a frequency dependent a in the
collecting current source.

The equivalency of the charge -control model with the Ebers-Moll
model exists only for the relations between the currents. It can be
shown readily that the following relations must be satisfied to establish
equivalency:

(i) TEN
1

(68)
Ceu.V

T
1

CO a I
(69)

TILV
1 1 ± ONO

(70)
WaN

T
1 1 + /3,o

(71)
W51 War

All co's must be replaced in these equations by the corresponding
W/ 1.22 if the w's correspond to the measured 3 -dB gain fall -off points,
and if the better approximation mentioned in Section 5.2 is to be
included in the Ebers-Moll model, provided the particular transistor
follows the underlying theory well enough.

6.3 Conversion Between the Two Proposed Charge -Control Models

The identity between the two charge -control models, presented in
Figs. 19(a) and (b) can best be proven by converting one model into
the other.

To convert the 7 -model into the T -model one first adds a branch
current id both into and out of the base point B' and splits id up into
its two components. The resulting circuit diagram is shown in Fig. 20.
The two parallel current sources proportional to qN(t) on the left side
can then be combined into one current source. Likewise, the two current
sources proportional to Mt) on the right side can be combined. If
with the help of (60) through (63), one now relabels all current sources
in terms of aN and a, instead of ON and f3/ and extends the upper current
sources beyond the voltage sources, one obtains the model in Fig. 19(b).

6.4 Summary of the Conversion Equations between the Linvill and the
Charge -Control Model

6.4.1 Conversion Equations for the First -Order Transistor Model

In (49) through (59), the charge -control 7 -model was derived from
the Linvill model. With the help of the defining equations for the
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qi(t)
10 TBI

QN (t)
No TBN

e
CD, (t)

QN (t) TBN

I

Pr 0 TBI

QN (t)
N° TBN

%(t)
TBI

C
0

Fig. 20 -Intermediate step used in the conversion from the r to the T charge -
control model, demonstrating equivalency between these two models.

Linvill model elements, the constants in the charge -control model can
be calculated as a function of the Linvill combinances, storances, and
diffusances. For the relation between the Linvill 7 -model of Fig. 16
and the charge -control 7 -model of Fig. 19(a), such calculations yield

T =

TBI

TeX =

rEr

1E0 =

S,
H
S2

He,

Hd

82
Hd

+ (11c, HC2)Hd
PNO H12 + H,1

11,,H,2 (H,1 11,2)Hd.
Ico = PNO H

Note that (72) through (75) reveal that the five parameters in

the Linvill model lead to only four parameters in the charge-control
model. The one degree of freedom that is lost in the charge-control
model is the conversion factor from current to carrier density; con-
version of the charge -control model into a Linvill model is only possible,
if one of the five Linvill parameters is known. This is tantamount to
saying that one needs some information on the geometry of the device

(72)

(73)

(74)

(75)

(76)

(77)
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such as the value of one, or in low -gain units, both of the two base
volume sections A Xi and A2W2

6.4.2 Conversion Between the Linvill and the Charge -Control Model for
an Arbitrary Number of Base Sections

In higher -order approximations for diodes or transistors, the param-
eters of the Linvill and the charge -control models, as defined in Fig. 21,
are related by the equations

v= -X1,

E0 --

Pt

Pno

T12a

T12b

S,
- Hc, '

S,
- Hd12

S2

- Hcir2

q10 = Salo

qmo = SmPno

Hd,2

T2 = u
r2

To

T.

Tovb

Hdp.v

HI, ,Pv

Sv

(78)

(79)

= H
S,= Hd,

Sp
(80)Hd
(81)

(82)

St,

v=

P

I+ Pm

Pno j

C

Fig. 21-A Linvill and a charge -control equivalent circuit for a junction and part
of a multisectional n -region, with indication of the notations used in converting one
model into the other.
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6.5 The Transistor in Saturation

In all lumped transistor models (Linvill, Ebers-Moll, or charge -

control type) the charge in the base is explicitly or implicitly broken

up into the charge q, injected from the emitter under normal operation
and the charge qr injected from the collector under inverse operation, e.g.,
in saturation. This was illustrated in Fig. 18.

When the transistor is overdriven into saturation with a base current
larger than Ic ead13,0 , the two stores q, and q, do not change by exactly
equal amounts, i.e.,

where, by definition,

dqN elqf
d.

di excess "R excess

-IC sat
B excess = i /1 -

NNO
(83)

This is illustrated in Fig. 22. It can be calculated from any of the two
models of Fig. 19 that, under steady-state conditions, the excess charges

in the two stores are related to the excess base current by the expressions

AQ, = Q,

(a)

allor r1
1 - aNnato

AQN
TEN

- aNnant

IR PIVef'SS

Ili excess

/6CLN TBN

:%0N SAT ,TBN!

(b)

CtI TBI

(84)

(85)

Fig. 22 -The transistor in saturation. (a) Actual distribution of excess minority
carriers. (b) Lumped approximation. The r and the T models use qN and qr with
lifetimes TBN and TM; the Beaufoy-Sparkes model uses Q,, SAT and (IBS = OQN + Qt
with lifetimes TBN and Ts, where Ts is as defined in (88).
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From this it follows that

AQN
TEN

7CN CO a I 1. (86)
QI - allorci - aIOTEI - aNOWaN

Since aro < 1, the charge -up ratio is somewhat larger than the ratio
of the diffusion times of the normal and inverse transistor.

The rate at which the two stores charge and discharge in saturation
because of external step disturbances is described by the eigenfunction
of the system

s2
+ 1 + sin] + 1 + 13No + gio

0. (87)
TBN 7BI TENT El

If 13NoTEr/TBN > 1, the two poles are far apart in frequency. Further-
more, the high frequency pole contributes in most nonoscillatory cases
little to the overall response. The higher pole or, alternatively, the e
term can then be neglected and a single time constant results described
by

(1 + ONO)7BI (1 + 010)7BN TEN + Tel elTS = (88a)
1 + fiNo -F Qro 1 - alloaio

Using co -notation, one obtains the expression given by Ebers and Moll

coftiv -I-- co./TS -
aNCO al(1 -a NOC40)

For large I3A, and small At , Ts is approximately equal to

, TEN).
Ts R -r-'5" TB/(i

rcr

(88b)

(88c)

If TEN <.< 7CI i.e., if the carriers diffuse more easily from the emitter
to the collector than vice versa, then the recombination rate TB, on
the collector side is mainly responsible for the overall decay of the
excess base charge.

6.5.1 Storage Time Calculations

For first -order storage time calculations with the transistor driven
into a steady-state saturation condition by means of an excess base
current I B excess one can simplify the charge -control model to the one
shown in Fig. 23. Storage time is the time it takes to deplete the store
which is charged to a value of

QBS = QI AQN = I B exoese7S = 1 B excess
TEN -I- aNO7CI

1 - CINOCtIO
(89)
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C SAT

B'

Fig. 23-Single-pole equivalent circuit for saturated transistor after Beaufoy-
Sparkes.

while, at the same time, this charge is exposed to an effective recombina-
tion time of Ts as given in (88). In this form the model is identical
with the classic Beaufoy-Sparkes model for the saturated transistor.

In the general case one must refer to the complete model.

6.6 The Beaufoy-Sparkes Charge -Control Model

In the classic approach to charge -control theory, the starting point
is, like in the diode case, the integration of the continuity equation (8).
In comparison with the integration performed for the diode in Section
2.3.1, the upper limit of integration has to be changed to x = W. The ex-
pression

4(0, - ip(w, 0 - clita qN(t)
dt TB,v

obtained from the integration becomes that for the base current under
normal, nonsaturated operation:

dqN(t) qN(t)
iB(t) - ; (90)

dt TBN

qN(t) is the total charge in the base. The next step being made is again
the approximative assumption that the carriers redistribute themselves
so quickly, that we can always assume steady-state distribution.
(See also Section 2.4.) Mathematically, this means that in normal
transistor operation both p(0,t) and ic(t) are proportional to the base
charge qN(t). It can be seen from Fig. 19 that the same assumption
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is implied in the two charge -control models presented there, despite
the fact that they were derived through entirely different procedures.
(Instantaneous redistribution is, however, not implied in models that
use more than one 7 or T section for representing the base.)

The time constants are defined in the classic charge -control theory
on the basis of the above -mentioned assumption of instantaneous
carrier redistribution, i.e., in steady state

T
Q., QN (91a)BN

I BN TCN =
TEN =

I cAr EN

and dynamically

=
TEN (AIZEN

qN dqv
iCN -

TCN
ZEN = iBN iCN (91b)

The remaining three time constants can be defined likewise for the
inverse transistor. Narud, et al° have used such definitions in an equiv-
alent circuit for the charge -to -current relations in the transistor. Beaufoy
and Sparkes discussed this possibility in their original paper' but chose
to present two separate charge -control models, one for the normal
active operation and one for saturation. In normal operation, the
charge qN called "qB" is bounded by the value reached at the edge
of saturation:

I tqB LC. QN , where - eat<
NNO

In their saturated model, all excess charge which exceeds QN BAT is
lumped into one store rather than two; this charge "qns" has a lifetime
Ts = qfiSAB excess which is identical with Ts as defined in (88).

By lumping Aq, = qN - QN SAT and q, into gEs the Beaufoy and
Sparkes arrangement provides only a minor short cut for calculating
storage time, while sacrificing not only some of the physical under-
standing, but also the possibility of mutual conversion with the other
models. No relations have been given that would express the junction
voltages in terms of the charges in the stores, and recourse must be
taken to the Boltzmann equation to find expressions for the voltages.

Throughout the literature the charge -control concept has been used
primarily as a mathematical -physical tool. Extensions to higher -order
effects are usually made by improving the simple continuity and
transport equations stated in (8) and (9) and then carrying out the
corresponding integration for the specific application.
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VII. SOME REMARKS ABOUT THE EQUIVALENT CIRCUIT TYPE CHARGE -

CONTROL APPROACH

7.1 Use of the Charge -Control Models

It is believed that the first -order approximation to a charge -control
model in the form presented for the transistor in Fig. 19, combines
the main advantages of the three basic approaches to modeling. The it
and the T -models are as easy to handle from an equivalent circuit
point of view as the Ebers-Moll model. Instead of frequency dependent
a's and /3's, one additional current branch exists for each side of the
transistor. Circuit problems are solved in the usual way by means
of loop and node equations. The charges qz,,, and q, appear as circuit
parameters which can either be calculated, if so desired, or else, elim-
inated in the algebraic process. The store elements in the circuit are
clearly defined by the circuit properties given in (22).

The model provides all the features that have made the charge -
control concept attractive in the past: quick estimates of switching
times by integrating the base current and equating with the charges
needed to fill and deplete the stores. The general base current equations
of charge control are directly read from Fig. 19(a) as

iB = -2N + dqiv qr C TR dve CT r dve
d, - (92)

TBN 1.41, TM dt dt dt

Of course, there is no restriction to step inputs. The chore of cal-
culating responses to a nonstep input is transformed through the model
into a circuit problem. In complex cases the help of a computer will

be required.
Due to its direct relationship to the Linvill model, the charge-control

model lends itself quite readily to extensions based on the physics
of the device. This will be discussed in Section 7.3.

7.2 Piecewise Linear Approximation of the Logarithmic Voltage Function

The logarithmic voltage functions for the junctions are of the form

v = 1 r ].
- In [1 q/

/0/(1 - alloctio)
(93)

For most practical cases, this can be approximated by piecewise linear
functions, like in the diode case of Fig. 10. Except for small values
of q/T, i.e., q/r not >>10/(1 - alloaro) , one obtains

dv

d(q/r) Xg
(94)
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Thus, the slope can be represented by a resistor T/Xq, which may,
like in Section 2.4.4, be taken as the average value

dv 1- T (9o)1.(q) A -ffAqmax maxd -
"J

r

where /max is the maximum forward junction current.
It can be shown that in models which use the exponential relation-

ship, the expressions of the form ln(1 x) can be replaced by just
In x if one simulates the majority carrier currents by special current
sources as follows:

and

11 I co- «Natio
from internal base to collector

1 - «No
./E0 from internal base to emitter.

1 - alloctio

This transformation is rigorous only at dc. However, in a piecewise
linear analysis, as discussed above, the addition of one current source,
namely /co , becomes mandatory if the model is to be valid at very
small collector currents.

7.3 Extensions of the Model

7.3.1 Path Impedances, Leakage Resistors

Like in the Linvill model, junctions and base material are clearly
separated in the charge -control model. Therefore, it is a straight-
forward procedure to add series path resistors, series inductances, or
leakage resistances to models like the ones in Figs. 9 or 19.

7.3.2 Junction Capacitors

It has been indicated by the dashed lines in Figs. 9 and 19 how the
junction capacitances are to be incorporated into the model. They are
properties of the junction, but their currents flow as majority carrier
currents through the bulk material. Hence, in Fig. 9, for example, they
must be connected across the whole n -region. (Connecting directly
across the voltage source would have no effect on the external prop-
erties.) In Fig. 19 they lead to the internal base point.

7.3.3 Higher Order than 7 -Transistor Models

Another desirable expansion may be to replace the r structure of
Fig. 19(a) by a double 7 or by some other higher -order approximation
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to the original differential "transmission line". This is of special im-

portance, if emphasis is to be placed on charge redistributions in the
base. By extending the model in such a way, the restricting assumption
of instantaneous carrier redistribution is no longer implied. A qualitative
example of an elaborate planar or mesa transistor model is given in
Fig. 24.

CEC

re

i, DRIFT = f (ve ,q, + q2)

ye = (q
Le +46-

CO C4 ID

L DRIFT =f (Vc,C12+q3)

0 e

re L

q, q2
Ta Tb

tI

O qT21

1

q2_Ct3
TC Td

vc= f (q3)

(4.2 0.3

T2
T3

Tq2
IQ q3

T
qk/T3

-0.

CTC

CL

- +

vk = f (clk )

CBE

LTk

r_1(
s -BC

r
C

Fig. 24-Example of an elaborate high -frequency planar or mesa transistor
equivalent circuit.

7.3.4 Drift Fields

If the charge -control model under consideration is being developed
on the basis of physical phenomena such as in the model of Fig. 19(a),
the contribution from drift effects may be represented in the same way
as has been proposed by Linvill [Ref. 7, Sections 2, 3]. As a direct con-
sequence of the transport equation (2), drift can be represented by a
current source added in parallel to the diffusion current source. In terms
of the r -g -c transmission line representation, discussed earlier, drift con-
sideration amounts to a resistor in parallel with the series diffusance
resistor r. This was used in a recent paper by Bloodworth.'

Alternative methods of representing drift effects in conjunction with
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conductivity modulation are presently being investigated; results will
be published later.

7.3.5 Base Width Modulation

Base width modulation can be taken into account by replacing the
basewidth, especially the collector section W2 , by an expression
1V2(1 A), where A is some function of the junction voltage. Equa-
tions (52) and (53) show the dependence of the branch currents on W2
from which we can readily derive the required modification of the
charge -control model in Fig. 19(a).

7.3.6 Multiple -Layer Devices, Multiple Storage

In accordance with Linvill's proposal, storage in more than one
region can be simulated by considering that the minority carrier cur-
rent on one side of a junction becomes the majority carrier current
in the adjacent region. An example is shown in Fig. 25. This figure
represents the charge -control model for an npnp device. Avalanche

L ELECTRON

Kii=f (q L=f(qpN,qpi,m) Ki2=f(qpi)

O qpN

L HOLE

GATE

\ /\ /
JUNCTION J1 p -REGION

Vj2= f (gni)

JUNCTION J2

GATE

f(CinNyCinIoM) KI3=f (CInN)

/\
fl -REGION JUNCTION J3

Fig. 25-Charge-control model for npnp device. The model for an npn-transistor
with storage in the collector can be obtained from this model by omitting the part
to the right of the dashed or the dotted line.



568 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

multiplication may be considered by adding a multiplication factor M
to all hole and electron currents flowing through the junction of interest
(usually the center junction J2), as indicated in Fig. 25. 111 is a function
of the voltage across the junction.

By omitting the last electrode, an npn transistor with charge storage
in the collector is obtained.

7.4 Establishment of a Large -Signal Model

The question naturally arises as to how one arrives at a numerical
model. There is no clear-cut answer to this question, since the procedure
to be taken depends on whether the informations available are pre-
dominantly physical or electrical in nature, whether a computer is
available or not, etc. The following outline can, therefore, only be
considered as a typical example.

(i) Obtain de measurements which yield information on junction
characteristics and electrode resistances. All measurements must be
made under widely differing drive and load conditions.

(ii) Add information from device manufacturer to establish first -
order dc model. (If necessary, convert to Linvill model.)

(iii) Add dynamic parameters, such as capacitances, as far as they

(iv) Use computer to improve numerical parameter values by
matching frequency response curves or switching data in the active
region with the model.

(v) Use computer to match large -signal nonlinear switching data.
(vi) Check model with switching measurements under different con-

ditions, such as extremely low, extremely high and medium input and
output impedance levels for various drive conditions. Improve model
basically and numerically as necessary.

For purposes of device design, more emphasis is generally placed on
the simulation of higher -order effects than in model building for circuit
design where, especially in the case of integrated circuits, it is necessary
to trade accuracy for simplicity.

VIII. CONCLUSIONS

The differential Linvill model stands out among all models as the
most perfect one. Whereas the lumped Linvill model is the most suitable
model for the device physicist, the circuit engineer usually prefers a
more circuit oriented approach. It is felt that the charge -control equiv-
alent circuit approach is well suited to combine the main advantages
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of the various models: It is as easy to handle as the Ebers-Moll model,
yet bears the close relationship to the physical phenomena of the
device inherent in the Linvill model. It can also be extended easily
to include higher -order physical phenomena.

Despite the difference in basic philosophy underlying the creation
of each of the three classic modeling concepts (such as lumping, super-
position, and integration), they are equivalent with respect to their
current relations and to all dc properties. When compared at the same
level of complexity, equivalency with respect to time dependency of
the junction voltages exists between the two charge -control models
and the Linvill model, but not between these models and the Ebers-
Moll model.

In the Ebers-Moll model the effect which storage exercises on voltage
cannot be included. The hydrib use of both time and frequency domains
in the model may also be felt as a disadvantage in some applications.

At the first -order level of approximation, the charge -control equiv-
alent circuit can be converted into the Ebers-Moll model, the Beaufoy-
Sparkes model, and into the Linvill model (in the latter case the base
volume is a constant which must also be known). Thus, the charge -
control model serves as a bridge between the various models. This can
be very useful in establishing a model, since both physical and electrical
information can be incorporated easily into the model.

The diode charge -control model has been found very useful for
analyzing storage effects in diodes.

Because of the close relationship to the physical phenomena in the
device, extensions to larger complexity can readily be accomplished.
We may interpret the charge control equivalent circuit as simply a
circuit -oriented form of the Linvill model. The basic ideas and pro-
cedures that are used in converting diode and transistor linear models
into equivalent charge -control models can be applied to many other
semiconductor devices.

APPENDIX A

Switching Time Calculations for Ideal Charge -Storage -Step -Recovery
Diodes

(Example for use of charge -control model)

A.1 Equivalent Circuit (See Fig. 26)

A.2 Generator Source Current (See Fig. 27)

A.3 Diode Model (See Fig. 28)
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10(t) t 10(t) L

vL(t)

Fig. 26-Equivalent circuit for charge -control model.

IR

IF

tP

t

Fig. 27-Generator source current.

q/r

SWITCH CLOSES AT t = 0
OPENS WHEN q= o

Fig. 28-Diode model.

A.4 Forward Operation

I (s) = Q(s) sQ (s) = -F 

From this follows
I p

2 -
S + 11

q(t) = TIF[1 - exp (-fir)]
Q(4) = TI - exp (-VT)]

A.5 Reverse Operation

For simplicity of writing, t = t, will now be referred to as t = 0:
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I(s) = Q(s) sQ(s) - Q(4) =

From this follows

Q(s)
sQ(1,) - I R

(+
\ 71

q(t) = (2(tp) exp (-UT) - 7/[I - exp (-1/7)].
Step recovery occurs at t = Tz , when q = 0

exp (- T./ 7)[Q(4) + 71-R] = TIR

TZ = r In [1 + Q(71.n)1 = T In (1 + I p
-I [1 exp (-tdr)]). (96)

T1 ft

A.6 Graphical Representation (See Fig. 29)

q(t)

Q (tp)

Fig. 29-Graphical representation.

A.7 Special Cases

(i) tp

-t

I R7

Q(tp) = 'FT

= T ln (1 + (97)

(ii) I R >> I F T= = 27.(4) (98)
n

(iii) I R >> I F and co :
I F

(99)Z

I R "



572 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

APPENDIX B

Comparison of Notations

Table I lists comparisons of the notations used in this article. The
first column lists the notations used in this article while column A
lists those used by Beaufoy and Sparkes.3 Column B lists the notations
used in Physical Electronics and Circuit Models by P. E. Gray, et al;"
SEEC Series, 2.

TABLE I - COMPARISON OF NOTATIONS

This paper
A

Beaufoy-Sparkes
B

SEEC

qN
qr

AV qr

where Av = qi, - QNSAT
TBN
TCN

TEN

TBI

Ter

TEI
Ts

QNSAT only)qB(for <

QBS

TB
Tc

Ts

qF
qft

TBF
TF

1 / (1 +
TBE TF

TBR

/ (-1 +
TBR TR

TR

TSL

LIST OF SYMBOLS

Lower-case letters are used for time variables, capital letters are used
for steady-state values or Laplace transforms of values.

A, A1, A2 cross-sectional areas
A 11 , A,2 , A21 A29 four -pole parameters
a, b, c, K constants
c; c analog capacitance; same per unit length
Cr. , CT. emitter and collector junction capacitance,

respectively
Dn hole diffusion constant
D electron diffusion constant
e magnitude of electronic charge
E electric field intensity
9; 0 analog shunt conductance; same per unit

length
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II , H,1, He2 lumped combinances
combinance per unit length
lumped diffusance

11H, reciprocal of diffusance, per unit length
i., , network branch currents

in base current
excess base current in saturation

is /, collector current
iR IR emitter current
IF y IR forward and reverse diode switching current,

respectively
i electron current
1, hole current
/, diode saturation current
it, , Ic , is , IT network branch currents as defined in

-1-CF y IEF Figs. 17(a) and 17(b)
/0, /co , /pm , 1E1,0 dc junction saturation currents
/, sit t collector current in saturation

ff, , I ild S currents through combinance, diffusance
and storance, respectively

iBAT. iEN , icN base, emitter, and collector current in normal
transistor operation

in electron current density
jD hole current density
k Boltzmann constant
4, diffusion length for holes
m, ml , m2 constants relating lumped carrier density

to carrier density at junction boundary
n electron density; excess electron density
n, excess electron density in p -region
n , npo values of n and n,, in thermal equilibrium
p, 1' (s) hole density or excess hole density
pa excess hole density in n -region
PO y p,,0 value of p and pn in thermal equilibrium
q, Q charge
q1 q2 , lumped charges in base region
qN charge in normal store
qI , QI charge in inverse store
Aqm AQN, Aqf L1(21 , QBS additional charges stored due to saturation
Gr SAT limiting value of reached at edge of

saturation
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q,0 , gm() total minority carrier charge in equilibrium
r; r analog resistor, same per unit length
r,, small signal junction resistance
8 Laplace operator
8, 81 , 82 8m stores = storances
S storance per unit length
t, tx , 7' time
T absolute temperature
v, V voltage
Ve=t externally applied junction voltage (ex-

cluding resistive drops)
ve , v collector and emitter junction voltages
W, W2 lengths denoting sections in neutral region
W base width
x neutral region length variable
Z characteristic impedance
aN , «j normal and inverse ac current gain in

common -base connection
«No , ar o dc values of a, and a/
ON , normal and inverse ac current gain in

common -emitter connection

)3N(:, I3 dc values of ON and 13,

7 transmission line propagation constant
X short for e/kT

, tip electron and hole mobility, respectively
recombination time constant in p -region
diffusion time constantsTp , T. , Tb , T12

T. approximative effective recombination time
constant for excess charge in saturation

T1 = TBN recombination time in base under normal
operation

T2 TBI recombination time in base under inverse
operation

TON y TEl normal collector and inverse emitter diffu-
sion time constants, respectively

TNN TC7 normal emitter time constant ( 1/0.,,,N) and
inverse collector time constant (= 1/0)./),
respectively

WaN Wal common -base angular cut-off frequencies

Wfil
common -emitter angular cut-off frequencies



CHARGE -CONTROL CONCEPT 575

REFERENCES

1. Ebers, J. J. and Moll, T. L., Large Signal Behavior of Junction Transistors,
Proc. IRE, 42, December, 1954, pp. 1761-1772.

2. Linvill, J. G. and Gibbons, J. F., Transistors and Active Circuits, McGraw-Hill
Book Co., New York, 1961.

3. Beaufoy, R. and Sparkes, J. J., The Junction Transistor as a Charge -Controlled
Device, ATE Journal, B, October 1957, pp. 310-327.

4. Moll, J. L., Large Signal Transient Response of Junction Transistors, Proc.
IRE, 42, December, 1954, pp. 1773-1783.

5. Linvill, J. G. and Wunderlin, W., Transient Response of Junction Diodes, IEEE
Trans. Circuit Theor., 10, June 1963, pp. 191-197; Technical Report No.
1513-1, August, 1962, Stanford University.

6. Linvill, J. G. and Wunderlin, W., Untersuchung von Schaltvorgaengen in
Halbleiterdioden mittels Modellen mit konzentrierten Ersatzelementen,
AEU; 17, 1963, pp. 35-40.

7. Linvill, J. G., Models of Transistors and Diodes, McGraw-Hill Book Co., New
York, 1963.

8. Hamilton, D. J., Lindholm, F. A., and Narud, J. A., Large Signal Models for
Junction Transistors, Engineering Research Laboratories College of Engineer-
ing, University of Arizona, Tucson, Arizona.

9. Narud, J. A., Hamilton, D. J., and Lindholm, F. A., Large Signal Models for
Junction Transistors, 1963, ISSCC Philadelphia, Digest, pp. 56-57.

10. Hamilton, D. J., Lindholm, F. A., and Narud, J. A., Comparison of Large Signal
Models for Junction Transistors, Proc. IEEE, 52, March, 1964, pp. 239-248.

11. Gray, P. E., et al, Physical Electronics and Circuit Models of Transistors, Semi-
conductor Electronics Education Committee, 2, John Wiley & Sons, Inc.,
New York, 1964.

12. Beddoes, M. P., Linvill's Lumped Models and the Simplified Model, Proc. IEEE,
53, Correspondence May, 1965, pp. 552-554.

13. Melchior, H. and Strutt, M. J. 0., Small Signal Equivalent Circuit of Unsym-
metrical Diodes at High Current Densities, IEEE Trans. Electron Devices,
ED -12, February, 1965, pp. 47-55.

14. Boothroyd, A. R., Charge Definition of Transistor Properties, 1962 ISSCC
Philadelphia, Digest, pp. 30-31.

15. Lax, B. and Neustadter, S. F., Transient Response of a P -N Junction, J. Appl.
Phys. 25, September, 1954.

16. Sparkes, J. J., A Study of the Charge Control Parameters of Transistors, Proc.
IRE, October, 1960, pp. 1696.

17. Ekiss, J. A. and Simmons, C. D., Junction Transistor Transient Response
Characterization, Solid -State J., 2, January, 1961, pp. 17-24.

18. Ekiss, Spiegel, Simmons, and Blank, Characterization of Switching Transistors,
Armed Serv. Techn. Inf. Agency, Philco, No. R-113, AD 271/122,275/510.

19. Ekiss, J. A., Applications of the Charge -Control Theory, IRE Trans. Electron
Computers, EC -11, June, 1962, pp. 374-381.

20. Bader, C. J., Charge -Step -Derived Transfer Functions for the Junction Tran-
sistor, IEEE Trans. Commun. Electron, 66, May, 1963, pp. 179-185.

21. Schmeltzer, R. A., Transient Characteristic of Alloy Junction Transistors
Using a Generalized Charge Storage Model, IRE Trans. Electron Devices, 10,
May, 1963, pp. 164-170.

22. Den Brinker, C. S., Fairbairn, D., and Norris, B. L., An Analysis of the Switching
Behavior of Graded Base Transistors, Electron. Eng., August, 1963, pp. 500-
505.

23. Singhakowinta, A., Some Effects of Transit Time Through the Collector Deple-
tion Layer of Junction Transistors, IEEE Trans. Circuit Theor., CT -10,
September, 1963, p. 445.

24. Cho, Y., A Method of Theoretical Analysis of High Speed Junction Diode
Logic Circuits, IEEE Trans. Electron Computers, EC -12, October, 1963,
pp. 492-502.

25. Hegedus, C. L., Charge Model of Fast Transistors and the Measurement of



576 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

Charge Parameters by High Resolution Electronic Integrator. Solid -State
Design, 5, August, 1964, pp. 23-36.

26. Bloodworth, G. G., The Significance of the Excess Charge Product in Drift
Transistors, Radio Electron. Eng., 28, November, 1964, pp. 304-312.

27. Koehler, D., A New Charge Control Equivalent Circuit for Diodes and Tran-
sistors and Its Relation to Other Large Signal Models, 1965 International
Solid -State Circuits Conference, Philadelphia, Digest of Technical Papers,
pp. 38-39.

28. Bassett, H. G. and Greenaway, P. E., Electrical Properties of High -Frequency
Transistors, Post Office Elec. Engrs. J57, April, 1964, pp. 54-59.

29. Nanavati, R. P., Charge Control Analysis of Transistor Storage Time Depend-
ence on Input "On" Pulse Width, IRE Trans. Electron Devices, 10, July, 1963,
pp. 290-291.

30. Thiney, A., Rise and Fall Times of Transistors in Switching Operation Regard-
less of the Driving Source Impedance, IEEE Trans. Electron Computers,
EC -12, February, 1963, p. 23.

31. Simmons, C. D., High -Speed Microenergy Switching, Solid -State J., 1, Septem-
ber -October, 1960, pp. 31-36.

32. Nanavati, R. P. and Wilfinger, R. J., Predicting Transistor Storage Time for
Non -Step, Quasi -Voltage Inputs, IRE Trans. Electron. Devices, ED -9,
November, 1962, pp. 492-499.

33. Kuno, H. J., Rise and Fall Time Calculations of Junction Transistors, IEEE
Trans. Electron Devices, 11, April, 1964, pp. 151-55.

34. Lindholm, F. A. and Hamilton, D. J., Systematic Modeling of Solid -State
Devices and Integrated Circuits, 1965 International Solid -State Circuits
Conference, Philadelphia, Digest of Technical Papers, pp. 36-37.

35. Lo, A. W., et al., Transistor Electronics, Prentice -Hall, 1955.
36. Gartner, W. W., Transistors, Principles, Design and Applications, D. van

Nostrand Company, Inc., Princeton, 1960.
37. Lindmayer, J. and Wrigley, C. Y., Fundamentals of Semiconductor Devices, D.

Van Nostrand Co., Inc., Princeton, 1965.
38. Narud, J. A., Seelbach, W. C., and Meyer, C. S., Microminiaturized Logic

Circuits: Their Characterization, Analysis, and Impact Upon Computer
Design, IEEE Cony., March, 1963.

39. Searle, S. C., et al., Elementary Circuit Properties of Transistors, Semiconductor
Electronics Education Committee, 3, John Wiley & Sons, Inc., New York,
1964, Section 2.1.

40. Lloyd, R. H. F., A Simpler Transistor Model, Proc. IEEE, 53, Correspondence,
May, 1965, pp. 527-528.

41. Pritchard, R. L., Frequency Variations of Current Amplification Factor of
Junction Transistors, Proc. IRE, 40, November, 1952, pp. 1476-1481.

42. Geller, S. B., Mantek, P. A., and Boyle, D. R., A General Junction Transistor
Equivalent Circuit for Use in Large -Signal Switching Analysis, IRE Trans.
Electron Computers, December, 1961, pp. 670-679.

43. Beale, J. R. A. and Beer, A. F., The Study of Large Signal High -Frequency
Effects in Junction Transistors Using Analog Techniques, Proc. IRE, January,
1962, pp. 66-77.



Generalized Optimum Receivers of
Gaussian Signals

By T. T. KADOTA
(Manuscript received October 28, 1966)

Optimum reception of two zero -mean Gaussian signals is accomplished
by comparing a quadratic form f f x(s)H(s,t)x(t) ds dt in the observable
waveform x(t) with a predetermined threshold, if the symmetric kernel
H(s,t) can be given as a square -integrable solution of

ffR,(s,71)H(li,v)R2(r,,t) du dv = R2(s,t) - 1?,(8,t),

where R,(s,t) and R2(s,t) are the covariances of the two signals. In this
paper, we generalize this result so that Ei., f f x") (s).111.(8,0?" (t) ds dt
is the quadratic form to be used and 111,,(s,1)} is given as a formal solu-
tion of

E ff R,(s,u)Hi,(u,v) R2(v,t) du dv = R2(s,t) - R,(s,t).
1.m uu avm

In other words, the generalized quadratic form is in the derivatives of x(t)
as well as x (t) itself and the kernels H 1,,,(8,t) consist of two-dimensional
5 -functions in addition to square -integrable functions. This result is ex-
tended to the case of two nonzero -mean signals and then to the case of M
Gaussian signals in noise.

I. INTRODUCTION

Consider the problem of discriminating between two zero -mean
Gaussian signals by observing the sample function x(t), 0 S t 1.

We assume that their covariances R,(s,t) and R2(s,t) are continuous
and positive -definite on [0,1] X [0,1]. According to previous results,'" .3
if the integral equation

1.1 I.,
J jo Ri(s,u)H(u,v)R2(v ,t) du dv = R20,1) - R,(s,t), 0 s,1 1, (1)

577
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has a symmetric and square -integrable solution H(s,t), then the fol-
lowing decision scheme minimizes the error probability:

where

1 1

choose R,(s,t) if x(s)H(s,t)x(t) ds dt < c, (2)
0 0

choose R2(s,t) otherwise,

CO

c = 2 logal - E log Xi ,

a2
(3)

in which al and a2 are the a priori probabilities associated with the
two signals, and X, > 0, i = 0, 1, 2, , are the eigenvalues of an
operator RT1R2R-11.*

Unfortunately, existence of a square -integrable solution of (1) is

too restrictive a condition. Thus, relaxation of the condition, which
amounts to generalization of the quadratic form of (2), is desirable.
In this paper, we accomplish this in two ways: one is to allow H(s,t)
to contain 8 -functions as well as square -integrable functions, resulting
in the generalization of the structure of the quadratic form; the other
is to consider the derivatives of x(t) as well as x(t) itself, thus generalizing
the elements of the quadratic form. The result is extended to the case
where the means of the two signals are nonzero, and is further extended
to the case of M Gaussian signals in noise.

II. GENERALIZED OPTIMUM RECEIVER OF TWO ZERO-MEAN GAUSSIAN

SIGNALS

Consider the following generalization of the quadratic form of (2) :

E
r

Q(x) = x")(s)111,(s,t)x(m)(t) ds dt, (4)
1.m -0 0 0

where xw(t) is the lth derivative of x(t), and
nl

Hi,(s,t) = Eafklm (5(s - si) - 5k)

* More precisely, Xi , i = 0, 1, 2, ... , are the eigenvalues of the extension
of RT4R2R,-+ to the whole of 22, where R, and R2 denote the integral operators with
the kernels R1(s,t) and R2(s,t), and .C2 the space of all square-integrable functions on
[0,1]. We recall that existence of a symmetric, square -integrable solution of (1)
implies that RTiR2RTi has a unique bounded extension to the whole of 22 having
eigenvalues {Xi] such that 0 < 117_, X; < co.
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[8(s - t im(t) lm(s) - i)]

itin,(s) - R

579

(5)

in which aik,, are real constants, and 0 si , tj < 1, and ,(t) , h iz,n(t) and
him(t) are square -integrable functions on [0, 1] while 1-71,(s, t) are square-
integrable functions on [0, 1] X [0, 1]. In writing (4), we have assumed
that almost all sample functions of both signals have rth derivatives.*
Note that the nonsquare-integrable part of 1-11,(8,0 consists of three
types of two-dimensional 8 -functions: (i) those at points and their
mirror images with respect to the diagonal s = 1, (ii) those along
horizontal lines (t = constant) and their mirror images (s = constant),
and (iii) those along the diagonal. By formally substituting (5) into (4),
we obtain an explicit form of Q(x), namely,

Q(x) =
EL

E V(1) /OX
k

(m)/
Sk)

1, ns =0 ,k=1

+ E x")(10 f [hi im(t) im(t)Jx(m)(t) dt
i==1 0

+ lx(1) (0iii,n(1)x(m) dt f x")(s)171,(8,0x( m )(1) ds dt (6)
0 0 0

As the corresponding generalization of the integral equation (1),
we consider the following:

E f I f (9

a---11 '(s'u)'R H (u,v) R2(v,t) du dv
1,,=00 0 - a

= R2(8,1) - R1(s,1), 0 < s,t < 1.

Again, through formal substitution of (5), (7) becomes

9ajklm ;; (9'1 R1(311)1t=8
s 

1?207018=ak
1,m=0 j ,k=1

a1
an,

R2(u,t)

az
+ --T amt RAs,01.01du

au as

* A simple sufficient condition for this is existence of
i = 1, 2.4

E ro=

(7)

(a2,2/asr+iatr+1) Ri(syt),
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01

al a- al

+ R2(u,t) du + Ri(s,u)c
au 0 au

i,(u,v)

. am
av-7. RA'V t) du dv}= R2(s,t) - R1(s,t), 0 < 8,t < 1, (8)

where we have assumed that (e/asratr)R, (s,t) and (a2r/asratr)R2(s,t)
exist and are continuous on [0,1] X [0,1].

Unlike H(s,t) of (2), which is uniquely given as the symmetric,
square -integrable solution of (1),* the defining elements of Q(x) (i.e.,
ctiki,), 18,1, t11, fiiii,(t)I, {LW}, Ifli,n(s,t)1) cannot be

uniquely determined by (8) in general for a given pair of covariances
R1(s,t) and R2(s,t). Nevertheless, we can establish the following:

If (i) R1(s,t) and R2(s,t) are positive -definite,
(a27asratr)R1(s,t) and (a2 r/astatr)R20,0 are continuous,

(iii) for almost all sample functions both signals have rth derivatives, t
and

(iv) there exist some set of finite sequences faikind, Pak
{liii,(t)}, iti,(t) I and 1171,,(8,0 which satisfy (8), then the decision
scheme (2) with fo'fol x(s)H(s,t)x(t)dsdt replaced by Q(x) of (6) is

optimum.

The proof is based on two measure theoretical facts: (i) two prob-
ability measures P1 and P2 corresponding to two Gaussian signals are
either equivalent or singular, I" and (ii) if they are equivalent then
there is a special random variable called the Radon-Nikodym derivative
(dP,/dPi)(x), in terms of which the optimum decision scheme is
specified as follows :1

dP, a I

a2
choose Ri(s,t) if - (x) < - ,

dP,

choose R2 (8, t) otherwise.

Hence, in the Appendix, we first prove that existence of aik kik
{t;}, { hi ini(t)}, It (t) 1 , (t) and Cli,(s,t) satisfying (8) implies
equivalence of Pi and P, . Then, it follows that the eigenvalues X1 ,

* The uniqueness of H(s,t) follows from positive -definiteness of Ri(s,t), i = 1,2,
and square integrability of H(s,t).

t Continuity of (a2r losratr)Ri(s,t), i = 1, 2, and existence of x(r)(t) for almost all
x(t) may be replaced by a simpler but stronger condition that (82r÷2/0sr+latr+9
Ri(s,t), i = 1, 2, exist.

$ From the communication theoretical point of view, singularity corresponds to
the case of "perfect reception" where error probability vanishes. For the mathe-
matical definition, see Ref. 7.



GENERALIZED OPTIMUM RECEIVERS 581

0, 1, 2, , exist." Next, we explicitly obtain Ai from (8) and show that
0 <117.0 < 00. Thus, the threshold c of (3) is well defined. Lastly,
we prove that

dP2 )4
(.1%) = (11 exp [1(2(x)] (9)

i=0

for almost all x(t) of both signals. Then, by substituting (9) into the
above decision scheme and taking the logarithm of both sides, the
assertion is immediately proved.

III. EXTENSION TO TWO NONZERO-MEAN GAUSSIAN SIGNALS

The preceding result can be extended to the case where the means
of the two Gaussian signals are no longer zero.* Let 1311 and P22 be
two probability measures corresponding to two Gaussian signals with
means m1(t), in2(0, 0 < t < 1, and covariances R1(s,t), R2(s,t). m1(t)
and lit2(t) are assumed square -integrable while the assumptions on
R1(s,t) and R2(s,t) remain the same. Introduce a third measure P21
corresponding to a Gaussian signal with mean 1712(t) and covariance
R1(s,t). Then, Pi, and P22 are equivalent and

dP22 dP22 dP21= (x)
dP21 I" 11

for almost all x(t) of all three signals, if and only if P22 is equivalent
to P21 which in turn is equivalent to Pii . According to a previous
result,' if there exist finite sequences of real numbers and 141,
0 :5_ 1i < 1, and square -integrable functions rdi 1 which satisfy

ft

f
i az

E E
ai

10,013-0 MRI(SI(S) C/81
, - as

= M2(t) - M1(t), 0 < t < 1, (10)

for almost all x(t) of the two signals, then P11 and P21 are equivalent
and (dP21/dPii)(x) = exp [L(x)] for almost all x(t) of the two signals,
where

L(x) = ai, fit; [x(t) - rn,(t) +2 m2(t)1
Jt=i;

+ f'
dl` [x(t) ml(t) ± m2(t)Ii(t) dt} (11)f

* This extension follows the development in Ref. 3, pp. 1628-1629 and pp. 1636-
1637.

t This is the "sure signals -in -noise" counterpart of the result in Section II,
namely, the generalized optimum receiver of two sure signals in Gaussian noise.
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The remaining half of showing the equivalence of P2, and P22 and
obtaining (dP22/dP21)(x) is accomplished simply by replacing x(t) with
x(t) - m2(t) in the result in Section II. Thus, upon combination, we
conclude that, if there exist a set of finite sequences Ail, { ti } , {-#/ (t) }

satisfying (10) and another set of sequences { aiki,} , {.31}, { ti }, {hii,(0},

{hi,(t)}, {Him (s,t)} satisfying (8), then the optimum decision
scheme for this case is specified as follows:

choose m, (t), Ri(s,t) if 2L(x) Q(x - m2) < c,

choose m2(t), R2 (S, 0 otherwise.

IV. EXTENSION TO M GAUSSIAN SIGNALS IN NOISE

The above result can be further extended to the problem of dis-
criminating among M Gaussian signals in Gaussian noise.* Let mi(t),

Ri(s,t) and ai , i = 1, 2, , M, be the means, covariances and a priori
probabilities of the signals, and Ro(s,t) the noise covariance where
the noise mean is assumed zero. The assumptions concerning m; (t),

R;(s,t) and R0(s,t) are the same as in Section III.t Denote by Pi, the
probability measure corresponding to the ith signal plus the noise,
and by P. the measure corresponding to the noise alone. Then, according
to the theory of the generalized maximum likelihood test," if each
Pi, is equivalent to P. then the optimum decision is to choose that
9n; (t) and Ri(s,t) for which cy,(dP ii/dP.)(x) is maximum as a function
of i.§ Observe that, if the ith signal plus the noise and the noise alone
are interpreted as the two Gaussian signals of Section III with means
mi(t) and zero, and covariances Ro(s,t) R,(s,t) and Ro(s,t), then
the condition for equivalence of P, and P. and the expression for
(dPii/dP0)(x) are obtained simply by the following changes: ml(t) -* 0,

m2(t) --> mi(t), RI(8,t) Ro(s,t), R2(s,t) Ro(s,t) Ri(s,t). Thus,
we conclude that, if for each i there exist a set of finite sequences

j and Igiz WI satisfying

Js a' , a,
E E aiii + -R (s tYd-i(s) ds] =
1-0 j-i as

f as, 0 ,

0 t --C. 1,

* This extension follows the development in Ref. 10, pp. 2192-2194.
Ri(s,t) need not be strictly positive -definite.

$ Equivalence of Pii and Po corresponds to the condition that the ith Gaussian
signal cannot be detected perfectly in the presence of this noise.

§ If ai(dPii/dP.) (x) becomes maximum at more than one value of i, choose the
lowest of such i-values. See Ref. 11.
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and another set of finite sequences {aiiki, } , ti1}, {kii,(0),
hii z,(t) } , fitii,(t) and { fiii,n(s,t)} satisfying

E al-a-
0 1

ilklm -tl Ro(s 01 asm [Ro(s t)
1. 1,

l am

j" [-a
uPT4

R(s,t)I,_whii,,(u)
au

(Ro(u,t) Ri(u,t))
i-1 0

a' Ro(s,u)fiiii,n(u) -a
-

au as' (Ro(s ,t) R i(s du

1 al
witRo(s,u)iiit,(u)

LI [Ro(s,t) Ri(s,t)] du + f f
otu

Ro(s,u)17,1,(u,v)
0

am

avn
[R° (v' + Ri(v,t)] du dv = Ri(s,t), 0 s,t 1,

then the optimum decision is to choose that signal (mi(t), Ri(s,t)) for
which 2Li(x) Qi(x - mi) ci is maximum as a function of i, where
Li(x) and Qi(x) are defined by (11) and (6) with eli1, 1,, 01(t), and

replaced and
aijklmy Sii) tit,hiilm(t),hiilm(t) Ailm(t)) respectively, and

ci = 2 log cy, - E log X"),

where Xn"), n = 0, 1, 2, , are the eigenvalues of the extension of

I VR,1?-0-1 to the whole of 22

APPENDIX

Let P1 and P2 be two Gaussian measures associated with a separable
and measurable process {x(t), 0 =< t < 1} with means zero and co -
variances R1(s,t) and R2(s,t).

Theorem: Suppose R1(s,t) and R2(s,t) are (strictly) positive -definite,
(a2r/asratr)Ri(s,t) and (32 Yasratr)R2(s,t), 0 < r < co, exist and are
continuous on [0,1] X [0,1], and almost all sample functions have the
rth derivatives with respect to P1 and P2 . If there exist a set of finite se-
quences* {aiklm} {sJ}, {ti}, {hilm(t)}, thitm(t)Hhim(t)} and {fl1m(s,0}
which satisfy (8), then

* The definitions of these sequences are given after (5).



584 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

(i) P, and P2 are equivalent, i.e., P1 -=-=, P2 j
(ii) (10) holds a.s., [P1 , P2].*

Proof: For simplicity, we introduce the following notations:

az
Risi(u,t) = T Ri(s,t)18=u ,

- as,

tly

R ,(s ,v) = R i(s ,01 t

K1(s,t) = E E ctikz,nR111(8,si)R2sm(sk , ),
,m=0 j ,k=1

na

1,2,

K20,0 = E E [R1t1(s,ENR2t.hil,)(t) , 0],
,m=0 j =1

K3(s,t) fl Riti(s,u)k,(u)R28m(U,I) du,
,m.-3 0

K,(s ,t) f Rig i(s ,u) im(u ,t) du dv. .
on=0

f
0

Note Ki(s,t) i = 1, 2, 3, 4, are square -integrable. Again, we delete
the arguments s and t of the kernels to denote the corresponding integral
operators. Thus, (8) becomes

hence,

4

EKi = R2 - Ri ,

i=1

4

(12)

aTiR2R-1-1 - I = E (13)
i=1

(i) To establish P1 = P2 , it suffices to prove that RT/R2RTI is densely
defined on 22 and RTIR2R-i-1 - I is of Hilbert -Schmidt type, i.e.,
IRTIR2Ri-1 -III < 00.8.2'3t The principal tool to be used for this

proof is the following expansion :12

R18 E gii`ii)(onm)(t), 0 1, m r, (14)

uniformly on [0,1] X [0,1], where p., > 0 and fi(t), i = 0, 1, 2
are the eigenvalues and orthonormalized eigenfunctions of R, .

To prove that RTIR2R,-1 is densely defined on 22 , it sufficies to show

* "a.s. [P 1 , P21" is the abbreviation of "almost surely with respect to P1 and P2".
t I IA II denotes the Hilbert -Schmidt norm of an operator A.
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that RTiR2 is bounded since RTI is densely defined. Now, by applying
the formula IIAII2 = tr A*A = E, (I, , A*Af;) to the individual terms
of RTIKL first, we obtain

RT'K. II E E I am,. I

j,k=1

2

(RO f i) (u) R i(u i) R (s k , u) R2,,,(u,sk) du]lf10

= E E a, I I E1.1.j If1)(s;) 12 sk)
1 , = = 1

1I,= E E I aikilll
I R131( l(Si ,Si)R228M1.(Sk 11 I

lon=0 j,k=1

where (14) is used for the last two equalities. Similarly,
n2

II R,/K2 II E E {{R,,,(t; , ti)(hi, ,h; i,)}1
, =0 j

+ [(him! , Rig, , ti)]i} ,

II R1K3 II 5_ E tr
lo, -0

RTiK4 ta, A.z,,RLm,m)

where Riaiti.,(8,0 = iti,(s)Riti(s,t)iti,(t), _iaigi,,n = rimiRia,,,171,
Hence, from (13), IIRTIR211 < .

To prove IIRTIR2RTI -III < °(:), we apply the formula !Oil' =
E I IA1,112 to the individual terms of RTIKIRTI first. Thus, we obtain

r ni

II RT'IciRi-' II -5. E E I aikim I I E II RTIR2,-( ,sk)141i1)(si)
112

1.111..0

ni

= E E I aiki. I I RI. t i(Sj sj) II R1- 1R2 .(  /SO Ilr
1,7,313 j 1

where (14) is used twice, and RTIR2,-(,sk) denotes the result of
acting on an s -function R2,.(2,4). By differentiating both sides of (S)
with respect to t, we obtain

R2tm(S,Sk) = RI m(S ,Sk) E sk)

r n.

+ E E [Riti(s,ti)(R28,mh,,,o(so + 1,7,)(s)R:),- t m(t, sk)J



586 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

R11i(s,u)h,,(u)R2,,,,,,(u,sk) du
1,m=0 0

t 1' 11 R (s ,u)I7 ,(u ,v)R 2..g =01 ,s k) du dv..
,m=0 0 0

Thus,

WR2,4. ,Sk) Riam,-(sk Sk)

Hence,

Similarly,

-F 1 t I aikim I I , si) Sk)
,k =1

r n2

EE Ri,,i(ti , I (R2*.imhi,,)(8k)
1 , m = 0 i=1

(15)

+(hilm , Risitihit,n)1 I R2a.,.(si ,sk) II

+ t (R2amem(Sk , ), Ei8ttl,m R2rm t m( ;Sk))1
1,rn=0

+ E (R28m,m(sk , t1.m R26m tm( )Sk))1
1,m=0

< °O (16)

IIJ II < "

7' n2

II RTIK2R.7' II E E [I ii) I H Ri1R2,./tii,,, II

From (15),

II 1R2tmhjim II

1 , m=0 j=1

-F(hjlm ,Riaitthil,)4 II R1 iR21m(,Ii)

(hi 1m , Risme "'hit m)I
r ni

EE I aikim I I RI. si) I I (R2,,,,,,mhitm)(sk)
1,m=0 i.k=1

r n2

EE [I R,,,,i(ti , ii) , R2dmonhilm)
1 , m = 0 j=1

,01, 1 I (R2,,m t mh j 1m)(1i) Il

, R2am tmR1 81 ti ,m R2.sm tmhil.)4
m = 0

E oizm
1,m=0

< 00,
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Hence,
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H RTIR2,,(,1i) II <

II WK.RTI II < c°
Similarly,

I I RTiK3R74

t [ E R0.11 R28-( 11.,(u)riz)(u) du

,
{1 tr Ri.-,-) 1/ + E aikr.'

i.vn=0

I Rlati. 81(Si r Si)(R2so (.9k 1 ) 1 filait,m R211".1".'( 'SO ji

+ E E [I 11, ,,, , R2.- -'hi 14

,  ), R2.- ,-( 'UM

 E I tr R2,1.1') 11

tI ti (fll el '11 2sm 1"1?1,111, R2s".1..) 11}

< .

Similarly,

I RTiK4R0

 E [E A; II RilR2,-171,nift) 11214

EI aikr,, I

1,m=0

' I tI'(Sj Sj)(R2a".1.(8k r ),Rla 1t 1, rrs 1."R2'f".( ,SA))

[1 ti)(hir., R2s"..t.filaill.m
fit

± I
), R2a.t..( 10)

t i tr
1'
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EI tr(fi,,,,,/,,,, R2."11"'') 11}
1' , m ' =0

< co .

Therefore, from (13),

II Ri1R2R0 < °° 
(ii) We have established in (i) that RT4R2RTI is bounded and densely

defined on .C2. Hence, it has a unique extension to the whole of 22,
which we denote by M. Since M - I is a Hilbert -Schmidt operator,
M has eigenvalues and orthonormal eigenfunctions, which we denote
by X1 and go, (t), i --= 0, 1, 2, . Note 0 < X, 6 I M I, where I M I is
the norm of M. Then"

= E (Rf.,,,)(t)(s)(40,)(m)(0

0 S m r, (17)

R, m(s,t) = E xi(R1,,,,)(1)(s)(40,)(m)(/),

uniformly on [0,1] X [0,1].
Let {coin} be sequences of functions in the domain of RTI such that

so, = l.i.m. (p, for each i. Multiply both sides of (12) by (RTlio,,,)(s)
and (RA0,)(t), integrate with respect to s and t, and let n 00.

Then, the four terms on the left-hand side become

(RTivin KIRTivin)

= E E aikimuiOcoin , /ewe ,s,:))(R,smo, , .),
i.,n=0 i,k=1

= Lj L aikim E (v, , co)0c0,)(1)(si) E xp(Rtv,)(m)(sk)(coy , co,n),
,nr=0 kr7,

where (17) is used for the second equality. By virtue of (17) again,
we can define an s -function Rttz(s,u) for any u E [0,1] by

Then

i(s ,u) = 1.i.m. E 44(s)(Rtv,)(1)(u).

E(vin , cop)(4,00(1)(si) = , ,s,)),

E xi(Rtco,,)(m)(4)(vw , (pin) = (Rts.(sk ), mcoin),



and
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Hal ((Pin 'Mo( ,si)) = ,Rtii(' ,si)) = (Rtsoi)(i)(80,
n-Ko

lim (R}.-(sk .), Ms0-) = , ), = Xi(Rtioi)(m)(80 
n-rao

Hence,
r n

lira(RT391 , KiROvin) = x, E E am.,(Rtvi)(`)(8i)(4,00(m)(8k)

Similarly,

lim (RTkpi. , K2RTI,Pi.)

r /I

= lim E E MAN. , Rio(
n I =0 j=1

(RAOin RI/ ,  ), ROVin)]

= xi E E (Rtcoi)(1)(ti)((Rhoo(-), hilm +
l, m=0 j

lim (ROsoi , K3R1kpi)
n-,00

= lim E J 1 (RTtioin ,Rio( ,u))iii,(u)(R2,(u, ), Rl #ccin) (hi
0

1

= Xi E f (litp i)(`)(u)41,(u)(Rtp (u) du,
0

lim (ROco, , K,Rrkpi)

r

= t f1 (R11,p, ,R1,1( ,u))1,(u,v)(R20,(v,),ROvi) du dv
n-9= 1 , =0 0 0

= Ai E aRtioi)(`) 111,.(litcoi)('')

On the other hand, the right-hand side becomes

lira (RTivi , (R2 - RORTesoi.) = liln ((pi. , (Al - 1)coia) = Xi - 1.
n-boo

Hence, by equating both sides and dividing by Xi ,

Er E ctik,,(Rtvi)(1)(8)(Rhoi)nsk)
k=1
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na

+ E (Rtioi)(i)(1,)(Vetc00(m), hit. + hit.)

f0
(Rho Om (u)iii,(u)(Rtco i)(m) (u) du + ((lity0i)(1) ,1711,(Rtcp;)(m))1 (18)

1

Thus,

E - 1

EE aiki,Risitm(si ,

n2

1

+ + + f RI.= em(u,u)111,(u) du + tr
0

< 00,

where (17) is used repeatedly. Hence,*
00

o < xi < 00.
i=0

dP2 VI iyi [1 (1 - .L) -2.(x) 1
dPi  1 0 ' Xi '''' ' a.s., [P1],

where

ni(x) = 1.i.m. (x,R1 lioin), [P1 , P2] i = 0, 1, 2, . (19)
71-.00

Now, x(1)(1) has the following orthogonal expansion:13

X(1)(t) = 1.i.m. E ni(s)(Rtioi)(z)(t), [P1], 0 1 r,
n-no

uniformly in t. Hence, there exists a subsequence of the partial sums
ni(x)(Rtgoi)(1)(t) which converges a.s. [131] to x(1)(t), uniformly

in t. Therefore, from (18) and (19),

E

n,-no i

73.

= [ aiking")(si)'C(m)(sk) E x("(ti)(x(m) , hjlm + hit.)1,0 j,k=1 j=1

fx") (u)k,(u)xnu) du + (x") , 1,7,:r(m))1 , a.s. [Pi],
0

which completes the proof of (ii).
* See Ref. 3, pp. 1653-1654.
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Timing Recovery for Synchronous Binary
Data Transmission
By BURTON R. SALTZBERG

(Manuscript received November 15, 1966)

This paper analyzes different methods of adjusting the sampling time
for detecting synchronous binary data, based on properties of the random
data signal itself. The static error and the variance of the jitter of the
resultant sampling instant are calculated where the effects of frequency
offset, additive noise, signal overlap, and jitter of the reference source
are included.

The threshold crossing timing recovery system adjusts the sampling time
in response to the times at which the data signal crosses the amplitude
threshold. The sampled -derivative system uses the time derivative of the
signal at the sampling time to adjust sampling phase. It is shown that
both systems lead to approximately the same amount of jitter in the presence
of noise and signal overlap for a given bandwidth of the control loop.

An improved timing recovery system is presented which is constructed
by adding correction signals to the sampled -derivative system. This system
accounts for intersymbol interference in a manner that tends to set the
sampling time at the point of maximum eye opening, where the error
probability is minimum for the most adverse message sequence.

I. INTRODUCTION AND SUMMARY OF RESULTS

In synchronous polar binary data transmission, information is sent
by serially transmitting either a basic signaling waveform or its negative
at fixed time intervals. Modulation may be used to better fit. the signal
to the channel. At the receiving end, the signal is demodulated and
filtered. The resultant baseband signal is sampled periodically, and
the polarities at the sampling instants determine the output data.
The choice of sampling time is critical for minimizing the error prob-
ability due to intersymbol interference and noise, particularly when
the signal has been subjected to sharp cutoff filtering. The sampling
time is best set by using some properties of the data signal itself.

593
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The problem of timing is particularly acute in pulse code modulation
(PCM) systems, where the accumulation of jitter in a long chain of
regenerators frequently limits the allowable length of such systems.
For this reason, previous studies of timing recovery have concentrated
on PCM applications.' The use of a tuned circuit as the memory
element is generally assumed, since this is commonly employed in
PCM repeaters.

This paper will concentrate on timing recovery for data transmission
applications. The effects of multiple regeneration will not be considered.
The recovery of timing will be accomplished by a feedback control
system, such as a phase -locked loop. Different methods of generating
the error signal for the control loop will be compared.

The received signal, after demodulation and filtering, is of the form

s(t) = E akf(t -fiT - kT) n(t) (1)
k=-co

where aki is a set of independent random variables, each equal to
+1 or -1 with equal probability. This may be assured by the use
of a scrambler if the data source is itself not random. The basic signal-
ing waveform is f (t). The abscissa of f(t) will be adjusted for each system
to be studied so that the desired sampling time of f (t) is t = 0. The
quantity /3 is an unknown fractional time delay. Since we are not
concerned with absolute time delay between transmitter and receiver,
we will assume I [3 < 1. The additive noise is n(t).

The sampling wave which determines the times at which s(t) is

sampled may be represented by

q(t) = - nT - 7T), (2)
fl= -00

where -y is a phase that is generally time varying.
The output data is determined by

ii = sgn s(nT + -y7 ), (3)

where sgn v = v/I v 1. Then

4 = sgn [anfeyT - (3T) E a_,f(kT + - 13T) n(t)]. (4)
k=0

For simplicity, the argument of the noise term is not made explicit
since it is of no consequence. Assuming that f (7T - f3T) is positive,
then a,, will agree with an provided that

-a[E a_kf + -y71 - 071) + n(/)} < f (-yT - ST).
Rio

(5)
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It is readily seen that the probability that (5) holds depends strongly
on -y - S. For each timing recovery system, f(t) is defined so that the
desired value of ry - fl is zero.

The principal part of a timing recovery system is a phase detector
which examines s(t) and q(t) and attempts to generate an error signal
proportional to $ - It is not possible to determine 3 exactly from
s(t) since the signaling waveform and the noise are unknown. This
paper will consider different methods of forming this estimate of /3 - y.

Another essential component of the system is the reference source
which is used to generate the sampling wave. Its phase or frequency is ad-
justed by the error signal in order to form a sampling wave of the proper
phase. The error signal may be filtered prior to its use in shifting the
phase of the reference source. The reference source may be a local
oscillator whose natural frequency is set as close as possible to the
bit rate. The reference source may instead be derived from transmitted
pilot tones, in which case its frequency is exact, but it might have
phase jitter of its own due to channel noise.

Section II describes and analyzes a timing recovery system which
uses a threshold crossing phase detector. This detector generates an
error signal each time the signal crosses zero. The amplitude of this
signal is proportional to the difference between the time of occurrence
of the zero crossing and the time of the nearest sampling pulse, dis-
placed by half a bit period. This system tends to choose a sampling
instant which is midway between the mean transition times.

The sampled -derivative phase detector is discussed in Section III.
This device generates an error signal during each bit interval which
is proportional to the time derivative of the signal at the sampling time
multiplied by the signal polarity at that time. The sampled -derivative
timing recovery system attempts to set the sampling time to coincide
with the peak of f(t).

The analysis shows that the performance of these two systems is
very similar for a given open loop gain function of the control system,
G(w). Approximations are made based on the assumption that the
phase error is small and that G(w) is a narrowband low-pass function
compared with the bit rate.

The systems fail if G(0) is finite and the reference source does not
agree exactly in natural frequency with the bit rate. If the reference
source has the correct frequency and a phase 0, then a static phase error

_ e-fle - 1 + G(0)

results in the sampling wave.

(6)
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Much better performance can be achieved if G(w) has a pole at the
origin. In this case the system is insensitive to the phase of the reference
source. In the presence of a frequency error, Lf, the static error is

e. = Of
d 1r

[1 + G(w)1,_°' (7)

In addition to any static error, the sampling time will also jitter
about its mean value. The variance of this phase jitter is the sum of
several components, each due to a different cause. Jitter is produced
by jitter in the reference source, by additive noise and by signal overlap.
In the case of the threshold crossing system, jitter is also introduced
whenever there is a static error.

If the reference source has a jitter whose power spectral density is

S(co), then the output fractional jitter will have a variance equal to

2 1 r- s,(w)
= ; I 1 + G(co) 12

This indicates that high -frequency noise components must be removed
from the reference source prior to its use for timing recovery.

The jitter produced by the additive noise is

2 2[R(0) - R (T)1
N - Tr-T/2) - r(T/2)12w1

for the threshold crossing system. Rn(t) is the autocorrelation of the
noise and w, is the noise bandwidth of the closed control loop.

wl = -1 f°3
1 ±G

G(w)(co)
2

dw. (10)r
For the sampled -derivative system, the noise leads to jitter variance

2 R'(0)
6N - Ti"2(0)W1 

(8)

(9)

(11)

In typical data transmission systems, (9) and (11) are similar in
magnitude, and not very sensitive to the shape of Al) if the noise is
similarly filtered.

The jitter variance due to signal overlap is of the form

Qs = AmiT ii2(co2T)3 , (12)

where
(.4 r- G(w)

7 .10 w 1 ± C(co)

2

dw. (13)
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If co,T and w2T are comparable and much less than unity, then the
first term is usually much larger than the second.

For the threshold crossing system,

1

T
[f, (- - f (T / 2)]2A, - 2 [f (kT T / 2) - f (kT -T /2)]

[2f(kT + T/2) f(-kT T/2) - f(-kT - T/2)] (14)

and

00

1
A2 - / 2) - f'(T/2)] 2 412(T/2)

+ 2 E f (kT T /2)f (kT - T/2) - [f (kT T / 2)
k--oo

- f(kT - T/2)][f(-kT T/2) - f(-kT -T/2)4.

For the sampled -derivative system,

= r(krU'RT) + r(-kr1T21 2(o)

and

(15)

(16)

E k2r(kT)f (-kT). (17)
A2 - 2T2r2(0) k..,

In both cases, A, = 0 if f (t) is an even function, so the timing recovery
systems are very sensitive to asymmetry of the basic signaling wave-
form. The jitter variances are again comparable for both systems.
As may be expected, the jitter increases considerably as the filter used
to shape f (t) is made sharper.

There is an additional jitter component for the threshold crossing
system whenever there is a static error. Its variance is given by

cr2. e2,4 T. (18)

An example is provided in Section IV. A typical data transmission
system using a distorted signal is studied so as to illustrate the mag-
nitudes of the above quantities and to indicate the narrowness of loop
bandwidth required for satisfactory performance.

In this example it is also seen that neither the threshold crossing
timing recovery system nor the sampled -derivative system chooses a
mean sampling time which is very near to the time at which the eye
pattern has its maximum opening.
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Section V describes an improved timing recovery system whose
mean sampling time coincides with that of the maximum eye opening.
This system is constructed by adding correction signals to the sampled -

derivative system in order to account for the effects of intersymbol
interference on the mean sampling time.

Finally, an outline of some extensions and modifications of these
timing recovery systems is presented in Section VI.

II. THE THRESHOLD CROSSING SYSTEM

Most timing recovery systems make use of the instants at which
the data signal crosses the threshold to alter the phase of the sampling
wave. A block diagram of a typical threshold crossing timing recovery
system is shown in Fig. 1.

The principal part in this system is the threshold crossing detector.
This device generates an error pulse each time the signal crosses zero.
The amplitude of the. error pulse is proportional to the difference
between the time of occurrence of the threshold crossing and the time
of the nearest pulse of the displaced sampling wave. The displaced
sampling wave is

qd(t) = q(t - T/2) = E 6(1 - nT - T/2 - 7T), (19)

where 7 is the phase measured in fractional signal periods. If the axis
crossing following the mth sampling time is displaced by a, T,

s(mT + T/2 + a,nT) = 0, J
an, + 7 I < I, (20)

cid (t)

DELAY
1/2

s (t) THRESHOLD
CROSSING

LOW- PASS
FILTER

e (t)DETECTOR GI(W) v (t)
PHASE

SHIFTER

q(t)

REFERENCE
SOURCE

Fig. 1-Threshold crossing timing recovery system.
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then the error signal is

e(t) = E Ki(a, - -y) o(t - mT), (21)
m

where K, is a gain constant. The error pulse has been represented in
(21) as an ideal impulse function. Since the error signal will be passed
through a narrow low-pass filter, the response will be virtually identical
to that when a more realistic pulse of the same area is used. Similarly,
the effects of variation of the position of the pulse within the interval
may be neglected, since the low -frequency components of the error
signal are substantially uneffected.

We will now determine the threshold crossing time am as a function
of the signal overlap and noise. Substituting (1) into (20) yields

Lj a,,,_kf(kT + T/2 - /3T amT) n(t) = 0. (22)

If

f(T/2) f(- T/2) > E I f(kT + T/2) I n(t) (23)

then a crossing will occur following the mth bit, if and only if am = -am+1 
When am = -a, and (23) holds, (22) may be written as

am[f(77/2 - PT + amT) - f(-T/2 - PT + amT)]

+ E a,_kf(kT + T/2 - 13T amT) n(t) = 0. (24)

If am - i is small, we may approximate (24) by the first terms of its
Taylor series expansion.

a,[f (T/2) - f(-T/2)] + a,(a, - 3)T[f'(T/2) - f'(-T/2)]
+ E a,_kf(kT 11/2) n(t) 0. (25)

Let the abscissa of the function f(t) be adjusted so that

f (T/2) = f (-T/2). (26)

b = f'(-71/2) - f'(T/2). (27)

We may now solve (25) for am .

am #
u/

[ a,_kf(kT + T/2) n(t)]. (28)koo,

Then define
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If we let

10' if
an = an+1

1, if an =

then the error signal (21) becomes
00

e(t) = K1 E do 13- 7 + E an_kfRT + T/2)
koo.-1

(29)

n(1)]} 6(1 - nT). (30)

The error signal is passed through the filter G1(w) and then shifts
the phase of a reference source. The reference source may be a local
oscillator whose frequency is tuned as closely as possible to the signaling
rate. Alternatively, the reference source may be derived from pilot
tones which are transmitted along with the data. In the latter case,
there is no error in the average frequency of the reference source, but
its phase may be poorly related to that of the data signal and may
also be perturbed by noise. In either case, the reference source generates
a signal of the form

r(1) = 6(1 -

When a local oscillator is used,

T Er:', Aft + 0, AfT << 1 (32)

where At is the frequency offset of the oscillator and 0 is an arbitrary
constant. When the reference source is derived from pilot tones,

= 0 + n(t) (33)

where n(t) is a zero mean random variable.
The sampling wave is formed by shifting the phase of the reference

source by an amount proportional to the value of the filtered error
signal.

q(1) = E 6(1 - nT - rT K2vT),
flo-00

(34)

where v is the filtered version of e(t) and K2 is the proportionality con-
stant. Comparing (34) with (2),

= r K2v = r K2 f x)e(x) dx. (35)
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In the phase -locked loop type of control system, the frequency of
the reference source is adjusted rather than its phase. This, however,
is completely equivalent to integrating the error signal prior to phase
adjustment. The block diagram is therefore valid for the phase -locked
loop provided that the filter includes a pole at the origin. As will be
shown, this pole is highly desirable and, in some cases, absolutely
essential.

Substituting (35) into (30)

e(t) = IC, E d{0 - T - K2 f gi(t - x)e(x) dx
n --co

+ bT rk an-j(kT
T/2) + n(t)J1 5(1 - nT). (36)

Let

2(1) = 9(1 e(1)
(37)

K,K2
91(0 (38)

2

e(t) = ± e(n) 5(1 - nT) (39)
n --co

and normalize the time variable so that T = 1. Then (36) can be
written as

e2(n) = 2d{,8 - T - g2(n - k)e2(k)
k=-ao

E
k00 1

an-ki(k + 1/2) + n(t)1} (40)
,-

A model of the threshold crossing timing recovery system which con-
forms with (40) is shown in Fig. 2. This is not a time -invariant linear
system because of the presence of the multiplier.

+
P

[k an_k f +I/4+n (t)]

Fig. 2-Model of threshold crossing system.
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In Appendix A, it is shown that

e2(n) = 0 - T g2(0)e2(n) E g2(n - k)e2(k). (41)

This system may be readily analyzed either by means of the z -trans-
form, or equivalently, by discrete Fourier analysis.2 The discrete
Fourier transform is given by

x(co = E x(n) exp (-join). (42)
n.-co

If G2(w) is bandlimited to I w I < 71-, which is approximately true in
all cases of interest, then these transforms will coincide with the true
Fourier transforms.

The solution of (41) in terms of Fourier transforms is

E:(w)
/3(w) - r(w)

1 + 92(0) + G2(w)'

where

(43)

00

92(0) = G2(w) dw. (44)

The static error can now be found from

7(c4) - 0(w) = G2(w)E2(w) -;-((.4) - /3(w) (45)

'VW - 0(w) - 1 +9 2(0) kw) - 0(0)]. (46)
1 + 92(0) + G2(w)

In particular, if OW is a constant, /3o , and r(t) is given by (32), then

1 + 92(0) [j Af7(co) - 00 6(c0) = 27. 1 + 92(0) G2(w)6'(w) + (0- i3) Ow)] (47)

1 + 92(0) [Aft + 0 - 130]'Y(t) - i30 - 1 + 92(0) + G2(0)

1 + g2(0)
Af d(.0[1 g2(0) G2(0))1.-0.

(48)

If G2(0) is finite, then the first term is a steadily increasing error
and the system fails. If At = 0, the system does not fail, but a static
error will be present due to the arbitrary phase values, go and 0. It is,
therefore, highly desirable that G(w) have a pole at the origin. In the
presence of frequency offset, this pole is essential. In this case, only
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the last term in (48) is nonzero, so that a frequency offset leads to a
static error. The system is completely insensitive to the values of the
arbitrary phases, 00 and 0, except during initial start-up.

For the system to be stable, it is required that 1 + g2(0) G2(w)
have no zeros in the half plane hn((.4) < 0. In most cases, g2(0) << 1,
so that the usual criteria for stability apply to G2(w).

We now wish to calculate the variance of 7, or the mean square
jitter. From (40) and (41), and assuming the static error to be constant,

e3(fl) = e2(n) - e2 = 2d[e2 g2(0)e2 - E g2(n - k)e3(k)
k = -co

- n(t) -ae- n(0] z(n) - e2 , (49)

where

z(n) = -b dean E an - (k + 1/2).
ko0.-1

Let

(50)

x(n) = 2dnre2 g,>(0)e2 -a-b2 n (i) z(n) - e2 . (51)

Then (49) may be written as

e3(n) = x(n) - 2d nn(t) - 2d n E g2(n - k)e3(k). (52)
k- -Do

The zero mean component of the output phase error is

71(n) = (n) - = n(t) t g2(n - k) e 3(k) (53)
k=-00

y1(n) = (I) + E g2(n - k)[x(k) - 2d ey i(k)]. (54)
k -Do

The autocorrelation of (54) is

E E Ef[2d,g(n - k) onk][2dig(n m - 1) + On+m,d7a1i
k

= R,,(m) 92(n - k)g2(n m - 1)R= (k- 1), (55)

where E(v) denotes the expected value of v and Rv(m) = E[v(n)v(n m)]
is the autocorrelation of v.
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In almost all cases of practical interest, g2(0) << 1. Then we may
approximate

= g2(0)e2 r'''., 0

dry(n) = ix rA.-', 0

and

(56)

(57)

fio 'Ye2 - Pe-, 130 - 7. (58)
1 + g2(0)

Subject to these approximations, we can evaluate the discrete Fourier
transform of (55). After some algebraic manipulation, the result ob-
tained is

I 1 + G2 (w)12 S,40) + I G2 (w)12 R7(0) = Sn(co) + I G2 (w)12 AS.(co), (59)

where

S9(w) = E R ,(m) exp (-jmco)
m --op

is the power spectral density of v.
The variance of -y is calculated as

1
0

a; = g(0) = -
7 0

i S,(co) dco

1 re
2 7 JO0,, =

G2 (CO
2 S=(w) dco + .17.7 f: IF + GS (:)(w) 12 dCal .F.

G2 (0i)
2 do)

7 Jo 1 ± G2(0))

Since G2(w) is narrowband, we may assume that

1 + G2 (CO

and therefore,

2 1rAtai -.

7 f
00

fe°

02 (CO)

1 + 02 (CO

G2(w)
1 + 02(w)

2

deo << 1

(60)

(61)

(62)

(63)

2
vS=(w) dw +

7 0

r
I

1+ G2(w)
I -

2 ao., (64)

The second term indicates that low -frequency components of the
reference source noise are attenuated while high -frequency components
are not. Therefore, if the reference source is derived from transmitted
pilot tones, it should be filtered to a narrow bandwidth before being
used in the timing recovery system.
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In Appendix B, S.,(w) is evaluated for J w I << 1. This is the only region
of interest when G2(w) is a sufficiently narrow low-pass filter.

S=(w) = [R(0) - R(1)] + Al + A2w2, (65)

where

A1 = 2 [f(k + 1/2) - f(k - 1/2)]k-,
[2f(k -1- 1/2) f(-k + 1/2) - f(-k - 1/2)] (66)

and

1
A2 = 2b2 (-4f2(1/2) + 2 f(k -1- 1/2)f(k - 1/2)

k -oo

k2[1(k+ 1/2) - f(k - 1/2)][f(-k + 1/2) - f(-k - 1/2) (67)
k - - oo

If we let

1 G2(w)
2

CO

r°
r o 1 + G2 (w)

dti)

and
ora G2(w)

2

dw
1 + G2 (w)r o

then (64) becomes

= ;22w, + 72 [R(0) - R.(1)]wi + A iwi A2w32

1 r-
r 0 1 1 + G2(w) 12

This equation is given in the summary with the normalization T = 1
removed. An application to a typical data transmission system is given
in Section IV.

It should be noted from (69) that w2 will be unbounded unless G2(w)
has at least two more poles than zeros. Good design of G2(w) requires
that the second pole (assuming no zeros) occur somewhere in the
vicinity of gain crossover. In this case, W2 is approximately equal to w1 

The first term of (70) indicates that the standard deviation of the
jitter caused by frequency offset will be much less than the mean

(68)

(69)

(70)
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of that error. The second term is the jitter produced by the additive
noise. In typical data transmission systems, the signal is filtered such
that R.(1) ti 0. In that case, the variance of the jitter is directly pro-
portional to the noise power. Of particular interest is the jitter produced
by signal overlap. It can be seen from (66) that Al = 0 if f(t) is an even
function. In that case, the jitter variance is proportional to the cube
of the system bandwidth, and can be made quite small by the use
of narrow filtering. If f(t) is not an even function, then the third term
will usually be much larger than the fourth term. In either case, the
jitter will greatly increase as the filter used to shape f(t) is made sharper.

III. THE SAMPLED -DERIVATIVE DETECTOR

An alternative method of adjusting the phase of the sampling wave
makes use of the time derivative of the signal at the sampling times.
Implementation of a sampled -derivative timing recovery system is
about equally complex as a threshold crossing system.

Except for the manner in which the error signals are generated,
the control loop is the same for both systems. Fig. 1 may be used to
describe the sampled -derivative system if the delay in the feedback
path is eliminated and a sampled -derivative detector is substituted
for the threshold crossing detector.

The sampled -derivative detector generates an error pulse during each
bit interval whose amplitude is proportional to the time derivative
of the data signal at the sampling time, multiplied by the polarity of
the signal at that time

e(t) = K3 E sgn [s(nT 721)],s'(nT + 7T) (3(t - nT). (71)

However, the output data is generated by setting

6 = sgn [s(nT -yT)], (72)

where 4 is the receiver decision on the nth bit. If the error rate is low,
an = an with high probability, and (71) may be approximated by

e(t) E ans'(nT -yT) 6(1 - nT) (73)

if the effect of errors is neglected.
Using (1),

e(t) = K3 E an[E a-x(7a' + 7T - 13T) n'(1)] a(t - nT). (74)
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The abscissa of f(t) in this case is adjusted such that the origin coin-
cides with the peak of f(t).

f'(0) = 0. (75)

If the phase error 7 - # is small, we may approximate (74) by the
first terms of its Taylor series expansion

e(t) K3 E an[an(y - 9)Tf"(0) E an_kr(kT) n'(1)] 41- nT). (76)
n k*0

As in the previous case,

e(t) = E e(n) 6(1 - nT) (77)
n

-y = K2 f - x)e(x) dx T (78)

and we normalize the time variable by setting T = 1. Equation (76)
may now be written as

e(n) = Kar - 3)f"(0) + an E an_kr(k) + ann'(i)

Let

and

k0

K2f"(0) g,(n - k)e(k)1 (79)
k=--oo

e
e3(t) =

(t)

-K3
(t)

(0)

g,(t) -K2K3f"(0)g,(t).

Then (79) becomes

e3(n) = 13 - T y(n) - g3(n - k)e3(k),

where

k-cco

an
Y(n) - [X,0 an-kr(k) n'(1)].

Unlike the threshold crossing system, the sampled -derivative system
is a time -invariant linear one when the phase error is small. A model
of the system conforming with (82) is shown in Fig. 3. This model
may be readily analyzed because of its linearity.
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e3
G3 (w)

Fig. 3 -Model of sampled -derivative system.

7(n) = E g 3(n - k)e3(k) T (84)
k

7(n) = E g 3(n - k)[13 - y(k) - 7(k)] T. (85)
c - ao

The mean error may be found from

7(w) [1 + G,(w)] = G3(w)0(w) r(- w) (86)

T -7(w) - /3(w) = -E3(w) (co)

G
3(w\)

(w))

Equation (87) is identical to (46) if G3(c0) is substituted for G2(w)/[1
92(0)]. All the comments of Section II concerning the static error and
the desirability of G(w) having a pole at the origin therefore, also apply
to the sampled -derivative system.

The variance of y when the mean error is constant will now be found.

(87)

ao

7, (n) = 7(n) -ry = - g3 (n - k)[y(k) + 7 i(k)] n(1), (88)
k-oo

where n(t) is again the reference source jitter. In terms of the power
spectral densities,

S,. (w)- G3 (w)

1 + G3(w)

2

SY(C°) 4- I 1 +871a13)(C1)) 12

(89)

In Appendix C it is shown that, for I w I << 1,

where

,'
S v(0))

f
1?;,,2(0)(0)

"T" A3 "1"" A4w2,

A3 - r1(0) kt: r(k)UTc) f( -1c)]

(90)

(91)
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and

A4 = -2f  z(0) E (k)r(- k).

The variance of 'y is then

1 w2

S., (w) du)Q 7 - 7 0

A )2 MO
Cr - f" 2 (0) C41 + A 3C01 + A 422 + 1 f.3

7 0

where

and

1
cot =

fo

,)32 = -f
7 0

G3 (co)

1 G3(w)

2

G3 (co)

1 + G3 (w)

S,, (w)

G3

(92)

(93)

(94)

dw (95)

2

dw. (96)

There is a very strong similarity between (94) and (70). The last
terms are identical, so that it is just as important in the sampled -
derivative system as in the threshold crossing system that high -fre-
quency noise components be removed from the referenced source prior
to use for timing recovery.

The jitter due to additive noise is proportional to the power of the
derivative of the noise. The example in the next section illustrates
that this is not serious if the noise is bandlimited to the same frequency
range as the signal. However, if any high -frequency noise is allowed to
enter the receiver beyond the signal filter, the jitter will be greatly
increased.

The jitter due to signal overlap is very similar to that of the threshold
crossing system. If f (t) is an even function, then its derivative will
be odd, and A3 = 0. Both A3 and A, increase markedly as the spectrum
of f(t) is made sharper.

Finally, unlike the threshold crossing system, there is no additional
jitter term due to static phase error. This jitter component is eliminated
because there is an error pulse generated during each bit interval.

IV. AN EXAMPLE

In order to illustrate the results of the previous two sections, the
output jitter of both a threshold crossing timing recovery system and
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a sampled -derivative system will be calculated for a typical received
data transmission signal.

The signal to be considered is one using half raised -cosine amplitude
shaping which is distorted by linear delay distortion. For simplicity,
it is normalized so that T = 1 and the undistorted peak of the signal is 1.

F(w) = A(co) exp [jcp(co)] (97)

11, 0 < <
2

co -
COS2 22, 2<w< 2

co > O. (99)

A(w) =

3 2
= a' I

(98)

The outline of the "eye pattern" for this signal is shown in Fig. 4,
along with the central portion of f (t). The eye pattern is formed by
superimposing the signals of all possible message sequences. Closing
of the eye is due to signal overlap.

The time of maximum eye opening is the optimum sampling time in a
minimax sense. When such a sampling instant is chosen, then the error

f (t)O
t t

SD TC IM

Fig. 4 - Eye pattern outline and mean sampling times for a typical distorted
data signal.
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probability in the presence of additive noise is minimized for the most
adverse message sequence, where all adjacent bits overlap in a manner
that subtracts from the bit being detected.

The mean sampling times are also shown in Fig. 4 for the case of
no static error. The mean sampling time of threshold crossing system,
TC, is such that f(TC -1) = f(TC - 1). The mean sampling time
of the sampled -derivative system, SD, coincides with the peak of f(t).
It is seen that the threshold crossing system chooses a better mean
sampling time than the sampled -derivative system, yet both systems
miss the maximum of the eye opening by a large amount.

In order to compare the jitter due to noise, a particular noise spec-
trum must be considered. Here it will be assumed that the noise is
white noise which has been passed through a receive filter matched
to the undistorted signal. In this case, the noise power spectral density
is of the form

N (w) -
(w)

so that

1 r A,,, rlw
0

R(0) = ,

R(1) = 0,

and

(100)

(101)

(102)

jw2 A (w) dw

R'z ' (0) = °
2 (103)

A(w) the

From (70), the rms jitter due to noise for the threshold crossing
system is calculated to be

a, = 0.615v . (104)

For the sampled -derivative system, this quantity is calculated from (94).

= 0.612o-.14-oi . (105)

The results are virtually identical. In either case, if an = 0.1 (signal-
to-noise ratio of 20 dB) and co, = 0.01, then the rms jitter due to noise
alone will be 0.61 percent. It should be mentioned that several other
signal pulse shapes were examined, and it was found that the jitter
due to noise was not very sensitive to pulse shape.
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In order to calculate the jitter due to signal overlap, A 1 and 213
were computed from (66) and (91). A2 and A4 were small enough to
have negligible effect on the jitter. The resultant rms jitter is 0.2871/71
for the threshold crossing system and 0.2651/7, for the sampled -
derivative system. If wl = 0.01, the jitter is 2.87 percent and 2.65
percent, respectively. This is by no means negligible, and illustrates
the need for very narrow filtering in the timing recovery control loop.
Again there is little difference in the performance of the two systems.

To observe the effects of asymmetry of the signal pulse, let us con-
sider the same signal without phase distortion. Both timing recovery
systems will then set a mean sampling time at the best point. The
jitter due to signal overlap is greatly reduced since A, and A3 are zero.
The computed values of A2 and A4 are 0.11 and 0.32, respectively.
If co3 = 0.01, then the rms jitter due to signal overlap is only 0.01
percent for the threshold crossing detector and 0.03 percent for the
sampled -derivative detector. Both values are completely negligible. It
may be concluded from this calculation that both timing recovery
systems are very sensitive to asymmetry of the signal waveform, both
in terms of choosing the average sampling time and the resultant jitter
about that time.

V. AN IMPROVED TIMING RECOVERY SYSTEM

It was seen in the previous example that both the threshold crossing
timing recovery system and the sampled -derivative system led to
average sampling times which differed considerably from the time of
maximum eye opening. However, it is possible to modify the sampled -
derivative system so that it does seek the time of maximum eye opening
as the average sampling time.

At any time to , the signal amplitude for the worst message sequence,
assuming the current bit is 1, is

D(to) = f(to) -
I

f(to kT) (106)

In the region where the eye is open, D(to) > 0, and the eye opening
is equal to 2D(to). If a sampling time to is chosen such that D(to) < 0,
then errors will occur for some sequences even in the absence of noise.

An experimental examination of the eye patterns of a large number
of actual data transmission systems indicates that D(to) is almost
always a concave function of to . Therefore, if to is adjusted according
to the gradient of D(to), then the maximum of D will be found.

It is therefore desired to generate an error signal whose average
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value is

e(1) = KD'(t - #T + 7T). (107)

If we again normalize the system so that T = 1,

e(t) = K[f'(t - # -y)

- E f'(t k - + sgii f(t k - # ± 7)]. (108)
k t 0

Equation (108) exists and is continuous except at those points tk
where Mk k - Q + = 0.

Fig. 5 is a block diagram of a system which generates an error signal
whose average is given by (108). The first term of (108) is the average
error signal of the sampled -derivative detector discussed in Section III.
The improved timing recovery system therefore, will consist of a
sampled -derivative system with added correction signals. Enough cor-
rection terms are used to account for those adjacent bits which may
be expected to overlap significantly into the bit interval under con-
sideration.

s(t)

DELAY

SAMPLE
AND HOLD

DIFFER-
ENTIATE

HARD
LIMIT

SAMPLE
AND HOLD

SAMPLE
AND HOLD

PHASE
SHIFTER

SHIFT REGISTER

an an -k

H(w)
xk HARD

LIMIT

t
REFERENCE

SOURCE

Gi(w)

Fig. 5-Improved timing recovery system.
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The kth correction signal must have an average value

ek(t,) = Kf'(k ti) sgn f (k 1,) , (109)

where
t,= t-(3 7. (110)

This correction signal is formed by first generating an auxiliary
signal xk(n) whose polarity is expected to agree with that of f (k t,).
The derivative of the signal at the current sampling time is multiplied
by the polarity of the signal at a time displaced from the current time
by k bit intervals. The result is multiplied by the polarity of the auxiliary
signal to form the correction signal.

ek(n ti) = Ks'(n tl) sgn s(n - k t,) sgn xk(n ti). (111)

In order to account for overlap into leading pulses as well as lagging
pulses, a fixed delay must be built into the system, as indicated in
Fig. 5. This delay is equal to half the shift register length, so that the
central cell of the shift register stores the polarity of the current bit,
while the other cells store the polarities of preceding and succeeding bits.

The auxiliary signal is formed by multiplying the value of the signal
at the current sampling time by the polarity of the signal which pre-
ceded this signal by k bit intervals. If k is negative, the polarity of a
succeeding bit is used. The resultant is filtered by a narrow filter,
H(w), to form the auxiliary signal x, .

xk(n) = E h(n - m)s(m) sgn s(n - k), (112)

where the time displacement ti is ignored.
If we assume that the error rate is low, as was done in Section III,

then we may approximate sgn s(n) = an with little loss of accuracy.
Using this approximation and substituting (1) into (112),

xk(n) = E h(n - m)[a,_kn(t) f(k) am_k E am,f(p)]. (113)
m pk

The mean of xk is
xk = f (k)H (0) . (114)

In Appendix D it is shown that the variance of xk is

irk = 1 I Ii(co) 12 [a::: f F(u) 12 du + Pk(coddco, (115)
27r

f00 2r

where Pk(w) is the Fourier transform of

pk(t) = f(k - t)f(k I). (116)
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If H(w) is sufficiently narrowband, then it can be seen from (115)
that the variance of xk will be small. Then, if 1(k) is not too small,
it may be expected that the polarity of xk will agree with that of f(k)
with high probability.

We will now examine the mean value of the correction signal. Using
the assumption of low error probability and substituting (1) into (111),
the correction signal is

ek(n t,) = Ka_k E an_iNn + ti) sgn xk(n 4). (117)

In order to find the mean of (117), we make the approximation that
xk(n) is independent of as_k and an_ . As a justification of this ap-
proximation, note from (113) that

Xi, I an -k , an -1 = f(k)H(0) f(1)140) + 1(2k - 1)h(1 - k) (118)

1: I an -k , ^,-;xk(119)
since h(n) << H(0) for a narrowband filter. Let

Pk = Prob [sgn xk = sgn i(k)] (120)

Then
ek N K(2P - 1)I(k 1,) sgn f(k 11). (121)

When the magnitude of f(k t1) is sufficiently large, P 1 and the
mean of the kth correction signal is approximately the desired value.
In the vicinity of a zero of f(k t1), Z < P < 1, and the correction
signal will at least have the correct polarity, although not the correct
magnitude. Ideally, the correction term should be a discontinuous
function of ti at a zero of f(k ti). The actual correction signal will
have a mean value which is continuous, but the sharpness of change in
the vicinity of a zero will increase as H(w) is made narrower.

The rms jitter of this timing recovery system is extremely difficult
to evaluate because of the presence of many nonlinear operations.
However, this jitter may be expected to be much greater than that
of a sampled -derivative system, since each correction signal may be
expected to introduce jitter of the same order of magnitude as the
main error signal. Narrow filtering in the control loop is therefore
essential.

The mean sampling for the example of Section IV when this improved
timing recovery system is used is shown in Fig. 4 as "IM". It is seen
that the time of maximum eye opening has been found. For this example,
only one leading and one lagging correction term were sufficient to
choose this mean sampling time.
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VI. EXTENSIONS

Each of the timing recovery systems described here may be modified
to work with m -level digital data signals instead of only binary formats.
Since in multilevel systems the eye is much narrower, the effects of
static timing error and jitter are much more serious.

A threshold crossing detector may be constructed which generates
an error pulse whenever the signal crosses any one of the in - 1 thresh-
olds. During any signal interval, any number of error pulses between
zero and m - 1 may be present. Such a system is extremely difficult
to analyze, but has been found to work well in practice, provided
that some auxiliary means is used to correct the mean sampling time.

The sampled -derivative detector is very easily extended to multi-
level systems if the signal derivative is multiplied by the output symbol
value in forming the error signal. If the an's are scaled so as to form
a set of unit variance, then the analysis of Section III applies directly.

The improved timing recovery system is modified for use with multi-
level signaling in a manner similar to that of the sampled -derivative
system. However, the signal margin against noise for the worst message
sequence is now

D(10) = f(to) - (in - 1) E At() + kT) . (122)

Comparing this criterion with that of (106), it is seen that each of the
correction signals must be weighted by the quantity na - 1 in order
to find the time of maximum eye opening.

Extension of these techniques to partial response systems is also
straightforward. Since the modifications depend on the particular
partial response system used, a description will not be presented here.

All of the systems analyzed here used linear control loops. This
permitted the calculation of jitter variance in terms of loop bandwidth.
However, the implementation of these systems may frequently be
simplified considerably by using nonlinear control systems. A particular
method which has met with practical success uses the polarity of each
error pulse to adjust the sampling phase by a small fixed increment.

APPENDIX A

Evaluation of e;*

Equation (40) is of the form

e2(n) = 2d c - g2(n - 10e2(k)1

* The approach used here was suggested by J. E. Mazo.

(123)
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where d = 0 or 1 with equal probability and are independent. The
random variables cn are uncorrelated with the d's.

From (123) and the properties of d ,

e2(n) = de2(n) (124)

and

d.e2(k) = le,(k), if n > k. (125)

We first find the average of (123) over all cn and all dk , k < n. This
average of a random variable v will be denoted by (v), while the average
over all c. and dn will be shown as

(e2(n)) = 2dncn - 2 E g 2(n - k)(dne2(10) 
k=-oo

(126)

Using (124)

(e2(n)) = 2dc: - 2g 2(0)(e2(n)) - 2 g2(n - k)(de2(k)). (127)
k=-oo

The only random variable in (127) is dn . The overall average, e2(n),
is therefore the average of (127) over dn . Using (125), we obtain

n-1

e2(n) = c - 2g2(0)e2(n) - E g2(n - k)e2(k) (128)
k-oo

e2(n) = c - g2(0)e2(n) - E g2(n - 10e2(k)
k=-co

which is the result shown in (41).

APPENDIX B

Evaluation of Sz(co)

From the definition of d in (29), we may express 2dn as

(129)

2d. = 1 - aa.,i. (130)

Then (51) may be rewritten as

.r(n) z(n) -b (a. - an+1)n(1), (131)

where the term g2(0)e2 has been neglected.
We wish to evaluate the power spectral density of x. It will first be

shown that the approximation of x given in (131) is zero -mean. Since
the an's are zero -mean and independent, and the noise n(t) is zero-
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mean and independent of all other random processes, then the first
and last terms of (131) are zero -mean. The mean of z is readily found
after substituting (130) into (50).

z(n) = -1 (an - an+1) E an- ki(k + 32) (132)
ko,-1

z(n) = 0. (133)

The mean value of x(n) as given in (131) is therefore zero. It may
similarly be shown that the three terms of (131) are mutually uncor-
related. The autocorrelation of x is then

Rz.(m) = aa,a,,a,,,, e;" Rz(m)

1

(a - a +1)(an,, - a+.+1)Rn(m)b" "

Rx(0) = R,(0)
2Rn(0)

R2(±1) = Rz(±1) - 1R(±1)

(134)

(135)

(136)

Rx(m) = Rz(m), m 0, 1. (137)

From (132),

1
R=(m) = 2 E E

k: -O,-1 / 470-1
ani-1)(ant rn an+m+1)an-kan-.-m-1

 1(k + (1 + (138)

R,(0) = E f2 (k (139)

R.(±1) =
1

+ -DWG - f (-DM]

1
Rz(±m) = -bi [f(m + - Dill( -m + 1) - f( -m -

in 0, 1. (141)

The power spectral density of x can now be calculated for I w I < r.
00

(140)

S=(w) = E Ri(m) exp (-jcon) (142)
00

Sx(co) = Rx(0) + 2 E Rx(m) cos com (143)
=1
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Since x will be passed through a very narrow filter, we are interested
in the spectrum of x only in the region I w << 1. In this region, (143)
may be approximated by

Sz(w) Rz(0) + 2 E Rz(m) - w2 neRz(m). (144)m=1m = 1
This approximation is valid if the third derivative of Sz(w) is bounded.'
This will be true if Rz(m) decreases as 0(m-5). If the Fourier transform
of f(t) is continuous, then f(m) decreases as 0(m-2). In this case, it
can be seen from (137) and (141) that Rz(m) decreases as 0(m-6),
so that the approximation (144) is valid for I co I << 1.

Sz(w) {R(0) - R(1) kXi f2(k +

- E f(k + 4)f(k - - f(-Df(i)

[f(ni + - 4)][f(-m + - f(-m - 4)1}
en =2

+
w2f(k 4)1(k - + f(- DAD

- mlf(m + -f(m-4)][f(-m-4) - f( -m - Di}
m=2

(145)

After some manipulation, and using (26), (145) may be reduced to

Sx(w) = el + {R(0) - R.(1) + (k + - f(k -

 [2i(k 12-) f( --k + - f(-k -

1-)22 {-4f2(1) + 2 E f(k + 1)1(k -

k21f(k - Dl[f(-k + - fe-k - (146)
k=-co

APPENDIX C

Evaluation of S,(w)

We wish to find the power spectral density of

Y(n) - f,70) EXcin-kNk) n'(t)]. (147)
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The autocorrelation of y is

R(n) -
-

[E E aa+,a_ka±i_ir(k)l'(1)
k.u) IF,()

aan f,n' (On' (t m)] (148)

R,,(0) - f,,1(0) i'2(k) - R':(0)]. (149)

For in 0,

Ry(m) = f//1(0) f (m) f' (- .m) (150)

Under the same conditions stated in Appendix B, the power spectral
density of y may be approximated in the region w I << 1 by

Sy(w) ti Ry(0) + 2 E I?(m) - E.° 2Ry(M) .

-1

Using (75) we obtain

Su(co) ^ 21 {-1C/(0) 1(10) [NO f'(-

APPENDIX D

(151)

(152)

Evaluation of are

The variance of xk is the mean square value of the zero -mean random
process

x, n) - = E hot - m)am_k[n(t) E a,,f(p)]. (153)
71/

Since the noise and the message are independent, the variances
of the two components of (153) will add to form the total variance.
The variance of xk due to the noise is

= E E h(n - in)h(n - q)an,._ka_kn(t,)n(ta) (154)
171 Q

= E h2(n - m)n2(t)
171

1= -
(155)

H(w) dw. (156)
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The total variance of xk is then

Pik + 1, 1, 1, h(ti - m)h(n -

621

i(P)i(q) (157)

Nonzero contributions arise from those terms where q = m and
r = p and from those terms where r = 2k - p and q = - p.

= E E [h2(n - m)f2(p)
m pOk

h(n - m)h(n -m - k p)f(p)f(2k - p)]. (158)

Any one of the terms of (158) is small compared to the sum. We
may therefore approximate (158) by including the missing p = k terms.

where

1 r°
cr.2 'At;k a': + 472 H(w) 12 dw F(co) dw u2, , (159)

= E E h(m)h(m - k p)f(p)f(2k - p) (160)
m p

that H(w) is bandlimited to I co I < r.

fiff1H(w)I1(u)F(v)F(y) E exp [jm(w u)]

 E exp [jp(u + 1' - y)] exp [jk(2y - u)] dw du dv dy (161)

H(w)H(u)F(v)F(y) - u) b(u - v - y)

 exp [jk(2y - u)] dw du dv dy (162)

0-2 =
2

11(0)11( dw f F(y - w)F(y) exp [jk(2y - co)] dy (163)
-471-

cr = 47r2 L. 1 H(w) 12 dw - exp -.#6(0 - Y)]

 F(y) exp (jky) dy. (164)

The second integral in (164) may be recognized as 27 times the
Fourier transform of

pk(t) = f(k - t)f(k t) (165)
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so that

= 1 H(w) 12 Pk(w) dc (166)

Substituting (166) and (156) into (159)

cr:, = er. r H(w) I2 [4 + I F(u) I2 du ± Pk(w) dco . (167)
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Modulation of Laser Beams by Atmospheric
Turbulence - Depth of Modulation*

By M. SUBRAMANIAN and J. A. COLLINSON
(Manuscript received September 26, 1966)

We have studied the fluctuations produced in a laser beam by atmospheric
turbulence over transmission paths up to 2400 feet long as a function of
size of receiving aperture, range, and atmospheric conditions. The depth
of modulation decreases rapidly with increasing size of receiving aperture
for apertures smaller than the direct beam. It does not go to zero, however,
but rather levels off at an approximately constant, finite value for apertures
larger than the direct beam.

When all of the direct beam is collected, the depth of modulation varies
approximately with the z power of range from about 100 to 2400 feet,
the largest range used. At ranges less than about 100 feet, however, the
dependence is consistently much less than 2. These results are independent
of weather conditions, of time of day, of local conditions along the path,
of whether the transmitter is inside or outside a building, of a twofold change
in diameter of the launched beam, of whether the range is a straight pass
or is multiply -folded, and of mirror separation in the multiply -folded
arrangement. The 2 dependence is consistent with near -field scattering
theory and leads to an estimate for the lower bound of the effective scale
size of turbulence of 5 centimeters.

The depth of modulation, however, depends sensitively on atmospheric
conditions; in a time of the order of seconds the value can change as much
as an order of magnitude. We have systematically measured depth of
modulation of the direct beam simultaneously with wind velocity and
variability, temperature gradients, and time of day. No simple dependence
on these variables was found.

I. INTRODUCTION

From the point of view of communications, one of the serious effects
of the atmosphere on propagation of laser beams is the fluctuations in

* Part of this paper was presented at the 1966 International Quantum Elec-
tronics Conference, April 12-15, 1966, Phoenix, Arizona.
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the received signal caused by variations in the dielectric constant of
the air. An important measure of the fluctuations is their power spec-
trum. Hogg' first measured these spectra and obtained an exponential
distribution with a baseband width of the order of a few hundred
cycles. Hogg used a multimode 6328 A. laser and a range of 2.6 km.
The receiver, 5 cm in diameter, was located in the center of the re-
ceived beam, which was about 25 cm in diameter. Hogg observed that
an increase in the angular beamwidth of the source caused an increase
in spectral width.

Hinchman and Buck2 measured the low -frequency fluctuations in a
6328 A laser beam at distances of 9 and 90 miles. Their receiver, 3
inches in diameter, collected a very small fraction of the total beam
power. They observed a very large depth of modulation. The spectral
density of the fluctuations was found to decrease with increasing fre-
quency up to 50 Hz, the highest frequency measured.

Subramanian and Collinson3 propagated a single -mode, diffraction -
limited 6328 A beam and examined the dependence of the spectrum
on a variety of parameters. The transmitted beam diameter was
changed from 1 to 38 mm, beam divergence was adjusted by focusing
the telescope employed, ranges of 120 and 360 meters were used, and
the receiver aperture was varied from much smaller to much larger
than the received beam size. The spectrum, which had an exponential
distribution (in agreement. with Hogg) , was independent of these
variables within experimental error. The width of spectrum, however,
was sensitive to atmospheric conditions. In general, the spectrum be-
came wider as refractive gradients along the path became larger. For
example, temperature gradients (caused by the sun) and pressure
gradients (caused by turbulent wind) systematically gave broader
spectra. The total width of the spectrum (above detector noise) varied
over a total range of 60 to 1000 Hz, with typical value of a few
hundred hertz. Thus, the spectral width was about the same as Hogg's,
although the distance was about an order of magnitude less.

Buck4 took additional data at more distances on the same 90 -mile
range, the smallest distance being 550 meters. Although the analytic
shape of the power spectra was not given, it is nevertheless significant
that the spectra shown all reached cutoff at about 200 Hz, and he
stated that there was no systematic variation in the spectra when the
detector aperture or path length was changed. Buck commented that,
with a very large aperture, a noiseless dc signal is obtained, but this
was not found by Subramanian and Collinson.3 Thus, the three sets of
observers at three locations have found a characteristic width of
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about a few hundred hertz, rather independent of the experimental
arrangement, and, in particular, apparently insensitive to changes in

distance from 120 meters to 145 km.
Another important measure of the fluctuations in the received signal

is depth of modulation, or the ratio of the rms power in the fluctua-
tions to the average beam power. While spectral width may be inde-
pendent of the experimental parameters, one expects the depth of

modulation to show a strong dependence, especially on distance. The
present work was undertaken to establish the nature of the dependence
of modulation depth on such variables as distance, receiver aperture,
and atmospheric conditions.

II. EXPERIMENTAL ARRANGEMENT

Since beam diameter will vary with distance (due to diffraction as
well as atmospheric refraction) and since modulation depth presum-
ably will depend on receiver aperture and on distance, the experiment
must be arranged to allow adequate separation of these variables. For
changes in distance to be meaningful, the receiver must bear some
appropriate, uniform relation to the beam size regardless of distance.
The simplest approach is to use apertures always larger than the
direct beam, since it is known3 that the fluctuations do not then
disappear.

In order always to collect substantially all of the beam, the distance
used should not be too large. Otherwise, the beam will be large and a
receiver of an inconvenient size will be needed. With horizontal paths
near the ground, it is commonly observed that atmospheric refraction
produces angular spreading of the order of 10-4 radian, so paths miles
long would imply beams feet in diameter. Moreover, it is desirable to
be able to change the distance essentially continuously, and ranges
where this can be done beyond a few hundred feet are not easily
obtained.

Such short distances imply a very low level of atmospheric modula-
tion with some values of modulation depth lower than 0.1 percent.
This means, in turn, that the amplitude of the noise of the laser must
not exceed about 0.01 percent.. (In all cases, percent modulation is
defined as 100 times the ratio of the rms power of the fluctuations to the
average power). The laser used was designed5 for high intrinsic fre-
quency stability, and, when properly operated, it has the necessary
amplitude stability as well. The R.F power supply must be well regu-
lated, and dc (rather than 60 Hz) power must be used on the filaments
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of the power supplies. At the frequencies of interest, acoustically -
coupled noise is substantial in the average laboratory and must be
reduced.

An easy and highly effective method of isolation is to seal the entire
laser (at one atmosphere) in a gas -tight container. This was done with
a glass bottled fitted with an optical -quality window at one end and a
polished flange at the other end. The flange made an 0 -ring seal to a
Lucite plate. (It is clear that pressure fluctuations cause considerable
amplitude noise, since enclosures which do not form vacuum quality
seals are not as effective.) It is helpful to place a felt pad between the
laser and the bottle and Isomode (corrugated rubber) pads between
the floor and the legs of the table on which the laser and bottle rest.
With this arrangement, the amplitude modulation of the laser could
be maintained at or below 0.005 percent.

The laser used5 was also single -mode and RF-excited in order to
further ensure that measurements did not include any spurious noise.
Amplitude fluctuations can appear in the output of multimode lasers
as a result of mode competition and self -beating effects. Hodara has
calculated° and measured' the excess noise caused by mode -beating in
multimode lasers. He observed that many of the reported discrepancies
in measurements of laser noise probably arose because multimode
lasers sometimes were used.

While our method of mounting the transmitter is not massive, never-
theless no detectable variation in beam pointing occurred during an
experiment, and the arrangement has the advantage that it could be
readily modified. As will be seen, the variety of necessary experiments
required flexibility in both the transmitter and the receiver. The trans-
mitted beam emerged from the room through a selected Lucite window.
Ordinary plate glass caused noticeable refraction of the beam, but
some parts of new panels of Finch thick Lucite produced no measur-
able distortion of the beam. Many "A -B" experiments were made, and
no difference could be found between modulation results with a Lucite
pane and the results with an open sash.

The range was located on the flat roof of a two story building at the
Whippany location of Bell Telephone Laboratories. The roof surface
was asphalt and gravel, but usually most of the path was over a
wooden catwalk whose surface was 3 inches above the roof. The beam
path was 3 feet above the roof and ran 30° east of north to a total
available range of 330 feet.

The receiver took a variety of forms, and it will be best to give each
experimental arrangement with the corresponding results. However,
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many of the details of a representative setup can be seen in Fig. 1.
The equipment cabinet on casters gave the mobility which was re-
quired for rapid change of propagation distance. Atop the cabinet is a
section of triangular tower used when a long focal length, large aper-
ture lens provided the receiving aperture. In the arrangement shown,
a diffraction limited, 6 -inch diameter, 8 -foot F.L. lens was mounted in
the right end of the tower section. The detector, an RCA 7265 photo -
multiplier, was equipped with a 3 A wide -interference filter. The detec-
tor housing appears in the left end of the tower section.

Just to the left of the tower section is a bank of 6 -inch diameter,
1 -wave flat mirrors supported by a bench which crosses the catwalk.
Such mirrors were used to fold the beam and provide transmission
paths up to 2400 feet long. The bench rested directly on the roof, and
this provided adequate stability of the multiply -folded optical path.

On the bench in the foreground can be seen an RCA vacuum tube
voltmeter, used to measure the dc voltage across the photomultiplier
load, and a Hewlett-Packard 403A ac voltmeter, used to measure the
rms ac voltage. The bandwidth of the 403A is 1 Hz to 1 MHz. To the
best of our knowledge, this is the only ac meter that has such a low
frequency response. Such response is important since the fluctuations
are exponentially weighted toward the low end of the few -hundred
hertz band. Since instantaneous voltage output from the photomulti-

,

Fig. 1-Receiving station.
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plier is proportional to the instantaneous incident optical power, it
follows that percent modulation is given by :100 times the ratio of the
ac voltage to the de voltage.

Since the fluctuations do not disappear3 when all of the direct beam
is collected, it is necessary to show that possible sources of spurious
noise are negligible. The laser, for example, was checked periodically
to insure that transmitter fluctuations were no larger than about 0.005
percent. Another possibility was that the fluctuations resulted from the
product of the time -varying intensity profile of the beam and the
uneven sensitivity profile of the photocathode. Also, the noise might
have resulted from the dancing of a small beam (order of a millimeter
diameter) over the sensitivity profile of the photomultiplier. Two
experiments were made to assess these possibilities.

First, a photovoltaic cell (Hoffman 110C) which was one cm square
was interchanged in "A -B" fashion with the photomultiplier. When the
cell was used, the one -cm beam was focused to about one millimeter in
diameter, and all of it therefore was collected by the cell. The spatial
variation of sensitivity of the cell was orders of magnitude smaller
than that of the photomultiplier, and the measured fluctuations were
the same as with the photomultiplier, within experimental error.

In the second check, a comparison was made between the fluctua-
tions obtained when a 1 -cm diameter beam fell directly on the photo -
multiplier, when a 4 -inch diameter, 60 -inch focal length diffraction
limited lens focused the beam to about a i-cm spot, and when the
lens focused the beam to a spot about 2 mm in diameter. The fluctua-
tions were the same in the former two arrangements. In the last case
of the 4 -mm spot, however, when there were mechanical disturbances
of the lens-photomultiplier assembly large enough that dancing of the
spot on the detector was visible, the level of fluctuations was measur-
ably higher. Since the photocathode had a sensitivity structure with a
scale size of the order of a few millimeters, it seems clear that the
excess noise was caused by the random scanning of the small spot over
the spatially varying sensitivity of the detector. As a result, in all of
the work which employed a collecting lens, the spot was deliberately
defocussed to about to 1 cm in diameter, and mechanical disturb-
ances of the receiver were avoided.

The first and dominating result of any measurement of depth of
modulation is that the value changes steadily with time. Another way
of stating this is that the fluctuation spectrum extends well below
1 Hz, the low -frequency limit of the ac meter, and the ac value changes
steadily. The consequence is that this temporal change in modulation
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is unavoidably combined with the dependence of modulation on the
measured variables (such as distance) when the data are taken at
different times. Thus, when distance is changed by moving the receiver,
the value obtained changes because of variations both in distance
and in time.

The seriousness of this depended on the degree of temporal insta-
bility of the modulation. Typically, the measured value of percent
modulation varied by a factor of about two or perhaps three in a
period of a few minutes. This was tolerable, but it meant that for a
determination of distance or aperture dependence to be meaningful it
was necessary to average the results for a large number of runs. For
this reason it was important to arrange the experiment so that succes-
sive readings could be taken quickly. In general, it was possible to
move the receiver and make a reading in about two or three minutes.
Thus, a run involving five points took about 10 minutes. On many
occasions, however, the temporal instability of modulation was severe,
and the value might change by an order of magnitude within a few
minutes. This is comparable with the total change produced by the
variations in distance and aperture, and useful data could not then be
obtained. Most of our results were taken at night, a few hours after
the sun had gone down. During this period, changes in weather condi-
tions were relatively small. Besides, the alignment of the receiver
could be made very rapidly at night, hence a number of runs could be
taken in quick succession.

An alternative which would circumvent this problem would be to
divide the beam with beam splitters into receivers at each distance or
aperture value. Modulation then would be measured simultaneously at
all the receivers. However, this would have required more extensive
facilities than were readily available.

III. RESULTS -APERTURE DEPENDENCE

It should once again be emphasized that while the fluctuation spec-
trum may be insensitive to size of receiving aperture, one expects the
depth of modulation to depend rather critically on it. In particular, if
the fluctuations are produced entirely by variations in power collected
by a finite aperture, one might expect the depth of modulation to
decrease as larger apertures are employed. With a large enough re-
ceiver, the fluctuations should then go to zero.

Depth of modulation was measured with a beam which appeared to
the dark -adapted eye to be about 4- to inch in diameter and with
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receiving apertures from to 3 inches in diameter. Fig. 2 (a) shows the
schematic of the arrangement. Aperture dependence was thus measured
at various distances. At each distance, several successive data runs
were taken and averaged. The results are shown in Fig. 2(b).

There are two curves for the 25 -foot distance, one with considerably
higher percentage modulation than the other. The former was taken
before a rain storm and the latter immediately after the rain. Al-
though the rain appeared to have a decided effect in this case, firm
conclusions should not be drawn since this was a single observation.
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(Nature did not present us with more than one such opportunity.)
Dependence on the atmospheric conditions will be discussed more
fully below.

IV. RESULTS-RANGE DEPENDENCE

The dependence of depth of modulation on range was measured,
using apertures large enough to collect all of the direct beam. The
aperture dependence [See Fig. 2 (b) ] with small apertures is sufficiently
strong that a meaningful range dependence would be difficult, or im-
possible, to obtain using apertures smaller than the beam. Generally,
the aperture used was at least twice the size of the direct beam as it
appeared at night (i.e., to a dark -adapted eye). Thus, all data for
range dependence were obtained in the region in which the value is
sensibly independent of aperture size.

The schematic of the first experiment is the same as given in Fig.
2(a) except that a 20 -power telescope was used instead of the 9 -power
one. The averages of all the data are plotted in Fig. 3 on log -log
coordinates. (The bars are averages of the mean deviations in the
data for each night. The deviations are indicative of the unavoidable
uncertainty caused by changing atmospheric conditions).

The results from 100 to 300 feet suggest that depth of modulation
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goes approximately with the 3/2 power of distance. The data at 25
and 50 feet seem to indicate an end effect not intrinsic in the atmos-
phere. It suggests that the source was noisy, producing spuriously
large values at small ranges. To examine this possibility, the data
were replotted on linear -linear coordinates, and the. curve was extrap-
olated to the y -intercept. This yielded an apparent zero -distance
modulation of 0.024 percent. This is about five times the laser noise
of 0.005 percent measured inside a quiet room, so that the laser can-
not be the dominating cause of the change in curve shape at short
distances.

Another possible explanation is that local conditions affected the
atmosphere differently along the beam. Such variations could have
been caused by a row of four large exhaust blowers along a line about
30 feet east of the range. On the night of June 24, 1965, we arranged
to turn off all the blowers. Two runs were taken, and the results
showed the same distance dependence as with the blowers on, so
closely, in fact, that the data were simply included in the final curve
of Fig. 3.

Another possibility is that local conditions affected the atmosphere
differently near the transmitter room than far away from it. For
example, the room itself may well have changed the turbulence of
the wind. We therefore set up the transmitter outside the room and
30 feet away from the room (which is 8 by 14 feet). If local condi-
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tions were the cause, the entire curve should displace to the left on
the abscissa by 30 feet.

The schematic of this arrangement is identical to that shown in Fig.
2 (a) except that the laser is located outside the building with a 20 -
power telescope. The results are given in Fig. 4. The curve did not
shift along the abscissa and shows generally the same behavior at
the same distance from the transmitter. Whatever the cause of the
near -distance behavior of the modulation, it seems to have moved 30
feet with the transmitter.

Because of the surprising behavior of the depth of modulation at
short ranges, more measurements were made, still with the transmitter
outside, but now adding some very short distances. The 20 -power
telescope was replaced with one of 9 power, giving a reduction in
diameter of transmitted beam from about 2 to about 1 cm. This was
done to examine what effect beam divergence might have on the dis-
tance at which the knee of the curve appears. Data were taken during
both day and night. The daytime data were found to be not signifi-
cantly different from the night data. All values were averaged and are
plotted in Fig. 5. It appears that the relatively large values of modu-
lation depth which yield a small slope at short distances persist at
distances as small as 24 feet from the transmitter. (The laser noise
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level of 0.005 percent is measured at distances of this order, but in
a laboratory where the air turbulence is low.)

There appears in Fig. 5 to have been a significant change from
the distance dependence displayed in Figs. 3 and 4. The knee of the
curve seems to have moved to larger distances such that the 80 -foot
value now is aligned with the dependence at short distances. Since the
change in beam size was an obvious potential explanation, and since
the principal experimental difficulty still was the large temporal varia-
tion in modulation, the following experiment was conducted. The
laser was mounted outside and 30 feet away from the transmitter
room, and the beam was split into two beams of approximately equal
intensity. One beam was transmitted with the 20 -power telescope, the
other with the 9 -power telescope. The beams were parallel and 20
inches apart. At each distance, the modulation was measured on both
beams before changing distance. Three runs were made on one night.
This did not give enough data to define smooth curve shapes, but it was
enough to show that the curve shapes were nearly identical for the
two beams. The change in Fig. 5 from Figs. 3 and 4, therefore, cannot
be attributed to the change in telescopes.

Having explored the behavior of modulation at short distances, we
now turned to distances larger than 300 feet and in particular to the
question whether the 3/2 power dependence of modulation depth on
distance would continue at large. distances. Fig. 3 suggests that modu-
lation depth at 300 feet may be a little lower than a 3/2 power de-
pendence would imply. Results for three of the five nights summarized
in Fig. 3 showed a rather pronounced reduction in the value expected
at 300 feet by extrapolation from shorter distances.

In order to obtain much longer paths in the available space, we now
folded the beam back and forth over the range, as shown in Fig. 6(a).
The laser again was mounted in the transmitter building, and the 20 -
power telescope was used in order to reduce beam spreading by diffrac-
tion over these longer distances. At the maximum distance of 2100
feet, the spot generally was about two to three inches in diameter.
The mirrors used were always substantially larger than the beam.
In Fig. 6(a), the first two mirrors were four inches square, and the
last four were six inches in diameter. All the mirrors were flat to
a quarter -wave and front -aluminized. Fig. 1 is a photograph of the re-
ceiving end of this arrangement. Modulation now was measured at dis-
tances of 300, 900, 1500, and 2100 feet by moving the receiver laterally
in 18 -inch increments, placing it in the four appropriate positions to
intercept the beam.
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On some nights, beam dancing was severe enough to carry the beam
off the final mirrors periodically, so that data could not then be taken.
In the early part of most summer nights there was a slow drift of
the beam upward as the air cooled increasingly below the temperature
of the roof and the strength of the inverted "prism" increased with
time (the situation is different during winter nights, see Fig. 11). A
representative speed of vertical beam movement at 2100 feet was about
two inches per hour. This required us not only to align the mirror
system for each night's work but to realign each night every 20 to 30
minutes. Mechanical stability of the mirrors was good. When atmos-
pheric conditions were stable enough there was no noticeable move-
ment of the beam, so that building vibrations appeared to have no
important effect.

The averages of the data were plotted in Fig. 6 (b). It is seen at
once that there is no significant change in slope beyond 300 feet. The
points at 300, 900, and 1500 feet yield a well-defined straight line
of slope 1.39, in good agreement with results below 300 feet. The value
at 2100 feet seemed distinctly low, and it was not used in fitting the
data. This is reminiscent of the behavior of the last point in Fig. 3
which led to the present measurements. It was not possible to deter-
mine any systematic cause of error in the measurements at the
largest distance. The fact that there the beam is largest, and most
difficult to collect., would explain a modulation which is too large, not
too small.

Once again an increase in the distance seemed necessary, and this
was accomplished by adding one more 300 -foot pass to the folded
system and moving the receiver to the transmitter end. This is shown
in Fig. 7(a). Here the first three mirrors were four inches square, and
the last four were six inches in diameter. The data, averaged in the
usual way, are presented in Fig. 7 (b). The slope of 1.46 again agrees
with previous values, within experimental error. The value at 2400
feet shows that there is no decrease in slope beyond 2100 feet. It
would seem that the 3/2 power dependence of modulation depth on
distance continues to at least 2400 feet. It would be instructive to
continue these measurements at larger distances, but, for this, larger
optics would be required than were available.

The folded -path method of obtaining large ranges is both convenient
when space is limited and desirable when readings must be made
quickly at positions which would be widely spaced in a straight path.
However, the question remains whether this is in every sense equiva-
lent to the unfolded, straight path. For the distances considered here,
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it takes only about 0.3 microsecond for the light to travel each lap
and thus a total of 2.4 microseconds for 8 laps of 2400 feet. The char-
acteristic time of turbulence is of the order of milliseconds, and con-
sequently the turbulence can be considered frozen during the time
required for the light to travel the 2400 -foot folded path. Under the
circumstances, not only are there possible correlations between the
closely adjoining segments of the folded path but, since the beam
travels oppositely along the successive segments, there may be an
actual reduction in the net effect of atmospheric turbulence.

To determine this, we now set up a mutiply-folded system of mir-
rors, in all respects the same as the 2100 -foot system in Fig. 6 (a)
except that now the segment length was reduced from 300 feet to 38
feet. This gave a total, folded distance of 270 feet so that comparison
could be made with the results for a straight 300 -foot path which
were given in Fig. 3. The new arrangement is shown in Fig. 8(a). The
results appear in Fig. 8 (b). The functional dependence is sensibly
unchanged from that in Fig. 3. This therefore not only vindicates the
folded -path method used for large distances, but it further confirms
the short -distance behavior of the modulation.

Although this experiment provided no evidence of correlation effects,
it seemed worthwhile to make a further attempt to detect any correla-
tion effects that may affect depth of modulation. The folded path,
therefore, was rearranged as shown in Fig. 9(a). The telescope was
focused on the receiver to give the smallest possible spot, which was
about one cm in diameter. The first, second, fifth and sixth mirrors
were two inches in diameter and quarter -wave flat. They were
mounted so that no frame of the mirror or other obstruction extended
in front of the six-inch diameter third and fourth mirrors. It was thus
possible to position the spots on each bank of mirrors just two inches
apart between centers. Hence, the average separation of successive seg-
ments of the path was only one inch. However, this made it impossible
to intercept the beam with the photomultiplier, as was done before,
without obstructing a previous segment of the beam. Consequently,
the beam was reflected to the photomultiplier with an elliptical mirror
(of the telescope -diagonal type). This mirror was then displaced
laterally to intercept the beam. In this experiment, the positioning of
the mirror was simple enough that a run could be completed in about
2 minutes, so that many runs were quickly made and exceptionally
good averaging should result.

The average values are plotted in Fig. 9 (b). Once again, the now
familiar features of the curve appear. It is interesting to note that, in
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the previous experiments, the slope beyond 100 feet has centered
around 3/2 and that, in the present experiment in which especially
good averaging against changing conditions was expected, the slope
was 3/2 as closely as such curve -drawing will allow. The present re-
sults again give no evidence of correlation effects.
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V. RESULTS -DEPENDENCE ON ATMOSPHERIC CONDITIONS

It was remarked before that the first and dominating result of any
measurement of depth of modulation is that the value changes steadily
with changing atmospheric conditions. This persists during, and inter-
feres with, all attempts to measure the dependence of modulation on
any other parameter. Hence, a great deal of qualitative observation of
the effects of conditions was inescapably made during the measure-
ments of aperture and range dependence. And this extensive experi-
ence taught simply that the depth of modulation was unpredictable.
There never appeared any simple correlation between modulation and
qualitative observables such as wind speed or direction, sun conditions,
or time of day. The most promising lead which developed was the
observation already cited in the aperature work that the depth of
modulation was markedly smaller over a 25 -foot range after a short
heavy rain than before [Fig. 2 (b) ]. The rain, of course, would have
both cooled the roof (which had been heated by the sun) and reduced
dust in the air. Since no connection previously was apparent between
modulation and temperature conditions, it then was thought that the
modulation might be affected strongly by particulate scattering.

Indeed, at night the beam was always well decorated by forward
scattering from what appeared to be dust and haze particles. Normally
the beam could be seen with the eye placed within about 10-2 radian
of the forward direction. This was the case with clear or hazy con-
ditions. Only with fog could the beam be seen substantially more than
10-2 radian away from the forward direction. Under no conditions,
including light fog, could backscattering be detected by eye. The
result with the multi -folded system was that, when standing at one
end of the range and looking toward the other, only those segments
in which the beam was approaching could be seen. This is shown by
the photograph of Fig. 10, which was taken looking toward the trans-
mitter. Speed of the film was ASA 125. Exposure time was 15 minutes,
so the beams appear well filled -in. There seem to be four separate,
parallel beams from four separate sources. There is no trace of the
diagonal connections of the returning beams. It seems clear that back
scattering was orders of magnitude weaker than forward scattering.
The right-hand beam came from the laser, and light scattered at the
source caused the saturation of the film.

When measuring depth of modulation, therefore, the level of for-
ward scattering out of the beam was readily observed. Attempts were
made to correlate modulation with scattering, and no qualitatively
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.

Fig. 10 - Photograph of multiple -pass laser beam illustrating the lack of back
scattering.

apparent relation could be found. The level of scattering did vary in
a pronounced way as the density of particles varied, but modulation
did not seem to change correspondingly. With short ranges, such as
25 feet, cigarette smoke was deliberately blown into and along several
feet of the beam causing brief and strong decoration of the beam but
having no noticeable effect on modulation.

Having thus found no dependence by casual observation, we ar-
ranged to measure modulation while also systematically noting wind
speed, direction, and variability, temperature of the roof, and temper-
ature of the air at beam level. The arrangement was that shown in
Fig. 3 except the distance was 138 feet. Temperatures were measured
at the middle of path. Readings were taken every half hour continu-
ously for 24 hours so that any diurnal variation would be detected. In
particular, one might expect a change in modulation depth around sun-
rise and sunset. (Reliable observations of "good -seeing" at sunrise and
sunset date at least from 1878 when Michelson measured the velocity
of light and found that he could not work at any other time due to
excessive "boiling" of the image of his slit.8)

The 24 -hour period began at 5:45 p.m. on November 3, 1965. A
broad variety of wind conditions was obtained both at night and dur-
ing the day, ranging from dead calm to a period which was violently
gusty in the late morning. The sky was clear at the beginning, becoming
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gradually overcast until no stars could be seen by 3:45 a.m. on No-
vember 4, 1965. This cleared to only a hazy sky by 8:00 a.m., and the
daytime then remained clear except for occasional clouds.

The results are assembled in Fig. 11. The difference between roof
and air temperature is recorded since one expects temperature gra-
dients to be more significant than temperature level. Wind conditions
are given below depth of modulation. It is apparent at once that there
was no simple correlation between modulation and temperature dif-
ference or time of day. Any distinct reduction or other effect on mod-
ulation at sunrise or sunset is conspicuously absent.

The negative results of the previously qualitative observations
therefore have been extended by these more quantitative results. It is
still clear that modulation depth depends upon atmospheric conditions
in a sensitive way, but the measurements so far have not revealed the
nature of the dependence.

VI. THEORETICAL BACKGROUND: DISTANCE DEPENDENCE

The amplitude and phase fluctuations of an electromagnetic signal
that has propagated through a random medium have been theoretically
analyzed using different approaches. Of the more familiar ones are the
following: the ray theory, the first Born approximation, and Rytov's
method. The results obtained by all three methods agree, though they
may hold true only for certain regions of distance.° Of the above
three approaches, Rytov's method lends itself to a generalized treat-
ment that holds good for both short (Fresnel zone) and long (Fraun-
hofer zone) distance regions of the scatterer. 1.t should be noted that in
the following discussion the Fresnel and Fraunhofer regions are with
respect to the scattering medium and not with respect to the trans-
mitter aperature.

The physical configuration for which the calculations are made is
shown in Fig. 12. An infinite plane wave is incident upon a semi -infinite
(- 00 < x < 00; -00 <y<--koo;z:0) inhomogeneous and ran-
dom medium which is assumed to be quasistatic. A point detector
is located at x = L which not only sees the unscattered direct wave
but also waves scattered from within a scattering volume that is in
the form of a cone. This cone has its vertex at the receiver and has
an aperture angle of the order of 1/ka, where k is the propagation
constant (= .27r/X) and a is the scale size of the tubulence. The justi-
fication of using this configuration for our measurements will be given
at the end of this section.



MODULATION OF LASER BEAMS

HOMOGENEOUS INHOMOGENEOUS AND
MEDIUM RANDOM MEDIUM

LOCATION OF
THE `RECEIVER

645

Z=0

RADIANS
k a

z=L

Fig. 12-Physical configuration for calculation of amplitude fluctuations.

The functional dependence of the amplitude fluctuations will depend
on whether the receiver is located in the Fresnel or Fraunhofer zone.
The extent of these zones are determined by a dimensionless parameter
D, called the wave parameter. It is given by

D4L=
ka

(1)

D << 1 for the Fresnel region and >>1 for the Fraunhofer region. The
dependence of the mean square fluctuation of the amplitude B2 on this
distance L is given by"

For D << 1 T3CIL'

D> 1 Rd,
In other words, the root mean square value of the fluctuations will
have a functional dependence on distance given by the distance raised
to the power 3/2 and 1/2 for the Fresnel and Fraunhofer zones, re-
spectively.

The quantity measured in the experiment is the percentage modula-
tion given by 100 times the ratio of the rms voltage to the average
value. This ratio is the same as the ratio of the rms value of the fluctu-
ating light power to the average light power expressed in percentage.
For values of ac -to -dc power ratio very small, it can be shown that

Vans Prin. Erma
V., - P., - Es,

(2)

(3)

where V's refer to the voltages across the photomultiplier load, P's to
the light power and E's the electric field intensities in the light radia-
tion field. From (2) and (3), we see that the ratio of the V. to Vav
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should vary as L312 in the Fresnel zone and as L112 in the Fraunhofer
zone. Even though the configuration used for the theoretical calculation
does not seem to represent our experimental arrangement, its validity
can be justified by the following argument. The 3/2 power law, which
is the one that will be used to compare with our results, can also be de-
rived using ray theory in which fluctuations in an infinitely thin ray of
light are considered. The fluctuations in this case can be measured us-
ing a point detector. In our case, the ray is of finite diameter (that
corresponding to the laser beam diameter), and consequently the detec-
tor is also of finite dimension to insure collection of the entire ray.

VII. DISCUSSION

The modulation of a single -mode, single -frequency laser beam at
6328A° by atmospheric turbulence was investigated by varying the
propagation distance as the parameter. Unlike the spectral width of
modulation, the depth of modulation does depend on distance and
varies as 3/2 power of the distance. In making the measurement, it
was ensured that all of the direct beam was collected by the receiver.
The range of the propagation distance was extended from 0 to 2400
feet. The empirically obtained 3/2 power law agreees well with the
theoretical result obtained using Rytov's method, provided the propa-
gation distance is within the Fresnel zone of the scatterer. This assump-
tion leads to an estimation of the scale size of the atmospheric turbu-
lence. The effective scale size in (1) is estimated to be larger than 5
cm in diameter for L > 2400 feet and D = 0.1.

An interesting feature of the dependence of depth of modulation on
distance is its large value at distances lower than about 100 feet. This
produces a functional dependence on distance which is other than 3/2
power. We have also noticed that the spectral width which is char-
acteristicaly a few hundred hertz and whose exponential decay with
frequency is otherwise independent of distance undergo changes at
these short distances. The amplitudes of the low -frequency compo-
nents decrease more rapidly than those of the high -frequency com-
ponents as the distance is made shorter. We believe that the short
distance variation of the depth of modulation and the spectral width
are related and are caused possibly by the same phenomenon. This
is under further study.

In comparing the absolute value of depth of modulation with those
obtained by others, it has to be borne in mind that we collect all of
the direct beam in contrast to previous work in which only part of the
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direct beam was collected. Consequently, the magnitude of the depth
of modulation measured by us is much less than that of others. For
example, Edwards and Steen''' have observed with a zirconium arc
source for a 300 -meter path a depth of modulation as high as 80
percent, whereas our value for the same distance is of the order of
1 percent or less. Another measurement by Portman, et al'3 with a
partially collected beam at 500 meters yielded a peak to peak percent-
age modulation of 150 percent.

Although the main goal of this work was the functional dependence
of the depth of modulation on distance, two other observations were
made which are worth noting. Contrary to the behavior of the spec-
tral width, which depends systematically on weather conditions, the
depth of modulation has no clear-cut dependence on the atmospheric
conditions which were measured so far. It seems modulation is a sensi-
tive but obscure function of atmospheric conditions. The atmospheric
variables which need to be measured evidently are relatively fine.
Besides many qualitative observations, the quantitative results of a
24 -hour run were a demonstration of this.

Also, we have not been able to observe any back scattering of the
laser radiation even under severe weather conditions. Most of our
experiments were conducted during night time. Even on very dark
nights, the dark adapted eye (of several observers) could not detect
any trace of back scattering. This is true in conditions of clear atmos-
phere with various amounts of particulate matter, haze, fog, and
under severe rain storms. From these qualitative observations, we
are led to estimate that the back scattering is orders of magnitude
lower than the narrow angle forward scattering-a value considerably
lower than the 2 percent obtained by Carrier and Nugent.14 This
observation is surprising also in view of the various reports of at-
mospheric back scattering observed with optical radar systems (e.g.,
Collis and Ligda15).
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Iterative Solution of Waveguide
Discontinuity Problems

By W. J. COLE, E. R. NAGELBERG and C. M. NAGEL
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The application of matrix iterative analysis to the solution of waveguide
discontinuity problems is discussed. It is concluded that the "Gauss -Seidel"
or "point -single-step" method offers several advantages over more conven-
tional invertive procedures, particularly in the speed of execution. Two
examples are presented as illustrations: analysis of an H -plane discon-
tinuity in a rectangular waveguide and conversion from TE to TM 11
modes at an abrupt discontinuity in a circular waveguide. The latter
results are shown to be in good agreement with measured values obtained
in a previous investigation.

I. INTRODUCTION

The analysis of waveguide discontinuities, for application to the
design of antennas and microwave networks, continues to offer challeng-
ing problems in electromagnetic theory and microwave engineering.
Thus far, the solution of these problems has depended to a large extent
on various approximate techniques, such as variational and quasi -
static methods,' which are extremely useful but nevertheless limited
in applicability.

The shortcomings of classical analysis have been surmounted to a
large extent by our ability to solve electromagnetic boundary value
problems by numerical methods, making extensive use of digital com-
puters. Computational techniques are not only an abundant source
of engineering data, which might otherwise require elaborate construc-
tion and experiment, but they can also provide a unique analytical
laboratory in which to evaluate approximate theoretical methods under
easily controlled conditions. In this paper, we shall be concerned with
these numerical methods as they apply to certain waveguide discon-
tinuity problems.

649
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For the sake of simplicity we shall consider, as an example, the
problem of two waveguides with similar cross sections connected to-
gether at the plane z = 0, as illustrated in Fig. 1. A wave is shown
incident from the smaller waveguide impinging on the discontinuity.
The result will, of course, be to excite an infinite number of normal
modes in each guide, some of which carry real power away from the
junction, with the remainder being evanescent and contributing to
the electromagnetic field only in the vicinity of the connecting aperture.
It must be recognized that these evanescent modes play an important
role since they, in part, determine the amplitudes and phases of the
propagating modes. It is the fact that an infinite number of waves
must, in principle, be considered that makes this type of problem so
difficult.

The contents of the paper may be summarized as follows: We begin
by establishing an appropriate form of the uniqueness theorem for
Maxwell's equations as they apply to boundary value problems of
this type. In numerical analysis, the criteria for uniqueness are of more
than academic interest since they provide meaningful and practical
methods by which to assess the accuracy of results. Next, the normal
mode representation of the fields is discussed, the object being to
arrive at a matrix equation formulation of the problem in which the
components of the unknown vector are the modal coefficients. It is

INCIDENT
WAV E

Fig. 1- Waveguides of similar cross section connected at the plane z = 0 by
an abrupt discontinuity. A wave is assumed incident from the smaller guide.
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suggested that this matrix equation may be solved by an iterative
procedure and, upon studying the convergence properties of such
methods we find a critical dependence on the particular algorithm
used. Two examples will be presented as illustrations, analysis of an
H -plane discontinuity in a rectangular waveguide, and conversion from
TE,, to TM modes at an abrupt discontinuity in a circular waveguide.
The latter results are shown to be in good agreement with measured
values obtained in a previous investigation.

Rationalized MKS units and the (suppressed) harmonic time de-
pendence exp (-iwt) will be used, unless otherwise specified.

II. UNIQUENESS AND ERROR CRITERIA

A representation of the discontinuity is shown in Fig. 2. It is assumed
that the regions to the left (denoted by -) and to the right (denoted
by +) are each filled with homogeneous material, but with possibly
different constitutive parameters. Maxwell's curl equations in the
respective regions are thus given by

V X E* =
aH±
at

V X H± = E± at

(1)

As usual for uniqueness theorems, we begin with two solutions in
each region presumed to be correct, and denote the differences respec-
tively by E±, 11±.* Then from the Poynting theorem,' it follows that

ry

B C

tit

get

Fig. 2 - Waveguide discontinuity showing boundary surfaces A, B, C, D and
respective normals n1, n2, n3, n4.

* Physically, these fields would correspond to a waveguide discontinuity problem
without excitation.
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in the - region

(E-, X 11-,) n, dS f(E;* X WO n2 dS
A

dV - -a- dV (2)
v -

and in the ± region that

(E11- X H+,)n, dS ff(E:. X H+t).n., dS
D

=-- -e ;it f f, E+E+ dT7 -
at

iffy+ H+ H+ d17, (3)

where a/at denotes differentiation with respect to time and the sub-
script t denotes the field transverse to the generatrix of the cylinder.
The unit normal vectors n, , n2 , n3 , and n4 are shown in Fig. 2.

One must also take into account the fact that certain physical con-
siderations will limit the class of admissible solutions. For example,
if we let the surfaces A and D recede to infinity, then all evanescent
modes will have decayed to zero and the respective surface integrals
then represent the power flow away from the discontinuity. Assuming
no loss, the total power must vanish. Furthermore, it can be shown
from Maxwell's equations that the transverse components of electric
and magnetic field at the interface must be continuous. Adding (2)
and (3), we find that the following time derivative must vanish,

E -E- dVdV
v -

E+ E+ dV µ+}1÷ dV1 = 0, (4)
ir+ V+

We may, however, regard the quantity in brackets as having had
a zero value at some time, say at t = 0, the excitation time. The term
in brackets therefore, vanishes for all time and, since each of the in-
tegrands is positive semi -definite, they must vanish separately. Thus,
at each point in the + and - regions,

El+ -E2 = -H2 =0
ET - E-2 = HT - 11,7 -= 0

and the solution is thereby shown to be unique. We may now state
the following uniqueness theorem for waveguide discontinuity problems.

(5)
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Theorem: The solution to a waveguide discontinuity problem is uniquely
specified if it can be shown to have the following properties:

(i) It satisfies Maxwell's equations and the appropriate boundary
conditions in the regions on each side of the discontinuity.

(ii) The components of electric and magnetic fields tangent to the
interface are continuous.

(iii) In the case of a lossless discontinuity, energy is conserved.

These three conditions obviously play an important theoretical role
in the solution; where numerical methods are used, they also provide
fundamental criteria by which the accuracy of computed results can
be assessed. Accordingly, we shall define the following quantities to
be used as error criteria: First, there is the parameter ep , which indicates
how well the solution conserves energy, given by

P,. P
1, (6)Ei. -

where 13,,P and Pin° are the reflected, transmitted, and incident powers,
respectively. Second, the mean square error in the tangential electric
field is defined by

ER
Aperture

(E; - Et) 12 dA

E(ino)

lApor tura

and third, for the magnetic field,

EH - !Ler ture

dA

I (1-1; - IUD 12 dA

"Aperture
I IC"' I2 dA

(7)

(8)

where E"") and H"`"' refer to the incident wave.
The smaller the quantities Ep CE and EH the more closely the

boundary conditions are satisfied, at least in the mean square sense,
and the more accurate we shall consider the solution to be.

III. MATRIX FORMULATION OF THE BOUNDARY VALUE PROBLEM

The most convenient format for numerical solution of waveguide
discontinuity problems is a matrix representation, in which the modal
coefficients form the unknown column vectors and the discontinuity
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is characterized by a square matrix. We recognize that there is also
an analogous integral equation in terms of the aperture electric or
magnetic field. However, since the numerical solution of the integral
equation is generally carried out by reducing it to a matrix equation,
we shall proceed to the matrix formulation directly from the physical
characterization of the boundary value problem. This matrix equation
will then be solved by an iterative method, the theory of which is
discussed in Section IV.

It is assumed that in each of the waveguides, the electromagnetic
fields may be characterized by a denumerable set of known vector
eigenfunctions which may be ordered according to some index. We shall
be concerned only with the transverse fields,* denoted as follows:

+ E,;(r) (p = 1, 2, 3,    ) denotes the transverse electric field for the
pth TM mode in the + waveguide, with r as the position vector in
the transverse plane.

+ Hgr) = transverse magnetic field for the pth TM mode in the
 waveguide.

± Ep"(r) = transverse electric field for the pth TE mode in the +
waveguide.

+1-1,"(r) = transverse magnetic field for the pth TE mode in the
 waveguide.

By replacing the + by - we have the analogous notation for the
other waveguide. An important point concerning sign convention is
that the unknown modes in the - waveguide will all be taken to
propagate away from the discontinuity, i.e., in the -z direction.
Although the electric field does not change sign when the direction
of propagation is reversed, the magnetic field does, and this fact must
be carefully taken into account.

In order to define the amplitudes of the respective vector wave
functions, we adopt the following normalization,' written in terms of
integrals over the waveguide cross sections:

±E:,  ±E!,* dA = 1 *14, 12 3pq (9)
A

L±E','  'W,'* dA = (.4212 (5,
A

(10)

in which hp is the respective characteristic wavenumber, and At is the
permeability, which in our case will be the permeability of vacuum,

* It is assumed that the individual waveguides can support pure TE and TM
modes, which is the case for applications of interest here.
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since both waveguides will be assumed empty.t By introducing the
Kronecker delta (5, we have also expressed the fact that the trans-
verse fields in the individual waveguides are orthogonal.

Once the normalizations for the electric wave functions are defined,
those for the magnetic field are also specified since, for both the TE
and TM modes, the transverse electric and magnetic fields are uniquely
related. In particular, for a TM mode

±1-1;,= ez X ±E', (11)
±/4,

and for a TE mode

= ±-*IW ez X
WJ2

(12)

where ez is a unit vector in the z direction. Note again that the sign
convention is such that a field in the - waveguide is taken to be a
reflected wave, travelling away from the discontinuity. The magnetic
field normalization is thus given by

LA

LA

dA = co2e2 spa (13)

±1-1;,'  ±11'g'* dA = 1±14,' 12 . (14)

Both sets of transverse wave functions have the property of com-
pleteness, which is to say that any transverse electric (or magnetic)
field can be synthesized from a set of TE and TM vector wave functions,
provided that the directions of propagation of the normal modes are
known. For the problems to be considered here, this latter information
is available from physical considerations, since all modes propagate
away from the junction with the exception of the incident wave whose
amplitude is known. This amplitude will be taken to be that of a
normalized mode.

We now derive the appropriate matrix representation for the dis-
continuity problem. Assume a dominant (TE) mode wave (EV, Hr')
is incident from the - guide, setting up a transverse electric field in
the aperture just to the left of the junction. This field, referred to as -E
may be synthesized as follows:

-E, = -Ef' E E (15a)
p=i a=1

t The asterisk (*) denotes the complex conjugate.



656 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

with the modal coefficients -A and as yet undetermined. The
corresponding transverse electric field on the + side, denoted by ÷E
would then be given in terms of normal modes on the + side by

+E, = E E
P = I Q=1

(15b)

Since the transverse electric field is continuous across the aperture,
we have that

+ E, on C

0 on D -C.

As shown in Fig. 2, D -C represents the conducting wall which makes
up the remainder of the junction, and on which the transverse electric
field must vanish. Expanding (15a) in a Fourier series of modes in
the ± waveguide, we find that the modal coefficients are related by

IC

÷B, - 2 2 '
1

co .c

-Ef'  +E;,* dA
i+h/ 12 "7-f -A' ic

Ef,  +E;,* dA

1 x -,°D

I2
LiB, -E"  +E'* dA (16a)

= 1 C

+E',/* dA 21 2 t A, dA
CI) = 1

f
1±  +Er dA (16b)

CD Q = 1

f'

or, more succinctly, using partitioned matrix representations,

r+a-

L+61_

0

0 212 g

1

- +53, +c5),

1
J g

co co

T

8T

(17)
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in which the vectors and submatrices are defined as follows:

n±Ail r*B,1

±.40 'cB = *B2

L
:

(5,),, = f -Er  +E;,* dA

(g2), = -Er  +E','* dA
C

1

I +hi 12

0

0 0

1

+h; 12

0 0

0

(18)

(19)

(20)

and g is the identity matrix. The matrix 8, whose transpose appears
in (17), is the matrix of coupling coefficients, defined as the scalar
products of electric transverse vector wave functions for the wave -
guides on each side of the discontinuity. The four index notation is
interpreted as:

= f +E''* dA

with analogous definitions for other combinations.
The system of equations given in (17) is cle

since the number of unknowns is twice the numbe
ever, an additional set can be derived by empl
condition that the transverse magnetic field mus
across the interface. The matrix equation, anal
corresponding to this second boundary condition,

1 1

2 2 g 2 2 g
WE We

-

T +

(21)

underdetermined
f equations. How-
. g the boundary

o be continuous
ous to (17), but
yen by

L33+_

(22)
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in which

-DI/

9 =

1
-hc/ 12

-1-

0

0

 _

0 0

1
0

1-11,"; 12 "

0 0

(23)

(24)

and the matrix 3C, whose transpose appears in (22), is the matrix of
scalar products of magnetic transverse vector wave functions. The
four -index notation is interpreted in the same way as in (21).

It should be noted once again that all the matrices which appear
in (17) and (22) are infinite matrices, corresponding to the fact that
in general an infinite number of modes are excited in the neighborhood
of the discontinuity. In practice, of course, there must be a truncation
and the problem then becomes one of solving a set of matrix equations
whose order, N, depends on the accuracy required. Unfortunately
there is, as yet, no
a given accuracy
for meaningful e
number of modes
results but at t
putation. It is
very useful in t

IV. MATRIX IT

It was shown
problem of in
linear algebraic
physics, so that
of matrix equati

ay in which the number of modes required to produce
an be predicted. We can only emphasize the need
r criteria which will act as a guide in choosing a
'ch will be large enough to give sufficiently accurate

e time not be so large as to require excess com-
that the criteria given in Section II will prove

ect.

METHODS

previous section that the waveguide discontinuity
ere can be formulated in terms of a system of
ions. This is a recurrent theme in mathematical
ensive theory concerned with the efficient solution
as evolved. In this section, we shall be concerned
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with some of the elements of this theory, placing particular emphasis
on the solution of matrix equations by iteration.

The system of linear algebraic equations which results from satisfying
the aperture boundary conditions on the transverse electric and mag-
netic fields can be written in the matrix forms

where

+a = ±  a
-a = S +a,

a LF.+1±(B

the vectors 'It and %) and the matrices ea and 8 being correspondingly
identified from (17) and (22). Equations (25) and (26) are easily un-
coupled to give

(25)

(26)

[g - 61 8]  +a = 91 + (RI)

[c - 861]-oe = +
both of which are seen to have the general form

ags = y.

(27)

(28)

(29)

(30)

In (30), x is an N -dimensional complex vector whose components
are the coefficients of the normal modes in the two waveguides, 5it is
an N X N complex matrix characterizing the discontinuity, and y is an
excitation vector due to the incident wave.

The obvious method of solving (30) is to compute the inverse of On
and thus directly obtain

x (31)

However, we should recognize that it is the solution vector x which
is required, and that computing the inverse is not always the best equa-
tion solving technique. For example, because the modal coefficients
may decrease slowly with mode index, an accurate approximation of
the physical problem often requires that 5it be a very large matrix,
and inversion procedures for large complex matrices require considerable
computational effort. An alternate approach is therefore suggested,
namely the solution of (30) by a method of iteration.

In an iterative algorithm, we begin with an initial "guess" for the
solution and, from this, generate a supposedly improved solution,
repeating the process until successive iterations give results which
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-TE,, MODE INCIDENT

Fig. 3 -H -plane discontinuity in a rectangular waveguide. The incident mode
is a TElo mode (electric field vertical).

agree to within some prescribed norm. The solution to which the
procedure converges must, of course, be independent of the initial as-
sumption.

A tempting iterative procedure for the present problem is suggested
by writing (28) in the form

+a = (RV + 8  +a (32)

with an initial assumption
+«101 = RL + . (33)

Physically this corresponds to first assuming the aperture electric
field to be that of the unperturbed incident wave, and calculating the

Z - 0.984
Lu

Cr)

LL
LL

ow 0.980
U

I- 0.976
u_
0

cE - 0 972<
a_

0.968
0 2 4 6 8 10 12 14

NUMBER OF ITERATIONS
16 18

Fig. 4-Transmission coefficient of an H -plane discontinuity.

20 22
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TE and TM modal coefficients in the waveguide on this basis. The
corresponding magnetic field is then determined on the + side of the
aperture and, with the aid of the appropriate continuity condition,
is used to find the magnetic field and subsequently an "improved"
electric field in the - region. This second guess for the aperture
electric field is then used to repeat the process, etc.

As a test, this algorithm was applied to analysis of an H -plane dis-
continuity in a rectangular waveguide, the incident wave being a
TEI0 mode of normalized amplitude [see (14)J as in Fig. 3. The dimen-
sions were ka2 = 4.5 and kai = 3.5 where k is the free space wave-
number. With this choice of parameters, only the TE,,, modes can
propagate in each guide. (This problem is discussed in further detail
in Section V.)

Fig. 4 shows the result of calculating the real part of the modal
coefficient for the TEIo mode in the larger waveguide, plotted as a
distribution of points giving the value at each iteration. The Fourier
series for this particular example was truncated after twenty five terms.
Aside from a small amplitude oscillation of less than one percent rms,
the results seem reasonable, especially in view of calculations for the
mean -square errors eE and e, , which are illustrated in Fig. 5. These

0.032

0.028

0.024

2 0.020
w

0.016

tit

Ft 0.012

0.008

0.004

0
0

EH

eE
-0 0 0 0

4 6 8 to 12 14

NUMBER OF ITERATIONS

0

AA A6

0 0 0 0 0 0

16 18 20 22

Fig. 5-Mean square errors in transverse electric and magnetic fields for an
H -plane discontinuity.
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Fig. 6-Oscillatory instability of a nonconvergent algorithm for the H -plane
discontinuity analysis.

decrease monotonically with succeeding iterations, EH approaching
approximately 0.001 and EH a value of about 0.012. The larger error
in the magnetic field can be attributed to the singular behavior in
H near the corner of the discontinuity. The asymptotic value of the
energy parameter Ep is approximately 0.007.

The apparently accurate results obtained using this algorithm are
in fact quite deceptive, and may actually be attributed to the propitious
initial choice for the aperture electric field. It will be recalled that a
very important criterion for validity of an iterative procedure is that the
results be independent of the initial assumption. In order to determine
whether such a criterion is satisfied for this particular algorithm, the
TE10 modal coefficient for the larger waveguide was arbitrarily doubled
after the fourth iteration, which is equivalent to deliberately assuming a
poor initial choice for the aperture field. The effect, shown in Fig. 6,
indicates that the algorithm does not relax to the previous values, but
continues to oscillate with a large amplitude. Similarly large fluctua-
tions occur in EE , EH , and Ep , the conclusion being that this particular
precedure is not satisfactory, and can be expected to give reasonable
results only if the initial choice is a very good one. The reason for this
instability will become apparent after we consider those aspects of
matrix -iterative analysis which are relevant to these problems.

In the usual framework for iterative procedures, the matrix equation
satisfied by the unknown vector x is written in the form

x = D'Ex f, (34)

where E and f are appropriate to the particular scheme being used.
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This leads very naturally to the recursive formula relating the m 1

to the in iteration,

x(n+1)
gru(.)

We denote the error vector at any iteration by e(m) , where

e(m) = x(m) - ±,

(35)

(36)

and is the exact solution to (34). Then, by substituting (36) into (35),
we find that e("1" is related to e(m) by

(m+1) mew. (37)

Therefore, the error at the inth iteration is expressible in terms of the
initial error by

( = nt ( 0 )

For an absolutely converging solution we thus require that

en) -* 0 as m co

regardless of the initial guess x(°). This is equivalent to

OTC' --> 0 as m --> co

(37a)

(38)

(39)

where the 0 in (38) and (39) denotes a null vector or matrix, respectively.
It can be shown' that an N X N complex matrix DE is "convergent", in
the sense of (39), if and only if all the eigenvalues X, of NC magnitude
less than unity, i.e.,

1 Xi 1 < 1 all i. (40)

We can easily see why this requirement will guarantee convergence,
at least for the special case where the eigenvectors ai of DTI span the
space of N -dimensional complex vectors. The initial error is then
expressible as

(0)
E = E cia, ,

iml

(41)

where the C, are constants. The error at the nth iteration then be-
comes, from (37),

E(m) = E C iffrai = E Cdt",!«, (42)
i-1

and, as in 00 , each term in the sum approaches zero, provided,
of course, that (40) is satisfied.
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Equation (42) also reveals useful information concerning the speed
of convergence, which is seen to depend on how close the magnitudes
of the X, are to unity. Clearly if the largest eigenvalue is very near
one in magnitude, the convergence will be very slow and hence a large
number of iterations will be required. It would be logical, in the light
of this reasoning, to evaluate the magnitude of the largest eigenvalue
for the H -plane discontinuity problem discussed proviously. Unfor-
tunately, because of the geometrical asymmetry, the matrix art is not
Hermitian and so the usual computational techniques for determining
eigenvalues cannot be used. We can, however, find an upper bound
for the modulus of the maximum eigenvalue, p(91Z) = max { J I ,

given by'

PO TO [P(regii)il (43)

where t denotes the conjugate transpose matrix. Note that 011t9Tt is
Hermitian, so that standard computer programs can be used to evaluate
its eigenvalues. We find for the previous H -plane problem that I A; 1.16
which, although, not conclusive, shows the possibility of such an os-
cillatory instability.

One technique which is suggested as a means of obtaining a con-
vergent algorithm is called the "Richardson" or "point -Jacobi" method.'
In this approach, the matrix art is first partitioned as

31Z = ± 2 ± (44)

where 21 is a diagonal matrix containing the diagonal terms of DE, 2
is a strictly lower triangular matrix and 'it is a strictly upper triangular
matrix. The system (34) is then written as

(g - D)x = + clt)x f (45)

from which

x= - p)-1(ce cit)x (g - D) -If

= artRx fR , (46)

(46) being the matrix representation of the "Richardson" or "point -
Jacobi" method.

A modification of this procedure is referred to as the "Gauss -Seidel"
or "point -single-step" iteration method.° Note that in solving (46) by
iteration, the components of x`m+1) are all computed from the com-
ponents of x(m). Intuitively, it would seem more attractive to use the
latest estimates of x, i.e., in computing en' we should use, wherever
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they appear, the components xr" (k < j) already computed, and
in this way utilize the most accurate information available. This pro-
cedure is, in fact, easier to implement in a computer program and,
in addition to requiring less storage, often has better convergence
properties than Richardson's method. It may be shown that the matrix
representation, analogous to (46), for the "Gauss -Seidel" method is

.r = 011,;.r f (47)

= (J - D - °C)-, `11

fG = - - oerf,
D, 2, and 'U. having been defined previously.

The eigenvalue condition given in (40) is, of course, a very restrictive
one, so that iteration procedures cannot be applied with success to
every system of equations. However, when a convergent matrix Dit
can be found, the methods which have been discussed offer several
distinct advantages over a straightforward matrix inversion. For ex-
ample, if the order of the system is N, then it can be shown that each
iteration requires approximately N3 multiply -add operations.* On the
other hand, an inversion requires at least N3 multiply -adds, so that
the relative saving is the ratio of the order N to the number of itera-
tions required. It is often the case that the maximum eigenvalue is so
small that the number of iterations required for an accuracy equivalent
to that obtained by inversion is considerably less than N.

Iterative methods also have the property that the solution accuracy
is "adjustable", in the sense that once the solution has converged to
the point where some norm, e.g., CE or CH defined previously, is less
than a specified tolerance, the iteration process can be terminated.
This property is especially attractive in view of the fact that truncation
errors have already been introduced, and it would therefore be super-
fluous to accurately invert a system which is itself approximate. By
having the option of terminating the iterative procedure, we introduce
an additional degree of freedom by which we can optimize the computa-
tional program.

V. APPLICATIONS

(48)

The iterative techniques discussed in the previous section will now
be applied to two problems of interest, namely the H -plane discontinuity

* A multiply -add consists of the multiplication of two complex numbers and the
adding of the result to a third complex number. For repetitive computational
algorithms, the number of multiply -adds is a measure of the computational effort
required.
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problem mentioned in Section IV and the analysis of TE11 TM'
mode conversion at a step discontinuity in a circular waveguide. In
both of these examples the required matrix elements may be expressed
in convenient closed forms, which considerably reduces the required
computational effort.

5.1 H -plane Discontinuity in a Rectangular Guide

In Section IV, the H -plane discontinuity of Fig. 3 was analyzed
using an iterative algorithm which was observed to exhibit an oscillatory
instability when initiated with a poor approximation to the actual
solution. It was concluded that this was due to the eigenvalues of the
iteration matrix arc being close to, or perhaps greater than unity. We
now consider the same problem using the Gauss-Seidel method which,
on the basis of the previous discussion, is expected to improve matters
substantially.

We assume a normalized TE,,, mode incident from the smaller guide.
Because of the symmetry of the junction, such a wave excites only
TE modes in both the and - regions. The problem is, of course,
to determine the corresponding modal coefficients for the fields on
each side of the discontinuity. We shall present results only for the
transmitted TER, mode, which is the only mode propagating in the
larger waveguide for the present dimensions, ka1 = 3.5, ka2 = 4.5.

It can be shown9 that the normalized vector wave functions are
given by

= ey i71/ sin [P
a; '--7-

( -I- a,)
-V 2a, b. 2a, s

+E;' = e. liwt` 2
sin [P (3; _4_

v 2a, b a2 '

(49)

where a1 a2, and b are the dimensions of the guide as shown and ey is
a unit vector in the y direction. The corresponding magnetic vector
wave functions can be found from (12). The respective propagation
constants are

2 1= [k2 -
2a,

4 = 1
4a2

(50)

From (21) and (49) we find that the coupling coefficients for the electric
fields are given by
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I

= 22/12\7-1-: sin ar sin gi- J
1

+

1a, sin
(p - q 7 (51)

ir al

Pra2 q7 f
The appropriate magnetic field coupling coefficients are easily found
from (51) using the relation

a2 2 2

1- 7, '/

where Z2, denotes the modal impedance, equal to

sill
pir(-2 , -al 7r)

a2

(52)

cot/
*Z;,' =

*14,'
(53)

The results for the TE,0 modal coefficient, +.13i, as obtained using
the Gauss -Seidel iteration method, are conveniently represented in
Table I. Also given are the numerical values for the error parameters

eB and EH . Truncation for this example was at 25 modes in each
waveguide.

We conclude that for most applications, two iterations would probably
have been sufficient, corresponding to a saving of greater than 90 percent
in actual execution time, compared to a matrix inversion. The reason
for this extremely rapid convergence is, as expected, in the magnitude
of the largest eigenvalue, which was found, using (43), to be less than
0.078.

As a means of establishing the convergence of the normal mode
solution, we have plotted in Figs. 7 and 8, the mean square errors
eR and elf , respectively, as a function of the number of modes taken.

TABLE I - RESULTS USING THE GAUSS-SEIDEL METHOD FOR ANALYSIS
OF THE H -PLANE DISCONTINUITY

Iteration
number

+/11 Energy
coefficient

ep
11718 error

e 2,
rrna error

emReal Imaginary

1 0.97445 0.00951 -0.62 X10-2 0.5 X10-6 0.01445
2 0.97747 0.00455 -0.74 X10-6 0.49 X10-6 0.01355
3 0.97747 0.00426 0.85 X10-6 0.49 X10-6 0.01350
4 0.97747 0.00424 0.71 X10-6 0.49 X10-6 0.01349
5 0.97747 0.00424 0.51 X10-2 0.49 X10-6 0.01349
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Fig. 7-Mean square error eE, as function of the number of modes used, for
H -plane discontinuity.

These figures give genuine significance to the term "convergence in
mean square", since they indicate that the use of more terms leads
to better agreement with the boundary conditions in the mean square
sense. Again, the error is uniformly higher for the magnetic field than
for the electric field, due to the singularity at the corner of the dis-
continuity.

It is finally of interest to determine the effect of a poor initial estimate
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Fig. 8-Mean square error CH as function of the number of modes used, for
H -plane discontinuity.
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TABLE II - RESULTS OF SPOILING ELECTRIC FIELD AT 4TH ITERATION

Iteration
number

TEN coefficient

Real Imaginary

3
4
5
6
7

0.97747
1.94165
0.98052
0.97747
0.97746

0.00426
0.02572

-0.00063
0.00396
0.00423

of the solution. We find that, unlike the simple algorithm discussed
in the previous section, the Gauss -Seidel procedure is very stable,
returning to the correct "steady state" solution within a few iterations
after the spoiling was introduced. The results are shown in Table II,
again for a truncation of 25 modes in each waveguide.

5.2 ill ode Conversion at a Step Discontinuity in a Circular TV aveguide

The second problem to which these techniques were applied is that
of calculating the TE -+ TM mode conversion at an abrupt dis-
continuity in a circular waveguide. Recent studies have indicated that
this configuration is a very efficient transducer for use in dual mode
conical horns." The discontinuity is illustrated in Fig. 9 which shows
the 'TE mode, incident from the smaller guide, being converted to
a combination of TE,, and TM,, modes propagating in the larger guide.

The normalized TE and TM vector wave functions are known"
and, fortunately, it is possible to determine the appropriate coupling
coefficients. For the elements of the matrix we find that

TE,,

Fig. 9 -TE - TM mode conversion at a discontinuity in a circular waveguide.
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2 -14 +14*x,,, i(x,, 7))

( 5. X,
by

2 X:)j2(Xg)

2,0212by,241",(i yQ) - J1 (bY.)]

- (1L2a Y: - Y) ./(y: - 1)(y: - 1) JI(Y.)

+
012 + 121* i(x

]
- :17,,12(x,) 1/(y, - 1)

= 0.

(54)

(55)

(56)

(57)

In (59) through (62) we have used the following notation:

a - radius of smaller waveguide,
b - radius of larger waveguide,

x, - pth zero of J1(x),
y, - pth zero of Jf(y).

The elements of the matrix 3C can easily be found from the impedance
relations of (11) and (12).

One parameter which has been found to be useful in characterizing
the mode conversion properties of the discontinuity is the conversion
coefficient C, defined as the ratio of the p -components of electric field
for the two modes evaluated at the wall of the larger waveguide, i.e.,

C = 20 logio EP" dB.
E T E P b

(58)

This quantity was calculated for the particular discontinuity a = 1.05",
b = 1.4" over the frequency range 5.2 to 7.0 kHz, these parameters
having been chosen for purposes of comparison with available experi-
mental data. Truncation of the normal mode expansion was made
after twenty-five TE and twenty-five TM modes in each waveguide.
The iterative sequence was terminated when successive values of the
modal amplitudes differed by less than 10-6. It was found that typical
values for the error criteria are ep 10-7, and EE elf 0.015. These
results indicate that for a given accuracy, a much lower value can be
expected for ep , which is a function only of the lower -order modes,
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Fig. 10 -TEll TM11 conversion coefficient of a step discontinuity in a circular
waveguide. a = 1.05", b = 1.4".

than for EB and eil, , which depend on the higher -order terms as well.
In Fig. 10 we have plotted the computed values of the conversion

coefficient, defined in (58), as a function of frequency. Also shown,
as discrete points, are experimental results obtained previously." The
theoretical values are seen to be in very good agreement.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered the solution of those matrix equa-
tions which arise in the analysis of a class of waveguide discontinuity
problems. In searching for criteria to estimate the accuracy of computed
results, we have found that the uniqueness theorem itself yields a
convenient set of error parameters which are easily implemented in
the computational program.

It is suggested that an iterative technique, particularly the "Gauss -
Seidel" or "point -single-step" method often leads to a rapidly con-
verging solution, thus offering several advantages over the usual invec-
tive procedures, particularly in the speed of execution. Of particular
interest is the fact that when this method is applied to the analysis
of TE, TM,, mode conversion at an abrupt discontinuity in a
circular waveguide, it yields a rapidly convergent and accurate solution.
This has been established not only on the basis of theoretical error
criteria, but also by comparison with experimental results previously
obtained.

REFERENCES

1. Lewin, L., Advanced Theory of TVaveguides, Iliffe and Sons, London, 1951.
2. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Co., Inc., New York,

1941, p. 131.



672 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

3. Borgnis, F. E. and Papas, C. H., Electromagnetic Waveguides and Resonators,
Encyclopedia of Physics, Volume XVI, Springer, Berlin, 1958, p. 300.

4. Varga, R. S., Matrix Iterative Analysis, Prentice -Hall, Englewood Cliffs, N. J.,
1965, p. 13.

5. Ibid., p. 11.
6. Ibid., p. 57.
7. Ibid., p. 58.
8. Ibid., p. 16.
9. Borgnis and Papas, op. cit., p. 315.

10. Nagelberg, E. R. and Shefer, J., Mode Conversion in Circular Waveguides,
B.S.T.J., 44, September, 1965, pp. 1321-1338.

11. Borgnis and Papas, op. cit., p. 322.



Contributors to This Issue

W. JAMES COLE, B.S.E.E., 1963, Lehigh University; M.S.E.E., 1964,
Massachusetts Institute of Technology; Bell Telephone Laboratories,
1963-. Mr. Cole has been engaged in research into the numerical
solution of electromagnetic boundary value problems. Member, IEEE,
SIAM, Tau Beta Pi.

J. A. COLLINSON, A.B., 1950, Oberlin College; M.S., 1951, Yale Uni-
versity; Ph.D., 1954, Yale University; Bell Telephone Laboratories,
1962-. He has worked on gas lasers and placed emphasis on frequency
characteristics and atmospheric transmission of laser beams. Mem-
ber, American Physical Society, Sigma Xi, Phi Beta Kappa.

A. GOETZBERGER, Ph.D. in Science, 1955, University of Munich;
Bell Telephone Laboratories, 1963-. Mr. Goetzberger is a supervisor
in the metal insulator semiconductor group. Prior to 1963, he was
with the Shockley Laboratory in Palo Alto, where he worked on
junction imperfections and avalanche breakdown phenomena in sili-
con. He also participated in the development of a power transistor.
Member, American Physical Society, IEEE, Electrochemical Society.

T. T. KADOTA, B.S., 1953, Yokahama National University (Japan) ;
M.S., 1956, Ph.D., 1960, University of California (Berkeley) ; Bell
Telephone Laboratories, 1960-. Mr. Kadota has been engaged in the
study of noise theory with application to optimum detection theory.
Member, Sigma Xi.

DANKWART KOEHLER, Dipl.-Ing, 1955, Technische Hochschule Stutt-
gart (Germany) ; M.S., 1955, Georgia Institute of Technology, World
Student Fund and Fulbright Student 1953-1954; Dr.-Ing., 1958,
Technische Hochschule Stuttgart (Germany) ; Research Institute Tele-
funken (Germany) 1957-1960; Assistant Professor, Georgia Institute
of Technology, 1960-1961; Bell Telephone Laboratories, 1961-. Mr.
Koehler has been engaged in the design of circuits for high-speed

673



674 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

pulse code modulation terminals. His special interest has been de-
voted to high-speed circuit principles and semiconductor device char-
acterization. He is presently supervising a group responsible for the
development of high-speed PCM multiplex terminals. Senior member,
IEEE, Sigma Xi.

C. M. NAGEL, JR., B.S., 1964, M.S., 1967, Stevens Institute of Tech-
nology; Bell Telephone Laboratories, 1965-. Since joining the Labora-
tories, Mr. Nagel has been engaged in research in the numerical
aspects of various wave guide problems, Faraday rotation in the iono-
sphere, and electromagnetic scattering. In addition, he. has investigated
the application of air bearings as supports for acoustical delay lines
and participated briefly in computer center operations. He is presently
participating in the GSP program in the Detection Systems Labora-
tory. Member, Tau Beta Pi, Pi Delta Epsilon, American Association
for the Advancement of Science.

ELLIOTT R. NAGELBERG, B.E.E., 1959, City College of New York;
M.E.E., 1961, New York University; Ph.D., 1964, California Institute
of Technology; Bell Telephone Laboratories, 1964-. Mr. Nagelberg
has been concerned with problems involving microwave antennas and
propagation. Member, IEEE, American Physical Society, Eta Kappa
Nu, Sigma Xi.

E. H. NICOLLIAN, M.E., 1951, Stevens Institute of Technology;
M.A. (Physics) 1956, Columbia University; Bell Telephone Labor-
atories, 1957-. Mr. Nicollian's work has been in semiconductor
device physics. He is currently engaged in research on the electrical
properties of semiconductor -insulator interfaces. Member, American
Physical Society, Electrochemical Society, RESA, AAAS.

BURTON R. SALTZBERG, B.E.E., 1954, New York University; M.S.,
1955, University of Wisconsin; Eng. Sc.D., 1964, New York Univer-
sity; Bell Telephone Laboratories, 1957-. Mr. Saltzberg has been
engaged in the design, development and analysis of data transmission
systems. He is currently a member of the Data Theory Department.
Member, IEEE, Eta Kappa Nu, Tau Beta Pi, Sigma Xi.

MAN MOHAN SONDHI, B.Sc. (Honours), 1950, Delhi University
(Delhi, India) ; D.I.I.Sc., 1953, Indian Institute of Science (Bangalore,



CONTRIBUTORS TO THIS ISSUE 675

India) ; M.S., 1955, Ph.D., 1957, University of Wisconsin; Bell Tele-
phone Laboratories, 1962-. Mr. Sondhi has worked on problems con-
cerning the processing and transmission of speech signals. He is
currently interested in similar problems as well as modeling the de-
tection of auditory and visual signals by human beings.

M. STIBRAMANIAN, B.Sc., 1953, Madras University (India) ; Dip.
Madras Inst. Tech. (India) 1956; M.S.E.E., 1961 and Ph.D., 1964,
Purdue University; Bell Telephone Laboratories, 1966-. Mr. Sub-
ramanian's earlier research in microwaves involved work on receivers,
parametric amplifiers and ferroelectric materials. His experience in
quantum electronics includes nonlinear optics and cathodolumines-
cence. Presently he is studying the effect of atmospheric turbulence on
laser beam. Member, IEEE, Eta Kappa Nu, Sigma Pi Sigma.




